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Preface

I have personally used the previous editions of this book over many years and 
with pupils of a broad range of ability. I have always admired it for its common 
sense approach to the subject, for the large number and great variety of its 
examples and for the scope and grading of its exercises. In recent years, however, 
it has become increasingly clear that drastic revision was needed to take account 
of the many changes which have appeared in A-level syllabuses since the book 
was first written. At the time of writing the ‘common core’ syllabus is about to 
appear at A-level and this new edition, and its companion volume, have been 
prepared with this in mind.

Although many of the new chapters are concerned with so-called ‘modern’ 
topics, I make no apology for retaining the traditional style of the earlier 
editions. Indeed, I hope that readers will feel that the book conforms to the spirit 
of paragraph 582 of the Cockcroft Report, which says

‘Syllabus changes during the last ten years have lessened the dif­
ferences between the content of ‘modern’ and ‘traditional’ syllabuses 
and many feel it is no longer appropriate to distinguish between them 
.... We support the view that the distinction should no longer be 
maintained.’

This new edition of Pure Mathematics, Books 1 and 2, contains all the topics 
which are in the ‘common core’ syllabus and the symbols used throughout are 
those adopted by the Examining Boards. The pure mathematics content of most 
‘single subject’ syllabuses is included and, while it cannot be guaranteed that all 
‘double subject’ syllabuses are covered, the books will provide a sound course of 
study for most of them. These books are also suitable for the pure mathematics 
content of most AS level syllabuses.

The book has not been designed to be read straight through chapter by 
chapter in numerical order, and most readers will probably prefer to develop 
several branches simultaneously. Indeed, later sections of some chapters are 
better delayed for a second reading; where a natural break occurs this has been 
indicated in the text. New chapters and material have been incorporated 
without unduly disturbing the overall contents of previous editions, and, to 
make it easier to locate a particular topic, an index has now been provided. 
Another new feature of this edition is an appendix on Algebra revision which

xiii



XIV

could be used at any stage in the course where the reader, or the teacher, feels 
that some revision of basic skills is necessary.

Chapter 1 introduces coordinates and the straight line.* Chapter 2 introduces 
the idea of a function (this is a chapter to which the reader should return, when 
new functions are introduced at later stages in the course). Thereafter, the 
arrangement is

Chapters 3-8, 
Chapters 9-14, 
Chapter 15, 
Chapters 16-19, 
Chapters 20-22,

Calculus
Algebra (including an introduction to matrices)
Vectors
Trigonometry
Coordinate geometry

Finally there are chapters on variation, iterative methods, and an introduction 
to group theory.

Teachers who are familiar with the previous editions will find that some of the 
exercises have been pruned. Questions involving very heavy manipulation in 
algebra and trigonometry, which are now out of fashion with Examining 
Boards, have been replaced by more appropriate questions.

The individual reader has been kept in mind and he or she is advised to work 
through the questions marked Qu.; the class teacher will find that many of these 
questions are suitable for oral work. On some occasions proofs of important 
results have been left to the reader; when these appear in the exercises they are 
marked with an asterisk.

I would like to thank the previous authors for allowing me to tamper with 
their work, and for their detailed and constructive criticisms of my drafts.

My thanks are also due to Michael Spincer and Sue Justice of Longman 
Group for their help and encouragement. For the invaluable opportunity to give 
my undivided attention to this project, I am indebted to the Master and Fellows 
of Selwyn College, Cambridge, who kindly elected me a Fellow Commoner of 
the College for the Lent Term 1983, and to the Governors of Nottingham High 
School, for granting me the necessary leave of absence. I should also like to 
acknowledge the valuable help of my colleagues and pupils who tried the new 
material.

Lastly, but not least, I would like to thank my wife and family for their 
patience over the last few years, especially during my term in Cambridge, and to 
apologise for the many occasions when I have dodged the washing-up in order 
to ‘work on my book’.

Nottingham 
January 1984

Peter Horril



Note on degree of accuracy of answers
XV

In order to avoid tedious repetition in the wording of questions the following 
conventions are observed throughout the book, unless there are specific 
instructions to the contrary:

(a) When possible an exact answer is given. To this end it is normally 
appropriate to retain surds and n in the answers where they occur. (The word 
exact is used here in the rather limited sense of being derived from the data 
without any intervening approximation.)

(b) When an answer is not exact, it is given correct to three significant figures, 
or, if it is an angle measured in degrees, to the nearest tenth of a degree.



Mathematical notation
The following notation is used in this book. It follows the conventions employed 
by most GCE Examining Boards.

1. Set notation

e is an element of.
i is not an element of.
{a, b, c, ...} the set with elements a,b,c  ...
{x: ...} the set of elements x, such that ...
n(A) the number of elements in set A.
0 the empty set.
$ the universal set.
A' the complement of set A.
M the set of natural numbers (including zero) 0,1, 2, 3
Z the set of integers 0, ± 1, ±  2, + 3 ...
Z + the set of positive integers +1, +2, +3  ...
<Q the set of rational numbers.
R the set of real numbers.
€ the set of complex numbers.
C is a subset of.
CZ is a proper subset of.
u union.
n intersection.
[a, b] the closed interval { x e R : a ^ x ^ b } .
(a, b) the open interval {x e R: a < x < b}.

2. Miscellaneous symbols

is equal to.
is not equal to.
is greater than, is less than.
is greater than or equal to, is less than or equal to. 
is approximately equal to.

> , <

XVII
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3. Operations

a + b a plus b.
a — b a minus b.
a x b, ab, a.b a multiplied by b.

a
a ~ b ,  —, a/b 

b a divided by b.
i-n

I  at
i = 1 a l + a 2 "b + • • • + U„.

4. Functions

f(x) the value of the function f at x.
f: A ^ B f is a function which maps each element of set A onto a 

member of set B.
f: xi—»y f maps the element x onto an element y.
r 1
gof or gf 
lim f(x)

the inverse of the function f. 
the composite function g(f(x)). 
the limit of f(x) as x tends to a.

dx 
dy 
dx 
d ny
dx"
f'(x), f"(x),... f(n)(x)
I  y d x*b

y dx 

[F(x)]‘

an increment of x.

the derivative of y with respect to x.

the nth derivative of y with respect' to x.

the first, second, ... nth derivatives of f(x). 
the indefinite integral of y with respect to x.

the definite integral, with limits a and b.

F(b)-F(a).

5. Exponential and logarithmic functions

ex or exp x the exponential function.
loga x logarithm of x in base a logarithms.
In x loge x.
lg* log10x.

6. Circular and hyperbolic functions

sin x, cos x, tan x 
cosec x, sec x, cot x 
sin 1 x or arcsin x

sinh x etc.

the circular functions sine, cosine, tangent, 
the reciprocals of the above functions, 
the inverse of the function sin x (with similar abbrevi­
ations for the inverses of the other circular functions), 
the hyperbolic functions.

7. Other functions

Va the positive square root of a.



XIX

|a| the modulus of a.
n! n factorial; n! = n x (n — 1) x (n — 2) x ... x 3 x 2 x 1

(0! = 1).

—------— when n ,r  e N and 0 ^  r ^  n.
W r\(n -  r)i

( n \ n(n — 1) . . .  (n — r + 1)
when n e Q and r e IN.

\ r r!

8. C om plex numbers

z or w
Re(z)
Im(z)
M
argz
z*

the square root of — 1.
a typical complex number, e.g. x + iy, where x, y e R
the real part of z; Re(x + iy) = x.
the imaginary part of z; Im(x + iy) =  y.
the modulus of z; |x + iy| = ^/(x2 + y2).
the argument of z.
the complex conjugate of z.

9. M atrices 

M
1

MT 
det M 
I

a typical matrix M.
the inverse of a matrix M (provided it exists), 
the transpose of matrix M. 
the determinant of a square matrix M. 
the identity matrix.

10. V ectors 

a
|a| or a 
â

AB̂
|AB| or AB 
a .b

the vector a.
the magnitude of vector a.
the unit vector with the same direction as a.
unit vectors parallel to the Cartesian coordinate axes.
the vector represented by the line segment AB.
the length of the vector AB.
the scalar product of a and b.



Chapter 1

Coordinates and the straight line
Coordinates
1.1 The first thing that a reader new to this stage of mathematics will discover 
is that number, and the methods of algebra, may be brought to bear upon 
geometrical ideas to a much greater extent than before, and with great clarity 
and economy. To do this we must have a way of describing exactly and briefly 
the position of a point in a plane (i.e. a flat surface).

We may think for a moment of the pirate of old, who buried his treasure chest 
on a large flat featureless island, but was able to locate it when he returned. 
Starting at the most westerly point, he measured 400 paces due East, and then 
from there 100 paces due North. There, he knew, was the exact spot at which to 
dig.

This illustrates the method we shall use to fix the position of a point on a 
plane. Two straight lines cutting at right angles fix our directions, and we start 
our measurement from their point of intersection O (Fig. 1.1).

The point O is called the origin. The jc-axis is drawn across the page, and the 
y-axis is drawn up the page; units of distance are marked off on them, positive in 
one direction, negative in the other. The plane containing these axes is called the 
Cartesian plane, after René Descartes (1588-1648) who did much to lay the 
foundations of the subject we now call Coordinate Geometry. When the axes are 
drawn in a vertical plane (for instance, when a teacher draws them on a board, 
fixed to a vertical wall), the x-axis is always drawn as a horizontal line and the 
y-axis as a vertical line; for thjs reason, they are often called the horizontal axis 
and the vertical axis, respectively (even though when they are drawn on the page 
of a book, lying on a horizontal table, both axes are horizontal!).

Consider the point A in Fig. 1.1. To reach A from O we travel 4 units in the 
direction of Ox, and then 1 unit in the direction of Oy.

The x -coordinate (or abscissa) of A is +4.
The y-coordinate (or ordinate) of A is +1.

We say that the coordinates of A are (4,1), or that A is the point (4,1). The 
x-coordinate is always given first, thus we distinguish between the points A(4,1)

l



2 Pure Mathematics 1 1.1

and B(l, 4). By use of the sign of the coordinates we distinguish between the 
points A(4,1) and C( —4, — 1).

y |
|

B (l, 4)

J

D
l

A(4, 1)

_ < - t - 3 l - o l ;

C (- 4 . - i )

J
E

Figure 1.1

Q u .l Write down the coordinates of the points D, E, O in Fig. 1.1.
Qu. 2 Sketch your own axes and plot the points P(2, 4), Q( — 5, 7), R(4, — 2), 
S(0, 3), T(2, 0).

The length of a straight line
1.2 Example 1 Find the length o f the straight line joining A(2,1) and B(5, 5).

AC and CB are drawn parallel to the x-axis and y-axis respectively (Fig. 1.2). 
Applying Pythagoras’ theorem to the right-angled triangle ABC,

AB2 = AC2 + CB2 
= (5 — 2)2 + (5 — l)2 
=  9+ 1 6

.-. AB = v/25 =  5

Notice that, if A had been the point (— 2, 1) in the above example, the length of 
AC would still be the difference between the x-coordinates of A and B, since it 
would be 5 — (— 2) =  5 +  2 =  7.

Qu. 3 Find the lengths of the straight lines joining the following pairs of points: 
(a) A(3, 2) and B(8,14), (b) C( -  1, 3) and D(4, 7), (c) E{p, q) and F(r, ,s).



Coordinates and the straight line 3

The mid-point of a straight line
1.3 Example 2 Find the mid-point of the straight line joining A(2,1) and 
D(6, 5).

Let M, the mid-point of AD, have coordinates (p, q). FM and ED are drawn 
parallel to Oy; AFE is drawn parallel to Ox (Fig. 1.3).

In the triangle ADE, applying the mid-point theorem, since M is the mid­
point of AD, and MF is parallel to DE, F is the mid-point of AE. Thus

AF = FE

.'. p — 2 = 6 — p



4 Pure Mathematics 1 1.3

6 + 2

r . p  =  4

The x-coordinate of M is seen to be the average of those of A and D. The 
y-coordinate of M may be found similarly.

5 + 1

9 = 3

.'. the mid-point of AD is (4, 3).

In practice, of course, the working would be presented in shortened form thus:

the mid-point of AD is , i.e. (4, 3)

Qu.4 Find the coordinates of the mid-points of the straight lines joining the 
following pairs of points:
(a) A(4, 2) and B(6,10), (b) C( -  5, 6) and D(3, 2),
(c) E( -  6, -  1) and F(3, -  4), (d) G(p, q) and H(r, s).

Exercise la
1 Find the lengths of the straight lines joining the following pairs of points:

(a) A(l, 2) and B(5, 2), (b) C(3,4) and D (7,1),
(c) E( -  2, 3) and F(4, 3), (d) G( -  6, 1) and H(6,6),
(e) J( —4, — 2) and K(3, -  7), (f) L( -  2, -  4) and M( -  10, -  10).

2 Find the coordinates of the mid-points of the lines AB, CD, etc., in No. 1.
3 Find the distance of the point ( — 15, 8) from the origin.
4 P, Q, R are the points (5, — 3), ( — 6,1), (1, 8) respectively. Show that triangle 

PQR is isosceles, and find the coordinates of the mid-point of the base.
5 Repeat No. 4 for the points L(4,4), M( — 4, 1), N(l, —4).
6 A and B are the points ( —1, —6) and (5, —8) respectively. Which of the 

following points lie on the perpendicular bisector of AB?
(a) P(3, -4 ) , (b) Q(4,0), (c) R(5,2), (d) S(6, 5).

7 Three of the following four points lie on a circle whose centre is at the origin. 
Which are they, and what is the radius of the circle?

A( -  1, 7), B(5, -  5), C( -  7, 5), D(7, -  1).

8 A and B are the points (12,0) and (0, — 5) respectively. Find the length of AB, 
and the length of the median, through the origin O, of the triangle OAB.

The gradient of a straight line
1.4 Consider the straight line passing through A(l, 1) and B(7,2) (Fig. 1.4). If 
we think of the x-axis as horizontal, and the line through A and B as a road, then



someone walking from A to B would rise a vertical distance CB whilst at the 
same time he moves a horizontal distance AC.

The gradient of the road is CB/AC = (2 — l)/(7 — 1) =  1/6. Instead of the two 
points A and B we might just as well have taken any other two points on the line, 
D and E; the gradient would then be expressed as FE/DF, which is the same as 
CB/AC, since the triangles ABC and DEF are similar.

Coordinates and the straight line 5

Definition
the increase in v

The gradient of a straight line is —----------------- - in moving from one point on the
the increase in x

line to another.

In moving from A to B, since both x and y increase by positive amounts, the 
gradient is positive.

But now consider the gradient of PQ (Fig. 1.5). In moving from P to Q, the 
increase in x is + 2, but since y decreases, we may say the increase in y is — 3. 
Thus the gradient of PQ is — f.

Figure 1.5

Until the reader is accustomed to the idea of positive and negative gradient it 
may help to think of it this way. In travelling along a line with x increasing (i.e.
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moving from left to right across the page) if going uphill the gradient is positive: 
whereas if going downhill the gradient is negative. In calculating gradients a 
figure should not be necessary, but one similar to Fig. 1.5 will help in the first few 
examples.

Example 3 Find the gradient of the line joining R(4, 8) and S(5, — 2).

The gradient of RS =
y-coord. of R — y-coord. of S 
x-coord. of R — x-coord. of S

8 -  (  -  2)

4 - 5

[Remember that the coordinates of R must appear first in the denominator 
and numerator (or second in both). In this case {8 — ( —2)}/(4 — 5) and 
(— 2 — 8)/(5 — 4) both give the correct gradient.]

The gradient of the line joining A(2, 1) and B(2,9) presents us with a problem. 
Proceeding as in Example 3, above, we might say that

the gradient of AB = y-coord. of A — y-coord. of B 
x-coord. of A — x-coord. of B

_  1 - 9  
0

- 8
- _ cT

On the other hand we might also say that the gradient of AB

_  y-coord. of B — y-coord. of A 
x-coord. of B — x-coord. of A

9 - 1
0

+ 8 
0

Now, what meaning should we attach to expressions like — 8/0 and + 8/0 and 
how can the line AB have two apparently different gradients? This illustrates just 
one of the difficulties which can arise when we attempt to divide by zero. 
Because it gives rise to many insuperable problems, division by zero is never 
allowed in mathematics; mathematicians say that an expression like 8/0 ‘does 
not exist’. So what are we to do about the gradient of the line AB? We have to



accept that for a ‘vertical line’ such as AB, no numerical value can be given to its 
gradient; however, we can still say that ‘AB is parallel to the y-axis’.

Coordinates and the straight line 1

Qu.5 Find the gradients of the lines joining the following pairs of points:
(a) (4, 3) and (8,12), (b) ( -  2, -  3) and (4, 6),
(c) (5, 6) and (10,2), (d) ( -  3,4) and (8, -  6),
(e) ( -  5, 3) and (2, 3), (f ) (p, q) and (r, s),
(g) (0, a) and (a, 0), (h) (0,0) and (a, b).
Qu.6 A and B are the points (3,4) and (7, 1) respectively. Use Pythagoras’ 
theorem to prove that OA is perpendicular to AB. Calculate the gradients of OA 
and AB, and find their product.
Qu. 7 Repeat Qu. 6 for the points A(5,12) and B(17, 7).

Parallel and perpendicular lines
1.5 The gradient of a straight line was defined in §1.4; it may be proved that it is 
also the tangent of the angle between the line and the positive direction of the 
x-axis.

Figure 1.6

In Fig. 1.6 the gradient of AB is CB/AC, which is tan 6. The reader familiar with 
the tangent of an obtuse angle will appreciate that this covers negative gradient 
as well.

Since parallel lines make equal corresponding angles with the x-axis, parallel 
lines have equal gradients.

Qu. 6 and 7 of §1.4 will have led the reader to discover a useful property of the 
gradients of perpendicular lines. This we will now prove.
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Consider the two straight lines AB and CD which cut at right angles at E. 
EF is drawn perpendicular to the x-axis (Fig. 1.7).

a + 6 = 90° 
a + p = 90°

.-.e = p

1.5

Let the gradient of AB be m, then

FE
m =  —  = tan V 

GF

The gradient of CD = FE
FH

1
tan (i

1
tan 6

m

the gradient of AB x the gradient of CD =  m x 1
m =  - 1

In general, if two lines are perpendicular, the product o f their gradients is — 1. 
Or in other words, if the gradient of one is m, the gradient of the other is — l/m.



Qu.8 Write down the gradients of lines perpendicular to lines of gradient
(a) 3, (b) i  (c) -  6, (d) -  f , (e) 2m, (f) -  b/a, (g) -  m/2.
Qu.9 Find if AB is parallel or perpendicular to PQ in the following cases:
(a) A(l, 4), B(6, 6), P(2, — 1), Q(12, 3);
(b) A( -  1, -  1), B(0,4), P( -  4, 3), Q(6,1);
(c) A(0, 3), B(7, 2), P(6, -  1), Q( -  1, -  2).

The meaning of equations
1.6 The bare statement ‘P is the point (x, y f  means that P can be anywhere in 
the plane. Previously, if we have been asked to find P, we have been given some 
data which enabled us to find one pair of numerical values for x  and y, and so to 
fix the position of P.

Suppose however that the data is in the form of the equation y =  x 2 — 2x. This 
does not give one pair of values for x and y, it gives as many as we like to find. 
But P is not now free to be anywhere in the plane, since for any chosen value of x 
there is only one corresponding value of y; P is now restricted to positions whose 
coordinates (x, y) satisfy the relationship y =  x2 — 2x.

The reader will be familiar with the process of making a table of values as 
shown below, in which certain suitable values of x are chosen, and the 
corresponding values of y calculated.

Coordinates and the straight line 9

Table of values for y =  x2 — 2x

X - 1 1— 2 0 12 1 32 2 A2 3

x2 1 1
4 0 1

4 1 9l
Z 4 4 9

— 2x 2 1 0 - 1 - 2 - 3 - 4 - 5 - 6

y 3 0 3—  4 - 1 3—  4 0 1* 3

From this we find that the points ( — 1, 3), ( — 1^), (0, 0), etc., have coordinates
which satisfy the relationship y = x2 — 2x, and by plotting these points and 
drawing a smooth curve through them (Fig. 1.8), we obtain all the possible

Figure 1.8
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positions of P corresponding to the values of x from x = —l to x = 3.
Just as coordinates are used to name a point, so an equation is used to name a 

curve, and we refer to ‘the curve y =  x 2 — 2x’. *
It must be stressed that the equation is the condition that the point (x, y) 

should lie on the curve.
Thus, only if b = a2 — 2a does the point (a, b) lie on the curve y = x 1 — 2x, and 

in that case we say that the coordinates of the point satisfy the equation.
If q #  p2 — 2p, the point (p, q) does not lie on the curve y = x 2 — 2x.

Example 4 Do the points ( — 3, 9) and (14, 186) lie on the curve y = x2?

(a) The point ( — 3, 9):
When x — — 3, y = x 2 = ( — 3)2 = +9,

.'. ( — 3, 9) does lie on the curve y = x 2.

(b) The point (14, 186):
When x = 14, y =  x2 = 142 = 196,

.'. (14,186) does not lie on the curve y = x2.

The next example illustrates another way of presenting this idea.

Example 5 Does the point ( — 1,6) lie on the curve x 2 — y2 = 14?

[We use L.H.S. as an abbreviation for ‘the left-hand side’ of the equation and 
R.H.S. for ‘the right-hand side’.]

x2 — y2 = 14

When x = — 7 and y = + 6,

L.H.S. =  ( -  7)2 -  62 = 49 -  36 =  13 

R.H.S. =  14

The coordinates of the point do not satisfy the equation. Therefore ( — 1,6) does 
not lie on the curve x2 — y2 =  14.

Qu. 10 Find the y-coordinates of the points on the curve y = 2x2 — x — 1 for 
which x =  2, — 3, 0.
Qu. 11 Find the x-coordinates of the points on the curve y = 2x + 3 for which 
the y-coordinates are 7, 3 , - 2 .
Qu. 12 Find the points at which the curve in Qu. 10 cuts (a) the x-axis, and (b) 
the y-axis.
Qu. 13 Determine whether the following points lie on the given curves:
(a) y = 6x + 7, (1, 13), (b) y = 2x + 2, (13, 30),
(c) 3x + 4y =  1, ( — 1,}), (d) y =  x3 -  6, (2, -  2),
(e) xy = 36, ( -  9, -  4), (f) x2 + y2 =  25, (3, -  4).

The relationship between a curve and its equation gives rise to two main 
groups of problems.



Firstly there are those problems in which we are given the equation, and from 
it we are required to find the curve. With this type the reader will already be 
familiar, in such work as the graphical solution of quadratic and other 
equations.

Secondly there are those problems in which we are given some purely 
geometrical facts about the curve, and from these we are required to discover the 
equation. It is this second type of problem with which we are now mainly 
concerned, but first we shall discuss a few more simple equations, to see what 
they represent.

y = x. This equation is satisfied by the coordinates of the points (0,0), (1, 1), 
(2,2), (3, 3), etc., and it is readily seen to represent a straight line through the 
origin. Its gradient is 1.

x = 2. Whatever the value of its y-coordinate, provided that its x-coordinate 
is 2, a point will lie on this curve. The points (2,0), (2, 1), (2, 2), (2, 3), etc., lie on 
the curve, which is a straight line parallel to the y-axis, 2 units from it, on the side 
on which x is positive.

Qu. 14 Make a rough sketch of the lines represented by the following 
equations. Write down the gradient of each:
(a) y = 3, (b) y =  2x, (c) y = 3x, (d) y =  jx ,  (e) y = -  x.
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The equation y  = mx + c
1.7 We come now to the second type of problem mentioned above, in which 
from some geometrical facts about a curve we discover its equation. And the 
examples we do will, in turn, help us to interpret straight line equations more 
skilfully.

Example 6 Find the equation of the straight line o f gradient 4 which passes 
through the origin.

If P(x, y) is any point on the line, other than O, the gradient of the line may be 
written y/x (Fig. 1.9).

x

Hence y = 4x is the required equation.

Qu. 15 Write down the equations of the straight lines through the origin 
having gradients (a) j ,  (b) — 2, (c) m.
Qu. 16 Rearrange the following equations in the form y = mx, and hence write 
down the gradients of the lines they represent:
(a) 4y = x, (b) 5x + 4y = 0, (c) 3x = 2y,
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Example 7 Find the equation of the straight line of gradient 3 which cuts the 
y-axis at (0,1).

Let P(x, y) be any point on the line other than (0,1).
The gradient of the line may be written (y — l)/x (Fig. 1.10).

\

. J ' - l = 3
x
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Hence y = 3x + 1 is the required equation.

Qu. 17 By the method of Example 7, find the equations of.the straight lines of 
given gradients cutting the y-axis at the named points:
(a) gradient 3, (0, 2), (b) gradient 3, (0,4),
(c) gradient 3, (0, -  1), (d) gradient (0, 2),
(e) gradient (0, 4).

If a straight line cuts the y-axis at the point (0, c), the distance of this point 
from the origin is called the intercept on the y-axis.

Then the equation of a straight line of gradient m, making an intercept c on 
the y-axis (Fig. 1.11) is

x

i.e. y  = mx + c

This line is parallel to y =  mx, which passes through the origin, and it is m, the 
coefficient of x, which in each case determines the gradient. The effect of altering 
the value of the number c (c being the intercept on the y-axis) is to raise or lower 
the line, without altering its gradient; the sign of c determines whether the line 
cuts the y-axis above or below the origin.

We might be tempted to think at this stage that in y =  mx + c we have found 
the form in which all straight line equations may be written. But remember that 
on p. 6 we ran into trouble trying to find the gradient of a line parallel to the 
y-axis; for such a line it is impossible to find a numerical value for m, and the 
equation is x = k, where k is a constant.

The various straight line equations we have met are summarised below. It
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should be noted that only terms of the first degree in x and y and a constant term 
occur; this, in fact, is how we may recognise a straight line, or linear, equation.

y  — mx + c is a line of gradient m, passing through (0, c).
y  = mx is a line of gradient m, passing through the origin.
y  = c is a line of zero gradient (i.e. parallel to the x-axis).
x = k is a line parallel to the y-axis.

Example 8 Find the gradient of the straight line lx  + 4y + 2 =  0, and its 
intercepts on the axes.

The equation may be written

4y = -  lx  -  2 
or y = - l x - \

This is now in the form y = mx + c, where m = — J , and c = — j , and we see that 
the gradient is — i ,  and that the intercept on the y-axis is — j .  In fact, to find the 
intercepts on each axis it is better to go back to the original equation

7x +  4y + 2 = 0

To find the intercept on the y-axis: 
putting x =  0, 4y +  2 =  0, .'. y = — j .

To find the intercept on the x-axis: 
putting y =  0, 7x + 2 =  0, x = — f.

The intercepts on the x-axis and y-axis are — f  and — ^ respectively.

Qu. 18 Arrange the following equations in the form y = mx + c, hence write 
down the gradient of each line; also find the intercepts on the y-axis:
(a) 3y =  2x + 6, (b) x — 4y + 2 =  0, (c) 3x + y +  6 = 0,
(d) lx  =  3y + 5, (e) y + 4 =  0, (f) lx + my + n = 0.
Qu. 19 Write down the equations of (a) the x-axis, (b) the y-axis, (c) a straight 
line parallel to the y-axis through (4,0), (d) a straight line parallel to the x-axis 
making an intercept of — 7 on the y-axis.

Exercise lb
1 Find the gradients of the straight lines joining the following pairs of points:

(a) (4, 6) and (9,15), (b) (5, -  11) and ( -  1, 3),
(c) ( -  2 i  -  i )  and ( 4 i  -  1), (d) (7,0) and ( -  3, -  2).

2 Show that the three given points are in each case collinear, i.e. they lie on the 
same straight line:
(a) (0,0), (3, 5), (21, 35), (b) ( -  3,1), (1, 2), (9, 4),
(c) ( -  3, 4), (1, 2), (7, -  1), (d) (1, 2), (0, -  1), ( -  2, -  7).

3 Find the gradients of the straight lines which make the following angles with 
the x-axis, the angle in each case being measured anti-clockwise from the 
positive direction of the x-axis:
(a) 45°, (b) 135°, (c) 60°, (d) 150°.
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4 Find if AB is parallel or perpendicular to PQ in the following cases:
(a) A(4, 3), B(8,4), P(7, 1), Q(6, 5);
(b) A( — 2, 0), B(l, 9), P(2, 5), Q(6,J7);
(c) A(8, -5 ), B(ll, -3 ), P(l, i), Q( — 3, 7);
(d) A( — 6, — 1), B( —6, 3), P(2, 0), Q(2, -  5);
(e) A(4, 3), B( —7, 3), P(5,2), Q(5, -1 );
(f) A(3,1), B(7, 3), P( —3, 2), 0(1,0).

5 Show that A( — 3,1), B(l, 2), C(0, —1), D( —4, —2) are the vertices of a 
parallelogram.

6 Show that P(l, 7), Q(7, 5), R(6, 2), S(0,4) are the vertices of a rectangle. 
Calculate the lengths of the diagonals, and find their point of intersection.

7 Show that D( —2, 0), E(j, 1^), F(3^, —3^) are the vertices of a right-angled 
triangle, and find the length of the shortest side, and the mid-point of the 
hypotenuse.

8 Find the y-coordinates of the points on the curve y = x 2 + 1 for which the 
x-coordinates are —3, 0, 1, 5. Find the coordinates of points on the curve 
whose y-coordinates are 5, and 17. Sketch the curve.

9 Find the coordinates of the points on the curve y = x3 for which x = — 3, 
— 1, 1, 3; and also of the points for which y = — 8, 0, +8. Sketch the curve.

10 Determine whether the following points lie on the given curve:
(a) y =  3x — 5, ( - 1 ,  -8 ) , (b) 5 x -2 y  + 7 =  0, (1, -1 ),
(c) y =  x3, ( -  4, 64), (d) x2y = 1, ( -  2, £).

11 Find the intercepts on the axes made by the straight line 3x — 2y + 10 = 0. 
Flence find the area of the triangle enclosed by the axes and this line.

12 Find the coordinates of the points at which the following curves cut the axes:
(a) y = x2 — x — 12, (b) y =  6x2 — l x + 2,
(c) y = x2 — 6x + 9, (d) y = x3 — 9x2,
(e) y = (x + 1) (x -  5)2, (f) y = (x2 -  1) (x2 -  9).

13 Plot the following points on squared paper, and write down the equations of
the straight lines passing through them, in the form y = mx + c:
(a) ( -  1, -  1), (0, 0), (4, 4), (b) ( -  1,1), (0,0), (1, -  1),
(c) ( -  4, -  2), (0, 0), (8,4), (d) (0, -  4), (4, -  2), (6, -  1),
(e) ( -  5, 2), ( -  5,0), ( -  5, -  2), (f) ( -  3, 7), (3, 3), (6, 1).

14 Write down the equation of the straight line
(a) through (5, 11) parallel to the x-axis,
(b) which is the perpendicular bisector of the line joining (2, 0) and (6,0),
(c) through (0, — 10) parallel to y =  6x + 3,
(d) through (0, 2) parallel to y + 8x = 0,
(e) through (0, — 1) perpendicular to 3x — 2y +  5 = 0.

15 Find the equation of the straight line joining the origin to the mid-point of 
the line joining A(3, 2) and B(5, — 1).

16 P( — 2, —4), Q( — 5, —2), R(2,1), S are the vertices of a parallelogram. Find 
the coordinates of M, the point of intersection of the diagonals, and of S.

17 (a) Write down the gradient of the straight line joining (a, b) and (p, q). Write
down the two conditions that these points should lie on the line 
y = lx  — 3. From these deduce the gradient of the line.
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(b) Repeat for the line 3x + 2y — 1 = 0, and check your result by writing the 
equation in the form y =  mx + c.

The use of suffixes
1.8 When we wish to refer to points whose coordinates are not given, it is 
convenient to write them as

(x j.y J  read as ‘x one, y one’
(x2, y 2) read as ‘x two, y two’, etc.

It is important to write the number (the suffix) at the bottom of the letter, so as to 
avoid confusion between x2 and x2, x3 and x3, and so on. This is a suitable point 
at which to summarise some of the early results of this chapter, using this 
notation.

If A and B are the points (x1; y,) and (x2, y2) respectively, 

the length of AB is V i(x i — x 2)2 + (ki — .F2)2}

Finding the equation of a straight line
1.9 The method of Example 7 in §1.7 can of course be used to find the equation 
of any straight line provided (a) that we know one point through which the line 
passes, and (b) that we know, or can calculate, the gradient. Two examples will 
illustrate this.

Example 9 Find the equation of the straight line of gradient — f , which passes 
through ( — 4, 1).

Let P(x, y) be any point on the line other than ( — 4, 1) (Fig. 1.12).
The gradient of the line may be written

y - i  = y - 1
x  — (— 4) x +  4 

But the gradient is given as — f ,

• y ~ l 2
’ ' x +  4 3

3(y — 1) =  — 2(x +  4)

the gradient of AB is —— —

the condition for A to lie on ax +  by + c =  0 is

axt + byi + c = Q
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3y — 3 = — 2x — 8

Hence the required equation is 2x + 3y +  5 =  0.

Example 10 Find the equation of the straight line joining the points ( — 5, 2) and 
(3 ,-4 ) .

The gradient of the line = -— -—— = = — - .
5 - 5 - 3  - 8  4

If P(x, y) is any point on the line other than (3, — 4), the gradient may be 
written

y — ( — 4 )_  y + 4 
x — 3 x — 3

y + 4 _  3
" x - 3 ~  4

4(y + 4) = - 3 ( x - 3 )

.'. 4y + 16= - 3 x  + 9

Hence the required equation is 3x + 4y + 7 = 0.

Examples 9 and 10 illustrate the most direct approach. The equation as first 
written is the direct statement of the condition that the point (x, y) should lie on 
the given line.

Another method is given below as an alternative solution to Example 9. We 
know that the equation y = mx + c represents a straight line of gradient m; so the 
equation y=  — | x + c represents any line of gradient — f , according to the value 
of the constant c, and our problem is to find the appropriate value of c for the
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given line. To do this we use the fact that if the point (x1; y ,) lies on the straight 
line y = mx + c, its coordinates satisfy the equation of the line, i.e. y, =  m xt +  c.

Example 9 (Alternative solution)

The equation is of the form y = — f  x + c.
Since ( — 4, 1) lies on this line,

1 -----1 ( - 4 )  + c
c =  1 - f ----- f

Hence the required equation is y =  — §x — f, or 2x + 3y +  5=0.

Qu. 20 Use the methods of Examples 9 (first solution) and 10 to find the 
equations of the straight lines
(a) through (4, —3), of gradient f , (b) joining ( — 3, 8) and (1, —2).
Qu. 21 Using the method of Example 9 (alternative solution) find the equa­
tions of the straight lines
(a) through (5, — 2), of gradient f , (b) joining (— 2, 5) and (3, — 7).
Qu. 22 Write down the equation of the straight line through (x1; y\) of
gradient m.

Points of intersection
1.10 If the two straight lines x + y — 1 =  0 and 2x — y — 8 = 0 cut at the point 
P(a, h) then the coordinates of P satisfy the equation of each line, and we may 
write

a + b — 1 =  0 
2a — b — 8 =  0

The solution of these equations is a =  3, b =  — 2, which tells us that the given 
lines cut at (3, — 2). In practice we obtain the result by solving the equations 
simultaneously for x and y.

Qu. 23 Find the points of intersection of the following pairs of straight lines:
(a) 2x — 3y =  6 and 4x + y =  19, (b) y =  3x + 2 and 2x +  3y =  17,
(c) y =  c and y =  mx + c, (d) x =  — a and y = mx + c.
Qu. 24 Can you find the point of intersection of

3x — 2y — 10 = 0 and 4y = 6x —7?

Qu. 25 Find the points of intersection of the curve y = 12x2 + x — 6 and the 
x-axis.

Exercise lc
1 Find the equations of the straight lines of given gradients, passing through 

the points named:
(a) 4, (1,3), (b) 3, ( — 2, 5), ( c ) i ( 2 , -5 ) ,



(d) -  i  (7, 5), (ej j ,  (h  -  i), (f) - 1, (i, -  3).
2 Find the equations of the straight lines joining the following pairs of points:

(a) (1, 6) and (5, 9), (b) (3, 2) and (7, -  3),
(c) ( -  3,4) and (8, 1), (d) ( -  1, -  4) and (4, -  3),
(e) (±, 2) and (3, |) ,  (f) ( -  i  0) and (5, 11).

3 Find the points of intersection of the following pairs of straight lines:
(a) x + y = 0, y=  - 1,
(b) y = 5x + 2, y  = 3x — 1,
(c) 3x + 2y — 1 = 0, 4x +  5y + 3 =  0,
(d) 5x +  ly  + 29 =  0, 1 lx  — 3y — 65 =  0.

4 Find the equation of the straight line
(a) through (5, 4), parallel to 3x — Ay +1  =  0,
(b) through ( — 2, 3), parallel to 5x — 2y — 1 = 0,
(c) through (4,0), perpendicular to x +  7y +  4 =  0,
(d) through (— 2, — 3), perpendicular to 4x +  3y — 5 = 0.

5 Find the equation of the perpendicular bisector of AB, where A and B are the 
points ( — 4, 8) and (0, — 2) respectively.

6 Repeat No. 5 for the points A(7, 3) and B( — 6, 1).
7 Find the equation of the straight line joining A(10,0) and B(0, — 7). Also find 

the equation of the median through the origin, O, of the triangle OAB.
8 P, Q, R are the points (3,4), (7, — 2), ( — 2, — 1) respectively. Find the 

equation of the median through R of the triangle PQR.
9 Calculate the area of the triangle formed by the line 3x — 7y +  4 =  0 and the 

axes.
10 Find the circumcentre of the triangle with vertices ( — 3,0), (7,0), (9, — 6). 

Show that the point (1, 2) lies on the circumcircle.
11 Find the equation of the straight line through P(7, 5) perpendicular to the 

straight line AB whose equation is 3x + 4y — 16 = 0. Calculate the length of 
the perpendicular from P to AB.

12 ABCD is a rhombus. A is the point (2, — 1), and C is the point (4, 7). Find the 
equation of the diagonal BD.

13 L(—1, 0), M(3, 7), N(5, —2) are the mid-points of the sides BC, CA, AB 
respectively of the triangle ABC. Find the equation of AB.

14 Find the points of intersection of x2 = 4y and y =  4x.
15 The straight line x — y — 6 = 0 cuts the curve y2 =  8x at P and Q. Calculate 

the length of PQ.

Exercise Id (Miscellaneous)
1 Find the equation of the line joining the points (6, 3) and (5, 8). Show also 

that these two points are equidistant from the point ( — 2,4).
2 What is the equation of the straight line joining the points A(7,0) and B(0, 2)? 

Obtain the equation of the straight line AC such that the x-axis bisects the 
angle BAC.

3 Find the equations of the following straight lines, giving each in the form
ax + by + c = 0:

Coordinates and the straight line 19
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(a) the line joining the points (2, 4) and ( — 3,1),
(b) the line through (3,1) parallel to the line 3x + 5y =  6,
(c) the line through (3, — 4) perpendicular to the line 5x — 2y =  3.

4 Write down the condition that the straight lines

y = m1x + c1 and y = m2x + c2

should be at right angles. Find the equations of the straight lines through 
the point (3, —2) which are (a) parallel, and (b) perpendicular to the line 
2y + 5x=  17.

5 The points A, B, C have coordinates (7, 0), (3, — 3), ( — 3, 3) respectively. Find 
the coordinates of D, E, F, the mid-points of BC, CA, AB respectively. Find 
the equations of the lines AD, BE, and the coordinates of K, their point of 
intersection. Prove that C, K, F are in a straight line.

6 Find the equation of the straight line
(a) joining the points ( — 3, 2) and (1, —4),
(b) through ( —1,3) parallel to the line 2x + ly  — 8 =  0,
(c) through (2, — 3) perpendicular to the line 5x — 2y — 11 = 0.

7 Find the equations of the lines passing through the point (4, —2) and 
respectively (a) parallel, (b) perpendicular to the line 2x — 3y — 4 =  0. 
Find also the coordinates of the foot of the perpendicular from (4, — 2) to 
2x — 3y — 4 = 0.

8 A line is drawn through the point (2, 3) making an angle of 45° with the 
positive direction of the x-axis, and it meets the line x = 6 at P. Find the 
distance of P from the origin O, and the equation of the line through P 
perpendicular to OP.

9 Prove that the points (—5, 4), ( — 1, —2), (5, 2) lie at three of the corners of 
a square. Find the coordinates of the fourth corner, and the area of the square.

10 The vertices of a quadrilateral ABCD are A(4,0), B(14,11), C(0,6), 
D( — 10, —5). Prove that the diagonals AC, BD bisect each other at right 
angles, and that the length of BD is four times that of AC.

11 The coordinates of the vertices A, B, C of the triangle ABC are ( — 3, 7), 
(2,19), (10, 7) respectively.
(a) Prove that the triangle is isosceles.
(b) Calculate the length of the perpendicular from B to AC, and use it to find 

the area of the triangle.
12 A triangle ABC has A at the point (7,9), B at (3, 5), C at (5,1). Find the 

equation of the line joining the mid-points of AB and AC; and find also the 
area of the triangle enclosed by the line and the axes.

13 One side of a rhombus is the line y = 2x, and two opposite vertices are the 
points (0,0) and (4j, 4j). Find the equations of the diagonals, the co­
ordinates of the other two vertices, and the length of the side.

14 Prove that the four points (4,0), (7, -  3), ( -  2, -  2), ( -  5,1) are the vertices of 
a parallelogram and find the equations of its diagonals.

15 Find the equation of the line which is parallel to the line x + 4y — 1 =  0, 
and which passes through the point of intersection of the lines y = 2x and 
x + y — 3 =  0.



16 Find the equations of the lines which pass through the point of intersection
of the lines x — 3y = 4 and 3x + y = 2, and are respectively parallel and 
perpendicular to the line 3x + 4y = 0. *

17 The three straight lines y = x, 2y =  lx , and x  + 4y — 60 = 0 form a triangle. 
Find the equations of the three medians, and calculate the coordinates of 
their point of intersection.

18 The points D(2, —3), E(— 1, 7), F(3, 5) are the mid-points of the sides BC, 
CA, AB respectively of a triangle. Find the equations of its sides.

19 Prove that the points (1, —1), ( —1,1), ( ^ 3 ,^ 3 )  are the vertices of an 
equilateral triangle. Find the coordinates of the point of intersection of the 
medians of this triangle.

20 The points A( — 7, — 7), B(8, — 1), C(4, 9), D are the vertices of the parallel­
ogram ABCD. Find the coordinates of D. Prove that ABCD is a rectangle 
and find its area.

21 Find the equation of the line which is parallel to the line 3x +  4y = 12 and 
which makes an intercept of 5 units on the x-axis. Find also the equation of 
the line which is perpendicular to the given line and which passes through 
the point (4, 5).

22 A, B, C are the points (1, 6), ( — 5, 2), (3, 4) respectively. Find the equations of 
the perpendicular bisectors of AB and BC. Hence find the coordinates of the 
circumcentre of the triangle ABC.

23 Find the equation of the straight line joining the feet of the perpendiculars 
drawn from the point (1,1) to the lines 3x — 3y — 4 = 0 and 3x + y — 6 =  0.

24 Through the point A(l, 5) is drawn a line parallel to the x-axis to meet at B 
the line PQ whose equation is 3y — 2x — 5. Find the length of AB and the 
sine of the angle between PQ and AB; hence show that the length of the 
perpendicular from A to PQ is 18 -h 13. Calculate the area of the triangle 
formed by PQ and the axes.

Coordinates and the straight line 21



Chapter 2

Functions
Real numbers
2.1 Any student of mathematics who has progressed this far will be thoroughly 
familiar with the real numbers; they are the bricks and mortar of arithmetic. All 
the weighing, measuring and calculating that are used in commerce and science 
require the use of the real numbers. To the mathematician, they are the numbers, 
both positive and negative, which can be represented by points on the ‘real 
number line’. Some of them are illustrated in Fig. 2.1.

-4 -3 -2  -1 0 +1 +2 +3 +4 +5

-VlO -1.5 '/3 V2 7i 14/3

Figure 2.1

Integers
2.2 One of the earliest mathematical skills that a child has to learn is the skill of 
counting: ... ‘one, two, three, ...’. In mathematics these numbers are called the 
counting or natural numbers. However, in order to develop mathematical ideas 
beyond very elementary arithmetic, it is necessary to extend the concept of 
natural numbers in two important directions. One of these is the extension to 
negative, as well as positive, numbers. Mathematicians refer to the positive and 
negative numbers, together with zero, as integers. An integer then is any number 
of the form ..., —4, —3, —2, — 1, 0, +1, +2, +3, ....

Rational numbers
2.3 The other important extension of the natural numbers is the idea of 
fractions, e.g. j ,  f, .... In mathematics we extend this idea still further to 
include fractions which are bigger than one, e.g. 7/5, 22/7 (these are often called 
improper fractions), and we also allow them to be positive or negative. The 
collective name for all such numbers is rational numbers (rational is the adjective 
derived from the noun ‘ratio’).

22
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Unfortunately, but for mathematicians rather interestingly, that is not the end 
of the story; the rational numbers do not ‘fill’ the number line. There are points 
on the number line, that representing yj2 for example, which do not represent 
rational numbers. In other words, some real numbers are not rational numbers. 
In the next section we shall prove that J 2  is not rational.

Before we can do this, we must state clearly and unambiguously what we 
mean by a rational number. A rational number is a number of the form a/b, in 
which a and b are integers with no common factor. (If there is a common factor, it 
should be cancelled, e.g. 12/15 should be simplified to 4/5.) The number b must 
not be zero. Notice however that b can be 1; this enables us to regard any integer, 
including zero itself, as a rational number. An integer is simply a rational 
number whose denominator b is equal to 1. Notice that a can be larger than b; 
5/3 is a perfectly acceptable rational number.

The irrationality of yjl
2.4 The Greek mathematicians of the 4th century BC knew all about the 
theorem of Pythagoras so they knew that the hypotenuse of a right-angled 
triangle, whose other two sides have a length of 1 unit, would have a length of 
x/2 units. They discovered the proof that ^ 2  is irrational, which is expressed in 
modern terms below.

Firstly we assume that J 2  can be expressed as a rational number. That is, we 
assume that two integers, a and b, with no common factor, can be found such that

Multiplying both sides by b gives 

yjlb  = a

and squaring both sides we have

2 b2 =  a2

This equation tells us that a1 is a multiple of 2, that is, it is an even number. Now, 
the squares of even numbers are even and the squares of odd numbers are odd, 
so we can deduce that a itself is an even number. Consequently it can be written 
as 2c, where c is a natural number. Substituting 2c for a in the last equation, we 
have

2 b2 = (2c)2 =  4c2 

and dividing through by 2 gives 

b2 = 2c2

As before we can now deduce that b2, and hence b itself, is an even number.
Thus the initial assumption that y/2 is a rational number has led us to the 

conclusion that both a and b are even numbers, that is, they have a common 
factor of 2. But a and b have no common factor, so we have contradicted
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ourselves. Now there are only two possible ways out of this impasse; either the 
argument is faulty (the reader should go through it again to satisfy himself that 
this is not the case) or the original assumption is false. Hdnce J 2  is not a rational 
number.

This proof is an example of a very important type of argument called reductio 
ad absurdum.

With only minor amendments it can be adapted to prove that the square root 
of any prime number is irrational. If such a square root is multiplied by a 
rational number, the result is also irrational. Numbers such as y/2, ^/3, J 6  are 
often called surds; we shall return to these in Chapter 9.

There are other irrational numbers, n for example, but we shall not go into the 
details here. Readers who wish to know more should consult a more advanced 
mathematics book. In particular, they should look for the names Cantor 
(1845-1918) and Dedekind (1831-1916) who were largely responsible for 
investigating irrational numbers.

Q u.l Are the following statements true or false? If you think they are false 
explain clearly why you have come to this conclusion.
(a) All prime numbers are odd numbers.
(b) Any natural number can be expressed as a rational number.
(c) The square root of a natural number is an irrational number.
(d) n — 22/7, so n is a rational number.

Infinity
2.5 If you have a calculator, work out the value of 1/nfor n = 0.1,0.001,0.0001, 
0.000 0001. (Even if you do not have a calculator it is easy to find the answers!) 
You should find that 1 jn gets bigger and bigger as n gets smaller and smaller; we 
say that 1/n ‘tends to infinity as n tends to zero’. The symbol oo is normally used 
for infinity. However the idea of ‘infinity’ is a very risky one for the unwary. 
Consider, for example the two lists

1, 2, 3, 4, 5, 6, ...
1, 4, 9, 16, 25, 36, ...

How many terms are there in each of these lists? One might say ‘infinity’, but 
look carefully; since each number in the second list is the square of the 
corresponding number in the first, one could claim that each list contains the 
same number of terms. Yet the second list clearly omits many of the terms which 
are in the first, so one could also claim that the second list contains fewer terms 
than the first. ‘Infinity’ then is a dangerous concept and should be handled with 
great care. Mathematicians, unless they are very brave or very foolish, usually 
try to dodge it. In particular they never divide by zero; instead they usually say 
that an expression like 1/0 does not exist. Infinity itself is not a number.

Example 1
exist.

Find the values o f x  for which the expression 2x + 5 
x 1 — x — 6

does not
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The expression does not exist if

x 2 — x — 6 = 0 
(x — 3) (x + 2) =  0

i.e. either x — 3 =  0 or x + 2 = 0

The expression does not exist when x =  3 or — 2.

Qu.2 Find the values of x for which the following expressions do not exist: 

x , 1 , . x 10
(a) 2x + 5 ’ (b) x2 + 8x +  15’ (c) ■25’ (d )

Sets
2.6 In the previous sections we have already encountered the need to refer to 
particular collections, or sets, of numbers. For the benefit of any reader who has 
not met the idea of a set in mathematics before, a set is any clearly defined 
collection of objects (in this chapter the objects will always be numbers, but in 
later chapters you will meet sets of other mathematical objects or elements). The 
members of a set may be defined by listing them, or by describing them carefully 
in words. It is usual to enclose the list of members of a set in curly brackets, e.g.

(2,4, 6, 8} is the set of even numbers less than ten
{2, 3, 5, 7} is the set of prime numbers less than ten
{3, 6 ,9 ,..., 99} is the set of multiples of three, less than a hundred

Notice that when the pattern has been clearly established, as in the last case, the 
three dots indicate that the pattern continues until the last term is reached. In 
some cases there may be no last term, for example the set of square numbers,

(1,4, 9, 16, 25, 36, ...}

When listing the members of a set, an individual member is never repeated. Thus 
the set of prime factors of 1200 is {2, 3, 5}.

When we wish to indicate that a particular number belongs to a certain set, 
the symbol e is used. Thus if P is the set of prime numbers we may write

37 e P

and this means ‘37 is a member of the set of prime numbers’. In contrast,

36 $P

means ‘36 is not a member of the set of prime numbers’.
The symbol: is often used in this context to mean ‘such that’. Thus if we use IN 

to indicate the set of natural numbers, the mathematical statement

A = (x3: x e IN}

means ‘A is the set whose members have the form x3, where x is such that it
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belongs to the set of natural numbers’. Thus A = {1, 8, 27, 64, ...}. Or again,

B =  {3n2: n e IN}

means ‘B is the set whose members have the form 3n2, where n is a member of the 
set of natural numbers’, i.e. B = {3, 12, 27, 48, 75, ...}.

C = (x: — 3 ^  x  <  +  3}

means that C is the set which contains any real number x between — 3 and +  3, 
inclusive.

Some very important sets have standard symbols:

IN is used for the set of natural numbers, IN =  {0, 1, 2, 3, 4, 5, ...},
Z is the set of integers, positive or negative, Z = {..., —3, —2, —1, 0, +1,

+ 2, +3, ...},
Z + is the set of positive integers, Z + =  { + 1, +2, +3, +4, +5, +6, ...},
Q is the set of rational numbers, (see §2.3),
IR is the set of real numbers.

In a later chapter you will meet €, the set of complex numbers.

The algebra of sets
2.7 (Readers who have studied this in an elementary course may wish to omit 
this section; on the other hand readers who have not met it before may need to 
supplement the section with further exercises from a more elementary textbook.)

Given two sets A and B, the set consisting of all those elements which belong 
both to A and B is called the intersection of A and B. The symbol for it is A n  B. 
Thus if

A = (2, 4, 6, 8, 10, 12} and B = {3, 6, 9, 12} 

the intersection of A and B is the set {6, 12} and we write

A n B  = { 6,12}

The set consisting of those elements which belong to A or B, or both, is called 
the union of A and B and the symbol for it is A<uB. (The symbol u  can be 
remembered as the initial letter of union.) It is important to remember that when 
we list the members of a set we never repeat any individual element. Thus in the 
case of the sets A and B in the previous paragraph,

A u B  = {2,3, 4, 6, 8, 9, 10, 12}

Example 2 Given that A is the set of odd numbers less than 20, and B is the set of 
prime numbers less than 20, list the members o f A, B, A n B , A u  B.

A = { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19}
B = { 2, 3, 5, 7, 11, 13, 17, 19}

A n B = { 3, 5, 7, 11, 13, 17, 19}
4 u B  = j 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19}
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Notice that if P is the set of odd numbers and Q is the set of multiples of 2 then 
there would be no number which belongs to P nQ . Such a set, that is a set with 
no members, is called an empty set; the symbol for it is 0 .  .Thus in the example 
above we write P n Q  = 0 .  ( 0  is pronounced ‘ur’, as in hurt.)

Sometimes it is convenient to have a special symbol for all the elements which 
are involved in a particular topic, or in a particular question. The normal 
symbol used for this is S\ it is called the universal set In this context, it is also 
frequently useful to have a symbol for all the elements of the universal set 8  
which are not in a given set A. The symbol used for this A' and this set is called 
the complement of set A. For example, given that

$  =  {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and that X  = {4, 8}

the complement of X  is the set

X ' = {\, 2, 3, 5, 6, 7, 9, 10}

Notice that for any set P,

P n P ' = 0  and P u P ' = £

If every member of a certain set H  is also a member of a set K, then H is 
called a subset of K. For example, {2, 4, 6, 8} is a subset of {1, 2, 3, 4, 5, 6, 7, 8} 
and the symbol used for this purpose is c . Thus H a  K  reads ‘H is a subset 
of K \

Finally, the notation n(A) is used to denote ‘the number of elements in set A’. 
Thus in Example 2 above, n(A) = 10, n(B) = 8, n(A nB ) =  7 and n(A uB )  =11. 
Notice that

n(A u  B) = n(A) +  n(B) — n(A n  B)

The reader should think carefully about this equation and should be able to see 
that it is true for any sets A and B.

Exercise 2a
1 Given that A = {1, 2, 3, 4, 5}, list the members of the following sets:

(a) {x2: x e A } ,  (b) { \ / x \ x e  A],
(c) { I x ' . xsA} ,  (d) {4x + l : x e A } .

2 Given that A = {— 3, -  2, — 1, 0, +1, +2, +3} list the members of the 
following sets:
(a) {x2: x e A } ,  (b) {x3 — x : x e A } ,
(c) {x4:x eA } , (d) {l/(x +  5): x e A}.

3 In this question, x e Z +. List the members of the following sets:
(a) {x2:x< 10} , (b) {10x — x2: x < 10},
(c) {10 — x: x < 10}, (d) {x/2:x<10}.

4 Are the following statements true or false? If you think a statement is false, 
give a clear reason for your conclusion.
(a) All factors of an even integer are even.
(b) All the factors of an odd integer are odd.
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(c) Z c Q .
(d) Any odd square number can be expressed in the form Am + 1, where

me Z  + .
5 List the members of the set of real numbers for "which the expression

7---- —— —------— does not exist.
( x - l ) ( x - 2 ) ( x - 3 )

6 In this question, 8  is the set of positive integers less than 100 and the sets A 
and B are subsets of 8. A is the set of multiples of 5, and B is the set of 
multiples of 7.
(a) List the members of A, B, A n  B, A u  B.
(b) Describe in words the members of set A n  B.
(c) Write down the values of n(A), n(B), n(A n  B) and n(AuB). Verify that 

n(A v B )  = n(A) + n{B) — n( A n  B).
7 Given that 8  is the set of natural numbers less than or equal to 20, list the 

members of the following subsets of 8:
(a) A, the multiples of 3, (b) B, the multiples of 4,
(c) A', the complement of A, (d) B’,
(e) (AuB)', (f) A 'n B '.
Comment on your answers.

8 Express as recurring decimals the rational numbers (a) 1/3, (b) 2/7, (c) 3/11.
9 Express the recurring decimal 0.7 as a rational number. (Hint: let x =  0.7 and 

consider lOx.)
10 Express the following recurring decimals as rational numbers:

(a) 0.12, (b) 0.657, (c) 0.428571.

Functions
2.8 Consider the two exercises (1) and (2) below.

(1) A stone is projected vertically upwards. Its height, h metres, after t seconds, 
is given approximately by the formula h = 20t — 512. Use the formula to calculate 
its height after 0, 1, 2, 3, 4 seconds.

The answers to this exercise are shown in the table below:

t 0 1 2 3 4

h 0 15 20 15 0

(2) Given that x e {1, 2, 3,4, 5} find the corresponding set of values of y, where y 
is given by the rule:

(a) y = x 2, (b) y = 1/x, (c) y = yJ ( 5 -  x).

The three answers to this exercise are

(a) {1, 4, 9, 16, 25}, (b) {1, |} , (c) {2, ^ 3 , V 2> 1. 0}.
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All exercises like these have certain features in common. In each case, a set of 
values is given for one of the variables. Then a rule is given and this is applied to 
the given set of numbers, to produce a set of values of the other variable. In 
mathematics there are standard terms which are used to describe these features. 
The variable for which the values are given (t in exercise (1), x in (2)) is called the 
independent variable and the set of values of the independent variable is called 
the domain. The rule which is applied to the independent variable is called the 
function and the variable which is produced by the rule is called the dependent 
variable. (In (1) h is the dependent variable and in (2) y is the dependent variable.) 
The set of values of the dependent variable is called the range of the function. In 
exercise (2) part (a), the range is the set {1, 4, 9, 16, 25}.

When these standard terms are used there are some important restrictions 
which must be observed in order to avoid certain difficulties and possible 
misunderstandings. In many instances the domain will be R, the set of real 
numbers. However, it may be necessary to restrict R, to exclude numbers to 
which the rule cannot be applied. For instance in exercise (2) part (b), x must not 
be zero, and in part (c) x must not be greater than 5 since this would require us to 
find the square root of a negative number. The other restriction, which must be 
observed, is that the rule must provide one and only one value of the dependent 
variable. There is no difficulty over this point in the exercises above, but suppose 
that the rule is ‘y is the angle whose sine is x’. In this case, if x =  0.5, then y could 
be 30°, 150°, 390°, ...; in fact this particular rule would produce infinitely many 
values of y for a given value of x. This difficulty has to be faced by the 
manufacturer of a pocket calculator. Since a calculator has a single display for 
showing numbers, it is only possible for a calculator to show one answer to a 
given calculation. In the case of finding an angle whose sine is given, the designer 
must use a standard convention for deciding which answer should appear in the 
display. Similarly, when we define a function, we must define it carefully so that 
it produces just one value of the dependent variable. Another example in which 
this difficulty could arise would be the rule ‘y is the square root of x’, because any 
positive value of x would yield two values of y (both + 5 and — 5 are square roots 
of 25). It should be noted however that there is a convention in mathematics 
that the square root sign J  is reserved for the positive square root only, that 
is y/25 = + 5 (not — 5). With this convention it is perfectly in order to regard 
y = y/x  as a function.

The member of the range which corresponds to a certain member of the 
domain is usually called the image of that member, e.g. in (2) (a) above, 25 is the 
image of 5. Notice that there is no objection to having two distinct members of 
the domain with the same image, vide (1) above, in which both t = 1 and t = 3 
have the image 15. The converse however is not allowed; a member of the 
domain must not have more than one image. When each member of the range 
has exactly one corresponding member of the domain the function is called a 
‘one-to-one function’. Thus if the domain is R, the set of all real numbers, y =  x3 
represents a one-to-one function, but y = x 2 does not. A function which is not 
one-to-one is said to be ‘many-to-one’.
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Qu.3 For each of the rules below, state carefully the largest possible subset of 
R which would be a suitable domain. In each case describe the corresponding 
range.
(a) y = l/(x -  3), (b) y = V (l°  ~  *), (c) y = V (25 -  x2),
(d) y = 1/(25 -  x 2), (e) y = 1/(25 + x2).
Qu.4 Which of the rules below represent functions (distinguish between one- 
to-one functions and many-to-one functions)? In each part, the domain is R.
(a) y = x4, (b) y =  x5, (c) y2 + x 2 = 25, (d) y = x3 — x.

The function notation
2.9 Sometimes we need to discuss several functions simultaneously and 
consequently a notation which enables us to distinguish between them can be 
very convenient. Suppose we have two functions, both having R as the domain, 
and suppose one of them squares each member of the domain and the other 
doubles each member of the domain. We write f(x) to represent the image of x 
under the function f; our first function would be represented by f(x) =  x2 and 
the second by g(x) =  2x. The usual letters to use for this purpose are f, g, h and 
their corresponding capital letters, but other letters may be used if desired. 
In the illustration above, f(5) = 25 and g(5) =  10. We can also write f(a) =  a2, 
f(a + h) = (a + h)2, g(/c) =  2k, and so on.

Example 3 Given that h(x) = x2 — x, find the values o f h(10), h( — 3), h(^), 
h(t + 1), h(5k).

*(10) = lo2 -  10 =  100 -  10 = 90 
h( — 3) =  ( — 3)2 — ( — 3) =  9 + 3 =  12

fc(i) = (i)2-(i) = i-i=-i
h(t + 1) =  (t + l)2 — (t + 1) =  i2 +  2i +  1 — t — 1 = i2 + t 

h(5k) = (5k)2 - 5 k = 25k2 -  5k

There is an alternative to this notation, which can also be quite useful. In this 
notation the function f(x) = x3 is written

f :x h + x 3

This statement should be read ‘f is a function which maps x onto x3’. The 
function g(x) =  2x now becomes g:xn>2x. When x =  5, we write f: 5 1—>-125 and 
g: 5i-> 10.

Composite functions
2.10 In this section f and g will be used to represent the functions f(x) = x2 and 
g(x) =  x -I- 5. The domain of both functions will be R.

Notice that f(3) =  9 and g(9) =  14. Thus if we start with x =  3 and apply to it 
first function f and then function g, we shall obtain the number 14. This could be 
written g(f(3)) =  g(9) =  14, but it is usually abbreviated to gf(3) =  14 (alternat­
ively, the notation gof(3) =  14 may be used). Similarly gf(10) = 100 -I- 5 = 105. In
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general

gf(x) = x2 + 5

The function gf(x) is called a composite function. Notice that the order of the 
functions which make up a composite function is very important. With f and g 
defined as above,

fg(x) =  (x +  5)2 =  x2 + lOx + 25

Remember that when a composite function is written down, the individual 
functions must be read from right to left.

Example 4 Given that F: x i—> (10 + x), G: x i—► x3 and H :x h  x/2, write down 
the functions (a) FG, (b) GF, (c) FGH.

(a) FG: x i-* (10 + x3)
(b) GF: x i-> (10 + x)3
(c) H: x (-»• (x/2)

GH: x i—► (x/2)3, hence GH: x i—*• x3/8 
FGH: x i—► 10 -f- x3/8

Example 5 Given that f(x) =  25 — x2 and that g(x) = J x ,  find, where possible, 
the values o f (a) gf(0), (b) gf(4), (c) gf(13).

(a) f(0) = 25, gf(0) =  g(25) =  5,
(b) f(4) = 9, gf(4) =  g(9) = 3 ,
(c) f(l3) =  25 —169= —144, but we cannot evaluate g(—144) because a 
negative number does not have a real square root.

Example 5(c) illustrates a difficulty which can arise when forming a composite 
function. If the domain of the function f(x), above, is R then its range is 
{y: y e R, y ^  25} and this includes negative numbers, which are not in the 
domain of the function g(x) = s/x . This can only be avoided if we restrict the 
domain of f(x) to {x : xeR ,  — 5 ^  x ^  +5}. In general, when a composite 
function gf(x) is formed, the range of the function f(x) must be a subset of the 
domain of the function g(x).

Some mathematicians insist that whenever a function is defined its domain 
should be explicitly stated and, strictly speaking, they are correct. However this 
soon becomes rather tedious and most people adopt the less rigid convention 
that, unless the domain has some special features that need comment, it may be 
assumed that the domain is intended to be R; the reader is normally expected to 
use common-sense to exclude any members of the domain which give rise to 
obvious difficulties (e.g. square roots of negative numbers, fractions with a zero 
denominator). This is the convention which will generally be employed in this 
book, although in this chapter, the domain will be described in full.

The term co-domain is sometimes used for any set which contains the range. 
For example, the function f(x) =  x2 maps real numbers onto real numbers and 
so one can say the domain is R and the co-domain is R, but since all the images



are positive (or, to be precise, non-negative) the range is the set of non-negative 
real numbers.

32 Pure Mathematics 1 2.10

Exercise 2b
1 Given that g(x) = x3 + 1, find the values of

(a)g(0), (b) g(5), (c)g(t), (d) g( — 2).
2 The domain of the function g(x) =  5x + 1 is {0, 1, 2, 3, 4, 5}. Find its range.
3 The domain of the function f(x) = x2 + 1 is IR. Find its range.
4 The domain of the function f(x) =  1/(1 + x2) is IR. Find its range.
5 The domain of the function f(x) = l/^/(25 — x) is a subset of R. Write down 

the largest possible set which is a suitable domain.

In Nos. 6-10 the domain is R.

6 Given that f: x i—> 5x + 1 and that g: x x2, express the composite functions 
fg and gf in their simplest possible forms.

7 Given that f(x) = x2, express as simply as possible

(a) f(5 + h), (b) f(5 + h)h ~  f<5), (ft #  0).

8 If fix) = x2 express as simply as possible

fin +  ft) — f(a) 
h

(ft# 0).

9 Given that fix) =  x3 find 
(a) f(2), (b)
(d) f(5a), (e)

(g) f(a + ft) -  fia -  ft), (h)

10 If fix) =  7x and g(x) =  x -I- 3 and fg: x i—> y, express as simply as possible the 
rule which maps x onto y. Find the values of p, q, r such that 
(a) fg: 5 i-> p, (b) fg: 101-* q, (c) fg: r i-> 35.
Find also the function, F, which reverses the function fg, that is, it maps y 
onto x.

fi — 10), (c) fii),
f(u/3), (f) fia + ft),

2 h

Graphs of functions
2.11 When the domain is the set of real numbers R, it is always represented by 
the horizontal axis, and the corresponding values of the dependent variable are 
represented by points on the vertical axis. When x and y are used to represent 
typical members of the domain and the co-domain, these axes are called 
the x-axis and the y-axis respectively. Fig. 2.2 shows the graph of a function 
y = fix). A typical member a of the domain and its image fia) are shown.

Bearing in mind that each member of the domain has exactly one image in the 
co-domain, a graph like the one shown in Fig. 2.3 does not represent the graph 
of a function. In this diagram, a has three possible images in the co-domain.
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Although this is a purely artificial example, made up to illustrate the point, 
consider the circle, centre (0,0), radius 10. The coordinates of any point P on the 
circle satisfy the equation x 2 + y2 = 100, so a relation exists between the values 
of x  and y at each point, and a graph can be drawn, but this is not the graph of a 
function because there are values of x for which there are two possible values of 
y, e.g. when x = 6, y = + 8 o r y = —8 (see Fig. 2.4).



34 Pure Mathematics 1 2.11

x 2 + y 2 = 100

Figure 2.4

Graphs of some common functions
2.12 Fig. 2.5 illustrates the graphs of y = x 2, y = x 3 and y — x4; any reader who 
is not familiar with these already is advised to draw and save graphs of these 
functions. (Start by plotting the values of y corresponding to values of x from 
x = -  2 to + 2, at intervals of \  of a unit.) Note that all of these graphs pass 
through the point (1, 1); y = x 2 and y = x4 also pass through ( — 1,1), while 
y = x3 passes through ( — 1, — 1). Notice also that the graphs ‘flatten out’ 
between x =  — 1 and x = + 1, as the power increases. (Try plotting y = x10: a 
calculator may be needed for some of the calculations.)

Fig. 2.6 shows the graphs of y = 1/x, (x #  0) and y = J x ,  (x ^  0). (Remember 
that the square-root sign means the positive square root.)

Any reader who is not familiar with these graphs is advised to make careful 
copies, using a calculator where necessary, and to save the graphs for future 
reference. Notice also that if the functions are changed to y = l/(x — 2), (x #  2), 
and y = J {x  — 2), (x ^  2), then the shape of the graphs is unaltered but the graph 
is translated 2 units to the right. In general, the graph of y = f(x — a) will have the 
same shape as y = f(x) but it will be translated a units to the right.

The modulus of x, written |x|, is probably new to many readers; the modulus of 
x is the magnitude of x, thus | + 5| = + 5  and | — 7| =  +  7. A table of values of |x| 
for x =  — 4 to x = + 4 is shown below:

X - 4 - 3 - 2 - 1 0 + 1 +  2 + 3 + 4

|x| + 4 + 3 +  2 + 1 0 + 1 +  2 + 3 +4

and the graph of y = |x| is shown in Fig. 2.7.
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Figure 2.5

Figure 2.6

X ▼
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The instructions ‘plot the graph of and ‘sketch the graph of have very 
definite, but distinct, meanings in mathematics. The instruction ‘plot the graph 
of y = x 2, for x =  0 to 5’ means that the necessary values of y should be 
calculated, the points should be accurately plotted on graph paper and the 
points should be joined with a neat smooth curve. In contrast, a sketch of a curve 
should not be done on graph paper; plain, or ordinary lined paper should be 
used. Only a few points need to be plotted, but points which have special 
importance should be marked. The sketch should not be limited to a small part 
of the domain. Instead, every effort should be made to convey the overall 
appearance of the graph throughout its domain.

Example 6 Sketch the graph of v = ------ + 2 , (x /  3).
x — 3

Figure 2.8

X 
▼
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The graph of y = 1 /x  is one of the standard graphs; a sketch of it is shown 
in Fig. 2.6. Replacing x by x — 3 translates the graph 3 units to the right, and 
so a sketch of y = l/(x — 3) would be like Fig. 2.8(i). When the final 2 is added to 
1 /(x — 3) the graph is translated 2 units vertically upwards. Hence the sketch 
graph of y = l/(x — 3) +  2 should look like Fig. 2.8(ii).

Exercise 2c

Sketch (detailed plotting is not required) the graphs of the following functions. 
Where possible, the sketch should be obtained by modifying one of the standard 
graphs in the preceding section.

1 y = 2x + 1.
3 y = x2 + 5.
5 y=  - x 2.
7 y  = V (10-x), (x ^  10).

2 y = (x + 2)3.
4 y = l/(x + 4), (x #  — 4). 
6 y =  5x2.
8 y = 1/x2, (x#0).

So far x has always been used for the independent variable and y for the 
dependent variable, but x and y are not the only letters which may be used. In 
Nos. 9-15 t is used for the independent variable, hence the t-axis is horizontal, 
and z is used for the dependent variable.

9 z = (i — 4)3. 1 0 z = 1 0 0 - i 2, ( - l O ^ t s S +10).
11 z = | i - 3 | .  12 z =  |(t + 4 )(t-4 ) |.
13 z = 11/(1 + r)|. 14 z =  1/(1 + \ t\).
15 z = |t| —| t +  1|.
16 Fig. 2.9 shows the graph of an unspecified function y =  f(x). Trace the

Figure 2.9
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diagram and use the tracing to show, on a single diagram, sketch graphs of 
(a) y = t(x -6 ) ,  (b) y =  f(x +  3), (c) y = f(x)-p2.

17 Use the tracing from No. 16 to draw the graph of y =  f(x) and superimpose 
on it sketches of the following graphs, showing clearly their relationship to 
the graph of y = f(x):
(a) y = 5f(x), (b) y = f(5x), ( c ) y = - f ( x ) ,  (d )y = f(-x ).

*18 Describe, in words, the appearance of the following graphs, relative to the 
graph of y = f(x):
(a) y =  f(x — a), (b) y = f(x) +  a, (c) y = k x f(x),
(d) y — — f(x), (e) y = f( — x).

Further functions
2.13 Example 7 In 1981 the cost o f posting a parcel, weighing not more than 
10 kg, was given by the table below. Explain why this table expresses the cost of the 
parcel as a function o f its weight and draw a graph of the function.

Not over Cost

1 kg £1.10
2 kg £1.43
3 kg £1.73
4 kg £1.90
5 kg £2.05

Not over Cost

6 kg £2.20
7 kg £2.35
8 kg £2.45
9 kg £2.55

10 kg £2.65

The table expresses the cost as a function of the weight because if the weight is 
known, the table indicates the cost of postage. A function is any rule which 
enables the dependent variable to be found, when the independent variable is 
known. It is not necessary to express the rule as a formula. The graph is shown in 
Fig. 2.10.

The function in Example 7 differs from the functions discussed earlier in the 
chapter, in that different rules apply to different parts of the domain. Many of
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The graph of y = 1 /x  is one of the standard graphs; a sketch of it is shown 
in Fig. 2.6. Replacing x by x -  3 translates the graph 3 units to the right, and 
so a sketch of y = l/(x — 3) would be like Fig. 2.8(i). When the final 2 is added to 
l/(x — 3) the graph is translated 2 units vertically upwards. Hence the sketch 
graph of y = l/(x — 3) + 2 should look like Fig. 2.8(ii).

Exercise 2c

Sketch (detailed plotting is not required) the graphs of the following functions. 
Where possible, the sketch should be obtained by modifying one of the standard 
graphs in the preceding section.

1 y = 2x+  1. 2 y =  (x +  2)3.
3 y = x2 + 5. 4 y = l/(x +  4), ( x # - 4 ) .
5 y = — x2. 6 y = 5x2.
7 y =  V (10-x), (x ^  10). 8 y = l / x 2, (x^O).

So far x has always been used for the independent variable and y for the 
dependent variable, but x and y are not the only letters which may be used. In 
Nos. 9-15 t is used for the independent variable, hence the t-axis is horizontal, 
and z is used for the dependent variable.

9 z = (t -  4)3. 10 z = 100 — i2, ( - 1 0 < i s ï +10).
11 z = |i — 3|. 12 z = \(t + 4)(t — 4)|.
13 z = 11/(1 + f)|. 
15 z = |r| — |r +  11.

14 z =  1/(1 +  |i|).

16 Fig. 2.9 shows the graph of an unspecified function y = f(x). Trace the

Figure 2.9
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the functions which arise from real life problems are like this. When a multi­
stage rocket is fired, the function which expresses its velocity in terms of time will 
have different mathematical formulae corresponding to each stage of the rocket 
motor. Examples 8 and 9 illustrate further functions which display this 
characteristic.

Example 8 The domain of function f is IR.

f: x i—> 1 when x <  0, and 
f: x i—► x 2 + 1 when x ^ O .

Sketch the graph of this function. (See Fig. 2.11.)

Example 9 The domain of the function f is R.

f: x i—► 1, if x e Z, and 
f: x i—► 2, if x $  Z.

Write down f( + 5), f( -  1), f(0), f(3.4), H jl )  and f(jr). 
Sketch the graph of y = f(x).

Figure 2.12
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Functions of the form f(x) =  x", where n is an odd number, will be odd 
functions. Another important odd function is f(x) =  sin x  (see Chapter 16).

Example 10 Prove that the sum of two even functions is an even function and that 
the sum of two odd functions is an odd function.

Let f(x) and g(x) be two even functions. Then f(x) and g(x) have the property 
f( — a) = f(a) and g( — a) = g(a), for any member a of the domain.

Let F(x) be the sum of f(x) and g(x), that is F(x) =  f(x) + g(x). Then if a is any 
member of the domain

F( — u) = f( — a) +  g( — a)
= f(a) +  g(«)
= F(a)

hence F(x) is an even function.
Similarly if f(x) and g(x) are odd functions, then

F ( -a )  = f ( - a )  + g ( -a )
= -  f(a) -  g(a)
= -F (a )

hence F(x) is an odd function.

Qu.5 Prove that the product of two even functions is an even function. 
Qu.6 Prove that the product of two odd functions is an even function.
Qu.7 Is the product of an even function and an odd function odd or even?

Periodic functions
2.15 A function whose graph repeats itself at regular intervals is called a 
periodic function (see Fig. 2.15). Such functions are especially important in 
science. The sound wave of a note of constant pitch, for example, is periodic.

The length of the interval between repeats is called the period of the function. 
If the period is a, then for any value of h in the domain of the function,

f(h + a) = f(h)
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The most common periodic functions are the trigonometric functions (see
Chapter 16) sin x and cos x; they have a period of 360°, because

#
sin (x + 360)° = sin x° and cos (x + 360)° = cos x°.

Example 11 Sketch the graph o f the periodic function such that f(x) = x, for 
— 1 < x ^  + 1, where the period o f f(x) is 2.

Between x = — 1 and x = +  1, the graph is the ordinary straight line y =  x. 
Outside this interval, the graph repeats itself every 2 units (Fig. 2.16).

Example 12 Sketch the graph of y — f(x) where f(x) = , / ( l  — x2), when 0 <  x <  1, 
and f(x) is an even function with a period of 2.

The equation y = yJ(l — x2) produces an arc of a circle between x =  0 and 
x =  + 1. Because the function is even, the graph is symmetrical about the 
vertical axis. Thus between x =  — 1 and x = + 1, the graph is a semi-circle, and 
this is then repeated at regular intervals of 2 units (Fig. 2.17).

Figure 2.17

The inverse of a function
2.16 Consider the function y = f(x), where f(x) = ¿x3 + 1. A sketch of its graph 
is shown in Fig. 2.18.
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If we are given a member of the range, say y = 9, is it possible to find the 
corresponding member of the domain? On the graph this would mean starting 
from y = 9 on the vertical axis, drawing a line horizontally to the point P on the 
curve and then drawing a vertical line down to the x-axis. The point where the 
line meets the axis gives the value of x which is required. In this particular 
example it is fairly easy to solve the problem algebraically. The value of x 
required is found by solving the equation

ix 3 + 1 = 9

i* 3 = 8

x3 = 64 

.-. x = 4

Indeed it is quite simple to generalise this. Starting with the given value from the 
range of function f, we first subtract 1, then we multiply by 8 and finally we find 
the cube root. The whole operation is called the inverse of function f and it is 
written f” Following the usual convention of writing x for a typical member of 
the domain of function f_ 1, we can write our inverse function as follows:

r 1(x) = v/{8 (x - 1)}

Thus

f_1(9) = ^{8(9 — I)} = ^ ( 8 x 8 )  = ^6 4  = 4

There is however one problem; when we draw the horizontal line from the 
given number to the graph of y = f(x), this line must meet the curve once only. 
Otherwise there will be more than one possible answer and we are not allowed
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to use the word function to describe such a situation. For example, f(x) = x2 is a 
perfectly acceptable function, but it maps both + 5  and —5 onto the same 
image, namely 25. There is no objection to this, we simply agree to call it a 
many-to-one function. However if we attempt to find f_1(25), there are two 
possible answers, namely +  5 and — 5. So f(x) does not have an inverse function. 
This difficulty can be by-passed if we agree in advance to limit the domain of 
f(x) = x2 to the non-negative real numbers; in that case we shall not be applying 
it to — 5 and the difficulty of having two possible answers will not arise.

To sum up then, we can only have an inverse function if the original function 
is a one-to-one function. (However the fact that an inverse function exists does 
not necessarily mean we shall be able to write down the rule which gives the 
inverse.)

In general, if (a, b) is a point on the graph of y =  f(x), then (b, a) will be a point 
on the graph of y = f_ ^x), and consequently the graph of y = f~ *(x) will be the 
reflection of the graph of y = f(x) in the line y =  x (see Fig. 2.19).

Figure 2.19

Here are some examples of some common functions and their inverses:
(a) f(x) = x +  a f 1 (x) =  x — a,
(b) f(x) =  kx : (x) = x/k,
(c) f(x) — x2, (x>0)  f“ 1(x) =  v'x,
(d )  f(x) = a —x f_1(x) = a —x,
(e) f (x )= l /x  f_1(x)=l /x .
Functions, like (d) and (e), which are the same as their inverses are called self­
inverse functions.

If a function f is applied to a number a, and then f- 1 is applied, the final result
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will be the original number a. For example using function (c) above, f(3) =  9 and 
f_ *(9) = 3. (This can be clearly observed on a pocket calculator. First key in any 
number a, then press a function button, say x2, and then the button of the 
inverse function yjx , and the original number a should be displayed. Although 
the following functions are as yet unknown to you, you can observe the same 
phenomenon by pressing the buttons representing the following pairs of 
functions and their inverses: log x, 10x; In x, ex.)

We have already seen that fg(x) is the composite function, in which the 
function g is applied first and then function f is applied to the result. The inverse 
of this composite function is g_1f_1(x). (This is rather like packing and 
unpacking a parcel. Suppose you wrap the parcel in paper and then tie it up with 
string. When the parcel is unpacked, first the string must be untied and, after 
that, the paper removed.)

Example 13 Given that f(x)=10x and g(x) = x + 3, find fg(x) and (fg)_1(x). 
Verify that if b = fg(a), then (fg) 1(h) = a.

g(x) = x + 3 
fg(x) = 10x(x + 3)

In some cases the inverse function can be found by regarding y = f(x) as an 
equation in which y is known, and solving the equation for the unknown x. For 
instance, if

The inverses of g and f are g x(x)= x  —3 and f 1(x) =  x/10. Hence 

(fg)"1(x) = g“ 1f“ 1(x)

In the general case, we are given b = fg(a), 

6 = 10(a + 3) 

and hence,

= a + 3 — 3

= a

5x + 7 
3x + 2

then

y(3x + 2) = 5x + 7
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3xy + 2y = 5x + 7 

3 xy — 5x = l  — 2y

x(3y-5 ) = 7 - 2 y

x  =
7 - 2  y 
3y — 5

So the inverse of f(x) =  (5x +  7)/(3x + 2) is g(y) = (7 — 2y)/(3y -  5). However, 
since we need to emphasise that g is the inverse of f and since the letter x  is 
normally used to represent the independent variable, we express this result as

f_1w
7 — 2x 
3x — 5

A result such as this can be checked by verifying that f 1(f(x)) =  x. In this case,

7 -  2(5x + 7)/(3x + 2) 
3(5x + 7)/(3x +  2) -  5

7(3x + 2) -  2(5x + 7) 
3(5x + 7) -  5(3x + 2)

21x + 14 — lOx — 14 
15x +  21 -  1 5 x -  10

llx
T T

=  X

Exercise 2d
1 Given that f(x) = 5x + 1, find the values of

(a) f~ l (36), (b) f_1( —14), (c) f 1 (0), (d) f 1̂ ).
2 Given that g(i) = l/(i — 5), (t #  5), find the values of

(a) g ' H H  (b) g_1(2), (c) g_1( - l ) ,  (d) g _1(a).
3 Find the inverses of the following functions:

(a) f ( x ) = 1 2 - i x ,  (b) f(x) =  i (x - 3 ) ,
(c) f(x) =  (2x + l)/5, (d) f(x) =  (7 -  3x)/10.

4 Find the inverses of the following functions:
(a) f: x h* |(x  — 32), (b) f: x i—>■ 180(x -  2),
(c) f: x 2tix, (d) f: x ^  5(x + 7)/3 -  9.

5 Find the inverses of the following functions:
(a) F: r (—> i 2 +  5, (tSs 0), (b) F: r i—»• 5^ t, (i^O),
(c) F : i ^ ( i - 5 ) 3, (d) F : t ^ ( t + 1 ) .

6 Find the inverses of the following functions:

(a) g:xi-> ’ (x # 3 )’ (b) g :x l^  2xT T ’



(c) g: x i—► —^— , (x*4),  (d)
4 —x 1 + x
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(x #  -1 ).

7 Show that the function f(x) =  1/(1 — x), (x #  1), is the inverse of the function 
g(x) = (x -  l)/x, (x #  0).

8 Show that the function H(x) =  x/(x — 1) is a self-inverse function.
9 Sketch the graph of the function y =  f(x), where f(x) = x3 + 1 and, on the 

same diagram, sketch the graph of the inverse function y = f_1(x).
10 Fig. 2.20 shows the graph of a function y = f(x). Copy the diagram carefully, 

using tracing paper if necessary, and on the same diagram, sketch the graph 
of the inverse function.

Figure 2.20

Investigating limits, using a calculator
2.17 In this section we shall investigate the limits of some functions using a 
calculator. It is important to understand that our investigations will only tell us 
the value of the function at the points we examine. To prove that the limits are 
what we think they are, we must turn to algebra, which we shall do in the next 
section. Nevertheless, the calculator can give us some very strong clues to the 
behaviour of certain functions.

The phrase ‘x tends to zero’, which is written ‘x -* O’, means that x can be 
made as small as we please. If any prearranged small number is chosen, then it 
must be possible to make x smaller than that number.



Example 14 Investigate the function f(x) = x/sin x, as x —> 0, using your cal­
culator in degree mode.

(Notice that this function does not exist at x =  0, since when x = 0, the 
function would give 0/0.)
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X 1.0 0.5 0.1 0.01

f(x) 57.299 57.297 57.296 57.296

This function seems pretty determined to approach 57.296 (to five significant 
figures) as x tends to zero.

When we say ‘x tends to a’, where a is a fixed real number, we mean that x can 
be made as close to a as we please; or, to put it another way, |x — a| —>0. In the 
following example, x tends to 2.

Example 15 Investigate the function f(x) =
x3 — 8
x — 2

as x -*■ 2.

(First it should be noticed that f(x) does not exist when x =  2; with this value 
of x the function gives 0/0.)

Set out below are two tables; the first shows the values of f(x) when x 
approaches 2 from below, and the second shows the values of f(x) when x 
approaches 2 from above.

X 1.9 1.99 1.999 1.9999

f(x) 11.41 11.940 11.994 11.999

X 2.1 2.01 2.001 2.0001

f(x) 12.61 12.060 12.006 12.000

This suggests that f(x) approaches 12, as x tends to 2.

A function f(x) is said to tend to a limit L, if |f(x) — L\ ->0, as x->a. The same 
number L must be reached whether x approaches the fixed number a from above 
or below. The function itself may, in some cases, be undefined at x = a. (Ih 
Example 15, above, we say that the limit of f(x) is 12, as x —>2.)

The phrase ‘x tends to infinity’, means that x gets bigger and bigger, without 
any limit on its size. If we choose a large number N, then it must be possible for x 
to exceed N. (Infinity itself is not a real number; see §2.5.) Thus we can say that 
1/n tends to zero as n tends to infinity. In other words 1/n gets smaller and 
smaller as n gets bigger and bigger. If we choose a very small number, say 10 “6, 
and ask whether we can make 1/n smaller than this number, the answer is ‘yes’; 
all we have to do is to make n bigger than 10+6. In writing, this statement is 
abbreviated to ‘l/n->0, as n-> oo’.
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Example 16 Investigate the function f(x) =
2x

1 +  x
as x- • oo.

The table below shows some values of f(x) for some increasingly large values 
of x. (The values of f(x) are given to five significant figures.)

X 10 100 1000 10000

f(x) 1.8182 1.9802 1.9980 1.9998

From this table it seems reasonable to suppose that f(x)-»-2, as x-> oo.

Example 17 Investigate f(n) = (1 + 1 /n)n, as n-> oo.

The table below shows the values of f(n), for some increasingly large values of 
n. (The values of f(n) have been corrected to four significant figures.)

n 1 5 10 100 1000 1000000

f(«) 2 2.488 2.594 2.705 2.717 2.718

The table suggests that the limit of this function is 2.718. (It is difficult to 
investigate the limit of this function rigorously, but it can be shown that it is a 
number called e. We will meet e again in Book 2; like n, it plays a very important 
role in higher mathematics.)

In Qu. 8-12, use your calculator to investigate each function, as x tends to the 
number stated.

Qu. 8
2x — 7
x — 4 ’

x-> oo. Qu. 9
x 2 + 5x — 14 

x — 2
x - 2 .

Qu. 10 

Qu. 11 

Qu. 12

. + i ‘ x-> oo.

x
- — , x-> sin x

1 — cos x

0, using your calculator in radian mode, 

x —> 0, using your calculator in radian mode.

Finding limits algebraically
2.18 Some of the functions which you have investigated in the preceding 
sections can be examined more rigorously using algebra.

In Example 16, above, if we divide the numerator and the denominator by x, 
the function can be written

2
1/x + 1

f(x) =
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If now we let x -+ go, the term 1/x will tend to zero and we can see that f(x) will 
tend to 2. Notice that, since x is positive, the denominator will always be slightly 
bigger than 1, so f(x) will always be slightly less than 2. We say that f(x) tends to 
2 from below. On the other hand, when x -> — oo, the denominator will be 
slightly less than 1 and so f(x) will approach 2 from above.

In Example 15, put x =  2 +  h, where h is small (in due course, we shall let h 
tend to zero).

x3 =  (2 + h)3 = 8 +  12 h + 6 h2 + h3 

hence

x3 —8 I2h + 6h2 + h3 
x — 2 h

= 12 + 6 h + h2 (h *  0)

Although we must not put h equal to zero, we can let h tend to zero, that is, we 
can let it get smaller and smaller. As it does so, the terms 6h and h2 tend to zero 
and we see that the function tends to 12. This confirms the result of our 
investigation by calculator.

If f(x) tends to L as x tends to a, we frequently say that the limit of f(x), as x 
tends to a, is L. This is usually abbreviated to

lim f(x) =  L

Thus the outcome of Example 15 could be written

lim
x ~*2

x 3 — 8
x — 2

12

Continuity
2.19 Looking back at Examples 7 and 8 (§2.13), the reader will notice that there 
is an important difference between them. The graph of Example 8 could, at least 
in our imagination, be drawn with a single sweep of the pencil, whereas in 
Example 7 the pencil must be lifted off the page at each integer point of the 
domain. We say that the function in Example 8 is continuous, but the function in 
Example 7 is discontinuous at 1, 2, 3, ....

Fig. 2.21 shows sketches of the graphs of y = x 2, y =  1/x and y =  1/x2. 
f(x) =  x2 is plainly a continuous function, but the other two are discontinuous 

at x =  0 (they are, of course, both undefined at this point).
The function given by

f ( x ) = + l ,  when x > 0  
f(x) = — 1, w he nxc O

is defined at every point of (R, but it is discontinuous at x =  0. A sketch of its 
graph is shown in Fig. 2.22.

In all these cases the break in the graph has been pretty obvious, but a



Figure 2.22

discontinuity can be more subtle than this. Consider for example the function 

— 4
F(x) = 7 3 T  (x#2)

For all values of x, except x  = 2, this function is equal to (x +  2), and 
consequently its graph is the straight line y = x + 2, with a ‘hole’ in it at x = 2 
(Fig. 2.23).

It is perfectly legitimate to say that lim F(x) =  4, but we must not actually put
X~*2

x equal to 2. At the moment the graph is undefined at this point. Now, if we wish, 
we can ‘plug the gap’ by defining F(2) as 4. In doing so we shall have made F(x) 
continuous at x = 2. But, if we wish to be difficult, we could choose to define F(2) 
as something else, say F(2) =  0; in this case F(x) is discontinuous at x =  2. 

Notice that in the case of fix) = 1/x and fix) =  1/x2, we can decide to define
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the function at x = 0, if we wish, but there is no number which we could assign to 
it which would make these functions continuous at x =  0.

We can express this more formally by saying that, if

lim f(x) #  f(a)
x -* a

then f(x) is discontinuous at x =  a. But if 

lim f(x) =  f(a)
x-* a

then the function is continuous at x =  a. A function which is continuous at every 
point in its domain is called a continuous function.

Exercise 2e
1 Find the limits of the following expressions as x -

(a)
5x + 1 
10 + 2x’ (b)

x + 1
( c )

x2 +  1
(d )

• oo:
5

1 +  x

2 Find the limits of the following expressions as x -»5:

(a)
- 4x — 5

x — 5 (b)
x2 — 25 
x — 5 (c )

125
(d )

■25
(x — 5)2

3 The following functions are not defined at x =  0. Define them, if possible, so 
that each function is continuous at x = 0.

(a) f(x) =
x2 + x

(c) f(x) = — ,
X

(b) f(x) =  x2 + 

(d) f(x) =

5
x

10 + 6/x
5 + 2/x
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4 Which of the following functions are continuous at x = 0? Sketch the graph in 
each case.
(a) f(x) = x, when x >  0, (b) f(x) =  x, when x 5= 0,

= 0, when x <  0. = 1 , when x < 0.
(c) f(x) = x + l ,  when x ^  0, (d) f(x) =  2X, when x 0,

= 0, w henx< 0 .  =  1, whenx<0.

5 The function f(x) =
x3 + x2 — 9x — 9 

x2 — 9
does not exist for two members of R.

Find these two members of R and define f(x) at each of these points, so that it 
becomes a continuous function.

Exercise 2f (Miscellaneous)
1 The domain of the function f(x) is {1, 2, 3, 4, 5}. Find the range if

(a) f(x) = 5x2 + 3, (b) f(x) = x/(x +  1).
2 Given that F(t) = 30/(t + 2), find

(a) F(3), (b) F(|), ( c ) F ( - l ) ,  (d) F(-2.5).
3 Given that g(x) =  5 +  x/2, find the values of

(a) g -1(6), (b) g -1(0), (c) g _1( — 1), (d) g _1( 4
4 The domain of the function h(t) =  |t| — t is Z. Describe its range. Describe in 

words the set of numbers {a: h(a) =  0}.
5 The domain of the functions f(x) = 5x, g(x) =  x2, and h(x) =  x +  1, is R. Write 

down as simply as possible, the composite functions
(a) fgh(x), (b) hgf(x).

6 The domain of the functions f(x) =  x/5 and g(x) =  7 — x is R. Write down, as 
simply as possible,
(a) f_1(x), (b) g - 1 (x), (c) fg(x), (d) (fig) 1 (x).

7 The domain of the function f(x) =  1/(1 +  x2) is R. Explain why the denomi­
nator is never zero. Find the range of the function. Sketch the graph of
y = f ( 4

8 Given that f(x) =  x +  2 — 15/x and that g(x) =  1/x, (x #  0), write down the 
composite function gf(x), in its simplest form, stating clearly any restrictions 
on the domain which are necessary.

9 State, with reasons, whether the following functions are one-to-one or many- 
to-one:
(a) f: i—► lOx +  2, x e R,
(b) g: i ► l/(x +  4), x e R, x #  — 4,
(c) h: i—> x2 + 1, x £ R.
Find the composite function fgh(x) in its simplest possible form. Is R a 
suitable domain for fgh(x)? Find the range of the function fgh(x) and sketch 
the graph of y = fgh(x).

10 Show that the function g(x) =  (2x — l)/(x — 3) can be expressed in the form 

where a and b are real numbers and x #  3. Hence, or otherwise find lim g(x).
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Show, also, that the graph of g(x) can be obtained from the graph of 
y = a/x, by suitably chosen translations parallel to the axes. Sketch the graph 
of y = g(x), showing clearly how it can be obtained by translating the graph 
of y = a/x.

11 Functions f and g, whose domain is the set of real numbers, are defined as 
follows:

f :xh-»x3 +  2 g: x >->• x — 3

12 (a) Sketch the graph of the function f: x i—► | |x +  2| — |x||, where x is real.
State the range of f.

(b) The function g is defined by g: x i-» 4/(1 +  x2). Give a suitable domain for 
x so that g is a one-to-one function and state the range of g for this 
domain. Define an inverse function g - 1  stating its domain and the 
corresponding range. (C)

13 The real function f, defined for all x e R, is said to be multiplicative if, for all 
x e IR, y e !R,

f(xy) = f(x)f(y)

Prove that if f is a multiplicative function then
(a) either f(0) =  0 or f(x) =  1 ,
(b) either f(l) = 1 or f(x) =  0,
(c) f(x") =  {f(x)}n for all positive integers n.
Give an example of a non-constant multiplicative function. (C)

14 Functions f, g and h, with domains and co-domains

R + = {x: x real, x > 0} 

are defined as follows:

Prove that the composite function L defined on R+ by L = hgf is given by

Find (a) gf(2), (b) ( f g ) 1( ~ 6). (O & C: SMP)

f: x h~* 3x2,

L: x i-> 1 -I- ^/(l + 3x2) (L )



Chapter 3

The gradient of a curve*
The gradient of a curve
3.1 So far we have only discussed the gradient of a straight line. A man walking 
up the ramp AB (Fig. 3.1) is climbing a gradient of f.

Figure 3.2

Let us now consider a man walking up the slope represented by the curve 
CPD (Fig. 3.2). Between C and D the gradient is steadily increasing. If, when he 
had reached the point P, the gradient had stopped increasing, and had remained

*1Vote. Most of the questions in the text in this chapter should be worked by the pupils themselves.

55



56 Pure Mathematics 1 3.1

constant from then on, he would have climbed up the slope represented by the 
straight line PT, the tangent to the curve at P. Thus in walking up the slope CD, 
when the man is at the point P (and only at that instant) he is climbing a gradient 
represented by the gradient of PT.

Definition

T h e  g r a d ie n t  o f  a  cu rve  a t  a n y  p o in t is  th e  g r a d ie n t o f  th e  ta n g e n t to  th e  c u rve  a t  
th a t p o in t.

The gradient at a point
3.2 If we wish to find approximately the gradient of a curve at a certain point, 
we could draw the curve, draw the tangent at that point by eye, and measure its 
gradient. But to develop our study of curves and their equations, it is important 
that we should discover a method of calculating exactly the gradient of a curve 
at any point; to do this we shall think of a tangent to a curve in the following 
way.

First we start with two distinct points on a curve, P and Q (Fig. 3.3), and the 
chord PQ is drawn and produced in both directions. Now consider RPQS as a 
straight rod hinged at P, which is rotated clockwise about P to take up 
successive positions shown by PQ X, PQ2, PQ 3, etc. Notice that the points at 
which it cuts the curve, Q x, Q 2, Q 3, are successively nearer the fixed point P. The



nearer this second point of intersection approaches P, the nearer does the 
gradient of the chord approach the gradient of the tangent NPT. By taking Q 
sufficiently close to P, we can make the gradient of the chord PQ as near as we 
please to the gradient of the tangent at P.

To see precisely how this happens, place the edge of a ruler along RPQS and 
then rotate it clockwise about P. You will see the second point of intersection 
approach P along the curve, until it actually coincides with P when the ruler lies 
along the tangent NPT. Using an arrow to denote ‘tends to’ or ‘approaches’ we 
may write:

as Q -> P along the curve,
the gradient of the chord PQ -+ the gradient of the tangent at P,
the tangent at P is called the limit of the chord PQ (or more exactly of the
secant RPQS), and
the gradient of the curve at P is the limit of the gradient of the chord PQ.

Qu. 1 A regular polygon of n sides is inscribed in a circle. What is the limit of 
the polygon as n-> oo?
Qu- 2 OP is a radius of a circle centre O. A straight line PQR cuts the 
circumference at Q. What is the limit of the angle QPR as Q approaches P along 
the circumference?
Qu- 3 P is a point on the straight line y = ̂ x. Q is the foot of the perpendicular 
from P to the x-axis. As P approaches O, the origin, what happens to PQ and 
QO? What can you say about the value of PQ/QO?
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The gradient of y  =  x2 at (2 ,4)
3.3 We shall now use this idea of a tangent being the limit of a chord, to find 
the gradient of the curve y =  x 2 at a particular point, namely (2 ,4).

P is the point (2, 4) on the curve y =  x 2 (Fig. 3.4). Q is another point on the 
curve, which we take first as (3, 9). Then, as the chord PQ rotates clockwise 
about P, Q moves along the curve to Q j, and then nearer and nearer to P. By 
studying the behaviour of the gradient of PQ as this is happening we hope to be 
able to deduce the gradient of the tangent at P.

The gradient of PQ =

RQ
MN

N Q -N R  
“ O N - OM

9 - 4
“ 3 - 2

= 5
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If Q now moves to the position Q 1; whose coordinates are (2j, 65),

the gradient of PQj = N i Q i  — N j R j

O N t - O M

6 ± - 4
2j  — 2

2-Z4
1
2

= 4 i

We now let Q approach yet closer to P along the curve, and the table 
opposite gives the gradient of the chord PQ as it approaches the gradient of the 
tangent at P.

Comparing the first and last columns of this table, we see that for each 
position of Q, the gradient of PQ exceeds 4 by the same amount as the 
x-coordinate of Q exceeds 2. The actual equality is not important; what is 
important is that these values we have taken so far suggest that by taking Q 
sufficiently near P (i.e. by taking the x-coordinate of Q sufficiently near 2) we can 
make the gradient of PQ as near 4 as we please (see §2.17). This suggests that the 
limit of the gradient of PQ is 4, and that the gradient of the tangent at P is 4.

Qu.4 Draw a figure similar to Fig. 3.4, taking P as the point (1,1). Taking the 
x-coordinate of Q successively as 2, l j ,  1.1,1.01, make out a table similar to the 
one opposite. What appears to be the limit of the gradient of PQ in this case? 
Qu.5 Add a last line to your table for Qu. 4 by taking the x-coordinate of Q to



be 1 + h. What happens to Q as h -»0? What happens to the gradient of PQ as 
h->01 Deduce the gradient of y — x 2 at (1, 1).
Qu.6  Add a last line to the table in the book, taking the,x-coordinate of Q as 
(2 + h). Deduce the gradient of y =  x2 at (2, 4).
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ON NQ PR RQ
RQ
PR

(x-coord. (y-coord. (ON -  2) (NQ — 4) Gradient of PQ
of Q) of Q)

3 9 1 5 5

2i 6 i 1
2

'll
14  _  aX 1 ” 4 2 
2

2.1 4.41 0.1 0.41 £  -
2.01 4.0401 0.01 0.0401 °oT  -« *
2.001 4.004 001 0.001 0.004 001 ° Z T  —

The gradient function of y  = x2
3.4 We now use the method suggested in Qu. 5 to find the gradient of y =  x2 at 
any point.

P is the point (a, a2), and Q is another point on the curve whose x-coordinate 
is a + h (Fig. 3.5).

Figure 3.5
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RQ = NQ -  NR
= (a + h )2 — a 2 
=  2 a h  +  h 2 

and PR = h

The gradient of the chord PQ is

RQ 2 ah  + h 2

PR “  h

=  2 a  +  h

As we let the chord rotate clockwise about P, Q approaches P along the curve, 
and the gradient of the chord PQ -+ the gradient of the tangent at P, and h -*• 0. 

But as h -*• 0, the gradient of the chord PQ, (2a + h)~ * 2a .
It follows that the gradient of the tangent at P is 2a.
Thus the gradient o f  y  — x 2 at (a, a2) is 2a, and since a  is the x-coordinate of 

the point (a , a 2), the gradient of y =  x2 at (x, x2) is 2x.
Just as x2 is the expression in which we substitute a value of x to find the 

corresponding ^-coordinate and plot a point on the curve y  = x2, so we now 
have another expression, 2x, in which we can substitute the value of x to find the 
gradient at that point.

2x is called the gradient function of the curve y  = x 2.

Example 1 F in d  th e  c o o rd in a te s  o f  th e  p o in ts  on  th e  c u rve  y  =  x 2, g iv e n  b y  x = 4 
a n d  — 10, a n d  f in d  th e  g r a d ie n t o f  th e  cu rve  a t  th e se  p o in ts .

y  =  x 2

When x = 4, y  = 42 =  16.

The gradient function = 2x 

.'. the gradient =  8, when x =  4 

.'. the point is (4,16), and the gradient is 8.

When x =  — 10, y  =  x 2 = +  100.

The gradient function = 2x = — 20 

.'. the point is ( — 10, 100), and the gradient is —20.

Qu.7 Calculate the gradients of the tangents t o  y  — x 2 at the points given by
x = — l-j, —1 , + 5 , + 2 .
Qu.8 Use the method of §3.4 to find the gradient functions of the following 
curves, making a sketch in each case, and compare each result with the gradient 
function of y  = x2: (a) y  = 3x2, (b) y  = 5x2, (c) y  = j x 2, (d) y  = c x 2, where c is a 
constant, (e) y  =  x2 + 3, (f) y  =  x2 + k, where k  is a constant.

Clearly we need an abbreviation for the statement ‘the gradient function of
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y =  x2 is 2x\ A convenient way of writing this is

‘if y = x 2 
grad y =  2x’

The process of finding the gradient function of a curve is known as 
differentiation, and it is useful if we understand ‘grad’ also to be an instruction to 
differentiate. Thus,

grad (x2) = 2x

The differentiation of x3
3.5 P is any point (a, a3) on the curve y =  x3. Q is another point on the curve 
with x-coordinate (a + h) (Fig. 3.6).

RQ = NQ -  NR
= (a + h)3 — a3 
=  a3 + 3a2h + 3 ah2 + h3 — a3 
=  3 a2h + iah2 +  h3

PR =h

The gradient of PQ =

3 a2h +  3 ah2 + h3= _

= 3a2 + 3ah +  h2
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As Q approaches P along the curve, h —>0, and the terms 3ah and h2 each tend 
to zero; therefore the gradient of PQ -»3a2.

It follows that the gradient of y =  x 3 at (a, a 3) is 3a2,.or

grad x3 = 3x2

Qu. 9 Use the method of §3.5 to find grad x4.
[Hint: (a + h )A =  a4 +  4a 3h + 6 a 2h 2 + 4a h 3 + h4.]
Qu. 10 Differentiate 2x3 by the same method.

Summary of results
3.6 We have now confirmed the following:

grad x2 = 2x 
grad x3 = 3x2 
grad x4 =  4x3

The form of these results suggests that the rule for differentiating a power of x 
is multiply by the index, and reduce the index by 1 ; this means that grad x 5 would 
be 5x4, grad x6 would be 6x5, and so on.

At this stage we must dispense with a formal proof of the validity of this 
process in general, and we shall assume that

grad x " = n x n ~1

when n e Z +.
It is now time to link up these ideas with our earlier work on a straight line, 

and to extend them further.

y  =  c

Straight lines of this form, such as y =  4 and y = — 2, are parallel to the x-axis, 
and have zero gradient. It follows that grad 4 =  0 and grad —2 =  0. Thus, if we 
differentiate a constant we get 0.

[Note that this does agree with the general result, grad x" =  n x " '1. Since 
x° =  1 (see §9.4), we may write grad 4 =  grad 4x° = 0 x 4x_1 =0.]

j  = k x ,  y  =  kx"

We know that the straight line y = mx + c has gradient m, e.g. y =  x has gradient 
1, and y =  3x has gradient 3. Thus

grad x =  1

[Again, this agrees with the general result, since grad x 1 =  1 x x° =  1.] Also, 

grad 3x = 3 x grad x =  3 x 1 = 3 

and as Qu. 8 showed,

grad 3x2 =  3 x grad x2 =  3 x 2x = 6x



This illustrates the general property that i f  a  fu n c tio n  h as a  c o n s ta n t f a c to r ,  
th a t c o n s ta n t re m a in s  u n ch a n g ed  a s a  f a c to r  o f  th e  g r a d ie n t fu n c tio n  (Fig. 3.7).
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Qu. 11 Differentiate:
(a) 4x3, (b) 5 x \ (c) a x 2, (d) 4x", (e) K x n + l .

The differentiation of a polynomial
3.7 So far we have differentiated functions of one term only. What happens if 
there are two or more terms?

y  = mx + c

The straight lines y  = 3x, y  = 3x +  4, and y =  3x — 2 all have gradient 3. Thus

grad 3x = 3 
grad (3x + 4) = 3 
grad (3x — 2) = 3

The above lines are parallel, and as we discovered in §1.7, the effect of giving the 
different values c = 0, +  4 and — 2, is to raise or lower the line, but not to alter its 
gradient.

Clearly the same applies to the curves y  = x2, y  = x2 +  4 and y  = x2 — 2 
(Fig. 3.8). At the point on each curve for which x =  a , the tangents are parallel, 
each having gradient 2a.

grad x2 = 2x 
grad (x2 + 4) =  2x 
grad (x2 — 2) = 2x
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In the above cases where the function consists of two terms, we should get the 
same result by differentiating each term separately. Thus,

grad (x2 +  4) =  grad x2 +  grad 4 
=  2x + 0 
= 2x

This leads us to investigate whether this method is valid in general.

To find the gradient function of this curve, let P be any point (a, a2 + 3a — 2) on 
it. Q is another point on the curve with x-coordinate (a + h) (Fig. 3.9).

RQ = NQ -  NR
= {(a + h)2 + 3(a + h) — 2} — {a2 +  3a — 2}
= a2 + 2 ah + h2 +  3a + 3h — 2 — a2 — 3a +  2 
=  2ah + h2 + 3h

PR =h

The gradient of PQ =
RQ
PR

2ah + h2 + 3h 
h

— 2a “I- h -t- 3
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♦
X

Figure 3.9

As Q approaches P along the curve, h -*■ 0 and the gradient of PQ -* 2 a  + 3. 
It follows that the gradient of y  = x 2 + 3x — 2 at (a, a 2 + 3a  — 2) is 2a  + 3, or

grad (x 2 +  3 x  — 2) =  2x + 3

Now, if we try differentiating each term separately,

grad ( x 2 + 3 x  — 2) =  grad x 2 + grad 3x +  grad — 2

This illustrates the general property that th e  g r a d ie n t  fu n c tio n  o f  th e  su m  o f  a  
nu m ber o f  te rm s  is  o b ta in e d  b y  d iffe re n tia tin g  e a ch  te rm  se p a r a te ly .

Qu. 12 Differentiate:
(a) x 3 + 2 x 2 +  3 x , (b) 4x4 — 3x2 + 5, (c) a x 2 +  b x  +  c.

A special method of dealing with products and quotients will be met later, but 
for the present we must reduce a function in this form to the sum of a number of 
terms before differentiating. (The reader may check that to differentiate each 
factor separately in the following examples does n o t lead to the correct result.)

grad { x 2(2 x  + 3)} =  grad (2x3 +  3x2) =  6 x 2 + 6 x

— 2x ~F 3 - 0  
= 2 x  + 3

= grad ( x 2 + 4x) =  2x + 4

Qu. 13 Differentiate:
5x3 + 3x2
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Differentiation and the function notation
3.8

3.8 In the preceding sections we have considered a variety of functions and we 
have found their corresponding gradient functions. The gradient function is 
often called the derived function, or derivative.

If we have a given function f(x) it is very convenient to have a standard 
notation for its corresponding gradient function; the normal way of doing this is 
to write f'(x). Thus if f(x) = x 3 + 5x2 +  3x — 7 then we write its derivative 
f'(x) — 3x2 + lOx + 3. Alternatively

f: xi—>x3 + 5x2 +  3x — 7 
f: xi—>3x2 +  lOx + 3

The process of finding the derived functions in the case of f(x) = x2 and f(x) = x3, 
has been written out in full in §3.4 and §3.5 respectively. The general case is set 
out below.

Fig. 3.10 shows the graph of a general function y = f(x); M and N are the 
points (a, 0) and (a + h, 0) respectively. P and Q are the points on the curve given 
by x =  a and x = a + h. So MP = f(a) and NQ = f(a + h).

RQ = NQ -  NR 
= NQ — MP
= f(a +  h) — f(a)

The gradient of PQ

= RQ 
PR

_ f(a + h) — f(a)
~  h

Hence the gradient of the tangent at P = lim [f(a + h) — f(a)]//i, and hence the
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derived function f'(x) is given by

f'(x) =  lim
/i-0

f(x + A )-f(x )  
h

( 1)

In saying this, we are assuming that this limit exists and that it is the same 
whether h tends to zero from above or from below (see §2.17).

If you are ever required to differentiate a given function from first principles, 
you should start the proof by quoting the formula marked (1).

Example 2 F in d , f r o m  f i r s t  p r in c ip le s , th e  d e r iv a tiv e  o f  th e  fu n c tio n  f(t) = k t 4 , 
w h ere  k  is a  c o n s ta n t.

f  (t) = lim
h ->0

f { t + h ) - m
h

f (t + h) =  k(t + h)4
= k(t4 + 4t3h + 6 t 2h2 +  4 th 3 +  h4)

f(t + h ) — f(i) =  k t 4 + 4 k t 3h + 6 k t 2h 2 + 4 k th 3 + kh 4 — k t 4 
=  4 k t 3h +  6 k t 2h 2 + 4  k th 3 +  k h 4

f(- + h)— ^  = 4 k t 3 +  6 k t 2h + 4 k th 2 +  k h 3 
h

and hence

f'(t) =  lim (4kt3 +  6k t 2h +  4k th 2 +  k h 3)
h-*0

= 4 k t 3

Example 3 F in d  f r o m  f i r s t  p r in c ip le s , f'(x) w h en  f(x) =  |x|.

f'(x) =  lim
h -*0

f(x + h) — f(x) 
h

= lim
h ->0

|x +  h| — |x| 
h

Now if x and x  + h are both positive, then \x  + h\ = x  + h and |x| =  x. 
Consequently in this case

f'(x) = lim
h -*0

x  +  h — x  

h

=  +1

But, if x and x  + h are both negative, |x +  h\ =  — (x + h) and |x| =  — x. In this 
case
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f'(x) = lim
/i-0

— x —h ~  ( -  x) 
h

= lim
h^O

— h
h

= -  1

The remaining case, namely f'(0), is rather tricky!

f'(O) = lim 
/!-0

|0 + fc |-0  
h

= lim
h ->0

i*i
h

But \h\/h = +  1 if h > 0, or — 1 if h < 0. Consequently, the limit as h->0 from 
above is + 1, but it is — 1 when h tends to 0 from below. Hence f'(0) cannot be 
found. This may seem rather strange, but it makes sense if we consider the graph 
ofy  =  |x| (Fig. 3.11).

It is clear from the graph that when x > 0, the gradient is + 1, while if x <  0 the 
gradient is — 1. A,t x =  0, however, the graph comes to a point and its gradient 
here does not exist.

Figure 3.11

Exercise 3a
Write down the gradient functions of the following curves:

1 y =  x12. 2 y =  3x7. 3 y = 5x.
4 y  = 5x + 3. 5 y  =  3. 6 y=  5x2 — 3x.
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Write down the derived function f'(x), for each of the following functions:

7 f(x) = 3x4 — 2x3 +  x2 — x + 10. 
9 f(x) = ax3 +  bx2 +  cx.

10x5 + 3x4

"  2x> ■

8 f(x) = 2x4 + ^x3 — j x 2 +  2 . 
10 f(x) = 2x(3x2 -  4).*

Differentiate the following functions:

12 - x .  1 3 + 1 0 . 14 4x3 — 3x +  2.
15 jflx2 — 2bx +  c. 16 2(x2 +  x). 17 3x(x — 1).
18 i(x 3 -  3x + 6). 19 (x +  1) (x -  2).

Find the derivatives of the following functions:

20 f: x I-» 3(x + l)(x — 1).

22 f: x y
2x3 — x2

3x

21 f:xh
(x +  3) (2x + 1) 

4

23 f:xh
x4 + 3x2 

2x2

Find the ^-coordinate, and the gradient, at the points on the following curves 
corresponding to the given values of x:

24 y  = x2 — 2x + 1, x = 2. 25 y  =  x 2 +  x  +  1, x = 0.
26 y  = x 2 — 2x, x = — 1. 27 y  = (x + 2) (x — 4), x =  3.
28 y  = 3x2 — 2x3, x =  — 2. 29 y  = (4x — 5)2, x = \ .

Find the coordinates of the points on the following curves at which the gradient 
has the given values:

30 y = x2; 8.
32 y =  x(2 -  x); 2.
34 y =  x3 — 2x +  7; 1. 
36 y = x4 — 2x3 + 1; 0. 
38 >> = x(x -  3)2; 0.

31 y = x3; 12.
33 y = x 2 — 3x + 1; 0.
35 y = x3 -  6x2 + 4; -  12. 
37 y = x 2 — x3; - 1 .

Tangents and normals
3.9 Definition

A normal to a curve at a point is the straight line through the point at right angles 
to the tangent at the point (Fig. 3.12).

We are now able to find the equations of tangents and normals.

Example 4 Find the equation of the tangent to the curve y = x3 at the point (2, 8).
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When x  = 2, 

grad y=  12

Thus the gradient of the tangent at (2, 8) is +12. Its equation is

y  — 8 =  12x — 24

.'. the equation of the tangent is 12x — y  — 16 = 0.

We can generalise Example 4 as follows.

Example 5 F in d  th e  e q u a tio n  o f  th e  ta n g e n t to  th e  c u rve  y  = f(x) a t th e  p o in t
(a,b).

Putting x  =  a  in the equation gives 

b  =  f(a)

The gradient at the given point is obtained by differentiating and putting x = a. 
Hence the gradient required is f'(a).

The equation of the tangent has the form

y - b
------ =  m
x — a

where m  is the gradient. Hence the equation of the tangent is 

y - ( ( a )  =  f ' ( a ) ( x - a )

Example 6 F in d  th e  e q u a tio n  o f  th e  n o rm a l to  th e  cu rve  y  =  (x2 + x + l)(x — 3) 
a t th e  p o in t w h ere  i t  c u ts  th e  x -a x is .

y = (x2 + x + 1) (x — 3)
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When y = 0,

(x2 + x + 1) (x — 3) =  0
4

But x2 + x +  1 =  0 has no real roots,

.'. x =  +  3

.'. the curve cuts the x-axis at (3, 0)

y — x3 — 2x2 — 2x — 3 
grad y =  3x2 — 4x — 2

When x =  3,

grad y = 27 — 12 — 2 =  13

The gradient of the tangent at (3,0) is +13, therefore the gradient of the 
normal at (3,0) is — yj (see §1.5) and its equation is

y - 0 _  1
x - 3  “  ~ l 3

13 y=  —x + 3

.'. the equation of the normal is x +  13y — 3 =.0.

Exercise 3b
1 Find the equations of the tangents to the following curves at the points 

corresponding to the given values of x:
(a) y =  x2, x =  2;
(b) y = 3x2 +  2, x =  4;
(c) y = 3x2 —x + 1, x=0;
(d) y = 3 —4x—2x2, x =  1;
(e) y =  9x — x3, x = — 3.

2 Find the equations of the normals to the curves in No. 1 at the given points.
3 Find the equation of the tangent and the normal to the curve y — x2(x — 3) at 

the point where it cuts the x-axis. Sketch the curve.
4 Repeat No. 3 for the curve y  = x(x — 4)2.
5 Find the equation of the tangent to the curve y =  3x3 — 4x2 + 2x — 10 at the 

point of intersection with the y-axis.
6 Repeat No. 5 for the curve y = x2 — 4x + 3.
7 Find the values of x for which the gradient function of the curve

y = 2x3 +  3x2 — 12x + 3

is zero. Hence find the equations of the tangents to the curve which are 
parallel to the x-axis.

8 Repeat No. 7 for the curve

y =  2x3 — 9x2 + 10.
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Exercise 3c (Miscellaneous)
1 Find the gradient of the curve y =  9x — x3 at the point where x =  1. Find the 

equation of the tangent to the curve at this point. Where does this tangent 
meet the line y = x l

2 Find the equation of the tangent at the point (2, 4) to the curve y = x 3 — 2x. 
Also find the coordinates of the point where the tangent meets the curve 
again.

3 Find the equation of the tangent to the curve y = x3 — 9x2 + 20x — 8 at the 
point (1,4). At what points of the curve is the tangent parallel to the line
4x + y -  3 =  0?

4 Find the equation of the tangent to the curve y = x3 + \ x 2 + 1 at the point 
( —l,i) . Find the coordinates of another point on the curve where the 
tangent is parallel to that at the point ( — 1, Jr).

5 Find the points of intersection with the x-axis of the curve y = x3 — 3x2 + 2x, 
and find the equation of the tangent to the curve at each of these points.

6 Find the equations of the normals to the parabola Ay =  x2 at the points 
( — 2,1) and ( — 4,4). Show that the point of intersection of these two normals 
lies on the parabola.

7 Find the equation of the tangent at the point (1, — 1) to the curve
y = 2 — 4x2 + x3

What are the coordinates of the point where the tangent meets the curve 
again? Find the equation of the tangent at this point.

8 Find the coordinates of the point P on the curve 8y = 4 — x 2 at which the 
gradient is j .  Write down the equation of the tangent to the curve at P. Find 
also the equation of the tangent to the curve whose gradient is — and the 
coordinates of its point of intersection with the tangent at P.

9 Find the equations of the tangents to the curve y =  x3 — 6x2 + 12x + 2 which 
are parallel to the line y — 3x.

10 Find the coordinates of the points of intersection of the line x — 3y =  0 with 
the curve y =  x(l — x2). If these points are in order P, O, Q, prove that the 
tangents to the curve at P and Q are parallel, and that the tangent at O is 
perpendicular to them.

11 Find the equations of the tangent and normal to the parabola x2 = Ay at the 
point (6, 9). Also find the distance between the points where the tangent and 
normal meet the y-axis.

12 The curve y = (x — 2)(x — 3)(x — 4) cuts the x-axis at the points P(2,0), 
Q(3, 0), R(4,0). Prove that the tangents at P and R are parallel. At what point 
does the normal to the curve at Q cut the y-axis?

13 Find the equation of the tangent at the point P(3, 9) to the curve
y = x3 — 6x2 + 15x — 9

If O is the origin, and N is the foot of the perpendicular from P to the x-axis, 
prove that the tangent at P passes through the mid-point of ON. Find the 
coordinates of another point on the curve, the tangent at which is parallel to 
the tangent at the point (3, 9).



14 A tangent to the parabola x2 = 16y is perpendicular to the line

x — 2y — 3 = 0

Find the equation of this tangent and the coordinates of its point of contact.
15 Find the equation of the tangent to y = x2 at the point (1, 1) and of the 

tangent to y = £x3 at the point (2, §). Show that these tangents are parallel, 
and find the distance between them.

16 The point (h, k) lies on the curve y = 2x2 + 18. Find the gradient at this point 
and the equation of the tangent there. Hence find the equations of the two 
tangents to the curve which pass through the origin.

17 For the curve y = x 2 + 3 show that y = lax  — a2 + 3 is the equation of the 
tangent at the point whose x-coordinate is a. Hence find the coordinates of 
the two points on the curve, the tangents at which pass through the point 
(2, 6).

18 Functions f and g are given by

f:x i—>-3x + 4 and g:xi—>x2

(a) Find the functions f  and g'.
(b) Calculate the values of f'(2) and g'(10).
(c) If h = gf, find h(x) and h'(x).
(d) Verify that h'(2) =  f'(2)g'(10).
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Chapter 4

Velocity and acceleration
Gradient and velocity
4.1 The reader will have met ‘travel graphs’ in his study of mathematics. One 
such graph is shown in Fig. 4.1, representing a man walking to see a friend who 
lives 5 km away, staying 2 hours, and then returning home. On his outward 
journey represented by OA, he travels 5 km in 2 hours, and his velocity, \  km/h, 
is represented by DA/OD, the gradient of OA.

Whilst with his friend his velocity is zero; this is represented by the gradient of 
AB.

On his return journey, the gradient of BC gives his velocity as — f  km/h. The 
negative sign denotes that he is now travelling in the opposite direction; he is 
decreasing the distance from home.

This type of graph in which the distance, s, is plotted against the time, t, is 
called a space-time graph.

time after noon in hours

Figure 4.1

74
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Variable velocity
4.2 When velocity is variable, as in a car journey, we may be concerned with 
the average velocity, which we need to define. *

Definition
total distance travelled increase in s

Average velocity is --------- —------- :--------or ------------ :— .
total time taken increase in t

When the speed of a car changes, the speedometer moves, indicating the speed 
at any instant. We must now deal with the idea of the velocity at an instant.

Suppose that a car, starting from rest, increases its velocity steadily up to 
80 km/h. Then the space-time graph is similar to the curve OPQ in Fig. 4.2. The 
point P we shall take to correspond to the instant at which the speedometer 
needle reaches the 60 km/h mark. If from that instant onward the velocity had 
instead been kept constant at 60 km/h, then the space-time graph would have 
consisted of the curve OP and the straight line PT of gradient 60.

Figure 4.2

It would appear that PT is the tangent at P to the original space-time curve 
OPQ (like cotton under tension leading off a reel), and in that case its gradient 
would be the same as the gradient of the curve OPQ at P. This suggests that, 
when the velocity is variable, we mean, by the velocity at an instant, the velocity 
represented by the gradient of the space-time curve at the corresponding point. 
However, we must proceed to find a precise definition.

Velocity at an instant
4.3 We consider a stone falling from rest, its velocity steadily increasing. It can 
be verified by experiment that under certain conditions, it will be s m below its
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starting point t seconds after the start, where s is given by the formula s =  4.9l2. 
From this we may make a table of values giving the position of the stone at 
different times.*

Value of 1 0 0.5 1.0 1.5 2.0 2.5 3.0

Value of s 0 1.2 4.9 11.0 19.6 30.6 44.1

Part of the space-time graph is given in Fig. 4.3.

From t =  1 to t =  2, the average velocity is represented by the gradient of the 
chord PQ.

RQ
PR

19.6-4.9
2 - 1

14.7

.'. the average velocity is 14.7 m/s.

Qu. 1 How far does the stone move in the interval t = 1 to t = 1.5? What is the 
average velocity during this interval?
Q u.2 Repeat Qu. 1 for the intervals (a) i = l  to 1=1.1, and (b) 1=1 to 
l = 1 +  h.

The smaller we make the time interval (letting Q ->P along the curve), the 
nearer the average velocity (the gradient of PQ) approaches the velocity given by 
the gradient of the curve at P.

Now we have seen that the gradient of the curve at P is the limit of the 
gradient of PQ as Q -* P (§3.2); this leads to the following definition.

Throughout §4.3, including Qu. 1 to 5, we work to one decimal place.
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Definition

The velocity at an instant is the limit of the average velocity for an interval 
following that instant, as the interval tends to zero. ‘

Qu.3 From your answer to Qu. 2 (b) determine the actual velocity at the 
instant when t = 1 .
Qu* 4 Calculate the distance moved, and the average velocity during the 
following intervals:
(a) t = 2 to t = 3, (b) (=  2 to t = 2.5,
(c) t = 2 to t  = 2 .1 , (d) t = 2 to t  = 2 + h.

Deduce the velocity when t = 2.

The definition given above identifies the velocity at an instant with the 
gradient of the space-time graph for the corresponding value of t. If we are given 
s in terms of t we can therefore find an expression for the velocity of the stone at 
any instant by differentiation, that is, if s =  f(t), then the velocity v is given by

v = f'(i)

In the case we considered above, f(i) = 4.912 and so the velocity, v m/s, is given 
by

v = f'(r) = 9.81

Thus when t =  0, v =  0, 
when t = 1, v =  9.8, 
when t = 2, v = 19.6, etc.

Qu* 5 A stone is thrown vertically downwards from the top of a cliff, and the 
depth below the top, s m, after t s, is given by the formula s =  2i + 4.9i2.
(a) Where is the stone after 1, 2, 3, 4 s?
(b) What is its velocity at these times?
(c) What is its average velocity during the 3rd second (from t = 2 to t = 3)?

The symbols Ss and 5t
4.4 The idea of gradient helped us to arrive at the definition of velocity at an 
instant. It is instructive to take the definition as our starting point; and now, 
without reference to graphical ideas, we shall again demonstrate that velocity is 
found by differentiating the expression for s in terms of t. To do this it is 
convenient to introduce some new symbols, which will be of great use from now 
onwards.

Again we deal with the stone which falls s metres from rest in t seconds. 
Suppose that it falls a further small distance Ss metres in the additional small 
interval of time St seconds.

[The symbol St, read as ‘delta f ,  is used to denote a small increase, or 
increment, in time. Note that St is a single symbol; it does not mean <5 multiplied 
by t. Similarly Ss is the corresponding increment in distance.]



The average velocity for the time interval St (i.e. from t to t + St) is Ss/St m/s, 
and we now obtain an expression for this in terms of t.

Since the stone falls (s + Ss) metres in (t +  St) secondj

s + Ss = 4.9 (t + St)2
i.e. s + Ss = 4.912 +  9.81 x S t  + 4.9 x (St)2 
But s = 4 .9 i2

and subtracting,

Ss = 9.81 x S t  + 4.9 x (St)2

To find the average velocity between time t and time (i +  St) we divide each 
side by St, giving

Ss
— = 9.8t +  4.9 x St 
St

As <5t->0 the R.H.S.->9.8t.
By the definition of velocity at an instant, the velocity, v m/s, at time t, is the 

limit of Ss/St as St -* 0, hence

v = 9.81

The fact that this process is identical with that of finding the gradient function 
of s =  4.9t2 is readily seen from Fig. 4.4.
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Exercise 4a
1 A stone is thrown vertically upwards at 35 m/s. It is s m above the point of 

projection t s later, where s = 351 — 4.9i2.



(a) What is the distance moved, and the average velocity during the 3rd 
second (from t = 2 to t = 3)?

(b) Find the average velocities for the intervals t = 2 to t =i 2.5, t = 2 to t = 2.1, 
t =  2 to t = 2 + h.

(c) Deduce the actual velocity at the end of the 2nd second.
2 A stone is thrown vertically upwards at 24.5 m/s from a point on the level with 

but just beyond a cliffledge. Its height above the ledge t s later is 4.9t(5 — t) m. 
If its velocity is v m/s, differentiate to find v in terms of t.
(a) When is the stone at the ledge level?
(b) Find its height and velocity after 1, 2, 3, and 6 s.
(c) What meaning is attached to a negative value of s? A negative value of vl
(d) When is the stone momentarily at rest? What is its greatest height?
(e) Find the total distance moved during the 3rd second.

3 A particle moves along a straight line so that it is s m from a fixed point O on 
the line t s after a given instant, where s = 3i +  t2. After (i + St) s it is (s +  Ss) m 
from O. Find the average velocity during the time interval t to (t + St) as was 
done in §4.4, and deduce an expression for the velocity v m/s, at time t. Check 
by differentiation.
(a) Where is the particle and what is its velocity at the instant from which time 

is measured (i.e. when t — 0)?
(b) When is the particle at O?
(c) When is the particle momentarily at rest? Where is it then?
(d) What is the velocity the first time the particle is at O?

4 A particle moves along a straight line OA in such a way that it is s m from O 
t s after the instant from which time is measured, where s = 6i — t2. A is to be 
taken as being on the positive side of O.
(a) Where is the particle when t =  0, 2, 3, 4, 6, 7? What is the meaning of a 

negative value of s?
(b) Differentiate the given expression to find the velocity, t; m/s, in terms of t. 

Find the value of v when t = 0, 2, 4, 6. What is the meaning of a negative 
value of t>?

(c) When and where does the particle change its direction of motion?
5 A slow train which stops at every station passes a certain signal box at noon. 

Its motion between the two adjacent stations is such that it is s km past the 
signal box t min past noon, where s = ̂ t + ^ t2 —-^ t3. Find
(a) the time of departure from the first station, and the time of arrival at the 

second,
(b) the distance of each station from the signal box,
(c) the average velocity between the stations,
(d) the velocity with which the train passes the signal box.

6 Repeat No. 5 in the case where s =  yjt(36 — 31 — 212).
7 A stone is thrown vertically downwards at 19.6 m/s from the top of a cliff

24.5 m high. It is s m below the top after t s, where s =  19.6i + 4.9t2. Calculate 
the velocity with which it strikes the beach below.
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Constant acceleration
4.5

4.5 Earlier in this chapter we used the formula s =  4.9i2 for a stone falling from 
rest. On differentiation v =  grad s =  9.8i. The stone’s velocity is 9.8, 19.6, 29.4,
39.2 ... m/s at the end of successive seconds, and it is steadily increasing by 
9.8 m/s in each second. This rate at which the stone’s velocity increases is called 
its acceleration. This particular formula is based on the assumption that gravity 
is producing a constant acceleration of 9.8 m per second per second, written 
usually as 9.8 m/s2 or 9.8 m s -2.

time in seconds

Figure 4.5

Fig. 4.5 shows the corresponding velocity-time graph. The equation v = 9.81 
(being of the form y = mx) represents graphically a straight line through the 
origin of gradient 9.8. In this case then, the acceleration is represented by the 
gradient of the velocity-time graph.

Qu.6  A stone is thrown vertically downwards with a velocity of 10 m/s, and 
gravity produces on it an acceleration of 9.8 m/s2.
(a) What is the velocity after 1, 2, 3, t s?
(b) Sketch the velocity-time graph.

If a particle has an initial velocity u m/s and a constant acceleration a m/s2, 
then its velocity after t s is (u + at) m/s and the equation v = u + at (being of the 
form y = mx + c) represents a straight line of gradient a.

Thus when acceleration is constant, it is represented by the gradient of the 
straight-line velocity-time graph.

Exercise 4b

In this exercise, acceleration is constant.

1 At the start and end of a two-second interval, a particle’s velocity is observed 
to be 5, 10 m/s. What is its acceleration?

2 A body starts with velocity 15 m/s, and at the end of the 11th second its 
velocity is 48 m/s. What is its acceleration?



3 Express an acceleration of 5 m/s2 in (a) km/h per s, (b) km/h2.
4 A car accelerates from 5 km/h to 41 km/h in 10 s. Express this acceleration in

(a) km/h per s, (b) m/s2, (c) km/h2. ,
5 A car can accelerate at 4 m/s2. How long will it take to reach 90 km/h from 

rest?
6 Sketch the velocity-time curve for a cyclist who, starting from rest, reaches 

3 m/s in 5 s, travels at that speed for 20 s, and then comes to rest in a further 
2 s. What is his acceleration when braking? What is the gradient of th,e 
corresponding part of the graph?

7 An express train reducing its velocity to 40 km/h, has to apply the brakes for 
50 s. If the retardation produced is 0.5 m/s2, find its initial velocity in km/h.
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Variable acceleration
4.6 A car starts from rest and moves a distance s m in t seconds, where 
s = ^ t3 + j t 2. If its velocity after t s  is um/s, then t> = grad s = j t 2 + jt. The 
following table gives some corresponding values of v and t:

t 0 1 2 3 4

V 0 1 3 6 10

The increases in velocity during the first four seconds are 1 m/s, 2 m/s, 3 m/s, 
4 m/s respectively. Since the rate of increase of the velocity is not constant in this 
case, we shall first investigate the average rate of increase over a given time 
interval.

Definition
, increase in v

Average acceleration is ----------------.
increase in t

3 - 0
Thus from t = 0 to t = 2, the average acceleration = —- — = 1 j  m/s2 and from

1 0 - 3
t = 2 to t = 4, the average acceleration = — -—  = 3^ m/s2.

Clearly the acceleration itself is increasing with the time, and the next step is 
to define what is meant by the acceleration at an instant.

Definition

The acceleration at an instant is the limit of the average acceleration for an interval 
following that instant, as the interval tends to zero.

Using the notation of §4.4, if Sv is the small increase in velocity which occurs in 
time St, then the average acceleration for that interval is Sv/St, and the 
acceleration at time t is the limit of this as St -> 0.

Reference to the velocity-time graph given in Fig. 4.6 shows that the average



acceleration dv/dt is the gradient of the chord PQ, and the limit is the gradient of 
the graph at P.
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Figure 4.6

Thus an expression for the acceleration at time t may be found by 
differentiating the expression for v, that is, if v =  g(t), then a the acceleration is 
given by a = g'(t).

Notice that if we start with the distance given by s =  f(t), then we differentiate 
once to obtain the velocity v and we differentiate again to find the acceleration a. 
We are already familiar with the symbol f'(i) for the derivative of f(t); when this 
in turn is differentiated we write f"(t). Thus we can sum up the preceding 
statement as follows:

s =  f(t)
v = m
a = f"(t)

Example 1 A car starts from rest and moves a distance s m in t s, where 
s = ^ t3 + \ t 2. What is the initial acceleration, and the acceleration at the end of 
the 2nd second?

s=m=it3+it2 
v = m = i t 2+±t 
a = f ' ( t )  — t +  i

When t = 0, a =  j  and when t = 2 ,a  = 2j.

Hence the required accelerations are j  m/s2, and 2 \  m/s2.

Before reading Example 2 the reader should refer once again to the definitions 
of average velocity and average acceleration. In particular it should be noted that



(a) average velocity is not the same as the average of the initial and final 
velocities (unless the acceleration is constant); and (b) average acceleration is not 
necessarily the same as the average of the initial and final accelerations.

Example 2 A particle moves along a straight line in such a way that its distance 
from a fixed point O on the line after t s i s s  m, where s =  ¿ t4. Find (a) its velocity 
after 3 s, and after 4 s, (b) its average velocity during the 4th second, (c) its 
acceleration after 2 s, and after 4 s, and (d) its average acceleration from t = 2 
to t = 4.
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s=m=it* 
u == f'(t) =  f r 3 
a = f"(i) =  2 12

(a) When i =  3, i; = § x 33 =  18 m/s and when t = 4, u =  | x  43 =  42f m/s. 

Hence after 3 s and 4 s, the velocity is 18 m/s and 4 2 | m/s respectively.

(b) When t =  3, s = ^  =  13^ m and when it =  4, s = = 42f m.

.'. the average velocity during the 4th second is

(c) When t =  2, a =  2 x 22 =  8 m/s2 and when t = 4, a =  2 x 42 =  32 m/s2.

(d) When t = 2, v = § x 23 =  5^ m/s and when t = 4, v = j x  43 = 42f m/s. 

The change in velocity =  37^ m/s.

.'. the average acceleration from t = 2 to t = 4 is

^ i m / s 2 = 18fm /s2

Exercise 4c
1 A stone is thrown vertically upwards, and after t s its height is h m, where 

h = 10.5i — 4.9t2. Determine, with particular attention to the signs, the height, 
velocity and acceleration of the stone (a) when t = 1 , (b) when t = 2, and
(c) when t = 3. Also state clearly in each case whether the stone is going up or 
down, and whether its speed is increasing or decreasing.

2  A stone is thrown downwards from the top of a cliff, and after t s it is s m 
below the top, where s = 20t +  4.9t2. Find how far it has fallen, its velocity, 
and its acceleration at the end of the first second.

3 A ball is thrown vertically upwards and its height after i s  is sm  where 
s =  25.2t —4.9i2. Find
(a) its height and velocity after 3 s,
(b) when it is momentarily at rest,
(c) the greatest height reached,
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(d) the distance moved in the 3rd second,
(e) the acceleration when t = 2j.

4 A particle moves in a straight line so that after t s it is s<n from a fixed point O 
on the line, where s = i4 +  3i2. Find
(a) the acceleration when t =  1, t =  2, and t = 3,
(b) the average acceleration between t = 1 and t =  3.

5 At the instant from which time is measured a particle is passing through O 
and travelling towards A, along the straight line OA. It is s m from O after t s 
where s = t(t — 2)2.
(a) When is it again at O?
(b) When and where is it momentarily at rest?
(c) What is the particle’s greatest displacement from O, and how far does it 

move, during the first 2 s?
(d) What is the average velocity during the 3rd second?
(e) At the end of the 1st second where is the particle, which way is it going, 

and is its speed increasing or decreasing?
6 Repeat No. 5(e) for the instant when t = — 1.
7 A particle moves along a straight line so that after t s, its distance from O a 

fixed point on the line is s m where s = t 3 — 3i2 + 21.
(a) When is the particle at O?
(b) What is its velocity and acceleration at these times?
(c) What is its average velocity during the 1st second?
(d) What is its average acceleration between t = 0 and t =  2?

Exercise 4d (Miscellaneous)
1 The distance of a moving point from a fixed point in its straight line of motion 

is s m, at a time t s after the start. If s =  Tot2, find the distances travelled from 
rest by the end of the 1st, 2nd, 3rd, 4th, and 5th seconds.

Draw a graph plotting distance against time, taking 2 cm to represent both 
1 m and 1 s. Draw a tangent to your graph at the point where t = 3.5 and 
measure its slope; deduce the velocity of the moving point when t =  3.5.

2 A point moves along a straight line so that, at the end of t s, its distance from a 
fixed point on the line is f3 — 212 + t m. Find the velocity and acceleration at 
the end of 3 s.

3 A particle moves in a straight line and its distance (s m) from the point at
which it is situated at zero time is given in terms of the time (t s) by the formula 
s = 45t + 1 I t2 — t3. Find the velocity and acceleration after 3 s, and prove that 
the particle will come to rest after 9 s. (C)

4 A particle moves along the x-axis in such a way that its distance x cm from the 
origin after t s is given by the formula x =  271 — 212. What are its velocity and 
acceleration after 6.75 s? How long does it take for the velocity to be reduced 
from 15 cm/s to 9 cm/s, and how far does the particle travel meanwhile?

5 A point moves along a straight line OX so that its distance x cm from the 
point O at time t s is given by the formula x = t 3 — 6t2 + 9t. Find
(a) at what times and in what positions the point will have zero velocity,
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(b) its acceleration at those instants,
(c) its velocity when its acceleration is zero.

6 A particle moves in a straight line so that its distance x cjn from a fixed point 
O on the line is given by x = 912 — 213 where t is the time in seconds measured 
from O. Find the speed of the particle when t = 3. Also find the distance from 
O of the particle when t = 4, and show that it is then moving towards O.

7 A particle moves along the x-axis in such a way that its distance x cm from the 
origin after t s is given by the formula x =  It + 12t2. What distance does it 
travel in the nth second? What are its velocity and acceleration at the end of 
the nth second?



Chapter 5

Maxima and minima

The symbols Sx, Sy and d y

dx
5.1 In Chapter 4 we met the symbols Ss and St, and to extend the scope of 
differentiation it is convenient to denote small increases in x and y as Sx and Sy 
in the same way. If P is the point (x, y) on a curve, and Q is another point, and if 
the increase in x in moving from P to Q is <5x, then the corresponding increase in 
y is Sy, thus Q is the point (x + Sx, y + Sy) (Fig. 5.1).

Sy
The gradient of the chord PQ is — , and the gradient of the curve at P is the

ox
Sy

limit o f— , as Sx
Sx 0. Up to now we have denoted this limit as ‘grad /  to keep in

mind the fundamental idea of gradient in relation to differentiation. We will

in future adopt the usual practice of writing this limit as the symbol
dx dx

86
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dv
being an instruction to differentiate.* Thus, if y = x , —  = 2x; or we may write 

d— (x2) =  2x. The gradient function will also be referred to in future as the 
dx
derived function, or derivative (see §3.8). 

dy
Qu. 1 Find —  when 

dx

(a) y =  x2 —4x, (b) y = 3x2 —3, (c) y =  2x3 —5x2 + l,
(d) y = x(x — 2), (e) y = x(x + 1) (x — 3).

dy
The notation —  is often called ‘Leibnitz notation’ after Gottfried Leibnitz 

dx
(1646-1716), who invented it.

Greatest and least values
5.2 Fig. 5.2 represents the path of a stone thrown from O, reaching its greatest 
height AB, and striking the ground at C. Between O and A, when the stone is 
climbing, the gradient is positive but steadily decreases to zero at A. Past A the 
stone is descending, and the path has a negative gradient.

A

Figure 5.2

The curve y = x2 of which we made much use earlier on, is called a parabola. 
A more general equation of this type of curve is of the form y = ax2 + bx + c. 
When a is positive, we get a curve like a valley, such as DEF in Fig. 5.3, on which 
y has a least value (GE); when a is negative, we get a curve like a mountain top, 
such as OAC in Fig. 5.3, on which y has a greatest value (BA).

If we allow our eye to travel along each curve in Fig. 5.3 from left to right (the

*Note. This notation —  serves to indicate that we are differentiating with respect to x. Thus 
dx

— (y3) =  3y2, and — (2t2) = At.
Ay di



Figure 5.3

direction in which x increases), we notice that in passing through A, where y has 
a greatest value, the gradient is zero and is changing sign from positive to 
negative; on the other hand in passing through E, where y has a least value, the 
gradient is zero and is changing sign from negative to positive. This distinction 
enables us to investigate the highest or lowest point on a parabola without going 
to the length of plotting the curve in detail.

Example 1 Find the greatest or least value of y on the curve y = 4x — x 2. Sketch 
the curve.

y = 4x — x 2

=  2(2 —  x )

The gradient is zero when

2(2 -  x) = 0 
x = 2

and y = 4 x 2  — 22 =  4

We must now investigate the sign of the gradient on either side of the point 
(2,4) to discover whether it is a highest (Fig. 5.4) or lowest (Fig. 5.5) point on the 
curve. We look back to the gradient in the form 2(2 — x).

Figure 5.4 Figure 5.5
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d v . .
Just to the left of (2,4), x is just less than 2, and —  is positive.

Just to the right of (2,4), x  is just greater than 2, and
dÿ
dx

is negative.

Thus Fig. 5.4 gives the shape of the curve at (2,4), and the greatest value of 
y is +4.

To make a rough sketch of the curve, we find where it cuts the axes.

y = 4x — x2 

When x = 0, 

y = 0

.'. the curve passes through (0, 0).

When y = 0,

4x — x2 =  0 
x(4 — x) = 0

x =  0 or 4

. the curve passes through (0,0) and (4,0).

From this information we can make the sketch (Fig. 5.6).

Figure 5.6

Qu.2 Find the coordinates of the points on the following curves where the 
gradient is zero:
(a) y = 4x — 2x2, (b) y = 3x2 + 2x — 5, (c) y = 4x2 — 6x + 2.

At this stage the reader must be clear about the meaning of ‘greater than’ and 
‘less than’ in respect of negative numbers. For example, —3.1 is less than —3, 
and — 2.9 is greater than — 3.

In Qu. 3 and Example 2, we use the notation f'(x) for the derived function; it is

a useful alternative to the ^  notation and the reader should be prepared to use
dx
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Qu.3 Find the values of x for which the following derived functions are zero, 
and determine whether the corresponding graphs have a highest or a lowest 
point for these values of x:
(a) f(x) =  5 -  3x, (b) f'(x) =  6x -  7,
(c) f'(x) =  2x + 3, (d) f'(x) =  -  4 -  5x.

The investigation of the sign of the gradient may be conveniently laid out in 
the way shown in the following example.

Example 2 Find the greatest or least value of the function f(x) = x2 + 4x +  3 and 
the value of x  for which it occurs.

f(x) = x2 + 4x + 3 
f'(x) =  2x +  4 

=  2(x +  2)

The gradient is zero when f'(x) =  0, i.e. when x = — 2 and 

f( — 2) =  ( — 2)2 +  4( — 2) +  3 =  — 1

Value of x L - 2 R [L for ‘left’, R for ‘right’]

Sign of f'(x) - 0 +

When x = — 2, x2 +  4x + 3 has the least value — 1.

This method can be used to solve some practical problems, as in the following 
example.

Example 3 1000 m of fencing is to be used to make a rectangular enclosure. Find
the greatest possible area, and the corresponding dimensions.

If the length is x m, the width will be (500 — x) m, and the area, A m2, is given 
by

A =  x(500 — x) 
or A =  500x — x2

[This problem could now be solved by drawing accurately the graph of area 
plotted against length (Fig. 5.7), and reading off the greatest area (NM) and the 
corresponding length (ON). In practice it is, of course, much quicker to continue, 
along the lines of Example 2, by finding the greatest value of 500x — x2, without 
plotting a graph.]

=  2(250 -  x)
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which is zero when

x — 250
and A =  250(500 -  250) =  62 500

Value of x L 250 R

dA
S,gn o f ^ + 0

The greatest area is 62 500 m2, when the length is 250 m, and the width is 
250 m.

Exercise 5a
dv1 Find -f-  when
dx

(a) y = 3x2 -  2x +  5, (b) y = 5x2 + Ax -  6, (c) y =  2x(l -  x),
(d) y = (x +  1) (3x -  2), (e) y = 3(2x -  1) (4x + 3).

2  Find the coordinates of the points on the following curves where the gradient 
is zero:
(a) y = x2 +  5x -  2, (b) y =  5 +  9x — l x 1,
(c) y = x(3x — 2), (d) y =  (2 + x)(3 -  4x).

3 Find the values of x for which the following derived functions are zero, and 
determine whether the corresponding graphs have a highest or a lowest 
point for these values of x:
(a) f'(x) = 2x -  5, (b) f'(x) = \ x  +  3,
(c) f'(x) = i  -  ix , (d) f'(x) =  -  5 -  |x .
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4 Find the greatest or least values of the following functions:
(a) x 2 — x  — 2, (b) x(4 — x),
(c) 15 + 2x — x 2, (d) (2x + 3)(x —2).

5 Sketch the graphs of the functions in No. 4.
6 A ball is thrown vertically upwards from ground level and its height after t s 

is (15.4r — 4.9i2) m. Find the greatest height it reaches, and the time it takes 
to get there.

7 A farmer has 100 m of metal railing with which to form two adjacent sides of 
a rectangular enclosure, the other two sides being two existing walls of the 
yard, meeting at right angles. What dimensions will give him the maximum 
possible area?

8 A stone is thrown into a mud bank and penetrates (1200i — 36 OOOt2) cm in 
t s after impact. Calculate the maximum depth of penetration.

9 A rectangular sheep pen is to be made out of 1000 m of fencing, using an 
existing straight hedge for one of the sides. Find the maximum area possible, 
and the dimensions necessary to achieve this.

10 An aeroplane flying level at 250 m above the ground suddenly swoops down 
to drop supplies, and then regains its former altitude. It is h m above the 
ground t s after beginning its dive, where h = 8i 2 — 80t + 250. Find its least 
altitude during this operation, and the interval of time during which it was 
losing height.

11 Fig. 5.8 represents the end view of the outer cover of a match box, AB and EF 
being gummed together, and assumed to be the same length. If the total 
length of edge (ABCDEF) is 12 cm, calculate the lengths of AB and BC 
which will give the maximum possible cross-section area.

A _______________ B

E F

D C

Figure 5.8

To differentiate the function f(jt) =  jc-1
5.3 In §3.6 we reached the conclusion that if f(x) =  x", where n e  Z +, then 
f'(x) = nx"_1, although we only proved that this was so for n =  1, 2, 3 and 4. In 
this section we shall prove that it is also true when n = — 1 , that is, we shall



prove that if fix) =  1/x =  x _ \  then f'(x) =  — x -2  =  1/x2. We start by quoting the 
expression for f'(x) in §3.8,
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f'(x) = lim
(i-O

f(x + h )~  f(x) 
h

Now, in this case,

f(x +  h) — f(x) =  — -  — 
x + h x

x — (x + h) 
(x +  h)x

- h
x(x + h)

Hence

f(x + h)~  f(x) -  1 
h x(x +  h)

and thus

f'(x) = lim
/i->0

- 1

x(x + h)

1
x 2

We have proved that if f(x) = x “ \  then f'(x) = — x ” 2 and this verifies that the 
general result, namely that if f(x) =  x", then f'(x) =  nx" ~ \ is true when n =  — 1 . 
We shall now assume that it is true for n e Z ,  that is, when n is a positive or 
negative integer, or zero.*

Qu.4 Write down the derivative of

(a) x - 4, (b) (c) (d) ^ 3 , (e)

(f) 2x2 - 3 x  + 4 + - ,  (g) — =^-5------•
X  X

Maxima and minima
5.4 In §5.2 we were dealing with a type of curve whose gradient was zero only 
at one point. With a more complicated curve (Fig. 5.9) the gradient may be zero

*Note. rt = 0 is a special case. The rule suggests that the gradient of y = x° is zero. Now x° = 1, (see 
§9.4) so the graph of y = x° is a straight line parallel to the x-axis, i.e. its gradient is zero. 
Consequently the result predicted by the rule is correct.
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at a number of points, and the possible shapes fall into three categories. In this 
case, moving along the curve from left to right, that is with x  increasing,

(a) at A and D, the gradient is changing from negative to positive, and these are 
called minimum points; FA and HD are minimum values of y (or minima),

(b) at B and E, the gradient is changing from positive to negative, and these are 
called maximum points; GB and JE are maximum values of y (or maxima).

The reader will note that the words maximum and minimum are used in the 
sense of greatest and least only in the immediate vicinity of the point; this local 
meaning is brought out clearly in this curve, since a maximum value, JE, is in 
fact less than a minimum value, FA, and for this reason the expressions local 
maximum and local minimum are often used.

(c) At C the gradient is zero, but is not changing sign; this is a point of inflexion, 
which may be likened to the point on an S-bend at which a road stops 
turning left and begins to turn right, or vice versa. The gradient of a curve at 
a point of inflexion need not be zero (the reader should be able to spot four 
more in Fig. 5.9); however at this stage we are concerned only with searching 
for maxima and minima, and we need to bear in mind points of inflexion 
only as a third possibility at points where the gradient is zero.

At any point where the gradient of a curve is zero, y is said to have a stationary 
value. Any maximum or minimum point is called a turning point, and y is said to 
have a turning value there.

Qu. 5 Copy Figs. 5.10-5.12, and on each draw the tangents at all points where 
the gradient is zero, and mark in the sign of the gradient for each segment of the 
curve. State whether the points marked are maxima, minima, or points of 
inflexion.



Maxima and minima 95

Consider the functions f(x) = x 3 and g(x) =  x4; sketches of their graphs are 
shown in Fig. 5.13.

The derived functions are f'(x) =  3x2 and g'(x) = 4x3 and, in both cases, the 
derivative is zero when x =  0; this is confirmed by the graphs which both have 
zero gradient at the origin. Notice, however, that f'(x) =  3x2 is never negative, 
which is in accordance with the observation that the graph of y = x 3 (see 
Fig. 5.13) always slopes upwards to the right, and has a point of inflexion at 
(0,0). On the other hand, g'(x) is negative for x <  0 and positive for x > 0. This 
also is in accordance with the graph of y = x4 (see Fig. 5.13) which slopes 
downwards on the left and upwards on the right, and has a local minimum at 
(0, 0).
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Example 4 Investigate the stationary values of the function x4 — 4x3.* 

Let y = x4 — 4x3

^ = 4 x 3 - 1 2 x 2
dx

= 4x2(x — 3)

which is zero when x =  0 or +3.
When x =  0, y =  0, and when x =  3, y =  — 27. Thus the stationary values of 

the function occur at (0,0) and at (+  3, — 27).
[We now find the shape of the curve at these points by investigating the sign of 

the gradient just to the left and just to the right of each. Looking back to the 
dvfactorised form of — , we see that 4x is positive for all values of x other than 
dx

zero, so we are concerned with the sign of the factor x — 3 only.

When x is just less than 0, x — 3 is negative,
and when x is just greater than 0, x — 3 is negative.

When x is just less than +3, x — 3 is negative,
and when x is just greater than +3, x — 3 is positive.

These signs are entered in the table.]

Value of x L 0 R L + 3 R

dy
Sign of ~  

ax
- 0 - - 0 +

\  infl. \  min. /
\

The stationary values of x4 — 4x3 are 0 and — 27; (0,0) is a point of inflexion; 
(3, — 27) is a minimum point.

The following example further illustrates the advisability of arranging the 
gradient function in a convenient factorised form, and brings out an important 
point in the investigation of the sign of the gradient for negative values of x.

Example 5 Find the turning values of y on the graph y = f(x), where 

f(x) =  5 + 24x — 9x2 — 2x3 

and distinguish between them.

* Note. The wording of this example illustrates that questions will often not specify the symbol for 
the dependent variable. The solution to such a question should normally start with a phrase like 
‘Let y = x4 — 4x3’, as in this example, or, alternatively, ‘Let f(x) = ...’.
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f(x) =  5 + 24x -  9x2 -  2x3
f'(x) =  24 — 18x — 6x2 = — 6(x2 + 3x — 4)

=  — 6(x +  4)(x — 1) •

which is zero when x =  — 4 or-1.
When x =  — 4,

y = 5 +  24 x ( — 4) — 9 x ( — 4)2 — 2 x ( — 4)3 =  -1 0 7  

and when x =  1 ,

y =  5 + 24 — 9 — 2= 18

Thus the stationary values of y occur at ( — 4, — 107) and (1,18).
[In completing the gradient table we must remember the negative factor — 6, 

and find the sign of each factor (x + 4) and (x — 1); we shall then see if there are 
one, two or three negative factors, and so determine the sign of f'(x).

Let us pay particular attention to the point ( — 4, —107), and the sign of the 
factor (x +  4). To the left, when x is just less than —4 (e.g. —4.1), (x +  4) is 
negative, (x — 1) is also negative, thus f'(x) has three negative factors and is 
negative. To the right, when x is just greater than — 4 (e.g. — 3.9), (x +  4) is now 
positive, (x — 1) is still negative, thus f'(x) has two negative factors, and is 
positive.]

Value of x L - 4 R L 1 R

Sign of/'(x) - 0 + + 0 -

\ min. / / max. \
The turning values of y are — 107 and 18; — 107 is a minimum value; 18 is a 

maximum value.

Exercise 5b
1 Write down the values of x for which the following derived functions are 

zero, and prepare in each case a gradient table as in the foregoing examples, 
showing whether the corresponding points on the graphs are maxima, 
minima or points of inflexion:
(a) f'(x) = 3x2,
(c) f'(x) = (x — 2) (x — 3),
(e) f'(x) =  (x + l) (x  + 6),
(g) f'(x) =  -  x2 + x +  12 ,
(i) f'(x) = 15 — 2x — x2,
(k) f'(x) = 1 -  4/x2.
Find any maximum or minimum values of the following functions: 
(a) f(x) =  4x — 3x3, (b) f(x) =  2x3 — 3x2 — 12x — 7,
(c) f(x) = x2(x — 4), (d) f(x) =  x +  l/x,
(e) f(x) =  x(2x — 3) (x — 4).

(b) f'(x)= - 4 x 3,
(d) f'(x) =  (x +  3) (x — 5),
(f) f'(x) =  — (x — 1) (x — 3), 
(h) f'(x) =  — x2 — 5x + 6, 
(j) f'(x) =  5x4 -  27x2,



3 Find the turning points on the following curves, and state whether y has a 
maximum or minimum value at each:
(a) y = x(x2 — 12), (b) y = x3 — 5x2 + 3x -f 2,
(c) y = x2(3 — x), (d) y = 4x2 + 1/x,
(e) y = x(x — 8) (x — 15).

4 Investigate the stationary values of y on the following curves:
(a) y = x4, (b) y = 3 -  x3,
(c) y = x3(2 -  x), (d) y = 3x4 + 16x3 + 24x2 + 3.

5 Fig. 5.14 represents a rectangular sheet of metal 8 cm by 5 cm. Equal squares 
of side x cm are removed from each corner, and the edges are then turned up 
to make an open box of volume V cm3. Show that V =  40x — 26x2 + 4x3. 
Hence find the maximum possible volume, and the corresponding value of x.
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Figure 5.14

6 Repeat No. 5 when the dimensions of the sheet of metal are 8 cm by 3 cm, 
showing that in this case V = 24x — 22x2 + 4x3.

7 The size of a parcel despatched through the post used to be limited by the 
fact that the sum of its length and girth (perimeter of cross-section) must not 
exceed 6 feet. What was the volume of the largest parcel of square cross- 
section which was acceptable for posting? (Let the cross-section be a square 
of side x feet.)

8 Repeat No. 7 for a parcel of circular cross-section, leaving n in your answer.
9 A chemical factory wishes to make a cylindrical container, of thin metal, to 

hold 10 cm3, using the least possible area of metal. If the outside surface is 
S cm2, and the radius is r cm, show that S = 2nr2 +  20/r and hence find the 
required radius and height for the container. (Leave % in your answer.)

10 Repeat No. 9 showing that whatever may be the given volume, the area of 
metal will always be least when the height is twice the radius.

11 64 cm3 of butter is to be made into a slab of square cross-section. Calculate 
the required length if the total surface area is to be as small as possible.

12 An open cardboard box with a square base is required to hold 108 cm3. 
What should be the dimensions if the area of cardboard used is as small as 
possible?

Curve sketching
5.5 We have seen in §5.4 how maxima and minima problems may be solved
without direct use of the relevant graph. Frequently however the determination
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of maximum and minimum points is a valuable aid in sketching a curve. (See 
§2.12 for a note on the difference between sketching and plotting a curve.)

Example 6 Sketch the curve y = 4x3 — 3x4.

(a) To find where the curve meets the x-axis, put y = 0, then

4x3 -  3x4 = 0 
x3(4 — 3x) =  0

Therefore the curve meets the x-axis at the points (0, 0) and (f, 0).

(b) To find where the curve meets the y-axis, put x =  0. The curve meets the 
y-axis at the origin.

(c) To find stationary points:

y — 4x3 — 3x4

.'. ^  = 12x2 -  12x3 
dx

= 12x2(l — x)

which is zero when x = 0 or 1 .
Therefore (0, 0) and (1,1) are stationary points.

Value of x L 0 R L 1 R

dvSign of -f- 
dx + 0 + + 0 -

/  infl. /  m a x . \

Hence (0, 0) is a point of inflexion and (1, 1) is a maximum.
These results may now be used to sketch the curve, as in Fig. 5.15.

Figure 5.15
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Exercise 5c
Ex 5c

Find where the following curves meet the axes. Find, also, the coordinates of 
their stationary points and use these results to sketch the curves.

1 y =  3x2 — x3. 2 y = x3 — 6x2. 3 y =  x3 — 2x2 +  x.
4 y = (x + 1)2(2 — x). 5 y =  x2(x — 2)2. 6 y = x4 — 8x3.
7 y = x4 — 10x2 + 9. 8 y = x4 +  32x. 9 y = 4x5 — 5x4.

10 y = 3x5 —5x3. 11 y =  2x5 + 5x2.

Another useful approach to curve sketching is shown in the next example.

Example 7 Sketch the curve y = (x + 1) (x — 1) (2 — x).

(a) To find where the curve meets the x-axis, put y =  0, then 

(x + l)(x — 1)(2 — x) = 0

Therefore the curve meets the x-axis at ( — 1,0), (1,0), (2,0).

(b) To find where the curve meets the y-axis, put x =  0. Thus the curve meets 
the y-axis at (0, — 2).

(c) To examine the behaviour of the curve ‘at infinity’, expand the R.H.S. of 
the equation:

y =  (x2 — 1) (2 — x) = — x3 + 2x2 + x — 2

Now, if x is large, the sign of y will be determined by the term of highest degree, 
- x 3. (If x =  100, say, y =  -  1 000 000 + 20 000 + 100 -  2; or if x =  -  100, 
y = 1 000 000 + 20 000 — 100 — 2. In either case the term in x 3 predominates.)

If x is large and positive, y is large and negative, and if x is large and negative, 
y is large and positive. Thus the behaviour of the curve as x -*■ + oo and 
x —> — oo is illustrated by Fig. 5.16.

The curve is then sketched, as in Fig. 5.17.

Figure 5.16 Figure 5.17



Maxima and minima 101

Distance, velocity and acceleration graphs
5.6 Useful physical interpretations of the graphical ideas discussed in §5.4 are 
obtained from the space-time, velocity-time, and acceleration-time graphs for 
the motion of a particle, if we plot one above the other as in the following 
example.

Example 8 O is a point on a straight line. A particle moves along the line so that 
it is s m from O, t s after a certain instant, where s = t(t — 2)2. Describe the motion 
before and after t = 0.

The space-time graph has the equation s = t(t — 2)2. By the methods of §5.5 we 
may determine that the graph has a max. point (§, f f ), a min. point (2, 0), and 
passes through (0, 0). We thus arrive at the upper sketch in Fig. 5.18.

The equation may be written s = i 3 — 4i2 +  4t.

.’. ^  = 3i2 -  8r + 4 = (3t -  2)(t -  2)

Hence the velocity-time graph has the equation v = (3i — 2) (t — 2). This graph 
has a min. point (1 j ,  —1|), and passes through ( f , 0), (2,0), and (0, 4); it is the 
middle sketch in Fig. 5.18.

Figure 5.18
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dv
Differentiating once again, — = 6t — 8, and so the acceleration-time graph has

dt
the equation a = 6i — 8, and is the bottom sketch in Fiğ. 5.18.

Notice that the local max. and min. values of s occur when r( i.e. — ) is zero,
ds

and that the local min. value of v occurs when a\ i.e. ^  ] is zero.

It is easy to visualise the motion of the particle as being along the Os axis of 
the space-time graph, its distance from O at any instant being given by the 
height of the graph for the corresponding value of t. Before t = 0, the particle is 
approaching O from the negative side; at t — 0, it is passing through O with 
velocity 4 m/s, and acceleration — 8 m/s2, hence its speed is decreasing. It comes 
momentarily to rest f f  m from O (on the positive side) when t = f; it returns to 
O, where it is momentarily at rest when t = 2, and thereafter it moves away from 
O in the positive direction.

Some further points regarding the sign and direction of the velocity and 
acceleration deserve emphasis. Consider the three graphs between t =  0 and 
t=  1 ^; throughout this interval the acceleration is negative, and the velocity 
decreases from + 4 m/s to — 1^ m/s. The effect of the negative acceleration is to 
decrease the speed when the velocity is positive (i = 0 to t =  §), and to increase 
the speed when the velocity is negative (i = § to t = 1^). The reader should note 
the distinction between the speed and the velocity, the speed being the numerical 
value of the velocity, irrespective of direction.

Qu.6  In Example 8, give the signs of the velocity, and acceleration, and state if 
the speed is increasing or decreasing, when (a) t — l j ,  (b) t = 3, (c) t = l j .

Exercise 5d
1 Make a rough sketch of each of the following curves by finding the points of 

intersection with the axes, and by investigating the behaviour of y as x -*■ +  oo 
and as x-*  — oo. (Do not find maximum and minimum points).
(a)

(c )

(e)

(g)
(i)

y = (x + 2) (x — 3), 
y = x(x + l)(x +  2), 
y = (x ~  l ) ( x - 3 ) 2, 
y = -  x(x -  I f ,  
y = ( x -  I f ,

(b) y =  (5 +  x)(l -x ) ,
(d) y =  (2 +  x) (1 + x) (3 — x),
(f) y =  (x +  4)2(x — 3),
(h) y =  x2(5 — x),
(j) y = (x — 3)4,

(k) y =  — x(x — 4)3.
A particle moves along a straight line OB so that t s after passing O it is s m 
from O, where s = t(2t — 3)(t — 4). Deduce expressions for the velocity and 
acceleration in terms of t, and sketch the space-, velocity-, and acceleration­
time graphs as in Fig. 5.18. Briefly describe the motion, and when t = 2 find
(a) where the particle is,
(b) if it is going towards or away from B,
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(c) its speed,
(d) if its speed is increasing or decreasing,
(e) the rate of change of the speed.

3 Answer the questions in No. 2 for the instant when t = 1.
4 With the data of No. 2, when is the particle moving at its greatest speed away 

from B, and where is it then?
5 A particle is moving along a straight line OA in such a way that t s after 

passing through O for the first time it is s m from O where

s=  — t(t — 8)(t — 15)

A is taken to be on the positive side of O. Deduce expressions for the velocity 
and acceleration in terms of t, and sketch the three graphs as in Fig. 5.18. 
Briefly describe the motion.
(a) Describe in detail the motion and position of the particle when t = 10.
(b) When is it moving towards A?
(c) When is it travelling at its greatest speed towards A?

6 A car in a traffic jam starts from rest with constant acceleration 2 m/s2, and 
when its velocity reaches 6 m/s it remains constant at that figure for 4 s, and it 
is then reduced to zero in 6 s at a constant retardation. Sketch the space-, 
velocity-, and acceleration-time graphs for this motion.

Exercise 5e (Miscellaneous)
1 Find the coordinates of the points on the following curves at which y is a 

local maximum or a local minimum:
(a) y = x3 — 6x2 + 9x + 2, (b) y = 2x3 — 3x2 — 12x + 8,
(c) y = x3 — 3x, (d) y = 4x3 — 3x2 — 6x + 4,
(e) y = x 2(x2 — 8), (f) y  = 2(x + l)(x -  l )2 + 1 .

2 Find the turning points of the graph y  = 2x3 + 3x2 — 12x + 7, distinguishing
between maximum and minimum values. Show that the graph passes 
through (1,0) and one other point on the x-axis. Draw a rough sketch of the 
curve.

3 If y = x4 — 2x2 + 1, find the values of x for which y is a minimum and draw a 
rough sketch of the curve.

4 The equation of a curve is y =  x3 — x4 — 1. Has y a maximum or a minimum 
value (a) when x = f , (b) when x =  0?

5 Prove that there are two points on the curve y =  2x2 — x4 at which y has a 
maximum value, and one point at which y has a minimum value. Give the 
equations of the tangents to the curve at these three points.

6 A point P whose x-coordinate is a is taken on the line y = 3x — 7. If Q is the 
point (4,1) show that PQ 2 =  10a2 — 56a + 80. Find the value of a which will 
make this expression a minimum. Hence show that the coordinates of N, the 
foot of the perpendicular from Q to the line, are (2f, If). Find the equation 
of QN.

7 The tangent to the curve of y = ax2 + bx + c at the point where x =  2 is
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parallel to the line y = 4x. Given that y has a minimum value of — 3 where 
x = 1 find the values of a, b and c.

8 Find the equation of the tangent to the curve xy = 4 at the point P whose 
coordinates are (21, 2/t). If O is the origin and the tangent at P meets the 
x-axis at A and the y-axis at B, prove
(a) that P is the mid-point of AB,
(b) that the area of the triangle OAB is the same for all positions of P.

9 Find the equations of the normals to the curve xy  = 4 which are parallel to 
the line 4x — y — 2 = 0.

10 A solid rectangular block has a square base. Find its maximum volume if the 
sum of the height and any one side of the base is 12  cm.

11 A man wishes to fence in a rectangular enclosure of area 128 m2. One side of 
the enclosure is formed by part of a brick wall already in position. What is 
the least possible length of fencing required for the other three sides?

12 The angle C of triangle ABC is always a right angle.
(a) If the sum of CA and CB is 6 cm, find the maximum area of the triangle.
(b) If, on the other hand, the hypotenuse AB is kept equal to 4 cm, and the 

sides CA, CB allowed to vary, find the maximum area of the triangle.
13 A piece of wire of length l is cut into two parts of lengths x and Z — x. The 

former is bent into the shape of a square, and the latter into a rectangle of 
which the base is double the height. Find an expression for the sum of the 
areas of these two figures. Prove that the only value of x for which this sum is 
a maximum or a minimum is x =  8//17, and find which it is.

14 A farmer has a certain length of fencing and uses it all to fence in two square 
sheep-folds. Prove that the sum of the areas of the two folds is least when 
their sides are equal.

15 Prove that, if the sum of the radii of two circles remains constant, the sum of 
the areas of the circles is least when the circles are equal.

16 An open tank is to be constructed with a horizontal square base and four 
vertical rectangular sides. It is to have a capacity of 32 m3. Find the least area 
of sheet metal of which it can be made.

17 A sealed cylindrical jam tin is of height h cm and radius r cm. The area of its 
total outer surface is A cm2 and its volume is V cm3. Find an expression for 
A in terms of r and h. Taking A = 24ti, find
(a) an expression for h in terms of r, and hence an expression for V in terms of r;
(b) the value of r which will make V a maximum.

18 (a) A variable rectangle has a constant perimeter of 20 cm. Find the lengths
of the sides when the area is a maximum.

(b) A variable rectangle has a constant area 36 cm2. Find the lengths of the 
sides when the perimeter is a minimum.

19 A cylinder is such that the sum of its height and the circumference of its base 
is 5 m. Express the volume (V m3) in terms of the radius of the base (r m). 
What is the greatest volume of the cylinder?

20 An open tank is to be constructed with a square base and vertical sides so as 
to contain 500 m 3 of water. What must be the dimensions if the area of sheet 
metal used in its construction is to be a minimum?
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21 The length of a rectangular block is twice the width, and the total surface 
area is 108 cm2. Show that, if the width of the block is x cm, the volume is 
§x(27 — x 2) cm3. Find the dimensions of the block when its volume is a 
maximum.

22 A circular cylinder open at the top is to be made so as to have a volume of 
1 m3. If r m is the radius of the base, prove that the total outside surface area 
is (nr2 + 2/r) m2. Hence prove that this surface area is a minimum when the 
height equals the radius of the base.

23 A match box consists of an outer cover, open at both ends, into which slides 
a rectangular box without a top. The length of the box is one and a half times 
its breadth, the thickness of the material is negligible, and the volume of the 
box is 25 cm3. If the breadth of the box is x cm, find, in terms of x, the area of 
material used. Hence show that, if the least area of material is to be used to 
make the box, the length should be 3.7 cm approximately.

24 Two opposite ends of a closed rectangular tank are squares of side x m and 
the total area of sheet metal forming the tank is S m2. Show that the volume 
of the tank is £x(S — 2x2) m3. If the value of S is 2400, find the value of x for 
which the volume is a maximum.

25 The point P(x, y) lies on the curve y = x 2; the point A has coordinates (0, 1). 
Express AP2 in terms of x. Hence find the positions of P for which AP2 is 
least, and verify that for each of these positions the line AP is perpendicular 
to the tangent to the curve at P.



Chapter 6

Integration
geometricalThe reverse of differentiation 

interpretation
6.1 Suppose that instead of an equation of a curve, we take as our starting 
point a gradient function. For example, what is represented geometrically by the 

d yequation
dx

= i?

The constant gradient -j indicates a straight line; y = | x  is the equation of the 
straight line of this gradient through the origin, and, on differentiation, it leads

to But y = jx  is not the only possibility; any straight line of gradient 5
dx

may be written as y = ^x + c, where c is a constant, and this is the most general 
d y

equation which gives —  = i.
dx
dv .

Thus the equation —  = ^ represents the same as the equation y = ix  + c,

namely all straight lines of gradient j  (Fig. 6.1).

106
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Let us take another example, ^  = 2x. We know that y =  x 2 is a curve with
dx

i dythis gradient function; but the most general equation leading to —  = 2x on
dx

differentiation is y =  x2 + c, where c is a constant, 
dy

Thus the equation —  = 2x represents the same as the equation y =  x +  c, 
dx

namely the family of curves ‘parallel’ to y = x2 (see Fig. 3.8).
We have found that

-.t *y
dx

if -7— = then y = \ x  + c

Also

if = 2x, then y = x 2 + c 
dx

This process of finding the expression for y in terms of x when given the 
gradient function — in other words, the reverse of differentiation — is called 
integration.

x2 +  c is called the integral of 2x with respect to x.

The constant c, which, unless further data is given, cannot be determined, is 
called the arbitrary constant of integration.

We know that when we differentiate a power of x, the index is reduced by 1, 
d

since —  (x") = nx" . In this reverse process of integration we must therefore 
dx

increase the index by 1 , thus

■rdytf —  = x, 
dx

x

and

.,.dy . , ,  x3
if— = 5x2, y = 5 x — + c 

dx 3

The reader should check these by differentiating, and it will then be clear why 
the denominators 2 and 3 arise. The rule for integrating a power of x is seen to be 
‘increase the index by 1 , and divide by the new index’.

Qu. 1 Integrate with respect to x:
(a) 2, (b) m, (c) 3x2, (d) 3x,
(e) 3x4, (f) 3 + 2x, (g) x — x2, (h) ax + b.

Just as we have assumed that the rule for differentiating x" is valid for n e Z, i.e. 
when n is any integer, positive or negative, so we shall make a similar 
assumption about the rule for integrating x", with the notable exception of x _ 1.
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dy x n + i
if -T- = * \  then y  = ------dx n  + 1

Thus if ^  =  1/x2 =  x -2 , then 
dx

+  c

y = -2 + 1
+ c = • — + c = ------ he

1 x

The reader should check this last result by differentiating, and in fact should 
make a habit of doing this always. It is important to remember that the arbitrary 
constant is an essential part of each integral.

Qu. 2 Integrate with respect to x:

(a) (b) x “4, (c) (d)

Qu. 3 Why is the rule for integrating not valid when n = — 1?

Reverting to our earlier examples, dy dv
—  = x and = 2x are called differential 
dx dx

equations, and y = -jx + c and y =  x2 + c respectively are the general solutions.
dyWe saw that the differential equation —  = j  represents all straight lines of
dx

gradient to be able to find the equation of a particular straight line of gradient 
3 , we must find the appropriate value of c in the general solution y =  jx  +  c, and 
to do this we need to know one point through which the line passes. The reader 
should now read again the alternative solution of Example 9 in §1.9; it will be 
seen that the process of finding the equation of a straight line of given gradient 
passing through a given point may be thought of as finding a particular solution 
of a differential equation.

dy
Qu. 4 —  = 4. Find y in terms of x, given that y = 10 when x = — 2. What does 

the solution represent graphically?

Exercise 6a
1 Integrate:

(a) with respect to x: 3 ,  3 X 2, x2 +  3x, (2x +  3)2, x 5,
— 2 _ 
„4 ’

(b) with respect to t: at, 3 Î3, ( i+ l ) ( i  —2), ^- + 3 + 2i;

k (y2 + 2)(y2 — 3) 
y 2 ’ y 2

(c) with respect to y: — ay 2,
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2 Solve the following differential equations:

(c) -77 = « +  at,d t

. , dy t 3 — 3t +  4
(e) d7 = —

d A (1 + x2)(l — 2x2)
rl v

3 What is the gradient function of a straight line passing through ( — 4, 5) and 
(2, 6)? Find its equation.

4 A curve passes through the point (3, — 1) and its gradient function is 2x + 5. 
Find its equation.

5 A curve passes through the point (2,0) and its gradient function is 3x2 — 1/x2. 
Find its equation.

6 The gradient of a curve at the point (x, y) is 3x2 — 8x 4- 3. If it passes through 
the origin, find the other points of intersection with the x-axis.

7 The gradient of a curve at the point (x, y) is 8x — 3x2, and it passes through 
the origin. Find where it cuts the x-axis, and find the equation of the tangent 
parallel to the x-axis.

ds
8 Find 5 in terms of t if — = 3i — 8/ t2, given that s =  when t = 1.

at
d a

9 Find A in terms of x if =  (3x 4- l)(x2 — l)/x5. What is the value of A when
dx

x = 2, if A = 0 when x =  1?

Velocity and acceleration

6.2 In Chapter 4 we used the formula s =  4.9i2 for a stone falling from rest, and 
it was explained that this is based on the assumption that the acceleration of the 
stone is 9.8 metres per second per second, or 9.8 m/s2. We are now in a position 
to see how the formula is deduced from this assumption by the process of 
integration.

If the acceleration is given by

v = 9.81 + c

Now if the stone falls from rest at the instant from which we measure the time, 
v =  0 when t = 0, and substituting these values in the last equation we get c = 0.

then

.'. v =  9.8i
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This may be written

s - *
from which

s = 4.912 + k

If s measures the distance below the initial position of the stone, s =  0 when t =  0, 
and substituting these values in the last equation, we get k =  0.

.'. s =  4.9i2

Qu.5 A stone is thrown vertically downwards from the top of a cliff at 15 m/s. 
Assuming that its acceleration due to gravity is 9.81 m/s2, find expressions for its

velocity and position t s later, by solving the differential equation ^  = 9.81.
di

It again needs emphasising that displacement (s), velocity and acceleration in 
a straight line are positive in one direction, negative in the other, and it is 
important to decide at the outset which is to be taken as the positive direction. 
The reader should take upwards as positive in Qu. 6.

Qu.6  A stone is thrown vertically upwards from the edge of a cliff at 19.6 m/s. 
Assuming that gravity produces a downwards acceleration of 9.8 m/s2, deduce 
the velocity and position of the stone after 1, 3 and 5 s. Explain the sign of each 
answer, taking upwards as positive.

Example 1 Fig. 6.2 represents part of a conveyor belt, the dots being small 
articles on it at 1 m spacing. Initially the belt is at rest with the article R 7 m short 
ofO ,a  fixed mark on a wall. The belt is accelerated from rest so that its velocity is 
0. It m/s, i s  after starting. Find (a) the position of R when t =  10, and (b) the 
distance moved by R between t = 3 and t = 5.

O
▼---------------- ►

-T T - T T T T T T T T f T T T T

Figure 6.2

(a) If the distance from O at time t s is s m (positive to the right of O, negative
dsto the left), then it is true of each article that its velocity, — = O.lt, and also, by
di

integration, that 

s =  0.05i2 + c

However, this last equation does not give us the distance of any particular 
article from O, until we have discovered the appropriate value of c. Since when 
t =  0, s = c, the arbitrary constant of integration in this case represents the initial 
position of an article.
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In the case of R, when t = 0,

s = — 7

Substituting in the last equation, — 7 = 0 + c,

c =  -  7

Therefore the distance of R from O at time t s is s m where 

s =  0.05f2 -  7 

When t = 10,

s = 0.05 x 1 0 0 - 7 =  - 2  

R is 2 m short of O at this instant.

(b) The distance moved by each article in any given interval is the same, 
therefore we are not concerned with any particular numerical value for the 
constant of integration, and we shall leave c in our working.

As before, since ^  =  0.It, 
di

s = 0.05 i2 + c 

When t = 3,

s = 0.05 x 32 + c 

When t = 5,

s = 0.05 x 52 + c

The distance moved between t — 3 and i =  5 is

(0.05 x 52 + c) — (0.05 x 32 + c) m 
= 0.05 x 25 + c — 0.05 x 9 — c m 
= 0.8 m

(b) (Alternative layout) The following square bracket notation is an instruc­
tion to substitute and subtract, and shortens the working.

ds
— = O.lr 
dr

.'. s = 0.05i2 + c

The distance moved between t =  3 and t = 5 is
15

0.05t2 + c m = (0.05 x 25 +  c) — (0.05 x 9 + c) m

= 1.25 -I- c — 0.45 — cm

=  0.8 m



6.2112 Pure Mathematics 1

Qu. 7 Evaluate:

(a) 31 +  8^ , (b) 312 — t + k

(c)
1 +1

(d) t 3 -  3i2 +  t

Qu. 8 A particle moves in a straight line with velocity 2i2 m/s, t s after the start. 
Find the distance moved in the 3rd second.
Qu.9 With the data of Example 1, answer the following questions.
(a) Find the position of R when t =  20.
(b) Find the position when t = 10 of the article initially at O.
(c) An article N is 2.2 m past O when t = 2; find its position when t =  10.
(d) An article T is 99.95 m short of O when t = 1; find its initial position.

Exercise 6b
1 A stone is thrown vertically downwards at 20 m/s from the top of a cliff. 

Assuming that gravity produces on it an acceleration of 9.81 m/s2, deduce,
di>

from the differential equation — = 9.81, expressions for its velocity and
di

position t s later.
2 A stone is thrown vertically upwards from ground level at 12 m/s, at a point 

immediately above a well. Taking the downwards direction as positive,
du

deduce, from the differential equation — = 9.8, expressions for the stone’s
dt

velocity and position t s later. Find the velocity and position after 1, 2, 3 s, 
explaining the sign of each answer.

3 Find the displacement (s) in terms of time (t) from the following data:

ds
(a) — = 3, s = 3 when t = 0, 

di

(b) v = 4t — 1, s = 0 when t = 2,

(c) v — {31 — 1) (i + 2), s =  1 when t = 2 ,

2
(d) v = t2 + 5 — j j , ,s =  5 when i =  1.

4 Evaluate:

(a)

(c)

8t +  c | ,

i2 - 4 t
L

(b)

( d )

3i2 F  St

2t3 — t2 — t

5 Find s in terms of t, and the distance moved in the stated interval (the units
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being metres and seconds), given that

ds
(a) dt

— At + 3,

<NIIos—<oII

(b) v —i2 — 3, t = 2 to t =  3,

(c) v —( t - m - 2), t = — 1 to t = 0,

(d) v = t + 3 — j 
r2

, t =  10 to t = 20.

6 If a particle moves in a straight line so that its acceleration in terms of the 
time is At (A being a constant), deduce expressions for the velocity and 
displacement at time t.

7 Deduce expressions for v and s from the following data, determining the 
constants of integration whenever possible:
(a) a =  3t, s =  0 and v = 3 when t = 0,
(b) a = 2 + 1, s = — 3 and v = 0 when t = 0,
(c) a =  10 — t, v = 2 when t = 1 , s =  0 when t = 0,
(d) a = jt,  v = 5 when t = 0,
(e) a = t2, s = 10 when t =  1 . -

8 A system of particles moves along a straight line OA so that t s after a certain 
instant their velocity is v m/s where v = 31.
(a) One of the particles is at O when t = 0. Find its position when t — 3.
(b) A second particle is 4 m past O when t = 1. Find its position when t =  0.
(c) A third particle is 10 m short of O when t =  2. Find its position when 

t =  4.
(d) Find the distance moved by the particles during the 3rd second.

9 A particle moves along a straight line OA with velocity (6 — 21) m/s. When 
t = 1 the particle is at O.
(a) Find an expression for its distance from O in terms of t, and deduce the 

net change in position which takes place between t = 0 and t = 5.
(b) By finding the time at which it is momentarily at rest, calculate the actual 

distance through which it moves during the same interval.
(c) Sketch the space-time and velocity-time graphs from t = 0 to t =  6.

10 A stone is thrown vertically upwards from ground level with a velocity of
12.6 m/s. If the acceleration due to gravity is 9.8 m/s2, deduce, from the

du
differential equation — = — 9.8, expressions for its velocity and its height t s 

di
later. Find
(a) the time to the highest point,
(b) the greatest height reached,
(c) the distance moved through by the stone during each of the first two 

seconds of motion.
11 A train runs non-stop between two stations P and Q, and its velocity t hours 

after leaving P is 60t — 30i2 km/h. Find
(a) 'the distance between P and Q,
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(b) the average velocity for the journey,
(c) the maximum velocity attained.

12 A stopping train travels between two adjacent stations so that its velocity is 
v km/min, t min after leaving the first, where r =  f t( l  — t). Find
(a) the average velocity for the journey in km/h,
(b) the maximum velocity in km/h.

13 The formula connecting the velocity and time for the motion of a particle is 
v = 1 + 4i +  612. Find the average velocity and the average acceleration for 
the interval t = 1 to t =  3, the units being metres and seconds.

14 A racing car starts from rest and its acceleration after t s is (k — ¿i) m/s2 until 
it reaches a velocity of 60 m/s at the end of 1 min. Find the value of k, and the 
distance travelled in this first minute.

15 A particle starting from rest at O moves along a straight line OA so that its 
acceleration after t s is (24t — 12i2) m/s2.
(a) Find when it again returns to O and its velocity then.
(b) Find its maximum displacement from O during this interval.
(c) What is its maximum velocity and its greatest speed during this interval?

16 P and R are two adjacent railway stations, and Q is a signal box on the line 
between them. A train which stops at P and R has a velocity of ( |  + i i  — i i 2) 
km/min at t min past noon, and it passes Q at noon. Find
(a) the times of departure from P and arrival at R,
(b) an expression for the distance of the train from P in terms of t,
(c) the average velocity between P and R, in km/h,
(d) the maximum velocity attained, in km/h.

The area under a curve
6.3 Another important aspect of integration is that it enables us to calculate 
exactly the areas enclosed by curves.

Let us consider the area enclosed by the axes, the line x =  3, and part of the 
curve y =  3x2 +  2. This is the area TUVO in Fig. 6.3.

P is the point (x, y) on the curve, PM is its y-coordinate, and the area TPMO 
we shall call A. Now if we move P along the curve, A increases or decreases as x 
increases or decreases; clearly the size of A depends upon the value of x, i.e. A is a 
function of x, and our present aim is to find an expression for A in terms of x.

With the usual notation Q is the point (x +  <5x, y + Sy) adjacent to P, and QN 
is its y-coordinate. If we move the right-hand boundary of A from PM to QN, 
we increase x by Sx, and the resulting increase in A, the shaded area PQNM, we 
call 5A. In other words SA is the increment in A corresponding to the increment 
Sx in x. It can be seen from Fig. 6.3 that SA lies between the areas of the two 
rectangles PRNM, y Sx, and SQNM, (y + <5y)<5x. This may be written*

y Sx < SA < (y +  <5y)<5x

*This statement is called an inequality. <  means ‘is less than’; > means ‘is greater than’. The reader 
should note in passing that an inequality is reversed by changing the sign of each term. Thus 
1 < 2 <  3, but — 1>  — 2 >  — 3; this explains the reference to Sx being positive.
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and dividing by Sx, which is positive,

SA . x ,
y  <  - r -  <  ( y  +  $y)ox

SA
Now as Sx -»0,Sy~* 0, and so (y +  <5y)-> y. Thus we find that —  lies between

ox
y and something which we can make as near to y as we please, by making Sx

SA SA
sufficiently small. Therefore the limit of is y, and writing the limit of —  as

ox
dA
— , we get 
dx

d A

. \ ^ -  =  3x2 + 2 
dx

Sx

and by integration,

A = x 3 + 2x + c

If we were to bring in the right-hand boundary of the area A from PM to TO, 
we should reduce A to zero; that is to say, when x = 0, A = 0. Substituting these 
values in the last equation we find that c =  0.

A = x3 + 2x

and we have achieved our immediate aim of expressing A in terms of x; now to 
find the area TUVO. In this case, the right-hand boundary of A has been pushed 
out from PM to UV, and x is increased to 3.
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When x =  3,

A = 33 + 2 x 3 = 33 

. the area TUVO = 33.

Example 2 Find the area enclosed by the x-axis, the curve y =  3x2 +  2 and the 
straight lines x = 3 and x  =  5.

The required area is UWZV in Fig. 6.4, and it may be found as the difference 
between the areas TWZO and TUVO. Using A as above,

dA
dx

= y = 3x2 +  2

.'. A =  x3 +  2x

(We have shown above that the constant of integration is zero.)
When x =  5,

A = 53 + 2 x 5 =  135 (Area TWZO) 

and when x = 3,

A = 3s +  2 x 3  = 33 (Area TUVO) 

the area UWZV = 135 -  33 = 102.

Qu. 10 Find the area enclosed by the x-axis, the curve y = 3x2 + 2, and the 
following straight lines:
(a) the y-axis and x =  4, (b) x =  1 and x = 2,
(c) x =  — 1 and x = 3, (d) x =  — 3 and x = — 2.



In all the working so far in this chapter we have used the symbol A to denote 
an area having the y-axis as its left-hand boundary. Suppose that instead we 
had, in Fig. 6.3, defined a similar area A' having the line 5c =  1 as its left-hand 
boundary. By the same process of reasoning we should arrive at the result

dA' ,
—— = y = 3x2 + 2 
dx

A ’ = x 3 + 2x + k

But A' = 0 when x = 1, and substituting these values we get k = — 3.

.'. A' = x 3 4- 2x — 3

Now A ' is measured to the right from the line KL (x =  1) in Fig. 6.4, and 
Example 2 might just as well be done using A' instead of A, finding the area 
UWZV as the difference between the areas KWZL and KUVL. Thus, when 
x = 5,

A ’ = 53 +  2 x 5 — 3 = 135 — 3

and when x = 3,

A' =  33 + 2 x 3 - 3  = 33 - 3

.'. the area UWZV = (135 -  3) -  (33 -  3) =  102.

In each solution we have determined the constant of integration; using A, it is 
zero, and using A it is — 3. But as is clear from the second solution, the constant 
drops out on subtraction. We could in fact have measured A from any 
convenient left-hand boundary, and found the area UWZV by subtraction, 
without evaluating the constant of integration.

dA
We shall from now onwards assume the relationship—— = y to calculate areas

dx
of this nature, and the square bracket notation introduced in §6.2 may now be 
put to further use, as is illustrated in the next example.

Example 3 Find the area enclosed by the x-axis, x = 1, x = 3 and the graph 
y =  x3. (Fig. 6.5).
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dA
dx

= y =  x

.'. A = |x 4 + c 

The required area = 4* 4 +  C

=  ( ¥  +  c ) - ( i  +  c) 
= ^r + c — ^ — c 
=  20

The area evaluated in Example 3 is called the area under the curve y = x3 from 
x =  1 to x  =  3.
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y+

6.3

Figure 6.5

1 and 3 are called, respectively, the lower and upper limits of integration. 
The integral \ x 4 + c, involving the arbitrary constant of integration, is called 

an indefinite integral.
When however limits are given, and the integral may be evaluated, e.g.

"13

4 X 4  +  C , it is called a definite integral. Since the constant of integration drops
J l

out in a definite integral, it is not necessary to write it in the bracket.

Qu. 11 Evaluate the following definite integrals:
12

(b) '(a)

(c )

(e)

3x2 + 2x 

x 3 — 3x

1
J

1/2

0

— 2

x4 — 2x3 + x 2 — x

(d )

(f)

X 4 -  2x2 

2x2 +  4x 

x 2 + 3x ± r
x3 J  + 1/2

Qu. 12 Find the area under y = j x  from x = 0 to x =  10 by integration. Check 
by another method.
Qu. 13 Find the area under
(a) y = x2 from x = 0 to x = 3, (b) y = 2x2 + 1 from x = 2 to x =  5.

Two further examples will illustrate the advisability of making a rough sketch 
in this work if the reader is in doubt as to the shape and position of any curve; 
they also bring out two important points.

Example 4 Find the area under the curve y = x2(x — 2) (a) from x  = 0 to x  =  2, 
and (b) from x = 2 to x = f .

Consideration of the sign of the highest degree term, and the points of 
intersection with the x-axis, enables an adequate sketch to be made (Fig. 6.6).
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Figure 6.6

3 2- — = y =  x — 2x 
dx

A = ^x4 — f x 3 + c 

(a) The required area

1 „ 4  2. „ 34x — 3x

=  ( i  x 24 — f  x 23) — (0)
= - H

(b) The required area 
■ 8/3

l v 4 2 V 3 
4 X  ~  3 X

( 1 84 2 83\  f l  . 2 -
= { 4 X¥ - 3 X¥ ) - { 4 X2— 3 X2

= ( 0 ) - ( - U )

= + H

Part (a) of this example illustrates that the area under a curve is negative below
f  I 8/3

the x-axis. The reader should verify that 1 „ 4  2 V 34x 3x is zero, and now that we
L Jo

have the convention about the sign of an area, we see that this is because it 
represents the sum of the two areas we have evaluated, numerically equal but of 
opposite sign.

The reader should now appreciate that a sketch of the relevant curve may help 
to avoid misleading results arising from perfectly correct calculation.
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Qu. 14 Confirm that the total area enclosed by y =  x2(x — 2), the x-axis, x = \ 
and x = 3 is 4j.

What is the value of iv-4.4 X
2 „  3 

' 3 X

3
?

L _|i
Qu. 15 Sketch the curve y =  x(x — l)(x — 2). Find the total area enclosed 
between this curve and the x-axis.

Example 5 (a) Find the area under y = 1/x2 from x =  1 to x  =  2. (b) Can any 
meaning be attached to the phrase 'the area under y = 1/x 2 from x — — 1 to 
x =  + 2’?

. dA 1

w  ± r ‘ y - ^

.'. A = — x 1 + c

- 2

The required area

- ~_!T
L x J i 

= ( - * ) - ( - ! )  

=  - i + i

_  i— 2

Figure 6.7

(b) Fig. 6.7 is a sketch of y =  —j , and we see that if we try to find the area 

under the graph from x = — 1 to x =  2 , between these limits is the value x =  0 for
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which y has no value, and the curve consists of two separate branches. It is

possible to go through the motions of evaluating
1 but the result, — 1 ^,

is meaningless. If we break up the area into two parts and integrate from — 1 to 0 

and from 0 to 2, in each case we get the meaningless term (See §2.5.)

The second part of Example 5 illustrates that in order that we may calculate 
the area under a curve, the curve must have no breaks between the limits of x 
involved, i.e. the function must be continuous (see §2.19) for all values of x 
between these limits.

Exercise 6c
1 Evaluate:

2

3

4
5
6

7

8
9

10

11

(a)

(c )

x’
T 1/2

¿x 3 — 3x2 + jx

(b)

(d )

3x3 -  4x

1

. - 1  
- 3

Find the area enclosed by x + Ay — 20 =  0 and the axes, by integration. 
Check by another method.
Find the areas enclosed by the x-axis, and the following curves and straight 
lines:
(a) y =  3x2, x = 1, x =  3,
(b) y = x 2 + 2, x =  — 2, x =  5,
(c) y = x2(x — 1) (x — 2), x =  — 2, x = — 1 ,
(d) y = 3/x2, x = 1, x =  6.
Find the area under y = 4x3 +  8x2 from x = — 2 to x = 0.
Sketch the curve y =  x2 — 5x + 6 and find the area cut off below the x-axis. 
Sketch the curve y = x(x -I-1)(2 — x), and find the area of each of the two 
segments cut off by the x-axis.
Sketch the following curves and find the areas enclosed by them, and by the 
x-axis, and the given straight lines:
(a) y = x(4 — x), x =  5, (b) y =  — x3, x =  — 2,
(c) y = x3(x — 1), x =  2 , (d) y =  1/x 2 — 1 , x =  2 .
Find the area of the segment cut off from y =  x2 — 4x + 6 by the line y =  3. 
Repeat No. 8 for the curve y = 7 — x — x2, and y = 5.
Find the points of intersection of the following curves and straight lines, and 
find the area of the segment cut off from each curve by the corresponding 
straight line:
(a) y = j x 2, y = 2x,
(b) y = 3x2, 3x -I- y — 6 =  0,
(c) y =  (x + 1) (x — 2), x — y + 1 =  0.
Find the areas enclosed by the following curves and straight lines:
(a) y = i x 3, the y-axis, and y = 32,
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(b) y =  x 3 — 1 , the axes and y =  26,
(c) y = 1/x2 — 1 , y = — 1 , x =  ^ and x =  2 .

12 Find the area enclosed by the curves y =  2x2 and y*= 12x2 — x3.

Exercise 6d (Miscellaneous)

1 If ~~ = (3x — 2)/x3 find y in terms of x, if v = 1 when x =  1.
dx

2 If f'(x) =  2x — 1/x2 and if f(l) =  1, find f(x).
3 The curve y =  6 — x — x2 cuts the x-axis in two points A and B. By 

integration find the area enclosed by the x-axis and that portion of the curve 
which lies between A and B.

4 Sketch the curve y = x2 — x — 2 from x = — 2 to x = 3. Find the area 
bounded by the curve and the x-axis.

5 Sketch roughly the curve y =  x2(3 — x) between x = — 1 and x = 4. Calculate 
the area bounded by the curve and the x-axis.

6 For the curve y =  12x —x3, find the area bounded by the curve and the 
positive x-axis.

7 The velocity v of a point moving along a straight line is given in terms of the 
time t by the formula v =  2i2 — 9t + 10, the point being at the origin when 
t = 0. Find expressions in terms of t for the distance from the origin, and the 
acceleration. Show that the point is at rest twice, and find its distances from 
the origin at those instants.

8 The velocity t; of a point moving along a straight line is connected with the 
time t by the formula v = t 2 — 3t + 2, the units being metres and seconds. If 
the distance of the point from the origin is 5 m when t = 1, find its position 
and acceleration when t = 2.

9 A particle moves in a straight line with a velocity of v m/s after t s, where 
v = 3t2 + 21. Find the acceleration at the end of 2 s, and the distance it travels 
in the 4th second.

10 Find the equation of the curve which passes through the point ( — 1, 0) and 
whose gradient at any point (x, y) is 3x2 — 6x + 4. Find the area enclosed by 
the curve, the axis of x and the ordinates x =  1 and x =  2 .

11 Draw in the same figure, for values of x from 0 to 6, a sketch of the curve 
y = 6x — x2 and the line y = 2x. Calculate the area enclosed by them.

12 The parabola y =  6x — x2 meets the x-axis at O and A. The tangents at O 
and A meet at T. Show that the curve divides the area of the triangle OAT 
into two parts in the ratio 2 :1 .

13 The curve y = x(x — l )2 touches the x-axis at the point A. B is the point (2, 2) 
on the curve and N is the foot of the perpendicular from B to the x-axis. 
Prove that the tangent at B divides the area between the arc AB, BN, and AN 
in the ratio 11:24.

14 The point P moves in a straight line with an acceleration of (2t — 4) m/s2 
after t s. When t = 0, P is at O and its velocity is 3 m/s. Find
(a) the velocity of P after t s,
(b) the value of t when P starts to return to O,



Integration 123

(c) the distance of P from O at this moment.
15 A train starts from rest and its acceleration t s after the start is 

0.1(20 — f) m/s2. What is its speed after 20 s? Acceleration ceases at this 
instant and the train proceeds at this uniform speed. What is the total 
distance covered 30 s after the start from rest, to the nearest metre?

16 A particle moves in a straight line with velocity (It — t2 — 6) m/s at the end of 
t s. What is its acceleration when t — 2 and when t = 4? When t = 3 the 
particle is at A; when t =  5 the particle is at B. Find the length of AB. For 
what values of t is the particle momentarily at rest?

17 A particle, starting from rest, moves along a straight line with a velocity of 
(8i — t 2) m/s at the end of t s. Find its velocity when its acceleration vanishes 
and the distance travelled up to that time. What distance will have been 
travelled when the velocity vanishes instantaneously?

18 The velocity of a train starting from rest is proportional to t 2, where t is the 
time which has elapsed since it started. If the distance it has covered at the 
end of 6 s is 18 m, find the velocity and the acceleration at that instant.

19 A car starts from rest with an acceleration proportional to the time. It travels 
9 m in the first 3 s. Calculate its velocity and acceleration at the end of this 
time. Also find the distance travelled up to the instant when the velocity and 
acceleration are numerically equal.

20 A particle starts from rest and moves in a straight line. Its speed for the first 
3 s is proportional to (6t — t2), where t is the time in seconds from the 
commencement of motion, and thereafter it travels with uniform speed at the 
rate it had acquired at the end of the 3rd second. Prove that the distance 
travelled in the first 3 s is two-thirds of the distance travelled in the next 3 s.



Chapter 7

Further differentiation
To differentiate the function f(jc) =  x n ( n  e  < Q )

7.1 In this chapter we shall use fractional and negative indices, and any reader 
not prepared for this should first read §9.2-§9.4. We are already familiar with the 
rule that the derivative of x" is nx"_ \  but so far we have used it only when n has 
been a positive or negative integer or zero, i.e. for n e Z. We now need to extend 
this rule. First we shall prove its validity for the special case n =

Fig. 7.1 shows the graphs of the function f(x) =  x 1/2 = ^/x and its inverse 
function f- 1(x) =  x2, x ^  0. We saw in Chapter 2 that the graph of the inverse 
function is the reflection of the graph of y = f(x) in the line y =  x. The point 
Q(b, a) on the graph y = x 2 is the reflection of the point P(a, b) on the graph 
y = x1/2. Notice, in particular, that the tangent at P to y =  x 1/2 is inclined at an 
angle a to the x-axis, whereas the tangent at Q to y = x2 is inclined at an angle a 
to the v-axis. Thus, in Fig. 7.1 (ii), a is equal to (90° — [}). Also notice that, since 
P(a, b) is on y = J x ,  and Q{b, a) is on y = x2, a = b2, or yja =  b.

The gradient of y =  J x  at P, f'(a), is equal to tan a, but at the moment we do 
not know how to find f'(x). However if we consider the graph of y = x2, we know
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that tan /? is given by the derivative of y = x2 when x = b, and this we can find. In 
fact the derivative is 2x and hence

tan P = 2b

But tan a =  tan (90° -  j?) =  1/(25), (see Fig. 7.2), therefore
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f'(a)
1 _  1 

2 b ~ Y J a
— Xn~V2— 2a

Figure 7.2

So we have proved that, for the function f(x) = x 1/2, the derivative 

f'(x) = i x " 1/2

and this is in accordance with the general rule we have previously been using for 
differentiating x”. From now on we shall assume that

if f(x) =  x", f'(x) = n x ” ~1 when n  e Q,

i.e. when n is any rational number. It is important that the reader should bear in 
mind that, although this assumption is indeed valid, we have on each occasion 
so far justified the use of a general rule for differentiation simply by demonstrat­
ing its truth for particular values of n. At a more advanced level of study a proof 
can be provided.

Example 1 Differentiate (a)

(a) Let

. d y

d
’ ’ dx

= 2( — 3)x~ 4

- 6
x4

(b) Let y

■ ^ l
’ ’ dx

y/x

1

~ 2

= x “ 1/2 

x “ 3/2

1
2y/x3
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Example 2 Integrate

I f $ ^  =  j -  =  3x “ 1/3
dx

y = 3-
,-1 / 3  + 1

1/3 +  1
+ c

= i y x 2 + c

Qu. r  Differentiate: (a) x -4, (b) 2x~3, (c) (d) —, (e)
x x

(g) 5^5'

Integrate: (i) x “ 3, (j) 2x“ 2, (k) (1) (m) 7 ^ ,  (n)

2
(f)

1
3X3 ’

Qu.2 Differentiate: (a) x1/2, (b) 2x 1/3, (c) J x ,  (d) $ x ,  (e) (f)
v x

(g )2 Vx>,,h) 5+ .

Integrate: (i) x 1/4, (j) 2x3/2, (k) J x ,  (1) ^ x , (m) (n)
J x

1

7 ^ '

The chain rule

7.2 The process of differentiating a function has already been dealt with in this 
book and the reader faced with a simple expression will differentiate it term by 
term after expansion and know he is quite in order. If

y =  (x + 3)2 =  x2 + 6x + 9

then

—  =  2x +  6 =  2(x + 3) 
dx

Quite obviously this expansion process leads to laborious multiplication 
when something like (x +  3)7 is met. The more venturesome reader might hazard 
a guess that 7(x + 3)6 would be its derivative — and he would be right merely 
because x + 3 has the same derivative as x. Guessing is rather apt to grow 
indiscriminate, however, and is entirely untrustworthy!

The derivative of (3x + 2)4 is not 4(3x + 2)3.
The derivative of (x2 + 3x)7 is not 7(x2 + 3x)6.
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dy
Qu.3 In each part of this question, find —  by removing the brackets and then

dx
differentiating. Factorise each answer and try to guess its-relationship to the 
original expression.
(a) y = (x +  4)2,
(d) y = (5 -  2x)\ 
(g) y =  (5 + x2)3, 
0) y = ( i * - 7 ) 3.

(b) y = (x +  2)3, 
(e) y = (x + 4)3, 
(h) y = (2 + 1/x)2,

(c) y = (3x +  l)2, 
(f) y =  (x3 +  l)2, 
(i) y = (1 — x3)2,

Suppose y is a function of i, and t is itself a function of x. If Sy, St, and Sx are 
corresponding small increments in the variables y, t, and x, then

Sy Sy St
T~ = - r x T -  (1)Sx St Sx

When Sy, St, and Sx tend to zero,

Sy Ay Sy Ay St At
Sx dx St At Sx Ax

and equation (1) becomes

dy dy dr
dx dr dx

This important result is known as the chain rule. It will affect almost every 
exercise in differentiation which the reader will meet from here onwards, so it is 
most important to master it. The following examples are intended to give the 
reader some practice in its use.

Example 3 Differentiate (3x +  2)4.

Let y = (3x + I f  and t = 3x + 2, then y = i4.

di
dx 3, 3

But, by the chain rule,

dy dy di
dx di dx

. • & - 4 < ’ x 3dx

;. —  {(3x + 2)4} = 12(3x + 2)3

Example 4 Differentiate (x2 + 3x)7.

Let y =  (x2 + 3x)7 and t = x 2 + 3x, then y =  t1.



128 Pure Mathematics 1 12

d i
—  = 2x + 3 dx

= 7i6(2x + 3) ax

d t

.'. —  {(x2 +  3x)7} = 7(2x + 3)(x2 + 3x)6

In the very simple instance of Example 3 a similar method will apply for 
integration, i.e. J (3x + 2)4 Ax does equal |(3x  +  2)5 x 3 , but this is a special case. 
A corresponding division rule in integration does not apply. The integration of 
these awkward composite functions is dealt with in Book 2.

It is not necessary to show the actual substitution, as has been done in the 
examples above, but it is advisable, until practice has made perfect this art of 
substitution. The bracket is really treated as a single term — the t of our formula 
— and then the reader must remember to ‘multiply by the derivative of the 
bracket’. Differentiation of reciprocals and roots of functions is pure chain rule 
technique.

In the function notation, the chain rule becomes (fg)'(x) = f'(g(x)) x g'(x), but 
this lacks the elegant simplicity of the statement

dy dy di
dx di dx

(This may be remembered as ‘differentiate y with respect to t and then multiply 
di

b y - r ’.)dx

Example 5 Differentiate 

Let y = ( l + v/x)“ 1

1

i +  V x ’

. - . g = - i x ( i + y * r ’ x { A ( i + V * ) }

= -  1 x (1 +  Vx ) - 2  x ( i x ~1/2)

____ z l ____
d x y l + ^ / x /  2 ^ / x ( l + v/x)2

Example 6 Differentiate ^/(l + x2). 

Let y =  ( l + x 2)1/2

• ^ 1  
' '  dx

= ^(1 +  x2) 1/2 x 2x
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Exercise 7a
1 Differentiate: 

(a) (2x + 3)2, 
(d) (3x — 1)2/3,

2 Integrate:

(b) 2(3x +  4)4, 
(e) (3 — 2x)_1/2,

(c) (2x + 5)“ 
(f) ( 3 -4 * ) '

(a) (3* + 2)3, (b) (2* + 3)2, (c) (3* -  4)“2,
3 Differentiate:

(a) 7X \ XT > (3x + 2)

4 Integrate:

1

(b) (2* + 3)2 ’ (c ) V(3x + 1) ’

(a) (2* -  3)2
(b) V (3* + 2) ’ (c)

1

5 Differentiate:
(a) (3x2 +  5)3,
(d) (6x3 — 4x)~2,

6 Differentiate:

(b) (3x3 + 5x)2,
(e) (3x2 — 5x)_2/3.

(2x -  1)3/4 ‘ 

(c) (7x:

(a)
1

(3x2 +  2) ’ (b)

( d ) ( . - i ) \

7 Differentiate:

(a) (3^/x — 2x)3,

(c) ( 2*2 ~ ’
8 Differentiate:

(a) 1

(e)

V (2 +  x2) ’ 

1

(c)
- 1

(i +  V *)2

1/3 '(x2 -  1)

(d) x -
1 \ 1/2

x3/2 -  1 ’ (b) 1 _ x ’’

(c) (d) V x - V3
9 Differentiate: 

(a) 1

(c)

(x2 -  7x)3 ’ 

1
1 — x2

(b)

(d )

1

(x2 -  y y 2 ’ 

1 ^ 2

i -  V3

i *
3

(d) (2x +  3)1/2. 

(d) (2x — 1)2/3 ’

— 4)1/3,
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10 Differentiate:

Ex 7a

(a)

(c )

2
x  +  2 sj x  ’

Rates of change
7.3 The chain rule can be used to investigate related rates of change. Suppose a 
spherical balloon is inflated at the rate of 2 cm3 every second. What is the rate of 
growth of the radius?

The solution of this type of problem has obvious calculus possibilities because 
dy .
—  is the rate of change of y with respect to x, and with the formula of the

preceding section we have a ready means of connecting rates of change of 
dependent variables.

If the radius of the balloon is r, then the volume, V = f  Ttr3.
dV

The fact we are given is that ——, the rate of change of the volume with respect
di

to time, t, is 2 cm3/s, but, by the chain rule,

dV dV dr 
di dr di

and d V  A= 4ttr 
dr

2

which leads to

dr 2 
dt 4%r2

i.e. the rate of change of the radius is l/(2tir2) cm/s. Any reader will surely at 
some time have blown up a balloon and noticed that the radius grows much 
more quickly at the beginning than near the end — sudden though the latter 
may sometimes be! The rate of change of the radius at any particular time could 
be calculated when the value of r is known. In the problem chosen, the radius 
after t s could be calculated from f nr3 = 21. The arithmetic is harder than the 
calculus.

Example 7 A container in the shape of a right circular cone of height 10 cm and 
base radius 1 cm is catching the drips from a tap leaking at the rate o/O.l cm3/s. 
Find the rate at which the surface area of water is increasing when the water is half­
way up the cone.

Suppose the height of the water at any time is h cm, and that the radius of the 
surface of water at that time is r cm (Fig. 7.3).
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l

Figure 7.3

By similar triangles, 

r _ h _
I _ To

r = &h
dA

The surface area of water, A =  7ir2 =  7th2/10 0  and we wish to find when

h = 5. By the chain rule,

d A dA dh 2nh dh
~dT= d h X dt = m X dt

The volume of water, V = %nr2h = tth3/300, and using the chain rule again,

dF  dF  dh 3nh2 dh
dt dh dt 300 di

dF
But we are given that —-  = 0.1, 

dt

dh _  dF  ^ 0 0 _ n , 100 10
dt dt 3 tth2 nh2 nh2

From (1) and (2)

dA _  2nh 10 1
dt 100 7i h2 5 h

and, when h =  5,

dA
dt 25

- 0.04

.’. when the water is half-way up, the rate of change of the surface area is equal 
to 0.04 cm2/s.
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Exercise 7b
1

10

1 1

The side of a cube is increasing at the rate of 6 cm/s. Find the rate of increase 
of the volume when the length of a side is 9 cm.
The area of surface of a sphere is 4nr2, r being the radius. Find the rate of 
change of the area in square cm per second when r =  2 cm, given that the 
radius increases at the rate of 1 cm/s.
The volume of a cube is increasing at the rate of 2 cm3/s. Find the rate of
change of the side of the base when its length is 3 cm.
The area of a circle is increasing at the rate of 3 cm2/s. Find the rate of
change of the circumference when the radius is 2 cm.
At a given instant the radii of two concentric circles are 8 cm and 12 cm. The
radius of the outer circle increases at the rate of 1 cm/s and that of the inner
at 2 cm/s. Find the rate of change of the area enclosed between the two
circles. , ,
If y = {x2 — 3x)3, find when x — 2, given —̂  = 2.

di dt
A hollow right circular cone is held vertex downwards beneath a tap leaking 
at the rate of 2 cm3/s. Find the rate of rise of water level when the depth is 
6 cm given that the height of the cone is 18 cm and its radius 12 cm.
An ink blot on a piece of paper spreads at the rate of j  cm2/s. Find the rate of 
increase of the radius of the circular blot when the radius is j  cm.
A hemispherical bowl is being filled with water at a uniform rate. When the 
height of the water is h cm the volume is n{rh2 —%h3) cm3, r cm being the 
radius of the hemisphere. Find the rate at which the water level is rising when 
it is half way to the top, given that r =  6 and that the bowl fills in 1 min. 
An inverted right circular cone of vertical angle 120° is collecting water from 
a tap at a steady rate of 18tc cm3/min. Find
(a) the depth of the water after 12 min,
(b) the rate of increase of the depth at this instant.
From the formula v =  ^/(60s +  25) the velocity, v, of a body can be calculated 
when its distance, s, from the origin is known. Find the acceleration when 
v = 10 . dx dy

12 If y =  (x — 1/x)2, find —  when x =  2, given —  = 1.
di di

13 A rectangle is twice as long as it is broad. Find the rate of change of the 
perimeter when the breadth of the rectangle is 1 m and its area is changing at 
the rate of 18 cm2/s, assuming the expansion uniform.

14 A horse-trough has triangular cross-section of height 25 cm and base 30 cm, 
and is 2 m long. A horse is drinking steadily, and when the water level is 5 cm 
below the top it is being lowered at the rate of 1 cm/min. Find the rate of 
consumption in litres per minute.

Products and quotients
7.4 The reader is now able to differentiate quite elaborate functions, but no 
method has been suggested for a product such as f(x) =  (x +  l)7(x — 3)4. We
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Example 8 Differentiate the expression y = (x2 — 3) (x + l )2 and simplify the 
result.

Let u = (x2 — 3) and let v = (x +  l)2, then 

di;dM •? and
dx

= 2(x + 1)

•

dx
= (x +  l )2 x 2x + (x2 — 3) x 2(x + 1)

= 2(x +  1) {x(x +  1) +  (x2 — 3)} 

= 2(x + 1) {2x2 + x — 3}

= 2(x + l)(2x + 3)(x — 1)

Example 9 Differentiate (x2 + l)3(x3 +  l)2.

If u = (x2 +  l )3 and v =  (x3 + l)2, then let y = uv.

= 3(x2 + l )2 x 2x and ^  = 2(x3 +  1) x 3x2 
dx dx ,

^  = (x3 +  l )2 x 6x(x2 +  l )2 +  (x2 + l )3 x 6x2(x3 + 1)

=  6x(x3 + l)(x2 + l)2{(x3 + l) +  x(x2 + 1)}

’ ' T x [ix2 + + = + 1)(x2 + l)2(2x3 + x + 1)

Example 10 Find the x-coordinates o f the stationary points of the curve 
y = (x2 -  1)7 ( 1  +x).

y = (x2 -  l ) (x+ 1)1/2

^  = (x +  1)1/2 x 2x + (x2 -  1) x i ( x +  1)“ 1/2 dx

2(x + 1) x 2x + (x2 — 1)
= 2(x +  1)1/2

(x + l)(4x + x — 1)
= 2(x +  1)1/2

(5x— l)(x + 1)
2(x +  1)1/2

= i ( 5 x - l ) ( x + l )1/2 

for stationary points x =  j  or — 1 .



could multiply out the brackets and differentiate each term separately, but this 
would be extremely laborious. Although it is possible to differentiate each of the 
factors, we have, as yet, no method for tackling the produot as it stands. (We 
must not simply write down the product of the two derivatives. A reader 
tempted to do so should consider the product f(x) =  x3 x x4, which is equal to x 7 
and hence its derivative is f'(x) = 7x6; but this is plainly not the same as the 
product of the two derivatives 3x2 and 4x3.)

A further brief return to fundamental ideas will produce a formula to help us 
with functions of this kind.

Let y be the product of two functions u and v of a variable x. Then y = uv and

y +  dy = (u + du) (v + dv)

where a small increment dx in x produces increments 5u in u, 8v in v and Sy in y.

y + ¿y =  uv + v8u + udv + dudv 

and since y = uv,

5y =  vdu + udv + Sudv 

Dividing by <5x,
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¿y 3u 6v du 
dx V dx +  U dx +  dx

dv

As ¿x 0, du, dv and dy also approach 0,

dy dy du du dv dr
¿x dx ¿x dx dx dx

’ dx
du dr du

= r —  + u —  + —  x 0 
dx dx dx

dy du dv
‘ ----- =  V --------h U -----

dx dx dx

This formula must be remembered, and this is perhaps most easily dpne in 
words,

‘To differentiate the product of two factors, differentiate the first factor, 
leaving the second one alone and then differentiate the second, leaving the 
first one alone,’

and it is necessary to remember also that, should one of the factors in the 
product be a composite function, its derivative must be found as carefully as 
those in §7.2 before insertion in this product formula.
Qu.4 Use this method to differentiate the following functions:
(a) (x +  l)(x + 2), (b) (x2 +  l)x2,
(c) (x — 2)2(x2 -  2), (d) (x +  l)2(x +  2)2.
Check your results by multiplying out and then differentiating.

The most common mistakes made in this type of question are due to careless 
algebra and so particular attention should be paid to details of simplification.



There is a formula for quotients corresponding to that for products and it is 
proved in a similar way.

If y = u/v then

d u dv
v --------u -----

d.y dx dx
dx v2

If the reader wishes to ignore this formula and to deal with the quotient u/v as 
the product uv~1 he is at liberty to do so — it is merely a matter of preference.
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Example 11 Differentiate ( * - 3 )2
(x + 2)2

Let y = (x — 3)2/(x +  2)2 and let u = (x — 3)2 and v = (x +  2)2, then y = u/v.

—  = 2(x — 3) and —  = 2(x + 2) 
dx dx

dy (x + 2)2 x 2(x — 3) — (x — 3)2 x 2(x + 2)
" d x  = (x + 2 )4

2(x + 2) (x — 3) {(x +  2) — (x — 3)}
(x +  2)4

2(x -  3) x 5
(x + 2)3

. d f( x - 3 ) 2] 10(x — 3)
‘ ' dx j(x  +  2)2 J (x +  2)3

Example 12 Differentiate ------j - .
V  ( 1  "h  X  )

Let y = x/y/(l + x2) and let u = x  and v = + x2), then y = u/v.

dr 2xdM 1 J— 1 cind — I/ *dx dx 2yJ(l + x2)

dx (1 +  x2)

1 + x2

(1 +  x2)3/2

d |  x
' '  dx 1 ^ /(1  + x2) |  (T + x2)3/2

Qu.5 Prove the formula for quotients by the 6u, dv method.
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Qu.6  Differentiate:

(a) (x2 + l)(x + 3)~ 2 as a product, (b)
x 2 + 1

------ rry as a quotient.
(x + 3)2 ' M

Simplify the results and compare them.

* Simplification was an essential part of answering the question in Example 11 
and, since the gradient of a function is often needed for a specific purpose, the 
reader should get into the habit of factorising and simplifying as far as possible. 
It will be necessary, in any case, in order to check the answers with those at the 
back of the book!

Exercise 7c

Differentiate with respect to x the following functions:

1 x2(x + l)3. 

x
x + 1

7 (1 + x 2)2(l - x 2).

10 (x -  l)V(x2 + 1). 

( x - 1)2
13

16

J X

Vx

V(x + !)

19 V(x + l)v/(x + 2)3

2 x(x2 + l)4. 

.  1 — x2
1 + x2

8 x2 1 -
1

V3

11 x2^ ( l  +  x2 

2x2 — x3
14

17

20

v/(x2 — 1)

i ~ V x 
l + 7 x ’

(x +  l )3 
x +  2

3 (x +  l)2(x2 -  1).

x2 + 1 
(x +  l )2

9 (1 — x2)2(l — x3).

v2
12

nA1 + x2)'

15 A(x + 2k /(x +  3)- 

1 + x N
18

2 + x

Implicit functions
7.5 Up to the present we have dealt only with explicit functions of x, e.g. 
y = x 2 — 5x + 4/x. Here y is given as an expression in x. If, however, y is given 
implicitly by an equation such as x = y4 — y — 1 , we cannot express y in terms 
of x.

Consider an easier case. If x = y2, y = x 1/2.

• dy - i x - v 2 _  1 
' ‘ dx 2 2x 1/2 2y

♦Practice in the algebra involved in differentiating a quotient is given in Exercise 9d, No. 5, and in the 
Appendix.
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But — = 2y, so in this case, 
dy

d y = /dx 
dx / dy

(Strictly speaking, the equation x =  y2, does not define y as a function of x, since, 
for each positive value of x, there are two values of y, namely the positive and 
negative square roots of x.)

Now consider the general case.

¿y =  i /<5x 
dx I dy

where <5x and <3y are the increments in x and y respectively.
_ o « dy dy dx dxNow as dx, dy -*■ 0, ----- ► — , and -----► —

dx dx dy dy

^ -  = \ I —
" dx I dy'

When it is impracticable to express either variable explicitly in terms of the 
other, we can still differentiate both sides with respect to x, as in Example 13 
below. A term like y" can be differentiated by first differentiating with respect to

dy
y then, as the chain rule demands, multiplying by — . Thus

dx

dx ( / )  =
dy
dx

Similarly, if we have a term of the form xmy", then we use the product rule and 
obtain

dx
(xmyn)

d d: x"‘ —  (yn) + y” —
dx dx (xm)

= nx ym ( n -  1) d y- — I- mx dx
(m-l)

Example 13 Find the gradient of the curve 

x2 +  2xy — 2y2 + x =  2 

at the point ( — 4,1).

To find the gradient, differentiate with respect to x.

d
dx (* 2) + x - ( 2xy) -  -T-(2y2) + j - (x )  = dx dx dx

d
dx (2)

2x + I 2y + 2x dy— 4y—2- + 1 = 0  
dx
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dy
•. (2x — 4y) =  — 1 — 2x — 2y

ax

When x =  — 4, y — 1, 

dy,—̂ ( — 8 — 4) =  —1 + 8  — 2 
dx

dy _  + 5  
dx —12

the gradient at ( — 4, 1) is — f i-  

Qu.7 Differentiate with respect to x:
(a) x, (b) y, (c) x 2, (d) y2, (e) xy, (f) x 2y, (g) xy2.

Qu. 8 Find ^  if x2 + y2 — 6xy + 3x — 2y + 5 =  0.

Parameters
7.6 Sometimes both x and y are given as functions of another variable, a 
parameter. In such cases the gradient is given in terms of the variable parameter.

Example 14 I f x  = t 3 + t2 , n j dy . ,y = t + t  find —  in terms of t. 
dx

dx
di

= 3t2 +  2t
dy
di

= 2 t+  1

Now
dy dy dt
dx di dx ’

but
dt / dx 
dx d t '

dy dy dx
' dx di di

dy _  2 i + 1 
' '  dx i(3i + 2)

Qu. 9 Show that the above parametric representation is of the curve 

y = x + xy. Find —-  for this curve and show that it agrees with the above

result.

Example 15 Find the gradient of the curve x  = 

point ( i, j).

dx (1 + i )x  1 - i  x 1 1

di~= (T+Tj5 =  (1 + i )2

1 +  t ’ 1 + t
at the



Further differentiation 139

dy (1 +  t) x 312 — t3 x 1 

dt = (1 + t)2

dy 
dx

= 312 + 213

3t2 +  2t3 
(1 + f)2

At t=  1, 

dy
/  =  3 + 2 
dx

the gradient at (j, j )  is 5.

Exercise 7d
1
2

3
4

5

6

7

8

9

10

11

12

Find the gradient of the ellipse 2x2 +  3y2 =  14 at the points where x = 1. 
Find the x-coordinates of the stationary points of the curve represented by 
the equation x 3 — y3 — 4x2 +  3y = 1 lx  +  4.
Find the gradient of the ellipse x2 — 3yx +  2y2 — 2x = 4 at the point (1, — 1). 
Find the gradient of the tangent at the point (2, 3) to the hyperbola xy  =  6.

dy
(a) If x = i2, y = £3 find —  in terms of t. (b) If y = x3/2 f i n d ^ .dx
Is there any connection between these two results?
At what points are the tangents to the circle x2 +  y2 — 6y — 8x = 0 parallel to 
the y-axis?

Find ^  when (a) x2y3 =  8, (b) xy(x — y) =  4. 
dx
dy

Find — , in terms of t, when 
dx

(a) x =  at2, y =  2at; (b) x =  (t + l)2, y = (t2 -  1).

If x =  t/(l -  t) and y =  t 2/(l -  i) find ^  in terms of t.

Find ^  in terms of x, y when x2 +  y2 — 2xy + 3y — 2x =  7. 
dx

dy
If x = 2t/(t + 2), y = 3 t/(t + 3), find in terms of t.

Find ^  in terms of x, y when 3(x — y)2 =  2xy + 1. 
dx

Small changes
7.7 We have seen that, as dx ->0, ^  -* . Therefore, if dx is small,

ox dx
5y dy 
¿x dx 

dy
8y x  ~r~8x 
J dx

Three applications of this formula follow in Examples 16-18.



Example 16 The side of a square is 5 cm. Find the increase in the area of the 
square when the side expands 0.01 cm.

Let the area of the square be A cm2 when the side is x  cm. Then A = x2. Now

s dA dA
SA «  —— ox and - — = 2x

dx dx

.'. SA «  2x<5x

When x =  5 and dx = 0.01,

SA «  2 x 5 x 0.01 = 0.1 

.'. the increase in area « 0.1 cm2.
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In this case the increase in area can be found accurately very easily:

SA = 5.012 — 52 =  0.1001

The reader is strongly advised to use the calculus method, for the moment, even 
if he sees a quicker way, since it is an important introduction to certain topics 
which he may meet later.

Note that the error by the calculus method is, in this case, (0.01)2 =  (<5x)2.

Example 17 A 2% error is made in measuring the radius o f a sphere. Find the 
percentage error in surface area.

Let the surface area be S and the radius be r, then

S = 4 nr2 dS „
.‘. —  = 87ir dr

.'. SS «  8nrSr

But the error in r is 2%, therefore Sr = y§o x r.

.'. SS «
2 r

8nr x —— = 
100

16nr2
100

SS 16 nr2 , 4
.'. —  « --------- h 4nr —----

S 100 100

.'. the error in the surface area «  4%.

Example 18 Find an approximation for j  9.01. 

d y 1
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When x = 9, and dx =  0.01, 

d y * i  x 0.01 »0.001 67

.'. 79.01 »  3.001 67.

Exercise 7e
1 The surface area of a sphere is 47tr2. If the radius of the sphere is increased 

from 10 cm to 10.1 cm, what is the approximate increase in surface area?
2 An error of 3% is made in measuring the radius of the sphere. Find the 

percentage error in volume.
3 Find (a) ^  8.01, (b) 725.1 by the method of Example 18.
4 If l cm is the length of a pendulum and t s the time of one complete swing, it is 

known that l = k t2. If the length of the pendulum is increased by x%, x  being 
small, find the corresponding percentage increase in time of swing.

5 If the pressure and volume of a gas are p and v then Boyle’s law states 
pv = constant (k). If dp and Sv denote corresponding small changes in p and v

dp . 5v
express — in terms of — .

P v
6 An error of 2 j%  is made in the measurement of the area of a circle. What 

percentage error results in (a) the radius, (b) the circumference?
7 The height of a cylinder is 10 cm and its radius is 4 cm. Find the approximate 

increase in volume when the radius increases to 4.02 cm.
8 One side of a rectangle is three times the other. If the perimeter increases by 

2% what is the percentage increase in area?
9 The radius of a closed cylinder is equal to its height. Find the percentage 

increase in total surface area corresponding to unit percentage increase in 
height.

10 Find (a) -J627, (b) 71005, by the method of Example 18.
11 The volume of a sphere increases by 2%. Find the corresponding percentage 

increase in surface area.
12 As x increases, prove that the area of a circle of radius x and the area of a 

square of side x increase by the same percentage, provided that the increase 
in x is small.

Second derivative
7.8 We know that velocity, v, is the rate of change of displacement, s, with

ds
respect to time, i, and may be denoted by — . Acceleration is the rate of change

dt
dv

of velocity with respect to time, and we have up to now denoted this by — ; but
df

d d / d s \
— (n) may also be written as — — , and thus acceleration is seen to be the 
di dt \  dt /
second derivative of s with respect to t.
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The second derivative arises in a wide variety of contexts as well as in 
kinematics, of course, and we need a less cumbersome notation.

d /  dv \  . . d2y
—  —  is written as y—̂
dx \dx  )  dx2

which is spoken ‘d two y by d x squared’.
d2s

Acceleration, -yy, may be written in yet another way by using the fact that
d t2

dsdr 
ds di

dt)
X  l)

dr
di ds di ds 

thus we have arrived at the following alternative notations, 

dr
a =

di
d2s dr 
di2 V ds

the last form, d^ ,  being applicable when velocity or acceleration is a function of 
ds

s rather than of t.
dy d2y

Remember that if v = fix), —  is written as f'(x), and —y as f"(x).
dx dx

Qu. 10 (a) If y = x 2 — 1/x2, find ^  and ^ - y .
dx dx

(b) Given that v = 3(4 — s2)1/2, show that a = —9s.
(c) If f(x) =  x/(x — 1), find f'(x) and f"(x).

dy d2y
If —  is found in terms of a parameter i,

dx dx2
requires differentiation with

respect to x, so

d2y d / d y \ di 
dx2 d i \d x /  dx

dx
" i t

Qu. 11
dy d2-

If x =  a(t2 — 1), y =  2a{t +  1), find -j-  and —y in terms of t.
dx dx2

Exercise 7f (Miscellaneous)

These questions are in two stages. The first 25 are set in the order of the sections in 
this chapter in order to give the reader further practice in the fundamentals. The 
later questions are ‘mixed’ and also include ones involving a knowledge of other 
sections of this book.

1 Differentiate:

(a) - L ,  (b) xn+1, (c) l x 2«“ 1,
x

(d) (x2)m, (e) J x n.
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2 Integrate:
(a) (x2)*“ 1,

3 Differentiate:

(b) (xn) 2, (c) nx l/n-l

(a) f fx , (b) (Vx)", (c) (d) 1

(d) x 1+t.
M

1
V x " ’

(e)

4 Differentiate: 

2
(a) -v (b) J x ’

1
(c) ( ’ (d) V (2^3X (e) x"/(,, + 1).

In Nos. 5-12 differentiate with respect to x and simplify.

5 (a) (x2 + 3)4, (b) V'(2x3 -  3), (c) Q x  + l)3,

1 ... 1 . . 1 ... 1
wiMT-

6 (a) (b) (c) (d)x + y / x ’ w x2 —1 ’ ( ffx  — l)2’ w  v (̂2x — x2) '

7 (a) x2(x -  l)3, (b) (x +  l)3/2(x -  1)5/2, (c) (x -  2)1/2(x2 + 3).

8 (a) y/{(x + l)(x -  2)3}, (b) (1 -  x2)^ ( l  -  2x), (c) x ff(x 2 -  1).

9 (a)

10 (a)

11 (a)

12  (a)

x2 - T

x2 + 2 
(x +  2)2 ’

x + 1

(b)
V i * " 1) ’ 

^  ( * - D 3
(b) (x3 — 1)

(c)
V*

x — 1
(d )

y / ( x  ~  1 )

1 '

x + 2 / ’

lx 2 + l
x2 -  r

(b)
(x +  2)3

(b)

x  — 1 

(1 ~\/x)2

V(*2~  !)'
dy

13 Find ^  when x2 + 2xv + y2 =  3.
dx

14 Find ^  when x2 — 3xy + y2 — 2y + 4x = 0.
dx
dy ,15 Find -f-  when 3x2 — 4xy = 7.
dx

16 If x = 2t/(l + t2), y =  (1 — t2)/(l +  t2) find ~  in terms of t.
dx

17 If x = 1/^(1 + r2), y =  t/*J{ 1 + i 2) find ^  in terms of t.

18 If x = i/( 1 — t), y = (1 — 2i)/(l — i) find
dx

19 When measuring the area of a circle, 2% error is made. Find the percentage 
error in the radius.

20 When measuring the dimensions of cubical box 1 % error was made — all
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measurements being too large. Find the percentage error in volume.
21 The circumference of a circle is measured with a piece of string which 

stretches 1%. What is the percentage error in the area of the circle?
22 Calculate (a) ^/65, (b) ^/37, without using tables or a calculator.

dv d2y
9x + 1, find —  and hence find the values of -—5- when the 

dx dx2
23 If y =  4x3 — 6x2 - 

gradient is zero.

24 If x = at2, y = 2at, find ^r~ and ~~~ in terms of t.
dy
dx

d2y . 
dx2

25 If f(x) = 8x3 — 1 lx 2 — 30x + 9 for what values of x is f'(x) =  0?

26
27

28

29
30

31

32

33

34

35

36

37

38

39
40

41

Find the equation of the tangent to the curve x2 — y2 =  9 at the point (5,4). 
Prove from first principles that the derivative of 1/x2 is — 2/x3.

If y = x 2lyj{x + 1), find ^  and .

Find what values of x give stationary values of the function (2x — 3)2(x — 2)3. 
Differentiate with respect to x (a) sec 2x, (b) sin2 x, (c) x cos x, (d) tan3 x,
(e) sin x. dy
A curve is represented parametrically by x =  (t2 — l)2, y =  t3. Find ^  and

d2y
—^  in terms of t. 
dx2
The volume of a sphere is increased by 3%. Find the percentage increase in 
the radius.
A curve called the Witch of Agnesi has for its equation y = ^/(3/x — 1). Find 
its gradient when x = j .
Show that of all rectangles with given perimeter the square has maximum 
area.
Find the equation of the tangent to the parabola y2 =  4x which is parallel to 
the line y = 3x — 4. What are the coordinates of the point of contact?

Find also the equation of the normal at this point.
The distance, s, of a particle from a point after time t is given by the formula
s2 = a + bt2.

Find the velocity and acceleration in terms of s, t, a, b.
Find the equation of the tangent and normal to the curve x =  a cos3 t, 
y = a sin3 t, at the point whose parameter is t.
If R = arn and an error of x% is made in measuring r, prove that an error of 
nx% will result in R.
Find the maximum and minimum values of x2N/(2 — x).
Find the equation of the tangent and normal to the cycloid

x = a(20 + sin 20), y = a ( l— cos 20)

at the point whose parameter is 6.
If the radius of a spherical soap bubble increases from 1 cm to 1.02 cm, find 
the approximate increase in volume.
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42 If the velocity v is given by the formula v = u/(l +  ks) where u is the initial
velocity, s is the distance and k is a constant prove that the acceleration 
varies as v3. •

43 Differentiate:

tan x

(a) sin2 (3x2 + 4), (b)

(c)
sin x

(d )1 + cos x ’ 1 -  tan2

44 If x 2 + 3xy - 1,2 =  3, find ^  and at the point (1, 1).
dx dx2

45 Differentiate J ( x 2 + 1) with respect to x.
Why does the substitution x = tan 9 in this function and its derivative not 

give you the derivative of sec 0?
46 Draw a sketch of the graph of y =  x 1/3 to illustrate that this function is odd and 

continuous. Draw also a sketch of the graph of its gradient function showing 
that this is even and discontinuous.

47 Given that f(x) = x — 1 + l/(x + 1), x real, x #  — 1, find the values of x for 
which f'(x) = 0.

Sketch the graph of f, showing the coordinates of the turning points and 
indicating clearly the form of the graph when |x| becomes large. (JMB)

48 (a) Show that, when k is constant, the curve

y = 3x4 — 8x3 — 6x2 + 24x + k

has a stationary point when x =  1 and find the values of x at the other 
two stationary points on the curve. Find the values of k for which the 
curve touches the x-axis.

(b) A spherical balloon is being inflated at a constant rate. Show that the rate 
of increase of the surface area is inversely proportional to the radius.

(L)
49 The functions f and g with domains {x: x real, x #  0} are defined as follows:

,  , 6 1 f:x i—> l + x ---- , g: x i—► —
X  X

Find a and b so that the composite function h = gf is defined on the set 

{x: x real, x #  0, x #  a, x  #  b}

Verify that

h(x) =
1

5
3 2

x + 3 x — 2

and show that if h'(x) is the derived function of h, then h'(x) < 0 at all points 
in the domain of h.

Sketch the graph of h, marking all the asymptotes and showing how the 
graph approaches the asymptotes. (L)
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50 Prove that the curve with the equation 

( x + 1)2

Ex 7f

(x — l)(x + 2)

d yhas two points at which —  = 0. Find the coordinates of these points and 
dx

determine the nature of each point.
Sketch the curve. (C)



Chapter 8

Further integration
Some standard curves
8.1 In §5.5 we dealt with some simple aids to curve sketching. By this stage, the 
reader should be thoroughly familiar with some standard curves which will be 
frequently occurring in the work which follows.

Figure 8.1

Fig. 8.1 shows some variations on the curve y =  x2, which is a parabola. The 
line about which the curve is symmetrical is called the axis, and it cuts the curve 
at the vertex. Thus for the curve y = x 2 + c, the axis is the y-axis, and the vertex

147
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is (0, c). Any equation of the form y = ax2 +  bx + c, where a, b, and c are 
constants (a not being zero), represents a parabola with the axis parallel to the 
y-axis (see Chapter 10).

Figure 8.2

Typical shapes of curves for which y is given as a cubic function of x  are shown 
in Fig. 8.2. (i) represents y = (x + 3)(x + l)(x — 2), the x 3 term in the expansion 
being positive; (ii) represents y = (3 +  x)(l + x)(2 — x), the x 3 term in the 
expansion being negative (see §5.5, Example 7).

(ii)

Fig. 8.3 shows (i) y = x(x — 2)2, and (ii) y =  — (x + l)3, illustrating that when 
the function of x has a squared factor, the curve touches the x-axis; and with a 
cubed factor, the curve touches and crosses the x-axis.

Fig. 8.4 illustrates how a sketch of the curve y = x2 + 1/x may be built up by 
adding the y-coordinates of the two known curves y = x2 and y =  1/x.

The integration of xn (n e Q)
8.2 In Chapter 7 the differentiation of x" was assumed to include cases where n 
is a fraction, and so we can now integrate powers of x with fractional indices.
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Thus, if

x 1/2

then
y 3/2

,, _  ± ______ , r  — 1 3 / 2
y ~  3/2 + C~ 3*

+ c

Exercise 8a
1 Sketch the following curves:

(a) y = 4x2, (b) y = — x 2 + 9, (c) y -  1 = x 2,
(d) x = — y2, (e) x — y2 + 4 =  0, (f) 2x +  _y2 + 16 = 0.

2 Sketch the following curves showing where each meets the x-axis: 
(a) y = (x -  l)(x -  2)(x -  3), (b) y = (1 -  x)(x -  2)(x -  3),
(c) y = (x+  l)(x 
(e) y =  (x +  2)(1 -

■2)2,
x)2,

(d) y = x2(3 — x), 
(f) y2 =  x6,

(g) x =  y3, (h) x + y3 =  0,
(i) x =  y(y — 3)2.

3 Sketch the following curves:

(a) y = -  x4, (b) y = \ , (c) y = x 2 + \ ,  (d) y
X X

(e) y = x 3 + ~ ,
X (0 y = ^ 2- ^

, 1
(g) > '= v 2C + ^ -
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4 Integrate with respect to x:
(a) x1/3, (b) </x, (c) 2x l/5,

(d) k*/x, (e) x~ 1/2, (f)

(g) ,h)̂ (i) y/ X2,

(j) x7/3, (k) (Vx)3, (1) X -413,

1 , , x3 + 2x2 — 3x
(m) x 1/a,

( n ) - S ’
(o ) -------- ---------

v *

(PI (q ) (Vx + 2 )(V x-3 ), (r) J {x  + 2),

(s) xV(*2 -3 ) .
5 Evaluate the following:

(a) x ~ 1/2 4 , (b) x 3/2 + 2x 1/2
9

> (c) i  (x +  4)3/2
_ 1 4 Jo

Area as the limit of a sum
8.3 We have already discussed the use of integration in finding the area under a 
curve (§6.3). The word integration implies the putting together of parts to make 
up a whole, and this fundamental aspect of the process is brought out in the 
following alternative approach to the area under a curve.

Suppose that we wish to find the area under the curve in Fig. 8.5 from x = 0 to 
x = 3. We divide this area into three equal strips by the lines x = 1 and x =  2.

Figure 8.5



The required area TUVO lies between the sum of the areas of the three shaded 
‘inside’ rectangles, and the sum of the three ‘outside’ rectangles bounded at the 
top by the broken lines; for example, the middle strip PBDM lies between the 
areas PCDM and ABDM.

We shall for the time being confine our attention to the ‘inside’ rectangles; the 
sum of these falls short of the required area by the sum of PBC and the two 
corresponding areas. We now divide TUVO into 12 strips (for clarity only 4 of 
these are shown in Fig. 8.5). The sum of the 12 ‘inside’ rectangles is clearly a 
better approximation to the area under the curve, since an error such as PBC 
has been reduced to a much smaller error represented by the 4 black roughly 
triangular areas. Thus by taking a sufficient number of strips (in other words, by 
making the width of each strip sufficiently small) we can make the sum of the 
areas of the ‘inside’ rectangles as near as we please to the area under the curve.
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Figure 8.6

If we were to divide the area TUVO into a very large number of strips, then a 
typical one would be PQNM (Fig. 8.6), where P(x, y) and Q(x + ôx, y +  ôy) are 
two points on the curve. A typical ‘inside’ rectangle is PRNM, of area yôx, and 
the process of increasing the number of strips is the same as letting ôx —► 0. The 
required area TUVO is found by adding all the ‘inside’ rectangular areas yôx 
between x = 0 and x = 3, and then finding the limit of this sum as ôx -> 0. Using 
the symbol £  to denote ‘the sum of’ (see §13.8),

x = 3

as Sx —► 0, Y, y$x ~ th e  area TUVO
x — 0

x  = 3
*Hence area TUVO = the  limit, as ôx —>0, of £  yôx.

x = 0

Example 1 Calculate the area under y = x  + 1 from x  = 0 to x — 10.

Divide the area into n strips of equal width parallel to O y (Fig. 8.7); the width 
of each strip will be 10/n. To find the sum of the areas of the inner shaded 
rectangles we must first calculate their heights. *

*For simplicity we have confined our attention to the ‘inside’ rectangles. Fig. 8.6 also shows a typical
x =  3

‘outside’ rectangle SQNM of area (y +  <5y)5x; as <5x -»0, £  (y + ôy)5x tends to the same limit.
x  = 0
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For the three smallest,

when x = 0,

. iowhen x = — , 
n

y = X + 1 = 1

10 ,y = —  + ln

. 0 iowhen x = 2 x — , 
n

and for the largest,

when x = 1 0  — — , y = 11  
n

20
y — — f in

10
n

The sum of the areas of the inner rectangles is

10 . 10/10 \ 10/20  \ 10/ 10
— — + 1 + — — + 1 + . . . + — 11------ ( i )  +  -  -n n \  n n \  n

10(1+( ^  + 1) + ( ?  + 11 + ...+ 11 -  —  
n

The dots have been used to signify the terms corresponding to all the 
intermediate rectangles; we know that there are as many terms in the curly 
brackets as there are strips, namely n, and they form an arithmetic progression 
(see §13.2) with common difference 10/n. We can now sum the terms in the 
brackets using the formula

+ 0 (See §13.4)
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1 +  ” - -

= -2 ( 12- -

the sum of the ‘inside’ rectangles

1° n (  10
= — x x 1 2 ------n 2 \  n

™ 50= 60------
n

As n-> oo, the limit of the sum is 60,
.'. the area under y = x + 1 from x = 0 to x = 10 is 60.

Q u.l Calculate the sum of the areas of the n ‘outside’ rectangles in Example 1, 
and find the limit of this sum as n-> oo.

Example 2 Calculate the area under the curve y = x 2, from x  = 0 to x = a.

Figure 8.8

Here again we divide the interval 0 < x <  a, into n equal sub-intervals, each of 
length a/n (Fig. 8.8). To find the area inside the shaded region, we must first 
calculate the heights of the (n — 1) rectangles. Since the equation of the curve is 
y = x2, these heights are

2a ^ 2 
n

3 a 
n

(n — l)a \ 2
n n
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and, since the width of each rectangle is a/n, the sum of the areas of the 
rectangles is

a a
-  X ~2 n n

_ a 3

a

a 4a2 a 9 a2
H— x —r H— X ~2n n2 n n2

4 a3 9 a3 (n
+ ^ ■ + .. . + —

+ 4 + 9 + - i ) 2)

+ . . .  +

(;n — 1 )2a3

a (n — 1 )2a2

Now, it can be shown (see §13.7) that

1 + 4 + 9 + ...(n — l )2 = ^(n  - l ) x n x  (2n — 1) 
6

= 7(2n3 — 3n2 +  n)
6

Hence the sum of the areas of these rectangles is
,3 !

S = - t x j(2n3 — 3n2 +  n) 
n 6

a3 (  3 1
6 \  n n

and hence, when n-* oo,

„ a3

Hence the area under the curve y = x 2, from x = 0 to x = a, is a3/3.

It is interesting to note that this result, proved by a similar method, was 
known to the ancient Greeks, long before the invention of calculus.

The integral notation
8.4 Example 1 could be done by integration. Before doing this, we introduce 
the symbol J (...) dx to denote integration with respect to x. The symbol J, 
which is an elongated S, for ‘sum’, is a reminder that integration is essentially 
summation.

The area under y = x + 1 from x =  0 to x =  10 is
io rio

y dx =  (x +  1) dx 
o Jo

^x2 +  x
10

0



= (±x 102 + 10)-(0) 

= 60
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Similarly the result of Example 2 can be obtained by integration, as follows:
'a

x 2 dx = 1 y 3 
3 X

Jo
■ w

For indefinite integrals, where there are no limits, a similar notation is used. 
Thus

J (3x2 + 4) dx = x 3 +  4 x  + c 

Qu.2 Find the following indefinite integrals:

' 8x 5 — 3x
(a) j  (3x -  4) dx, (b) dx,

( c i j^ x d x ,  (d) i ( 2 V t - 3 ) ( l - V t ) d t .

Qu.3 Evaluate the following definite integrals:

(a)
1/2

(60i—16f2)dt, (b) J ~ jd x , (c) J<o

x =  10
We have shown above that when y = x + 1, the limit of £  ydx, as dx —> 0, is

identical with, and is more readily evaluated as y dx.i:
We shall now assume that for any curve which is continuous between x =  a 

and x =  b, the area under the curve from x =  a to x =  b is

the limit, as dx -> 0, of £  ydx = y dx*
x = a J a

Notice that, in general, if f(x) is a continuous function and F(x) is the function 
whose derivative is f(x), i.e. F'(x) =  f(x), then

f(x) dx = F(x)

= F(6) -F (a )

If, in addition, f(x)> 0, when a ^ x ^ b ,  then this integral gives the area under 
the curve y = f(x), from x = a to x =  b. If, however, f(x) is not always positive in

*The reader may be interested to note the parallel between this statement and that concerning
Sy d y

gradient, namely the limit, as dx 0, of —  =  — .
ox dx



this interval, then the graph of y = f(x) must be consulted, in order to distinguish 
between the positive and negative areas.

The reader should in future think of every area bounded by a curve as a 
summation, first writing down the area of one of the typical strips, or elements of 
area, into which it is most conveniently divided, and then evaluating the limit of 
the sum of those strips by integration. A convenient way of laying out the 
working is shown in the following examples; these extend the work of Chapter 6 
in the following ways:
(a) by using elements of area parallel to the x-axis, we may integrate with respect 

to y;
(b) by finding the element of area cut off between two curves we may evaluate in 

only one step the area enclosed between them.

Example 3 Find the area enclosed by y = 4x — x2, x =  1, x = 2 and the x-axis 
(Fig. 8.9).

156 Pure Mathematics 1 8.4

Figure 8.9

The element of area is ydx = (4x — x 2)Sx 
ri

.'. the required area = (4x — x2) dx
J i

i v3 
3 x

2

1

= (8 — f) — (2 — i)

= 3f

Example 4 Find the area enclosed by that part of y = x 2 for which x is positive, 
the y-axis, and the lines y=  1 and y = 4.
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Figure 8.10

The required area is ABCD in Fig. 8.10. The equation may be written 
x = ± y/y, and for the part of the curve with which we are concerned 
x = + y j y = + y 112.

The element of area is x<5y.

.'. the required area = j* x d y

'4

J i
y 1/2 dy

2,,3/23 y

= ( I x 8) — (f)

= 4f

Example 5 Find the area enclosed between the two curves y = 4 — x 2 and 
y = x 2 — 2x.

We must first sketch the curves, and to find the limits of integration we must 
find the x-coordinates of the points of intersection.

When x 2 — 2x = 4 — x2,

2x2 — 2x — 4 = 0 
x2 — x — 2 = 0 

( x - 2 ) ( x +  1) = 0
x = — 1 or + 2

The element of area is shown shaded in Fig. 8.11.
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Figure 8.11

If we write Y = 4 — x2 and y = x 2 — 2x, the element of area is (F — y)dx. 

.'. the required area =
’ +2 

J - 1
( Y - y )  dx

f  + 2

L
{(4 — x2) —(x2 — 2x)} dx

' +2

J - 1
(4 + 2x — 2x2) dx

+ 2
4x + x2 — | x 3

= (4 x 2 + 22 — § x 23) — ( — 4 + 1 + §) 

=  8 + 4 — + 4 — I f

= 9

Exercise 8b
1 Find the following integrals: 

(a) J x(x — 3) dx,

(c )

(e)

at2 +  b + - j  di,

y + 7 l ) ( y + i i,,y-

(b)

(d )

(f)

2(x -  1)
— "3 d*>

A - y x 2 + 2- dx,

( s + 1)2

3*
ds.



2 Evaluate:
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r  +  3

(a)

(c)

- 2

'1

(v2 + 3) dt>, 

sjx(x  + 2) dx,

(b) (y2 +  -Jy) d y,

(d ) I ( 3 +  72 +  74 ) d i.r  r

-y/(x +  5) dx.

3 Find the area under each of the following curves between the given 
limits:
(a) y =  x2 + 3, x = — 1 to x = 2;
(b) y = x2(3 — x), x = 4 to x = 5;
(c) y = x2 + l/x 2, x = j t o x = l .

4 Find the area enclosed by the y-axis and the following curves and straight 
lines:
(a) x = y2, y = 3; (b) y = x3, y = 1, y = 8;
(c) x -  y2 -  3 = 0, y = -  1, y = 2; (d) x = l/^/y, y = 2, y = 3.

5 Find the area enclosed by each of the following curves and the y-axis:
(a) x = (y — l)(y — 4) (Why is this negative?),
(b) x = 3y — y2,
(c) x = y(y — 2)2.

6 Find the area enclosed by y2 =  4x and the straight lines x =  1 and x = 4.
7 Find the area enclosed by y2 = x +  9 and the y-axis, by taking an element of 

area (a) parallel to the y-axis, and (b) parallel to the x-axis.
8 Find the area enclosed by 9x2 +  y — 16 = 0 and the x-axis, by integrating

(a) with respect to x, and (b) with respect to y.
9 Calculate the areas enclosed by

(a) y = 1/x2, y =  1 and y =  4; (b) x =  1/y2, y = 1, y =  4, and x = 0.
10 Find the area of the segment cut off from each of the following curves by the 

given straight line:
(a) y =  x2 — 2x + 2, y =  5; (b) y =  x2 — 6x + 9, y = 1;
(c) y = -  x2 + 3x -  4, y = -  4; (d) y = x(x -  2), y = x;
(e) y = 4 — 3x — x2, 2x -I- y +  2 =  0; (f) y =  x2 — 6x -I- 2, x + y — 2 = 0.

11 Find the area enclosed by each of the following pairs of curves:
(a) y = x(x — 1) and y = x (2 — x),
(b) y = x(x + 3) and y = x(5 — x),
(c) y = x2 — 5x and y =  3x2 — 6x,
(d) y2 = 4x and x2 = 4y,
(e) y = x2 — 3x — 7 and y =  5 — x — x2,
(f) y = 2x2 + 7x + 3 and y =  9 +  4x — x2.

12 Find the area of the segment cut off from y = 1/x2 by 10x + 4y — 21 =0, 
given that one of the points of intersection of the straight line and the curve is 
( - ! , ¥ ) •

13 By reference to a clear diagram, show that if f(x) is an odd function, then
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■* +a

f(x) dx = 0
J - a

Show also that if g(x) is an even function, then
'+ a  r + a

g(x) dx = 2 g(x) dx 
J  - a  Jo

14 Prove, using the method of Example 2 in the text, that

[You will need to quote that 1 +  8 + 27 + ... + (IV — l )3 = N 2(N — l)2/4.]

Solids of revolution
8.5 If we take a triangular piece of cardboard ABC with a right angle at B, and 
rotate it through 360 degrees about AB, we sweep out the volume of a right 
circular cone (Fig. 8.12). The cone can thus be thought of as the solid of 
revolution generated by rotating the area ABC about the line AB.

Figure 8.12

Qu.4 State the solid generated by rotating through 360 degrees:
(a) the above triangle ABC (i) about BC, (ii) about AC,
(b) the area of a semi-circle about the bounding diameter,
(c) a quadrant of a circle about a boundary radius,
(d) the area of a circle centre (3, 3) radius 1, about the y-axis,
(e) a rectangle about one of its sides.

The method of calculating the volume of a solid of revolution is best 
illustrated by discussing an example; the ideas involved are the same as those of 
§8.3.



Example 6 Find the volume of the solid generated by rotating about the x-axis 
the area under y = f  x from x  = 0 to x  =  4.

A typical element of area under y =  fx  is ySx, shown shaded in Fig. 8.13; 
rotating this area about the x-axis we generate the typical element of volume, a 
cylinder of volume ny2Sx. The corresponding ‘slice’ of the solid (Fig. 8.14) has 
one circular face of radius y, and the other of radius y + Sy, and its volume lies 
between that of an ‘inside’ cylinder ny2Sx, and an ‘outside’ cylinder n(y + Sy)23x.
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The sum of the volumes of all the ‘inside’ (or ‘outside’) cylinders is an 
approximation to the volume required, and, by making 5x sufficiently small, we 
can make this sum approach as close as we please to the volume of the solid of 
revolution, which may therefore be written as

x  = 4
the limit, as Sx —► 0, of £  ny2Sx

x =  0

This may be evaluated as 

presented as follows.

'4

tty2 dx; thus the solution of this example may be
o

9x^
The element of volume = ny23x = 7i — - Sx

16
f 4 9x2.'. the required volume = n ---- dx

Jo 16
4

0

3 x 43
= 71

16

= 12ti
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Qu.5 Find the volume of the solid generated by rotating about the x-axis
(a) the area under y — x 2 from x = 1 to x = 2 ,
(b) the area under y = x2 +  1 from x =  — 1 to x = + 1 . '

The volumes of solids generated by rotating areas about the y-axis may be 
evaluated by integration with respect to y. This, and other aspects of this work, 
are illustrated by the following examples.

Example 7 Find the volume of the solid generated by rotating about the y-axis 
the area in the first quadrant enclosed by y = x2, y = 1, y = 4 and the y-axis 
(Fig. 8.15).

The element of volume = nx2Sy = nydy 
r4

.'. the required volume = ny dy
J i

4

?ny 2
1

= jtt  x 16 — jti

1 5tc 
~1

Example 8 The area of the segment cut off by y = 5 from the curve y = x2 + 1 is 
rotated about y = 5; find the volume generated (Fig. 8.16).

The points of intersection occur when

x2 + 1 = 5
x2 = 4
x = — 2 or +2

The element of volume = 7t(5 — y)2(5x
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Figure 8.16

the required volume =

= 7i(5 — x 2 — l)2ôx 
= 7i(16 — 8x2 + x 4)5x

'  +2

7i(16 — 8x2 + x 4) dx
-2

rc(16x — §x3 + J X 5 )

+ 2 

- 2

= tt(3 2 - 2 1 |  + 6 f ) - 7 i ( - 32+ 2 1 i - 6 | )

= 34^71

Example 9 The area of the segment cut off by y = 5 from the curve y = x 2 + 1 is 
rotated about the x-axis; find the volume generated (Fig. 8.17).

The solid generated is a cylinder fully open at each end, but with the internal 
diameter decreasing towards the middle; its volume is found by subtracting the 
volume of the cavity from the volume of the solid cylinder of the same external 
dimensions.

The required volume = the volume generated by rotation, about the x-axis, 
of the rectangle ABDE (1)

minus the volume generated by rotation, about the x-axis, 
of the area under y = x 2 + 1 from x = —2 t o x = + 2, 
i.e. ABCDE (2)

Volume (1) = nr2h = tc x  52 x 4 =  IOOti

Element of Volume (2) =  7ty2<5x
= 7t(x4 +  2x2 + l)<5x

C + 2
7 t (x 4 + 2x2 + 1) dx.'. Volume (2) =

- 2
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y  =  x 2 +  1

Figure 8.17

.'. Volume (2) = ”( t  + 5x1 + x
+ 2 

- 2
= 7i(6| +  5i + 2 ) - 7 t ( - 6 | - 5 i - 2 )

= 27*7t

the required volume =  IOOtt — 27^71 
= 7 2 * tt

Exercise 8c

Leave n in the answers.

1 Find the volumes of the solids generated by rotating about the x-axis each of 
the areas bounded by the following curves and lines:
(a) x +  2y — 12  = 0, x =  0, y =  0; (b) y = x2 + 1 , y =  0, x = 0, x =  1 ;
(c) y = yjx, y =  0, x =  2 ; (d) y = x(x - 2), y = 0;
(e) y = x2(l -  x), y = 0; (f) y =  1/x, y = 0, x = 1, x =  4.

2 Find the volumes of the solids generated by rotating about the y-axis each of 
the areas bounded by the following curves and lines:
(a) y = 2x -  4, y = 2, x =  0; (b) x =  J ( y  -  1), x =  0, y = 4;
(c) x — y 2 — 2 = 0, x = 0, y =  0, y = 3; (d) y2 = x +  4, x = 0;
(e) y = 1 -  x3, x = 0, y = 0; (f) xy = 1, x = 0, y =  2, y = 5.

3 Find the volumes of the solids generated when each of the areas enclosed by 
the following curves and lines is rotated about the given line:
(a) y = x ,x  = 0 ,y  = 2, about y = 2;
(b) y = yjx, y = 0, x =  4, about x = 4;
(c) y2 = x, x = 0, y — 2, about y — 2 ;
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(d) y =  2 — x2, y =  1, about y =  1;
(e) y = x3 — 2x2 + 3, y =  3, about y = 3;
(f) y = 1/x2, y = 4, x = 1, about y = 4.

4 Repeat No. 3 for the following areas:
(a) x — 3y + 3 = 0, x = 0, y = 2, about the x-axis;
(b) x — y2 — 1 = 0, x = 2, about the y-axis;
(c) y2 = 4x, y = x, about y = 0;
(d) y = 1/x, y = 1, x = 2, about y = 0.

5 Obtain, by integration, the formula for the volume of a right circular cone of 
base radius r, height h. (Consider the area enclosed by y = (h/r)x, x =  0 and
y = h.)

6 The equation of a circle centre the origin and radius r is x2 + y2 = r2. By 
considering the area of this circle cut off in the first quadrant being rotated 
about either the x- or y-axis, deduce the formula for the volume of a sphere 
radius r.

1 A hemispherical bowl of internal radius 13 cm contains water to a maximum 
depth of 8 cm. Find the volume of the water.

8 A goldfish bowl is a glass sphere of inside diameter 20 cm. Calculate the 
volume of water it contains when the maximum depth is 18 cm.

9 A wall vase has one plane face, and its volume is equivalent to that generated 
when the area enclosed by x = ^ y 3 + 1, the y-axis and y = 8 is rotated 
through 2 right angles about the y-axis, the units being cm. Calculate its 
volume.

10 The area under y =  ^x2 + 1 from x = 0 to x = 3, and the area enclosed by 
y = 0, y = 2, x = 3, and x = 4, are rotated about the y-axis, and the solid 
generated represents a metal ash tray, the units being cm. Calculate the 
volume of metal.

11 The area enclosed by y =  x2 — 6x + 18 and y =  10 is rotated about y = 10. 
Find the volume generated.

12 The area enclosed by y = x2 + 1/x, the x-axis and x =  — 2, is rotated about 
the x-axis; find the volume generated.

13 The area enclosed by y = 4/x2, y = 1 and y = 4 is rotated about the x-axis; 
find the volume generated.

14 The area enclosed by y = x2 — 6x + 18 and y = 10 is rotated about the y-axis; 
find the volume generated. [Take an element of area parallel to the x-axis of 
length (x2 — x , express the typical element of volume in terms of y by using 
the fact that Xj and x2 are the roots of x2 — 6x + (18 — y) =  0; see §9.7.]

15 Repeat No. 14 for the area enclosed by 4y = 4x2 — 20x + 25 and 4y = 9.

Centre of gravity
8.6 The reader who has dealt with this topic in mechanics will be familiar with 
the fact that, for a system of bodies whose centres of gravity lie in a plane, taking 
moments about any line in the plane,

the moment of their total weight acting at the centre of gravity of the system 
= the sum of the moments of the weight of each body
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If n bodies of weight w1; w2, w3, ... wn have their centres of gravity at (xj, y j ,  
(x2, >2)> (*3, >’3) ••• (x„, >„) respectively, writing the coordinates of the centre of 
gravity of the system as (x, y), and taking moments about the y-axis,

x ( W !  +  W 2  +  W 3  +  . . .  +  W „ )  =  X j W j  +  X 2W2 +  X 3 W 3  +  . . .  +  x nwn

Using the £  notation,

x  y , w = X  xyv
Similarly, taking moments about the x-axis,

y ' Z w = H y w
If, instead of separate bodies, we consider the elements of area of a uniform 

lamina, then £  xw and £  yw become the sums of the moments of the weights of 
the elements about the axes, and these can be evaluated by integration.

Example 10 Find the centre of gravity of a uniform lamina whose shape is the 
area bounded by y2 = 4x and x =  9.

By symmetry the centre of gravity lies on the x-axis, hence y = 0.
Consider the lamina as made up of strips parallel to the y-axis, then if the 

weight per unit area is p, a typical element (Fig. 8.18) at a distance x from the 
y-axis has weight p x 2y x Sx and its moment about the y-axis is x x Ipydx.

Figure 8.18

The sum of the moments of the weights of the elements
x = 9 

x =  0
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and the lim it  o f this, as <5x-»0, is evaluated as

2 P xy dx

The weight o f the who le lam ina
= p x twice the area under y =  2 x 1/2 from  x  =  0 to  x  =  9

=  2 p 
Since 

x  x 2 p

.'. x

y dx

* 2 >  = £ x w

y d x  =  2p xy  dx

y dx  =
o

But y =  2 x 1/2, 
- 9

'. X 1/2 d x  =
o

xy dx

c3/2 dx

. . X 2 3/23^ 2 5/25*

x  x § x 33 =  |  x 35
• v — -2.2.• • X — 5

the centre o f g ra v ity  o f the lam ina  is at ( ^ ,  0).

Example 11 Find the centre of gravity of a uniform lamina whose shape is the 
area bounded by y =  x 2, the x-axis and x = 4 (F ig . 8.19).

Figure 8.19
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Let the weight per unit area be p. 
Taking moments about the y-axis,

'4

x x  p | y dx =  p 
jo

y dx ^

xy  dx

xy  dx

But y = x 2,
4  C 4

.'. x | x2 dx =  x3 dx 
jo Jo

..  x

•. x x ^ x 43 = J x 44

1 ^.3
4 1 ~4

3 * = i x
_ 0 _

x =  3

The centre of gravity of the element is at its mid-point, thus the moment of its 
weight about the x-axis is j y  x pydx.

Taking moments about the x-axis,

y x p

y

y

y dx = p

y dx =

x2 dx =

j y  dx

ï y 2 dx

j x 4 dx

i „ 33X O - v 510x■ • y

■ ÿ  x 3 X 43 =T5 x 451 0

the centre of gravity of the lamina is at (3, ^f ).

Qu.6 Find the centre of gravity of the lamina whose area is bounded by
(a) y2 = x and x = 2, (b) y = yjx, y = 0 and x = 2.

The centre of gravity of a solid of révolution may be found in the same way, 
since the centre of gravity of each element of volume lies in the plane of the axes.

Example 12 Find the centre of gravity of the solid generated by rotating about 
the x-axis the area under y = x from x =  0 to x =  3 (Fig. 8.20).

The solid is a cone, vertex O, and axis Ox. By symmetry, the centre of gravity 
lies on the x-axis.
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Figure 8.20

Let the weight per unit volume be p.
The centre of gravity of the element of volume is on the x-axis, thus the 

moment of its weight about the y-axis is x x pny25x.
Taking moments about the y-axis,

x x  p

. . x

Tty2 dx =

y2 dx =

xpny2 dx

xy2 dx

But y = x,

fx J iv*4X

x x j x 33 =  j x 34
V  _  9
X  —  4

the centre of gravity of the cone is at ( f , 0).
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Exercise 8d
Ex 8d

In Nos. 1 to 3, find the coordinates of the centre of gravity of the uniform lamina 
whose area is bounded by the given straight lines and curves.

1 (a) y2 = 9x, x = 4; (b) y = \ x 2, y=  1;
(c) y2 -  4 — x, the y-axis; (d) y = 1/x2, y = 1, y = 4.

2 (a) x  + y 2 — 1= 0 , the y-axis;
(b) y =  x 2 +  2, x =  — 1, x =  +  1 and y = 0.

3 (a) y = \x ,  y = 0, x = 12; (b) x =  2 j y ,  y =  1, x =  0;
(c) y = x2, y = 0, x =  3; (d) y = x3, y = 0, x =  2.

4  Find the centres of gravity of the solids of revolution generated when the areas 
bounded by the following straight lines and curves are rotated about the given 
axes:
(a) x + 3y — 6 = 0, x =  0, y =  0, about the x-axis;
(b) y = 2yjx, y =  0, x =  4, about the x-axis;
(c) y2 = 4x, y = 4, x =  0, about the y-axis;
(d) y = x2(2 — x), y = 0, about the x-axis;
(e) y = 1/x2, y = 0, x = 1, x = 2, about the x-axis;
(f) y = x3, y = 1, y = 8, x = 0, about the y-axis.

5 By considering the solid generated by rotating, about the x-axis, the area 
enclosed by y =  (r/h)x, the x-axis and x = h, deduce the position of the centre 
of gravity of a right circular cone.

6 The equation of the circle centre the origin, radius r, is x2 -I- y2 = r2. By 
considering the solid generated by rotating about either axis the area of one 
quadrant, deduce the distance of the centre of gravity of a solid hemisphere 
from its plane surface.

7 A goldfish bowl consists of a sphere of inside radius 10 cm. If it contains water 
to a maximum depth of 16 cm, find the height of the centre of gravity of the 
water above the lowest point.

8 A uniform lamina is of the shape of the quadrant of the circle x2 + y2 = r2 cut 
off by the positive axes. Find the coordinates of its centre of gravity.

Exercise 8e (Miscellaneous)
*1

1 Calculate x(x2 1) dx.

Find the area bounded by the curve y =  x(x2 — 1) and the x-axis 
(a) between x = — 1 and x = 0, and (b) between x =  0 and x =  1.

2 Find the area between the curve y = x(x — 1)2(2 — x) and the portion of the 
x-axis between x = 1 and x = 2.

3 The line y =  \ x  + 1 meets the curve y =  ¿(7x — x2) at the points A and B. 
Calculate the coordinates of A and B and the length of the line AB. Prove 
that the segment of the curve cut off by the line has an area 1 g.

4 The area enclosed between the line x = 1, the x-axis, the line x =  3 and the 
line 3x — y -I- 2 = 0, is rotated through four right angles about the x-axis.
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Find the volume generated.
5 Solids of revolution are generated by rotating

(a) about the x-axis the area bounded by the arc of the curve y = 2x2 
between (0, 0) and (2, 8), the line x =  2 and the x-axis;

(b) about the y-axis the area bounded by the same arc, the line y = 8 and the 
y-axis.

Calculate the volumes of the two solids so formed.
6 The corners of a trapezium are at the points (0, 2), (2, 2), (0, 4), (3, 4). Find the 

volume of the solid formed by revolving the area about the y-axis.
7 Sketch the curve y =  x2(l — x). The area between the curve and the part of 

the x-axis from x = 0 to x = 1 is rotated about the x-axis. Find the volume 
swept out.

8 The portion of the parabola y = f^/x  between x = \  and x = 2 is revolved 
about the x-axis so as to obtain a parabolic cup with a circular base and top. 
Show that the volume of the cup is approximately 2.75.

9 Find the equation of the tangent to the curve y =  x — 1/x at the point (1,0).
The area between the curve, the x-axis and the ordinate x = 2 is rotated 

about the x-axis. Prove that the volume thus obtained is fit.
10 The curve y = x2 + 4 meets the axis of y at the point A, and B is the point on 

the curve where x = 2. Find the area between the arc AB, the axes, and the 
line x =  2.

If this area is revolved about the x-axis, prove that the volume swept out is 
approximately 188.

11 The area bounded by the x-axis, the line x = 1, the line x =  4, and the curve 
y 2 =  4x3 is rotated about the x-axis. Find the volume of the resulting solid.

(C)
12 A cylindrical hole of radius 4 cm is cut from a sphere of radius 5 cm, the axis 

of the cylinder coinciding with a diameter of the sphere. Prove that the 
volume of the remaining portion of the sphere is 367t cm3.

13 Find the area bounded by the curve y =  3x2 — x3 and the x-axis. Find the 
x-coordinate of the centre of gravity of this area.

14 Find the area bounded by the x-axis and the arc of the curve

y = x2(x — 1)(3 — x)

from x = 1 to x = 3. Find also the x-coordinate of the centre of gravity of this 
area.

15 Find the area and the x-coordinate of the centre of gravity of the lamina 
whose edges are formed by the lines x =  0, y =  0, and the part of the curve 
y = (1 — x)(5 + 4x + x2) which is cut off by these lines in the first quadrant.

16 (a) Find the area bounded by the curve y = x2, the x-axis and the ordinates
x =  1 and x = 2.

(b) Find the x- and y-coordinates of the centre of gravity of this area.
17 Find the coordinates of the centre of gravity of the area enclosed by the 

x-axis and the curve y = x2(3 — x).
18 Find the area bounded by the curve y = (x-I-l)(x — 2)2 and the 

x-axis from x = — 1 to x = 2. Also find the x-coordinate of the centre of



Chapter 9

Some useful topics in algebra

all represent the same number. Again, it may not be clear on first sight that 
1 /( 7 2  — 1) and 7 2  + 1 are equal.

Since square roots frequently occur in trigonometry and coordinate geome­
try, it is useful to be able to recognise a number when it is written in different 
ways, and the purpose of this section is to give the reader practice in this.

The reader may have found an approximate value of * j2 x  1.414 213 562 on a 
calculator and may know that this decimal does not terminate or recur. The 
ancient Greeks did not use decimals, but they discovered that J 2  could not be 
expressed as a fraction of two integers (see §2.4). Such a root (^3 , ^ 5 , ^ 6  are 
other examples) is called a surd. In general, a number which cannot be expressed 
as a fraction of two integers is called an irrational number.

Qu. 1 Square: (a) 72 , (b) J 6 ,  (c) J a , (d) J(ab), (e) 3^2, (f) 4^5 , (g) 2 ja ,  
(h) V2 x V3, (i) 7 5  x 77, (j) V2 x V8, (k) ^1 2  x ^ 3 , (1) 7 «  x 7 b.

Note that the answers to parts (d) and (1) are the same, i.e. 

7 (ab) = yja x 7 h

This result will be used in the next example.

Example 1 Write J  63 as the simplest possible surd.

The factors of 63 are 32 x 7.

Surds
9.1 It is not immediately obvious that

.'. 763 = V(32 x  7) =  7 3 2 x  7 7  = 377

Example 2 Express 6yj5 as a simple square root. 

6 7  5 =  7 3 6  x 75  =  7 ( 3 6  x 5 ) =  7 1 8 0

173
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Example 3 Simplify v'50 + — 2^/18 + >/8.

750 + V2 -  2^18 + V8 = 5^2  + 7 2  -  2 x 3^/2 +  2^/2
= 8^ 2 —6V 2
= 2 V 2

It is usual not to write surds in the denominator of a fraction when this can be 
avoided. The process of clearing irrational numbers is called rationalisation.

Example 4 Rationalise the denominators of (a) , (b) -— .

(a) Multiply numerator and denominator by y/2. Thus

_ L _ _ L  4 1  = ^11 
•v/ 2  V 2 X V 2 2

(b) Multiply numerator and denominator by the denominator with the sign 
of 7 2  changed:

1 1 3 +  sj2
3 - 7 2  “ 3 - 7 2  X 3 + 72

3 + 7 2  
9 - 2

= ^(3 + 72)

Exercise 9a (Oral)
1 Square:

(a) V 5’ (b) 7 i (c) 473, (d) *72, (e)

(f) 7 3  x 7 5> (g) 7 3  x 77 , «  2VP-
(j)

3 7 a
7(26)

2 Express in terms of the simplest possible surds:
(a) 78 , (b) 7 1 2 ,
(e) 745, (f) 7 1 2 1 0 ,
(i) 772, (j) 798,

3 Express as square roots: 
(a) 372, (b) 273,
(e) 378, (f) 676,

T3
3 ’(i) (j)

(c) 7 27>
(g) 775>
(k) 760,

(c) 475,
(g) 872,

72(k) 2 7 3 ’

(d) 750, 
(h) 732,
(l) 7 5 1 2 .

(d) 276,
(h) 1 0 7 1 0 ,

4 Rationalise the denominators of the following fractions:



(a)

(e)

(i)

( m )

1 „ , 1
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1 2
V5’ (W 7 r (C) " T í * ,d» 7 3 -
3 1 3 9

76’ (f) 272’ (g) lsj 3 ’ ( h ,4 V « ’
1

V 2 + 1 ’
1

V 5 - V 3 ’

Exercise 9b

(j)

( n )

1

2 - V 3 ’
3

V 6 - V 5 ’

(k)

(o)

1

4 - V 1 0 ’

1

3 — 2yJ 2 ’

(1)

(P)

V 6 + 2 ’

1

3 V 2 -2 V 3 -

Calculators should not be used in this exercise.

1 Simplify.
(a) 7 8  + 7 1 8 - 2 7 2 ,  (b) 775  + 2 7 1 2 -7 2 7 ,
(c) 728  + 7 1 7 5 - 7 6 3 ,  (d) 7 1 0 0 0 - 7 4 0 - 7 9 0 ,
(e) 7 5 1 2  +  7 1 2 8  +  7 3 2 , (f) 7 2 4  -  3 7 6 - 7 2 1 6  +7294.

2 Given that 7 2  = 1.414 ... and y/3 = 1.732 ..., evaluate correct to 3 significant
figures:
(a) 7648 , (b) 75 .12 ,

,C) V 3 - V 2 -
(d) (3 +  7 2 ) 2, (e) 7 î — V  i  > (f) 70 .0675.

3 Express in  the fo rm  A +  B ^ / C :

(b) ( 7 5  +  2 7 (c) (1 +  7 2 ) (3 — 2 7 2 ),

(d) (7 3  - 1)2, (e) ( 1 - 7 2 ) ( 3 +  2 7 2 ), (f) 7 i  +  7 i  +  7 i

(g) 7  i — V  2V >
(h> v W ¿ -  ® V 3 +- 1 -

(¡i  -j 5 + i
7 5 - r (k) ^ 8 +  3 

( j 7 1 8  +  2 ’ 0 ) 7 3  +  2 +  7 _ 2 .

4 Rationalise the denom ina to rs o f

(a) ^ 3 + V 2 
(a) + > (b) ^ 5 +  1

W  7 5 - 7 3 ’
( 0  2 V 2 ~ V 3
^  7 2  +  V 3  ’

(d) ^ 2 +  2V 5 
(  ̂ 7 5 - V 2  ’

tci 7 6 +  V 3 
( ) 7 6 - 7 3 ’

7 1 0  +  2 7 5
^  7 1 0  +  7 5 '

5 Express in surd form and rationalise the denominators:

____ 7  _  2 1 + tan 60°
1 + cos 45°’ b 1 -  cos 30° ’ C 1 - tan 60°’
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( d )
1 + tan 30°
1 -  tan 30° ’

1 +  sin 45°
1 -  sin 45°’ (f) (1 — sin 45°)2

Laws of indices
9.2 It is assumed that the reader knows the three laws of indices for positive 
integers:

We shall now assume that these laws hold for any indices, and see what 
meaning must be assigned to fractional and negative indices as a result of this 
assumption.

Rational indices
9.3 We know that 43 = 4 x 4 x 4, but so far 41/2 has not been given any 
meaning. If rational indices are to be used, clearly it is an advantage if they are 
governed by the laws of indices. This being so, what meaning should be given to 
41/2? By the first law of indices,

41/2 x 41/2 = 41 = 4

Therefore 41/2 is defined as the square root of 4 (to avoid ambiguity we take it to 
be the positive square root) and so 41/2 = 2. Similarly, a112 = y/a.

To see what value should be given to 81/3, consider

81/3 x 81/3 x 81/3 = 81 = 8

Therefore 81/3 is defined as ^ 8 , which is 2. Similarly, a1/3 = a.
In general, taking n factors of aljn,

Next consider 82/3. We know that 81/3 =  2, so 

82/3 = 81/3 x 81/3 = 2 x 2 = 4

Therefore we must take 82/3 to be the square of the cube root of 8, and in general 
am/" must be taken to be the mth power of f] a (or the nth root of am), and we may 
write

am/n = njam

Qu.2 Find the values of
(a) 91/2, (b) 271/3, (c) 272/3, (d) 41/2,
(e) 43/2, (f) 95/2, (g) 84/3, (h) 163/4.

(1) am x a" = am + n
(2) am =  a" = am_”, (m > n )
(3) {am)n = amn

a U n  x a l/n x x  fll !n =  a

so that



(a)

(e)

(i)

( m )

1 , 1

Some useful topics in algebra 175 

1 2

V 5’ ( b ) + - (c) ~ T r
3 1 3 9

7 6 ’ *■ 2 7 2 ’ (g) 273  ’ ,h ) 4 + -
1

7 2 + r
1

V 5 - V 3 ’

Exercise 9b

O')

( n )

1

2 - V 3 ’
3

V 6 - V 5 '

( k )

(o )

1

4 - V 1 0 ’

1

3 - 2 ^ 2 ’

(1)

(p)

7 6  + 2 ’

1

3 7 2 - 2 7 3 -

Calculators should not be used in this exercise.

1 Simplify:
(a) 7 8  + 7 1 8 - 2 7 2 ,  (b) 775  + 2 7 1 2 - 7 2 7 ,
(c) 728 + 7 1 7 5 - 7 6 3 ,  (d) 7 1 0 0 0 - 7 4 0 - 7 9 0 ,
(e) 7512 + 7128 +  732, (f) 724  -  3 7 6 - 7 2 1 6  +7294.

2 Given that 7 2 =  1-414 ... and 7 3  = 1.732 ..., evaluate correct to 3 significant 
figures:

(a) 7648, (b) 75.12, (c)

(d) (3 + 7 2 )2, (e) 7 1  —7 i  (f) 70.0675.

3 Express in the form + +  B^JC:

(a) 3 - 7 2 ’
(b) (75  + 2)2, (c) (1 + 7 2 ) ( 3 - 2 7 2 ),

(d) ( 7 3 - l ) 2, (e) (1 -  72) (3 + 272), (f) 7 i  + 7 ¿  + 7 i

(g) 73  “ 7^7 ’ (h) + V l è s ’ to V 3 + 2W 2 7 3 - I ’

(j) ^ 5 + i
7 5 - r

(k) ' / 8 + 3
( j 7 1 8  + 2 ’ C) +  + 2 + v 7 2 .

4 Rationalise the denominators of

(a) ^ > + ' /2
( a ) 7 3  - V 2 ’

(c)
2 7 2 - 7 3  

7 2  + V 3 ’

(d) V 2 + 275  
W  7 5 - 7 2  ’ «■»

(f)
7 1 0  + 2 7 5

7 1 0  + 7 5  '
5 Express in surd form and rationalise the denominators:

1
(b)

2 1 + tan 60°
( c )(a) 1 + cos 45° ’ 1 -  cos 30° ’ 1 -  tan 60° ’
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Zero and negative indices
9.4 So far 2° has been given no meaning. Again it is desirable for it to be given 
a meaning consistent with the laws of indices, so we divide 2 1 2 by 2 1 using the 
second law:

2 1 — 2 1 = 2°

But 21 h- 21 = 1, so 2° must be taken to be 1. In the same way, a" h- a" = a0, so 

a0 =  1 (a 0)

Qu. 3 Why does the above not hold for a =  0?

To find what meaning must be given to 2“ \  divide 2° by 21, using the second 
law of indices:

2° -h 2 1 =  2 “ 1

But 2° -h2 1 =  1 - ^ 2 = j , therefore we must take 2 “ 1 to be j .
Similarly,

Thus 2 3 is the reciprocal of 23.
In the same way

. - - ia"

that is, a "  is the reciprocal of a".

Example 5 Find the value o f (27/8)~2/3.

Using the last result, (27/8)"2/3 = (8/27)2/3. 
Taking the cube root,

/2 7 \  “ 2/3 _  4

W

Example 6

Multiply numerator and denominator by 2(1 + x )1/2.
(1 +  x )1/2 — j x ( l  +  x ) - 1/2 2(1 +  x ) — x2(1 +  x ) — x  

2(1 +  x )3/21 +  x  2(1 +
2 +  x

2(1 +  x )3/2
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Exercise 9c (Oral)
1 Find the values of

(a) 251/2, (b) 271/3, (c) 641/6, (d) 491/2,

«  r -
(f) i 1/4, (g) ( - 8)1/3, (h) ( - I ) 1/5,

(i) 84/3, (j) 272/3, (k) 253/2, (1) 493/2,

« e r

/4 \l/2

<■>(9)  • «» ( ? r
, , / i 6V /4(p)UJ •

2 Find the values of

(a) 7°, (b) 3 - \ (C) 5°, (d) 4 - 1,

(e) 2 ~ \
1 <N1 (  4 \°

(h) ( 9 )  ’

(i) 3 - 3, (j) ( —6)_1, «H) - •  r

W j 1! .
2“ 1

( ,  2° * r

3 Find the values of

(a) 8 ~1/3, (b) 8_2/3, (c) 4 1/2, (d) 4_3/2,

(e) 27 ~2/3, « e r ,8) ( I ) ' “ «  gt-
(  A \ - 1/2

® ( 9 )  • ® gt- «GT- O (f)_4,s
Exercise 9d
1 Find the values of

(a) 2561/2, (b) 12961/2, (c) 641/3, (d) 2161/3,

(e) (2 i)1/2, (0 ( i | ) 1/2, (g) 8_1/3, (h) 4_3/2,

(i) 64“ 2/3, (j) 81 3/4, « (tr /  1 \ " 3/2 

® U )  ■

« ( r -
(n) 1.3311/3, (0) 0.04 “ 3/2,

4 - 3/2

Ip) g- 2/3 •

2 Find the values of
I61/3 x 4 1/3 „  ̂ 271/2 x 2431/2 , , 323/4 x 16° x 85/4

(a) jj > (b) ’ (C) 128372



( d )
61/2 x 961'4 

2161/4 ’ (e)
1 2 1/3 x 61/3

8 I17® !
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(f)
81/6 x 41/3 

321/6 x k61/12 '

3 Simplify:
(a) 8" x 22n -f- 43",
(b) 3" + 1 x 9" h- 27(2/3)n,
(c) i 6<3/4>n^ 8(5/3)" x 4" + 1,
(d) 9“(1/2)" x 3n+2 x 81 1/4,
(e) 6(1/2,b x 12"+1 x 27“(1/2)n- 3 2 (1/2)n,
(f) 10(1/3,n x 15(1/2)" x 6(1/6)" -f- 45(1/3,n.

4 Simplify:

(a)

(c)

(e)

X  2/3 X  x 1/4

w-1/6
ihl x x ' /3 x 2y1/4
W  (x 10y 9) 1/12

x2n+1 x x 1/2

V *3" ’
x P +  (l/2)q x  y 2 p - q

( d )

(f)

x^n + ^
x 2n + 2 i x  ^Jx 2 n ~ 3 '  

X ~ 2/3 X  y _1/3

(xy2)p x yjxq ’ ^  (x4y2) 1/6

5 Simplify:

x2(x2 + 1)_1/2 — (x2 +  1)1/2
(a) ----------------- ,

(b)

(c )

| x ( l - x ) - 1/2 + ( l - x )1/2 
x2

1 x ^ ( 1  + x) - -1/2 -  j x ~ :1/2( l+ x )

Í1 d" x)1/3 — i x (1 + x) 2/3
W  (1 + x)2/3

(e)
V (1 -  x)j(l + x) ~ 1/2 + j ( l  -  x ) - ll2J ( l  + x)

Logarithms
9.5 Readers will probably be familiar with the use of logarithms for multiplica­
tion and division, but there are certain properties of logarithms that are useful in 
more advanced work. Having just considered indices, this is the appropriate place 
for logarithms because a logarithm is an index.

From a calculator we can see that the logarithm of 3, to base 10, is 0.47712 
(correct to five decimal places). This means that io 0-47712 = 3, working to five 
significant figures. The statement ‘the logarithm of 3, to the base 10, is 0.47712’ is 
abbreviated to log10 3 = 0.47712.

Similarly, jo0-90309 % 8, which may be expressed as log10 8 ss 0.90309.
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Now 23 = 8, and this statement may also be written in logarithmic notation. 
Here the base is 2 and the index (i.e. logarithm) is 3, thus log2 8 = 3.

Qu.4 What are the bases and logarithms in the following statements?
(a) 102 = 100, (b) io 1-6021 »  40, (c) 9 = 32,
(d) 43 =  64, (e) 1=2°, (f) 8 =  (l/2)“ 3,
(g) ab = c.

Exercise 9e (Oral)
1 Express the following statements in logarithmic notation:

(a) 24 = 16, (b) 27 = 33, (c) 125 = 53,
(d) 106 =  1 000 000, (e) 1728 =  123, (f) 64 = 163/2,
(g) 104 = 10 000, (h) 4° =  1, (i) 0.01 =  10 “ 2,
(j) 2 = 2 “ \ (k) 93/2 =  27, (1) 8” 2/3 = | ,
(m) 81 = (1/3)'4, (n) c° = 1, (o) 16“ 1/4 =  i
(P) (1/8)° = 1, (q) 27 = 813/4, (r) 4 =  (1/16)~1/2.
(s) ( — 2/3)2 = 4/9, (t) (u) c = a5,
(v) a3 = b, (w ) p q = r, (x) a = bc.
Express in index notation:
(a) log2 32 = 5, (b) log3 9 = 2, (c) 2 =  log5 25,
(d) log10 100 000 = 5, (e) 7 =  log2 128, (f) log9 1 = 0,
(g) - 2  = log3i (h) log4 2 = i (i) log, 1 = 0,
(j) log27 3 = j , (k) 2 = log, x, (1) log3 a = b,
(m) log, 8 = c, (n) y = logx z, (o) p =  log, r.

3. Evaluate:
(a) log2 64, (b) log!o 100, (c) log10 107, (d)loga a2,
(e) logg 2, (f) log4 1, (g) log27 3, (h) log2/3 f,

(i) log5 125, (j) logo i 10, (k) log, e3, (1) lo g ,-.
e

Two numbers can be multiplied by adding their logarithms and divided by 
subtracting them. The rules are familiar, but it is worth while proving them as an 
example of logarithmic notation.

Qu. 5 Write in logarithmic notation: a = cx, h — cy, ab = cx+y, a/b — cx y . 

Deduce that

logc a + log, b = logc ab, and that 

logc a -  logc b =  log, (a/b)

The logarithm of the nth power of a number is obtained by multiplying its 
logarithm by n. A method of proving this rule is suggested in the next question.

Qu. 6 Write in logarithmic notation: a = cx, a" = cnx.
Deduce that log, a” = n log, a.



In Qu. 5 and Qu. 6, the suffix c has been used to denote the base of the 
logarithms. However, when the same base is used throughout a piece of work 
(for example the answer to a single question or exercise) the suffix may be 
omitted. Using this convention, the results we have found above can be 
summarised as follows:

log a  + log b = log (a x b) 
log a — log b =  log (a/b) 

n x log a = log (a")

These three results are used in the next example.
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Example 7 Express log10
a2b3 

lOO^c
in terms of log10 a, log10 b, log10 c.

First note that J c  = c1/2. 
Using the two rules of Qu. 5,

log 10
a2b3

100c1/2 = logio fl2 + logio b3 logio 100 — log10 c1/2

Then by the rule of Qu. 6, and writing log10 

a2b3
l°g i° 100ci/2 = 2 l°8 io a + 3 logio b -  2

100 =  2, 

logio c

The logarithm, to base ten, of x is frequently written lg x. This abbreviation is 
used in the next example and in the exercise which follows.

Example 8 Simplify ^  .

[Note that 125 and 25 are both powers of 5, so their logarithms can be 
expressed in terms of lg 5.]

lg 125 lg 53 3 lg 5 3
lg 25 lg 52 2 lg 5 2

Example 9 Use tables or a calculator to find an approximate value o f log2 7.

Write x = log2 7, then 2X =  7. Since 2X = 7, their logarithms to the base of ten 
are equal, therefore

lg 2X = lg 7

x lg 2  = lg7

= 2.8074 (correct to five significant figures) 

Therefore log2 7 m 2.8074.
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Exercise 9f
Note Ig x = log10 x.

1 Express in terms of log a, log b, log c:

(a) log ab,

(d) loga2i>3/2,

(g) log Ja ,

(j) lg (10a),

(m) log
ab3

(b) lo g - , 
c (c) log i ,

(e) logpr, (f)
, a 1/364 5 6 7 
log c3 ,

(h) log Z]b, (i) log yj(ab),

W  '8 1006= ' (1)
108 ) ( ï )

(n) log ^  ,
<Jc (0) l 8 , / ( ï +

2 Express as single logarithms: 
(a) log 2 + log 3,
(c) log 4 + 2 log 3 — log 6,
(e) log c + logo,
(g) 2 log a — log b,
(i) j  log x —j  log y,
(k) 2 + 3 lg a,
(m) 2 lg a -  3 -  lg 2c,

3 Simplify:

(b) log 18- lo g  9,
(d) 3 log 2 + 2 log 3 — 2 log 6,
(f) log x + log y -  log z,
(h) 2 log a + 3 log b — log c,
Ü )  l o g P ~ i l o g

(1) 1 + lg a  —|lgfc,
(n) 3 lg x — i  lg y + 1.

(a) lg 1000, (b) i  log3 81,

(d) — log2 j ,  (e) j  log 8,

(g) - i l o g 4 ,  (h) 3 log 3 - lo g  27,

(c) i lo g 2 64,

(f) 2 log 49,
(i) 5 log2 - lo g  32,

(j)
log 8 
log 2 ’ (k )

log 81 
log 9 ’ (1)

log 49 
log 343 '

4 Solve the equations:
(a) 2X = 5, (b) 3* = 2, (c) 34x = 4,
(d) 2X x 2X+1 = 10, (e) (l/2)x =  6, (f) (2/3)x = 1/16.

5 Evaluate, taking log n = 0.4971 and e = 2.718:
(a) log2 9, (b) log! 2 6, (c) log3 n,
(d) loge 10 , (e) loge n, (f) log3

6 Show that loga b = l/logfc a,
(a) using the result log„ b x logb c =  loga c,
(b) from first principles.

7 Evaluate:
(a) 2.56121, (b) 1.570 576, (c) 2.7183 142,
(d) 0.5612/5, (e) 0.5133/2, (f) 0.00571 39.



The functions x\-> ax and x logB x
9.6 We can legitimately use the word function to describe x h-» 10* and 
x log10 x, because, in each case, for a given value of x, the rule will produce a 
unique result. In the case of x i—» 10*, the domain is R and the range is R +, and 
for x t-> log10 x, the domain is R + and the range is R. In most instances, the 
actual calculation of 10* or log10 x will be very complicated, but this does not 
matter; a calculator can be used where it is appropriate (the same remarks apply 
to the function x h * ^ x). More generally, if a is a fixed, positive, real number, 
x i ► ax and x i-> loga x, are perfectly satisfactory functions. (Note that the 
domains are R and R +, respectively.)

Qu. 7 If f(x) =  10* and g(x) = log10 x, find the values of
(a)f(l), (b) f(2), ( c ) f ( - l ) ,  (d) g(10), (e) g(l), (f) g (^ 10).
Qu. 8 If F(x) =  ax and G(x) = loga x, find
(a) F(l), (b) F(2), (c) F( — 1), (d) G(a), (e) G(l), (f) GQa).

The following special cases are very common and the reader is advised to 
commit them to memory:

loga 1 = 0 
loga a  =  1 
loga (1 / a )  = - 1

Remember that a logarithm is an index; the logarithm of q to base a is the power 
to which a must be raised to equal q, e.g. log10 1000 = 3, and log2 (1/8) = — 3. 
Thus if ap = q, then logB q = p, and these are equivalent statements, being simply 
alternative ways of stating the relationship between a, p and q. We can combine 
these statements in two ways:

log„ (ap) = loga (q) = p

and
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So, if f(x) = loga x and g(x) =  ax, then the composite functions fg and gf are given 
by

fg(x) = f(ax) = loga (ax) =  x

and

gf(x) = g(loga x) = a,ogaX = x

In other words, the composite function merely gives the original value of x; the 
function f ‘undoes’ the effect of function g, and function g ‘undoes’ the effect of 
function f; that is the functions f and g are inverses of one another.

This effect can easily be observed on a pocket calculator. Enter any positive 
number, say 5, press the ‘log’ function key (the display should show 0.69897), and 
then press the TO*’ function key. The display should return to the value 
originally entered, i.e. 5. Repeat this with other numbers; try it also with the
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functions in the reverse order. If your calculator is equipped with function keys 
for ex and loge x (these appear as exp and In on some calculators) try the same 
routine with this pair of inverse functions.

Sketches of the graphs of y = a* and log„ x are shown in Fig. 9.1. As with all 
inverse functions, the graphs are reflections of one another in the line y =  x.

Roots of quadratic equations
9.7 If an algebraic equation, in which the unknown quantity is x, is satisfied 
by putting x = c, we say that c is a root of the equation. For example 
x2 — 5x + 6 = 0 is satisfied by putting x = 2, so one root of this equation is 2 (the 
other is 3).

It is often useful to be able to obtain information about the roots of an 
equation without actually solving it. For instance, if a and P are the roots of the 
equation 3x2 + x — 1 = 0, the value of a2 + p2 can be found without first finding 
the values of a and p. This is done by finding the values of a + /J and a (I, and 
expressing a2 + p2 in terms of a + P and a/?.

The equation whose roots are a and P may be written

(x — a) (x — P) = 0 
.'. x2 — ax — Px + a.p =  0 
.'. x2 — (a + P)x + ap = 0

But suppose that a and P are also the roots of the equation 

a x 2 + bx  + c = 0

(1)
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which may be written

x2 + - x  + -  = 0 ■ (2)
a a

Now equations (1) and (2), having the same roots, must be precisely the same 
equation, written in two different ways, since the coefficients of x 2 are both 1 . 
Therefore

(a) the coefficients of x must be equal,
b

: .<x +  p =  - -
a

(b) the constant terms must be equal,

Note. If it is required to write down an equation whose roots are known, 
equation (1) gives it in a convenient form. It may be written:

x 2 — (sum of the roots)x + (product of the roots) = 0

Qu.9 Write down the sums and products of the roots of the following 
equations:
(a) 3x2 — 2x — 7 = 0, (b) 5x2 + 1 lx  + 3 = 0,
(c) 2x2 + 5x = 1, (d) 2x(x +  1) = x +  7.
Qu. 10 Write down equations, the sums and products of whose roots are 
respectively:
(a) 7, 12; (b) 3 , - 2 ;  (c) - i  - f ;  (d) f ,  0.
Qu. 11 Write down the sum and product of the roots of the equation

3x2 + 9x + 7 = 0.

Example 10 The roots of the equation 3x2 + 4x — 5 = 0 are a, /?. Find the values 
of(a) 1/a +  l/j8 , (b) a2 +  p2.

Both 1/a + 1 IP and a2 + p2 can be expressed in terms of a + P and otp.

<* + P = -  f ,  c t p = - i

(a) - + 1 a p
P + a 

a P

4
3̂
5 
3

4
5'

(b) a2 + p2 = a2 + 2aP + p2 — 2txP

= (a + P)2 — 2a.p =  ( — f )2 — 2( — I)

2 02 16  10•'•a 2 + j82 = — + — =
46
~9

Alternatively, since a and P are roots of the equation 3x2 + 4x — 5 = 0,

3a2 +  4a — 5 = 0 
3/?2 + 4/1 — 5 =  0
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Adding,

3(cc2 + p2) + 4(a + p) -  10 = 0 
3(a2 + p 2) — ^ —10 = 0

a2 + p 2 = ^  + ^  = ^ .

Example 11 The roots of the equation 2x2 — 7x + 4 = 0 are a, /?. Find an 
equation with integral coefficients whose roots are x/p, P/x.

Since a, p are the roots of the equation 2x2 — lx  + 4 = 0, we have

a + P = i  %P = 2

Then the required equation may be formed from equation (3) above, if the sum 
and product of a/p, p/x are expressed in terms of a + j3 and xp.

x p _  a2 + P2 (x + P)2 — 2xp 
P + x x P x p

—4 _  33 
~  2

Therefore the sum of the roots is

Therefore the product of the roots is 1.
Hence the equation with roots x/P, P/x is

x2 - ^ x +  1 = 0

Multiplying through by 8, in order to obtain integral coefficients, the required 
equation is

8x2 — 33x + 8 = 0

Symmetrical functions
9.8 The functions of x and P that have been used in this chapter all show a 
certain symmetry. Consider, for example,

X + P, X P, -  + —, x2 + p2, ~X + —
X P P X

Notice that if x and P are interchanged:

p + x, Px, -jjr + - ,  p2 +  a2, -  +  ^
P x x p

the resulting functions are the same. When a function of a and p is unchanged 
when x and P are interchanged, it is called a symmetrical function of x and p. 
Such functions occurring in this chapter may be expressed in terms of x + P and 
aP, as in the next example.
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Example 12 Express in terms of a +  ß and aß: (a) a3 + ß 3, (b) (a — ß)2.

(a) a3 and ß3 occur in the expansion of (a + ß)3.
a

(a + ß)3 = a3 + 3a2 ß + 3aß2 + ß 3 
a3 + ß3 =  (a +  ß)3 -  3a2ß -  3aß2 
a3 + ß3 = (a + ß)3 — 3aß(a + ß)

(b) (a — ß)2 = a2 — 2aß + ß 2.
a2 and ß 2 occur in the expansion of (a +  ß)2.

(a + ß)2 = a2 + 2aß + ß 2 
.'. (oc -  ß)2 = (a +  ß)2 — 4aß

Exercise 9g
1 Find the sums and products of the roots of the following equations:

(a) 2x2 1 lx + 3 =  0, (b) 2x2 + x — 1= 0 , (c) 3x2 =  7x + 6,

(d) x2 + x = 1, (e) t(t — 1) = 3, (f) y{y +  1) = 2y + 5,

(g) x +  — = 4, (h)T  + 7TT = o-x t t + 1  2

2 Find equations, with integral coefficients, the sums and products of whose 
roots are respectively:
(a) 3,4; ( b ) - 5 ,6 ;  (c) f , - f ;  (d) - 1 ,0 ;
(e) 0, — 7; (f) 1.2,0.8; ( g ) ~ i , £ ;  (h) -2 .5 , -1 .6 .

3 The roots of the equation 2x2 + 3x — 4 = 0 are a, p. Find the values of
(a) a2 + P2, (b) 1/a + 1/jS, (c) (a +  1) (P + 1), (d) p/a + a/p.

4 If the roots of the equation 3x2 — 5x + 1 =  0 are a, P, find the values of
(a) aP2 + a2p, (b) a2 — aP + p 2, (c) a3 + p3, (d) a2/P + P2/a.

5 The equation 4x2 + 8x — 1 = 0 has roots a, p. Find the values of

(a) 1/a2 + HP2, (b) (a -  P)2, (c) a3p + aP3, (d) ~  ■
a AP a p-̂

6 If the roots of the equation x2 — 5x — 7 = 0 are a, P, find equations whose 
roots are
(a) a2, p 2- (b) a + 1, p + 1; (c) a2p, aP2.

7 The roots of the equation 2x2 — 4x + 1 = 0 are a, /?. Find equations with 
integral coefficients whose roots are
(a) a -  2, P -  2; (b) 1/a, \/P; (c) a/P, P/a.

8 Find an equation, with integral coefficients, whose roots are the squares of 
the roots of the equation 2x2 + 5x — 6 =  0.

9 The roots of the equation x2 + 6x + q = 0 are a and a — 1. Find the value of 
<?■

10 The roots of the equation x2 — px + 8 = 0 are a and a + 2. Find two possible 
values of p.
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11 The roots of the equation x2 + 2px + q = 0 differ by 2. Show that p2 = 1 + q.
12 If the roots of the equation ax2 + bx + c = 0 are a,«/?, find expressions in 

terms of a, b, c for
(a) a2/? + a/?2, (b) a2 + p2, (c) a3 + p 3,
(d) 1/a +  l/P, (e) a/P + P/x, ( f ) a A + p \

13 The equation ax2 + bx + c =  0 has roots x, p. Find equations whose roots 
are
(a) -ix , -P ; (b) x + l ,  p+  1; (c) oc2, p2;
(d) —1/a, — 1 /P; (e) a — p ,p ~  a; (f) 2x + p ,x  + 2p.

14 Prove that, if the difference between the roots of the equation

ax2 + bx + c = 0 

is 1, then a2 = b2 — 4ac.
15 Prove that, if one root of the equation ax2 + bx + c =  0 is twice the other, 

then 2b2 = 9ac.
16 Prove that, if the sum of the squares of the roots of the equation

ax2 + bx + c = 0 

is 1 , then b2 = 2ac + a2.
17 Prove that, if the sum of the reciprocals of the roots of the equation

ax2 + bx + c = 0

is 1, then b + c = 0. If, in addition, one root of the equation is twice the other, 
use the result of No. 15 to find one set of values of a, b, c. Solve the equation.

18 In the equation ax2 + bx + c = 0, make the substitutions
(a) x = y — l, (b) x = y 2, (c) x  = ^ y ,
and simplify the equations.

If the roots of the equation ax2 + bx +  c = 0 are x, P, what are the roots of 
the three equations in y? [Express y in terms of x, and give your answers in 
terms of a, /?.]

19 If the roots of the equation ax2 + bx + c = 0 are x, p, make substitutions, as 
in No. 18, to find equations whose roots are
(a) a + 2, p + 2 ; (b) 1/a, 1//3; (c) 1 ±  > ,  1 ±  J p .

Ex 9g

The remainder theorem
9.9 An expression of the form

axn + bxn~3 + ... + k

where a ,b ,...k  are real numbers and n is a positive integer is called a polynomial 
of degree n. (The expression 5x7 — 3x2 + 1.5x — 0.3, for example, is a polynomial 
of degree 7.)

If we divide the polynomial x3 — 3x2 + 6x + 5 by x — 2:



Some useful topics in algebra 189

x 2 — x + 4
x  — 2)x3 — 3x2 + 6x + 5 

x3 — 2x2
— x 2 + 6x
— x 2 + 2x

4x + 5 
4x — 8 

13

the result may be expressed in the identity

x3 — 3x2 + 6x + 5 =  (x — 2)(x2 — x + 4) +  13

Here x2 — x + 4 is called the quotient and 13 the remainder.
The remainder theorem gives a method of finding the remainder without 

going through the process of division.
Suppose it is required to find the remainder when x4 — 5x + 6 is divided by 

x — 2. If the division were performed, we could write

x4 — 5x + 6 =  (x — 2) x quotient + remainder

Now if we put x =  2 in this identity we obtain

16 — 10 +  6 = 0 x quotient + remainder

.'. the remainder = 12

Applying this process to any such expression divided by x — a, we may write

expression = (x — a) x quotient +  remainder

Putting x =  a in this identity, it follows that

the remainder =  the value of the expression when x = a.

The function notation may be used to state the remainder theorem. If a 
polynomial f(x) is divided by x  — a,  the remainder is f(a).

Qu. 12 For what type of expression is the above method valid?

Example 13 Find the remainder when 

x5 — 4x3 + 2x + 3 

is divided by (a) x — 1 , (b) x + 2 .

Let f(x) = x5 — 4x3 + 2x + 3, then
(a) the remainder when f(x) is divided by x — 1 is

f(l) = 1 -  4 + 2 + 3 =  2

(b) the remainder when f(x) is divided by x + 2 is

f( — 2) = - 3 2  + 3 2 - 4  + 3=  - 1
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Example 14 Find the remainder when 4x3 — 6x + 5 is divided by 2x — 1.

As 2x — 1 is not in the form x — a, imagine the division to have been 
performed, then

4x3 — 6x + 5 = (2x — 1) x quotient + remainder 

Putting x =  j  in this identity,

j - 3  +  5 =  0 x  quotient + remainder 

Therefore the remainder is 2\.

Example 15 Factorise the expression 2x3 + 3x2 — 32x +15.

Let f(x) = 2x3 + 3x2 — 32x + 15.
[x — a will be a factor of f(x) only if there is no remainder on division, i.e. if 

f(a) = 0.]

f(l) = 2 + 3 — 32+15 # 0  .'. x — 1 is not a factor.
f( — 1) = — 2 + 3 + 32 + 15 ^  0 .’. x + 1 is not a factor.

x — 2 and x + 2 cannot be factors, as 2 is not a factor of the constant term 15.

f(3) = 54 + 27 — 96 + 15 = 0 .'. x ^  3 is a factor.

On division (or by inspection),

2x3 + 3x2 — 32x + 15 = (x — 3)(2x2 +  9x — 5)

Therefore the factors of 2x3 + 3x2 — 32x +15 are (x — 3)(x + 5)(2x — 1).

Example 16 When the expression x 5 + 4x2 + ax + b is divided by x 2 — 1, the 
remainder is 2x + 3. Find the values of a and b.

Suppose the division to have been performed, then

x 5 + 4x2 + ax + b = (x2 — 1) x quotient + 2x + 3

Putting x = l ,  l + 4  + a + h = 2 + 3.
Putting x =  — 1, — 1 + 4  — a + 6 =  — 2 + 3.

These equations may be rewritten a + b = 0 and — a + b = — 2.

Adding,

26= -  2
.'. b = — 1 and a =  1

Exercise 9h
1 Find the values of f(0), f(l), f( — 1), f(2), f( — 2) when 

(a) f(x) = x3 + 3x2 — 4x — 12, (b) f(x) =  3x3 — 2x — 1,
(c) f(x) = x5 + 2x4 + 3x3, (d) f(x) = x4 — 4x2 +  3.
State one factor of each expression.



Some useful topics in algebra 191

2 Find the remainders when
(a) x3 + 3x2 — 4x + 2 is divided by x — 1,
(b) x3 — 2x2 + 5x + 8 is divided by x — 2,
(c) x5 + x — 9 is divided by x + 1,
(d) x3 + 3x2 + 3x + 1 is divided by x + 2,
(e) 4x3 — 5x + 4 is divided by 2x — 1,
(f) 4x3 + 6x2 + 3x + 2 is divided by 2x + 3.

3 Find the values of a in the expressions below when the following conditions 
are satisfied:
(a) x3 + ax2 + 3x — 5 has remainder — 3 when divided by x — 2,
(b) x3 + x2 + ax + 8 is divisible by x — 1 ,
(c) x3 + x2 — lax  + a2 has remainder 8 when divided by x — 2,
(d) x4 — 3x2 + 2x + a is divisible by x +  1,
(e) x3 — 3x2 + ax + 5 has remainder 17 when divided by x — 3,
(f) x5 + 4x4 — 6x2 + ax + 2 has remainder 6 when divided by x + 2.

4 Show that 2x3 + x 2 — 13x + 6 is divisible by x — 2, and hence find the other 
factors of the expression.

5 Show that 12x3 + 16x2 — 5x — 3 is divisible by 2x — 1 and find the factors of 
the expression.

6 Factorise:
(a) x3 — l x 2 — 5x + 6, (b) x3 — 4x2 + x + 6,
(c) 2x3 + x2 — 8x — 4, (d) 2x3 + 5x2 + x — 2,
(e) 2x3 + 1 lx 2 + 17x + 6, (f) 2x3 — x2 + 2 x — 1.

7 Find the values of a and b if ax4 + bx3 — 8x2 + 6 has remainder 2x + 1 when 
divided by x2 — 1 .

8 The expression px4 + qx3 + 3x2 — 2x + 3 has remainder x + 1 when divided 
by x2 — 3x + 2. Find the values of p and q.

9 The expression ax2 + bx + c is divisible by x — 1, has remainder 2 when 
divided by x + 1, and has remainder 8 when divided by x — 2. Find the values 
of a, b, c.

10 x — 1 and x +  1 are factors of the expression x3 + ax2 + bx + c, and it leaves 
a remainder of 12 when divided by x — 2. Find the values of a, b, c.

Exercise 9i (Miscellaneous)

Calculators should not be used in this exercise.

1 Write in terms of the simplest possible surds:

(a) V180 + VH25 —V1280, (b) (c) (V3 + J l ?  + ( ^ 3 - J 2 )3.

2 Given that x/2sel.414 and ^ 3  w 1.732, evaluate correct to three significant 
figures:

(a) V48 + V72 + V12.5, (b) (c) V i  + VA-
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3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

Express in the form a + b^/2:

(a) (b) (3 + V2M 5-V2).

(a) Find the values of 8_4/3, (4/9)3/2, 512 2/9.
(b) Solve the equation x2/3 — 5x1/3 + 6 = 0.
Multiply x2/3 + 2x1/3 +  1 by x 1/3 — 2. Check your answer by substituting 
x = 8.
Without using tables, find the values of 

1 2 3/2 x 161/8
(a) 27^  x 18 1/2 ’ 0>) lg 75 + 2 lg 2 -  lg 3.

Given that lg 2 = 0.301 030 and lg 3 = 0.477 121, find, the values correct to 
five places of decimals of:
(a) lg 12 , (b) 2 lg 21 — lg 98, (c)lg^60 .
. . „  , 100a2 . , ,  . . .(a) Express lg , ,  . in terms of lg a, lg b, lg c.

b y e
(b) Given that lg 5 x  0.698 970 0, find correct to six decimal places the value of 

lg 40.
Taking lg 2«0.301 0300 and lg 3^0.477 121 3, find the values of (a) lg 5, 
(b) lg 18, (c) lg 1.5, correct to six decimal places.
Solve the equations:
(a) 9X = 273/4, (b) 2X = 9.
On a slide rule the distance from mark T  to mark V  is proportional to lg n. 
If the distance from mark ‘1’ to mark ‘10’ is 25 cm, calculate the distances
(a) from the mark ‘1’ to the mark ‘2’,
(b) from the mark ‘2’ to the mark ‘3’.
Find the sum and product of the roots of the equation 3x2 +  5x — 1 = 0. Also 
find the equation whose roots are the squares of the roots of this equation. 
Find the values of m for which the equation x2 +  (m + 3)x +  4m = 0 has equal 
roots. For what value of m is the sum of the roots zero?
If a and /? are the roots of the equation 2x2 — 5x — 1 = 0, find
(a) the value of a2 + ft2,
(b) an equation with integral coefficients whose roots are 1/a and 1//J. 
What are the values of a and b if x — 3 and x + 7 are factors of the quadratic 
ax2 + 12x + bl
Show that 3x3 + x2 — 8x + 4 is zero when x = -§, and hence factorise the 
expression.
What is the value of a if 2x2 — x — 6, 3x2 — 8x + 4 and ax3 — lOx — 4 have a 
common factor?
Factorise the expression 3x3 — l lx 2 — 19x — 5.
If the expression ax4 + fix3 — x2 + 2x + 3 has remainder 3x + 5 when it is 
divided by x2 — x — 2, find the values of a and b.
Find the values of p and q which make x4 + 6x3 + 13x2 + px + q a perfect 
square.



Chapter 10

Quadratic equations and 
complex numbers
The quadratic equation ax2 +  bx + c = 0
10.1 It is assumed that readers are familiar with solving quadratic equations 
by factorisation, as in Example 1 below, and that some will be familiar with 
‘completing the square’, which is illustrated in Example 2.

Example 1 Solve 2x2 + lx  — 15 = 0.

2x2 + lx  — 15 = 0 
(2x — 3)(x +  5) =  0

hence,

either 2x — 3 = 0, x = 1 \
or x + 5 = 0, x = — 5

When it is difficult to factorise, the technique of completing the square can be 
used. This method depends on the identity

(x + k)2 = x 2 + 2kx + k2

Example 2 Solve 5x2 — 6x — 2 = 0.

5x2 — 6x — 2 = 0 

Add 2 to both sides,

5x2 — 6x = 2  

divide through by 5,, 6 2 
* - 5* ~ 5

complete the square, by adding ( |) 2 to both sides,

x
(

19
25

193

25
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factorise the left-hand side,

10.1

take the square root of both sides,

and finally, add f  to both sides,

3 , V19 3 ± V1 9
x = -  + - —  = ----- -----

5 ~ 5  5

[Answers to such questions should be left with surds in them, unless a 
specified degree of accuracy is demanded by the question.]

Notice that the roots can be used to find the factors of the original expression. 
Thus in Example 2,

5x2 — 6x — 2 = 5(x2 — f  x — 2)

The quadratic formula
10.2 The procedure illustrated in Example 2, above, can be generalised, as 
follows. To solve

ax2 + bx + c = 0

subtract c from both sides,

ax2 + bx = — c

divide through by a,

complete the square (by adding b2/{4a2) to both sides),

and factorise the left-hand side, which gives

Take the square root (but note this is only possible if the right-hand side is non­
negative i.e. if b2 — 4ac ^  0),
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Now subtract b/(2a) from both sides

-  b ■ V(fo2~ 4ac)
2 a ~  2 a

. ,  , , — b ± J ( b 2 — 4ac)
So, if ax2 + bx + c = 0 then x  = -----------------------

2 a

This formula is usually the most convenient way of solving quadratic 
equations which cannot readily be solved by factorisation.

( 1)

195

Example 3 Solve l x 2 — 6x — 3 = 0.

In this example a = 2, b =  —6 and c=  —3, hence b2 —4ac =  36—4 x 2 x (  — 3), 
that is, b2 — 4ac =  60. Substituting these figures into the formula

— b ±  yf(b2 — 4 ac)
X 2 a

gives
+ 6± V 60  

4

6 ±  2^15
"  4

3±V15
• • X = — 2 “

Notice the importance of the step marked (1) in the proof of the quadratic 
formula. Three possibilities can arise:

(i) b2 —4ac>0; a real value of yj{b2 — 4ac) can be found and so the 
equation has two real distinct roots,

(ii) b2 — 4ac = 0; the solution is x = — b/(2a),
(iii) b2 — 4ac < 0; there is no real value of x/(b2 — 4ac) and so there are no real 

roots.
In case (ii), the expression x 2 + (b/a)x + (c/a) is the square of x + b/(2a) and it is 
convenient to say that the quadratic equation has ‘two identical roots’. We shall 
return to case (iii) in §10.6.

Because of its important role in determining the nature of the roots, the term 
(b2 — 4ac) is called the discriminant of the equation.

Q u.l Calculate the discriminant of each of the quadratics below and state 
whether the equation has (i) two distinct real roots, (ii) two identical roots, or 
(iii) no real roots.
(a) 3x2 + 5x — 1 = 0, (b) 49x2 + 42x + 9 =  0,
(c) 2x2 + 8x + 9 = 0, (d) l x 2 +  7x + 4 =  0.
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The quadratic function f(jc) = ax1 + bx + c
10.3 Using the method of completing the square, the. form ax2 + bx + c can 
always be reduced to the form a(x — p)2 + q. This is illustrated in Example 4 
below.

Example 4 Express the function f(x) =  l x 2 — 12x + 23 in the form a(x — p)2 + q.

l x 1 -  12x + 23 = 2(x2 -  6x + 11.5)
= 2[(x -  3)2 -  9 +  11.5]
= 2[(x -  3)2 + 2.5]
= 2(x -  3)2 + 5

In this example, a = 2, p =  3 and q =  5. One advantage of this form is that, since 
(x — 3)2 >  0, we can read off that f(x) ^  5 and that the least value of the function 
occurs when x =  3.

Example 5 Find, by completing the square, the greatest value of the function 
f(x) = 1 — 6x — x2.

f(x) = 1 — 6x — x2
= 10 — (9 + 6x + x2)
= 10 — (3 + x)2

Since (3 + x)2 is the square of a real number it cannot be negative; it is zero when 
x = — 3, otherwise it is positive. Consequently 10 — (3 + x)2 is always less than or 
equal to 10 .

.'. the greatest value of the function is 10 and this occurs when x = — 3.

In general

ax2 + bx + c = a [x 2 + - x  + -  
a a

= a
b \ 2 b2 

X + 2a) " 4 a-
+ ~

b V  b2 -4 a c  
X + 2a) 4 a2

b \ 2 b2 — 4ac 
= a lX + 2 a ------ 4a

and thus f(x) = ax2 + bx + c may be written a(x — p)2 + q, where

b2 — 4 ac
p = -  — and q = 

2 a 4a
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The least (or greatest) value of f(x) isj\p) = q. If a > 0, f(p) is the least value; if 
a < 0, it is the greatest value.

Qu.2 Find, by completing the square, the range of the function

f(r)= 10 + 2 0 t - 5 i 2

The graph of y  = ax2 + bx + c
10.4 We have seen in §10.3 that this equation can be expressed in the form

y = a (x -  p)2 + q

Now, we know that the graph of y = x 2 is a parabola and that the graph of 
y = (x — p)2 is the same shape, but it is displaced p units to the right (Fig. 10.1).

Figure 10.1

Multiplying (x — p)2 by a merely ‘stretches’ the graph parallel to the y-axis, 
although if a is negative it will also turn it upside down. Adding q to a(x — p)2 
translates the graph q units vertically upwards. Thus the graph of

y = a ( x -  p)2 + q

looks like Fig. 10.2. In this diagram a >  0, p > 0 and q>  0 (i.e. b2 — 4ac < 0).
Notice that if q < 0 (i.e. b2 — 4ac > 0) but a and p are positive, then the graph 

would look like Fig. 10.3.
. In this case, M is the point ( — b/(2a), 0) and H and K are the points where 

ax2 + bx + c = 0 and, as we have seen in §10.2 , at these points

b \J(b2 — 4ac)x = -  —- ± ----- --------
2a 2 a

Notice that these values of x can only be real if b2 — 4ac ^  0.
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Qu.3 Sketch the graph of y = ax2 + bx + c, when 
(a) b2 > 4ac and a < 0, (b) b2 = 4ac and a > 0.
In each diagram mark clearly the coordinates of the vertex.

Exercise 10a

Leave surds in the answers.

1 Solve, by factorisation:
(a) 2x2 — 5x + 3 = 0, (b) x 2 + 4x — 21 = 0,



(c) 4x2 — 25 = 0, (d) l x 2 +  5x = 0.
2 Solve, by completing the square:

(a) l x 2 — 6x — 1 = 0, (b) 5x2 +  \2x +  6 =  0,
(c) x 2 + lx  — 3 = 0, (d) 10 + 3x — 2x2 = 0.

3 Solve, by using the formula:
(a) 3f2 -  It -  1 = 0, (b) 5z2 + 3z — 7 =  0,
(c) 4+13y + y2 = 0, (d) 3p2 =  7p + 2.

4 Solve, where possible, by any suitable method:
(a) 15 — 30x + 4x2 = 0, (b) 1 lx 2 =  48x,
(c) 9x2 = 8x —2, (d) 7x2 — 38x + 15 = 0.

5 Using the results of No. 2, factorise:
(a) 2x2 — 6x — 1, (b) 5x2 + 12x + 6,
(c) x2 + lx  — 3, (d) 10 + 3x — 2x2.

6 Sketch the graphs of
(a) y = 2x2 — 5x + 3, (b) y = 2x2 — 6x — 1,
(c) y = 3x2 — 7x — 1, (d) y  = 3x2 -1 x 4 -5 .
[Hint: use the answers to 1(a), 2(a) and 3(a).]

7 Sketch the graphs of
(a) y = 9x2 — 30x + 25, (b) y =  x2 — 6x + 13,
(c) y = 5 — x2, (d) y = 36 + 48x — 9x2.

8 Given that 3x2 — kx + 12 is positive for all values of x, find the range of 
possible values for k.

9 Given that a and are the roots of the quadratic equation, x2 — lx  + 3 = 0, 
find a and [i from the formula, and verify that a + /? =  7 and aft = 3.

10 By completing the square, find the greatest values of 
(a) 2 — 2x — x2, (b) — 7+12x  — 3x2,
and the least values of 
(c) 13 + 6x + 3x2, (d) 15 + 8x + ^x2.
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Imaginary numbers
10.5 We have seen that the equation x 2 + 1 =  0, or x2 =  — 1, has no real 
roots. For the moment, let us not worry too much about this; instead, we will 
write i for y/( — 1). We could then say that x2 + 1 = 0 has two roots, namely 
x = + i. Historically, this is how the subject developed. The sixteenth century 
mathematicians Cardano and Bombelli started to use symbols for square roots of 
negative numbers even though they knew they were not real numbers. Later 
Descartes started to call these numbers ‘imaginary numbers’. Then, in the 
eighteenth century, the Swiss mathematician Euler introduced the symbol i for
v A - 1)-

Having introduced i there is no need to invent further symbols for the square 
roots of other negative numbers. Consider, for example, — 25).

V( —25) = V(25x - 1 )
= V25x  V ( - l )
= 5i
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So an equation in the form 

x2 + n2 = 0 or x 2 =  — n2, where n e R, 

has two roots, x = +  ni.

[In some contexts, especially electricity where i is used to represent the current 
in an electrical circuit, the symbol j is used instead of i.]

Qu.4 Solve the equations:
(a) x2 + 64 = 0, (b) x2 + 7 =  0, (c) 4x2 + 9 =  0, (d) (x + 3)2 =  -  25.

Complex numbers
10.6 We can now return to the problem of solving 

ax2 + bx + c = 0 when b2 < 4ac

Previously (§10.2) we decided that no real roots exist in this case.
First, we consider a particular example; we shall try to solve

x2 -  4x + 5 = 0

Completing the square gives

x2 — 4x = — 5 
(x -  2)2 -  4 = -  5 

(x — 2)2 = — 1

Previously, at this stage we were unable to proceed further because we could not 
find the square root of — 1. Now, we can use our imaginary numbers. Hence

(x — 2) = ±  i 
.'. x  = 2 + i

Qu. 5 Solve x2 — 6x + 34 = 0.

The general solution of the equation ax2 + bx + c = 0 is

— b ±  ^/(b2 — 4ac)
2 a

When b2 < 4ac this can be written

_  -  h ± V { - l ( 4 a c - b 2)}
2a

= + V ^ a c - f i2) .
2 a ~  2 a

Notice that both — b/{2a) and y/(4ac — b2)/(2a) are real numbers.
Numbers of the form p + iq, where p and q are real numbers, are called 

complex numbers. The standard symbol for the set of complex numbers is C.
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Example 6 Solve x 2 — 6x + 13 = 0, where x e € .

x 2 — 6x + 13 = 0 

Using the formula

+ 6 ± 7 ( 3 6 - 4  x 1 x 13)
2

6 ± 7  (~  16)
2

6 + 4i 
2

x = 3 ± 2i.

In the complex number p + iq, the number p is called the real part of the 
complex number and q is called its imaginary part. (Thus the real part of 5 + 4i is 
5, and the imaginary part is 4.) It is frequently convenient to have a single letter 
to represent a complex number, and the normal choice for this is z, although w is 
also sometimes used. The real part of a complex number z can then be 
abbreviated to Re(z) and the imaginary part is written Im(z). Thus if z = 2 + 7i, 
then Re(z) = 2 and Im(z) = 7, or again, if w = 4 — 3i, then we can write Re(vv) = 4 
and Im(w) = — 3.

It is important to notice that two complex numbers are equal if, and only if, 
their real parts are equal and their imaginary parts are equal, for if

a + ib = c + id

then

a — c = i (d — b) 

and, squaring both sides,

(a — c)2 = — (d — b)2

Now, since a, b, c and d are real numbers, (a — c)2 and (d — b)2 are either positive 
or they are zero. It is impossible for them to be positive, because we would then 
have a positive number on the left-hand side and a negative number on the right. 
Therefore (a — c)2 and (d — b)2 are both zero, i.e.

a = c and b = d

[The reader may feel that this is a rather trivial point, but, as we will see later, 
this is a very valuable feature of complex numbers. It may seem less trivial if it is 
compared with a similar situation in rational numbers. Here it is possible to 
have a/b = c/d, even though a #  c and b ^  d, for example, 2/3 = 10/15.]

Since it was necessary to introduce complex numbers in order to include the 
roots of all quadratic equations, it might be thought that yet further types of 
number might be necessary in order to find the roots of equations of higher
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degree. However th is is n o t so; i t  can be proved tha t a po lynom ia l equa tion o f  
degree n has exactly n roo ts  (poss ib ly repeated) in  C, bu t the p ro o f is beyond the 
scope o f th is book.

Qu.6 Solve the fo llow in g  equations w ith  the quad ra tic  fo rm u la  o r by  
com p le ting the square:
(a) z2 - 4 z + 13 =  0, (b ) 9z2 +  25 =  0,
(c) 2z2 =  2z -  13 (d ) 34z2 -  6z +  1 =  0.

The algebra of complex numbers
10.7 In the course of learning elementary arithmetic, one has to learn how to 
add, subtract, multiply, and divide fractions: we are now faced with the problem 
of manipulating complex numbers. The operations addition, subtraction, multi­
plication, and division which we have used so far are concerned with real 
numbers, hence it is necessary to define what we mean by these operations with 
regard to complex numbers. It is easiest for us to define these operations by 
saying that we shall use the usual laws of algebra together with the relation 
i2 = -  1. Thus

(a + ib) + (c + id) = (a + c) + i (b + d)
(a + i b) — (c + id) = (a — c) + i (b — d)
(a + ib) x  (c + id) =  ac + aid + ibe + i2bd 

= (ac — bd) + i(ad +  be)

At this stage it is worth comparing the corresponding operations with real 
numbers in the form a + y/2b (a, b rational):

(u + byj 2) + (c + dy] 2) = (a + c) + y] 2(b -I- d)
(a + by]2) — (c + dy/2) = (a — c) + y] 2 (b — d)
(a + b ^  2) x (c + dy]2) = ac + ady/2 + bey]2 + 2bd 

=  (ac + 2 bd) +  y/2 (ad + be)

This helps us to find a way of expressing (a + ib)/(c + id) in the form p + iq. The 
reader will probably recall the corresponding process with (a + by]2)/(c + dy] 2). 
The method is to multiply numerator and denominator in such a way that the 
new denominator involves a difference of two squares:

a + byj 2 c — dyj 2 (ac — 2bd) + J  2(bc — ad)
c + dy] 2 c — dy] 2 c2 — 2d2

ac — 2 bd ^  be —ad 
= c2 — 2d2 + N c2 - 2d2

Similarly, the expression (a + ib)/(c + id) may be expressed in the form p + iq by 
multiplying numerator and denominator by c — id because

(c + id) x (c — id) = c2 — i2d2 = c2 + d2
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In other words,

c + id c + id c — id

(ac + bd) + i (be — ad) 
c2 + d2

Definition

Two complex numbers in the form x + iy, x — iy are called conjugate complex 
numbers.

The symbol z* is used to represent the complex conjugate of z, so if z = x + iy, 
then we write

z* = x — iy

Qu. 7 Express (2 + 3i)/(l +  i) in the form p + iq (p, q e IR). [Multiply numerator 
and denominator by 1 — i.]

Do not attempt to memorise expressions for the sum, difference, product, and 
quotient of two complex numbers: simply use the usual laws of algebra, together 
with the relation i2 = — 1 .

Exercise 10b

Simplify:

1 (a) i3, (b) i4, (c) i5, (d) i6, (e) 4 > (f) 7 » (g) 4 -

2 (a) (3 + i) +  (1 + 2i), (b) (5 -  3i) +  (4 + 3i),
(c) (2 — 3i) — (1 +  2i), (d) (1 + i) — (1 — i).

3 (a) (2 + 3i) (4 +  5i), (b) (2 -  i) (3 + 2i),
(c) (1 + i)(l - i ) ,  (d) (3 + 4i)(3-4i),
(e) (u + iu) (u — ir), (f) (x  + 2iy) (2x + iy),
(g) i(2p + 3iq), (h) (p + 2iq)(p-2iq).

4 Express with real denominators:

1 1
2 + 3i + 2 -  3i '

Simplify the expressions in Nos. 5 and 6:

5 (a) (2 + 3i)2, (b) (4 — 5i)2, (c) (x +  iy)2.
6 (a) (1 + i)3, (b) (1 -  i)3, (c) 1/(1 + i)3.
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7 Solve the quadratic equations:
(a) z2 — 4z + 29 = 0, (b) 4z2 + 7 = 0,
(c) 2z2 + 3z + 5 =  0, (d) 4 z 2  +  4 z  + 5= 0 .

8 If a and (J are the roots of z2 — lOz + 29 = 0, find a and fl by using the 
formula. Verify that a. + fi = 10 and aft = 29.

9 If a and /? are the roots of az2 + bz + c = 0, find, by using the formula, 
expressions for a and fi, in terms of a, b and c. Verify that a +  /?= —b/a 
and that a)3 =  c/a.

10 Solve the cubic equation 2z3 + 3z2 + 8z — 5 = 0.

Complex numbers as ordered pairs
10.8 To see how a satisfactory definition of complex numbers can be given, 
consider the problem of defining rational numbers in terms of the integers. 
Note, (i) A rational number is formed from a pair of integers, e.g. 2/3, 7/5, 4/1 
(the last of which is commonly abbreviated to 4). (See §2.3.)

(ii) The position of the integers is important because in general
a
b

b
a

We therefore say that a rational number is an ordered pair of integers — but this, 
by itself, is not enough. To complete the definition, we must say how numbers of 
this type are to be added, subtracted, multiplied and divided.

We know that for rational numbers
‘a c ad + bc’
b + d bd

but this is by no means the only possible way of defining addition of the ordered 
pairs a/b, c/d. For instance, it would be much simpler to define addition by the 
rule

‘a c a + c ’
b + d = b + d

As to multiplication, with rational numbers,

a c ac
b d bd

but multiplication of the ordered pairs a/b, c/d might have been defined by the 
rule

a c ac — bd_ X _ =  _______
b d ad + bc

We need not go through the process of defining subtraction and division: the 
point to note about defining the various operations on ordered pairs is that the 
properties of the numbers so defined will depend on the rules chosen.

Now consider complex numbers. We have seen that a complex number 
involves a pair of real numbers and that the order of the pair is important 
because in general a + ib ^ b  + ia. We therefore define a complex number as an



ordered pair of real numbers which we shall write as [a, b]. The fundamental 
operations of addition and multiplication are defined by the rules:

[a, b] + [c, d] = [a + c, b + d]
[a, b] x [c, d] = [ac — bd, ad + be]

Subtraction and division are defined in terms of addition and multiplication 
thus, for any type of number,

p — q is the number x such that q + x = p and 
p q is the number y such that q x y = p

Now

Quadratic equations and complex numbers 205

[c, + [a — c, b — d] = [a, b]
[a, b] — [c, d] = [a — c, b — d].

Qu.8 Use the definition of division above to show that

a c
(a) for the rational numbers - ,  -

b a
a c ad
b d be

(b) for the complex numbers [a, b], [c, if],

[ a , b] -r- [c, if]
ac + bd be — ad 
c2 + d2 ’ c2 + d2

Qu.9 Note that to every real number a there corresponds a unique complex 
number [a, 0], Find, from the definitions of the four operations on complex 
numbers
(a) [a, 0] + [c, 0], (b) [a, 0] x [c, 0],
(c) [a, 0] -  [c, 0], (d) [a, 0] -  [c, 0],
Compare these results with the corresponding operations on the real numbers
a, c.

The next stage would be to show that these ordered pairs obey the laws of 
arithmetic. This would justify the use of the term complex numbers. However, we 
shall not pursue this argument.

The definition of a complex number as an ordered pair was first given by 
Hamilton in 1835.

The Argand diagram
10.9 The last section was written to show the reader that complex numbers can 
be put on a satisfactory logical basis. However, manipulation of complex 
numbers is most easily carried out as before: the ordered pair notation is simply 
a device for defining these numbers without reference to — 1). We could write 

— 1) as the ordered pair [0, 1] but this would be rather clumsy and it is easier 
to write y /(— 1) = i.



Qu.10 Prove from the definition of multiplication of complex numbers that
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[0,1] x [0,1] = [ - 1 ,0 ]

Although the idea of an ordered pair may appear to some readers to have 
been a digression, it leads us to the next step in our treatment of the subject. The 
Argand diagram is named after J. R. Argand, who published his work on the 
graphical representation of complex numbers in 1806.

Corresponding to every complex number [x, y] or x +  iy, there is a point (x, y) 
in the Cartesian plane; and corresponding to any point (x, y) in the plane, there 
is a complex number x + iy. (Here it is worth comparing the equivalent situation 
with real numbers. Corresponding to every real number x there is a point on the 
x-axis. What is less easy to prove is that corresponding to every point on the 
x-axis there is a real number). At first this correspondence between complex 
numbers and points on the plane may appear to be rather obvious and not very 
useful, but in fact it proves to be a considerable importance to the theory of 
complex numbers.

The value of this correspondence is increased by the fact that with every point 
P(x, y) in the plane there is associated a radius vector OP (see Fig. 10.4). This 
means that corresponding to every complex number x + iy there is a radius 
vector OP where P is (x, y). Further, corresponding to every radius vector OP in 
the plane there is complex number x + iy.

Look at Fig. 10.5. The points A, B, A', B' are respectively (1,0), (0, 1), ( — 1, 0), 
(0, — 1). Corresponding to

OA there is the complex number 1 + Oi or 1
OB there is the complex number 0 + li or i
OA' there is the complex number — 1 + Oi or — 1
OB' there is the complex number 0 + ( — l)i or — i

Looking down the right-hand side of the last four lines, each number is equal to 
the previous one multiplied by i. Meanwhile, the corresponding radius vector 
has rotated in the positive (anti-clockwise) sense through one right angle. Would 
the same thing happen if any complex number were multiplied by i?
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y \
( 0 , 1 )

A'
H —
( - 1, 0)

A
—I— ►
(1, 0) *

B '- - (0 ,  -1 )

Figure 10.5

Qu. 11 Find the complex numbers obtained by multiplying x + iy once, twice 
and three times by i. Does the corresponding radius vector rotate through one 
right angle each time?

Two quantities are required to specify a vector through the origin: magnitude 
and direction. The magnitude r of OP (Fig. 10.6) presents no difficulty

r = y/{x2 + y2)

This quantity is called the modulus of the complex number x + iy. ‘The modulus 
of x + iy’ is abbreviated to |x + iy| hence

\x + iy\ = sj{x2 + y 2)

Qu. 12 Write down the moduli of
(a) 3 + 4i, (b) — i, (c) cos 9 + i sin 6,
( d ) i - W 3 i ,  (e) - 3 ,  (f) 1 +  i.
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The direction specifying the radius vector OP is not quite so easy to deal with 
because there are infinitely many positive and negative angles which would do.

Figure 10.7

The problem of which angle to choose is well illustrated by a radius vector in 
the third quadrant (Fig. 10.7). It is simply a matter of convention whether we 
take the positive reflex angle or the negative obtuse angle. In fact the 
numerically smaller angle is used. The angle between the radius vector OP and 
the positive x-axis is called the argum ent of the complex number x + iy. This is 
abbreviated to arg (x + iy) and has, as we have said before, infinitely many 
values. The value uniquely specified by the above convention is called the 
principal value of the argument and is written arg (x + iy), so that

— 180° <  arg (x + iy) ^  180°

[In some textbooks, the argument is called the amplitude but this term is less 
acceptable because of possible confusion with the amplitude of a current, 
motion, or wave.]

Qu. 13 Find the principal values of the arguments of 
(a) cos 45° + i sin 45°, (b) +1,
(c) -  i, (d) 1 -  i,
(e) i  + i^/3i, (f) cos 120° + i sin 120°,
(g) cos 20° — i sin 20°, (h) sin 20° + i cos 20°.

A complex number can be completely specified by its modulus and argument, 
because, as we can see from Fig. 10.8, x = r cos 9 and y = r sin 9. Thus if |z| = r 
and arg z = 9, then

z = r cos 9 + \r sin 9 
= r(cos 9 + i sin 0)

Notice, also, that if we are given a complex number z = x + iy, then its 
complex conjugate, z* = x — iy. In other words z* is the reflection of z in the real



axis. Hence |z*| = \z\ and arg(z*) =  — arg z. (z may also be used to denote the 
complex conjugate of z.)

Quadratic equations and complex numbers 209

Example 7 Given |z| = 10 and arg z = 120°, write down z. 

z = 10(cos 120° + i sin 120°)

= - 5  + 5^3  i

Exercise 10c
1 Mark on the Argand diagram, the radius vectors corresponding to

(a) 1+ i, (b) — 3 + 2i,
(c) -  3 — 2i, (d) 3 — 4i,
(e) — 4 + 3i, (f) cos 60° + i sin 60°,
(g) cos 120° + sin 120°, (h) cos 180° + i sin 180°.
Write down the moduli of these complex numbers and give the principal 
values of their arguments.

2 Write down, in the form x +  iy, the complex numbers whose moduli are equal 
to one and whose arguments are
(a) 0°, (b) 90°, (c) 180°, (d) 270°, (e) 360°,
(f) 30°, (g) -30°, (h) 120°, (i) -120°, (j) 150°.

3 Given that z = 3 + 4i and w =  12 +  5i, write down the moduli and arguments 
of
(a) z, (b) w, (c) 1/z, (d) 1/w, (e) zw,
(f) z*, (g) w*, (h) (zw)*, (i) z2, (j) w2.

4 Simplify: (1+ i)2, (1 + i)3, (1+ i)4.
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Draw in the Argand diagram the radius vectors corresponding to (1 + i), 
(1 + i)2, (1 + i)3, (1 + i)4. Find the principal values of the arguments of these 
complex numbers.

5 Repeat No. 4
(a) for the complex number + ^i,
(b) for the complex number yj3+ i.

6 Given the complex number z = a + ib, where a and b e  R, find z2 and 1/z in 
terms of a and b. Verify that |z2| =  |z|2 and |l/z | = l/|z|.

7 Prove that if |z| = r, then zz* = r2.
8 Given that z = a + ib and w = c + id, where a, b, c and d e R, find zw in terms 

of a, b, c, and d, and verify that |zw| = |z| x |w|.

Exercise lOd (Miscellaneous)
1 Prove that 3x — 2 is a factor of 3x3 — 2x2 + 3x — 2.

Find the solution set of the equation 3x3 — 2x2 +  3x — 2 = 0, when x 
belongs to the set of (a) integers, Z; (b) rational numbers, Q; (c) real numbers, 
IR; (d) complex numbers, €.

2 Solve each of the equations

(i) (x + 4) (5x — 7) =  0 (ii) (x2 + 4) (5x2 — 7) =  0

when x belongs to the set of (a) integers, (b) rational numbers, (c) real 
numbers, (d) complex numbers.

3 Given that z  = 3 + i and w = 1 + 3i, express in the form a + ib, where a, b e R, 
the complex numbers (a) zw, (b) z/w, (c) z2 — w2 and find their moduli and 
arguments in degrees, correct to the nearest 1°.

4  (a) Express the following complex numbers in a form having a real
denominator:

1 1
3 — 2i’ (1 - i ) 2

(b) Find the modulus and principal argument of each of the complex 
numbers z = 1 + 2i and w =  2 — i, and represent z and w clearly by points 
A and B in an Argand diagram. Find also the sum and product of z and w 
and mark the corresponding points C and D in your diagram. (C) 

5 If the complex number x + iy is denoted by z, then the complex conjugate 
number x — iy is denoted by z*.
(a) Express |z*| and arg (z*) in terms of |z| and arg (z).
(b) If a, b, and c are real numbers, prove that if az2 + bz + c =  0 then

a(z*)2 + b(z*) + c = 0

(c) If p and q are complex numbers and q + 0, prove that
p *

q*' (C)

6 Find the values of a and b such that (a+ib)2 = i. Hence or otherwise, solve 
the equation z2 + 2z + 1 — i =  0, giving your answers in the form p +  iq, where 
p and q are real numbers. (O)



7 (a) The equation x4 — 4x3 + 3x2 + 2x — 6 = 0 has a root 1 — i. Find the
other three roots.

(b) Given that 1, w1; w2 are the roots of the equation z3 = 1 express wt and 
w2 in the form x + iy and hence, or otherwise, show that
(i) 1 + Wj + w2 = 0,
(ii) 1/w! = w2. (L)

8 (a) Given that the complex numbers w1 and w2 are the roots of the equation
z2 — 5 — 12i = 0, express and w2 in the form a + ib, where a and b are 
real.

(b) Indicate the point sets in an Argand diagram corresponding to the sets of 
complex numbers

A = {z: |z| = 3, z e C}
B  =  {z: |z| = 2, z e € }

Shade the region corresponding to values of z for which the inequalities 

2 < |z| < 3 and 30° <  arg z <  60°

are simultaneously satisfied. (L)
9 If z = -j( 1+i), write down the modulus and argument for each of the 

numbers z, z2, z3, z4. Hence, or otherwise, show in an Argand diagram, the 
point representing the number 1 +  z + z2 +  z3 + z4.

(O & C: SMP I, part of question) 
10 If a and ft are the roots of the quadratic equation

(1 + j)z2 - 2 jz  + (3+ j) =  0

where j = , / ( — 1), express each of a +  fl and a/? in the form a +  jh, where a 
and b are real, and show, on an Argand diagram, the points representing the 
complex numbers a +  /? and a/1.

Find, in a form not involving a and ft, the quadratic equation whose roots 
are a + 2/1 and 2a + /?. (O & C: MEI)
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Chapter 11

Matrices
Introduction
11.1 Readers who are already familiar with this topic are advised to check 
through §11.2 to §11.5 to ensure that their knowledge of the basic work is 
absolutely secure, while those to whom it is totally new may find it helpful to 
supplement the exercises in this book with further practice from a more 
elementary textbook.

A matrix is nothing more than a rectangular array of numbers. A matrix 
containing m rows and n columns is called an m x n matrix. Matrices are often 
used to store information; the matrix P, below, records the sales of three books, 
labelled A, B and C, each of which is published in hardback and paperback form, 
on one particular day. (This is a 2 x 3 matrix.)

Hardback 5 2 1
Paperback 10 7 4

This matrix tells us, for example, that, on the day in question, 7 copies of the 
paperback edition of book B were sold.

There are conventions in mathematics about the way matrices are written. 
Firstly, if the layout of the matrix, in a particular context, has been standardised, 
the labels of the rows and columns may be discarded. Secondly, the array of 
numbers should be enclosed in large round brackets (some writers use square 
brackets), and the letter used as the name of the matrix (P in the example above) 
should be printed in bold type (in manuscript it should be a capital letter with a 
wavy line underneath, i.e. P). So the matrix described in the preceding paragraph 
is written

The matrix Q, below, represents the sales of the same books on the following 
day.

A B C

212



Matrices 213

On this day, for example, 3 copies of the hardback version of book A were sold.
One very common use for matrices in mathematics is to store the coordinates 

of points in coordinate geometry. In the example below, the first row of the 2 x 4  
matrix M gives the x-coordinate and the second row gives the y-coordinate of 
four points, A, B, C and D, in order.

This matrix tells us that A is the point (0, 1), B is ( — 3, 2), C is (j, — 1) and D is 
(5, 4). Unlike the previous example, the entries in this matrix do not have to be 
whole numbers. In general, the elements in a matrix can be any real numbers (in 
more advanced work, even complex numbers may be used).

Matrix addition
11.2 In the last section, we used P and Q to represent the sales of books on two 
consecutive days. If the book shop owner wishes to know the number of books 
sold on the two days taken together, all he has to do is to add the corresponding 
elements, i.e. the numbers which appear in the corresponding positions in the 
two matrices. If he is good at arithmetic, he should obtain

It is natural to call the matrix obtained in this way the sum of P and Q, and so 
we write

What meaning could the bookseller attach to this matrix?
In the preceding paragraphs we have described P and Q as ‘2 x 3 matrices’ 

and M as ‘a 2 x 4 matrix’. This was because P and Q each had two rows and 
three columns; M, on the other hand, had two rows and four columns. A matrix 
which has m rows and n columns is called an m x n matrix and we say that the 
order of the matrix is m x n. It is only possible to add (or subtract) matrices 
which have the same order, i.e. they must each have the same number of rows 
and the same number of columns. If m = n, that is, the number of rows equals the 
number of columns, the matrix is called a square matrix.

The difference of P and Q is obtained in a similar fashion:



Example 1 Find A + B and A — B when
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(a) A =

(b) A =

B =
- 1 4  0 3 

0 2 1 5

(a) A + B =  |

A — B :

1 5 + 4 i  + o
0 - 1 + 2 2 + 1

9 12 A
1 3 s)
1 5 - 4 1 o

0 - 1 - 2 2 - 1

(b) A + B =

4 1 i  1
4 - 3 1 - 5

'2 + 0 0 - 6 \
3 + 6 - 6  + 7 )
,5 + 3 1 + 0 /

2 - 6 '  
9 1 
.8 1,)

4 - 3
0 - 5

A - B
2 - 0 0 + 6
3 - 6 - 6 - 7
5 - 3 1 - 0

' 2 6\
- 3 - 1 3  )

V 2 1 /

A matrix in which every element is zero is called a zero matrix. When a zero 
matrix is added to another matrix with the same number of rows and columns, 
that matrix will be unchanged:

( a b c \  / 0  0 0 \  f  a b c \
[d  e f )  + {  0 0 0 ;  =  U  « f )

The zero matrix, then, has the property A +  0 = A, which is very similar to 
the way the number zero behaves in ordinary algebra. (When you write 0 for the 
zero matrix, do not forget to put the wavy line under it to distinguish it from the 
number zero.)
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Multiplication by a scalar
/1  2 \

11.3 If M is the matrix I I then, proceeding as in the last section,

M + M + M + M + M =
5 10 

15 20

In ordinary algebra we reduce x + x + x + x +  x t o 5 x  and it is natural to do the 
same in matrix algebra, and so we write

5M =
5 10

15 20

In general, to multiply a matrix A by a real number k (often called a scalar in 
this context), we multiply each number, or element, in the matrix A by k. Two 
examples are given below to illustrate this:

/ a  b c \  / ka kb kc \ 
k \d  e f )  = \k d  ke k f )

and

f x  + y x — jA /  x 2 + xy x 2 — x y \
\2 x  3 y )  \2 x 2 3xy /

Qu. 1 Given that A = i  ^ ^ ^ j a n d B = i j  0 j ] ’ find5A + 4B.

Matrix multiplication
11.4 Returning to the illustration of the book sales in §11.2, suppose the matrix 
S, below, represents the total sales of the hardback books in one week,

S = (20 25 10)

and, let us suppose the prices of the three books are £5, £6 and £7, respectively, 
then the total value of the books sold is

£(20 x 5 + 25 x 6 + 10 x 7) = £320

Now, in any logical game, whether it is mathematics or chess or any similar 
intellectual pastime, it is necessary to define the basic rules of the game and 
adhere to them rigidly. (If we change the rule for moving a knight on a 
chessboard, we might have invented an interesting new game, but it is no longer 
chess!) In matrix algebra, the rule for multiplying matrices is very complicated 
and it requires care and patience to learn it and apply it accurately. In its 
simplest form, the rule for multiplying a single row by a single column, each 
containing the same number of elements can be expressed as follows:
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(a = (ap + bq + cr + ds)

If there are more than four elements, just continue to multiply each element of 
the row by the corresponding element in the column and add the product to the 
total. Notice that the result of the operation is a 1 x 1 matrix, that is, it is a single 
number (but it is still a matrix, so do not leave out the brackets).

The illustration of the book sales, above, can be expressed in matrix algebra as 
follows.

The sales are represented by the 1 x 3  matrix S, above, the prices are shown in

a 3 x 1 column matrix P, where P =
5

and the total value of the books sold

is found by evaluating the matrix product SP.

SP = (20 25 10)

= (100+ 150 + 70)

= (320)

Now suppose the sales of the same books in the following week are 
represented by the matrix R, where R = (30 15 5), then the value of the total
sales in the second week is given by the matrix product RP.

RP = (30 15 5)

= (150 + 90 + 35) 

=  (275)

We can combine these two sets of figures into a single matrix product, namely,

/20  25 10\ ( 5\  ( 320\
\30 15 5 j  M  “ ( 2 7 5J

When we read this, it must be clearly understood that the first row of the first 
matrix and the first row of the product represent the first week’s figures and the 
second row in each case represents the second week’s figures.

Let us now suppose that our bookseller discovered that the price list he had 
been using was out of date and the prices he should have been charging were 
£5.50, £6.50 and £7.50. He would, of course, want to know how much he should
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have got for his two weeks’ sales. Proceeding as before, he would calculate the 
matrix product:

He could go a stage further and display both sets of figures side by side. Here, it 
must be understood, the second column of the price matrix corresponds to the 
second column of the product.

It is unlikely that there are many booksellers who bother to learn matrix 
algebra in order to do their accounts! Nevertheless this example will, it is hoped, 
serve to introduce the multiplication of matrices, which is absolutely funda­
mental in the study of matrix algebra. Matrix algebra was the brain-child of a 
Cambridge mathematician, Arthur Cayley (1821-1895). Cayley produced a 
paper on the subject in 1858; at the time he was working on the theory of 
transformations (see §11.6). The study of matrices has been one of the most 
significant factors in the development of mathematics in the twentieth century. 
Although it originated as a branch of pure mathematics it has turned out to be 
an extremely useful subject and today it is extensively used in applied 
mathematics and physics.

Let us now take another look at matrix multiplication. Here we multiply a 
3 x 2  matrix A by a 2 x 1 matrix B. (Notice that, for multiplication to be 
possible, it is essential that the number of columns in the first matrix should be 
the same as the number of rows in the second matrix.) Remember to work across 
each row and down each column.

If
2

I )
and B =
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Now we examine the product of a 3 x 2 matrix P and a 2 x 2 matrix Q, 
bearing in mind that in picking out the pairs of corresponding elements for 
multiplying together, we work across each row of P and djown each column of Q.

I f  p = ( i  l )  a n d  Q = ( *  ° )

/ I  x 7 + 2 x 9 1 x 8 + 2x 0
PQ = I 3 x 7 + 4 x 9 3 x 8 + 4 x 0

V 5 x 7 + 6 x 9 5 x 8 + 6x 0
8

24
40

It should be noted (a) that for each row of matrix P there is a row in the product 
PQ, and that for each column of matrix Q there is a column in the product PQ, 
and (b) that, for example, the element 89 in the third row and first column of PQ 
is the sum of the products of the corresponding elements of the third row of P 
and the first column of Q.

We can now set out the following general features of matrix multiplication:

(1) In any matrix product CD, if the first matrix C has m rows and n columns 
and the second matrix D has n rows and p columns, then the product CD has m 
rows and p columns.

(2) The element which lies in the ith row and ;th column of CD is the sum of 
the products of the corresponding elements of the ith row of C and the y'th 
column of D.

Example 2 Find, where possible, the products PQ and MN, given that

(a) P =

(b) M =

2 3 4 

1 5 2

2 1 0 
3 4 7

(a) PQ =
2 3 4

5 2 ¿ I
J  3

x l + 3 x 0 + 4 x l  
x 1 + 5 x 0 + 2 x 1

16 
15

2 x (— 1) + 3 x 2  + 4 x 3 \  
1 x (— 1) + 5 x 2  + 2 x 3 7



(b) It is impossible to form the product MN, because M has three columns, 
while N has only two rows.
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Qu.2 Find the following matrix products:

(c) (1 2 3)
2 - 1
3 1
4 2

(b)
1 5 6'
2 3 4

(d )
1 0 3
2 1 1

3

In the algebra of real numbers, the order of the terms in a product does not 
matter, for instance 3 x 5  and 5 x 3  both equal 15. We say that in the algebra of 
real numbers multiplication is commutative, that is, ab = ba for any pair of real

/ I  2 \
numbers. This is not the case in matrix algebra. For example, if A = I 1 and

6 )8 / ’
then

AB =
1
3

2 5 6 
7 8

but

BA =
5
7

6
8

1 2 
3 4

19 22
43 50

23 34
31 46

So in matrix algebra, the order of the matrices in a product does matter. We say 
that in matrix algebra, multiplication is not commutative.

Exercise 11a
/3  1 2 \  /  4 —1 2 \

1 Given that A = I  ̂ 1 and B = I  ̂  ̂ I evaluate:

(a) 3A, (b) 2B, (c) 3A + 2B, (d) 3A -2B .
2 A newspaper agent records the number of papers sold on each day of one 

week, as follows:

Mon Tue Wed Thu Fri Sat
The Post 120 250 350 300 420 200
The News 120 300 420 200 300 500

Write this as a 2 x 6 matrix S.
The Post costs 12p and The News costs 15p. Write this information as a 

1 x 2 row matrix P. It is only possible to form one of the products PS and SP. 
Evaluate the product which it is possible to form and explain the meaning of 
the first element in the product matrix.
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3 Find, where possible, the following products. When it is not possible to form 
the product, state this clearly and give the reason for your conclusion.

(b)

(d )

4 Given that A = and B =
1

find AB and BA. State the

property of matrix multiplication which is illustrated by the answer.

5 Given that I =  ^  ^  and A = ^ , find IA and AI. In the algebra of

real numbers there is a number which has a property which is very similar to 
the property shown by I in this question. State the number and describe this 
property.

6 Given that A = ( \  ^ | and B = (  \  \  | , find AB and BA.

7 Given that A =

5 4 
3 2

- 5
1

- 45
solve the matrix equation AX = C.
[Hint: multiply both sides of the equation by B.]

8 Repeat No. 6, given that A = |  ̂ ^ ) and B =

, use the result of No. 6 to

9 Repeat No. 7, given that A =

10 Evaluate the matrix products:

/ I  2 3 \  / 2  1 0
(a) I 4 5 6 J I 3 — 1 4

\ 1  0 - 1 /  V 1 0 7

X = and C =

11 Matrices M and N are members of a set S which is defined as follows:

a b'
— b a,

S = a, b e IR

Prove that the product MN is also a member of set S.

Hint: let M = ( ^ j and N =
\ - q  P / \ ~ s  r ,

12 Matrices P and Q are members of a set R which is defined as follows:

R = : a,b,c,d e IR, ad — be = 1

Prove that the product PQ is also a member of set R.
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13 S is the set of matrices of the form ( a ^  ) where a and b can be anj
\ b / k  a  J

real numbers, but k is the same real number for all members of S. If A anc 
B are two distinct members of set S, show that the product AB also belong: 
to set S.

14 Given that P =  | U ^ ) and that Q = f ), evaluate the products PQ
kc d

and QP. Comment on your answers.

Matrix algebra
11.5 The rules for adding and subtracting a pair of m  x n matrices, which were 
introduced in §11.3, are very simple and unremarkable. The reader should havt 
no difficulty convincing himself that, if A and B are a pair of such matrices,

A + B = B + A

so m a tr ix  a d d i t io n  is  c o m m u ta t iv e . Also if 0 is the m  x n zero matrix, then 

A + 0 = A

If C is another m  x n matrix, then it follows from the associative property of rea 
numbers under addition that

(A + B) +  C =  A +  (B + C)

The technical term for this is that m a tr ix  a d d it io n  is  a s s o c ia t iv e . (This termi 
nology may be new to some readers. All it means is that the position of th< 
brackets does not matter; and if this remark seems trivial, contrast it wit! 
(24 12) ^  2 which does n o t equal 24 ^  (12 ^  2). Division is n o t an associate
operation in real numbers.)

Multiplication of matrices, which was introduced in §11.4, is a mon 
complicated operation and, as a result, the rules of matrix multiplication art 
more interesting. We have already seen that it is possible to have a pair o 
matrices A and B, for which AB ^  BA, so m a tr ix  m u lt ip l ic a tio n  is no<

c o m m u ta t iv e . .
We have also seen (Exercise 11a, No. 5) that if A is any 2 x 2 matrix and t

T =  ( 1 ^  then IA =  AI =  A. This is very similar to the way the real number 1
\ 0  \ ) '

behaves in ordinary algebra, that is, 1 x x =  x x 1 =  x, where x is any rea 
number. This matrix 1 is plainly a very special matrix and so it is given a specia 
name; it is usually called the unit matrix (in recognition of its similarity to the 
number 1) or the identity matrix. More generally, if A is any n x n matrix, ther 
the corresponding unit matrix is an n  x n matrix, with l ’s along the leading 
diagonal (the one that goes from the top left-hand corner to the bottom right-
hand corner), and 0’s elsewhere.

/ I  0 0 \

So the 3 x 3 unit matrix ıs I 0 1 0 1.
\ 0  0 1/
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/  a b cs 
Qu.3 If A = I d e f

\ g  h /
and I is the 3x3  unit matrix, verify that AI = IA = A.

In ordinary algebra, if we have a pair of numbers p and q such that pq = 1 
(for example 4 x \  = 1) we say that q is the inverse of p, and conversely p is the 
inverse of q. (Similarly j  is the inverse of 2; 3/5 is the inverse of 5/3.) The same 
term is used in matrix algebra to describe a pair of matrices A and B such that 
AB = BA = I. We say that A is the inverse of B and B is the inverse of A. For 
such a statement to be possible, both A and B must be square matrices which 
have the same number of rows and columns as each other. (If this is not obvious, 
write down a pair of matrices for which it is not true and try to evaluate both AB 
and BA.)

If we are given any square matrix A, the task of finding its inverse can be very 
difficult. In this section we shall tackle the simplest case, where A is a 2 x 2 
matrix.

Suppose we are given a 2 x 2 matrix A =
a
c

b
d

. The problem is to find a

2 x 2  matrix B, such that AB = I. Let us write B as ( ^ ^ ). (In the work that
V  SJ

follows, remember that a, b, c and d are known, but p, q, r and s are unknown; the 
task is to find p, q, r and s.)

/  a b \ f p  q \  fap  + br aq + bs\
\c  d ) \ r  s )  \cp  + dr cq + d s)

This product is to be equal to the identity matrix 

four equations

, so we can write down

ap + b r= l (1 )

cp + dr = 0 (2 )

aq + bs = 0 (3 )

cq + ds=  1 (4 )

from which to find p, q, r and s.
Multiplying (1) by d and (2) by b, we have

adp + bdr = d 
bcp + bdr = 0

Subtracting,

(ad — bc)p = d

Provided ad — be is not zero we may divide by it, hence 

d
(where A = ad — be)



Matrices 223

Substituting this in equation (2) gives

cd
~A

+ dr = 0

c
A

The reader should now solve equations (3) and (4) to find q and s. The solutions 
are q = — b/A and s =  a/A.

Hence the inverse matrix B is given by

/  d/A - b / A \ = l_( d - b \
V- c /A a /A j A \ - c  a )

This is the required inverse of the matrix A and the standard abbreviation of this 
is A-1. Consequently we write:

i f A - ( °  ¿ ) , h r a A ~' ' - (  d - b\  A \ — c a j

This is an important result and every effort should be made to memorise it.

The method for finding the inverse of a matrix 

follows:

can be summarised as

the elements on the leading diagonal, a and d, are interchanged, the 
elements on the other diagonal, b and c, have their signs changed, and 
the matrix is divided by ad — be.

Qu. 4 Using the matrices A and A 1 above, verify that A 1A = I.

Notice that in finding the inverse of f ° ^ ) the term A = ad —be has a very
\ c d j

important role to play. We shall be referring to this term quite frequently and so
/ a

it is given a special name; it is called the determinant of the matrix

It is convenient to reduce the phrase ‘the determinant of matrix M’ to det M,

so if M = ( a ^ ) then we write det M = ad — be.
\ c  d )

Matrices for which A = 0 are often called singular matrices. A singular matrix 
has no inverse because we cannot divide by zero.

Example 3 Given that M =
7
5

^ , write the simultaneous equations

lx  + 9y = 3 
5x + 7y = 1
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(

in the form MX = C, where X is the column matrix
3

)

and C is the column matrix

. Hence solve the equations.

In matrix notation the equations can be expressed

(
7 9 
5 7) ( y

x

This is in the form

MX = C

as required. Multiply both sides of this matrix equation by M 1 and we have

Now the left-hand side of this equation can be simplified, as follows: 

M _1(MX) = (M _1M)X

using the associative property of matrix multiplication, and 

(M ~1M)X = IX = X

using the properties of the inverse and identity matrices.
Equation (1) can now be reduced to

Hence x =  3 and y — — 2.

As a method for solving a pair of simultaneous equations, this is using a 
sledge-hammer to crack a nut. Nevertheless, it is a method which can be 
developed for tackling the more general problem of solving n simultaneous 
equations in n unknowns. It also gives an example of the way the basic 
properties of matrix algebra can be combined into a logical argument.

Exercise l ib  (Oral)

Find the determinants of the following matrices:

M ~1(MX) = M “ 1C ( 1)

X = M ‘C



2 (a)

(a)

(a)

(a)

12
8 (b)

1 1 
2 5
i  i  6 3

(c) (d )
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k ■=£ 0.
a b /k \
ck
»

d ) ’

( x  X2
(d)

l x 2 X3

a ft 
— ft a

3 State which of these matrices are singular:

:»d -
4 Find the values of x for which the following matrices have no inverse:

« O- o > 6 î ) -  “> ( r 2 i _ 3).
5 State the inverse of each of these matrices (read each column in turn):

«(;;)■ »(;■;)■

Exercise 11c
1 Find, where possible, the inverses of the following matrices:

7 4 
5 3

8 2 
11 3

1 1 i
2 3

i  1
(a) ( e ,  ), (b) I ;  ), (c)

2 Find the inverses of the following matrices:

(b)

'3/5 — 4/5^ _  /  1/2 V 3/2\

(d )
6 3 
8 4

1/V2 1/V2\
. — 1/\/2 V J2J’

1/2 V 3/2\ 
V3/2 1/2^’

(c) 4/5 3/5 (d) VV3/2 - i / 2 y

3 Find the inverse of the matrix M, where M and hence solve the

matrix equation MX = C, in which X = I and C

4 Repeat No. 3 for M =
9 2

v8 4,
5 Write the simultaneous equations

l x  + 9y = 1 
lOx + 13y = 2

in matrix form, and, using the method employed in Nos. 3 and 4, solve the 
equations.

'1 5 \  ( \  - 1
6 Solve the matrix equation AX = B, where A = ( , _ ) and B = | . . 1 to

find the (unknown) matrix X.
4 3 1 1
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/ 3 4 \  (2  0N
7 Given that P = I ^ I and A = I ), find .the matrix M, where

M = P *AP. Hence, or otherwise, find M 5.

8 By writing M = ( ° ^ | and N = ( ^ ^ prove that, for any two 2 x 2
Vc dJ V  V

matrices M and N, det MN = det M det N.

9 Verify that if M =
5 10

8 \ / - i 2 4
4 - 7 - 6 and N = 1 2 1 - 2
3 6 5 / V -3 0 5

then

MN = NM = I, where I is the 3 x 3  unit matrix. Use this to solve the matrix 
equation

10 Express the simultaneous equations

— x + 2y + 4z = 7
2x + y — 2z = — 2 

— 3x + 5  z =  7

in the form of a matrix equation NX = C, where N is the 3 x 3 matrix in 
No. 9 and X and C are suitable column matrices. Hence, using the 
information from No. 9, solve these equations by the matrix method.

/ 2  1 0 \
11 Given that A = I 0 1 11 , verify that A3 = 11A— 141, where I is the

\ 0  4 - 3 /
3 x 3  unit matrix. Hence find A

12 Solve, by elimination, the simultaneous equations

2x + y =a  
y + z =  b 

4y — 3z = c

in terms of a, b and c. Express the three simultaneous equations in the form

i x \AX = C, where A and C are suitably chosen matrices and X = I y I, and

give your answer in the form X = BC. Hence write down the inverse of 
matrix A.

Transformations and matrices
11.6 As mentioned earlier (§11.4), matrices were invented by Cayley in the 
course of his work on linear transformations. In this section we shall take a
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closer look at this topic. In two dimensions, a linear transformation is a 
transformation which moves any point P, with coordinates (x, >■), to a new 
position P', whose coordinates (x', y') are given by a pair of linear equations, that 
is equations of the form

x! = ax + by 
y' = cx + dy

In matrix notation this can be written

Example 4 A transformation is defined by the matrix equation

Draw a diagram showing the unit square OIRJ, whose vertices are at (0, 0), (1,0), 
(1,1) and (0,1) respectively, and its image O 'l'R 'J' under the transformation. 
Describe in words the effect o f the transformation on the unit square.

It is worth noting that these four operations can be combined into a single one, 

in which the matrix ^  ^  is aPP^ec*to ^ 2 x 4  matrix ^jj ^  ̂ ^ , that

is,

/  2 0 \ / 0  1 1 0 \ _ / 0  2 2 0\
\ 0  —2 / V° 0 1 1/  \ °  0 - 2 - 2 /

From the diagram (Fig. 11.1) we can see that OIRJ has been enlarged by a scale- 
factor of 2 and it has been reflected in the x-axis.

If we are given a description, in words, of a certain transformation, it can be 
quite difficult to find the corresponding matrix, but in some simple cases the 
matrix can be found by considering the effect of the transformation on a triangle 
OPM, whose vertices are the points (0, 0), (x, y) and (x, 0) respectively. It should 
be noted, at this stage, that the image of (0, 0) under this type of transforma­
tion is always (0, 0).

(a) Rotation, about O, through 90° anti-clockwise

From Fig. 11.2, we can see that the new y-coordinate is OM' and that this is 
equal in length to OM (since OM' is OM rotated through 90°) and OM is the



228 Pure Mathematics 1 11.6

Figure 11.1

original x-coordinate, so y' = x. The new x-coordinate is equal to P 'M ' in 
magnitude, but it is negative; however, P'M ' is equal in length to the original 
y-coordinate and so, x' = — y. Hence the new coordinates (x', y') are given by the 
pair of equations

x' = — y
y' = x

and these can be written in matrix form as

In the next two cases the detailed explanation is omitted; the reader should 
make sure that he or she understands how the matrix equations are obtained 
from the diagram.



(b) Reflection in the x-axis (see Fig. 11.3)

Matrices

(c) Reflection in the line j  =  x  (see Fig. 11.4)

Figure 11.4
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(
0 1 
1 0

x
y

Qu.5 Find the matrices which correspond to the following transformations:
(a) a rotation about the origin, through 90°, clockwise,
(b) a reflection in the line x + y = 0,
(c) an enlargement by a factor of 5, with the origin as the centre of the 

enlargement.

General properties of linear transformations
11.7 In the last section we were able to look at some simple transformations 
and write down the corresponding matrices. Before we can tackle more 
complicated transformations, we must look more closely at the general 
properties of transformations which are defined by matrix equations of the form

Where appropriate, the notation (x, y) (x', y') will be used to indicate that, 
under the transformation, the point (x, y) moves to the point (x', / ) .  It is the 
normal practice to say ‘(x', / )  is the image of (x, y) under the transformation’ and 
that ‘(x, y) is mapped oato the point (x', y')\

The following four properties of such transformations are very important; the 
reader should make sure that they are understood before proceeding further.

is (0, 0), for all values of a, b, c and d. We say that the origin is invariant under any 
linear transformation; (0, 0) i—> (0,0).

(2) The images of (1, 0) and (0,1) are (a, c) and (b, d) respectively

[Throughout this chapter the points (1,0) and (0,1) will be labelled I and J 
respectively; a similar convention is used in Chapter 15.]

As before we need only look at the matrix products

to see that (1, 0) i—► (a, c) and (0, 1) i-> (b, d).
This property is especially valuable because it means that, if we are given the 

description of a transformation, we only have to look at its effect on the unit 
square OIRJ, and in particular, the images of I and J, to find the values of a, b, c

(1) The image of (0, 0) is (0, 0)

and
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and d. (At this stage the reader should look back at the transformations in §11.6 
to confirm this.) Fig. 11.5 shows the unit square OIRJ and its image, for a 
general transformation

(3) The area of the parallelogram OI'R'J' is { a d —be)

This is left as an exercise for the reader. It can be proved fairly easily if the 
parallelogram is ‘framed’ in a rectangle which has O and R' as a pair of 
diagonally opposite vertices. The region surrounding the parallelogram should 
then be dissected into suitable rectangles and right-angled triangles.

Notice that {ad — be) is A, the determinant of the matrix ^  Notice also

that it is possible for (ad — be) to be negative. This will happen when the unit 
square is ‘turned inside-out’, as in a reflection.

(4) Any set of parallel lines is transformed into a set of lines which are also 
parallel to one another

Let the original set of lines have equations of the form y — mx + k, where m is 
constant, thereby ensuring that the lines in the original set all have the same 
gradient, i.e., they are parallel to one another. We shall show that these are 
transformed into a set of lines whose gradient does not depend upon the value of 
k, i.e. the gradient is the same for any line from the original set of lines.

The new coordinates (x1, y') are given by

a b \ i x  
c d ) \ y
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Solving this equation, as in §11.5, Example 3, we obtain

(
X

y )
where A = ad — be. Hence,

dx' — by' — ex' + ay'

Now (x, y) is a point on the line y = mx + k, and consequently its coordinates 
satisfy this equation. Substituting for x and y we find

— ex' + ay' = mdx' — mby' + /cA 

(a + bm)y' = (c + dm)x' + kA 

so the coordinates (x', y') of P ' satisfy the equation 

(a + bm)y = (c + dm)x + kA

This is the equation of a straight line and its gradient, (c +  dm)/{a + bm), does not 
depend on k. Consequently all members of the original set of lines are 
transformed into another set of lines, all of which have the same gradient as each 
other, namely (c + dm)/(a + bm).

In Fig. 11.6 the first diagram shows the original plane with a set of equally 
spaced lines parallel to the x-axis and another set parallel to the y-axis. The 
second diagram shows these two sets of lines after the transformation. The unit 
square is labelled O ^R Jj in the first diagram and its image OI^R'l) appears in 
the second.

Notice that each little square in the original diagram has an area of one 
square unit and that each of these is transformed into a parallelogram whose 
area is (ad — be). Consequently any region in the original diagram will be 
transformed into a region whose area is (ad — be) times greater than the area of 
the original region.

Example 5 A linear transformation is defined by

Find the images of (l, 0) and (0, 1) and find the factor by which areas are increased 
by the transformation. Find also the point whose image is (4, 6).

The image of (1,0) is given by the first column of the matrix. Hence 
(1,0) i—>- (3, 5). The image of (0,1) is given by the second column. Hence 
(0, 1) i—► (2, 4). The area is increased by a factor equal to the determinant, i.e.
(3 x 4 -  2 x 5) =  2.

— ex' + ay'
A
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Let the point (4, 6) be the image of (x, y), then

Multiplying both sides of this equation by the inverse matrix, we obtain

where A = 12 — 10 = 2
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Hence (4, 6) is the image of (2, — 1).

Property (2), above, is especially useful because it enables us to write down, 
with very little working, the matrices which represent some common transforma­
tions, which we can add to our list (a), (b), (c) in §11.6.

(d) Rotation through an angle a about the origin

Since OI' =  1, we can see that a = cos a and c = sin a. Also, since OJ' = 1, 
6 =  —sin a and d = cos a. (See Fig. 11.7.) Hence the required matrix is

/ cos a —sin a 
\ s i na  cos a

(e) Reflection in the line y  =  m x ,  where m  =  tan a

The required matrix is

/  cos 2a sin 2a 
\sin  2a —cos 2a

Proof of this is left to the reader; it is not difficult, provided a careful diagram is 
drawn.

(f) The transformation under which the unit square is mapped onto the parallel­
ogram with vertices O, I' (1, 0), R' (3,1) and J' (2,1)

(See Fig. 11.8; a transformation such as this is called a shear, parallel to the 
x-axis.)

Using the same method as before, the required matrix is
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Qu.6 Write down the matrix which represents the shear parallel to the y-axis, 
under which the unit square is mapped onto the parallelogram with vertices 
O, I' (1, 5), R' (1, 6) and J' (0, 1).

It should be noticed that the same letter may be used to represent both the 
transformation and its corresponding matrix — indeed this causes less confu­
sion than using two different letters. Thus we can say ‘the transformation E is an 
enlargement with a scale factor k' and we, can also say that the matrix

representing this transformation is E, where E =  ( ).
\0  k

Composite transformations
11.8 Suppose that we have two transformations P and Q, which are given by 
the matrix equations

and suppose that P  is applied first, mapping (x , y) onto (x \  y') and that Q is then 
applied, mapping (x\ y') onto (x", y") i.e.

Then, substituting for
x’

we obtain

( x " \  — ( a i  MAb M M
V / 7  U  d J U  d j \ y )

So the matrix which represents the composite transformation ‘do P, then do Q’ 
is the matrix product

i  a2 b2\ f a  ! b A
\ c 2 d2) \ C i  d1J
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Notice that the matrix which represents the first transformation is the matrix on 
the right in this product. This composite matrix is always written QP. 
Remember that P is applied first and Q second. This may seem strange, but it is 
logical if we look at the way the matrix product, above, was formed. Notice also 
that it is the same convention as that used in forming composite functions (see 
§2. 10).

Example 6 Write down the matrices R and S, which represent a reflection in the 
line y = x, and a rotation through 90°, anti-clockwise about the origin, respectively. 
Find the matrix which represents the composite transformation SR and draw a 
diagram showing the unit square and its image under the transformation SR. 
Describe SR in words.

R

SR

0 1
1 0

0 - 1  
1 0

and

0 1N 
1 0,

s = 0 - 1  
1 0

- 1  0
0 1

(see §11.6)

y  •k

R j' j R

I' O X

Figure 11.9

The transformation SR is a reflection in the line x = 0 (see Fig. 11.9).

Example 7 Write down the matrices A and B which represent rotations about the 
origin, through angles a and (i, respectively. Find the matrix which represents the 
transformation AB and describe this transformation in words. Write down another 
matrix which represents this transformation and hence find expressions, in terms of 
sin a, cos a, sin p and cos p, for sin (a + P) and cos (a + /?).

)  and B - ( C°S% («§11.6).}  \sin  p  cos p  J

The composite transformation is given by the product

i  cos a — sin a 
\s in a  cos a

f  cos a — sin a \  /  cos P 
\sin  a c o s a / \ s in / l

— sin f  \  
cos PJ

{cos a cos ft — sin a sin ft 
\sin  a cos ft + cos a sin ft

cos asm P -  sin a cos P 
cos a cos P — sin a sin P

AB =
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The composite transformation is a rotation through an angle ft followed by a 
rotation through an angle a: this can be simplified by replacing it by a single 
rotation through an angle (a + /?). (In this particular case, the order of the 
transformations is immaterial; in other words the transformations are commu­
tative.) The single rotation through an angle (a + ft) can be represented by the 
matrix

/  cos (a + P) — sin (a + /?) \
\  sin (a + P) cos (a + f)  /

Comparing this with the matrix AB, above, we see that

cos (a + ft) = cos a cos f  — sin a sin /? 
sin (a + jS) = sin a cos f  + cos a sin /?

Example 8 Write down the matrix R which represents a reflection in the line 
y = mx, where m = tan a. Prove that R2 = I, and hence write down the inverse of 
the matrix R. Verify that this agrees with the result obtained by using the normal 
method for finding R _1 (see §11.5).

. . R2

cos 2a sin 2a 
sin 2a — cos 2a

cos 2a sin 2a \  /  cos 2a sin 2a
sin 2a — cos 2a J \  sin 2a — cos 2a

cos2 2a + sin2 2a cos 2a sin 2a — sin 2a cos 2a
cos 2a sin 2a — sin 2a cos 2a cos2 2a +  sin2 2a

1 0 
0 1

= I

Since R2 = I, the inverse of R is R itself, so

R 1
cos 2a sin 2a 
sin 2a —cos 2a

(This is not very surprising because we have reflected an object in a given line, 
and then reflected it again in the same line; this would return the object to its 
original position. In other words R2 leaves the object unchanged. Any matrix M 
with the property M “ 1 = M is called a self-inverse matrix.)

The determinant of R is given by

det R = — cos2 2a — sin2 2a 
= — (cos2 2a + sin2 2a)
= - 1

Hence, applying the method in §11.5 for inverting a matrix, we obtain 
1 / —cos 2a — sin 2a \

— 1 l — sin 2a + cos 2a /
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R 1 =
cos 2a sin 2a 
sin 2a — cos 2a

= R

(a)

(d)

Exercise l id
1 Describe the transformations represented by

.o  _ ? )■  * » ( ? - ;

2 A certain transformation is represented by

Draw a diagram showing the unit square and its image under this 
transformation. The triangle whose vertices are A(3, 2), B(7,2) and C(6, 5) is 
mapped onto A'B'C', by this transformation. Find the coordinates of A', B' 
and C'. Find also the areas of the triangles ABC and A'B'C'.

3 Two matrices P and Q are given below:

P = Q =
1 1 
0 1

Draw a diagram showing the circle and its image and write down

Find the product QPQ and describe the transformation it represents.

4 A circle, centre O, radius a, is subject to a transformation whose matrix is

1 0
,0 b/a,
the area inside each of the curves.

5 Write down the matrices which represent
(a) an anti-clockwise rotation, about the origin, through an acute angle 

whose sine is 3/5,
(b) an enlargement by a factor of 5, followed by a reflection in the line y = x.

6 Describe the transformation which is given by

x '\  fa  —b \  l  x N
Ky) Vb a/\y,

where a and b are real numbers. State the condition required if this matrix 
represents a pure rotation.

7 By considering the effect on the unit square, describe the transformation 

which is represented by the matrix A =  f j j j . Hence, or otherwise, find X
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and m such that

(1 - 1

expressing m in the form tan a. Hence prove that tan 22\° = ^ 2  — 1.

Hence describe the transformation which A represents.
9 Write down the matrix which represents a reflection in the line y =  (tan a)x. 

Hence show that a reflection in a line which is inclined at an angle a to the 
x-axis, followed by a reflection in a line which is inclined at an angle P to the 
x-axis, is equivalent to a reflection. State the angle which the mirror line of 
this reflection makes with the x-axis.

[You will need the formulae

sin (P — Q) = sin P cos Q — cos P sin Q 
cos (P — Q) = cos P cos Q + sin P sin Q

See Chapter 17.]
10 State the transformation which is represented by the matrix A, where

and find the matrix A2. Describe the transformation represented by A2 and 
hence write down expressions for cos 26 and sin 26, in terms of cos 6 and 
sin 6.

Exercise l i e  (Miscellaneous)
1 Find, where possible, the following products:

8 Show that A = is ‘self-inverse’, that is, A2 = I, the unit matrix.

cos 6 — sin 0 
sin 6 cos 6

(b) (3 1 2)

1 1 
1 0

2 Find, where possible, the inverses of the following matrices:

3 Find, where possible, the inverses of the following matrices:



Ex lie240 Pure Mathematics 1 

4 Solve the following matrix equations:

(a)

transformation

6 The transformation maps the triangle A(3, 2), B(7, 2),

3V m * W 2 3
y )  \ ~ V  ' V» 5 J \ v  y )  \3  4

5 Find the equation of the line onto which the line x + y =  0 is mapped by the
x ' \ _ / 5  1 2 \ / x n
/ / V 3 5 j \ y ,

x '\  / 5  2 \ l  x '
y’J V1 4/ \y,

C(3, 8) onto the triangle A'B'C'. Find the coordinates of A', B' and C' and 
calculate the area of the triangle A'B'C'.

7 Under a certain transformation, the image of the point (x, y) is (X, Y), where
' X \  ( \  4 \ ( x \

1 = 1 )• 4 " 1S transformation maps any point on the line

y = mx onto another point on the line y = mx. Find the (two) possible values 
of m.

8 Under a certain transformation, the images of the points (1,0) and (0, 1) are 
(3, 5) and (5, 9) respectively. Find the image of the point (2, — 5) under the 
same transformation. Find also the point whose image is (8, 6) under this 
transformation.

1 1 0N
9 Given that A is the matrix | 1 0 — 1 | and B is the matrix

1 1 2,

find the product AB. Hence write down A 1, the inverse

10 As a result of market research, it is known that a per cent of the population 
buys Soft shampoo and b per cent does not, and that if the product is 
advertised on television for a week, these percentages change from C to AC,

where C = ( , | and A = ( ^ M . However, if it is not advertised for a week,

C changes to BC, where B =
_3l
10
7
10

At the start of week 1, a = 20 and b = 80. Find the values of a and b two 
weeks later, if Soft shampoo is advertised
(a) in both weeks,
(b) in week 1, but not in week 2,
(c) in week 2, but not in week 1.

11 Given that z is the complex number x + iy and that the matrix A(z) is defined
'x  —yN
Ky x ,

as A(z) = , prove that

A(zlZ2) = A(z1)A(z2)
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12 By considering the effect on the unit square, or otherwise, write down the 
matrices M and R which represent a reflection in the line x = y, and a 
rotation about the origin through an angle 9, respectively. Find the matrix 
M 'RM  and describe it in words.

Find also the matrix product R ‘MR and, by considering the effect of 
R ‘MR on the unit square, show that

R ‘MR =
sin 20 cos 29 
cos 29 — sin 29

Hence write down expressions, in terms of cos 9 and sin 9, for cos 29 and 
sin 29.

/  3 0
13 The matrix A is I 0 — 1 2 J . Show that A satisfies the matrix equation

\ 0  3 — 2/

A3 = 13A — 121. Assuming that A 1 exists, show that this equation can be 
written A-1 = yj(131 —A2), and hence find A-1 .

14 The matrix M is given by M = , where a,b,c,d e R. Find M 2.

Given that M 2 = M and that b and c are non-zero, prove that M is 
singular. Prove also that, in this case, the transformation T, defined by

T: M

maps all points of the plane to points of the line (1 — a)x = by. (C)
15 Given the matrix M = ^  i ^  ^  j , evaluate M 2 and the determinant of M.

Find a set of matrices
x
y

such that M
x
y

X

y
and also a set of matrices

“ J  such that ^ “

Describe, in geometrical terms, the transformation represented by the
matrix M.

16 The transpose of a matrix M = is the matrix M T =

(JMB) 

, and M

is said to be orthogonal when M r M = I, where I is the unit matrix. Given

that the matrix N =
2/V5 1/V5 
l/y/5 k

is orthogonal, find the value of k.

Describe geometrically the transformation of the x -y  plane which is 
represented by N.

Under a transformation S of the real plane into itself, a point P = (x, y) is 
mapped onto the point S(P) = (ax + by, cx + dy). Show that, when M is 
orthogonal, the distance between any two points P and Q is the same as the 
distance between their images S(P) and S(Q). (L)



242 Pure Mathematics 1

17 A transformation T is represented by

Ex lie

b 0 
0 l/b

, where b e R H

(a)
(b)
( c )

(d )

(e)

Draw a diagram showing the unit square and its image under T.
Show that area is invariant under T.
Show that T maps the curve y=  1/x onto itself.
Show that T maps the region bounded by the curve y = 1/x, the lines 
x = 1 and x = a, and the x-axis, onto the region bounded by the same 
curve, the lines x =  b and x = ab, and the x-axis.

Hence show that
'a j Çab  J

— dx = — dx.
i * Jb x

(f) Given that F(t) = — dx, show that
i *

F (ab) = F(a) + F(b)

(The reader should note several interesting and significant points about this 
question. The integral in (e) cannot be evaluated by methods which have 
been introduced so far, and the result of (f) looks very much like a standard 
property of logarithms. We shall return to these points in Book 2.)



Chapter 12

Permutations and combinations
Arrangements
12.1 This chapter aims at teaching a method of approach to certain problems 
involving arrangements and selections. In the course of the work, a notation is 
introduced, and a formula is obtained for use in the proof of the binomial 
theorem (Chapter 14).

Example 1 F ro m  a  p a c k  o f  p la y in g  c a rd s , th e  A c e , K in g , Q u een , J a c k , a n d  T en  
o f  S p a d e s  a re  ta k en . In  h o w  m a n y  w a y s  ca n  th re e  o f  th e se  f i v e  c a rd s  b e  p la c e d  in a  
ro w  f r o m  left to  r ig h t?

The first card can be any one of the five, viz.:

A; K; Q; J; 10.

When the first card has been placed, there are four cards left to choose from, 
and so the possible ways of placing the first two cards are:

AK, AQ, AJ, A 10;
KA, KQ, KJ, K 10;
QA, QK, QJ, Q 10;
JA, JK, JQ , J 10;
10 A, 10 K, 10 Q, 10 J.

Thus, for ea ch  of the 5 ways of choosing the first, there are 4 ways in which the 
second card may be chosen; therefore there are 5 x 4  (i.e. 20) ways of choosing 
the first two cards.

Now for each of the 20 ways of placing the first two cards, there are 3 cards left 
to choose from (e.g. if the first two cards were A K, the third could be Q, J, or 10); 
therefore there are 20 x 3 ways of placing the third card.

Thus, three cards chosen from the Ace, King, Queen, Jack, and Ten of Spades 
may be placed in a row from left to right in 60 different ways.

Example 2 T h re e  sch o o ls  h a ve  tea m s o f  s ix  o r  m o re  ru n n ers in  a  c ro s s -c o u n try  
ra ce . In h ow  m a n y  w a y s  ca n  th e  f i r s t  s ix  p la c e s  b e  ta k e n  b y  th e  th re e  sch o o ls , i f  
th e re  a re  no d e a d  h ea ts?

243



244 Pure Mathematics 1 12.1

First it should be made clear that there is no question of the individuality of 
the runners, but only which school each of the first six runners belongs to. 

The first place can be taken by any of the 3 schools. *
When the first runner has come in, the second place can be taken by any of the 

3 schools, so the first two places can be taken in 3 x 3, or 32, ways.
Similarly, the third place can be taken by any of the 3 schools, so the first three 

places can be taken in 32 x 3, or 33, ways.
Continuing the argument for the fourth, fifth and sixth places, it follows that 

the first six places may be taken in 36, or 729, ways by the three schools.

Example 3 H o w  m a n y  even  n u m bers, g r e a te r  th a n  2000, ca n  b e  fo r m e d  w ith  th e  
d ig its  1, 2, 4, 8, i f  e a ch  d ig i t  m a y  b e  u sed  o n ly  o n ce  in  ea ch  num ber?

If the number is greater than 2000, the first digit can be chosen in 3 ways (viz.: 
2, 4, or 8).
. Then, whichever has been chosen to be the first digit, there are 2 ways in which 
the last digit may be chosen, in order to make the number even. Thus there are 
3 x 2  ways of choosing the first and last digits.

When the first and last digits have been chosen, there are 2 digits, either of 
which may be the second digit of the number. Thus there are 3 x 2 x 2 ways of 
choosing the first, last, and second digit.

Now, when three digits have been chosen, there is only 1 left to fill the 
remaining place, and so there are 3 x 2 x 2 x 1, i.e. 12, even numbers greater 
than 2000 which may be formed from the digits 1, 2, 4, 8, without repetitions.

The following table is useful for showing the argument briefly:

Position of digit First Last Second Third

Number of possibilities 3 2 2 1

It is to be understood, in this and later tables, that the choice is made in the 
order of the first line.

Exercise 12a
1 Ten boys are running a race. In how many ways can the first three places be 

filled, if there are no dead heats?
2 In how many ways can four letters of the word BRIDGE be arranged in a 

row, if no letter is repeated?
3 Five letters from the word DRILLING are arranged in a row. Find the 

number of ways in which this can be done, when the first letter is I and the 
last is L,
(a) if no letter may be repeated,
(b) if each letter may occur as many times as it does in DRILLING.

4 A man, who works a five-day week, can travel to work on foot, by cycle or by 
bus. In how many ways can he arrange a week’s travelling to work?



5 How many five-figure odd numbers can be made from the digits 1,2,3,4,5, if 
no digit is repeated?

6 A girl has two coats, four scarves and three pairs of gloves. How many 
different outfits, consisting of coat, scarf, and a pair of gloves, can she make 
out of these?

7 In a class of thirty pupils, one prize is awarded for English, another for 
French, and a third for mathematics. In how many ways can the recipients be 
chosen?

8 A man has five different flags. In how many ways can he fly them one above 
the other?

9 The computer department in a large company assigns a personal code 
number to each employee in the form of a three-digit number, using the 
digits 0 to 9 inclusive. Code numbers starting with 0 are reserved for 
members of the management. How many code numbers are available for 
non-management employees?

10 There are sixteen books on a shelf. In how many ways can these be arranged 
if twelve of them are volumes of a history, and must be kept together, in 
order?

11 A typist has six envelopes and six letters. In how many ways can one letter be 
placed in each envelope without getting every letter in the right envelope?

12 How many postal codes of the form AB1 2CD (i.e. two letters, followed by a 
single digit, a space, another digit and two more letters) can be formed from 
the symbols A, B, C, D, 1 and 2, if each symbol is used once only?

13 In how many ways can the letters of the word NOTATION be arranged?
14 How many odd numbers, greater than 500 000, can be made from the digits 

2, 3, 4, 5, 6, 7, without repetitions?
15 Three letters from the word RELATION are arranged in a row. In how 

many ways can this be done? How many of these contain exactly one 
vowel?

16 Seven men and six women are to be seated in a row on a platform. In how 
many ways can they be arranged if no two men sit next to each other? In how 
many ways can the arrangement be made if there are six men and six women, 
subject to the same restriction?

17 A man stays three days at a hotel and the menu is the same for breakfast each 
day. He may have any one of three types of egg dish, or two types of fish, or 
meat. In how many ways can he order his three breakfasts if he does not have 
egg two days running nor repeat any dish?

18 A boy has five blue marbles, four green marbles and three red marbles. In 
how many ways can he arrange four of them in a row, if the marbles of any 
one colour are indistinguishable?

19 I have fifteen books of three different sizes, five of each. In how many ways can 
I arrange them on my shelf if I keep books of the same size together?

20 Four men and their wives sit on a bench. In how many ways can they be 
arranged if
(a) there is no restriction,
(b) each man sits next to his wife?

Permutations and combinations 245
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The factorial notation
12.2

12.2 There are times when a problem on arrangements leads to an answer 
involving a product of more factors than it is convenient to write down. The next 
example shows how this may arise.

Example 4 In how many ways can the cards o f one suit, from a pack of playing 
cards, be placed in a row?

Position of card in row First Second Twelfth Thirteenth

Number of possibilities 13 12 2 1

The table abbreviates the type of argument used in the last three examples, 
and it leads to the conclusion that the cards of one suit can be placed in a row in

1 3 x 1 2 x 1 1 x 1 0 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1  ways

To shorten the answer, the product could be evaluated, giving 6 227 020 800; 
but it is easier to write

13!

(which is read, ‘factorial thirteen’, or by some, ‘thirteen shriek’!). Thus,

7! = 7 x 6 x 5 x 4 x 3 x 2 x l  = 5040

and similarly for any other positive integer.

The factorial notation will be used freely in this chapter and Chapter 14, and 
the reader should become thoroughly used to it before going on to the next 
section.

9!
Example 5 (a) Evaluate ,

(b) Write 40 x 39 x 38 x 37 in factorial notation.

(a) Written in full,

9! _ 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x l  
2!7! 2 x l x 7 x 6 x 5 x 4 x 3 x 2 x l

_ 9  x 8 
_  2 x 1

= 36
TA y X y 0  y 1

(b) 40 x 39 x 38 x 37 = 40 x 39 x 38 x 37 x ------------- ------------
36 x 35 x ... x 2 x 1

_  40!
“  36!"
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Exercise 12b
1 Evaluate:

10! 7! '
(f)

12!
(a) 3!, (b) 4!, (c) 5!, ^  ~ 8 P (C) 4! ’ ~9T’

11! 6!2! 6! 10! IO'
^  7!4! ’ ( h ) - 8 P (i) (2!)2, ( l)  (3 ij2» W 3!7Î’ (1) 2!3!5!

2 Express in factorial notation:

6 x 5 x 4 , (b) 10 x 9, (c) EO X X

n(n — l)(n - ■ 2), (e) (n + 2)(n + l)n, (f)
10 x  9 
2x 1 ’

7 x 6 x 5 52 x 51 x 50
Lh

n(n — 1)
3 x 2 x 1 ’ \n) 3 x 2 x 1  ’ 2x 1 ’
(n + 1 )n(n — 

3 x 2 x 1
1) (k)

2n(2n — 1) 
2 x 1  ’ (i) n(n — 1)..

(g)

(j)

3 Express in factors: 
(a) 20! + 21!,
(d) 15!+ 4(14!),
(g) n! + 2(n -  1)!,

4 Simplify:

(a) 15!

(c )

(e)

(f)

+
15!

11!4! 12!3!

16! 2x16!
9!7! + 10!6!

n\

(b) 26! -  25!,
(e) (n +  1)! +  n!,
(h) (n + 2)! + (n + 1)! + n!.

21! 21!
(b) 7̂TT7 +

(c) 14!-2(13!),
(f) ( „ _ ! ) ! _ ( „ _  2 ) ! ,

+
16!

TÏÏ5!’

nl

(d )

7! 14! 8! 13! ’

35! 3 x 35!
+

16! 19! 17!18!

(n — r)\r\ (n — r + l)!(r — 1)! ’ 

n! 2 x nl n!
(n — r)!r! (n — r + !)!(/• — 1)! (n — r + 2)!(r — 2)!

Permutations
12.3 In Example 4, it was found that 13 playing cards could be placed in a row 
in 13! ways. If we consider n unlike objects placed in a row, using the same 
method,

Position of object in row 1st 2nd (n — l)th nth

Number of possibilities n n — 1 2 1

we find that they may be arranged in n! ways.



248 Pure Mathematics 1 12.3

The arrangements of the n objects are called permutations. Thus
ABC, ACB, BCA BAC, CAB, CBA,

are the 3! permutations of the three letters A, B, C.
Again, in Example 1, it was found that 3 cards chosen from 5 unlike cards 

could be arranged in 60 ways. This might be expressed by saying that there are 
60 permutations of 3 cards chosen from 5 unlike cards.

A permutation is an arrangement of a number of objects in a particular order. 
In practice, the order may be in space, such as from left to right in a row; or it 
may be in time, such as reaching the winning post in a race, or dialling on a 
telephone.

How many permutations are there of r objects chosen from n unlike objects? 
The method is indicated in the table below.

Order of choice 
of object 1st 2nd 3rd .. ( r - l ) t h rth

Number of 
possibilities n (n — 1) ( n - 2 )  . .. ( n - r  + 2) (n — r + l )

Thus there are

n(n — l)(n — 2)_(n — r + 2)(n — r + 1)
permutations of the objects. But

n(n — l)(n — 2)...(n — r + 2)(n — r + 1)

n(n — l)(n — 2)...(n — r + 2)(n — r +  1) x (n — r)...2 x l 
(n —/■)...2 x 1 

n \

(n — r)!

Therefore there are «!/(« — »•)! permutations of r objects chosen from n unlike 
objects, if r is less than n.

(We have already found that there are nl permutations of n unlike objects.)

Example 6 There are 20 books on a shelf, but the red covers of two of them clash, 
and they must not be put together. In how many ways can the books be arranged?

This is best tackled by finding out the number of ways in which the two books 
are together, and subtracting this from the number of ways in which the 20 
books can be arranged if there is no restriction.

Suppose the two red books are tied together, then there are 19 objects, which 
can be arranged in 19! ways. Now if the order of the two red books is reversed, 
there will again be 19! arrangements; so that there are 2 x 19! ways of arranging 
the books with the red ones next to each other.

With no restriction, 20 books can be arranged in 20! ways; therefore the 
number of arrangements in which the red books are not together is

2 0 ! -2  x 19! = 18 x 19!
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Example 7 !n how many ways can 8 people sit at a round table?

Since the table is round, the position of people relative to the table is of no 
consequence. Thus, supposing they sit down, and then all move one place to the 
left, the arrangement is still the same.

Therefore one person may be considered to be fixed, and the other 7 can then 
be arranged about him or her in 7! ways.

Thus there are 5040 ways in which 8 people can sit at a round table.

Example 8 In how many ways can the letters of the word BESIEGE be 
arranged?

First, give the three E’s suffixes: BE1SIE2GE3. Then, treating the E’s as 
different, the 7 letters may be arranged in 7! ways.

Now, in every distinct arrangement, the 3 E’s may be rearranged amongst 
themselves in 3! ways, without altering the positions of the B, S, I, or G; for 
instance, SEIBEEG would have been counted 3! times in the 7! arrangements as

SEjIBEj EjG, SE2IBE3E1G, SEjI B E ^ G ,
SE1IBE3E2G, SE^B E jEjG, SEsIBEj E jG.

Therefore the number of distinct arrangements of the letters in BESIEGE is 
7!/3! = 840.

In the next exercise there are some examples which are best tackled from first 
principles, like the next example.

Example 9 How many even numbers, greater than 50 000, can be formed with the 
digits 3, 4, 5, 6, 7, 0, without repetitions?

Compared with Example 3, §12.1, there are two extra difficulties: the number 
can have either 5 or 6 digits, and the number cannot begin with 0. Therefore the 
problem is split up into four parts:

(1) Numbers with 5 digits, the first digit being even.

Position of digit in number 1st 5th 2nd 3rd 4th

Number of possibilities 1 2 4 3 2

This gives 1 x 2 x 4 x 3 x 2  = 48 possibilities.

(2) Numbers with 5 digits, the first digit being odd.

Position of digit in number 1st 5th 2nd 3rd 4th

Number of possibilities 2 3 4 3 2

This gives 2 x 3 x 4 x 3 x 2 = 1 4 4  possibilities.
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(3) Numbers with 6 digits, the first digit being even.

Position of digit in number 1st 6th 2nd . 3rd 4th 5th

Number of possibilities 2 2 4 3 2 1

This gives 2 x 2 x 4 x 3 x 2 x 1 = 9 6  possibilities.

(4) Numbers with 6 digits, the first digit being odd.

Position of digit in number 1st 6th 2nd 3rd 4th 5th

Number of possibilities 3 3 4 3 2 1

This gives 3 x 3 x 4 x 3 x 2 x 1 = 2 1 6  possibilities.

Therefore the total number of possibilities is 48 + 144 + 96 +  216 = 504.

Exercise 12c
1 Seven boys and two girls are to sit together on a bench. In how many ways 

can they arrange themselves so that the girls do not sit next to each other?
2 Eight women and two men are to sit at a round table. In how many ways can 

they be arranged? If, however, the two men sit directly opposite each other, 
in how many ways can the ten people be arranged?

3 How many arrangements can be made of the letters in the word 
TROTTING? In how many of these are the N and the G next to each other?

4 On a bookshelf, four books are bound in leather and sixteen in cloth. If the 
books are to be arranged so that the leather-bound ones are together, in how 
many ways can this be done? If, in addition, the cloth-bound books are to be 
kept together, in how many ways can the shelf be arranged?

5 There is room for ten books on a bedside table, but there are fifteen to choose 
from. Of these, however, a Bible and a book of ghost stories must go at the 
ends. In how many ways can the books be arranged?

6 Ten beads of different colours are arranged on a ring. If a salesman claims 
that no two of his rings are the same, what is the greatest number of rings he 
could have? (A ring can be turned over.)

7 In his cowhouse, a farmer has seven stalls for cows, and four for calves. If he 
has ten cows and five calves, in how many ways can he arrange the animals in 
his cowhouse?

8 At a conference of five powers, each delegation consists of three members. If 
each delegation sits together, with their leader in the middle, in how many 
ways can the members be arranged at a round table?

9 How many numbers, divisible by 5, can be made with the digits 2, 3, 4, 5, no 
digit being used more than once in each number?

10 In a cricket team, the captain has settled the first four places in the batting 
order, and has decided that the four bowlers will occupy the last four places.
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In how many ways can the batting order be made out?
11 How many arrangements can be made of the letters in the word 

TERRITORY?
12 A man has ten ornaments for his mantelpiece, and of these the clock must go 

in the centre. If there is only room for seven ornaments altogether, how many 
arrangements can be made on the mantelpiece?

13 How many odd numbers, greater than 60 000, can be made from the digits 5, 
6, 7, 8, 9, 0, if no number contains any digit more than once?

14 A code word consists of three letters, followed by two digits. How many code 
words can be made, if no letter nor digit is repeated in any code word?

15 How many numbers of five digits can be made from the digits 1,2, 3,4, 5,6, 7, 
8, 9, when each number contains exactly one even digit and no digit more 
than once?

16 A bridge player holds five spades, four hearts, two diamonds and two clubs. 
If he keeps the cards of each suit together, in how many ways can he arrange 
the cards he holds
(a) if the suits are in the above order,
(b) if the suits may be arranged in any order?

17 Find the number of ways in which the letters of ISOSCELES can be 
arranged if the two E’s are separated.

18 Find how many numbers greater than 400 000 can be made, using all the 
digits of 416 566.

19 In how many ways can four red beads, three green beads, and five beads of 
different colours be strung on a circular wire?

20 Six natives and two foreigners are seated in a compartment of a railway 
carriage with four seats either side. In how many ways can the passengers 
seat themselves if
(a) the foreigners do not sit opposite each other,
(b) the foreigners do not sit next to each other?

Combinations
12.4 In the last section, attention was given to permutations, where the order 
of a set of objects was of importance; but in other circumstances, the order of 
selection is irrelevant. If, for instance, eight tourists find there is only room for 
five of them at a hotel, they will be chiefly interested in which five of them stay 
there, rather than in any order of arrangement.

When a selection of objects is made with no regard being paid to order, it is 
referred to as a combination. Thus, ABC, ACB, CBA, are different permutations, 
but they are the same combination of letters.

Example 10 In how many ways can 13 cards be selected from a pack of 52 
playing cards?

First of all, suppose that thirteen cards from the pack are laid on a table in an 
order from left to right. From the last section, it follows that this can be done in 
52!/39! ways.
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Now each combination of cards can be arranged in 13! ways, therefore 

the number of permutations = 13! x (the number of combinations)

52! 
' ' 39!

= 13! x (the number of combinations)

Therefore the number of combinations of 13 cards chosen from a pack of playing 
cards is 52!/(39! 13!).

In how many ways can r objects be chosen from n unlike objects?
In §12.3 it was shown that there are n\/(n — r)\ permutations of r objects 

chosen from n unlike objects.
Now each combination of r objects can be arranged in r! ways, therefore 

the number of permutations = r! x (the number of combinations) 

n!
. '. ;------- = r! x (the number of combinations)

(n -  r)!

Hence the number of combinations of r objects chosen from n unlike objects is 

n!
(n -  r)!r!

For brevity, the number of combinations of r objects chosen from n unlike 
objects is written "Cr, thus

■C = -  " ! 
r (n -  r)\r\

nCr is also sometimes written as „Cr and
n
r

(see §14.5).

Qu. 1 What are the values of (a) 8C3, 8C5; (b) 10C6, 10C4?
Qu.2 In how many ways can n — r objects be chosen from n unlike objects? 
Qu. 3 Show that "Cr =  "C„_r.

Example 11 A mixed hockey team containing 5 men and 6 women is to be chosen 
from 1 men and 9 women. In how many ways can this be done?

Five men can be selected from 7 men in 1C5 ways, and 6 women can be 
selected from 9 women in 9C6 ways.

Now for each of the 7C5 ways of selecting the men, there are 9C6 ways of 
selecting the women, therefore there are 7C5 x 9C6 ways of selecting the team.

7C5 x 9C6
7! 9!

2!5[ X 3!6!

= 21 x 84

Therefore the team can be chosen in 1764 ways.
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Exercise 12d

1 Evaluate: (a) 10C2, (b) 6C4, (c) 7C3, (d) 9C5, (e) 8C4. .
Express in factors: (f) "C2, (g) "C3, (h) "C„_2, (i) "+1C2, (j) n+1C„_1.

2 In how many ways can a cricket team be selected from thirteen players?
3 There are ten possible players for the VI to represent a tennis club, and of 

these the captain and the secretary must be in the team. In how many ways 
can the team be selected?

4 Ten boxes each hold one white ball and one coloured ball, every colour being 
different. Find the number of ways in which one ball may be taken from each 
box if half those taken are white.

5 Nine people are going to travel in two taxis. The larger has five seats, and the 
smaller has four. In how many ways can the party be split up?

6 A girl wants to ask eight friends to tea, but there is only room for four of 
them. In how many ways can she choose whom to invite if two of them are 
sisters and must not be separated? (Consider two cases, (a) when both sisters 
are invited, (b) when neither sister is invited.)

7 In a game of mixed hockey there are ten married couples and two spinsters 
playing. In how many ways can the two teams be made up, if no husband 
may play against his wife?

8 A ferry which holds ten people carries a party of thirteen men and seven 
women across a river. Find the number of ways in which the party may be 
taken across if all the women go on the first trip.

9 Twelve people each spin a coin. Find the number of ways in which exactly 
five heads may be obtained.

10 Two punts each hold six people. In how many ways can a party of six boys 
and six girls divide themselves so that there are equal numbers of boys and 
girls in each punt?

11 In how many ways can eight white and four black draughtsmen be arranged 
in a pile?

12 A committee of six is to be formed from nine women and three men. In how 
many ways can the members be chosen so as to include at least one man?

13 Ten men are present at a club. In how many ways can four be chosen to play 
bridge if two men refuse to sit at the same table?

14 A man is allowed to take six volumes to a desert island. He is going to choose 
these from eleven books, one of which contains two volumes, which he will 
take or leave together. Find the number of ways in which he can make his 
choice.

15 Four people are to play bridge and four others are to play whist. Find the 
number of ways in which they may be chosen if eleven people are available.

16 A party of twelve is to dine at three tables at a hotel. In how many ways may 
they be split up if each table holds four?

17 Twelve people are to travel by three cars, each of which holds four. Find the 
number of ways in which the party may be divided if two people refuse to 
travel in the same car.

18 A committee of ten is to be chosen from nine men and six women. In how



many ways can it be formed if at least four women are to be on the 
committee?

19 In how many ways can eleven men be chosen to represent a cricket club if 
they are selected from seven Englishmen, six Welshmen and five Scots, and if 
at least one of each nationality must be in the team?
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Exercise 12e (Miscellaneous)
1 In the absence of the chairman, a committee of three vice-chairmen and four 

ordinary members is to sit on a platform. In how many ways can they be 
arranged if one of the vice-chairmen sits in the middle?

2 In how many ways can a committee of four men and three women be formed 
from seven men and eight women?

3 Show that the number of ways of choosing six objects from fourteen unlike 
objects is equal to the number of ways of choosing five objects from fifteen 
unlike objects.

4 How many arrangements can be made of the letters in THIRTIETH?
5 In how many ways can a committee of eight be arranged at a round table? In 

how many of these does the chairman sit between the secretary and the 
treasurer?

6 How many circular rings can be formed from seven differently coloured 
beads? In how many of these are the red and the blue beads separated?

7 In how many ways can a boy arrange in a row six balls from seven cricket 
balls, six tennis balls and five squash balls?

8 Find the number of diagonals of a polygon of n sides.
9 How many five-figure numbers can be made from the digits of 10 242?

10 In how many ways can ten books be arranged on a shelf if four of them are 
kept together?

11 In how many ways can a man who has ten chairs put five in one room, three 
in a second and two in a third?

12 How many odd numbers, greater than 600 000, can be made from the digits
5, 6, 7, 8, 9, 0,
(a) if repetitions are not allowed,
(b) if repetitions are allowed?

13 How many arrangements can be made with the letters of LEATHERETTE?
14 In how many ways can four mince-pies, three jam tarts, and three cakes be 

given to ten children if each receives one?
15 In how many ways can a committee of nine be formed from ten men and 

their wives, if no husband serves on it with his wife?
16 There are six ornaments on my mantelpiece. In how many ways can I put 

three more on it without changing the order of those already there?
17 How many mixed hockey teams may be made from six married couples, one 

bachelor and three spinsters, if no wife will play without her husband?
18 A man has ten pieces of clothing to dispose of. In how many ways can he do 

this if he gives away at least two articles and sells the rest?



19 Eight boys and two girls sit on a bench. If the girls may sit neither at the ends 
nor together, in how many ways can they be arranged?

20 In how many arrangements of the letters of REVERSp are the V and S 
separated?

21 In how many ways is it possible to select one or more letters from those in 
INSIPIDITY?

22 Four men and their wives, four bachelors and four spinsters are travelling in 
two eight-seat compartments of a train, one of which is a smoking 
compartment and the other is not. In how many ways can the party be split 
up if no wife is separated from her husband?

23 A painter has to paint the doors of twelve new council houses and has 
sufficient paint to do five green and three yellow. If he is given paint of only 
one colour — blue, green, or yellow — for the remaining doors, in how many 
ways can the twelve doors be painted?

24 In how many ways can a lift holding eight passengers carry a party of 
thirteen up a building in two journeys?

25 How many numbers of five or six digits can be formed from the digits 1, 2, 2,
2, 3, 4?

26 In how many ways is it possible to select six letters, including at least one 
vowel, from the letters of (a) INCOMPUTABLE, (b) FLABELLIFORM?
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Chapter 13

Series
Sequences
13.1 The reader should examine the following lists of numbers. Each list is 
written down in a definite order, and there is a simple rule by which the terms are 
obtained. Such a list of terms is called a sequence.

Qu.l Write down the next two terms in each of the following sequences:
(a) 1,3, 5, 7,... 
(d) 6' 1T> 2+ > •••
(g) 1,4,9, 16,... 
(j) 4,2,0, — 2, ...

(b) 2,5,8, 11, ... (c) 1,2, 4, 8,...
(e) l 3, 23, 33, 43, ... (f) i i i f , . . .
(h) 1,2,6,24,120,... (i) l , f , i £ , . . .
(k) 1 , - 1 ,  1 , - 1 , . . .  (1) 1 , - i i

Suppose one is asked to add up the integers from 1 to 100. This could be done 
by elementary arithmetic, but it would be very tedious: fortunately there is a 
short-cut.

First write the numbers down in their natural order:

1 + 2  + 3 + ... +98 + 99+  100

Now write the numbers down again in the opposite order, so that we have:

1 + 2 +  3 + . . . +  98 + 99 + 100
100+ 99+  98 + . . .  + 3 +  2 +  1
101 + 101 + 101 + ... + 101 + 101 + 101

The numbers in each column have been added together, and, since there are 100
terms in the top line, the total is 100 x 101 = 10 100. But this is twice the sum 
required, therefore the sum of the integers from 1 to 100 is 5050.

If the terms of a sequence are considered as a sum, for instance

1 + 2 + 3 + ... + 98 + 99 + 100

or

l + 2 + 4 + i + - - -
the expression is called a series. A series may end after a finite number of terms,
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in which case it is called a finite series; or it may be considered not to end, and it 
is then called an infinite series.
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Arithmetical progressions
13.2 The method of §13.1, for finding the sum of a series, may only be applied 
to a certain type, which is usually called an arithmetical progression (often 
abbreviated to A.P.). For example,

1 + 3  + 5 + ... +99 
7 +  11 + 15 + ... +79 
3 - 2 - 7 - . . . - 4 2  
l i + l i + l | + . . .  + 3 |
- 2 - 4 - 6 -  ... -  16

are arithmetical progressions. In such a series, any term may be obtained from 
the previous term by adding a certain number, called the common difference. 
Thus the common differences in the above progressions are 2, 4, — 5, — 2.

Example 1 Find the third, tenth, twenty-first and nth terms of the A.P. with first 
term 6 and common difference 5.

Position 
of term 1st 2nd 3rd 4th 10th 21st nth

Value 6 6 + 5 6 + 2x5 6 + 3x5 6 + 9x5 6 + 20 x 5 6 + (n — 1) x 5

Note that to find the wth term n — 1 common differences are added to the first 
term. (Throughout this chapter it should be assumed that n represents a positive 
integer.)

The third, tenth, twenty-first, and nth terms are 16, 51, 106, and 5n+ 1.

Example 2 Find the sum of the first twenty terms of the A.P. — 4 — 1 + 2 + ....

To find the twentieth term, add 19 times the common difference to the first 
term: — 4 +  19 x 3 = 53.

Write S20 for the sum of the first twenty terms, then using the method of §13.1, 

S2 o = — 4 — 1 + 2 +  ... +  53 

Again,

S2O = 53 + 50 + 47 +  . . . - 4  

Adding,

2S20 = 49 + 49 + 49 + ... + 49 =  20 x 49 
.'. S20 = 490

Therefore the sum of the first twenty terms of the A.P. is 490.
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Exercise 13a
Ex 13a

Which of the following series are arithmetical progressions? Write down the 
common differences of those that are.
(a)
(c )

(e)
(g)
(i)
(k )

10
11

12

7 + 8^ + 10 + 11-j,
1 +  1.1 + 1.2+ 1.3,
i l  S i l l  12 + 6 +  6 + 2>
n + 2n + 3n + 4 n, 
l i  +  2 |  + 3 |  +  4 i  
1 —2 + 3 — 4 + 5,

(b) - 2 - 5 - 8 - 1 1 ,
(d) 1 + 1.1 +  1.11 + 1.111, 
(f) l 2 + 22 + 32 + 42,
(h) 1 + j  + 1 + i ,
(j) 19 +  12 +  5 - 2 - 9 ,
(1) 1 +  0.8 +  0.6 + 0.4.

Write down the terms indicated in each of the following A.P.s: 
(a) 3 +11 + ..., 10th, 19th, (b) 8 + 5 +  ..., 15th, 31st,
(c) j  + 5 + ..., 12th, nth, (d) 50 + 48 + ..., 100th, nth,
(e) 7 + 6 j  + ..., 42nd, nth, (f) 3 + 7 + ..., 200th, (n +  l)th.
Find the number of terms in the following A.P.s:
(a)
(c)
(e)
(g)
(i)

(b) 50 + 47 + 44+  ... + 14,
(d)
(f)
(h )
(j)

(b)
(d)
(f)
(h )

+ 7-| + ... + 3l£,
2 - 9 -  ... -  130, 
x + 2x + ... + nx, 
a +  {a +  d ) + ... +  /.

2 + 7 +  12 + ... +77,
71 +67 + 63 + . . . - 53 ,
l  +  l i + H + - + 4 i ,
a + (a + 1) +  ... + (a + n — 1),

2 + 4 +  6 + ... + 46,
2.7 +  3.2 + ... + 17.7,
407 + 401 + ... -  133,
2 +  4 + ... +  4n,
a + {a +  d) + ... + {n +  (n — l)d},

Find the sums of the following A.P.s:
(a) 1 + 3 +  5 + ... +  101,
(c) - 1 0 - 7 - 4 - . . . +  50,
(e) 2.01 + 2.02 + 2.03 +  ... + 3.00,
(g) x + 3x + 5x +  ... + 21x,
(i) a + (a + d) +  ... +  {a + (n — l)d}.
Find the sums of the following arithmetical progressions as far as the terms 
indicated:
(a) 4 + 10 + ... 12th term, (b) 15 + 13 + ...20th term,
(c) 1 + 2 + ... 200th term, (d) 20 +  13 + ... 16th term,
(e) 6 + 10 + ...nth term, (f) l £ + 1 + ...nth term.
The second term of an A.P. is 15, and the fifth is 21. Find the common 
difference, the first term and the sum of the first ten terms.
The fourth term of an A.P. is 18, and the common difference is — 5. Find the 
first term and the sum of the first sixteen terms.
Find the difference between the sums of the first ten terms of the A.P.s whose 
first terms are 12 and 8, and whose common differences are respectively 2 
and 3.
The first term of an A.P. is — 12, and the last term is 40. If the sum of the 
progression is 196, find the number of terms and the common difference. 
Find the sum of the odd numbers between 100 and 200.
Find the sum of the even numbers, divisible by three, lying between 400 and 
500.
The twenty-first term of an A.P. is 5^, and the sum of the first twenty-one 
terms is 94^. Find the first term, the common difference and the sum of the 
first thirty terms.
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13 Show that the sum of the integers from 1 to n is %n(n + 1).
14 The twenty-first, term of an A.P. is 37 and the sum of the first twenty terms is 

320. What is the sum of the first ten terms?
15 Show that the sum of the first n terms of the A.P. with first term a and 

common difference d is \n{2a  +  (n — 1 )d}.

Geometrical progressions
13.3 Another series of common occurrence is the geometrical progression, for 
example:

1 +  2 + i  +  i +  +  512

3 + 6 +  12 + ... + 192
16 8 , 4  , 27
27 9 +  3 “ -  +  4

In such a progression, the ratio of a term to the previous one is a constant, called 
the common ratio. Thus, the common ratios of the above progressions are 
respectively 2 and — §.

Qu.2 Write down the third and fourth terms of the progressions which begin 
(i) 2 + 4 + ..., (ii) 12 +  6 +  ..., (a) if they are A.P.s, (b) if they are G.P.s.

Example 3 Find the third, tenth, twenty-first and nth terms of the G.P. which 
begins 3 +  6 +  ....

Position 
of term 1st 2nd 3rd 4th 10th 21st nth

Value 3 3 x 2 3 x 22 3 x 23 3 x 29 3 x 220 3 x 2"“ 1

Note that to find the nth term, the first term is multiplied by the (n — l)th 
power of the common ratio.

The third, tenth, twenty-first, and nth terms are 12, 1536, 3 145 728, and 
3 x 2"“ 1.

Example 4 Find the sum of the first eight terms of the geometrical progression 
2 + 6 +  18 + ....

To find the eighth term, multiply the first term by the seventh power of the 
common ratio: 2 x 37.

Let Ss be the sum of the first eight terms Of the expression.

.' . S8 =  2  +  2 x 3  +  2 x 3 2 +  . . . + 2 x 3 7

Now multiply both sides by the common ratio and write the terms obtained 
one place to the right, so that we have

S8 =  2  +  2 x 3  +  2 x 3 2 + . . . + 2 x 3 7 

3 S8 =  2 x 3  +  2 x  3 2 +  . . .  +  2 x  3 7 +  2 x  3 8
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Subtracting the top line from the lower,

2Ss = —2 + 2x3®
S8 = 38 — 1

Therefore the sum of the first eight terms is 6560.

Exercise 13b
1 Which of the following series are geometrical progressions? Write down the 

common ratios of those that are.
(a) 3 + 9 + 27 + 81, (b) 1+ 4+  1+ +  A>
(c) -  1 + 2 -  4 +  8, (d) 1 — 1 + 1 - 1 ,

(e) 1 + H + H + l i (f) a + a2 +  a3 + a4,
(g) 1 + 1.1 +  1.21 + 1.331, (h) 1

2 + 6+  ~12+T6>
(i) 2 + 4 - 8 - 1 6 , (j) 34 + f + 27+ 162.

2 Write down the terms indicated in each of the following geometrical 
progressions. Do not simplify your answers.
(a) 5 + 10 + ..., 11th, 20th; (b) 10 + 25 + ..., 7th, 19th;
(c) |  + | + ..., 12th, nth; (d) 3 — 2 +  ..., 8th, nth;
(e) j  — f +  ..., 9th, nth; (f) 3 + + ..., 19th, 2nth.

3 Find the number of terms in the following geometrical progressions:
(a) 2 + 4 + 8 + ... + 512, (b) 81 + 27 + 9 + ... +  yy,
(c) 0.03+ 0.06 +0 . 12+ . . .  +  1.92, (d) & - ^  + f -  ... -  l y i
(e) 5 + 10 +20 + ... + 5 x 2”, (f) a + ar + ar2 + ... + ar"~\

4 Find the sums of the geometrical progressions in No. 3. Simplify, but do not 
evaluate, your answers.

5 Find the sums of the following geometrical progressions as far as the terms 
indicated. Simplify, but do not evaluate, your answers.
(a) 4 + 12 + 36 +  ..., 12th term; (b) 15 + 5 + I f  + ..., 20th term;
(c) 1 — 2 + 4 — ..., 50th term; (d) 24 — 12 +  6 — ..., 17th term;
(e) 1.1 + 1.21 + 1.331 + ..., 23rd term; (f) y + ¿ + 1 + . . . ,  13th term;
(g) 3 + 6 + 12 + ..., nth term; (h) 1 —1  + 5 — ..., nth term.

6 The third term of a geometrical progression is 10, and the sixth is 80. Find 
the common ratio, the first term and the sum of the first six terms.

7 The third term of a geometrical progression is 2, and the fifth is 18. Find two 
possible values of the common ratio, and the second term in each case.

8 The three numbers, n — 2, n, n + 3, are consecutive terms of a geometrical 
progression. Find n, and the term after n + 3.

9 A man starts saving on 1st April. He saves lp  the first day, 2p the second, 4p 
the third, and so on, doubling the amount every day. If he managed to keep 
on saving under this system until the end of the month (30 days), how much 
would he have saved? Give your answer in pounds, correct to three 
significant figures.

10 The first term of a G.P. is 16 and the fifth term is 9. What is the value of the 
seventh term?
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11 Show that the sum of the series 4 + 12 + 36 + 108 + ... to 20 terms is greater 
than 3 x 109.

12 The numbers n — 4, n + 2, 3n + 1 are in geometrical progression. Find the 
two possible values of the common ratio.

13 What is the common ratio of the G.P. (^/2 — l) + (3 — 2^/2) + ...? Find the 
third term of the progression.

14 Find the ratio of the sum of the first 10 terms of the series

log x + log x2 + log x4 + log x8 + ... 

to the first term.

Formulae for the sums of A.P.s and G.P.s
13.4 The methods of Examples 2 and 4 will now be applied to general A.P.s 
and G.P.s to obtain formulae for their sums.

(a) If the first term of an A.P. is a, and the nth term is l, we may find the sum S„ 
of the first n terms.

We have

S„ = a+ (a + d)+  ... +(l — d) + l (where, there are n terms), and again, 

Sn = l + (l — d) + ... 4- {a +  d) + a 

Adding,

2S n — {a 4- /) -j- (a 4- /) 4- ... 4- {a + /) 4- {a T  /)
Now there are n terms on the right-hand side,

.'. 2S„ = n(a + l)

n(a + l)
"  " 2

(b) If the first term of an A.P. is a, and the common difference is d, the nth term 
is a + (n — 1 )d. Substituting / = a + (n — l)d in the formula above,

S„ = ^{a  + a + { n -  l)d}

; . S n = n-{ 2 a  + { n - \ ) d }

(c) If the first term of a G.P. is a and the common ratio is r, we may find the 
sum Sn of the first n terms.

The nth term is arn l, therefore

Sn = a + ar + ar2 + ... + arn ~1 
,'.rS„= ar + ar2 + ... + ar"~1 + ar"
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Subtracting,

S„ — rS„ = a — arn 
S„(l —r) = a(l — r")
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An alternative formula for the sum of a G.P. is obtained by multiplying 
numerator and denominator by — 1:

This is more convenient if r is greater than 1.

Example 5 In an arithmetical progression, the thirteenth term is 27, and the 
seventh term is three times the second term. Find the first term, the common 
difference and the sum of the first ten terms.

[We have two unknowns (the first term and the common difference). We have 
two pieces of information:
(a) the thirteenth term is 27.
(b) the seventh term is three times the second term.
Thus we can form two equations which will enable us to find the two 
unknowns.]

Let the first term be a, and let the common difference be d.
Then the thirteenth term is a + 12d, therefore

a + I2d =  27

The seventh term is a + 6d, and the second term is a + d, therefore

a + 6d = 3 (a + d)
.'. 3d = 2a

Substituting in the first equation,

a + 8a = 27 
:. a = 3

and so

d = 2
Therefore the first term is 3, and the common difference is 2.

To find the sum of the first ten terms, we know that

S„ = ^ {2a + (n -  \)d}

:■ S10 = ¥ (  6 +  9 x 2 )

= 5 x 24

Therefore the sum of the first ten terms is 120.
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Example 6 In a geometrical progression, the sum of the second and third terms is 
6, and the sum of the third and fourth terms is —12. Find the first term and the 
common ratio. ‘

[As in the last example, we have two unknowns (the first term and the 
common ratio). We have two pieces of information:
(a) the sum of the second and third terms is 6,
(b) the sum of the third and fourth terms is — 12.
We may therefore write down two equations and these will enable us to find the 
two unknowns.]

Let the first term be a, and let the common ratio be r. Then the second term is 
ar, and the third term is ar2, therefore

ar + ar2 = 6

The third term is ar2, and the fourth term is ar3, therefore 

ar2 + ar3 =  — 12

Factorising the left-hand sides of the equations,

ar( 1 + r) = 6 
ar2(l + r) = — 12

We may eliminate a by dividing:

ar( 1 + r) 6
ar2( l+r)  = ~  12

1 _  1
" ~ r ~ ~  2

: . r = -  2

Substituting r = — 2 in ar(l + r) = 6,

a ( - 2 ) ( - l ) = 6  
.'. a = 3

Therefore the first term is 3, and the common ratio is — 2.

Example 7 The sum of a number of consecutive terms of an arithmetical 
progression is — 19], the first term is 16], and the common difference is — 3. Find 
the number of terms.

With the notation of §13.4, 

s n =  ^{2a + ( n -  i ) d }

Substituting Sn = — 19], a = 16], d = — 3:
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~ T = ^ { 3 3 - 3 ( n ~ m

.'. — 39 = n(36 — 3 ri) 

3n2 — 36n — 39 = 0 

Dividing through by 3, 

n2 — \2n —13 = 0 

.'. (n — 13)(n + 1) = 0

Therefore the number of terms is 13.

Example 8 What is the smallest number of terms of the geometrical progression, 
8 + 24 + 72 + ..., that will give a total greater than 6 000 0003

With the notation of §13.4,

Now if we solve the equation 

4(3" -  1) = 6 000 000

the first integer greater than the value of n found from this will be the number of 
terms required.

To solve the equation:

3" -  1 = 1 500 000 
.-. 3" = 1 500 001

Taking logarithms (base 10) of both sides, 

n lg 3 = lg 1 500 001 

lg 1 500 001
Ig3

_  6.1761*
*  0.4771

= 12.94, correct to four significant figures

Therefore the number of terms required to make a total exceeding 6 000 000 
is 13.

.'.n =  13 or — 1

Substituting a = 8 and r = 3,

*If a calculator is used it is not necessary, or desirable, to write these figures down.
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Arithmetic and geometric means
13.5 If three numbers a, b, c are in arithmetical progression, b is called the 
arithmetic mean of a and c. The common difference of the progression is given by 
b — a or c — b. Therefore

b — a = c — b 
.'. 2b = a + c

Therefore the arithmetic mean of a and c is (a + c)/2. This is the ordinary 
‘average’ of a and c.

If three numbers a, b, c are in geometrical progression, b is called the 
geometric mean of a and c. The common ratio is given by b/a or c/b. Therefore

b _ c  
a b

.'. b2 = ac

Therefore the geometric mean of a and c is *J{ac). If a rectangle is drawn with 
sides a and c, then b is the side of a square whose area is equal to that of the 
rectangle.

Qu.3 Find (a) the arithmetic mean, (b) the geometric mean of 4 and 64. 
Qu.4 The reciprocal of the harmonic mean of two numbers is the arithmetic 
mean of their reciprocals. Find the harmonic mean of 5 and 20. Also find the 
arithmetic and geometric means of 5 and 20.
Qu.5 Find an expression for the harmonic mean of a and c.

Exercise 13c
1 Find the sum of the even numbers up to and including 100.
2 How many terms of the series 2 — 6 + 18 — 54+ ... are needed to make a 

total of 1(1 - 3 8)?
3 The fifth term of an A.P. is 17 and the third term is 11. Find the sum of the 

first seven terms.
4 The fourth term of a G.P. is — 6 and the seventh term is 48. Write down the 

first three terms of the progression.
5 Find the sum of the first eight terms of the G.P. 5 + 15 + ....
6 What is the difference between the sums to ten terms of the A.P. and G.P. 

whose first terms are — 2 + 4... ?
7 The sum of the second and fourth terms of an arithmetical progression is 15, 

and the sum of the fifth and sixth terms is 25. Find the first term and the 
common difference.

8 The second term of an arithmetical progression is three times the seventh, 
and the ninth term is 1. Find the first term, the common difference, and 
which is the first term less than 0.
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9 In a geometrical progression, the sum of the second and third terms is 9, and 
the seventh term is eight times the fourth. Find the first term, the common 
ratio, and the fifth term.

10 The fourth term of an arithmetical progression is 15, and the sum of the first 
five terms is 55. Find the first term and the common difference, and write 
down the first five terms.

11 The sum of the first three terms of an arithmetical progression is 3, and the 
sum of the first five terms is 20. Find the first five terms of the progression.

12 The sum of the first two terms of a geometrical progression is 3, and the sum 
of the second and third terms is — 6. Find the first term and the common 
ratio.

13 How many terms of the A.P. 15 + 13 + 11 + ... are required to make a total 
of -  36?

14 Which is the first term of the geometrical progression 5 + 10 + 20+ ... to 
exceed 400 000?

15 Find how many terms of the G.P. 1 + 3 + 9 +  ... are required to make a total 
of more than a million.

16 The sum of the first six terms of an arithmetical progression is 21, and the 
seventh term is three times the sum of the third and fourth. Find the first 
term and the common difference.

17 In an arithmetical progression, the sum of the first five terms is 30, and the 
third term is equal to the sum of the first two. Write down the first five terms 
of the progression.

18 Find the difference between the sums of the first ten terms of the geometrical 
and arithmetical progressions which begin, 6 + 12 + ....

19 The sum of the first n terms of a certain series is n2 + 5n, for all integral values 
of n. Find the first three terms and prove that the series is an arithmetical 
progression.

20 The second, fourth, and eighth terms of an A.P. are in geometrical 
progression, and the sum of the third and fifth terms is 20. Find the first four 
terms of the progression.

21 A man pays a premium of £100 at the beginning of every year to an 
Insurance Company on the understanding that at the end of fifteen years he 
can receive back the premiums which he has paid with 5% compound 
interest. What should he receive? Give your answer correct to three 
significant figures.

22 A man earned in a certain year £2000 from a certain source and his annual 
earnings from this time continued to increase at the rate of 5%. Find to the 
nearest £ the whole amount he received from this source in this year and the 
next seven years. Give your answer correct to three significant figures.

Proof by induction
13.6 It sometimes happens that a result is found by some means which does 
not provide a proof. For example, consider the following table:
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n 1 2 3 4 5

Sum of the integers up to n 1 3 6 10 15

n3 1 8 21 64 125

Sum of the cubes of the integers up to n 1 9 36 100 225

Here the terms in the fourth row are the squares of the corresponding terms in 
the second row. Thus it is natural to suppose that

l 3 + 23 + ... + n3 = (1 + 2 + ... + ri)2

Now 1+ 2  + ... + n is an arithmetical progression whose sum is ^n(n + 1). 
Therefore we should suppose that

l 3 +  2 3 +  . . .  +  n 3 = 5 « 2(n +  l ) 2

In proof by induction, it is shown that if the result holds for some particular 
value of n, say k, then it also holds for n =  k + 1. It is then verified that the result 
does hold for some value of n, usually 1 or 2.

Example 9 Prove by induction that l 3 + 23 + ... + n3 = \n 2(n + l)2.

Suppose the result holds for a particular value of n, say k; that is,

13 + 23 + ... + /c3 = ^k2(k + l)2

Then, adding the next term of the series, (fc +  l)3, to both sides, we obtain

l 3 + 23 + ... + k2 + (k + l)3 =±k2{k + l)2 + {k + l)3

= (k +  l)2 + k + 1^

.'. I3 + 23 + ... + (k + l)3 = i(k  + l)2(fc +  2)2

Now this is the formula with n = k + 1. Therefore if the result holds for n = k, 
then it also holds for n =  k + 1; but if n = 1,

L.H.S. = l 3 = 1 and R.H.S. = £  x l 2 x 22 = 1

Therefore, since the result is true for n =  1, it follows, by what has been shown 
above, that it must also be true for n = 2. From this it follows that the result is 
true for n = 3, and so on, for all positive integral values of n.

Exercise 13d
Prove the following results by induction:

1 1 + 2 + ... + n =^n(n + 1).
2 l 2 + 22 + ... +  n2 =^n(n + l)(2n + 1).
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3 1 x 2  + 2 x 3  + . . . +  n{n + 1) — ^n{n + l)(rt 4- 2).
4 1 x 3 +  2 x 4 + ... + n(n + 2) =  ¿n(n + 1) (2n + 1).
5 3 + 8 + ... + (rc2 — 1) =  ¿n(n — 1) {In + 5).

6 a + ar + ... + arn l =  a

1 1 1 n
l x 2 + 2 x 3 + ' " +  n(n +1)  n + 1'

1 1 1 3 2n + 3
8 I x 3 + 2 x 4  + ' " + n(n +  2 ) - 4 _ 2(n+l ) (n + 2)’

m 3 , 5 2n — 1 , 1
9 4 + 36 + --- + n2( n - l ) 2 _ 1 _ ^ -

10 1 1 1 1 1
u l x 2 x 3  + 2 x 3 x 4  + -  +  n(n+l ) (n + 2 ) " 4  2(n+l)(n + 2)'

d
11 —  (x") = nx" . [Use the formula for differentiating a product.]

12 l 2 + 32 + 52 + ... +  (2n — l)2 =  ^n(4n2 -  1).
13 l 3 + 33 + 53 + ... + (2n -  l)3 =  n2(2n2 -  1).
14 42 + 72 + 102 + ... +(3n + l)2 = i n{6n2 + \5n + 11).

15 Show that
n

r -  1
n +  1 

r
, and prove by induction that

(1 + x f  = 1 + nx + ... + ( )xr + ... + xn

n til
= ------- and r is a positive integer, less than or equal to n.

r J (n — r)!r!

Further series
13.7 Certain series can be summed by means of the results:

1 + 2  +  . . . + «  =  jn{n  + 1)

12 + 22 + ... + n2 = £n(n + 1) (2n + 1)
13 + 23 + ... + n3 = %n2(n + l)2

which appear in the last section and exercise.
It should be noted that they may be used to sum the series to more or less than 

n terms. For instance,

l 3 +  23 + ... + (2n + l)3 =z(2n + l)2{(2n + 1) + l}2 
= |(2  n + l)2(2n + 2)2 
= |(2n + l)24(n +  l)2 
= (2 n + l)2(n + l)2
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Qu.6 Find the sums of the following series:
(a) 1 + 2 + . . . + 2 n, (b) l 2 +  22 + ... + (n + l)2,
(c) l 3 + 23 + ... + (n — l)3, (d) l + 2 +  . . . + ( 2 n - l ) ,  .
(e) l 2 + 22 + ... + (2n)2, (f) l 3 + 23 + ... + (2n -  l)3.

Example 10 Find the sum of the series l 3 + 33 + 53 + ... + (2n + l)3

This series can be thought of as l 3 +  23 +  33 + 43 + 53 + ... +  (2n + l)3 with 
the even terms missing.

We found above that

l 3 + 23 + 33 + 43 + 53 + ... +  (2n +  l)3 =  {2n + 1 )2(n + l)2

and so it remains to find the sum of the series

23 + 43 + 63 + . . .+(2n)3 = 2 3 x l 3 + 2 3 x 23 + 23 x 33 + . . . +  23 x n3 
= 8(13 + 23 + 33 + ... + n3)
= 8 x \ n 2(n + l)2 =  2n2(n + l)2

Therefore l 3 + 33 + 53 + ... + (2n + l)3 = (2n + 1 )2(n + l)2 — 2n2(n + l)2
=  (n + 1)2{ (2n + l)2 — 2n2}
= (n + l)2(4n2 + 4n + 1 — 2n2)

Therefore the sum is (n + l)2(2n2 + 4n + 1).

Example 11 Find the sum of n terms of the series 2 x 3  + 3 x 4  + 4 x 5 + . . . .

The mth term of this series is (m + 1 )(m + 2), or m2 + 3m + 2. Therefore we 
require the sum of

l 2 + 3 x 1 + 2  
+ 22 + 3 x 2  + 2 
+ 32 + 3 x 3 + 2
+ .....................................
+ n2 + 3 x n  + 2

Now the sums of the three columns are respectively

l 2 + 22 +  32 + ... +  n2 = in(n  + l)(2n + 1)
3(l + 2 + 3 + . . .  +  n) =  | n ( n + l )
(2 + 2 + 2 +  . . . +2)  =  2n

Therefore the sum of the series is

\n{n + l)(2n + 1) + ^n(n + 1) + 2n = ^ {(n + l)(2n + 1) + 9 (n + 1) + 12}6 2 6

= 7(2n2 + 3n + 1 +  9n + 9 + 12)
6

= 7 (2n2 + 12n + 22)
6
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1 3 n
-n(n+  l)(2n+ 1) + -n (n +  l) + 2n = -(n 2 + 6n + 11)
0 2 3

Therefore the sum of the first n terms of the series 2 x 3  + 3 x 4  + 4 x 5  + ...is  
3 n(n2 + 6n + 11).

The Y, notation
13.8 It is useful to have a short way of writing expressions like 

l 2 + 22 + ... + n2 

This is done by writing

E m 2
which means, ‘the sum of all the terms like m2’. For extra precision, however, 
numbers are placed below and above the Z> to show where the series begins and 
ends. Thus

¿ m 2 =  l 2 +  22 + ... + n2
1

and
5

Z  m(m + 2) = 2 x 4  + 3 x 5  + 4 x 6  +  5 x 7
2

Exercise 13e
1 Write in full:

4  n n

(a) Y.m3, (b) Z  m2, (c) Z  (m2 + m),
1 2 1
3 1 5 4

(d) Z - r — tt, i m(m +  1) (e) Z 2 m, 2
(f) Z  ( - l)mm2, 

1

(g) t m m,
6 1 -  i r

oo Z 5- ^ - , (i) Z  wi(m-l),
1 3 m n

" m
0) Z  j . , -

„ - 2 m + 1

2 Write in the £  notation:

(a) 1 + 2 + 3 + ... + n,

(b) l 4 + 24 + ... + n4 + (n + l)4,

(c) 1 + J + 3 + i  + I,

(d) 32 + 33 + 34 + 35,
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(e) 2 x 7  +  3 x 8  +  4 x 9  +  5 x 1 0  +  6 x 1 1 ,

(0 l + t  + 9 + T7 + +r>

1 x 3  2 x 5  3 x 7  4 x 9  5 x  11

(h) -  1 + 2 -  3 + 4 -  5 + 6,

(i) 1 - 2  + 4 - 8 + 1 6 - 3 2 ,

(j) 1 x 3 - 2 x 5  + 3 x 7 - 4 x 9  + 5x11 .

3 Use the results quoted at the beginning of §13.7 to find the sums of the 
following series:
(a) 1 + 2 + 3 + ... + (2 n +1),
(b) l 2 + 22 + 32 + ... + (n — l)2,
(c) l 3 + 23 + 33 + ... + (2rc)3,
(d) 3 + 5 + 7 +  ... + (2n + 1),
(e) 2 + 5 + 8 + 11 + ..., to n terms,
(f) 5 + 9 + 13 + 17 + ..., to n terms,
(g) 2 + 5 + 10 +  ... + (n2 + 1),
(h) 1 x 2  + 2 x 3  + 3 x 4  +  4 x 5  +  . . . , to n  terms,
(i) 1 x 3 +  2 x 4  + 3 x 5 +  4 x  6 +  to n terms,
(j) 22 + 42 + 62 + ... +  (2n)2,
(k) l 2 + 32 + 52 + ... + (2n — l)2,
(l) 2 + 10 + 30 + ... + (n3 + n),
(m) 2 + 12 + 36 + ... + (n3 + n2).

Infinite geometrical progressions
13.9 Consider the geometrical progression

1 1 1  1
1 + 2 + 4 + 8 + - + 2 ^

The sum of these n terms, obtained by the formula of §13.4, is given by

Now as n increases, (j)n approaches zero; and (j)n can be made as close to zero 
as we like, if n is large enough. Therefore the sum of n terms approaches 2, as 
closely as we please, as n increases.

This is what is meant by writing that the infinite series

The limit 2 is called its sum to infinity.
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In general, the sum of the geometrical progression

a + ar + ar2 + ... + arn i  = a

If r lies between — 1 and + 1, i.e. |r| < 1, assuming that rn approaches zero as n 
increases, the sum to infinity of the series

? , «a + ar + ar + ... + ar + ... = ------
1 — r

Example 12 Express as fractions in their lowest terms: (a) 0.07, (b) 0.45.

(a) 0.07 means 0.0777 ..., which may be written 

7 7 7
Too +  Tooo +  Toooo +

This is a geometrical progression, and in the notation of §13.4, a = j ^  and 
r = jQ. Therefore

c _  7 ( 1 ~  (to)'
" KXA

Therefore the sum to infinity, Sx , is given by

s =_L/'_L>\ = JL 12 = Z.
® 100 /  100 X 9 90

(b) 0.45 means 0.454 545 ..., which may be written 
45 | 45 45

Too +  10 000 +  1 000 000 +  "
In this geometrical progression, a = and r = j ^ .  

. _  45 / l - ( i f e n
•' " 10 0 V 1 - i é ô  J

_  45 /  1 \  _  45 100 _  5
"  00" " T o o V ^ y  T ô ô x W “ TT

Using this method, any recurring decimal can be expressed as a rational 
number. (See §2.3.)

Exercise 13f
1 Write down the sums of the first n terms of the following series, and deduce 

their sums to infinity:
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(a) l + ^  + 5 + y7 + .-., (b) 12 + 6 + 3 +  1 "2 +  .-.,

3 3 3 3 13 13 . 13
(c) 10 +  100 +  1000 +  10 000 +  100 +  10 000 +  1 000 000 +

(e) 0.5 + 0.05 + 0.005 + ..., (f) 0.54 + 0.0054 + 0.000 0 5 4 + ...,

(g) l - i  + i - i + . . . ,  (h) 5 4 -1 8  + 6 - 2  + ....

2 Express the following recurring decimals as rational numbers:
(a) 0.8, (b) 0.12, (c) 3.2, (d) 2.6$, (e) 1.004, (f) 2.960.

3 If the sum to infinity of a G.P. is three times the first term, what is the common 
ratio?

4 The sum to infinity of a G.P. is 4 and the second term is 1. Find the first, third, 
and fourth terms.

5 The second term of a G.P. is 24 and its sum to infinity is 100. Find the two 
possible values of the common ratio and the corresponding first terms.

Exercise 13g (Miscellaneous)
1 Find the sum of the integers between 1 and 100 which are divisible by 3.
2 How many terms of the geometrical progression xg + 1 \  + ... are needed

to make a total of 216 — yg?
3 Prove by induction that 1 x 4  + 2 x 5 + . . .+ n ( n  +  3) = jn(n + 1) (n + 5).
4 Show that the sums to infinity of the geometrical progressions

3 + f +  ?6 + ••• and 4 + f  + ^ + . . .  

are equal.
5 How many terms of the arithmetical progression 2 + 3^ + 4 j+ . . .  are 

needed to make a total of 204?
6 An arithmetical progression has thirteen terms whose sum is 143. The third 

term is 5. Find the first term.
7 The sum of n terms of a certain series in 3n2 + 10n for all values of n. Find the 

nth term and show that the series is an arithmetical progression.
8 Find the sum of the series 2 + 6 + ... + (n2 — n).
9 Show that the sum of the first n odd numbers is a perfect square. Show also, 

that 572 — 132 is the sum of certain consecutive odd nurrtbers, and find them.
10 What is the sum of the integers from 1 to 100, inclusive, which are not 

divisible by 6?
11 Find the sum of the first n terms of the geometrical progression

5 +  15 + 45 + ...

What is the smallest number of terms whose total is more than 108?
12 The sum to infinity of a geometrical progression with a positive common 

ratio is 9 and the sum of the first two terms is 5. Find the first four terms of 
the progression.

13 Show that, if log a, log b, log c are consecutive terms of an arithmetical 
progression, then a, b, c are in geometrical progression.
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14 The eighth term of an arithmetical progression is twice the third term, and 
the sum of the first eight terms is 39. Find the first three terms of the 
progression, and show that its sum to n terms is | h(n + 5).

15 Find the number n such that the sum of the integers from 1 to n — 1 is equal 
to the sum of the integers from n +  1 to 49.

16 Show that there are two possible geometrical progressions in each of which 
the first term is 8, and the sum of the first three terms is 14. Find the second 
term and the sum of the first seven terms in each progression.

17 Prove by induction that

1 1  1 1
2 6 n(n— 1) n

18 Find the sum of the series 3 + 6 +  11 + ... + (n2 + 2).
19 If a and b are the first and last terms of an arithmetical progression of r + 2 

terms, find the second and the (r + l)th terms.
20 The sum of n terms of a certain series is 4" — 1 for all values of n. Find the first 

three terms and the nth term, and show that the series is a geometrical 
progression.

21 A child wishes to build up a triangular pile of toy bricks so as to have 1 brick 
in the top row, 2 in the second, 3 in the third and so on. If he has 100 bricks, 
how many rows can he complete and how many bricks has he left?

22 Show that the sum of the odd numbers from 1 to 55 inclusive is equal to the 
sum of the odd numbers from 91 to 105 inclusive.

23 The second, fifth, and eleventh terms of an arithmetical progression are in 
geometrical progression, and the seventh term is 4. Find the first term and 
the common difference. What is the common ratio of the geometrical 
progression?

24 A chess board has 64 squares. Show that ten thousand million people each 
prepared to contribute a million pounds could not bring sufficient money to 
put lp on the first square, 2p on the second, 4p on the third, 8p on the fourth, 
and so on for the 64 squares.

25 Prove that

log a + log ax + log ax2 + ... ton  terms = n log a + jn(n — 1) log x

26 Given the series 1 + 2x + 3x2 +  4x3 + ...,
(a) find the sum of the first n terms when x = 1,
(b) find, by multiplying by 1 — x, the sum of the first n terms when x is not 

equal to one.

Ex 13g



Chapter 14

The binomial theorem
Pascal’s triangle
14.1 It is well known that 

(a + b)2 = a2 + lab + b2

and it is the object of this chapter to show how higher powers of a +  b can be 
expanded with little difficulty.

Most readers will not be able to write down similar expressions for (a +  b)3 
and (a + b)4 without doing some work on paper, and so the long multiplication 
is given below. The reason for printing the coefficients in heavy type will appear 
later.

la 2 + lab + lb 2 
a + b

la 3 +  2 a2b + lab2
\a 2b + lab2 + lb 3 

la 3 + 3 a2b + 3 ab2 + lb 3

la 3 + 3a2b + 3ab2 +1 b3 
a + b

1 a4 + 3 a3b + 3 a2b2 + lab3
1 a3b + 3 a2b2 + 3 ab3 + lb4 

la4 + 4a3b + 6a2 b2 + 4ab3 + lb4

The results so far obtained are summarised below.

(a + b)2 = 1 a2 + lab + lb 2
{a + b)3 = l a 3 + 3a2b + 3 ab2 + lb 3 
(a + b)4 = la 4 + 4a3b + 6 a2b2 + 4 ab3 + lb4

It is clearer, however, if the coefficients are written alone.

1 2 1 
1 3  3 1

1 4 6 4 1

The reader may be able to guess the next line and, more important, may be able 
to see how the table can be continued, obtaining each line from the previous one.

To show the construction of the table of coefficients, the last three lines of the 
long multiplications are written overleaf, leaving out the letters.

275
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1 2  1 1 3  3 1
1 2  1 1 3  3 1

1 3 3 1 1 4 6 4 1

Thus it may be seen that every coefficient in the table is obtained from the two 
on either side of it in the row above. In this way the next line can be obtained:

1 4 6 4 1

For completeness, it may be observed that 

(a + b)° = 1 and (a + b)1 =  la  + lb

Therefore the table of coefficients may be written in a triangle (known as Pascal’s 
triangle, after the French mathematician and philosopher Blaise Pascal, 
1623-1662) as follows:

1

1
1 1

1 2 1
3 3

4 6 4
10 10

15 20 15

When an expression is written as a series of terms, it is said to be expanded, 
and the series is called its expansion. Thus the expansion of (a + b)3 is

a3 + 3 a2b + 3 ab2 + b3

Certain points should be noted about the expansion of (a + b)". They should 
be verified for the cases n = 2, 3, 4, in the expansions obtained so far.
(a) Reading from either end of each row, the coefficients are the same.
(b) There are (n +  1) terms.
(c) Each term is of degree n.
(d) The coefficients are obtained from the row in Pascal’s triangle beginning 1, n.

Example 1 Expand (a + b)6 in descending powers of a.

There will be 7 terms, involving

a6, a5b, a4b2, a3b3, a2b4, ab5, b6,

each of which is of degree 6. Their coefficients, obtained from Pascal’s triangle, 
are respectively

1, 6, 15, 20, 15, 6, 1.

Therefore the expansion of (a +  b)6 in descem ng powers of a is 

a6 + 6 a5b + 15a4b2 +  20a3b3 +  15a2b4 + 6 ab5 + b6
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Example 2 Expand (2x + 3y)3 in descending powers of x.

Here a = 2x, b = 3y, and so there will be four terms involving 

(2x)3, (2x)2(3y), (2x)(3 y)2, (3 y)3.

Their coeificients, obtained from Pascal’s triangle are respectively 

1, 3, 3, 1.

Therefore the expansion of (2x + 3y)3, in descending powers of x is 

(2x)3 + 3(2x)2(3y) + 3(2x)(3y)2 + (3y)3 

which simplifies to

8x3 + 36x2y + 54xy2 + 27y3

Example 3 Obtain the expansion of (2x — j) 4, in descending powers of x.

Here a = 2x and b = — j ,  therefore the five terms of the expansion will involve

(2x)4, (2x)3( — 5), (2x)2( - i ) 2, (2x ) ( - | ) 3, ( - i )4

and their coefficients will be respectively

1, 4, 6, 4, 1.

(2x -  i )4 = (2x)4 + 4(2x)3( -  ±) + 6(2x)2( -  ¿ ) 2 + 4(2x)( -  i )3 + ( -  i )4 
= 16x4 + 4(8x3) ( - 1) + 6(4x2) (¿) + 4(2x) (■-1) + ^

Therefore the expansion of (2x — f )A, in descending powers of x, is

16x4 — 16x3 + 6x2 — x +

Note that terms are alternately + and —, according to the even or odd degree of 
(-*)■

Example 4 Use Pascal’s triangle to obtain the value of (1.002)5, correct to six 
places of decimals.

1.002 may be written (1 +  0.002), so that the expansion of (a + b)5 may be 
used, with a = 1 and b = 0.002.

The terms in the expansion will involve

1 , (0.002), (0.002)2, (0.002)3, (0.002)4, (0.002)5

and their coefficients will be

1, 5, 10, 10, 5, 1,

respectively. Now the last three terms will make no difference to the answer, 
correct to six places of decimals. Therefore

(1.002)5 w 1 + 5(0.002) + 10(0.002)2 
= 1+0.010 + 0.000 040

and so (1.002)5 = 1.010 040, correct to six places of decimals.
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Exercise 14a
Ex 14a

This exercise is intended to give the reader some practice irt using Pascal's triangle; 
calculators should not be used in the numerical questions.

1 Expand:

(a) (a + b )\

(d) ( 1 -z ) 4,

(g) (a - b f ,

(j) (2x + i ) \

(m) (a + ft)7,

(b) (x + y )\

(e) (2x + 3 y ) \

(h) (a — 2ft)3,

(n) (a2 -  ft2)5,

(c) (x + 2y )\  

(0 (4z + l)3,

(i) (3x — y)4,

(o) (a -  b)3(a + ft)3.

2 Simplify, leaving surds in the answers, where appropriate:
(a) (1 + V2)3 +  (1 -  V 2)3> (b) (2 + V 3)4 + (2 -  V 3)4’
(c) (1 +  V2)3 -  (1 -  V2)3, (d) (2 + V6)4 -  (2 -  V6)4,
(e) (V2 + V 3)4 + (V2 — V 3)4’ (0 (V6 + V2)3 - ( V 6 - V 2)3-

3 Write down the expansion of (2 + x)5 in ascending powers of x. Taking the
first three terms of the expansion, put x = 0.001, and find the value of (2.001)5 
correct to five places of decimals.

4 Write down the expansion of (1 + ?x)4. Taking the first three terms of the 
expansion, put x =  0.1, and find the value of (1.025)4, correct to three places of 
decimals.

5 Expand (2 — x)6 in ascending powers of x. Taking x = 0.002, and using the 
first three terms of the expansion, find the value of (1.998)6 as accurately as 
you can. Examine the fourth term of the expansion to find to how many places 
of decimals your answer is correct.

Introduction to the binomial theorem
14.2 In the last section it was shown how (a +  ft)" could be expanded, for a 
known value of n, by using Pascal’s triangle. If n is large, this may involve a 
considerable amount of addition, and when (as is often the case) only the first 
few terms are required, it is much quicker to use a formula that will be obtained 
in the next section.

The last section began with the expansions of (a + ft)2 and (a + ft)3. Now, 
consider the expansions of (a + ft)(c + d) and (a + b)(c + d)(e + /).

It is easily seen that

(a + ft) (c + d) = ac + ad + be + bd

To obtain the expansion of (a +  ft)(c +  d)(e + / ) ,  each term of ac + ad +  be + bd 
is multiplied by e and /, giving

ace + ade + bee +  bde + acf + adf + bef + bdf
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Note that each term contains one factor from each bracket, and that the 
expansion consists of the sum of all such combinations.

Now the expansion of (a +  b){c +  d)(e + f)(g+ h) would be obtained by 
multiplying each term of the expansion by g and by h. So, continuing this 
method of expansion, it follows that, if the product of n factors is expanded, each 
term contains one factor from each bracket, and that the expansion consists of 
the sum of all such combinations.

The expansion of (a + b)5 will be obtained by an argument making use of this 
fact.

(a + b)5 = (a + b) (a +  b) (a + b){a + b) (a + b)

(a) Choosing an a from each bracket we obtain a5.
(b) The term in a4 is obtained by choosing a b from one bracket, and a’s from the 

other four. This can be done in 5CX ways, giving sC1a4b.
(c) The term in a3 is obtained by choosing b’s from two brackets, and a’s from 

the other three. This can be done in 5C2 ways, giving 5C2a3b2.
(d) Similarly, the terms in a2 and a are 5C3a2b3 and 5C4ah4.
(e) Choosing a b from each bracket we obtain b5.

(a + b)5 = a5 + sCla4b + 5C2a3b2 + sC3a2b3 + sC4ab4 + b5

The binomial theorem
14.3 I fn  is a positive integer,

(a + b)n = a" + nC 1an _1é +  . ..  + nCran~rbr + . ..  + bn

where nCr =
n\

(n — r)!r!

The expansion of (a + b)" is obtained as follows.

(a + b)n = (a + b) (a + b)... (a + b), to n factors.

(a) Choosing an a from each bracket we obtain a".
(b) The term in a" ~1 is obtained by choosing a b from one bracket, and a’s from 

the other n — 1. This can be done in nC1 ways, giving "C1a"~1b.
(c) The term in a" 2 is obtained by choosing a b from two brackets, and a’s from 

the other n — 2. This can be done in "C2 ways, giving nC2a”~2b2.
(d) The term in a" is obtained by choosing a b from r brackets, and a’s from the 

other n — r. This can be done in "Cr ways, giving ”Cran rbr.
(e) Choosing a b from each bracket we obtain bn.

This proves the theorem.

When only the first few terms of an expansion are required, the theorem is
used in the form

. n(n — 1)
(a + b)n = a" + na" 1b-\------—— -a 2fc2b2 +

n(n — 1) (n — 2) 

3! ‘
3*3 + ... +*"2! 3!
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This follows immediately, since

14.3

"Cj = n, nC ,=
n\ n(n — 1)

nC ,=
(n -  3)!3!

(n -  2)121 2!

n(n — l)(n — 2)
3!

and *

In case the name of the theorem is not understood, it may be helpful to remark 
that an expression with one term is called a mononomial, one which has two 
terms is a binomial, and one with three terms is a trinomial. Thus the theorem 
about the expansion of a power of two terms is called the binomial theorem.

Example 5 Find the coefficient of x 10 in the expansion of (2x — 3)14.

The term in (2x)10( — 3)4 is the only one needed, and by the binomial theorem 
it is

14C4(2x)10( — 3)4

14!
Therefore the coefficient of x 10 is — —210 x 34.

10!4!

It is important to note that we could equally well have written the term as

14C10(2x)10( - 3 ) 4

because 14C10 = 14C4. This is clear if they are written in factorial notation:

1 A/-' _^  i o —
14!

10 “ 4! 10! and
14!

10!4!

Alternatively, 14C10 is the number of ways of choosing ten objects from fourteen 
unlike objects; but if ten are chosen, four are left, and so it must also be the 
number of ways of choosing four objects from fourteen unlike objects, which is

'“'4'

Qu. 1 Show that "Cn_r =  "Cr.

It is useful to note in Example 5 that the numbers whose factorials appear in 
the coefficient

14!
10!4!

are all indices. 14 is the index of 2x — 3, 10 is the index of 2x and 4 is the index of 
— 3. That this is always the case should be clear if the term in an r br in the 
expansion of (a + b)n is written with factorial notation:

(n — r)!r!
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Example 6 Obtain the first four terms of the expansion of (l + ^x)10 in ascending 
powers of x. Hence find the value of (1.005)10, correct to four decimal places.

Using the second form of the binomial theorem,

1 + 2*

1 0

=  1 +  10
.X

2
10 x 9 f x
T T T U

2 10 X  9 X  8
+ 3 x 2 x 1

x
2

3

= 1 + 5x + — x2 + 15x3 + ...4

Now {x = 0.005, if x = 0.01; so substituting this value of x,

(1.005)'° % 1 + 5(0.01) + 11.25(0.01 )2 + 15(0.01)3 
= 1+0.05 + 0.001 125 +0.000 015

Therefore (1.005)'° = 1.0511, correct to four places of decimals.

Example 7 Obtain the expansion of (l + x — 2x2)8, as far as the term in x3.

(1 + x — 2x2)8 may be written {1 + (x — 2x2)}8, which may then be expanded 
by the binomial theorem.

{ l + ( x - 2 x 2)}8

= 1 + 8(x -  2x2) + -~y ~(x ~  2x2)2 + 8 " 3!><'6 *x ~  2*2)3 + •••

= 1 + 8(x -  2x2) + 28(x2 -  4x3 + 4x4) + 56(x3 + other terms) + ...

= 1 + 8x — 16x2 + 28x2 — 112x3 + 56x3 + terms in x4 and higher powers 

.'. (1 + x — 2x2)8 = 1 + 8x + 12x2 — 56x3 as far as the term in x3.

Exercise 14b

Calculators should not be used in this exercise.

1 Write down the terms indicated, in the expansions of the following, and 
simplify your answers:
(a) (x + 2)8, term in x5; (b) (3k — 2)5, term in u3;
(c) (2t — j ) 12, term in t 7; (d) (2x + y)11, term in x3.

2 Write down, and simplify, the terms indicated, in the expansions of the 
following in ascending powers of x:
(a) (1 + x)9, 4th term; (b) (2 — x/2)12, 4th term;
(c) (3 + x)7, 5th term; (d) (x + l)20, 3rd term.

3 Write down, and simplify, the coefficients of the terms indicated, in the 
expansions of the following:
(a) ( jt  + ^)10, term in i4; (b) (4 + |x ) 6, term in x3;
(c) (2x — 3)7, term in x5; (d) (3 + iy )11, term in y5.



4 Write down the coefficients of the terms indicated, in the expansions of the 
following in ascending powers of x:
(a) (1 + x)16, 3rd term; (b) (2 -  x)20, 18th term; '
(c) (3 + 2x)6, 4th term; (d) (2 +  jx )8, 5th term.

5 Write down the terms involving

(a) x4i — j , (b) x3i — J , in the expansion of f x + — j .
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6 Write down the constant terms in the expansions of

(a) x (b)
6

7 Find the coefficients of the terms indicated in the expansions of the following:

(a) I x + — ) , term in x4 (b) 2x +
7 . 1 
, term in —* :

(c) x - term in x

8 Find the ratio of the term in x5 to the term in x6, in the expansion of 
(2x + 3)20.

9 Find the ratio of the term in x7 to the term in x8 in the expansion of
( 3 x + |) 17.

10 Find the ratio of the term in ar to the term in ar+1 in the expansion of 
(a + by.

11 Write down the first four terms of the expansions of the following, in 
ascending powers of x:
(a) (1 + x)10, (b) (1 + jx )9, (c) (1 — x)11,
(d) (x + l)12, (e) (2 + ix )8, ' (f) ( 2 - i x ) 7.

12 Use the binomial theorem to find the values of
(a) (l.Ol)10, correct to three places of decimals;
(b) (2.001)10, correct to six significant figures;
(c) (0.997)12, correct to three places of decimals;
(d) (1.998)8, correct to two places of decimals.

13 Expand the following as far as the terms in x3:
(a) (1 + x  + x2)3, (b) (l + 2 x - x 2)6,
(c) (1 — x — x2)4, (d) (2 + x + x2)5,
(e) ( 1 - x  + x2)8, (f) (2 + x — 2x2)7,
(g) (3 -  2x + x2)4, (h) (3 + x + x3)4.

Convergent series
14.4 The series

1 + x  + x2 +  ... + x n_1

is a geometrical progression, with common ratio x, and may be summed by the
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method of §13.4. In this way

1 + x + x2 + ... + x"_1 = -— —
1 —  x  *

If x lies between — 1 and + 1, we will assume that x" approaches zero as n 
increases, which makes the right-hand side of the identity approach 1/(1 — x). 

Thus when we write

l + x  + x2 + . . .+ x r + . . .=  ------
1 — x

we mean that the left-hand side can be made to differ as little as we please from 
the right-hand side, providing enough terms are taken. It must not be forgotten, 
however, that we have taken x to lie between — 1 and + 1.

A series of terms, whose sum approaches a finite value as the number of terms 
is increased indefinitely is called a convergent series, and the finite value is called 
its sum to infinity.

Thus 1 + x + x2 + ... + xr + ... is a convergent series, provided x lies between 
— 1 and -I-1, and its sum is 1/(1 — x).

To emphasise the necessity for the condition
— I < x < + 1  (i.e. |x| < 1)

the behaviour of the series for other values of x is examined below.
(a) If x = 1, 1 + x + x2 + ... + x" “ 1 = n. Therefore as n increases, the value of

the series increases indefinitely.
(b) If x = -  1,

1 + x + x2 + ... + xn_1 = 1 -  1 + 1 -  . . . + ( - I)"-1

which is equal to 1 or 0, according to whether n is odd or even.
(c) If x is greater than 1, x" is greater than 1, and can be made as large as we like, 

if n is sufficiently large. Therefore the sum of the series, (1 — x")/(l — x), can 
be made as large as we like.

(d) When x is less than — 1,1 — x is positive and x" is numerically greater than 1. 
If n is even, x" is positive, therefore 1 — x" is negative and so the sum 
(1 — x")/(l — x) is negative. If n is odd, x" is negative, therefore 1 — x" is 
positive and so the sum is positive. Hence the sum is alternately positive and 
negative.

It is beyond the scope of this book to give tests to discover whether any 
particular series is convergent, but this section has been written to draw the 
reader’s attention to the fact that series are not always convergent.

The binomial theorem for any index
14.5 It has been shown that

(a + b)n = an + nan- lb + n{tl~  an~2b2 +  ... + b" 

where n is a positive integer.
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Now it will be assumed that

(1 + x)n -  1 + nx +
n(n

21
1) »(«

— x 1 H------- 1)(»
3!

(the series being continued indefinitely), for any rational value of n provided 
— 1 < x  < + 1 , i.e. |jc| < 1. The proof is beyond the scope of this book.

It should be remembered that, if n is a positive integer, there will only be a 
finite number of terms (see §14.3).

For the sake of those who go on to read other books, it should be added that 
the index, n, is often called the exponent.

The coefficient of xr in the expansion of (1 +  x)n is usually written
n
r , that is,

n \  n(n — l)(n — 2)...(n — r + 1) 
r I 1 x 2 x 3  x ... x r

(It should be noticed that for each factor in the top line, there is a corresponding 
factor in the bottom line.)

Unlike "Cr, the symbol
n
r

may be used when n is not a positive integer.

Historical note. Pascal’s triangle was given by a Chinese author of the early 
fourteenth century, but Pascal made considerable use of it in connection with 
problems on probability, and it became associated with his name. From it he 
obtained the theorem for positive integral indices. The series for fractional and 
negative indices was given by Newton in 1676.

Example 8 Use the binomial theorem to expand 1/(1 — x) in ascending powers of 
x, as far as the term in x3.

(This example has been chosen because the result has already been established 
in §14.4.)

Since 1/(1 — x) may be written (1 — x)~ \  the binomial theorem may be used. 
Thus

(1 — x) 1 =  1 + ( - l ) ( - x )  + -— ^  2> ( -  x)2 +

+ ( — 1) ( — 2) ( — 3) 
3!

( - x ) 3 +  ...

= l + x + x2 + x3 + ... provided |x| <  1.

Example 9 Obtain the first five terms of the expansion of y/( 1 + 2x) in ascending 
powers of x. State the values of x for which the expansion is valid.

Since ^(1 + 2x) = (1 +  2x)1/2, the binomial theorem may be used.
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(1 + 2x) 1/2  . (2x)3 +

+ (' ) ( ~ ' )(47 ' ) ( -  ' -(2x)4 +

^/(l +  2x) =  1 + x —j x 2 + 2"X3 — fx 4 + ...

For the expansion to be valid, — 1 <  2x < + 1, i.e. \ x \<j .

Example 10 Expand 1/(2 + x)2 in ascending powers of x, as far as the term in x 3, 
and state for what values of x the expansion is valid.

First it may be observed that 1/(2 +  x)2 = (2 + x)-2. However, the binomial 
theorem has been stated for (1 + x)". Therefore a factor must be taken out, in 
order to leave the bracket in this form.

(2 + x)-2 = {2(1 + ix )} ~ 2 = 2“ 2(1 + ix ) “ 2 
= i ( l + i x ) - 2

and this may now be expanded.

Alternatively: = y (1 - W

i(1+ix)^ i{ 1+(_2)(!)+m ( | Y +
+ i - 2 M - 3 K - 4 , / x i +

1 1 3  2 1 3
t ; ------------- r y  =  7  1 —  X  +  - X -  - x 3 +  ...(2 + x)2 4 \  4 2

For the expansion to be valid, — 1 < ix  < + 1, i.e. |x | < 2.

Exercise 14c
Calculators should not be used in this exercise. 

1 Evaluate the following binomial coefficients:

2 Expand the following in ascending powers of x, as far as the terms in x3, and 
state the values of x for which the expansions are valid.

(a) (1 + x )“ 2, (b) (1 +  x)1/3, (c) (1 + x)3/2,

(d) (1 -  2x)1/2, (e) ( l  +  ^  ", (f) (1 -  3x)-1/2,

(g) T T 3 x ’ (h) (i)
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(J) v o  + 2*)’

(m )
1

2 + X

(k) (1 + x/2)2 ’ 

(n) ^ ( 2 - x ) ,

(1) V ( l - 2 x ) 3,

(o) ^(3  + x),

(P) V(2 + x2) ’ (q) (3 — x)2 ’ (F) ^ / ( 3 - x 3)-

3 Use the binomial theorem to find the values of the following: 

(a) ^ /(l.001), correct to six places of decimals.

1
r, correct to four places of decimals.(b) (1.02)2 !

(c) ^(0.998), correct to six places of decimals.

(d) ^(1.03), correct to four places of decimals.

(e)
1

V P ) , correct to four places of decimals.

4 Find the first four terms of the expansions of the following in ascending 
powers of x:

(a)
1 +  x 
1 — x ’ (b)

x + 2 

(1 + * )2 ’
( c )

1 — x

V ( i  +x)

(d )
1 + x 
1 — x , [Multiply numerator and denominator by ^/(l + x).]

2x — 3
+ (f)

( I - * ) 3
1 + x (g)

x + 3
-v̂  (1 — 3x)'

5 Find the first four terms of the expansion of (1 — 8x)1/2 in ascending powers of 
x. Substitute x  =  tso and obtain the value of J 2 3  correct to five significant 
figures.

6 Expand (1 — x ) 1/3 in ascending powers of x  as far as the fourth term. By taking 
the first two terms of the expansion and substituting x =  x̂ oo> find the value of 
^/37, correct to six significant figures. [Hint: 27 x  37 =  999.]

7 Obtain the first four terms of the expansion of (1 — 16x)1/4. Substitute 
x = 1/10 000 and use the first two terms to find ^/39. To how many significant 
figures is your answer accurate?

Exercise 14d (Miscellaneous)

Calculators should not be used in this exercise.

1 Write down the sixth term of the expansion of (3x + 2y)10 in ascending 
powers of x, and evaluate the term when x =  \  and y = 3 .
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3

4

5

6

7

8 

9

2

10

11

12

13

14

15

(a) Expand |^2x + — J in descending powers of x.

(b) Simplify (y/2 + ^3)4 -  (^2  -  V3)4
Write down the expansion of (a — b)5 and use the result to find the value of 
(9y)5 correct to the nearest 100.
(a) Expand (a + b)11 in descending powers of a as far as the fourth term.
(b) Find the middle term in the expansion of (6x + yy)10.
(c) Find the constant term in the expansion of (x2 + 2/xf .
Expand (x + 2)5 and (x — 2)4. Obtain the coefficient of x5 in the product of 
the expansions.
Obtain the expansion of (x — 2)2(1 — x)6 in ascending powers of x as far as 
the term in x4.
(a) Expand (2 + 3x)4 and simplify the coefficients.
(b) Obtain the first four terms in the expansion of (1 + 2x + 3x2)6 in 

ascending powers of x.
Find the first four terms in the expansions of 
(a) (1 — x + 2x2)5, ( b ) ( l + x ) - 4,
in ascending powers of x.
(a) Write down the expansion of ( l + x ) ~ 3 as far as the term in x4, 

simplifying each term.
(b) Write down the first four terms of the expansion of (2 + yx)10 in 

ascending powers of x. Hence find the value of 2.02510, correct to the 
nearest whole number.

(a) Find the middle term of the expansion of (2x + 3)8, and the value of this 
term when x = yj.

(b) Find the first four terms in the expansion of (1 — 2x)-2 .
(a) Find the value of the fifth term in the expansion of (^ 2  + ^/S)8.
(b) Give the expansion of (1 + x)1/3 up to and including the term in x2. 

Hence, by putting x =  g, calculate the cube root of 9, giving your answer 
correct to three decimal places.

Obtain the first four terms of the expansion of (1 + 8x)1/2 in ascending 
powers of x. By putting x = ygg, obtain the value of y/3, correct to five places 
of decimals.
If x is so small that its fourth and higher powers may be neglected, show that 

^(1 + x) + ^(1 — x) = a — bx2

and find the numbers a and b.
Hence by putting x = yg show that the sum of the fourth roots of 17 and of 

15 is 3.9985 approximately. x  -j- 3
Find the first four terms of the expansion of ^  in ascending powers 
of x.
Show that, if x is small enough for its cube and higher powers to be neglected,

1 — x 
1 + x

= 1 — x +

By putting x = g, show that x  2-fig.



Chapter 15

Vectors
Introduction
15.1 Consider the following sentences:

(a) The temperature is 15°C.
(b) The journey lasted 2 hours.
(c) The plane is flying due East at 800 km/h.
(d) A horizontal force of 2 newtons was applied to the ruler at right-angles to its 

length.
(e) Shift the piano 10 m to the right.

One does not have to be a scientist to see that the first two sentences differ from 
the others in one very important respect: the first two are complete when the 
magnitude of the quantity is given, but in the others it is necessary to define both 
the magnitude and the direction. A quantity which is completely specified by its 
magnitude alone is called a scalar quantity and one which requires both the 
magnitude and the direction to be given is called a vector quantity. (Strictly 
speaking, a vector quantity must also obey the triangle law of addition; see 
§15.6.)

Let us consider sentences (d) and (e) in more detail. The effect of the force 
applied to the ruler will be determined by the point at which the force is applied; 
if it is applied to the end of the ruler, the ruler will start to rotate, but if it is 
applied to the mid-point of the ruler, the ruler will start to slide without rotating. 
So when we describe a force we shall have to give not only its magnitude and 
direction, but we shall also have to state its line of action. (This is usually done 
by describing a point through which the force passes.) Vectors which have a 
definite line of action are called localised vectors.

On the other hand, when the piano in sentence (e) is shifted, then, as we can 
see in Fig. 15.1, every point in the piano is shifted 10 m to the right. All the line 
segments AA', BB', CC', DD' and PP' are equal in length and they are parallel 
to one another. Any one of them can be used to describe the shift which has been 
applied to the piano.

Vectors which do not have a particular line of action are called free vectors; all 
free vectors which have the same magnitude and direction are equivalent to one

288
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A A'

another and, in the example above, we write AA' =  BB' =  CC' = DD' = PP'.
In this chapter all the vectors described, with one important exception, will 

usually be free vectors. The main exception is the position vector (see §15.7), 
which must always start from the origin.

Displacement vectors
15.2 Looking at a map of England, we see that Cambridge is about eighty 
miles from Oxford, and it is approximately North East of Oxford. This is an 
example of a very common type of vector quantity, namely a displacement. The 
displacement of one point from another can be defined, as in the example above, 
by giving the distance and the direction. Alternatively, when using Cartesian 
coordinates, the displacement can be defined by giving the increase in the 
x-coordinate and the increase in the y-coordinate.

y +
B(8, 6)

O
-►
x

Figure 15.2

In Fig. 15.2, A is the point (1, 2) and B is the point (8, 6), so the displacement 
from A to B is ‘7 across and 4 up’. Obviously it is desirable to have a concise way
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of making statements like this; the normal notation is
7

. The upper number is

the increase in the x-coordinate, and the lower one Is the increase in the 
y-coordinate. It is also necessary to make it clear that the displacement goes 

from A to B, and so we write

AB =
7
4

The displacement from B to A is written BA, and, in the case we are considering, 

this is equal to ( ^ .

Qu. l  Write down the displacement vector AB for each of the following pairs of 
points:
(a) A(3, 5), B(5, 9), (b) A(9, 7), B(12,4), (c) A(12, 5), B(5,4),
(d) A(2, 3), B(2, 5), (e) A(5,1), B(8,1).

Fig. 15.3 illustrates the fact that the displacement from A(xt , yt ) to B(x2, y2) ¡s

AB =
x 2 - x I
y2~ y i

y t

Notice that the magnitude of the vector (i.e. its length) is given by

AB = yj{(x2 — xf i2 + (y2 -  y f!2}

and that its direction is defined by the angle a which it makes with the x-axis, 
where

tan a = y  2 - y  i

x2 —
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(note that this is the gradient of the line AB). The magnitude is never negative 
and the angle is usually given in the range —180° ^  a ^  + 180°; however, angles 
outside this range may be used, provided the meaning is clear. In the special case 
when x2 = x u  tan a is not defined, because the denominator is zero. However 
if a diagram is consulted, it is clear that in this case the vector is parallel to 
the y-axis.

Example 1 Find the magnitude and direction of the displacement vector AB, 
where A and B are the points (2, 1) and (8, 9) respectively. Find also the magnitude 
and direction of BA, giving the angle correct to the nearest tenth of a degree.

B(8, 9)

A

8'

(2, 1) 6

O
>
x

Figure 15.4

From Fig. 15.4, we can see that

.'. AB2 = 62 + 82 =  36 +  64 = 100

AB= 10

We can also see that the direction is given by

8
tan a = -  

6

.'. a = 53.1°, correct to the nearest tenth of a degree
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Similarly,

BA is inclined at — 126.9° to the x-axis 

Qu.2 Find the magnitude and direction of each of the vectors in Qu. 1.

Unit vectors
15.3 Any vector whose magnitude is 1, for example

0.6
0.8

is called a unit

vector. The unit vectors : and
0

are especially important because they are

parallel to the x-axis and y-axis respectively; they are called base vectors, and the 
letters i and j are reserved for them (i and j are always printed in bold type; in 
manuscript they should be underlined).

Figure 15.5

The unit vector 

x-axis (see Fig. 15.5).

cos d 
sin 6

is very useful as it is inclined at an angle 6 to the

Multiplication by a scalar
15.4 In Fig. 15.6, the displacement AB has been enlarged by a factor k, that is

A B '= /cAB. If AB = then AP =  a and PB = b. Also, since the triangles 

APB and AP'B' are similar, AB' =  /cAB, AP' = ka and P'B' =  kb, and so
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Figure 15.6

Equal vectors

15.5 In Fig. 15.7, AB = and DC = t îat *s displacement from A 

to B is the same as that from D to C. In this sense we can say that the vectors AB

y +

C(7, 6)

>
x

Figure 15.7
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and DC are equal. Vectors are equal when they have the same magnitude and 
direction. Notice that AD and BC are also equal; the figure ABCD is of course a 
parallelogram.

Example 2 Given that A is the point (1,3) and that AB and AD are ^  ̂j  and

respectively, find the coordinates of the vertices B, C and D of the

parallelogram ABCD (Fig. 15.8).

B is the point (1 + 4, 3 — 1) = (5, 2) 

D is the point (1 +  2, 3 + 3) = (3, 6)

hence

C is the point (3 + 4, 6 — 1) = (7, 5)

Example 3 Given the points A(l, 1), B(5, 4), C(8, 9) and D(0, 3), show that 
ABCD is a trapezium (Fig. 15.9).

5 5 =G)and 535-C)
.'. 2 AB = DC

Hence DC is parallel to AB (and twice as long). So ABCD is a trapezium.
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Addition and subtraction of vectors

15.6 If we make the displacement I J and follow this with the displacement

1, then overall we shall have moved 7 units to the right and 4 units up. We

could also achieve the same result by making the displacement (  ̂J first and the

( 2 \
displacement 1 1  second. We write

K 0 *;
and we say that we have ‘added’ the vectors. In Fig. 15.10, PQ =

3 r

QR = ^  J  and PR = Notice that PQ + QR = PR (this is the ‘triangle law 

of addition’, which some readers may have met in physics). We could also say 

that P Q ' =  0 4 1 =  Q  and that PQ' +  Q7R = PR.

In general

M  + ( aA = (ai +a
b j  \ b 2)  \ b 1 + b

If AB= , , then BA = Notice that B A = —AB, and also that
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y +

Figure 15.10

AB + BA = ; the vector is called the zero vector and is denoted by 0.

Any vector (  ) can be expressed a s | )  + | ^ ) ,  and this in turn can be
\ y /  \ ° J  \ y J

written x ( o )  + y ( j )  = X> + y '1
To subtract vectors, see Fig. 15.11, where C' is the point on CB produced, such 

that BC' = CB.

AB - BC = AB + (--BC) 
= AB + BC'
= AC'

A

Figure 15.11 

Thus

It is frequently convenient to use a single letter to represent a vector. When
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this is done, a lower case letter (i.e. not a capital letter) is always used and it is 
always printed in bold type (in manuscript it must be underlined). For example 
we may write .

In i, j notation, the statement above could be written 

x = 2i + j y = i + 5j 

x + y = 3i + 6j and x — y = i — 4j

This is especially useful for labelling diagrams. For example, Fig. 15.12 il­
lustrates the sum, a + b, and the difference, a — b, of the vectors a and b.

Figure 15.12

When using the single letter notation, an italic letter is always used to denote 
the magnitude of the vector which is represented by the same letter in bold type, 
e.g. if a = 3i + 4j, then a = 5.

Example 4 In Fig. 15.13 each set of parallel lines is equally spaced and it is 
given that OP = p and OU = u. Express the following vectors in terms of p and u: 
(a) OQ, (b) QW, (c) OW, (d) OM, (e) OS, (f) OA.

Figure 15.13
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(a) OQ = 2p, (b) QW = u,
(c) OW = 2p + u. (d)OM = -  2p,
(e) OS = OM + MS = — 2p + u, (f) OA = -  2p -  2u.

Example 5 In triangle OAB (Fig. 15.14), OA = a and OB = b. Given that P and 
Q are the mid-points of OA and OB, express PQ and AB in terms of a and b. State 
the geometrical relationship between PQ and AB.

A

Figure 15.14

Since P and Q are the mid-points of OA and OB, we can write 

OP = ^a and OQ = |b

Now

PQ = PO + OQ
= —jn  + jb

_ ^ = i ( b - a ) ^
AB = AO + OB 

= — a + b 
.. AB = 2PQ

In other words, AB is parallel to PQ and twice its length.

From a mathematical point of view, the beauty of this kind of argument is 
that it does not depend upon the actual dimensions of the triangle.

Exercise 15a
1 Given that x = and y =

(a) 2x,
(e) x + y,

3 
5

(b) 3y,
(f) 2x + 3y,

4
- 6  

(c) - y ,  
(g) x - y ,

write down as column vectors:

(d) iy,
(h) 3x — 2y.

Find the magnitude and direction of the vectors:
(a) 3i + 4 j,__ (b) — 5i + 12j, (c) -  lOj, ( d ) i - j -
The vector XY has magnitude 10 units and it is inclined at 30° to the x-axis. 
Express XY as a column vector.
The vector PQ has magnitude 5 units and is inclined at 150° to the x-axis. 
Express PQ in the form ai + b\, where a, 6 e !R.
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5 A and B are the points (3, 7) and (15, 13) respectively. P is a point on AB such 
that AP = sAB. Write down the vector OP in terms of s. Find the coordinates 
of P, when
(a) s = i  (b) s = f , (c) s = -  2.

6 In Fig. 15.15, OABC is a quadrilateral and P, Q, R and S are the mid-points of 
the sides OA, AB, BC and CO, respectively. Given that OA = a, OB = b and 
OC = c, express the following vectors in terms of a, b and c:
(a) PS, (b) AC, (c) QR.
What can you deduce about the lines PS, AC and QR?

A

Figure 15.15

7 In No. 6 above, X is the mid-point of PR, and Y is the mid-point of QS. 
Express OX and OY in terms of a, b and c. State clearly in words the 
deduction which can be made from these expressions.

Position vectors
15.7 In the preceding exercise, the reader will have noticed that the vector from 
the origin O to a point P is frequently required. This vector OP is called the 
position vector of the point P; it is always denoted by the single letter p (similarly, 
the position vectors of points A, B, C, ... would be written a, b, c, ...). It is 
important to notice that position vectors are localised; they must start from the 
origin.

If the coordinates of P are (x, y) then p is the column vector y j . Notice that

the displacement vector PQ is related to the position vectors of P and Q, as 
follows:

PQ = PO + OQ = —p + q = q — p

Similarly, AB = b — a, XY = y — x and so on. Expressions like these are very 
common in vector geometry and the reader is advised to commit the form of 
them to memory.



300 Pure Mathematics 1 15.7

Figure 15.16

In Fig. 15.16, R is a point on the line PQ, such that PR =  iPQ.
Applying the results above to PR and PQ, we have

PR = tPQ
hence

r -  p = t(q -  p) 
r = p + t(q —p)

= (1 - i ) p  + tq

Since R lies between P and Q, 0 < t < 1. But if t = 1, then R will coincide with Q, 
and if t = 0, then R will coincide with P. The position vector of a point such as S, 
is given by a similar expression, e.g.

s = (1 — r)p + iq

but here the number t is greater than 1. A point such as S' can be obtained by 
using a negative value for t.

Example 6 In Fig. 15.17, OS = 2r and OQ = f  p. Given that QK = mQR and 
PK =  nPS, find two distinct expressions, in terms of p, r, m and n, for OK. By 
equating these expressions, find the values of m and n and hence calculate the ratios 
QK:KR and PK:KS.

Q

Figure 15.17
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One expression for OK is given by 

OK = OQ + QK = OQ + mQR
a

= §p + m(r — §p)

Similarly, OK = OP + PK, hence 

OK = p + n( -  p + 2r)

Equating the two expressions for OK, we have 

f  p + m(r — f  p) = p + n( — p + 2r) 

and rearranging this gives 

( i — I m + n) p = (2n — m) r

but since p and r are not parallel, the two sides of this equation cannot be equal 
unless they are both zero. (The reader should think carefully about this 
statement, and make sure he or she fully understands it. This argument is very 
common when vectors are used in geometrical problems.) Hence

N>|U
> 3 + 3 II o (1)

2n — m = 0 (2)

Substituting m = 2n in equation (1), we have 

|  — |x 2 n + n  = 0 

j  — 3n + n = 0 

2 n = ±

«  =  4

and hence

m = \

But QK = mQR (given) so QK = |Q R  and hence QK = KR. Therefore 

QK:KR= 1:1

Also PK = nPS, so PK = |P S  and hence 

PK :K S= 1:3

Example 7 At noon, two boats P and Q are at points whose position vectors are 
4i + 8j and 4i + 3j respectively. Both boats are moving with constant velocity; the 
velocity of P is 4i + j and the velocity of Q is 2i + 5j, (all distances are in kilometres 
and the time is measured in hours). Find the position vectors of P and Q, and PQ 
after t hours, and hence express the distance PQ between the boats in terms of t. 
Show that the least distance between the boats is J  5 km.
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After t hours the displacement of P from its starting point is r(4i + j), hence

p = (4i + 8j) + i(4 i+ j)
= (4 + 4i)i + (8 + i)j

Similarly *

q = (4 + 2t)i + (3 + 5i)j

Hence

PQ = q — p = -  2ri +  ( -  5 + 4i)j 
PQ 2 =  ( — 2t)2 +  ( — 5 + 4t)2 

= 20i2 — 40t + 25

Hence the distance between the boats is given by

PQ = V(20i2 -  40t +  25) km

To find the least distance, consider

PQ 2 =  20(t2 — 2r +  1) + 5 
= 20(t -  l )2 + 5

Since (i — l )2 cannot be negative, its least value is zero and this is obtained by 
putting t = 1. Hence the least value of PQ 2 is 5. (See §10.3.)

.'. The shortest possible distance between the boats is ^/5 km.

Exercise 15b
1 Given that A is the point (2, 5) and that B is the point (10, — 1), find the 

position vector of a point P on AB, such that 
(a) AP = PB, (b) 2AP = PB, (c) AP = 4AB,
(d) AP:PB = 2:3, (e) AP:PB = 4:1, (f) AP:PB = m:n.

2 Repeat No. 1 for A( — 7, 3) and B( — 1, — 15).
3 A, B, C are three collinear points whose position vectors are a, b and c 

respectively and AC = 3AB. Express c in the form c = ma + nb; find the 
scalars m and n and verify that m + n=  1. Show also that if a = pb + qc then
p + q = I-

4 Repeat No. 3 given that AC = — 2AB.
5 A stationary observer O observes a ship S at noon, at a point whose 

coordinates relative to O are (20, 15); the units are kilometres. The ship is 
moving at a steady 10 km/h on a bearing 150° (a bearing is measured 
clockwise from North). Express its velocity as a column vector. Write down, 
in terms of t, its position after t hours. Hence find the value of t when it is due 
East of O. How far is it from O at this instant?

6 Find numbers m and n such that m ( ^ j  + = ^9

7 In Fig. 15.18, OP = p and OR = r.
P is the mid-point of OQ and PX:XR = 1:3. Express x in terms of p and r. 
Taking OY to be hOX, find QY in terms of p, r and h and hence find the ratio 
QY:YR.
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R

Figure 15.18

8 In Fig. 15.19, OBC is a triangle and the line NL produced meets the line OC 
produced at M.

B

Figure 15.19

Given that ON = f  OB and BL = §BC, express the vector NL in terms of b 
and c, the position vectors of the points B and C with respect to the origin O. 
Find an expression for the position vector of any point R on the line NL. 
Hence express OM as a multiple of OC. Find the ratio CM/MO and verify 
that

ON BL CM _  
n bT x l c  x MO

9 In a triangle OAB, X is a point on OB such that OX = 2XB and Y is a point 
on AB such that 2BY = 3YA. Express x and y in terms of a and b. Find the 
position vector of any point on XY and hence find the position vector of the 
point Z, where XY produced meets OA produced. Calculate the value of 
AZ/OZ.

10 Prove that if a and b are the position vectors of points A and B, then the 
position vector of a point P on AB, where AP.PB = m:n is given by 
(m + n) p = na + mb.

11 Prove that if p = ha + kb represents the point P on the line AB, then 
h + k = l.

12 Given that A, B and C are three collinear points whose position vectors 
satisfy the equation aa + fib + yc = 0, prove that a + fi + y = 0.
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The ratio theorem
15.8 In Fig. 15.20, OA' = h&, OB' = kb and OC = ha + kb. We say that OC is a 
linear combination of a and b. Any point C, whose position vector is a linear 
combination of a and b, will be a point in the plane of O, A and B. (So far we 
have only considered vectors in two dimensions; this last statement becomes 
very important when we start to consider three dimensions.)
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A' C

Figure 15.20

However, if OC = ha + kb and h + k = 1, it can be shown that C lies on the line 
AB, as follows:

c = /ia + kb 
= (l — k)a + kb 
= a + fc(b — a)

Using the double letter notation this last equation becomes 

OC = OA + £AB 

hence

AC =/cAB

so C is the point on AB such that AC = fcAB (see Fig. 15.21).

A

Figure 15.21

Similarly BC = hBA. Hence AC:CB = k:h.

Conversely if we are given that C is a point on the line AB such that 
AC:CB = m:n, then we can write
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AC _  m  

C B ~ n

i.e. nAC = m C  B

n( c — a) = m( b — c) 

nc — na =  m b  — me  

mc +  nc =  na +  m b  

(m + n) c = na + m b

c =
m +  n

n

m  +  n

m
b

This is usually called the ratio theorem. Notice that the sum of the coefficients 
n/(m + n) and m/(m +  n) is 1 .

Example 8 I f  c = fa + |b , sh o w  th a t  C  is a  p o in t  on  AB a n d  th a t  AC:CB = 3:2. 

Since f  -t-f is equal to 1, C lies on the line AB. Also,

AC:CB = f :f  = 3:2

The centroid of a triangle
15.9 In Fig. 15.22, ABC is any triangle and P is the mid-point of BC. G is the 
point on AP such that AG:GP = 2:1. The origin is not shown in the diagram.

Figure 15.22

Since BP:PC= 1:1,

p = ib + ic
and since AG:GP = 2:1,

g = i a + |p
= |a  + |( |b  + |c)
= |(a  + b + c)

This last expression is symmetrical in a, b and c (that is, the letters a, b and c 
can be interchanged without altering g), so the same result could be obtained by

A

B p c
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dividing the median from B to AC (or that from C to AB) in the ratio 2:1. Hence 
the point G, whose position vector is given by

g = i(a + b + c)
is the point of intersection of the three medians. G is called the centroid of the 
triangle.
Qu.3 Find the centroid of the triangle whose vertices are A(l, 2), B(3, 7) and 
C(2, 3).

Menelaus’ theorem
15.10 In Fig. 15.23, OAB is any triangle and PQR is a straight line intersecting 
the sides of the triangle as shown.

A

Menelaus’ theorem can be stated as follows: if OP = aPA, AQ = /JQB and 
BR = yRO, then oifiy = —1. (Notice that since R is on OB produced, y is a 
negative number.)

This famous theorem appeared in a treatise published by Menelaus in 
100 AD, although it was probably known to Euclid almost 400 years earlier. 
These great mathematicians would not, of course, have expressed the proof in 
vector notation.

Menelaus’ theorem can be proved by vector methods, as follows:

OP = aPA, hence p = a(a — p).

.'. (1 + a)p = aa (1)

AQ = /?QB, hence q — a = /?(b — q).

.■ .(l+0)q = a + jBb (2)

BR = yRO, hence r — b = — yr.

.'. (1 + y)r =  b 

From equation (1) we have
(3)
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and from equation (3), 

b = (1 + y)r

Substituting these expressions for a and b in equation (2) gives 

(1 +  P)q =  ]  P + 0(1 + y)r

0 . ( ! + « )  m  +
q a ( l+ /? )P +  (1+/))

However, Q is a point on PR, so, using the ratio theorem (see §15.8),

(1 + q )  P{ 1 +y)  
a(l+ /J) (1+P)

(1 + a) + a/l(l + y) = a(l +/?)

1 + a + a/? + a fly = a + aj8

txfiy =  — 1

The result looks slightly more elegant, and it is perhaps easier to remember, if 
the diagram is re-lettered as in Fig. 15.24.

A

Menelaus’ theorem can then be expressed

AZ BX CY 
ZB X XC X YA ~~ ~

Vectors in three dimensions
15.11 So far in this chapter, we have only considered vectors in two 
dimensions, but the real world is three dimensional, so we must now consider 
the problems which arise when vectors are used in three dimensions. One of the 
great attractions of vectors is that the transition from two dimensions to three is 
very easy. First we will look at Cartesian coordinates in three dimensions. For 
convenience, the three axes Ox, Oy and Oz will be mutually perpendicular. They 
cannot be drawn mutually perpendicular on a flat page, so Fig. 15.25 should be
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viewed with the page held in a vertical plane so that the z-axis is vertical and in 
the plane of the page, the y-axis is horizontal and in the plane of the page, and 
the x-axis is imagined to be horizontal, but coming otit of the page at right 
angles to the plane of the page. By convention, the three axes must form a ‘right- 
handed set’. If the thumb, index finger and middle finger of the right hand are 
stretched out so that they are mutually perpendicular, it should be possible to 
make the thumb correspond to the x-axis, the index finger to the y-axis and the 
middle finger to the z-axis. (In a ‘left-handed set’ the x-axis would go into, 
instead of come out of, the page.)

Figure 15.25

A point A(2, 3, 5) is located in the usual way, namely by starting from the 
origin and moving 2 units along Ox, 3 units parallel to Oy and 5 units parallel to 
Oz (see Fig. 15.26).

Figure 15.26
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The position vector of this point A is written OA = . Similarly the

displacement vector from A(2, 3, 5) to B(3, 6, 4) is written AB =

In general, if A is the point (xx, y u  z t ) and B is the point (x2, y2, z2) then we 
write

Figure 15.27

Fig. 15.27 represents a cuboid, in which AP is parallel to the x-axis, PQ is 
parallel to the y-axis and QB is parallel to the z-axis. Hence

AP = x2—xlt PQ =  y2 -  y t and QB = z2 — zx

The length of vector AB can be found, using Pythagoras’ theorem, as follows. In 
the right-angled triangle ABQ,

AB2 = AQ2 + QB2

and, in the right-angled triangle APQ,

AQ2 = AP2 + PQ2

AB2 = AP2 + PQ2 + QB2
= (x2 -  *i)2 + (y2 -  yi)2 + (z2 -  zi)2

Multiplication of a vector by a scalar in three dimensions is defined by a 
simple extension of the method used in two dimensions (see §15.4), that is,

P Q

hence



Addition and subtraction are also defined by a similar method to that used 
before, i.e.
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and

' x 1—x 2
y  i y 2

. Z j  —  Z 2 t

All the results described so far in this chapter [e.g. the centroid of a triangle 
ABC is given by g =  ̂ (a + b+c)] are equally valid in three dimensions.

The letter k is always used to represent the unit vector parallel to the z-axis.
'x '

Consequently in i, j, k notation the vector I y ) becomes xi + yj + zk.

Example 9 I f  A and B are the points (1,1, 1) and (13, 4, 5) respectively, find, in 
terms of \, j and k, the displacement vector AB. Find also the unit vector parallel to
AB.

a = i + j  + k and b= 13 i + 4j + 5k

AB = b -  a = 12i +  3j + 4k

.’. AB2 = 122 + 32 + 42 = 169 
.-. AB = 13

The magnitude of AB is 13 and so the vector yjAB is a parallel vector of 
magnitude 1. Hence the required unit vector is j f i  + + pjk.

Example 10 Using the points A and B in Example 9, find the point P on AB such 
that AP:PB = 1:3.

We are given that AP:PB = 1:3, so AP = ¿AB, hence

4(p -  a) = (b -  a)
. . 4p =  4a + b — a

= 3a + b
= 3(i+ j + k) + (13i + 4j + 5k)
= 16i + 7j + 8k 

P = 4i + ¿j + 2k

Hence P is the point (4, 2).

Example 11 Show that the points A(l, 2, 3), B(3, 8,1), C(7, 20, — 3) are collinear.

AB = (3i + 8j + k) — (i + 2j + 3k)
= 2i +  6j -  2k
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Similarly

BC = 4i+  12j — 4k 

hence

BC = 2AB

consequently AB and BC are in the same direction and so ABC is a straight line.

Qu.4 Find the centroid of the triangle whose vertices are A(l, 2, 3), B(3, 7, 4), 
C(2, 0, 5).
Qu. 5 Prove that A(l, 2, 1), B(4, 7, 8), C(6, 4, 12) and D(3, — 1, 5) are the 
vertices of a parallelogram.

The vector equation of a line
15.12 Given any two points A and B, with position vectors a and b, the 
position vector of any point R on AB can be expressed as follows:

OR = OA + AR

Let AR = r AB, where t e IR, hence

OR = OA + t AB 
.'. r = a + t(b — a)

= (1 — t)a + rb

The letter t in this equation represents any real number and, for all values of t, r 
is the position vector of a point on AB. The equation r = (1 — i)a + tb is called 
the vector equation of the line AB. The number t is called the parameter; for any 
value of the parameter, R is a point on AB.

Example 12 Find the equation of the line through the points A(l, 2, 3) and 
B(4,4,4) and find the coordinates o f the point where this line meets the plane z = 0.

AB = 3i + 2j + k

Let R be any point on AB, so that

OR = OA + tAB, where t e IR 
.'. r = (i + 2j + 3k) + t(3i +  2j + k)

=  (1 +3i)i + (2 + 2i)j + (3 +  i)k

This is the equation of the line.
The line meets the plane z = 0, where (3 + t) = 0. Thus the parameter at this 

point is t = — 3. Substituting this in the equation of the line, we have

r = -  8i -  4j + Ok

so the line meets the plane at the point ( — 8, — 4,0).

Any vector equation of the form r = a + tu, where a and u are given vectors, 
represents the equation of a line passing through the point whose position



312 Pure Mathematics 1 15.12

vector is a. The direction of the line is parallel to the vector u. If a = I yq ) and

l
u = | m | then

If the point R has coordinates (x, y, z), then r can be written 

last equation becomes

x
y and hence the

x \  / x , + tl
y | = | y i + t m

+ tn

Thus the coordinates of R are x = x i +  tl, y = jq + tm, z = zY + tn. These three 
equations are frequently arranged in the form

x — Xj y — y i z — Zj
/ m n

Example 13 Given the equation of the line in the form

x — 2 y — 4 z — 7 
3 = 5 = 2

express the equation in the form r = a + iu and show that the line passes through 
the point (8, 14, 11).

Let

x

x — 2 
3

- 2  =

= y ~ 4  
5

31

z - 1
= t, then

y - 4  = 5t z -  7 = 2t

hence

x = 2 + 3t 
y = 4 + 5i 
z = l  + 2t

that is, in vector form,

2 + 3t 
4 + 5t 
7 + 2t
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which can be written in the form r = a + iu as follows:

Compare this with the coordinates (8, 14, 11); when 2 + 3t =  8, t = 2. [Now try 
this value of the parameter on the y- and z-coordinates.] When t = 2,4 + 5i = 14 
and 7 + 2r = 11. Hence the line passes through the point (8, 14, 11).

Qu.6 Find the unit vector which is parallel to the line 

Qu.7 Show that the equations

i ) - 0 +- C D - G ) - Q +-(-i.
represent the same line.

x — 1 y — 2 z — 1 
3 = 4 = 12 '

Planes
15.13 If A, B and C are three given points it is always possible to find a plane 
which contains all three of them. (Imagine the tips of the thumb and first two 
fingers of the right hand as the three given points. A flat surface, say a book, can 
then be placed on these three points to represent the plane passing through 
them.) A fourth point, P, may or may not lie in the same plane. If it does, then, as 
was shown in §15.8, the vector AP can be expressed as a linear combination of 
AB and AC, that is scalars m and n can be found so that

AP = mAB + nAC

hence

p — a = m(b — a) + n(c — a)
.'. p = (1 — m — n)a + mb + nc

In other words, p can be expressed as a linear combination of a, b and c:

p = oca + pb + yc

where a + f  + y = 1 [since (1 — m — n) + m + n = 1],
(It is interesting to compare this with the statement ‘if R is a point on the line 

AB then r can be expressed as a linear combination of a and b, in other words 
r =  /la + /rb where X + p = 1\)

Example 14 Given that A, B, C are the points (1, 1, 1), (5,0,0) and (3, 2,1) 
respectively, find the equation which must be satisfied by the coordinates (x, y, z) of 
any point, P, in the plane ABC.
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As P lies in the plane ABC, we may write AP = mAB + nAC. Then, since

AB = and AP = ( y — 1
z -  1,

Thus

x = 1 + 4m + 2 n 
y = 1 — m+ n >
z =  1 — m

Eliminating n,

x — 2 y=  — 1 +  6m 

and eliminating m,

x — 2y + 6z =  5

This is the equation of the plane ABC.

( 1)

In the equations (1), the scalars m and n are usually called ‘the parameters of 
the plane’. For any values of m and n the coordinates (x, y, z) resulting from these 
equations are the coordinates of a point in the plane ABC. In the two- 
dimensional world of the plane ABC, we have two degrees of freedom; we can 
choose a value for m and we can choose a value for n. (Compare this with the 
one-dimensional world of the line, in §15.12, in which there is only one degree of 
freedom; that is we can choose a value for the parameter t.)

Qu.8 Find the equation of the plane containing the points (1, 1,0), (0, 1, 2), 
(2, 3, -8 ).
Qu.9 Find the equation of the plane which passes through the point (1, 2, 3)

and which is parallel to the vectors

The intersection of two planes
15.14 Two non-parallel planes will always meet in a straight line. If we are 
given the equations of two such planes, say, 3x — 5y +  z =  8 and 2x — 3y + z = 3, 
then the equation of the line of intersection can be found as follows.

For any point (x, y, z) which lies in both planes, the values of x, y and z fit both 
equations simultaneously. Hence eliminating z from both equations (in this case 
by subtracting the second equation from the first) we obtain

x — 2y =  5
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There are infinitely many pairs of values of x and y which satisfy this equation, 
but if we choose a value for x then the value of y is fixed and vice versa. (For 
example, if x = 7 then y = 1.) .

Let y = t, then x must be 5 + 2t and substituting these expressions for x and y 
into the first of the original equations, we obtain

3(5 + 2t) -  5t +  z = 8 
15 + 6t — 5i + z =  8

z = — 7 — t

Thus

5 + 2t 

7 -  t
i.e.

The latter is the equation of the line. It is parallel to the vector I 1 1 and it
s -1 ,

passes through the point (5, 0, — 7). A typical point on the line can be written 
(5 + 2t,t, —7 — f) and it can easily be verified that, for all values of t, this point 
lies in both of the planes. If we substitute its coordinates into the first equation, 
we obtain

3x — 5y + z = 3(5 + 2t) -  5t +  ( -  7 — t) 
=  15 + 6i — 5t — 7 — t 
=  8

and substituting in the second equation gives

2x — 3y + z =  2(5 +  2i) — 3i +  ( — 7 — r)
= 10 + 4f — 3r — 7 — r 
=  3

Exercise 15c
1 Given the points A and B below, write down the displacement vector, AB, in 

each case:
(a) A(l, 0, 2), B(3, 6, 4); (b) A(5, 0, 4), B(3, 0, 4);
(c) A(2,1, 3), B(6, 4, 3); (d) A(5,4, 7), B(2, 8,1);
(e) A(k, 2k, 3k), B(3k, 2k, k).

2 For each part of No. 1, write down the position vector of the mid-point of 
AB.

3 For each part of No. 1, write down the position vector of the point P, such 
that AP = 5AB.

4 Find the equation of the plane through the points (1, 2, 0), (1,1,1) and
(0, 3, 0).

5 Find the equation of the plane through the point (1, 1,1) parallel to the 
vectors i + 2j + 3k and i + j.
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6 Find the coordinates of the point where the line

x ' \ \  /  3s
y : l + t

meets the plane x — 2y + 3z = 26.

- M

Ex 15c

7 Show that the line lies in the plane

2x + 3y — 5z = — 7

8 Find the point of intersection of the lines 

r  =  (1 +  m ) i + (2  + m)j  +  ( 4  + 2m)k

r  =  (1 +  3n)i + 5nj + (3 +  7n)k

9  Show that the lines r  = + m and r  = + n | do not meet.

(Non-parallel lines which do not meet are called skew lines.)
10 Given four points A, B, C and D, the point G, whose position vector g is 

defined by g = ¿(a -I- b  + c + d ) , is called the centroid of A, B, C and D. Prove 
that G lies on the line joining D to M, the centroid of triangle ABC. Find the 
ratio DG:GM.

11 Find the equation of the line of intersection of the planes

4x + 3y + z = 10 
x + y + z =  6

12 Show that the three planes whose equations are

2x + 3y + z = 8 
x + y + z =  10 

3x + 5y + z =  6

contain a common line.

The scalar product of two vectors
15.15 So far we have added and subtracted vectors, and vectors have been 
multiplied by scalars, but we have not ‘multiplied’ one vector by another vector. 
In vector work there are two kinds of ‘multiplication’; in one of them, the result 
is a scalar quantity, so this is called scalar multiplication, while in the other the 
result is a vector quantity. The latter kind, ‘vector multiplication’, is beyond the 
scope of Book 1. (See Book 2, Chapter 21.)
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Definition

Given two vectors a and b (see Fig. 15.28), whose magnitudes are a and b 
respectively, the scalar product a.b is ab cos 6, where 9 is, the angle between the 
vectors.

(The scalar product is always written with a very distinct dot between the a 
and the b. It is quite common to call this the ‘dot product’ of a and b.)

B

At first sight a.b = ab cos 9 might seem a rather odd definition to choose, and 
one might reasonably ask why it should be this and not, say ab tan 9, or ab sin 9. 
This particular definition, ab cos 9, is useful because it has many interesting 
mathematical properties, some of which will appear in the next few sections. 
Also, applied mathematicians and physicists find it a useful concept; in, 
particular the ‘work done’ when the point of application of a force F (a vector) 
undergoes a displacement x (a vector) is given by F.x (a scalar).

Notice that b.a = ba cos 9, which of course is the same as ab cos 9, so the 
order of a and b in the scalar product does not matter, in other words scalar 
multiplication is commutative. (This may seem to be a rather trivial remark, 
nevertheless it is very important; in contrast vector multiplication is not 
commutative). We shall frequently require the scalar products of the base 
vectors i and j, so the following results should be memorised (bearing in mind 
that cos 0° = 1 and cos 90° =  0):

i.i = j.j = k.k = 1 
i.j = j.k = k.i = 0

For any vector a, the scalar product a.a is equal to a2, and for any pair of 
perpendicular vectors a and b the scalar product a.b is zero (because cos 90° is 
zero). Conversely if we know that the scalar product of a pair of vectors is zero, 
then we can deduce that the vectors are perpendicular (or one of the vectors is 
zero).

Example 15 Given that OA = 6, OB = 4 and LAOB =  60°, calculate the value of 
OA.OB.

OA.OB = 6 x 4 x cos 60°
= 6 x 4 x 0.5 
=  12
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There is an alternative form of this definition. Note that in Fig. 15.28 
b cos 6 = OM; the length OM is often called the projection of OB onto OA. 
Consequently we can say that the scalar product, a.b, is the product of OA and 
the projection of OB onto OA. The A and B in this statement can, of course, be 
interchanged.

Although a.b has been called a ‘product’ and the process has been called 
scalar ‘multiplication’, it is necessary to establish that this ‘multiplication’ obeys 
the same rules that we are familiar with, from working with real numbers.

We have already seen that the order of a and b in the scalar product does not 
matter, so the commutative* law, a.b = b.a, is obeyed.

Since a.b is scalar, it is impossible to attach any meaning to a triple product 
(a.b).c; consequently there is no question of scalar products obeying the 
associative* law. However (a.b)c could be taken to mean the scalar a.b 
multiplied by the vector c, as in §15.4, so great care is needed.

It is, however, very important that we should be able to remove brackets from 
a.(b + c) and obtain a.b + a.c. The law

a.(b + c) =  a.b + a.c

is called the distributive* law and this is proved in the next section.

The proof of the distributive law
15.16 In Fig. 15.29, OA = a, OB = b, OC = c and OR = b + c.

R

a.b = OA x OL (the product of OA and the projection of OB onto OA) 

and similarly

a.c = OA x OM 

Adding,

a.b + a.c = OA x (OL + OM)

but since OC and BR are opposite sides of a parallelogram, the projection of OC

*The terms commutative, associative, distributive may be new to some readers; they are explained in 
more detail in Chapter 25.
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onto OA is equal to the projection of BR onto OA. Hence OM = LN. Thus

a.b + a.c = OA x (OL + LN) = OA x ON 
= OA.OR 
= a.(b + c)

With this law proved, we may now proceed to remove brackets according to 
the normal rules of algebra, e.g.

(a + b).(c + d) = a.(c +  d) + b.(c +  d) = a.c + a.d + b.c + b.d

In particular, if we wish to form the scalar product of a and b, where 

a = 2i + 3j + 4k and b =  5i +  6j + 7k 

then, bearing in mind that i.i = j.j = k.k = 1 and i.j = j.k = k.i =  0, we have 

a.b = (2i +  3j + 4k).(5i + 6j + 7k) = 2 x 5  + 3 x 6  + 4 x 7  = 56 

In general,

O c A  / x A

A ) • I yi ) =  (*1> + kij + zik).(x2i + y2j + z2k) = -XiX2 + yiy2 + A A  
vA /  \ A /

Example 16 Given that a = 4i + 3j + 12k and b =  8i — 6j, find a2, b2 and a.b. 
Hence find the angle between the vectors a and b.

a2 = a.a = (4i + 3j + 12k).(4i + 3j + 12k)
= 16 + 9+ 144  
= 169

Similarly, b2 = 100.

Hence a = 13 and b = 10.

a.b = (4i + 3j + 12k).(8i—6j) 
= 3 2 -1 8  
= 14

However, by definition, a.b =  ab cos 9, where 9 is the angle between a and b, 
consequently

14 = 13 x 10 cos 9

cos 9
! 4

130

.'. 0 = 83.8°

The angle between a and b is 83.8°, correct to the nearest tenth of a degree.

Example 17 Prove that p = 2i +  3j + 4k is perpendicular to q = 5i + 2j — 4k.

p.q = (2i + 3j + 4k).(5i +  2j -  4k)
= 10 + 6 - 1 6  
=  0
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Since neither p nor q is zero, we can deduce that 

cos 6 = 0
where 6 is the angle between p and q, so 6 = 90°. Hence p is perpendicular to q.

Qu. 10 Given that a = 10 and 6 = 15 and that the angle between a and b is 
120°, calculate the value of a.b.
Qu. 11 Write down the condition for the vectors

a = Xji + y j  + Zjk and b = x 2i + y2j + z2k
to be perpendicular.
Qu. 12 Find the angle between the vectors 

p = i + 2j + 2k and q = 2i + 3j — 6k

*Qu. 13 The unit vector u makes angles a, P  and y  with the x-, y- and z-axes 
respectively. By considering u.i, or otherwise, show that

u = cos a  i + cos P  j + cos y  k

and prove that

cos2 a  + cos2 P  + cos2 y = 1

(cos oc, cos P  and cos y  are called the direction-cosines of u.)
Qu. 14 Find the direction-cosines of the unit vector parallel to 3i + 4j + 12k 
and calculate the angles this vector makes with the axes.

It is frequently convenient to have a symbol for the unit vector in the direction 
of a given vector r; the normal symbol for this is r. So if we use r to represent the 
magnitude of r, the unit vector r is given by

1
r = -r

r
e.g. if we are given that r = 3i + 4j, then r = 5 and

Postscript
15.17 This chapter has been concerned with vectors in two and three 
dimensions, but there is no reason why we should stop at three! The only 
problem is that it is rather difficult to draw a four-dimensional vector, especially 
on a two-dimensional page! However, provided we are prepared to sacrifice the 
luxury of drawing pictures of our vectors, we may still continue to use the 
algebraic rules which have been developed for two and three dimensions. Thus if
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then

a + b = ; and 5a =

We may even define the ‘magnitude’ of a as ^ /(l2 + 22 + 52 + 72). Indeed it is 
possible to define a ‘scalar product’, although in this context it is usual to call it 
the ‘inner product’. If

the inner product of p and q is x 1y l + x 2y2 + x 3y 3 + x 4y4. Readers who wish to 
know more should refer to a more advanced book on vector methods.

Exercise 15d (Miscellaneous)
1 In Fig. 15.30, OABC and OPQR are parallelograms; OA = a, OC = c,

OP = Ja , OR = jc. Express the following vectors in terms of a and c:
(a) OB, (b) AC, (c) OQ, (d) PR, (e) RC,
(f) AQ, (g) QC, (h) PB, (i) PC, (j) BQ.

Figure 15.30

2 Find scalars h and k, such that + k

3 Given two points A and B, with position vectors a and b, find, in terms of a 
and b, the position vector of the point P, such that
(a) P is the mid-point of AB, (b) B is the mid-point of AP,
(c) AP:PBj=3:7, (d) AP =  fAB,
(e) PA = 2AB.

4 (a) Find the scalar product of a =
7.2
9.6

and b =
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(b) find the magnitudes of a and b,
(c) calculate the angle between a  and b.

5 Given that P, Q and R are the points (8, 10), (6, 20) and (16, 16) respectively, 
calculate the value of the scalar product PQ.PR. Hence calculate the size of 
the angle QPR.

6 The points A, B and C have coordinates (4, — 1, 5), (8, 0, 6) and (5, — 3, 3) 
respectively. Prove that the angle BAC is a right angle.

7 In Fig. 15.31, OB = b, OC = f  b and AP = f  AB.

C

Given that AQ = mAC and that OQ = nOP, calculate the values of m and n, 
and the ratio AQ-.QC.

8 Find the coordinates of the point P where the line

meets the plane 3x + 2y — 2z + 7 = 0.
9 Find the equation of the line through the points (2, 3, 7) and (3, 1,4). Find 

also the equation of the plane perpendicular to this line which passes 
through the origin.

10 Find the equation of the plane containing the line

and passing through the point (1, 0, 3). 
11 Given the vectors a and b, where

a = x1i + y1j +  z1k

and

b = x2i + y2j + z2k 

prove that the vector

c  =  {y  i z 2 -  i )>  +  ( z i * 2  -  Z 2 * i ) j  +  { * i y i  -  * 2 ; y i ) k

is perpendicular to both a and b.
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12 Prove that the planes

x — 2y + z =  5 
3x — 3y + z =  3 
5x — 4y + z =  1

meet in a common line and find the coordinates of the point where this line 
meets the plane z = 0.

13 A destroyer sights a ship travelling with constant velocity 5j, whose position 
vector at the time of sighting is 2000(3i + j) relative to the destroyer, 
distances being in m and velocity in m s ” 1. The destroyer immediately 
begins to move with velocity k(4i +  3j), where k is a constant, in order to 
intercept the ship. Find k and the time to interception.

Find also the distance between the vessels when half the time to 
interception has elapsed. (O & C)

14 The position vectors, relative to the origin O, of points A and B are 
respectively a and b. State, in terms of a and b, the position vector of the 
point T which lies on AB and is such that AT = 2TB. (Give reasons.)

Find the position vector of the point M on OT produced such that BM 
and OA are parallel.

If AM is produced to meet OB produced in K, determine the ratio 
OB.BK. (O & C)

15 The point A has coordinates (2, 0, — 1) and the plane rc has the equation
x z + 1

x + 2y — 2z = 8. The line through A parallel to the line —-  = y = ■ -

meets n in the point B and the perpendicular from A to n meets n in the point 
C.
(a) Find the coordinates of B and C.
(b) Show that the length of AC is 4/3.
(c) Find sin LABC. (O & C: MEI)

16 Of the following equations, which represent lines and which represent
planes?

(a)
x — 2 y — 1 z — 3

1 2 - 1  ’ 

(b) x + 2y — z = 1,

wliMD+‘(:i.
Describe, or show in a clear diagram, how these lines and planes are related 
to each other. (O & C: SMP)

17 Points P, Q and R have position vectors p, q and r. If p = (1 — oe)q + ar, for 
some number a, describe the position of P relative to Q and R.

OABC are four non-coplanar points in space. A, B, C have position 
vectors a, b, c relative to O. The position vector of V is 2a — c, and of W is
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— 2a + 3b. If VW meets the plane OBC in U, find the position vector of U 
and show that U is on BC.

Use scalar products to show that if V is in .the plane through O 
perpendicular to OB, and W is in the plane through O perpendicular to OC, 
then U is in the plane through O perpendicular to OA. (O & C: SMP)

18 The vertices A, B and C of a triangle have position vectors a, b and
c respectively relative to an origin O. The point P is on BC such that 
BP:PC = 3:1; the point Q is on CA such that CQ:QA = 2:3; the point R is on 
BA produced such that BR:AR = 2:1. The position vectors of P, Q and R are 
p, q and r, respectively. Show that q can be expressed in terms of p and r and 
hence show that P, Q and R are collinear. State the ratio of the lengths of the 
line segments PQ and QR. (JMB)

19 The position vectors of the points A, B and C are given by a = 2i +  3j — 4k, 
b = 5i — j +  2k, c =  111 + Xj + 14k. Find
(a) the unit vector parallel to AB,
(b) the position vector of the point D such that ABCD is a parallelogram,
(c) the value of X if A, B and C are collinear,
(d) the position vector of the point P on AB if AP:PB = 2:1. __  ̂ (C)

20 A tetrahedron OABC with vertex O at the origin is such that OA = a, 
OB = b and OC = c. Show that the line segments joining the mid-points of 
opposite edges bisect one another. Given that two pairs of opposite edges are 
perpendicular prove that

a.b =  b.c =  c.a

and show that the third pair of opposite edges is also perpendicular. Prove 
also that, in this case,

OA2 + BC2 = OB2 + AC2 (L)
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The general angle and Pythagoras’ 
theorem
The general angle
16.1 Consider a wheel which is free to rotate about a fixed axis, and suppose 
that one spoke is marked with a thin line of paint. If the wheel starts from rest 
and makes one revolution, the marked spoke turns through 360°, and if the 
wheel makes another revolution the spoke turns through 360° again. Thus we 
may say that the wheel has turned through a total of 120°, and by using angles 
greater than 360° the number of revolutions may be specified, as well as the 
position of the marked spoke.

Now on the x-axis of a graph the positive direction is usually taken to the 
right and the negative direction is opposite to this. Similarly, if the wheel 
mentioned above was rotating anti-clockwise, we could take that sense to be 
positive, and then a clockwise rotation would be considered negative. Angles 
measured from the x-axis in an anti-clockwise sense are positive, and those 
measured in a clockwise sense are negative (see Fig. 16.1).

y*

Figure 16.1
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Trigonometrical ratios of angles of any magnitude are required in connection 
with oscillating bodies and rotation about an axis, and in physics they arise in 
connection with such topics as alternating currents. But as the reader may only 
have had the six ratios defined for a limited range of angles, we will now give a 
general definition.

The axes divide the plane into four quadrants, and, as angles are measured in 
an anti-clockwise direction from the x-axis, the quadrants are numbered as in 
Fig. 16.2. For the present, a point P(x, y) and its coordinates will be given a suffix 
corresponding to the quadrant it lies in.

second
quadrant

first
quadrant

O
*
x

third
quadrant

fourth
quadrant

Figure 16.2

For an acute angle 91 (see Fig. 16.3),

sin 91 = — , cos 91 = —, 
r r

tan 9t = —  
*1

In each case, r is the length of the vector OP, and, as in the previous chapter, it 
should always be taken to be positive. Now

sin 0t y j r  yt
-----7T = — T = —  = tan 61cos 9l Xj/r xx

so for an angle 9 of any magnitude we shall define the six trigonometrical ratios 
as follows:

sin 9 = —, 
r

a xcos 9 = —, 
r

cosec 9 =
1

sec 9 =
1

tan 9 = 

cot 9 =

sin 9 
cos 9

1
sin 9’ cos 9’ " tan 9

For an angle 92 in the second quadrant (see Fig. 16.3), y2 is positive



Figure 16.3

(abbreviated +  ve) but x 2 is negative (abbreviated — ve), therefore 

sin 62 is + ve, cos d2 is — ve, tan d2 is — ve 

In the third quadrant, x3 and y3 are both negative, hence 

sin d3 is — ve, cos 83 is — ve, tan t?3 is + ve 

For an angle d4 in the fourth quadrant, x4 is positive, and y4 is negative, hence 

sin d4 is — ve, cos 04 is 4- ve, tan 84 is — ve

These results can be summarised by writing which ratios are positive in each 
quadrant:

y +

SIN ALL

O ♦
x

TAN COS

Figure 16.4

The signs of the ratios can be worked out as above quite easily, but for those 
who like them, there are mnemonics for the first letters in the four quadrants of 
Fig. 16.4. One such is All Silly Tom Cats. The signs of cosec 8, sec 8, cot 8 are, of 
course, the same as their reciprocals.

A useful point to note is that angles for which OP is equally inclined to the 
positive or negative x-axis have trigonometrical ratios of the same magnitude, 
their signs being determined as above. Thus the ratios of 150°, 210°, 330° are 
numerically the same as the ratios of 30°, since in each case the acute angle 
between OP and the x-axis is 30°, as shown overleaf.
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sin 150° = + sin 30°
cos 150° = — cos 30°
tan 150° = — tan 30° *
sin 210° = — sin 30°
cos 210° = — cos 30°
tan 210° = + tan 30°

sin 330° = — sin 30°
cos 330° = + cos 30°
tan 330° = -  tan 30°

Qu. 1 Express in terms of the trigonometrical ratios of acute angles:
(a) sin 170°, (b) tan 300°, (c) cos 200°,
(d) sin ( -  50°), (e) cos ( — 20°), (f) sin 325°,
(g) tan (-140°), (h) cos 164°, (i) cosec 230°,
(j) tan 143°, (k) cos (-130°), (1) sin 250°,
(m) tan (-50°), (n) cot 200°, (o) cos 293°,
(p) sin (-230°) , (q) sec 142°, (r) cot 156°,
(s) cosec(—53°), (t) sec( — 172°).

Graphs of sin 0, cos 0, tan 0
16.2 It is instructive to draw the graphs of sin 0, cos 0, and tan 0. Fig. 16.5 
shows how the graph of sin 0 may be drawn from the definition. Construct a 
circle of unit radius, then sin 0 = y. Dotted lines show this for 0 = 30°, 60°, 90°, 
and the rest of the figure is drawn similarly.

It will be seen that the graph of sin 0 repeats itself at intervals of 360°. (That 
this is so should be clear from the way it was drawn, because points on the graph 
separated by 360° correspond to the same point on the circle.) If a function 
repeats itself at regular intervals, like sin 0, it is called a periodic function, and the 
interval is called its period (see §2.15).

The graph of cos 0 may be drawn in a similar way to that of sin 0. In this case, 
since cos 0 = x/r, the values of x  are used instead of y.

The graph of tan 0 may also be drawn from a unit circle, but in this case a



tangent is drawn at the point (1,0) (see Fig. 16.6). If P is any point on the circle, 
and OP meets the tangent at Q, then the y-coordinate of Q is equal to tan 9.
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tan 0

Qu. 2 Complete the graph of tan 6 up to 6 = 720°. 
Qu.3 What are the periods of cos 6 and tan 0?

Trigonometrical ratios of 30°, 45°, 60°
16.3 The trigonometrical ratios of 30°, 45°, and 60° are frequently needed, and 
they may be obtained from two figures. Fig. 16.7 represents an equilateral 
triangle with an altitude constructed. The sides of the triangle are 2 units, and so, 
by Pythagoras’ theorem, the altitude is units. The ratios of 30° and 60° may 
now be read off. Fig. 16.8 represents a right-angled isosceles triangle with two 
sides of unit length. By Pythagoras’ theorem the hypotenuse is y jl  units, and so 
the ratios of 45° may be read off.

Figure 16.7 Figure 16.8

Qu. 4 Write down the values of (a) sin 30°, (b) cos 30°, (c) cos 45°, (d) tan 30°, 
(e) sec 60°, (f) cosec 60°, (g) tan 45°, (h) cosec 45°.
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Trigonometrical equations
16.4 Most equations in algebra have a finite number of roots, but in many 
cases trigonometrical equations have an unlimited number. For instance, the 
equation sin 0 = 0 is satisfied by 0 = 0°, ±180°, ±360°, +540° and so on, 
indefinitely. In this book it will be specified for what range of values the roots are 
required.

Example 1 Solve the equation sin 0 = — j  for values of 0 from 0° to 360° 
inclusive.

The acute angle whose sine is \  is 30° and Fig. 16.9 indicates the angles 
between 0° and 360° whose sines are + j .  But sin 0 is negative only in the third 
and fourth quadrants. Therefore the roots of the equation in the required range 
are 210° and 330°.

Example 2 Solve the equation cos 20 = 0.6428, for values of 0 between — 180° 
and + 180°.

[Note that since 0 must lie between — 180° and + 180°, 20 may lie between 
-  360° and + 360°.]

From a calculator or tables it can be seen that the acute angle whose cosine is 
0.6428 is 50° (see note on accuracy after the Preface), and since cos 20 is positive 
only in the first and fourth quadrants

20 = - 3 1 0 ° ,  -50°, 50°, 310°
.'. 0 = - 1 5 5 ° ,  -25°, 25°, 155°

Example 3 Solve the equation* 2 sin2 0 = sin 6, for values of 0 from 0° to 360° 
inclusive.

*In order to avoid brackets (sin 0)2 is written sin2 0.



[This equation is a quadratic equation for sin 0, and may be solved by 
factorisation.]

2 sin2 0 -  sin 0 = 0 
sin 0 (2 sin 0 — 1) = 0

.'. sin 9 = 0 or sin 0 = j

If sin 0 = 0, 0 = 0°, 180°, 360°. If sin 6 = j ,  0 = 30°, 150°.
Therefore the roots of the equation, from 0° to 360° inclusive are 0°, 30°, 150°, 

180°, and 360°.
(Note that if we had divided both sides of the equation by sin 0, giving 

2 sin 0 = 1, we should have lost some of the roots, namely those for which 
sin 0 = 0.)
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Example 4 Solve the equation tan 0 = 2 sin 0, for values of 0 from 0° to 360° 
inclusive.

[Equations are often solved by factorisation, so look for a common factor.] 
Remembering that tan 8 = sin 8/cos 8 we may write

sin 8 
cos 8

= 2 sin 8

.'. 2 sin 8 cos 8 = sin 0

.'. 2 sin 0 cos 0 — sin 0 = 0

.'. sin 0 (2 cos 0 — 1) =  0 

.'. sin 0 = 0 or cos 0 = j

If sin 0 = 0, 0 =  0°, 180°, 360°. If cos 0 = i  0 = 60°, 300°.
Therefore the required values of 0 are 0°, 60°, 180°, 300°, and 360°.

Exercise 16a
1 Write down the values of the following, leaving surds in your answers 

(calculators should not be used in this question):
(a) cos 270°, 
(d) tan 135°, 
(g) tan 120°, 
(j) sin 405°, 
(m) tan ( — 60°

(b) sin 540°,
(e) sin 150°,
(h) cos (-30°), 
(k) cos (-135°), 
(n) sin (-270°),

(c) cos ( —180°),
(f)
(i)
(1)

cos 210°, 
sin ( —120° 
sin 225°,

(o) tan 210°.
2 Sketch the graph of sin 0, for values of 0 from — 360° to 360°.
3 Sketch the graph of cos 0, for values of 0 from 0° to 720°, and state its period.
4 Draw the graph of tan 0, for values of 0 from 0° to 720°. (This has been 

started in Fig. 16.6.) What is the period of tan 0?
5 Sketch the graphs of (a) cos 20, (b) sin j8, (c) sin f  0, (d) cos (0 + 60°), 

(e) sin (0 — 45°), for values of 0 from 0° to 360°, stating the period of each.
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Find the values of 0 from 180° to 360°, inclusive, which satisfy the following 
equations:
(a) cos 0 =  — j ,  (b) tan 0=1 ,
(c) cosec 0 = 2, (d) sin 0 = —0.7660,
(e) cos 0 = 0.6, (f) tan 0 =  — ̂ 3 ,
(g) cos (0 + 60°) = 0.5, (h) sin (0 — 30°) = — ̂ 3/2.
Solve the following equations for values of 0 from 0° to 360°, inclusive:
(a) sin2 0 = | , (b) tan2 0 = i  

(d) tan 28=  — 1,
(f) sin 30 = -  1,
(h) sec 20 = 3,
(j) 4 cos 20 = 1,

(k) sin (20+ 30°) = 0.8, (1) tan (30 -  45°) = i
8 Solve the following equations for values of 0 from —180° 

inclusive:

(c) sin 20 = ^,
(e) cos30 = ^/3/2,
(g) sin2 20=  1,
(i) tan2 30= 1,

to +180°

(a) tan2 0 + tan 0 = 0,
(c) 3 sin2 0 + sin 0 =  0,
(e) 2 cos2 0 + 3 cos 0 + 1 = 0 ,  
(g) tan 0 = sin 0,
(i) cot 0 = 5 cos 0,
(k) 3 cos 0 =  2 cot 0,
(m)5 sin 0 + 6 cosec 0 = 17,

(b) 2 cos2 0 = cos 0,
(d) 2 sin2 0 — sin 0 - 
(f ) 4 cos3 0 = cos 0,
(h) sec 0 = 2 cos 0,
(j) 4 sin2 0 = 3 cos2 0,
(1) tan 0 = 4 cot 0 + 3,

1 = 0,

(n) 3 cos 0 + 2 sec 0 + 7 = 0.
Write down the maximum and minimum values of the following expressions, 
giving the smallest positive or zero value of 0 for which they occur:

(a) sin 0,
(d) — ^sin 20,

(b) 3 cos 0,
(e) 1—2 sin 0,

(g)
1

2 + sin 0 ’

(j) tan2 0,

(h)

(k )

1
4 — 3 cos 0 ’

1
1 + cosec 0 ’

(c) 2 cos j8,
(f) 3 + 2 cos 30,

(i) sec f  0,

o
(1) 3 — 2 cot 0 ’

(m) cos 0
cos 0 + sin 0

10 State, with reasons, which of the following equations have no roots:
(a) 2 sin 0 = 3, (b) sin 0 + cos 0 = 0,
(c) sin 0 + cos 0 =  2, (d) 3 sin 0 + cosec 0 =  0,
(e) 4 cosec2 0 —1=0,  (f) cosec 0 = sin 0,
(g) sec 0 = sin 0.

11 Sketch on the same axes, for values of 0 from — 360° to 360°, the graphs of
(a) sin 0, cosec 0; (b) cos 0, sec 0; (c) tan 0, cot 0.

12 Sketch the graphs of the following functions and state the period in each 
case:
(a) y = sin 2x, (b) y =  cos (x/3),
(d) y =  tan (x/2), (e) y =  sin (2x/3).

(c) y =  tan 3x,



Trigonometrical ratios of — 0, 180 ± 0 , 90 ± 0
16.5 The reader who has drawn the graphs of y = sin 9 and,y  = cos 6 may have 
noticed that they are the same, except for the positions of the y-axes relative to 
the curves.

Fig. 16.10 suggests that, for any angle a, 

cos a = sin (90° + a)
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and other relationships of this sort may be found from the graphs. Some people 
find the graphs help them to remember such relationships, but now it will be 
shown how they may be obtained from first principles.

For any value of 9, in the notation of §16.1 we have by definition

y x
sin 9 = —, cos 9 = — 

r r

Consider:
(a) ratios of — 9. In Fig. 16.3, p. 327, the angle —9 is obtained by replacing

(x, y) by (x, -y ) ,

— — = — sin 6sin ( — 9) =
r
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x
cos ( — 0) = — = cos 0 

r
t

i.e. sin 0 is an odd function and cos 6 is an even function (see §2.14).

(b) ratios of (180° — 9). Replace (x, y) by ( — x, y), hence

sin (180° — 0) = — = sin 0 
r

cos (180° — 0) = — — = — cos 0 
r

(c) ratios of (180° + 6). Replace (x, y) by ( —x, —y), hence

sin (180° + 0) = -  -  = -  sin0 
r

cos (180° + 9) = — — = — cos 9 
r

[Note that in all these cases above, OP is inclined at an angle 9 to the positive 
or negative x-axis, the ratios of these angles have the same magnitude as those of 
9, and their signs are determined as on page 327 if 9 is acute.]

(d) ratios of (90° — 9). Replace (x, y) by (y , x), hence

sin (90° — 9) = — = cos 9 
r

cos (90° — 9) = — = sin 9 
r

(e) ratios of (90° + 0). Replace (x, y) by ( — y, x), hence

sin (90° + 9) = — = cos 9 
r

cos (90° + 9) = ---- = — sin 9
r

Q u. 5 Express the following in terms of the trigonometrical ratios of 9: 
(a) tan (90° — 9), (b) cosec (180° — 9), (c) sec (90° + 9),
(d) cot (90° + 9), (e) sec ( — 9), (f) cosec (180° +  9),
(g) cos (270° — 9), (h) sin (360° + 0), (i) tan ( — 9),
O') sin (0 -90°), (k) cos ( 0 -  180°), (1) sec (270°+ 0).

Pythagoras’ theorem
16.6 The reader will be familiar with Pythagoras’ theorem, and will have found 
that it is a very useful one. In trigonometry it retains its importance and provides 
relations between trigonometrical ratios.
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Figure 16.11

In Fig. 16.11, the triangle is right-angled and so, by Pythagoras’ theorem,

x2 + y2 = r2

But cos 9 = x/r and sin 9 = y/r, so we divide by r2 obtaining

. . cos20 + sin20 = 1

(If P is not in the first quadrant, O P2 is still x 2 +  y2 by the distance formula of 
§1.8 and the proof continues as before.)

The s  symbol is used to stress that the relationship is an identity, i.e. it holds 
for all values of 9.

Two similar identities can be deduced from this. Dividing through by cos2 0,

1 sin2 0 _  1
cos2 9 cos2 9

but tan 9 = sin 9/cos 9 and sec 9 = 1/cos 9, therefore 

1 + tan2 0 =  sec2 0

Dividing the original identity by sin2 9,

cos2 9 1
sin2 9 + = sin2 9

but cos 0/sin 6 = cot 9 and 1/sin 8 = cosec 8, therefore 

cot2 0  +  1 =  cosec2 0

Historical note. The equivalent of the identity 

cos2 8 + sin2 8 = 1

is found in the Syntaxis written during the first century A.D. by Claudius 
Ptolemy. Instead of sines and cosines, he used chords. (If a chord subtends an 
angle 28 at the centre of a circle, the ratio of the chord to the diameter of the 
circle is sin 8.)



E xam ple 5 Solve the equation 1 +  cos 0 = 2 sin2 6, for values of 6 between 0° 
and 360°.

[The square on the right-hand side indicates that the equation is a quadratic, 
and to solve it, we must write it in terms of either cos 6 or sin 0.] We know that

cos2 6 + sin2 6= 1

hence sin2 0 = 1 — cos2 0

so substituting 2 — 2 cos2 0 for 2 sin2 0, we obtain

1 + cos 0 = 2 — 2 cos2 0

This quadratic for cos 0 is solved by factorisation:

2 cos2 0 + cos 0 —1 = 0  
.'. (2 cos 0 — l)(cos 0 + 1) = 0

cos 0 = \  or — 1

If cos 0 =  i  0 =  60°, 300°. If cos 0 = -  1, 0 = 180°.
Therefore the roots of the equation between 0° and 360° are 60°, 180°, and 

300°.

Example 6 Simplify 1 A/(*2 — a2) when x = a cosec 0.

Substituting x = a cosec 0, we obtain 

1
yj(a2 cosec2 0 — a2)

But the cosec2 0 in the denominator suggests the use of the identity 

cot2 0 +  1 = cosec2 0

With this the expression (a2 cosec2 0 — a2) may be simplified, giving 

a2 cosec2 0 — a2 = a2(cot2 0 + 1) — a2 = a2 cot2 0 

Thus the original expression becomes

1 1 _  1
J {a 2 cot2 6) a cot 0 a ^

E xam ple 7 Eliminate 6 from the equations x  =  a sin 0, y = b tan 0.

[Since sin 0 and tan 0 are the reciprocals of cosec 0 and cot 0 we use the 
identity cosec2 0 = cot2 0+ 1 .]

a b
cosec 0 = — and cot 0 = —x y

Substituting into the identity cosec2 0 = cot2 0 + 1 ,
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Exercise 16b
1 If s = sin 0, simplify:
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W VO -s2>> ('»V -
2 If c = cos 6, simplify:

( a ) \ / ( l - c2), (b) , (c) - - C 2-.
C  1 —  c

3 If t — tan 6, simplify:

(a) V(1 + t2), (b) i(l + t 2),

4 If c = cosec 0, simplify:

(a) V(c2 -  1), (b) V(c2 -  1)

5 If x = a sin 0, simplify: 

(a) a2 — x 2, (b)
1

/̂ (a2 - x 2) ’

6 If y = b cot 6, simplify:

(a) b2 + y2, (b) y j ( b 2 + y 1),

7 If z = a sec 6, simplify:

(a) z2 -  a2, (b)
1

J ( z 2 - a 2) ’

(c )
t

y / ( l + t 2)'

(c)
c

c2 — 1 ’

(c)
X

(c) y
b2 + y 2 '

(c )
•J{z2 ~ a 2)

z

In Nos. 8-13, solve the equations, giving values of 0 from 0° to 360° inclusive.

8 3 — 3 cos 0 = 2 sin2 0.
9 cos2 0 + sin 0 +  1 = 0.

10 sec2 0 = 3 tan 0 —1.
11 cosec2 0 = 3 + cot 0.
12 3 tan2 0 + 5 =  7 sec 0.
13 2 cot2 0 + 8 = 7 cosec 0.

14 If sin 0 = | ,  find without using tables or calculators, the values of (a) cos 0,
(b) tan 0.

15 If cos 0 = — -pj, and 0 is obtuse, find without using tables or calculators, the 
values of (a) sin 0, (b) cot 0.

16 If tan 0 = -¿j and 0 is reflex, find without using tables or calculators, the 
values of (a) sec 0, (b) sin 0.
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Prove the following identities:

Ex 16b

17
18
19
20 
21 
22
23

24

25

26
27
28

29

30

31

tan 0 + cot 0 = 1 /(sin 6 cos 6). 
cosec 0 + tan 0 sec 0 = cosec 0 sec2 0. 
sec2 0 — cosec2 0 =  tan2 0 — cot2 0. 
cos4 0 — sin4 0 =  cos2 0 — sin2 0.
(sec 0 + tan 0) (sec 0 — tan 0) = 1.
2 cos2 0 — 1 = 1 — 2 sin2 0 = cos2 0 — sin2 0. 
sec2 0 + cosec2 0 = sec2 0 cosec2 0.

sec4 0 — cosec4 0 =
sin2 0 — cos2 0 
cos4 0 sin4 0

1 1
tan2 0 + 1 cot2 0 + 1

= 1.

(sec2 0 — 1) (cosec2 0 — 1) = 1.
^(sec2 0 — 1) + (cosec2 0 — 1) = sec 0 cosec 0. 
^/(sec2 0 — tan2 0) + J (cosec2 0 — cot2 0) = 2.

1 -  cos2 0
— —— - = 1 -  sin2 0. 
sec 0 — 1

sec 0 — cosec 0 tan 0 + cot 0 
tan 0 — cot 0 sec 0 + cosec 0

cos 0 sin 0
•y/(l + tan2 0) + yj(\ + cot2 0)

Eliminate 0 from the following equations:

32 x = a cos 0, y = b sin 0.
33 x = a cot 0, y = b cosec 0.
34 x = a tan 0, y = b cos 0.
35 x = 1 — sin 0, y = 1 + cos 0.
36 x = a sec 0, y = b + c cos 0.
37 x = a cosec 0, y = b sec 0.
38 x = 1 + tan 0, y = cos 0.
39 x = sin 0 + cos 0, y — sin 0 — cos 0.
40 x = sec 0 + tan 0, y = sec 0 — tan 0.

Exercise 16c (Miscellaneous)
1 Express in terms of the ratios of acute angles:

(a) cos 205°, (b) tan 153°, (c) sec 309°,
(d) sin ( — 215°), (e) cot 406°, (f) cosec 684°.

2 Find the values of the following, leaving surds in your answers:
(a) sin 270°, (b) cos 150°, (c) cot 210°,
(d) cos 315°, (e) cosec 240°, (f) sec 585°,
(g) tan (-225°), (h) sin ( -  690°), (i) cos ( -  300°).
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Solve the following equations for values of 0 from 0° to 360° inclusive:
(a) 2 sin 0= 1 , (b) tan 0 + 1 = 0 ,  (c) cos 0 = 0.8,
(d) tan 20=1, (e) sec 20 = 4, (f*) sin^0 = y,
(g) 3 cos (0 — 10°) = 1, (h) sin (0 + 30°) = 0.7, (i) cot ^0 = 0.9.
Solve the following equations for values of 0 from — 180° to + 180° inclusive:
(a)
(c )

2 sin2 0 + sin 0 = 0,
2 sin2 0 + 1 = 3 sin 0,

(b) 3 cos2 0 = 2 sin 0 cos 0,
(d) 3 cos2 0 =  7 cos 0 + 6,

(e) 4 sin 0 + cosec 0 = 4, (f) 10 cos 0 + 1 = 2 sec 0,
(g) tan 0 + 2 cot 0 = 3, (h) 10 sin 0 cos 0 — 5 sin 0 + 4 cos 0 = 2.
Find the maximum and minimum values of the following functions of 0. Give 
the smallest non-negative values of 0 for which they occur.

(a) 3 + 2 sin 0, (b) 1 — 3 cos 0, (c) 4 sin f  0,

1 ... 1(d) 3 sin2 ¿0, (e) 2 + 3 cos 0 ’ (f) 3 — 2 sin 20

6

7

Express in terms of the trigonometrical ratios of
(a) cot (90° -  0), (b)
(d) tan (90° +  0), (e)
(g) sin (0-180°), (h)
If s = sin 0 and c = cos 0,

sin (90° + 0), (c)
cosec (360° -  0), (f)
tan ( -  0), (i)
simplify:

0 :

cos (270° + 0), 
sec (180°-0), 
cos (450° -  0).

(a)
1 — s2

(b)
sc

Vo - s 2) ’
(c)

s
-  1 ’

(d ) s V ( l  - s 2
V O - ^ 2) ’

(f)
c s
— I—  s c

8 Solve the following equations for values of 0 from 0° to 360° inclusive:
(a) 2 cos2 0 +  sin 0 =  1,
(b) 5 cos 0 = 2(1 + 2 sin2 0),
(c) 2 tan2 0 + sec 0 = 1,
(d) 4 cot2 0 + 39 = 24 cosec 0,
(e) 5 sec 0 — 2 sec2 0 = tan2 0 —1,
(f) sec 0 + 3 = cos 0 + tan 0 (2 + sin 0).
(g) 3 sin2 0 — sin 0 cos 0 — 4 cos2 0 =  0.

9 Find, without using tables or calculators, the values of
(a) sin 0, tan 0, if cos 0 = f  and 0 is acute.
(b) sec 0, sin 0, if tan 0 =  — ^  and 0 is obtuse.
(c) cos 0, cot 0, if sin 0 = yf and 0 is acute.
(d) sin 0, sec 0, if cot 0 = and 0 is reflex.

Prove the following identities:

10 sec 0 + cosec 0 cot 0 =  sec 0 cosec2 0.
11 sin2 0 (1 +  sec2 0) = sec2 0 — cos2 0.

1 — cos 0 1
sin 0 cosec 0 + cot 0
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13
1tan 8 + cot 9 

sec 9 + cosec 6 sin 9 + cos 9

cosec 9
14 sec2 8 =

cosec 9 — sin 9 '

15 ? + Ŝn ^ =  (sec 9 + tan 9)2.
1 — sin 9

16 sec 9 — sin 9 =
tan2 9 + cos2 9

17

sec 9 + sin 9 

1 — sin 9 + cos 9 1 + sin 6 + cos 9
1 — sin 9 cos 8

Eliminate 8 from the following pairs of equations:

18 x = a sec 9, y = b tan 8.
19 x = 1 — cos 8, y =  1 + sin 8.
20 x = a cot 9, y = b sin 9.
21 x = a sec 9, y = b cot 9.
22 x = a tan 0 ,  y = b sin 6 .

23 x = cosec 8 — cot 8, y = cosec 9 + cot 9.
24 x = sin 8 + cos 9, y =  tan 9.
25 x = cos 8, y = cosec 9 — cot 9.
26 Plot the graph of y = sin x + cos x for values of x from — 180° to 180° at

intervals of 30°. Find from your graph the maximum and minimum values of 
sin x + cos x, and the values of x for which they occur.

27 Plot the graph of y = sin x + 2 cos x for values of x from — 180° to 180°
at intervals of 30°. Find from your graph the roots of the equation 
sin x + 2 cos x =  1 which lie between —180° and +180°.

28 Plot the graphs of y = sin 2x and y = cos 3x on the same axes for values of x 
from 0° to 90°. Find from your graph the root of the equation sin 2x = cos 3x 
which lie between 0° and 90°.

29 Solve the simultaneous equations

sin (x +  y) =
1

7 2
cos 2x = — j

for values of x, y from 0° to 360° inclusive.
30 State whether the following functions are odd, even or neither, and state the 

range of each function. Sketch the graph of each function.
(a) y = 1 + sin x, (b) y =  2 + 3 cos x,
(c) y = 5 sin x + 10, (d) y =  1 — cos x.
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Trigonometrical identities
The formulae for sin (A ± B), cos (A ± B)
17.1 Place a rectangular piece of cardboard PQRS in a vertical plane with two 
edges horizontal, and then turn it through an angle B (see Fig. 17.1). Take the 
diagonal PR as the unit of length and let angle RPQ be A.

R

Figure 17.1

What is the height of R above P?
One way to find this out is to drop a perpendicular RU from R to the 

horizontal through P, then from the triangle RPU, RU = sin (A + B).
Alternatively, since RQ = sin A, PQ =  cos A and angle QRU = B, the height 

of R above P can be found in two parts. First, the height of R above Q, 
RT = sin A cos B (from triangle RTQ). Secondly, the height of Q above P, 
QV = cos A sin B (from triangle PQV). Thus, equating the height of R above P

341



342 Pure Mathematics l

obtained in the two ways,

17.1

sin (A + B) =  sin A cos B + cos A sin B

How far to the right of P is R?
In triangle RPU, PU = cos (A + B).
Alternatively, the distance of Q to the right of P, PV = cos A cos B (from 

triangle PQV), and the distance of R to the left of Q, QT = sin A sin B (from 
triangle RTQ). So, equating the distance of R to the right of P obtained in these 
two ways,

cos (A + B) =  cos A cos B — sin A sin B

S

Figure 17.2

Consider now what happens if PQ is tilted through an angle B below the 
horizontal, as in Fig. 17.2. The height of R above P is now sin (A — B). R is a 
distance sin A cos B above Q, but Q is a distance cos A sin B below P, therefore

sin (A — B) = sin A cos B — cos A sin B

Further, R is a distance cos (A — B) to the right of P. Q is a distance cos A cos B 
to the right of P, but R is now a distance sin A sin B to the right of Q, therefore

cos {A — B) = cos A cos B + sin A sin B

The four identities just obtained have many applications apart from their use 
in trigonometry. They, or identities which will be derived from them, are needed 
in calculus, coordinate geometry and mechanics. Some applications are found in 
Chapters 19 and 22.

The outline of a good general proof of the identities (which may be taken on 
second reading) may be found in §17.6. For the present it will be assumed that 
they hold for all values of A and B.

Historical note. The equivalents of the identities for cos (A + B) and 
sin (A — B) were known to Ptolemy of Alexandria, almost 2000 years ago.
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The formulae for tan (A ± B)
17.2 Two more identities will be deduced from the four.just obtained. They 
give tan (A + B) and tan (A — B) in terms of tan A and tan B.

tan (A + B) =
sin (A + B) 
cos (A +  B)

Therefore, using the formulae for sin (A + B) and cos (A + B),

tan {A + B) =
sin A cos B + cos A sin B 
cos A cos B — sin A sin B

Dividing numerator and denominator of the right-hand side by cos A cos B,

sin A cos B cos A sin B
cos A cos B cos A cos B

tan (A + B) = ---------------------:-------------
cos A cos B sin A sin B
cos A cos B cos A cos B

sin A sin B
cos A cos B

4 sin A sinB1--------- x --------
cos A cos B

tan (A + B)
tan A + tan B 

1 — tan A tan B

Similarly,

tan (A — B)
tan A — tan B 

1 + tan A tan B

For convenience, the six identities are 

cos (A + B) = cos A cos B — sin A sin 

cos {A — B) = cos A cos B +  sin A sin 

sin (A + E ) = sin A cos B 4- cos A sin 

sin (A — B) =  sin A cos B — cos A sin 

tan A + tan B
tan (A + B) =

1 — tan A tan B

printed together:

B

B

B

B

tan A — tan B
tan (A -  B) = ---------- --------

1 + tan A tan B

These are usually called the addition formulae; when memorising these, note 
the following:
(a) the formulae for the ratios of (A — B) are the same as those for (A + B), 

except for the changes in signs,
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(b) the signs on the two sides of each of the sine formulae are the same, but in the 
cosine formulae they are different,

(c) in the tangent formulae, the signs in the numerators are the same as in the 
corresponding sine formulae, and those in the denominators are the same as 
in the cosine formulae.

Example 1 Find, without using tables or calculators, the value of

sin (120°+ 45°)

leaving surds in the answer.

Using the formula for sin (A + B),

sin (120° + 45°) = sin 120° cos 45° + cos 120° sin 45°

Reference to Figs. 16.7 and 16.8 on page 329 should remind the reader how to 
obtain the ratios of 30°, 45°, and 60°. Thus we have

sin 120° = sin 60° =  ^2

cos 120° = — cos 60° = —j

Example 2 //sin  A = f  and cos B = j j , where A is obtuse and B is acute, find the 
exact value of sin (A + B).

sin (A + B) = sin A cos B + cos A sin B

So it is necessary to find the values of cos A and sin B, and Figs. 17.3 and 17.4 
indicate the method. In Fig. 17.3, the third side of the right-angled triangle 
is 4 (by Pythagoras’ theorem), hence the x-coordinate of P is — 4, therefore 
cos A = — f. Similarly, in Fig. 17.4, the y-coordinate of P is 8, and therefore 
sin B = fi-

45 32
85 _  85

13
sin (A + B) = —
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Figure 17.3. Figure 17.4.

Example 3 I f  sin (x + a) = cos (x — ft), find tan x in terms of a and ¡1.

Since sin (x + a) =  cos (x — fi), we have

sin x cos a + cos x sin a =  cos x cos (I + sin x sin ¡3

[Now tan x = sin x/cos x, so collect terms in sin x on one side of the equation, 
and terms in cos x on the other.]

Thus

sin x cos a — sin x sin ¡3 = cos x cos ¡3 — cos x sin a 

.'. sin x (cos a — sin ¡3) = cos x (cos ¡3 — sin a)

sin x cos (3 — sin a 
cos x cos a — sin f3

cos ¡3 — sin a
.'. tan x = ---------- ;—-

cos a — sin p

Exercise 17a

The questions in this exercise are intended to give the reader practice in using the 
trigonometrical identities introduced in the preceding section. Do not use a 
calculator or tables in this exercise; to every question it is possible to give an exact 
answer. Leave surds in the answers where appropriate. 1 2 3

1 Find the values of the following:
(a) cos (45° -  30°), (b) sin (30° + 45°), (c) sin (60° + 45°),
(d) cos 105°, (e) cos (120°+ 45°), (f) sin 165°,
(g) sin 15°, (h) cos 75°.

2 If sin A = |  and sin B = fs,  where A and B are acute angles, find the values of
(a) sin (A + B), (b) cos (A + B), (c) cot (A + B).

3 If sin A — f  and cos B = {§, where A is obtuse and B is acute, find the values 
of
(a) sin (A — B), (b) tan (4 — B), (c) tan {A + B).



4 If cos A =  \  and tan B = ^ ,  where A and B are both reflex angles, find the 
values of
(a) sin (A — B), (b) tan (A — B), (c) cos (A +‘B).

5 If tan (x + 45°) = 2, find the value of tan x.
6 If tan (A + B) = j  and tan A = 3, find the value of tan B.
7 If A and B are acute, tan A = \  and tan B = 3 , find the value of A + B.
8 If tan A = — \  and tan B = f , where A is obtuse and B is acute, find the value 

of A -  B.
9 Express as single trigonometrical ratios:

346 Pure Mathematics 1 Ex 17a

(a)
1 V3 ■-  cos x — sin -x,
2 2

V3 + tan x 
’ 1 —7 3  tan x ’

cos 24° cos 15° — sin 24° sin 15°

1 1(b) —r- sin x 4— rx cos x,72 72
(d) cos 16° sin 42° — sin 16° cos 42°

1 /3
(f) -  cos 75° +  sin 15°.

10 Find the values of
(a) cos 15° cos 15° + sin 15° sin 15°,

tan 10° + tan 20°
(C) 1 -  tan 10° tan 20° ’

(b) sin 50° cos 20° — cos 50° sin 20° 

(d) cos 70° cos 20° — sin 70° sin 20°

(e) - |^ c o s  15° ~ ^ / 2 sin 150

(g)
1 — tan 15°
1 + tan 15° ’

/3 l
(f) ~ ~  cos 15° — -  sin 15°,

(h) cos 15° + sin 15°.

11 Find the value of tan A, when tan (A — 45°) = j .
12 Find the value of cot B, when cot A = % and cot (A — B) = 8.
13 From the following equations, find the values of tan x:

(a) sin (x + 45°) = 2 cos (x +  45°);
(b) 2 sin (x — 45°) = cos (x + 45°);
(c) tan (x — A) = f , where tan A =2;
(d) sin (x + 30°) = cos (x + 30°).

14 If sin (x + a) = 2 cos (x — a), prove that

tan x =
2 — tan a 

1 — 2 tan a

15 If sin (x — a) = cos (x + a), prove that tan x = 1.
16 Solve, for values of x between 0° and 360°, the equations:

(a) 2 sin x = cos (x + 60°),
(b) cos (x + 45°) = cos x,
(c) sin (x — 30°) = \  cos x,
(d) 3 sin (x +  10°) =  4 cos (x -  10°).
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Prove the following identities:

17 sin (A + B) + sin (A — B) = 2 sin A cos B.
18 cos (A + B) — cos (A — B) = — 2 sin A sin B.

„ sin (A + B)
19 tan A + tan B = ---------------.

cos A cos B

20 tan (A + B + C) =
tan A +  tan B + tan C — tan A tan B tan C 

1 — tan B tan C — tan C tan A — tan A tan B

Hence prove that if A, B, C are angles of a triangle, then 

tan A + tan B + tan C = tan A tan B tan C

The double angle formulae
17.3 The special cases of the identities on page 343, when A = B, are even more 
useful than the identities themselves. For convenience of reference, they are 
given together, below.

cos 2A = cos2 A — sin2 A

= 2 cos2 A — 1

= 1 —2 sin2 A

sin 2A = 2 sin A cos A

tan 2 A
2 tan A

1 — tan2 A

Further, it is useful to remember that

co s2 A = j ( l  +  co s  2A)  
sin2 A  =  | ( 1  — cos 2A)

To prove the identities concerning cos 2A, we put B = A in the identity 

cos (A + B) = cos A cos B — sin A sin B 

which gives

cos 2A = cos2 A — sin2 A

Now cos2 A + sin2 A = 1, so substituting sin2 A = 1 — cos2 A, we obtain

cos 2A = cos2 A — I t  cos2 A 
.'. cos 2A = 2 cos2 A — 1

If we had substituted cos2 A = 1 — sin2 A in the identity 

cos 2A = cos2 A — sin2 A

we should have obtained

cos 2/1 = 1 — sin2 A — sin2 A 
:. cos 2A =  1 — 2 sin2 A



The expressions for cos2 A and sin2 A are obtained by changing the subjects 
in the formulae

cos 2A = 2 cos2 A — 1 and cos 2A =  1 — 2 sin2 A

The identities for sin 2A and tan 2A are obtained immediately, when the 
substitution B = A is made in the formulae for sin (A + B) and tan {A +  B).
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Example 4 Solve the equation 3 cos 26 + sin 9 = 1, for values of 6 from 0° to 
360° inclusive.

[The quadratic equation is liable to occur in various disguises. Here, sin 6 
suggests that the equation may be a quadratic in sin 6, so we express cos 26 in 
terms of sin 0.]

We have cos 20 = 1 — 2 sin2 0, so, substituting in the equation 

3 cos 20 + sin 0 =  1 

it follows that

3(1 — 2 sin2 0) + sin 0 =  1

This is a quadratic equation for sin 0, and it is solved by factorisation.

3 — 6 sin2 0 +  sin 0 = 1 
.'. 6 sin2 0 — sin 0 — 2 = 0 
.'. (3 sin 0 — 2)(2 sin 0 + 1) = 0 
.'. s in 0 = f  or sin 0 = — j

If sin 0 = | ,

0 = 41.8° or 180° —41.8°, correct to one decimal place.

If sin 0 = — j ,

0= 1 8 0 °+  30° or 360°-30°

Therefore the values of 0 between 0° and 360° which satisfy the equation are 
41.8°, 138.2°, 210°, and 330°.

Example 5 Prove that sin 3A =  3 sin A — 4 sin3 A.

The left-hand side of the identity may be written as sin(A + 2A), so by using 
the formula for sin (A +  B) we have

sin (A + 2A) = sin A cos 2A + cos A sin 2A

But the right-hand side of the identity to be proved is in terms of sin A, and this 
suggests that cos 2A should be expressed in terms of sin A. (We have only one 
formula for sin 2A, so it must be used.) Therefore

sin 3/4 = sin A(\ — 2 sin2 A) +  cos A(2 sin A cos A)
= sin A — 2 sin3 A + 2 sin A cos2 A



Now cos2 A must be expressed in terms of sin A by means of the identity 
cos2 A = 1 — sin2 A, therefore

sin 3A = sin A — 2 sin3 A + 2 sin ,4(1 — sin2 A)
= sin A — 2 sin3 A + 2 sin A — 2 sin3 A 

sin 3A = 3 sin A — 4 sin3 A

A formula for cos 3,4 in terms of cos A may be obtained from the expansion of 
cos (2A + A). The proof is left as an exercise.

cos 3A = 4 cos3 A — 3 cos A
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Exercise 17b (Oral)
Express more simply:

2 tan 30°
1 2 sin 17° cos 17°. 2 --------- =-----, 3 2 cos2 42° — 1.

1 -  tan2 30°

4 2 sin \9  cos jd. 5 1—2 sin2 22^°.

7 cos2 15° — sin2 15°. 8 2 sin 2A cos 2A.

10 1 -  2 sin2 30.
tan 28 

1 -  tan2 28

1 -  tan2 20° 
tan 20°

14 sec 8 cosec 8.

2 tan \ 8  
6 1 — tan2 j 9  '

9 2 cos2 }8 — 1. 

12 sin x cos x.

15 1 — 2 sin2 j9.

Exercise 17c
Nos. 1-6 in this exercise are intended to give the reader practice in using the 
trigonometrical identities introduced in this chapter. Do not use a calculator or 
tables in these questions; in each case it is possible to give an exact answer. Leave 
surds in the answers where appropriate.

1 Evaluate:

(a) 2 sin 15° cos 15°,

(c) 2 cos2 7 5 ° -1 ,

(e) cos2 22j° — sin2 22^°,

1 - 2  cos2 25°
(g) 1 - 2  sin2 65~’

2 Find the values of sin 29 and cos 28 when
(a) sin 0 = | ,  (b) cos 0 = -]-§, (c) s i n 0 = —̂ /3/2.

(b)
2 tan 22j° 

i — tan2 22^° ’

(d) 1 - 2  sin2 67i°, 

1 -  tan2 15°
(f) tan 15°

(h) sec 22^° cosec 22j°.
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3 Find the value of tan 20 when
(a) tan 9 = f , (b) tan 9 =  (c) cos 0 = — ̂ .

4 Find the values of cos x and sin x when cos 2x is
(a) 8> (b) Ts, (c) —759.

5 Find the values of tan j 9  when tan 9 is 
(a) i  (b) f , (c)

6 If t = tan 22^°, use the formula for tan 29 to show that t 2 +  2t — 1 = 0. 
Deduce the value of tan 22\°.

Solve the following equations for values of 9 from 0° to 360° inclusive:

7 cos 29 +  cos 0 + 1= 0.
9 cos 29 = sin 9.

11 sin 29 cos 9 + sin2 0= 1 .
13 2 sin 9 (5 cos 29 + 1) = 3 sin 20. 
15 3 cot 20 + cot 0 =  1.
17 Eliminate 0 from the equations: 

(a) x = cos 0, y = cos 20;
(c) x = tan 0, y =  tan 20;

8 sin 20 = sin 0.
10 3 cos 20 — sin 0 + 2 =  0. 
12 sin 0 =  6 sin 20.
14 3 tan 0 =  tan 20.
16 4 tan 0 tan 20 = 1.

x = 2 sin 0, y = 3 cos 20;
(d) x = 2 sec 0, y = cos 20.
(b)

Prove the following identities: 

cos 2A
18

20

= cos A — sin +.
cos + + sin + 

cos A sin A 2 cos (A + B)
sin B cos B sin 2B

_ „ sin A cos A 2 sin (+ + B)
1 9 -------- 1---------= ------- ----------.

sin B cos B sin 2B

21 tan A +  cot A = 2 cosec 2A.

22 cot A — tan A = 2 cot 2A.

23 ------------;------ 1--------- i—;----- = tan 2A cosec A.
cos A + sin A cos A — sm A

24
sin 2A 

1 + cos 2 A
= tan A =

1 — cos 2A 
sin 2A

25 cos 3.4 = 4 cos3/l —3 cos A.

26 cosec 2x — cot 2x = tan x.

28 tan x =
1 — cos 2x 
1 + cos 2x

30 cos 2x =
1 — tan2 x 
1 + tan2 x

27 cosec 2x +  cot 2x = cot x.

29 sin 2x =
2 tan x 

1 +  tan2 x ’

The ¿-formulae
17.4 In the preceding section the following formulae for sin 2x and cos 2x were 
introduced:

sin 2x =2  sin x cos x 
cos 2x =  cos2 x — sin2 x



It is possible to express both sin 2x and cos 2x in terms of tan x and there are 
many occasions when this is a very useful technique.

In the case of sin 2x we start by deliberately introducing a factor sin x/cos x, 
which is equal to tan x.

sin 2x = 2 sin x cos x
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sin x
2 ----------

COS X
cos2 X

= 2 tan x cos2 x

= 2 tan x x — =— 
sec x

This last step may seem rather peculiar; its purpose is to enable us to replace 
sec2 x by 1 + tan2 x (see §16.6). Hence

sin 2x =
2 tan x 

1 + tan2 x

This identity is most frequently used in the form obtained by substituting 9 for 
2x, i.e.

sin 9 =
2 tan jd  

1 + tan2 ^ 0

.'. sin 0 =
I t

i + t 2
(where t = tan j9)

This is usually called the t-formula for sin 9. The corresponding i-formulae for 
cos 9 and tan 9 are left as exercises for the reader.

Qu. 1 Prove that, in the usual notation, cos 6 =
1 - t 2 
l  + f2‘

Q u .2 Prove that tan 0 =
21

l~ t~2

Qu.3 Use the t-formulae to solve the following equations, giving values of 9 
from 0° to 360° inclusive:
(a) 2 cos 9 + 3 sin 9 — 2 = 0, (b) 7 cos 9 + sin 9 — 5 = 0,
(c) 3 cos 9 — 4 sin 9 + 1 = 0, (d) 3 cos 9 + 4 sin 9 = 2.

In due course the reader will find that the t-formulae can be a useful means of 
tackling certain integrals (see Book 2, §13.3).

The form a cos 0 + b sin 0
17.5 Two applications of the identities of §17.2 follow in the next examples.

Example 6 Solve the equation 3 cos 0 + 4 sin 9 = 2, for values of 9 from 0° to 
360°, inclusive.



The solution is obtained by dividing both sides of the equation by some 
number, so as to leave it in the form

cos a cos 8 + sin a sin 8 = constant

Comparing this with

3 cos 8 + 4 sin 8 = 2

it follows that

cos a sin a 4
—T“ = —r—> i.e. tan a = -  3 4 3

From a calculator or tables we find that a = 53.13°, and from Fig. 17.5 it follows 
that sin a = f  and cos a = f . Therefore we divide the original equation by 5, 
giving

f  cos 8 + f  sin 8 =  |

.'. cos 8 cos a + sin 8 sin a = 0.4

.'. cos (8 — a) =  0.4

.'. 0-53.13° = 66.42° or 293.58°

Therefore the roots of the equation in the range from 0° to 360° are 119.6° and 
346.7°, correct to the nearest tenth of a degree.*
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Figure 17.5

Qu.4 What advantage is there in using the formula for cos (A — B), rather 
than that for sin (A + B) in Example 6?

Example 7 Find the maximum and minimum values of 2 sin 8 — 5 cos 8, and the 
corresponding values of 8 between 0° and 360°.

This will be solved by writing

2 sin 8 — 5 cos 8 = k (cos a sin 8 — sin a cos 8)

♦The figure in the second decimal place should be included in the intermediate working, in order to 
avoid errors due to premature approximation.
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where k and a are to be found. Comparing the two forms of the expression, 

sin a 5
------= - ,  i.e. tan a = 2.5
cos a 2

From a calculator or tables it is found that a =  68.20°; and from Fig. 17.6, it 
follows that cos a = 2/^29, and sin a = 5/^29. So we may write

Now the greatest value of sin x is 1, and this occurs when x = 90°, and the least > 
value of sin x is — 1, when x =  270°. (Values of x less than 0° or greater than 360° 
have been ignored.)

Figure 17.6

Therefore 29 sin (0 — a) has a maximum value of 29 when 0 — a. = 90°; and 
it has a minimum value of — 29 when 0 — a = 270°.

Therefore the maximum and minimum values of

2 sin 0 — 5 cos 0

are J  29 and — y/29, and are given by

0 = 90° + oc = 158.2° and 0 =  270° + a =  338.2° respectively.

Exercise 17d

Solve the following equations for values of 0 from 0° to 360° inclusive.

1 cos 0 + sin 0 = 1. 2 5 sin 0 — 12 cos 0 =  6.
3 sin 0 + cos 0 =  ^. 4 cos 0 — 1 sin 0 = 2.
5 2 sin 0 +  7 cos 0 = 4. 6 3 tan 0 — 2 sec 0 = 4.
7 4 cos 0 sin 0 + 15 cos 20 = 10. 8 cos 0 + sin 0 = sec 0.
9 Prove that cos 0 — sin 0 =  J  2 cos (0 +  45°) = — J 2  sin (0 — 45°).

= v' 29(sin 0 cos a — cos 0 sin a) 

= y/29 sin (0 — a)

5

2
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10 Show that yj 3 cos 6 —sin 6 may be written as

2 cos (0 + 30°) or 2 sin (60° — 0)
i

Find the maximum and minimum values of the expression, and state the 
values of 6 between 0° and 360° for which they occur.

11 Show that 3 cos 6 + 2 sin 6 may be written in the form yj 13 cos (0 — a), 
where tanoc = §. Hence find the maximum and minimum values of the 
function, giving the corresponding values of 6 from — 180° to + 180°.

12 Show that 3 cos 9 + 4 sin 9 may be expressed in the form R cos (9 — a), where 
a is acute. Find the values of R and a.

13 By expressing cos 9 + 2 sin 9 in the form R sin (9 + a), where a is acute, find 
the maximum and minimum values of the expression, giving the values of 9 
between — 180° and 180° for which they occur.

Find the maximum and minimum values of the following expressions, stating
the values of 9, from 0° to 360° inclusive, for which they occur.

14 cos 6 + sin 0. 15 4 sin 9 — 3 cos 9. 16 yj 3 sin 9 + cos 9.
17 8 cos 9 — 15 sin 9. 18 sin 9 — 6 cos 9. 19 cos (9 + 60°) — cos 9.
20 3y/2 cos (0 + 45°) + 7 sin 0.

Proof of the addition formulae, using vectors
17.6 In this section we shall use vectors, and in particular the scalar product of
vectors (see §15.15), to give a more general proof of the formula

cos (A — B) = cos A cos B + sin A sin B

The diagram (Fig. 17.7) shows A and B as acute angles, but the subsequent
working is valid for angles of any magnitude.

Figure 17.7



In the diagram, OP and OQ are unit vectors, i.e. they are vectors whose length 
is one unit. OP is inclined at an angle A to the x-axis, and OQ is inclined at an 
angle B to the x-axis. Consequently the coordinates of the.points P and Q are 
(cos A, sin A) and (cos B, sin B) respectively and the vectors OP and OQ can be 
written

OP = cos A i +sin A j and OQ = cos B i + sin B j

Taking the scalar product of these vectors, we have

OP.OQ = (cos A i + sin A j).(cos B i +sin B j)
= cos A cos B + sin A sin B

But, from the basic definition of the scalar product, we know that

OP.OQ = O P x OQ cos L PO Q = 1 x 1 x cos (A — J3) =  cos (A — B)

Equating these two expressions for OP.OQ, we obtain

cos (A — B) = cos A cos B + sin A sin B (1)

To obtain the corresponding identity for cos (A + B), it is only necessary to 
replace B by — B, giving

cos (A — ( — B)) = cos A cos ( — B) + sin A sin ( — B) 

and hence

cos (A + B) = cos A cos B — sin A sin B

(Alternatively the proof above could be repeated with the angle B drawn in the 
fourth quadrant.)

The formulae for sin (A + B) can be obtained by replacing A in identity (1) by 
90° — A, which gives

cos {(90° — A) — B} = cos (90° — A) cos B + sin (90° — A) sin B 

.'. cos {90° — (A + B)} = cos (90° — A) cos B + sin (90° — A) sin B 

But sin (90° — 9) = cos 6 and cos (90° — 8) = sin 9, so 

sin (A + B) = sin A cos B + cos A sin B

The corresponding identity for sin (A — B) can then be obtained by replacing B 
by — B.

Introduction to the factor formulae
17.7 Factors are very useful, in algebra, for solving equations and simplifying 
expressions, and when dealing with trigonometrical ratios, it is often convenient 
to be able to factorise a sum of two terms. On the other hand, it is sometimes 
useful to express a product as a sum or difference of two terms, and it is to this 
that we turn first.
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In §17.2 it was shown that

17.7

cos (A + B) = cos A cos B — sin A sin B 
cos (A — B) = cos A cos B + sin A sin B

Adding,

cos (A + B) + cos {A — B) =  2 cos A cos B 

and subtracting,

cos (A + B) — cos (A — B) =  — 2 sin >1 sin B

Now, keeping the formulae for cos {A + B) and cos (A — B) in mind, work 
through the next exercise.

9 — 2 sin (x +  45°) sin (x — 45°). 10 2 cos (2x + 30°) cos (2x — 30°).

Following the same method as before, we have

sin (A + B) = sin A cos B + cos A sin B 
sin (A — B) = sin A cos B — cos A sin B

Adding,

sin [A + B) + sin (A — B) = 2 sin A cos B 

and subtracting,

sin (A + B) — sin (A ~  B) = 2 cos A sin B

Again, keeping the formulae for sin (A + B) and sin (A — B) in mind, work 
through the next exercise.

Exercise 17e (Oral)

Express as a sum or difference of two cosines:

1 — 2 sin x sin y. 
3 2 cos 30 cos 0. 
5 2 sin 5x sin 3x.

2 2 cos x cos y.
4 — 2 sin (S + T) sin (S — T). 
6 2 cos (x + y) cos (x — y).

8

Exercise 17f (Oral)

Express as a sum or difference of two sines:

3 2 sin 30 cos 0.
5 2 cos 5x sin 3x.

1 2 sin x cos y. 2 2 cos x sin _y.
4 2 sin (S +  T) cos (S — T). 
6 2 cos (x + y) sin (x — _y).



Trigonometrical identities 357

. A + B A - B
8 2 sin —-—  cos —-— . 2 2

R + Sg  _ £
10 2 sin —-— cos

7 —2 cos 4x sin 2x.

m „ A + B  . A - B9 2 cos------- sin-------- .
2 2

The factor formulae
17.8 We may now proceed to the question of factorising a sum or difference of 
two cosines or sines. The last section has indicated the method, for it was shown 
that

cos (A + B) + cos (A — B) = 2 cos A cos B 
cos (A + B) — cos (A — B)= — 2 sin A sin B 
sin (A + B) + sin (A — B) = 2  sin A cos B 
sin (A + B) — sin (A — B) =2  cos A sin B

Here, the right-hand sides of the identities are in factors, but it would be more 
convenient if the left-hand sides were in the form cos P + cos Q, etc. Therefore let

P = A + B and Q = A — B

Adding,
P + Q

P + Q = 2A ; . A  = — ^ +
2

Subtracting,
P - Q

P - Q  = 2B : . B  = ----- --
2

Substituting into the four identities above,

cos P + cos Q = 2 cos P + Q 
2 cos

P - Q
2

cos P — cos Q = -  . P + Q .— 2 sin —-—  sin P - Q
2

!I

. P + Q  P - Q
sin P + sin Q = 2  sin —-—  cos —-—  

2 2
. „ . ^  P + Q  . P - Q

sin F - s i n g  = 2 cos —-—  sin —-—

Remember how these identities were obtained: this will make it easier to 
remember them. Many people find it helpful to remember them in the form,

‘cos plus cos, equals two cos semi-sum, cos semi-diff.’

Example 8 Solve the equation sin 3x + sin x = 0,for values of x from — 180° to 
+ 180°, inclusive.

sin 3x + sin x = 0
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therefore, using the formula for sin P + sin Q,

2 sin 2x cos x = 0 
.'. sin 2x =  0 or cos x =  0

Now x may lie in the range from — 180° to 180°, therefore 2x lies in the range 
from -  360° to 360°.

If sin 2x =  0,

2x = -360°, -  180°, 0°, 180°, 360° 
x = -  180°, -9 0 ° , 0°, 90°, 180°

If cos x = 0, x = — 90°, 90°.

Therefore the roots of the equation between — 180° and + 180°, inclusive, are 
-  180°, -9 0 ° , 0°, 90° and 180°.

Example 9 Solve the equation cos (x + 20°) — cos (x + 80°) = 0.5, for 
0° iS x s? 360°.

(The difference of the two cosines suggests using one of the above identities.)

cos (x + 20°) — cos (x + 80°) = 0.5 
-  2 sin (x + 50°) sin ( -  30°) = 0.5

But sin ( -  30°) = -  sin 30° = -

.'. sin (x + 50°) = 0.5
x + 50° = 30°, 150°, 390°, 510°, ... 

x =  -  20°, 100°, 340°, ...

Therefore the roots of the equation between 0° and 360° are 100° and 340°.

Example 10 Solve the equation sin (x +  15°) cos (x — 15°) = 0.5, for values of x 
from 0° to 360° inclusive.

(The product of a sine and a cosine suggests that the left-hand side may be 
expressed as the sum of two sines.)

sin (x + 15°) cos (x —15°) = 0.5 
.'. 2 sin (x + 15°) cos (x — 15°) = 1 

.'. sin 2x + sin 30° =  1
.'. sin 2x = 1 — sin 30°

= 0.5
.-. 2x =  30°, 150°, 390°, 510°,...

Hence the values of x required are 15°, 75°, 195°, 255°.

Example 11 Prove the identity

cos2 A — cos2 B = sin (A + B) sin (B — A)

[A neat method is to use cos2 A = j(  1 + cos 2A), cos2 B = j(  1 + cos 2B).]
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cos2 A — cos2 B = ¿(cos 2A — cos 2B)
= -j{ — 2 sin (A + B) sin (A — B)} 

.'. cos2 A — cos2 B = sin (A + B) sin (B — A)

Exercise 17g (Oral)

Express the following in factors:

1 COS X  + 1cos y. 2 sin 3x + sin 5x.
3 sin 2y  — sin 2z. 4 cos 5x + cos lx.
5 cos 2A -- cos A. 6 sin 4x — sin 2x.
7 cos 3 A -- cos 5/4. 8 sin 50 + sin 70.
9 sin (x + 30°) + sin (x -  30°). 10 cos (y + 10°) + cos (y- 80°).

11 sin 30 —sin 50. 12 cos (x + 30°) — cos ( x - 30°).

13
3x

COS y  -
X

-cos — . 
2

14 sin 2(x + 40°) + sin. 2(x -4 0 °

15 cos (90° — x) + cos y. 16 sin A + cos B.
17 sin 3x -+ sin 90°. 18 1 + sin 2x.
19 cos A —sin B. 20 j  + cos 20.

Further identities and equations
17.9 Example 12 Solve the equation cos 6x + cos 4x + cos 2x = 0,for values of 
x from 0° to 180° inclusive.

[Remember that equations are very often solved by factorisation, so look to 
see whether any of the three terms is a factor of the sum of the other pair. Note 
that cos 4x is a factor of cos 6x + cos 2x, so group cos 6x and cos 2x together.]

cos 4x + cos 6x + cos 2x =  0 
.'. cos 4x + 2 cos 4x cos 2x = 0 

.'. cos 4x(l + 2 cos 2x) = 0 
.'. cos 4x = 0 or cos 2x = — \

If cos 4x = 0,

4x = 90°, 270°, 450°, 630° 
x = 22±°, 67^°, 112i°, 157i°

If cos 2x = —

2x = 120°, 240°
.-. x = 60°, 120°

Therefore the roots of the equation in the range 0° to 180° are 22^°, 60°, 67^°, 
U2i°, 120°, 157i°.



Example 13 I f  A, B, C are the angles of a triangle, prove that
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A B C
cos A + cos B + cos C — 1 = 4 sin — sin — sin —

Split the left-hand side into two pairs of terms. Now,

„ „ „ A + B A - B
cos A + cos o =  2 cos —-—  cos —-—

But since A + B = 180° — C,

= 90° -  C-  
2 2

A + B . C
.'. cos--------= sin —

2 2

Seeing this factor sin (C/2) on the right-hand side, write

C
cos C — 1 =  — 2 sin2 —

Therefore
C A - B  , C

cos A + cos B + cos C — 1 = 2 sin — cos —------- 2 sin —2 2 2

. C (  A - B  . C
= 2 sin — cos---------- sin —2 V 2 2

On the right-hand side of the identity to be proved, sin (C/2) is multiplied by a 
function of A and B, so in the last bracket we must express sin (C/2) in terms of 
A and B. This has been done above.

„  , „ . C f  A - B  A + Bcos A + cos B +  cos C — 1 = 2 sin — I cos-----------cos--------2 V 2 2
J  A + B A — B \  . C 

=  — 2 cos — ------ cos —-—  sin —
A  2 . 2 ) 2

= — 2| — 2 sin — sin — j  sin —

A B C
.'. cos A + cos B + cos C — 1 = 4 sin — sin — sin —2 2 2

Exercise 17h

Prove the following identities:

, cos B + cos C B — C
1 — -------------- ;-------- =  C O t --------------.sin B — sin C 2

_ cos B — cos C B —C
2 —---------— -  = -  ta n —-— .

sin B + sin C 2



_ sin B + sin C B + C sin B — sin C B + C B — C
3  --------- — = tan —-— . 4 - — ----- ;—— = cot —-—  tan —-— .

cos B + cos C 2 sin B +  sin C 2 2

5 sin x + sin 2x + sin 3x = sin 2x (2 cos x + 1).
6 cos x + sin 2x — cos 3x = sin 2x (2 sin x + 1).
7 cos 30 + cos 56 +  cos 16 = cos 56 (2 cos 26 + 1).
8 cos 6 + 2 cos 36 + cos 50 =  4 cos2 6 cos 36.
9 1+ 2  cos 26 + cos 46 = 4 cos2 6 cos 26.

10 sin 6 — 2 sin 36 +  sin 56 = 2 sin 6 (cos 46 — cos 26).
11 cos 6 — 2 cos 30 + cos 56 = 2 sin 8 (sin 28 — sin 40).
12 sin x — sin (x + 60°) + sin (x + 120°) =  0.
13 cos x + cos (x + 120°) +  cos (x + 240°) = 0.

Solve the following equations, for values of x from 0° to 360° inclusive:

14 cos x + cos 5x = 0. 15 cos 4x — cos x = 0.
16 sin 3x — sin x = 0. 17 sin 2x + sin 3x = 0.
18 sin (x + 10°) + sin x = 0.
19 cos (2x + 10°) + cos (2x -  10°) = 0.
20 cos (x + 20°) — cos (x — 70°) =  0.

Exercise 17i (Miscellaneous)
Do not use a calculator or tables in Nos. 1-6.

1 If sin A = sin B = pj, where A and B are acute, find the values of
(a) cos (A + B), (b) sin (A — B), (c) tan (A + B).

2 If cos A = , sin B = §§, where A is reflex and B is obtuse, find the values of
(a) sin (+ + B), (b) cos {A — B), (c) cot (+ — B).

3 Find the values of

(a) cos 80° cos 20° + sin 80° sin 20°,

tan 15° + tan 30°
(b) 1 - t a n  15° tan 30°’

(c) sin 40° cos 50° + sin 50° cos 40°.

4 Find the values of sin x and cos x when cos 2x is (a) 5 , (b) f f .
5 Find the value of tan 0 when tan 20 is (a) — §y, (b) ifc.
6 If sin 6 = | f ,  where 0 is acute, find the values of (a) sin 20, (b) cos 20.

Solve the following equations, giving values of 0 from 0° to 360° inclusive:

7 cos 20 + 5 cos 0 = 2. 8 2 sin 20 = 3 sin 0.
9 tan 20 +  tan 0 = 0. 10 4 cos 0 — 3 sin 0 = 1.

113  cos 0 + 2 sin 0 = 2.5.

Eliminate 0 from the following equations:

12 x = 2 cos 28, y  = 3 cos 0. 13 x = 2 tan 0, y  = tan 20.
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In Nos. 14 and 15, using ( =  tan j0, express in terms of t:
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14 3 cos 0 + 4 sin 0 + 5. 15
1 + sin 0 \  
1 — sin 9 )

Find the maximum and minimum values of the following, giving the values of 9 
between 0° and 360° for which they occur:

16 5 cos 0 —12 sin 9.
17 12 cos 0 +  35 sin 0.
18 48 cos 0 — 55 sin 0.

, „ 3 tan + — tan3 +
19 Prove that tan 3A = —-—  -----=------ .

1 -  3 tan2 +

„  T.„  , , 1 — 2 tan + — tan2 +
20 If 2A + B = 45 , show that tan B = --------------------- =— .

1 + 2  tan + — tan2 +

Solve the following equations for values of 0 from 0° to 180° inclusive:

21 cos 0 + cos 30 + cos 50 = 0. 22 sin 20 + sin 40 + sin 60 = 0.
23 sin 0 — 2 sin 20 + sin 30 = 0. 24 cos ^0'+ 2 cos f  0 + cos f  0 = 0.
25 sin 0 + cos 20 — sin 30 = 0.

Prove the following identities. +, B, C are to be taken as the angles of a triangle.

26 sin + + sin {B — C) =  2 sin B cos C.
27 cos + — cos (B — C)=  — 2 cos B cos C.

A B C
28 sin + + sin B + sin C = 4 cos — cos — cos —.

2 2 2

29 sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.
30 tan + + tan B + tan C = tan + tan B tan C.



Chapter 18

Further topics in trigonometry
Introduction
18.1 One of Euler’s many contributions to mathematics is the invention of a 
standard notation for labelling triangles. In this notation the vertices are always 
labelled with capital letters, say A, B and C, and the same symbols are used to 
represent the sizes of the angles at these vertices. The corresponding lower case 
letters, a, b, c, are then used to represent the lengths of the sides opposite the 
vertices, i.e. the letter a is used to represent the length of the side BC (see 
Fig. 18.1).

Figure 18.1

The traditional unit of measurement for angles is the degree (but it is not the 
only one, see §18.5); the degree has been used for over 2000 years. The traditional 
sub-unit is the minute, which is 1 /60th of a degree, and the standard symbol for it 
is a small dash. So 35° 12' is equal to 35g§°; in decimals this becomes 35.2°. For 
more awkward numbers a calculator can be used to convert the number of 
minutes into a decimal fraction of a degree.

In the next two sections Euler’s notation will be used to introduce two 
important rules, the sine rule and the cosine rule. These rules are used to ‘solve’ 
triangles; that is, given sufficient data to define a unique triangle, the sine and 
cosine rules can be used to calculate the sizes of the remaining sides and angles.

The sine rule
18.2 In the triangle in Fig. 18.2, CP is perpendicular to AB.
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c

Figure 18.2

By elementary trigonometry the length of the altitude CP is equal to b sin A 
(from triangle APC) and it is also equal to a sin B (from triangle BPC). Equating 
these expressions, we have

a sin B = b sin A 

and hence
a b

sin 4  sinB

Applying the same argument to the line from A, perpendicular to BC, we could 
obtain

b c
sin B sin C

Putting these expressions together, we have, 

a b c
sin A sin B sin C

This expression, which, by virtue of its symmetrical appearance, is easy to 
remember, is called the sine rule.

C

Figure 18.3



However, in drawing Fig. 18.1, we have assumed that all the angles are acute; 
if one of them is obtuse, the proof must be modified. Suppose that B is the obtuse 
angle as shown in Fig. 18.3.

In this diagram, CP is the perpendicular line from C to AB produced. 
By elementary trigonometry CP = a sin Z.CBP = a sin (180° — B). However 
sin (180° — B) is equal to sin B and so we can write

CP = a sin B = b sin A

and proceed with the proof as before.

Example 1 In triangle PQR, r = 5.75 and the sizes of angles P and Q are 42° and 
65° respectively. Calculate the length of PR.

With these letters (see Fig. 18.4), the sine rule becomes

P _  q =  r 
sin P sin Q sin R
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R

Figure 18.4

Notice that when two angles are given, the remaining angle can be calculated 
from the fact that the sum of the three angles of a triangle is 180°, so R = 73°. 
Substituting the data, and this value of R, we obtain

p q 5.75
sin 42° sin 65° sin 73°

In this example, the length of PR, i.e. q, is required. Making q the subject of the 
formula above, we obtain

5.75
q = x  sin 65°

sin 73°

= 5.45, correct to three significant figures

Example 2 In triangle ABC, a = 4.73, c = 3.58 and C =  42° 12'. Calculate the 
size of angle A.
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Firstly, we note that 42° 12' = 42^§° = 42.2°, and secondly, from Fig. 18.5, we 
can see that two triangles can be drawn with these data. (It is very important 
that a sketch should be drawn, so that this sort of difficulty can be anticipated.)

B

By the sine rule,

473 b 158 
sin A sin B sin 42.2

In this case, the middle term is superfluous; the other two terms give

sin A sin 42.2°
4.73 = 3.58

sin A =
sin 42.2°

3.58 

( = 0.8875)* 

A = 62.560°

= 62.6° or

x 4.73

or 117.440°

117.4°, correct to the nearest tenth of a degree

There are two points to note here.

(1) The step marked with the asterisk indicates the figures which appear on a 
calculator at this stage; it is not necessary to write them down. (Indeed, to 
write them down, correct to four significant figures, and then to use the 
corrected figures to find A is poor calculator technique.)

(2) The alternative value of A, namely, A = 117.4°, follows from the fact that
sin 6 = sin (180° — 0), i.e. in this case, sin 62.6° = sin 117.4°. If we inspect 
the diagram, we can see that both answers are perfectly reasonable, 
because the triangle is isosceles.

A case like this one, where there are two possible answers, is called the 
ambiguous case.

The sine rule can be used when two angles are given (as in Example 1) or when 
one of the given sides is opposite the given angle (as in Example 2), but, as the



reader should be able to see with a little experimentation, it is useless when the 
lengths of the three sides are given, or when two sides and the included angle (i.e. 
the angle between them) are given. In these circumstances we must turn to the 
cosine rule. [Some readers may prefer to work Exercise 18a, Nos. 1-3, first.]
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The cosine rule
18.3 There are several possible proofs of the cosine rule; this one uses the idea 
of the scalar product (see §15.15).

Figure 18.6

In the triangle OPQ (Fig. 18.6), the angle POQ is equal to 6 and QP = p — q. 
Consider the scalar product QP.QP:

QP.QP = (p -  q).(p -  q)
= p p  + q q  -  2p.q
= p2 + q2 — 2pq cos 0 

But QP.QP is equal to Q P2,

.'. QP2 = p2 + q2 — 2pq cos 0

So, if we are given the values of p and q, and the size of the included angle 9, we 
can calculate the length of QP.

The formula looks neater, and it is easier to remember, if Euler’s notation is 
used. If the triangle is re-lettered ABC, as in Fig. 18.7, the cosine rule becomes

a2 = b2 + c2 — 2be cos A

The letters a, b and c can be permuted to give the following alternative forms:

b2 = c2 +  a2 — 2ca cos B 
c2 = a2 + b2 — 2ab cos C
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Figure 18.7

Example 3 In triangle PQR, p = 14.3, r — 17.5 and Q = 25° 36'. Calculate the 
length o f side PR.

In this question we are given the lengths of two sides and the size of the 
included angle, so the cosine rule is appropriate. With these letters it takes the 
form

q2 — r2 + p2 — 2rp cos Q 

Substituting the data gives

q2 = 17.52 + 14.32 -  2 x 17.5 x 14.3 cos 25.6°

Hence

q = 7.71, correct to three significant figures

(On most calculators it should be possible to do the whole calculation without 
having to write down any of the intermediate working. If this is possible, it 
should be done, because mistakes are easily made when figures are transferred 
from the calculator to paper and vice versa. In case of difficulty, consult the 
calculator’s instruction booklet.)

Example 4 In triangle XYZ, XY = 3.5, YZ = 4.5 and ZX = 6.5. Calculate the 
size of angle Y.

In this case the lengths of the three sides are given. The cosine rule can be 
used, but first it must be rearranged to make cos Y the subject.

y2 = z2 + x2 — 2zx cos Y

2zx  cos Y = z2 + x 2 — y2

and hence

z2 + x 2- y 2
cos Y = ----- ----------

2 zx

Substituting the data,



, 3.52 + 4.52 -  6.52
cos y = ----------------------

2 x 3.5 x 4.5

.'. 7 = 108.0°, correct to the nearest tenth of a degree

Once again, if you are using a calculator, the entire calculation should be done 
without writing down the intermediate steps. Be careful to press the ‘equals’ key 
when you have completed the top line (the calculator should display —9.75 at 
this stage), and, on most calculators, it is essential to enclose the bottom line in 
brackets, i.e. (2 x 3.5 x 4.5).

The area of a triangle
18.4 It is assumed that the reader is familiar with the elementary formula for 
A, the area of a triangle, namely,

A =\bh

where b is the length of the base and h is the height of the triangle.
If we are given the lengths b and c and the size of the included angle A (see 

Fig. 18.8), then the height, h, can be expressed as

h = c sin A

and the formula for the area can be written 

A = \bc  sin A

(The reader should note that this formula can be used for both acute and obtuse 
angles.)
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B

Figure 18.8

Example 5 In triangle PQR, QR = 3.5, RP = 4 and PQ = 5. Calculate the size 
of angle P and hence find the area of the triangle.

Rearranging the cosine rule (see Example 4),

2qr



and substituting the data, i.e. p = 3.5, q = 4 and r = 5, we have
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cos P =
16 + 25-12.25 

2 x 4 x 5

28.75
40

.'. P = 44.0°, correct to the nearest tenth of a degree

The area of the triangle is given by

A = \q r  sin P
= 5 x 4 x 5 x sin P
= 6.95, correct to three significant figures

Note. When no units have been explicitly stated, as in the example above, it is 
assumed that the same units have been used consistently throughout the 
question, e.g. if the lengths QR, RP and PQ are all given in cm, then the area of 
PQR is measured in cm2.

Historical note. The problem of calculating the area of a triangle when the 
lengths of the three sides are given is a very ancient one. The area can be 
calculated from the formula

^  =  V W s - a Hs _ k)(s _ c )}

where s = j(a + b + c). This formula is usually known as Heron’s formula, after 
Heron of Alexandria, who lived over two thousand years ago. However the 
formula was known even before Heron’s time. (See Exercise 18f, No. 19.)

Qu.l Calculate the area of the triangle in Example 3.
Qu.2 Use Heron’s formula (see Historical note above) to calculate the area of 
the triangle in Example 5.
Qu. 3 Calculate the areas of the triangles
(a) A = 60°, 6 = 3, c = 5;
(b) C =  110°, a=  14, 6=11;
(c) B = 90°, II 0° p\ 6 =  11.4;
(d) a = 8, 6= 11 , c = 13;
(e) a =12.3, 6 =  14.1, c = 13.6;
(f) a =17.6, 6 =  16.9, c = 16.1;
(g) a = 209, 6 = 313, c = 390.

Exercise 18a

Solve the following triangles:

1 (Sine formula, acute angled)
(a) a = 12, B = 59°, C = 73°;
(b) + = 75.6°, 6 = 5.6, C = 48.3°;
(c) + = 73.2°, B = 61.7°, c = 171.
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2

3

4

5

6

7

8

9

10

11

12

(Sine formula, obtuse angled)
(a) A = 36°, b = 2.37, C =  49°;
(b) 4  = 123.2°, a = 11.5, C =  37.1°;
(c) a =136, B=  104.2°, C = 43.1°.
(Sine formula, ambiguous case)
(a) b = 17.6, C = 48° 15', c = 15.3;
(b) B = 129°, b = 7.89, c =  4.56;
(c) 4 =28° 15', a = 8.5, 6=14.8.
(Cosine formula, acute angled)
(a) a = 5, 6 = 8, c =  7;
(b) a = 10, 6 =  12, c = 9;
(c) a =17, 6 = 13, c = 18.
(Cosine formula, acute angled)
(a) A = 60°, 6 =  8, c =  15;
(b) a =14, B = 53°, c =  12;
(c) a = 11, 6 = 9, C = 43.2°
(Cosine formula, obtuse angled)
(a) a = 8, 6 =  10, c =  15;
(b) a=  11, 6 =  31, c =  24;
(c) a = 27, 6 =  35, c =  46.
(Cosine formula, obtuse angled)
(a) a = 17, B =  120°, c =  63;
(b) A =  104° 15', 6= 10 , c = 12;
(c) a =31, 6 = 42, C = 104° 10'.
Two points A and B on a straight coastline are 1 km apart, B being due East 
of A. If a ship is observed on bearings 167° and 205° from A and B 
respectively, what is its distance from the coastline?
A boat is sailing directly towards a cliff. The angle of elevation of a point on 
the top of the cliff and straight ahead of the boat increases from 10° to 15° as 
the ship sails a distance of 50 m. What is the height of the cliff?
A triangle is taken with sides 10, 11, 15 cm. By how much does its largest 
angle differ from a right angle?
A ship rounds a headland by sailing first 4 nautical miles on a course of 069° 
then 5 nautical miles on a course of 295°. Calculate the distance and bearing 
of its new position from its original position.
A man travelling along a straight level road in the direction 053° observes a 
pylon on a bearing of 037°. 800 m further along the road the bearing of the 
pylon is 296°. Calculate the distance of the pylon from the road.

Radians
18.5 The fact that there are 90 degrees in a right angle has been familiar to the 
reader since he or she began geometry; but it may not have been realised that the 
number is an arbitrary one which has come down to us from the Babylonian 
civilisation. Indeed, an attempt to introduce 100 degrees to the right angle was 
made after the French Revolution, but it was later dropped, and in 1938 a



similar attempt was made by the Germans. The following example also 
illustrates the arbitrary nature of the number of degrees in a right angle.

Example 6 An arc AB of a circle, centre O, subtends an angle of x° at O. Find 
expressions in terms of x and the radius, r,for (a) the length of the arc AB, (b) the 
area of the sector OAB (see Fig. 18.9).
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(a) The length of an arc of a given circle is proportional to the angle it 
subtends at the centre. But an angle of 360° is subtended by an arc of length 2nr, 
therefore an angle of x° is subtended by an arc of length

Therefore the length of arc AB is (7i/180)xr.

(b) The area of a sector of a given circle is proportional to the angle at the 
centre. But a sector containing an angle of 360° is the whole circle, which has an 
area of nr2, therefore a sector containing an angle of x° has an area of

360
x nr 2

Therefore the area of the sector OAB is \(n!\%Q)xr2.

Thus, in both the length of an arc and the area of a sector, there appears a 
factor of 7i/180, which is due to the unit of measurement of the angle OAB. This 
suggests a new unit for measuring angles, which is called a radian, such that an

n
angle in radians = —— (angle in degrees)

180

If we let 6 radians equal x degrees, then, referring to Fig. 18.9, 

the length of arc AB = rO 

and

(1)

the area of sector OAB = j r 20



If, then, we construct an angle of 1 radian, the arc AB will be of length r, and 
so an arc of a circle equal to the radius subtends at the centre an angle of 1 radian. 
Radians are sometimes termed circular measure, and are ¿denoted by rad. It 
follows from the relation (1) above, by putting the angle in degrees equal to 180, 
that
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ji rad = 180°

Hence 1 radian = 57.296 degrees and 1 degree = 0.017 453 radians, both correct 
to five significant figures.

The use of radians extends far beyond finding lengths of arcs and areas of 
sectors. In later sections it is shown how they have applications in mechanics 
and calculus.

Exercise 18b (Oral)
1 Convert to degrees:

71 71 K 2k
x  rad, 2 (b) — rad, 

4 ( c ) j  rad, (d) —  rad,

\  rad, 6 (f) ^  rad, 
2 (g) 5f  rad,2

(h) 4ti rad,

4tt In 3n
5ti rad, (j) —  rad, 

3 00 -- rad, 
2

(1) —  rad.

2 Convert to radians, leaving n in your answer:
(a) 360°, (b) 90°, (c) 45°, (d) 15°,
(e) 60°, (f) 120°, (g) 300°, (h) 270°,
(i) 540°, (j) 30°, (k) 150°, (1) 450°.

3 What is the length of an arc which subtends an angle of 0.8 rad at the centre 
of a circle of radius 10 cm?

4 An arc of a circle subtends an angle of 1.2 rad at any point on the remaining 
part of the circumference. Find the length of the arc, if the radius of the circle 
is 4 cm.

5 An arc of a circle subtends an angle of 0.5 rad at the centre. Find the radius of 
the circle, if the length of the arc is 3 cm.

6 Find, in radians, the angle subtended at the centre of a circle of radius 2.5 cm 
by an arc 2 cm long.

7 What is the area of a sector containing an angle of 1.5 rad, in a circle of 
radius 2 cm?

8 The radius of a circle is 3 cm. What is the angle contained by a sector of area 
18 cm2 3 4 5 6 7 8 9 10?

9 An arc subtends an angle of 1 rad at the centre of a circle, and a sector of area 
72 cm2 is bounded by this arc and two radii. What is the radius of the circle?

10 The arc of a sector in a circle, radius 2 cm, is 4 cm long. What is the area of 
the sector?
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Exercise 18c
Ex 18c

1 Express in radians, leaving n in your answers:
(a) 22j°, (b) 1080°, (c) 12', (d) 37° 30'. '

2 Express in degrees:

(a) y  rad, (b) ~  rad, (c) y  rad, (d) y  rad.

3 Find the length of an arc of a circle, which subtends an angle of 31° at the 
centre, if the radius of the circle is 5 cm.

4 The chord AB of a circle subtends an angle of 60° at the centre. What is the 
ratio of chord AB to arc AB?

5 An arc of a circle, radius 2.5 cm, is 3 cm long. What is the angle subtended by 
the arc at the centre
(a) in radians, (b) in degrees?

6 A segment is cut off a circle of radius 5 cm by a chord AB, 6 cm long. What is 
the length of the minor arc AB?

7 What is the area of a sector containing an angle of 1.4 rad in a circle whose 
radius is 2.4 cm?

8 A chord AB subtends an angle of 120° at O, the centre of a circle with radius 
12 cm. Find the area of
(a) sector AOB, (b) triangle AOB, (c) the minor segment AB.

9 An arc AB of a circle with radius 6 cm subtends an angle of 40° at the centre. 
Find the area bounded by the diameter BC, CA and the arc AB.

10 Two equal circles of radius 5 cm are situated with their centres 6 cm apart. 
Calculate what area lies within both circles.

11 A chord PQ of a circle with radius r, subtends an angle 9 at the centre. Show 
that the area of the minor segment PQ is j r 2(9 — sin 9), and write down the 
area of the major segment PQ in terms of r  and 9.

12 A circle of radius r  is drawn with its centre on the circumference of
another circle of radius r. Show that the area common to both circles is 
2r2(7i/3 — 3/4).

Angular velocity
18.6 A man who buys an electric motor is usually interested in the rate at 
which it goes, and he may be told that it does 12 000 revolutions per minute 
(rev/min). On the other hand the drum of a barograph turns at the rate of 49 
degrees per day. In either case the rate of turning, which is called average 
angular velocity, is given by

, , . angle turned
average angular velocity = —:------- ------

time taken

Qu.4 Find the average angular velocity of the second hand of a watch 
(a) in degrees per second (deg/s), (b) in rev/min.
Qu.5 Convert
(a) 500 rev/min into deg/s, (b) 1 rev/week into deg/h.



In many cases of turning, however, the angular velocity is not constant, so 
consider the average angular velocity in a small interval of time dt. If the angle 
turned through in this time is SO radians,
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average angular velocity =
SO
T t rad/s

But as St->0,

SO d 0 
St dt

.'. average angular velocity-» —
dt

d 0 .
—  is called angular velocity and is denoted by co (the Greek letter omega), 
dt
Therefore

AO
(o = —  

At

distance
[In motion in a straight line average velocity = ---------- and if a distance Ss is

time
„ , . . , . Ss n Ss ds

travelled in a time St, average velocity = —. But - — ►— as ¿i->0 and so the
St St dt

ds
velocity at an instant is given by v = —. In this way there is a parallel between

dt
linear motion and angular motion.]

If a particle moves in a circle of radius r with speed v and angular velocity co 
about the centre, the relation between r, v, co can be obtained from one of the 
results obtained in §18.5. If s is the distance of the particle measured along the 
circumference of the circle from a fixed point,

s = rO

Differentiating with respect to time (remember r is constant),

d s _  dO 
df dt

. . v = rco

Remember that co must be measured in radians/unit time. Three sets of 
possible units for v, r, co are shown in the table below:

V r O )

m/s m rad/s
km/h km rad/h
cm/min cm rad/min
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Example 7 A belt runs round a pulley attached to the shaft of a motor. I f  the belt 
runs at 0.75 m/s and the radius o f the pulley is 6 cm, find the angular velocity of the 
pulley (a) in rad/s, (b) in rev/min. ,

(a) Using the result v = rco,

75
at =  —  =  12.5 rad/s 

6

12.5
(b) 12.5 rad/s = —— rev/s

2n

12-5 _= —— x 60 rev/min 
2k 1

x  120 rev/min

(The sign x  means ‘is approximately equal to’.) Therefore the angular velocity is 
12.5 rad/s or approximately 120 rev/min.

Exercise 18d

Use the result v = ra> where you can.

1 Express the angular velocity of the minute hand of a clock in
(a) rev/min, (b) deg/s, (c) rad/s.

2 A wheel is turning at 200 rev/min. Express this angular velocity in 
(a) deg/s, (b) rad/s.

3 A cook can rotate the handle of her egg whisk 32 times in 5 seconds. Each 
time the handle rotates, the paddles rotate four times. At what speed are the 
paddles rotating in
(a) rev/min, (b) rad/s?

4 The Earth rotates on its axis approximately 365^ times in a year. Calculate 
its angular velocity in rad/h, correct to three significant figures.

5 The cutters of a well-known electric shaver rotate about 3000 times a minute, 
and the distance from the axis to the tip of the cutter is 0.65 cm. Find
(a) the angular velocity of the cutter in rad/s,
(b) the speed of the tip of a cutter in cm/s.

6 When I dial 0 on the telephone, the dial rotates through 334° in l^ s  
approximately. What is the average angular speed of the dial in rad/s, and 
what is the speed of a point on the circumference of the dial if its diameter is 
8 cm?

7 A motor runs at 1200 rev/min. What is its angular velocity in rad/s? If the 
shaft of the motor is 2.5 cm in diameter, at what speed is a point on the 
circumference of the shaft moving?

8 A point on the rim of a wheel of diameter 2.5 m is moving at a speed of 
44 m/s relative to the axis. At what rate in (a) rad/s, (b) rev/min, is the wheel 
turning?



9 If a cotton reel drops 1.76 m in 0.7 s, the end of the cotton being held still, at 
what average angular velocity, in rev/min, is the reel turning, if its diameter is 
3 cm?

10 A belt runs round two pulleys of diameters 26.25 cm and 15 cm. If the larger 
rotates 700 times in a minute, find the angular velocity of the smaller in rad/s.

11 The Earth moves round the sun approximately in a circle of radius 
150 000 000 km. Find its angular speed in rad/s, and obtain its speed along 
its orbit in km/s.

12 Taking the Earth to be a sphere of radius 6300 km which rotates about its 
axis once in 23.93 hours what error will be made in calculating the velocity of 
a point on the equator, if it is assumed that the Earth rotates once in 24 
hours? Express your answer in km/h, correct to two significant figures.

Inverse trigonometrical functions
18.7 Can you find an angle x°, such that sin x° = 0.5? This sort of problem 
arises frequently in mathematics; indeed we have already met it earlier in this 
chapter. An answer can be easily obtained from tables or from a calculator. In 
this particular case, the angle x° is an angle in one of the ‘standard’ triangles 
described in §16.3, i.e. 30°. But this is not the complete solution; we can see from 
the graph of y =  sin x (Fig. 18.10), that 150° is also a possibility and, since sin x
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y+
y  =  sin x

Figure 18.10

has a period of 360° (it repeats itself every 360°), we can add any multiple of 360° 
to these two angles. Hence there are infinitely many values of x which satisfy the 
equation sin x =  0.5; they can be expressed in the form

x = 30° + n360° or x = 150° + n360°

where n is any integer, positive or negative. If we were working in radians, this 
general solution would take the form

% 5n
X  — — + 2mt or x =  —  +  2mt 

6 6

Qu.6 Write down the general solution, in degrees, of the equation 
cos x° = —0.5.
Qu.7 Write down, in radians, the general solution of the equation tan x =  1.

* 
▼
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In advanced trigonometry, it is useful to have a standard abbreviation for the 
phrase ‘the angle whose sine is x’, etc. The usual abbreviation for this is arcsin x; 
and arccos x, arctan x are used for the inverses of the cos find tan functions. This 
is the standard notation on all microcomputers and it is also found on many 
pocket calculators, but the notation sin-1 x, cos-1 x and tan -1 x, is also used.

However, the fact that there are infinitely many angles whose sine is x, causes 
some problems. For instance, if you were designing a pocket calculator, which of 
the infinitely many possible answers would you choose to show on the display? 
(Try finding arcsin, arccos and arctan of +0.2, ±0.4, ±0.8, etc., on your pocket 
calculator. Can you discover the principle which the manufacturer of your 
calculator is using to select the angle shown on the display?)

Another serious problem is that if we are intending to describe arcsin x, 
arccos x and arctan x, as functions, then we must ensure that the function has 
exactly one value, for any given value of x (see §2.8). Consequently we must 
define these functions rather more carefully than we have done so far.

Definitions
(a) arcsin x  is the angle (in radians) between —jn  and + j k , inclusive, whose sine 
is x.
(b) arccos x is the angle (in radians) between 0 and n, inclusive, whose cosine is x.
(c) arctan x  is the angle (in radians) between — jn  and + jit, whose tangent is x. 
(The angles within these ranges are often called the principal values.)

If desired, these definitions may be expressed in degrees, but for advanced 
work in trigonometry, radians are more common than degrees.
Qu. 8 Why is the range — to + unsuitable for arccos x?

Notice that, since there is no angle whose sine is greater than 1, an expression 
such as arcsin 2 is meaningless. The function arcsin x only makes sense if x is 
numerically smaller than (or equal to) 1; in other words, the domain of the 
function arcsin x is {x: — 1 ^ x <  +1}. The function arccos x has the same 
domain, but in the function arctan x, the variable x can take any (real) value, i.e. 
the domain of arctan x is IR (see Fig. 18.11).

Like all inverse functions, the graphs of arcsin x, arccos x and arctan x are the 
reflections of the graphs of the corresponding functions in the line y = x.

In diagrams (i) and (ii), the solid parts of the graphs represent the principal 
values of arcsin x and arccos x respectively; the broken parts of the graphs 
represent the other values.

Exercise 18e
All the questions in this exercise use the angles in the ‘standard’ triangles (see 
§16.3). Do not use a calculator.

Write down the general solutions of the following equations (in degrees):

1 sin x° = 1/^/2. 2 cosx° = l. 3 tanx° = v/3.
4 sin x° = — 1. 5 cos x° =  — 1/2. 6 tan x° = — 1/^/3.
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Figure 18.11

Write down, in radians, the general solutions of the following equations:

7 cos x = j.  8 tan x = — 1.
9 s in 2 x = ^ . 10cos2 x = f.

Write down, in radians, the values of

11 arcsin (^/ 3/2). 12 arccos (1/^/2). 13 arctan 1.
14 arcsin ( — ■£). 15 arccos ( — ^ 3/2). 16 arctan ( —1).
17 arcsin ( —1). 18 arccos ( — 1). 19 arctan 0.
20 arccos 0.

>4 
▼



380 Pure Mathematics 1 Ex 18f

Exercise 18f (Miscellaneous)
1 Solve the following triangles:

(a) A = 60°, h — 8, c =  15;
(b) a =14, B =  53°, c=12;
(c) a =11, b =  9, C =  43.2°.

2 Solve the triangles:
(a) a =17, B =  120°, c = 63;
(b) A = 104° 15', b =  10, c = 12;
(c) a =  31, b =  42, C=104°.

3 Solve the triangles:
(a) c =  11.6, A =  54.2°, 5  = 26.4°;
(b) a =  4.96, b = 6.01, A = 31.2°;
(c) A =  20°, a =15, c = 10.

4 Calculate the areas of the following triangles:
(a) x = 5, y = 8, Z  = 35°;
(b) x = 4, y = s, z = 6;
(c) x = 25, y = 35, z = 9.

5 Convert to degrees:

2n 5tc 3k
(a)y, <b)T , My.

/
( d ) ï r

6 Convert to radians, leaving rc in your answers:
(a) 330°, (b) 50°, (c) 75°, (d) 24°.

7 The area of a sector of a circle, diameter 7 cm, is 18.375 cm2. What is the 
length of the arc of the sector?

8 A radar scanner rotates at a speed of 30 rev/min. Express this angular 
velocity in rad/s.

9 What is the angular velocity of the hour hand of a clock in 
(a) rev/min, (b) rad/s?

10 Two cog-wheels have radii 10 cm and 15 cm. If the larger wheel is turning 
with an angular velocity of 50 rad/s, what is the angular velocity of the 
smaller one when the teeth of the cog-wheels are engaged?

11 A circular coin is placed on a flat horizontal surface and held stationary 
while an identical coin, also placed on the horizontal surface, rolls around its 
perimeter, without slipping. Through how many radians does the second 
coin turn?

12 Investigate the effect on the cosine rule if, in the usual notation, a, b and c are 
given, and c>  a + b.

13 Investigate the effect on the sine rule if, in the usual notation, a, b and A, are 
given, and
(a) a < b sin A, (b) b sin A < a < b, (c) b < a.

14 The lengths of the sides of a triangle are 10, x and (x — 2). The side of length 
(x — 2) is opposite an angle of 60°. Find the value of x.

15 In the triangle XYZ, x = 29, y = 21 and z =  20. Calculate:
(a) the area of the triangle,
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(b) the length of the perpendicular from Z to XY.
16 The points A and B lie on a circle, radius 1 cm, centre O, the origin. The radii 

OA and OB are inclined at angles a and P, respectively, t*> the x-axis. Write 
down the coordinates of A and B in terms of a and p. By applying the cosine 
rule to triangle OAB prove that

cos (a — P) = cos a cos P + sin a sin P
A

17 In the cosine rule, substitute cos A = 2 cos2 — — 1, and hence prove that

19 Use the results of Nos. 18 and 19 to prove Heron’s formula for the area of a

where s =  j(a + b + c).
A

18 In the cosine rule, substitute cos A — 1—2 sin2 —, and hence prove that

triangle,

A = V(s(s - a ) ( s - f r ) ( s - c ) }

20 Prove Heron’s formula by eliminating A from the formulae

a2 = b2 +  c2 — 2be cos A and A = jbe  sin A

[Hint: use cos2 A + sin2 A = 1.]



Chapter 19

Derivatives of trigonometrical 
functions
Small angles

19.1 A glance at Fig. 19.1 will show the reader that, for small acute angles, 
tan 9, 9 and sin 6 are practically equal.

This is borne out by seven-figure tables:

382
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Angle in degrees 10° 5° 1°

8 (radians) 0.174 532 9 0.087 266 5 0.017 453 3
tan 8 0.176 327 0 0.087 488 7 0.017 455 1
sin 8 0.173 648 2 0.087 155 7 0.017 452 4

We shall now consider this geometrically.

Figure 19.2

In Fig. 19.2, the chord AB subtends an angle 9 at the centre of a circle of radius 
r, and the tangent at B meets OA at D. Consider the three areas: triangle AOB, 
sector AOB, triangle DOB.

(a) In triangle AOB, two sides of length r include an angle 8, therefore its area is 
\ r 2 sin 8 (see §18.4).

(b) From §18.5, the area of sector AOB is \ r 28.
(c) In triangle DOB, B is a right angle, therefore BD = r tan 8 and so its area is 

| r 2 tan 8.

From the figure it can be seen that 

triangle AOB < sector AOB < triangle DOB 

.'. \ r 2 sin 8 < \r 28 < ^r2 tan 8

But if we divide each term by j r 2 the order of magnitude is unchanged, therefore

sin 8 < 8 < tan 8

providing 8 is acute, as the figure requires. Again, if we divide each term by sin 8, 
the order of magnitude is unchanged, therefore

sin 8 8 tan 8
sin 8 sin 8 sin 8

But tan 8 = sin 8/cos 8, therefore
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Now as 0 —► 0, cos 0-> 1,

19.1

1
cos 0

Thus 0/sin 0 lies between 1 and a function which approaches 1 as 0 -> 0.

(See Chapter 2, Example 17 and Qu. 11.)
This limit (or, more strictly, (sin —*■ 1 as 0->O) is required in the next

section for the differentiation of sin x.
Another way of expressing the statement that 0/sin 0 -»1 as 0 -* 0, is to say 

that, for small values of 0,

sin 0 x  0

An approximation for cos 0 is obtained from the identity 

cos 0 = 1 —2 sin2 j0  

If 0 is small, sin j0  x ^ 0 , therefore 

cos 0 x 1  — 2(^0)2 

Therefore, for small values of 0, 

cos 0 x  1 — j0 2

Example 1 Find the approximate value o f —-------—  when 0 is small.
0 tan 0

We cannot put 0 = 0, as the numerator and denominator would both be zero. 
Since cos 0 x 1  — \0 2,

cos 20 x  1 — j(20)2 = 1 — 202

Therefore the numerator «  202. But the denominator % 02, since tan 0 x 0 .  
Therefore, when 0 is small,

1 -  cos 20 ^  202 
0 tan 0 ~  02

1 — cos 20 i n -  n. ' .— ------—-  x 2  when 0 is small
0 tan 0

Q ii.l Find approximations for the following

(a)
sin 30

(b)
sin 40

20 ' sin 20 ’

(d)
0 sin 0

(e)
sin (a + 0) sin 0

1 — cos 20 ’ 0

functions when 0 is small: 

1 — cos 0
F2 ’

sin (a + 0) — sin a



(g)
sin 6 tan 6 
1 — cos 3 6 ’

Derivatives o f trigonometrical functions

(h) sin 6 cosec (i)
tan (a + 6) — tan a

e

385

Derivatives of sin x and cos x
19.2 The graph of sin x may be sketched, as shown in Fig. 19.3, and from it 
may be obtained a rough graph of its gradient. The gradient is zero at B, D, F, 
positive from A to B and from D to F, and negative from B to D, giving a graph 
like the one in Fig. 19.4.

Qu.2 Does Fig. 19.4 resemble any graph you have met so far?
Qu. 3 Express sin A — sin B in factors. (See §17.8.)

We shall now find the derivative of sin x from first principles, using the 
definition in §3.8, that is

f,,  ̂ v f(x + h) - f ( x )t (x) = hm -------- ----------
ft-*o n

(The reader is advised to review §3.8 before proceeding further.) 
In this case, f(x) = sin x, and so

f(x + h) — f(x) = sin (x + h) — sin x

Using the factor formula (see Qu. 3 above), this can be written

«7 , M r, \ t x + h + x . ht(x + n) — t(x) = 2 cos----- ------ sin -
2
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2 cos-------- sin -
2 2

2x + h . h
f(x + Ji) -  f(x) 

' h h

cos (x +jh)  s injh
( 1)

But we know that when h -* 0,

2

Therefore, when /i-+0, the right-hand side of equation (1) tends to cos x. So, for 
this function,

f ( x )  =  COS X

In Leibnitz notation, this is written

—  = cos x 
dx

Or, more concisely, 

d
—  (sin x) = cos x 
ax

Qu.4 At what stage in the above is it necessary to have x in radians? 
Qu.5 Prove from first principles that

d
—  (cos x) = — sin x 
dx

Remember that these results hold only if x is in radians.

Example 2 Differentiate (a) sin (2x + 3), (b) cos2 x, (c) sin x°.

(a) Let y = sin (2x + 3), t = 2x + 3, then y = sin t.

. dy t , df .. . —  = cos t and —  = 2

y = sin x

d y

df dx

.'. {sin (2x + 3)} =  2 cos (2x + 3)

(b) Let y = cos2 x, t =  cos x, then y = t 2.

= 2i( — sin x) =  — 2 cos x sin x
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—  (cos2 x) =  — sin 2x 
dx

(c) Let y =  sin x°. Now x° =  (7t/180)x radians,

" =  Sm i80X

Put t = (n/180)x, then y = sin t.

dy dy di v 7i n n n
—  = —  x —  = (cos t ) ---- = ----- cos —  x = -----cos x
dx di dx 1 ’ 180 180 180 180

: r J siax‘) = - t k cosx°

Qu.6 Differentiate (a) cos 3x, (b) sin2 x, (c) 2 sin 2x, (d) cos3 x.

Example 3 Integrate (a) cos 2x, (b) 3 sin jx .

The method used here is to change cos to sin, or sin to cos, and to determine 
the coefficient by differentiation:

(a) (sin 2x) = 2 cos 2x. 
dx

d .
——(2 sin 2x) = cos 2x 
dx

J cos 2x dx = j  sin 2x + c

(b) —  (3 cos ^x) = — f  sin \x .

— (—2 x 3cos?x) = 3 sin-jx 
dx

j  3 sin j x  dx = — 6 cos j x  + c

Exercise 19a
1 Differentiate:

(a) cos 2x,
(d) sin (2x — 3),
(g) — 4 sin jx ,

2 Integrate:
(a) sin 3x,
(d) 2 cos 2x,
(g) sin (2x + 1),

3 Differentiate:
(a) sin2 x,

(b) sin 6x,
(e) — 3 cos 5x,
(h) 2 sin j(x  + 1),

(b) cos 3x,
(e) — j  sin 6x,
(h) 3 cos (2x — 1),

(b) 4 cos2 x,

(c) cos (3x — 1), 
(f) 2 sin 4x,
(i) sin x2.

(c) 2 sin 4x,
(f) 6 cos 4x, 
(i) f  sin jx .

(c) cos3 x,
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(d) 2 sin3 x, (e) 3 cos4 x, (f) 7  (sin x),
(g) {cos x), (h) cos2 3x, (i) sin2 2x,
(j) — 2 sin3 3x, (k) 3 sin4 2x, (1) V(sin 2x).
Differentiate: 
(a) x cos x, (b) x sin 2x, (c) x2 sin x,

(d) sin x cos x,
sin x cos 2x

(e) (0 — ,
X X

, v X x2 sin x
(g) . , (h) i ------ ,sin x COS X COS X

(j) C O t X , (k) (1) cosec x.
cos x

Ex 19a

5 A particle moves in a straight line such that its velocity in m/s, t s after 
passing through a fixed point O, is 3 cos t — 2 sin t. Find
(a) its distance from O after s,
(b) its acceleration after 7t s,
(c) the time when its velocity is first zero.

6 A particle is moving in a straight line in such a way that its distance from a 
fixed point O, t s after the motion begins, is cos t + cos 21 cm. Find
(a) the time when the particle first passes through O,
(b) the velocity of the particle at this instant,
(c) the acceleration when the velocity is zero.

7 The distance of a particle from a fixed point O is given by

s =  3 cos 2t +  4 sin 21

Show that the velocity v and the acceleration a are given by v2 + 4s2 =100, 
a + 4s = 0. Hence find
(a) the greatest distance of the particle from O,
(b) the acceleration at this instant.

8 The velocity at time t of a particle moving in a straight line is 6 cos It + cos t, 
and when t =  0, the particle is at O. Find
(a) the time when v is first zero,
(b) the distance from O at this instant,
(c) the acceleration at the same instant.

9 Find the area between the curve y = sin 3x and the x-axis between x = 0 and 
x = jn .

10 Sketch the curve y — 1 +  cos x from x =  — n to x =  jr, and find the area 
enclosed by the curve and the x-axis between these limits.

11 Find the maximum value of y = x + sin 2x which is given by a value of x 
between 0 and Sketch the graph of y for 0 ^  x <  and find the area 
bounded by the curve, the x-axis and the line x = jn .

12 Find the maximum value of y = 2 sin x — x which is given by a value of x 
between 0 and jtz. Sketch the graph of y for values of x from 0 to n, and find 
the area between the curve, the x-axis and the line x =  \n .
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13 Show that —  ( |x  — \  sin 2x) = sin2 x and deduce that
dx

%n
sin2 x dx = jk

Jo
14 Express cos2 x in terms of cos 2x, and hence show that

j  cos2 x dx = \ x  + 5 sin 2x +  c

15 Show that cos3 x = ¿(cos 3x + 3 cos x), and deduce that

j cos3 x dx = yj sin 3x + 1 sin x + c =  sin x — 5 sin3 x + c

16 By expressing sin3 x in terms of sin x and sin 3x, show that

J sin3 x dx = Y2 cos 3x — |  cos x + c =  j  cos3 x — cos x + c

17 Express 2 cos 5x cos 3x as a sum of two cosines and hence evaluate
*rt/4

2 cos 5x cos 3x dx

Derivatives of tan jc, cot x, sec x, cosec jc

19.3 Using the derivatives of sin x and cos x, those of the four other 
trigonometrical ratios can be obtained by writing

sin x
tan x = ------

cos x
cos x

cot x =  —----
sin x

1
sec x = ------

cos x
1

cosec x = —----
sin x

This is left as an exercise for the reader, if he or she has not already done 
No. 4 (i)-(l) of Exercise 19a. The results are

-p- (tan x) = sec2 x  
ax

d
—  (cot x) = — cosec2 x 
dx

d
—  (sec x) = sec x tan x 
dx

d
—  (cosec x) =  — cosec x cot x 
dx

Note:
(a) the similarity of the pair of formulae on each line.
(b) the associations between tan x and sec x, and between cot x and 

cosec x. The same associations occur in the identities 1 + tan2 x = sec2 x, 
cot2 x + 1 = cosec2 x.

(c) that the derivatives of ratios beginning with ‘co’, i.e. cos x, cot x, cosec x, 
all have a negative sign.
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Exercise 19b
Ex 19b

1 Differentiate:
(a) tan 2x, (b) cot 3x, (c) 3 sec 2x,
(d) 2 cosec lx , (e) — tan (2x + 1), (f) 1 sec (3x -  2),
(g) —2 cot(3x + 2), (h) cot x2, (i) tan J x .

2 Differentiate:
(a) tan2 x, (b) sec2 x, (c) 2 cot3 x,
(d) 3 cosec2 x, (e) — tan2 2x,* (f) j  cot2 3x,
(g) i  sec3 2x, (h) — 2 cosec4 x, (i) J  (tan x).

3 Differentiate:
(a) x tan x, (b) sec x tan x, (c) X 2 cot X ,

(d) 3x cosec x, (e) cosec x cot x, (f) ,an\
X

sec x „
(g) 2 . (h) sin x — x cos x, (i) x sec x — tan x.

4 Integrate:

(a) sec2 2x,

(d) ^ cosec 3x cot 3x,

(g)
sin x

cos2 x ’

(b) 3 sec x tan x, 

(e) 2 sec2 x tan x,

(h) t  1

(c) — cosec2 jx ,

(f)

sin2 2x ’ (i)
cos 2x 
sin2 2x '

5 Sketch the graph of the curve y = sec2 x — 1 between x =  — I ti and x = jk . 
Calculate the area enclosed by the curve, the x-axis and the line x =  jjt.

6 Find the volume generated by revolving the area bounded by the x-axis, the 
lines x = + ¿71 and the curve y = sec x about the x-axis.

7 Find the minimum values of the following functions which are given by values 
of x between 0 and { k\
(a) tan x + 3 cot x, (b) sec x + 8 cosec x, (c) 6 sec x + cot x.

8 By expressing tan2 x in terms of sec2 x, show that

J tan2 x dx = tan x — x + c
9 Express cot2 x in terms of cosec2 x and hence integrate cot2 x.

Exercise 19c (Miscellaneous)
1 Convert to degrees:

(a)
2 k

T ’
371 
8 ’ (d)

I k

Ï 2 '

*The following method of working often overcomes the initial difficulty some students find with the 
chain rule:

— (3 sin4 5x) = —  {3(sin 5x)4} = 3 x 4  (sin 5x)3 x cos 5x x 5 = 60 sin3 5x cos 5x. 
dx dx



2 Convert to radians, leaving 71 in your answers:
(a) 330°, (b) 50°, (c) 75°, (d) 24°.

3 Use tables or a calculator to find the values of
(a) sin 2 rad, (b) sec 0.5 rad, (c) tan 1.32 rad, (d) cos 2.98 rad.

4 The area of a sector of a circle, diameter 7 cm, is 18.375 cm2. What is the 
length of the arc of the sector?

5 A sector with an area of § cm2 is bounded by an arc of length f  cm. What is 
the radius of the circle? Also find the angle contained by the sector, giving 
your answer in degrees.

6 A chord AB subtends a right angle at the centre of a circle of radius r. BC is a 
chord in the minor segment, inclined at 15° to BA. Show that the area 
bounded by the two chords and the arc AC is i r 2(^n + jy/3 — 1).

7 The common chord of two circles of radii 13 cm and 37 cm is 24 cm long. 
Calculate the area common to both circles.

8 Draw, on the same diagram, the graphs of y = x — 1 and y = sin x, where x is 
in radians, and — 7i ^  x ^  + ti. Hence show that the equation

x = 1 + sin x

has one root only. Estimate this root from your graph.
9 Draw the graph of cos 20 for values of 9 from — \jt to jtz. Use your graph to 

solve the equation cos2 9 = ^(1 + 9).
10 Draw the graph of cos 39 +  cos 9 for values of 9 from 0 to ti, and find the 

roots of the equation

2 cos 30 + 2 cos 0 + 1 = 0

in this range.
11 A radar scanner rotates at a speed of 30 rev/min. Express this angular 

velocity in rad/s.
12 What is the angular velocity of the hour hand of a clock 

(a) in rev/min, (b) in rad/s?
13 A wheel of diameter 3 m is rotating with an angular velocity of 420 rev/min. 

Find, taking n as 22/7,
(a) the angular velocity of the wheel in rad/s,
(b) the velocity of a point on the circumference in km/h.

14 A lift goes down a distance of 6 m in 3 j  s, and a cable to the counter-weight 
passes over a pulley of diameter 0.5 m. What is the average angular velocity 
of the pulley while the lift is in motion?

15 In order to investigate the effect of acceleration on the human body, a man is 
placed in a cabin which is made to travel in a circle of radius 10 m. If the 
speed of the cabin reaches 160 km/h, what is its angular velocity in rev/min 
at that instant?

16 Find approximations for the following when 0 is small:

sin 0 tan 0 „ 1 — cos 20 / x cos (0 + a) — cos a
(“) p  ' »> , c ) ---------- s-------—

Derivatives of trigonometrical functions 391
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17 Show that, if 9 is small,
(a) sin (¿7i -l- 6) «  \  + ^ /3 0  -  ¿02, (b) cos (¿ti +  0 )«  j ^2(1 -  0 -  j 8 2).

18 Differentiate:
(a) sin 3x, (b) tan ¿x,
(d) ^(cos x), (e) 2 cosec3 x,
(g) — 3 sec3 2x, (h) x/(sin 2x),

19 Integrate:

(c) cos x2,
(f) 4 sin2 ¿x,
(i) 3 tan2 2x.

(a) cos 2x, 

(d) sec2 ¿x,

(g)

2- 
COS X

(b) sin(2x —1), (c) 3cos^x,

(e) cosec x cot x, (f) sec 2x tan 2x,

(h)
1

(i) x sin x2.
cos2 2x ’

20 Differentiate:

(a) x sin x, (b) sin x cos 2x, (c) x2 tan2 x,

(d )

(g)

sec x 
x

sin x

, cos 2x
(e) — (f) sin x tan 2x,

sin 3x ’

(h) 2 cos x + 2x sin x — x2 cos x.

21 If x = a sec 6, y = b tan 9, show that

d y b d2y b ,
= -  cosec 8 and -r-^r = ---- t cot 9dx a dx2

22 If x = a cos 0, y = b sin 8, show that

d2y
dx2 = ---- cosec3 8

23 A particle travels in a straight line in such a way that its distance from a fixed 
point O after time t is 3 cos 2f + 4 sin 21. Find
(a) the distance of the particle from O when it first comes to rest 

instantaneously,
(b) its acceleration at this instant,
(c) its maximum velocity.

24 A particle is moving in a straight line with velocity sin 2t + 7 sin t cm/s, t s 
after passing through a fixed point O. Find
(a) the maximum velocity of the particle,
(b) the greatest distance of the particle from O.

25 Evaluate:
-n/2 %n/6

sin 2x dx, (b) sec2 x dx,
o • — it/3

•tl/4
sin2 x dx, (d) cos 3x sin 5x dx.

0 j 0



Chapter 20

Loci
Introduction
20.1 ‘Percy the goat is tethered to a fixed point O by a rope which is 6 m long. 
If Percy moves so that the rope is always taut, describe his path.’ Readers will 
have little difficulty deciding that the goat moves around a circle, centre O, 
radius 6 m. (A scale drawing could be made, using a piece of string 6 cm long, 
fixed at one end by a drawing-pin and with a pencil at the other end; as the 
pencil moves, keeping the string taut, a circle can be drawn.)

Now consider this problem: ‘Percy the goat is tethered by means of a ring 
which can slide freely on a rope which is 6 m long. The ends of the rope are 
attached to two fixed points A and B which are 4 m apart. Describe the goat’s 
path.’ In this case there are probably few readers who could give the path a 
name. However, a scale drawing could be made, using a piece of string 6 cm long 
with its ends attached to two drawing pins which are fixed, 4 cm apart. Use a 
pencil to trace the goat’s path, being careful to keep the string taut. The diagram 
should look something like Fig. 20.1. Note that at all points on the path, 
AP + PB = 6.

In this chapter, we shall use the techniques introduced earlier in the book to 
investigate problems like this. In particular, the moving point P will be 
represented by a point in the Cartesian plane with coordinates (x, y) (we shall 
only consider two-dimensional problems) and we shall endeavour to find an 
equation which expresses, algebraically, the conditions governing the motion of

393
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P. (It is customary, in this context, to use P to represent the moving point; any 
fixed points are usually represented by A, B or C, although in many cases the 
origin O will be used as a fixed point.) The path traced put by the point P, as it 
moves according to the given conditions, is called the locus of P, and the 
equation satisfied by the coordinates of P is called the equation of the locus.

The equation of a locus
20.2 In the first of the introductory problems above, the given condition is 
OP = 6, so, if O is the origin, the equation of the locus can be obtained by 
applying Pythagoras’ theorem in Fig. 20.2.

i.e. the equation of the locus is

x 2 + y 2 = 36

In the second problem, we shall take the two fixed points to be ( — 2, 0) and
(2,0), respectively (Fig. 20.3).

Applying the usual formula for the distance between two points we obtain 

AP = V((x +  2)2 + y2} and BP = ^/{(x — 2)2 + y2}

The condition which governs the movement of the point P is AP + PB = 6, so
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the equation of the locus is

V{(x + 2)2 + y2} +  V{(x -  2)2 + y2} = 6 

Qu.l Show that when the equation above is simplified it can be expressed as

(We shall see in Book 2 that this is the equation of an ellipse.)

Example 1 Find the equation of the locus of a point P which moves so that it is 
equidistant from two fixed points A and B whose coordinates are (3, 2) and (5, — 1) 
respectively

Let P be the point (x, y). Expressed geometrically, the condition satisfied by P 
is

PA = PB

However, since we shall use Pythagoras’ theorem to express the lengths of PA 
and PB in terms of x and y, it is neater to square this equation, obtaining

PA2 = PB2

Now

PA2 = (x — 3)2 + (y — 2)2 
PB2 = (x — 5)2 +  (y + l)2

therefore the equation which must be satisfied by the coordinates of P is

(x — 3)2 + (y — 2)2 = (x — 5)2 + (y + l)2 
i.e. x2 — 6x + 9 + y 2 — 4y + 4 = x2 — lOx + 25 + y2 + 2y + 1

Therefore the equation of the locus of points equidistant from (3, 2) and (5, — 1) 
is 4x — 6y — 13 = 0.

The locus is actually the perpendicular bisector (or mediator) of AB. Because 
of the close connection between the locus and the equation connecting the 
points lying on the locus, the equation itself is often referred to as the locus.

Qu.2 Find the equation of the locus in Example 1 by using the fact that it is 
the perpendicular bisector of AB.

Note. When drawing graphs it is often useful to take different scales on the 
two axes, but in coordinate geometry the scales must be the same or the figures 
will be distorted.

Example 2 Find the locus of a point P, whose distance from the point A( — 1, 2) is 
twice its distance from the origin.

Let P(x, y) be a point on the locus (Fig. 20.4), then

PA = 2PO
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The lengths of PA and PO may be written down by the method of §1.2, but as
both expressions involve a square root, it is neater to square first, giving

PA2 = 4 P 0 2
.'. (x + l)2 + (y — 2)2 = 4(x2 + y2)
.'. x2 + 2x + 1 + y2 -  4y + 4 = 4x2 + 4y2

Therefore the locus of P is 3x2 + 3y2 — 2x + 4y — 5 =  0.

Exercise 20a
1 Find the equation of a circle with centre at the origin and radius 5 units.
2 What is the locus of a point which moves so that its distance from the point 

(3, 1) is 2 units?
3 What is the locus of a point which is equidistant from the origin and the 

point ( — 2, 5)?
4 What is the locus of a point which moves so that its distance from the point 

( — 2,1) is equal to its distance from the point (3, —2)?
5 What is the distance of the point (x, y) from the line x =  — 1? Find the locus 

of a point which is equidistant from the origin and the line x = — 1.
6 Find the locus of a point which is equidistant from the point (0, 1) and the 

line y = — 1.
7 Find the locus of a point which moves so that its distance from the point 

A( — 2, 0) is three times its distance from the origin.
8 A point P moves so that its distance from A(2, 1) is twice its distance from 

B( — 4, 5). What is the locus of P?
9 Find the locus of a point which moves so that its distance from the point

(8,0) is twice its distance from the line x = 2.
10 Find the locus of a point which moves so that its distance from the point 

(2, 0) is half its distance from the line x = 8.
11 Find the locus of a point which moves so that the sum of the squares of its 

distances from the points ( — 2, 0) and (2, 0) is 26 units.
12 Find the locus of a point which moves so that it is equidistant from the point 

(a, 0) and the line x =  — a.
13 A is the point (1, 0), and B is the point ( — 1, 0). Find the locus of a point P 

which moves so that PA + PB =  4.



14 A is the point (1,0), and B is the point ( —1,0). Find the locus of a point P 
which moves so that PA — PB = 2.

15 A rectangle is formed by the axes and the lines x  =  4 and y = 6. Find the 
locus of a point which moves so that the sum of the squares of its distances 
from the axes is equal to the sum of the squares of its distances from the other 
two sides.
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Further examples
20.3 Example 3 Show that the equation of the circle on the line segment joining 
A(3, — 5) and B(2, 6) as diameter is (x — 3)(jc — 2) + (y + 5)(y — 6) = 0.

Let P(x, y) be any point on the circle. The vector AP is perpendicular to the 
vector BP, and hence the scalar product AP.BP is zero (see §15.16).

Now, AP = (x — 3)i + (y + 5)j and BP = (x — 2)i + (y — 6)j, so

AP.BP = {(x -  3)i + ( y + 5)j}.{(x -  2)i + ( y -  6)j}
= (x — 3)(x — 2) + (y + 5)(y — 6)

But this scalar product is zero, so the equation of the circle is

(x — 3) (x — 2) + (y + 5) (y — 6) = 0

Qu.3 Show that the equation in Example 3 may also be found by using the 
result that the product of the gradients of two perpendicular lines is — 1.

Example 4 A variable point P moves on the curve y2 = 4x and A is the point
(1,0). Find the locus of the mid-point of AP.

Figure 20.5
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Let P be the point (x, y), and let Q(2f, 7) be the mid-point of AP (Fig. 20.5). 
Then the coordinates of Q are given by

Since P lies on the given curve, we have

y2 = 4x

but x = 2X  — 1 and y = 27, therefore 

4T2 = 4 (2 X - 1)

Therefore the locus of the mid-point of AP is y2 = 2x — 1.

Example 5 A straight line AB of length 10 units is free to move with its ends on 
the axes. Find the locus of a point P on the line at a distance of 3 units from the end 
on the x-axis.

Figure 20.6

Let A be the point (X, 0) and B the point (0, Y) and note that, by Pythagoras’ 
theorem (Fig. 20.6),

OA2 + OB2 = AB2

and therefore

X 2 + Y2 = 100 (1)

Also, let the coordinates of the point P be (x, y). We are given that BP:PA = 7:3, 
and so p, the position vector of the point P, is given by

P =  T t > a + T c > * >

where a and b are the position vectors of the points A and B (see the ratio 
theorem, §15.8), hence

B

O
‘-------►
A x
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so, x = and y = ^  F. From these equations we see that

X - 1 2 ,  and Y = ' ° ,
7 3

Substituting these into equation (1) we obtain

100 ,  100 ,  __ x 2  +  _ r y a =  100

and hence the equation we require is 

49 9

(We shall see in Book 2 that this is the equation of an ellipse.)

Exercise 20b
1 Find the equations of the circles on the diamfeters whose ends are

(a) ( -  3, 2) and (4, -  5 ) ;  (b) ( |,  1) and ( -  f , 4);
(c) (0, a) and (a, 0); (d) (x1; y j  and (x2, y2).

2 P is a point on a line of length 12 units, which moves so that its ends lie on 
the axes. Find the locus of P when it is
(a) the mid-point of the line,
(b) the point of trisection of the line nearer to the y-axis.

3 L and M are the feet of perpendiculars from a point P on to the axes. Find 
the locus of P when it moves so that LM is of length 4 units.

4  A variable line through the point (3, 4) cuts the axes at Q and R, and the 
perpendiculars to the axes at Q and R intersect at P. What is the locus of the 
point P?

5 A variable point P lies on the curve xy = 12. Q is the mid-point of the line 
joining P to theoigin. Find the locus of Q.

6 P is a variable point on the curve y = 2x2 + 3, and O is the origin. Q is the 
point of trisection of OP nearer the origin. Find the locus of Q.

7 A line parallel to the x-axis cuts the curve y2 = 4x at P and the line x =  — 1 at 
Q. Find the locus of the mid-point of PQ.

8 Variable lines through the points 0(0,0) and A(2, 0) intersect at right 
angles at the point P. Show that the locus of the mid-point of OP is 
y2 + x(x — 1) = 0.

9 Find the locus of a point which moves so that the sum of the squares of its 
distances from the lines x + y = 0 and x — y = 0 is 4.

10 A is the point (1,0), B is the point (2,0) and O is the origin. A point P moves 
so that angle BPO is a right angle, and Q is the mid-point of AP. What is the 
locus of Q?

11 A line parallel to the y-axis meets the curve y = x2 at P and the line y = x + 2 
at Q. Find the locus of the mid-point of PQ.

12 M is a variable point on the x-axis, and A is the point (2, 3). A line through A,



perpendicular to AM, meets the y-axis at N, Perpendiculars to the axes at M 
and N meet at P. Find the locus of the point P.

13 M and N are points on the axes, and the line MN passes through the point 
(3, 2). P is a variable point whi ,h moves so that the mid-point of the line 
joining P to the origin is the mid-point of MN. Find the locus of the point P.

14 A straight line LM, of length 4 units, moves with L on the line y = x and M 
on the x-axis. Find the locus of the mid-point of LM.

15 A straight line LM meets the x-axis in M and the line y = x in L, and passes 
through the point (6, 4). What is the locus of the mid-point of LM?
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Tangents and normals
20.4 If a tangent touches a curve at the point P, the line through P 
perpendicular to the tangent is called a normal. (See §3.9.)

Example 6 Find the equations of the tangent and normal to the curve 
y = 3x2 — 8x + 5, at the point where x = 2.

[The equation of a line can be found from its gradient and the coordinates of a 
point through which it passes. Therefore we begin by finding these.]

y = 3x2 — 8x + 5
d y

Therefore the gradient of the tangent, —  , is given by
dx

dy
dx

= 6x — 8

At the point of contact x = 2, and so

d y r -,— = 6 x 2  
dx

= 4

The y-coordinate of the point of contact may be found by substituting x = 2 in 
the equation of the curve:

y = 3 x 2 2 — 8 x 2  + 5 = l

Therefore the coordinates of the point of contact are (2, 1).
Using the equation of a line in the form

y - y i  =  m ( x - x l )

the equation of the tangent is

y -  1 = 4(x -  2) 
i.e. 4x — y — 7 = 0

The normal is perpendicular to the tangent, and so its gradient is — 
Therefore its equation may be written

y - l  = -  i ( x - 2) 
i.e. x + Ay — 6 = 0



Thus the equations of the tangent and normal to the curve y = 3x2 — 8x +  5 at 
the point (2, 1) are respectively 4x — y — 7 = 0 and x + 4y — 6 = 0.

•
Note. It should be emphasised that, when the equation of the tangent was 

found, the gradient of the curve at (2, 1) was used. If we had taken the gradient to 
be 6x — 8, the equation y — 1 = (6x — 8) (x — 2) would not have represented a 
straight line.

Example 7 Find the equations of the tangents to the curve xy = 6 which are 
parallel to the line 2y + 3x = 0.

The gradient of the line 2y + 3x = 0 is — f . Therefore we must find at what 
points on the curve xy = 6 the gradient is — f .

6
y =  -

X

d y 6
dx x 2

dv
I f - ¿ = - 3 / 2 ,  dx

6 _  3
~ 1 ? ~ ~ 2

. ' .  3 x 2 =  1 2 ,  and s o  x 2 = 4  

x = + 2

When x = 2, y = § = 3; and when x = — 2, y = — f  = — 3. Thus the gradient of 
the curve is — f  at the points (2, 3) and ( — 2, — 3).

The equations of the tangents may be found from the form y — yx = m(x — x t):

y -  3 = — f  (x — 2) and y +  3 =  — |(x  + 2)

Therefore the equations of the tangents to the curve xy = 6 which are parallel 
to the line 2y + 3x = 0 are 3x + 2y — 12 = 0 and 3x + 2y + 12 = 0.

Sometimes questions about tangents may be solved without using the 
calculus. Fig. 20.7 shows a curve with a chord PQ passing through a fixed point 
P and a variable point Q. When P and Q are distinct, we must obtain distinct 
roots when the equations of the curve and PQ are solved simultaneously; and 
when P and Q coincide, producing a tangent, there will be a repeated root.

Example 8 Show that if the line y = mx + c is a tangent to the curve 
4x2 + 3y2 = 12, then c2 = 3m2 + 4.

[If the line y = mx + c is a tangent, then the point of contact must be given by 
an equation with a repeated root.]

Substituting y = mx + c in the equation 4x2 + 3y2 =  12, we obtain 
4x2 + 3 (mx + c)2 = 12 

.'. 4x2 + 3m2x 2 + 6mxc + 3c2 =  12 

.'. (4 + 3m2)x2 + 6mcx + 3c2 — 12 = 0

Loci 401
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Figure 20.7

Now if the equation ax2 + bx + c = 0 has equal roots then b2 = 4ac (see §10.2). 
Therefore if y = mx + c is a tangent,

36m2c2 = 4(4 + 3m2)(3c2 -  12)
.'. 9m2c2 = 12c2 — 48 + 9m2c2 — 36m2 

12c2 = 36m2+ 48

Therefore if y = mx + c is a tangent to the curve 4x2 + 3y2 = 12, 
then c2 = 3m2 + 4.

This means that the line y = m x±  J(3m 2 + 4) will touch the curve for all 
values of m. Hence we may find the tangents parallel to y = 2x by substituting 
m = 2, which gives y = 2x ± 4.

Qu.4 Find the equations of the tangents to the curve 4x2 + 3y2 = 12 which are 
(a) parallel to y = x, (b) inclined at 60° to the x-axis.
Qu.5 Solve the following pairs of simultaneous equations:
(a) y = x, y2 = x 3 + x 2; (b) y = 2x, y2 = x3 + x2.

What is the significance of the repeated root in each case?

Exercise 20c
1 Find the equations of the tangents and normals to the following curves at the 

points indicated:
(a) y = x 2, ( 2 ,  4); (b) y = 3x2 — 2x + 1, where x = 1;
(c) y = x  + 1/x, ( -  1, -  2); (d) y2 = 4x, (1, -  2);
(e) y = x2 — 2x, where x = — 2; (f) xy  = 4, where y = 2;
(g) y3 = x2, (1, 1).

2 Show that the following lines touch the given curves and find the coordinates 
of the points of contact:
(a) y2 = 8x, y -  2x — 1 =  0; (b) x2 + y2 = 8, x — y — 4 = 0;
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(c) xy = 4, x + 9y — 12 = 0; (d) 9x2 — 4y2 = 36, 5x — 2y + 8 = 0.
3 At what points does the parabola y = x 2 — 4x + 3 cut the x-axis? Find the 

equations of the tangents and normals at these points. •
4 Find the equations of the tangents at the points of intersection of the line 

y = x + 1 and the parabola y = x 2 — x — 2.
5 Find the equations of the normals to the curve y = x 2 — 1 at the points where 

it cuts the x-axis. What are the coordinates of the point of intersection of 
these normals?

6 Find the coordinates of the points of intersection of the parabolas y2 = x and 
x2 = y. What are the equations of the tangents to the curves at these points?

7 What is the equation of the normal to the curve y = x 2 — 4x — 12 at the point 
where it cuts the y-axis? Where does this normal meet the x-axis?

8 Find the equations of the tangents to the curve y = x3 — 3x2 which are 
parallel to the line y = 9x.

9 Find the equations of the tangents to the hyperbola xy  = 4, which are 
inclined at 135° to the x-axis.

10 Show that the equation of the tangent to the parabola y = x2 at the point 
(h, k) may be written y — 2hx + h2 = 0. Find the values of h for which the 
tangent passes through the point (1,0), and obtain the equations of these 
tangents.

11 Show that the equation of the tangent to the rectangular hyperbola xy = c2 
at the point (h, k) may be written xk + yh — 2c2 = 0. Find the equation of the 
tangent which passes through the point (0, c).

12 Show that, if the line y = x + c is a tangent to the circle x 2 + y2 = 4, then
c 2 =  8.

13 Prove that the condition that the line y = mx + c should touch the ellipse 
x2 + 4y2 = 4 is c2 = 4m2 + 1. Hence find the equations of the tangents to the 
ellipse which are parallel to the line 3x — 8y = 0.

14 Show that the line y = mx + c touches the hyperbola b2x 2 — a2y2 = a2b2 if 
c 2 = a2m2 — b2. Hence find the equations of the tangents to the hyperbola 
9x2 — 25y2 = 225 which are parallel to the line x — y — 0.

15 Find the condition that the line lx + my + n = 0 should touch the ellipse 
b2x 2 + a2y2 = a2b2.

Exercise 20d (Miscellaneous)
1 Find the locus of a point which is equidistant from the points (4, — 1) and 

(3, 7).
2 Find the locus of a point which is equidistant from the y-axis and the point 

(4, 0).
3 A point P moves so that its distance from the point (5,0) is half its distance 

from the line x — 8 = 0. Find the locus of P.
4 Find the locus of a point which moves so that its distance from the origin is 

three times its distance from the line x = a.
5 Find the locus of a point which moves so that its distance from (2,0) is twice 

its distance from ( — 1,0). Show that a point P, which moves so that the sum
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of the squares of the distances from P to the origin and the point ( — 4, 0) is 
16, describes the same locus.

6 If A is the point (2, 0) and B is ( — 3,0), find the locus of a point P which 
moves so that AP2 + 2BP2 =  22.

7 Find the equation of the circle on the line joining (a, b) to (c, d) as diameter.
8 A straight line of length 24 units moves with its ends on the axes. Find the 

locus of a point on the line which is
(a) 12 units from the end on the x-axis,
(b) 6 units from the end on the x-axis.

9 A straight line of length 6 units moves with its ends A and B on the axes. 
Perpendiculars to the axes, erected at the points A and B, meet at P. Find the 
locus of P.

10 A and B are points on the x- and y-axes, and P is the mid-point of AB. Find 
the locus of P if the area of triangle AOB is 8 units.

11 A variable line through the point (a, b) cuts the axes at L and M, and the 
perpendiculars to the axes at L and M meet at P. What is the locus of P?

12 P is a variable point on the curve 4x2 + y2 = 36 and A is the point (1, 0). Find 
the locus of the mid-point of AP.

13 Find the gradient of the curve y = 9x — x2 at the point where x = 1. Find the 
equation of the tangent to the curve at this point. Where does this tangent 
meet the line x = y?

14 Find the equation of the normal to the parabola y = \ x 2 at the point (4, 4). 
Find also the coordinates of the point at which this normal meets the 
parabola again, and show that the length of the chord so formed is 5^5.

15 Find the equations of the tangents to the rectangular hyperbola xy = 4 at the 
points (2, 2), (6, §). Show that they intersect on the line 3y = x.

16 Find the gradient of the curve y = 4x2 — 7x + 5 at each of the points where it 
is cut by the line y = 2. Find the equations of the tangents at these points and 
show that they meet on the line 15x = ly.

17 Find the equation of the normal to the parabola y = \ x 2 which is parallel to 
y = 3x, and find the coordinates of the point on the parabola at which it is 
the normal.

18 Prove that the line y = mx + a/m touches the parabola y2 =  4ax. Find the 
equation of the tangent to the parabola y2 = 2x which is perpendicular to the 
straight line 2y + lx  = 4.

19 The gradient of a curve at the point (x, y) is 1 — 2/x2. Find the equation of the 
curve if it passes through the point (2, 4).

Find the point of contact of the tangent which is parallel to the tangent at 
(2, 4); also find the equations of both these tangents.

20 Show that the line y = mx + c touches the ellipse

if c2 = a2m2 + b2.
Find the equations of the tangents to the ellipse 4x2 + 9y2 = 1 which are 

perpendicular to y = 2x + 3.



Chapter 21

The circle
The equation of a circle
21.1 The work of previous chapters will now be applied to the circle, and we 
begin by obtaining the equation of a circle, radius r, with its centre at the origin.

Figure 21.1

We require an equation connecting the coordinates (x, y) of any point P on 
the circle (see Fig. 21.1). Let N be the foot of the perpendicular from P to the 
x-axis, so that ON = x and NP = y.

Then by Pythagoras’ theorem,

ON2 + N P2 = r2
.'. x 2 + y2 = r2

Therefore the equation of the circle, radius r, with its centre at the origin is

X 2 + y 2 =  r 2
This is the simplest form in which the equation of a circle can be written, but 
now, to be quite general, consider the circle, radius r, whose centre is at the point 
C(a, b).

405
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Let P(x, y) be any point on the circle, and draw CN and NP parallel to the 
x- and y-axes, as shown in Fig. 21.2.

Now CN = x — a and NP = y — h\ but by Pythagoras’ theorem in triangle 
CNP,

CN2 + N P2 = CP2
.'. (x —a)2 + (y ~ b )2 = r2

Therefore the equation of the circle, radius r, whose centre is at (a, b) is 

( x - a ) 2 + ( y - b ) 2= r 2

Using this result, the equation of the circle with centre at (4, — 1) and radius 2 
may be written

(x — 4)2 + (y + l)2 =  22

Expanding the squares:

x2 — 8x + 16 + y2 + 2y + 1 =  4

Collecting the terms:

x2 + y 2- 8 x  + 2 y + 13 = 0

The equation of a circle is usually given in this form. Note that
(a) the coefficients of x2 and y2 are equal,
(b) the only other terms are linear (such as may occur in the equation of a 

straight line).

Qu. 1 Express the equation (x — a)2 + (y — b)2 = r2 in the form 

x2 +  y2 + 2gx + 2/y +  c =  0 

Write down g, f ,  c, in terms of a, b, r.



Example 1 Find the radius and the coordinates of the centre of the circle 
l x 1 + 2  y 2  — 8x + 5y + 10 = 0.

[We may find the centre and radius if the equation is expressed in the form 
(x -  a)2 + (y -  b)2 = r2.]

Divide both sides of the equation of the circle

2 x 2 + 2y2 -  8x + 5y + 10 = 0

by 2, in order to make the coefficients of x2 and y2 equal to 1:

x2 + y2 — 4x + f  y + 5 = 0

Rearrange the terms, grouping those in x and y:

x2 -  4x + y2 + |y  = -  5

Complete the squares (see Appendix, Exercise 5):

x2 -  4x + 4 + y2 + fy  + (f )2 = -  5 + 4 + f§
■ (x — 2)2 + {y + i ) 2 = fs  

(x — 2)2 + (y + 1)2 = ( |) 2

Comparing this with the equation of the circle, radius r, centre (a, b):

(x — a)2 + (y — b)2 = r2 

we obtain

a = 2, b = - 1, r = |

Therefore the radius is f  and the centre is at the point (2, — f).

Example 2 Find the equations of the circles which pass through the points A(0, 2) 
and B(0, 8), and which touch the x-axis.

The circle 407

Figure 21.3

Fig. 21.3 suggests a method. The centre of the circle must lie on the 
perpendicular bisector of the chord AB, i.e. on the line y =  5.
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Now the circle touches the x-axis, therefore the radius is 5.
If D is the point (0, 5) and C is the centre of either circle, then triangle ADC is 

right-angled and DC = 4 by Pythagoras’ theorem. Therefore the centres of the 
circles are ( — 4, 5) and (4, 5) and so their equations are

(x ± 4)2 + (y -  5)2 = 52

Therefore the equations of the circles are x2 + y2 + 8x — lOy + 16 = 0.

Exercise 21a
1 Find the equations of the circles with the following centres and radii:

(a) centre (2, 3), radius 1; (b) centre ( — 3,4), radius 5;
(c) centre (§, — 1), radius f  ; (d) centre (0, — 5), radius 5;
(e) centre (3, 0), radius yj2; (f) centre ( —i ,  i), radius jyj2.
Find the radii and the coordinates of the centres of the following circles:
(a) x2 + y2 + 4x -  6y + 12 = 0, (b) x2 + y2 -  2x -  4y + 1 = 0,
(c) x2 + y2 — 3x = 0, (d) x2 + y2 + 3x — 4y — 6 = 0,
(e) 2x2 + 2y2 + x + y = 0, (f) 36x2 + 36y2 — 24x — 36y — 23 = 0,
(g) x2 + y2 — 2ax — 2by = 0,
Which of the following equations represent circles?
(a) x2 + y2 —5 = 0, (b)

1,
2 + bxy = 1,

(h) x2 + y2 +  2gx + 2/y + c = 0.

x2 + y2 + 10 = 0,
(c) 3x2 + 2y2 + 6x — 8y + 100 = 0, (d) ax2 + ay2
(e)
(g)

x2 + y2 + 8x + xy + 4 = 0, 
x 2 + y 2 + c = 0,

x2 + yz(f)
(h) x2 + dy2 — 8x + lOy + 50 = 0.

Which of them can represent circles if suitable values are given to the 
constants a, h, c, dl

4 Find the equation of the circle whose centre is at the point (2, 1) and which 
passes through the point (4, — 3).

5 The points (8, 4) and (2, 2) are the ends of a diameter of a circle. Find the 
coordinates of the centre, and the radius. Deduce the equation of the circle.

6 What is the equation of the circle, centre (2, — 3), which touches the x-axis?
7 Find the radii of the two circles, with centres at the origin, which touch the 

circle x2 + y2 — 8x — 6y + 24 = 0.
8 Show that the distance of the centre of the circle x2 + y2 — 6x — 4y + 4 = 0 

from the y-axis is equal to the radius. What does this prove about the y-axis 
and the circle?

9 Find the equations of the circles which touch the x-axis, have radius 5, and 
pass through the point (0, 8).

10 What is the equation of the circle whose centre lies on the line x — 2y + 2 =  0, 
and which touches the positive axes?

11 A circle passes through the points A( —5, 2), B( —3, —4), C(l, 8). Find the 
point of intersection of the perpendicular bisectors of AB and BC. What is 
the equation of the circle?

12 The circle x 2 + y2 + 2gx + 2fy + c = 0 passes through the points A(—1, —2), 
B(l, 2), C(2, 3). Write down three equations which must be satisfied by g ,f ,  c. 
Solve these equations and write down the equation of the circle ABC.
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13 Find the equations of the circles which pass through
(a) the origin, ( -  1, 3), ( - 4 ,  2);
(b) (3, 1), (8, 2), (2, 6);
(c) (6, -5 ), (2, -7 ), ( - 6 ,  -1 ).

14 A point moves so that its distance from the origin is twice its distance from 
the point (3, 0). Show that the locus is a circle, and find its centre and radius.

15 A is the point (3, — 1), and B is the point (5, 3). Show that the locus of a point 
P, which moves so that PA2 + PB2 = 28, is a circle. Find its centre and 
radius.

Tangents to a circle
21.2 Elementary geometry will frequently help to simplify working in co­
ordinate geometry, as the reader may have found in the last exercise. It provides 
a simple way of obtaining the equation of a tangent at a given point on a given 
circle, using the fact that a tangent is perpendicular to the radius through the 
point of contact. This method will be-employed in the next example.

Example 3 Verify that the point (3, 2) lies on the circle x 2 + y2 — 8x + 2y + 7 = 0, 
and find the equation of the tangent at this point.

Substituting the coordinates (3, 2) into the equation x 2 + y2 — 8x -I- 2y + 1 = 0,

L.H.S. = 9 +  4 - 2 4 +  4 +  7 = 0 = R.H.S.

Therefore (3, 2) lies on the circle.
[The gradient of the tangent can be found from the gradient of the radius 

through (3, 2); and, in order to find this, we obtain the coordinates of the centre 
of the circle.]

The equation of the circle may be written

x 2 — 8x + y2 + 2y =  — 7 
.'. x2 — 8x + 16 + y2 + 2y + 1 = — 7 + 16 + 1 

.'. (x — 4)2 + (y + l)2 = 10

Therefore the centre of the circle is (4, — 1). Hence the gradient of the radius 
through (3, 2) is ( — 1 — 2)/(4 — 3) = — 3.

Therefore the gradient of the tangent is j . Using the formula y — y 1=m(x — x 1), 
the equation of the tangent at (3, 2) is

y - 2 = i ( x - 3 )
.'. 3y — 6 = x — 3

Therefore the equation of the tangent to the circle at (3, 2) is x — 3y + 3 = 0.

Example 4 Find the length of the tangents from the point (5, 7) to the circle 
x2 + y2 — 4x — 6y + 9 = 0.

[Fig. 21.4 suggests a method. The tangent is perpendicular to the radius 
through the point of contact, so t can be found by Pythagoras’ theorem if d and r 
are known.]



410 Pure Mathematics 1 21.2

In Fig. 21.4, the radius, length r, is perpendicular to the tangent, length t, from 
the point (5, 7). If the distance of (5, 7) from the centre of the circle is d, then by 
Pythagoras’ theorem d2 = t 2 + r2, or

t2 = d2 — r2

To find the coordinates of the centre of the circle x 2 + y2 — 4x — 6y + 9 = 0:

x 2 — 4x + 4 +  y2 — 6y + 9 =  4 
.'. (x -  2)2 + (y -  3)2 = 22

Therefore the centre is (2, 3) and the radius is 2.
Now, by Pythagoras’ theorem,

d2 = (5 -  2)2 + (7 -  3)2 = 9 + 16 = 25

But r2 = 4,

.'. i2 = 2 5 - 4  =  21

Therefore the length of the tangents from (5, 7) to the circle is ^21.

Qu.2 Calculate the lengths of the tangents to the circle in Example 4 from (a) 
(4, 3), (b) (2, 2). What do you conclude from these results? If in doubt, mark these 
points in a figure containing the circle.

Exercise 21b
1 Verify that the given points lie on the following circles and find the equations 

of the tangents to the circles at these points:
(a) x2 + y2 + 6x — 2y = 0, (0, 0);
(b) x2 + y2 — 8x — 2y = 0, (3, 5);
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(c) x2 + y2 + 2x + Ay -  12 = 0, (3, — 1);
(d) x 2+ y 2 + 2 x - 2 y - 8  = 0, (2,2);
(e) 2x2 + 2y2 — 8x — 5_y — 1 = 0, (1, — 1).

2 Find the lengths of the tangents from the given points to the following circles:
(a) x2 + y2 + 4x — 6y + 10 = 0, (0,0);
(b) x2 + y2 — 4x — Sy — 5 = 0, (8, 2);
(c) x2 + >>2 + 6x + lOy — 2 =  0, ( -2 ,3 ) ;
(d) x2 + y2 — lOx + 8y + 5 =  0, (5, 4);
(e) x 2 + y2 = a2, (x ^ y j;
(f) x2 + >'2 + 2gx + 2fy + c = 0, (0,0).

3 The tangent to the circle x2 + y2 — 2x — 6y + 5 =  0 at the point (3,4) meets
the x-axis at M. Find the distance of M from the centre of the circle.

4 Find the equations of the tangents to the circle x2 + y2 — 6x + 4y + 5 = 0 at
the points where it meets the x-axis.

5 The tangent to the circle x2 + y2 — 4x +  6y — 77 = 0 at the point (5, 6) meets 
the axes at A and B. Find the coordinates of A and B. Deduce the area of 
triangle AOB.

6 Find the length of the tangents from the origin to the circle

x 2 + y2 — lOx + 2y + 13 = 0

Use this answer to show that these two tangents and the radii through the 
points of contact form a square.

7 Find the length of the tangents to the circle x 2 + y2 — 4 =  0 from the point 
PÍA, Y); and deduce the equation of the locus of P, when it moves so that the 
length of the tangents to the circle is equal to the distance of P from the point 
(1, 0).

8 Show that the length of the tangents to the circle x2 + y2 — 4x — 6y +  12 = 0 
from the point P(A, Y) is J ( X 2 -I- Y2 — 4X  — 6 Y + 12). Find the locus of P 
when it moves so that the length of the tangents to the circle is equal to its 
distance from the origin.

9 Show that the point (xt , j^) is outside, on or inside the circle

x2 + y2 + 2gx + 2fy + c = 0

according as to whether x f 2 + y 2 + 2gxy + 2fyl + c is positive, zero or 
negative.

10 Prove that the line x — y — 3 = 0 is a common tangent to the circles

x2 + y2 — 2x — 4y — 3 = 0 and x2 + y2 + 4x — 2y — 13 = 0

What are the coordinates of the point in which it meets the other common 
tangent?

The intersection of two circles
21.3 Example 5 Find the equation of the common chord of the circles 
x 2 + y2 — 4 x  — 2y + 1 =  0  and x 2 + y2 + 4 x  — 6y — 1 0  = 0 .



The coordinates of the points of intersection A and B of the circles satisfy the 
two equations

x 2 + y2 — 4x — 2y + 1 = 0  
x 2 + y2 + 4x — 6y — 10 = 0

Therefore, by subtraction, the coordinates of A and B satisfy the equation 

-  8x + 4y + 11 = 0

But this equation represents a straight line, and it is satisfied by the coordinates 
of A and B, therefore it is the equation of the common chord.

Two circles may not intersect but, by subtracting one equation from the other, 
the equation of a line may still be obtained. What then does the line represent? 
Qu. 3 suggests an answer.

Qu.3 What are the squares of the lengths of the tangents from the point 
P(X, Y) to the circles x 2 + y2 — 1 = 0 ,  x 2 + y2 — 6x — 8y  + 2 1  = 0 ?  What is the 
locus of P such that the lengths of the tangents from P to the circles are equal? 
Qu.4 Write down the equation of the line joining the origin to the point of 
intersection of the lines 1 7 x  —  1 5 y  + 7  = 0  and 1 9 x  —  1 3 y  + 7  = 0.
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Orthogonal circles
21.4 If the tangents to two circles at their points of intersection are per­
pendicular, the circles are said to be orthogonal. Since the radius through a point 
of contact is perpendicular to the tangent, it follows that the tangent to one circle 
is a radius of the other. Thus if the centres of two orthogonal circles of radii R 
and r are a distance d apart (Fig. 21.5), it follows by Pythagoras’ theorem that

d2 — R 2 + r2

Example 6 Show that the circles

x 2 + y2 — 6x + 4y + 2 = 0 and x 2 + y2 + 8x + 2y — 22 = 0 

are orthogonal.
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The centres of the circles are (3, —2) and ( — 4, — 1), and their radii are ^ /ll  
and ^39.

The sum of the squares of the radii is 50, and the square of the distance 
between the centres is 72 + l 2 = 50, therefore the circles are orthogonal.

Exercise 21c (Miscellaneous)
1 Show that the common chord of the circles

x 2 + y2 = 4 and x 2 + y2 — 4x — 2y — 4 = 0 

passes through the origin.
2 Find the coordinates of the point where the common chord of the circles 

x2 + y2 — 4x — 8y — 5 = 0 and x 2 + y2 — 2x — 4y — 5 = 0 meets the line join­
ing their centres.

3 Show that the following pairs of circles are orthogonal:
(a) x2 + y2 — 6x — 8y + 9 = 0, x 2 + y2 = 9;
(b) x 2 + y2 — 4x + 2 = 0, x 2 + y2 + 6y — 2 = 0;
(c) x 2 + y2 — 6y T 8 =  0, x 2 + y2 — 4x + 2y — 14 = 0;
(d) x 2 + y 2 + lOx — 4y — 3 = 0, x 2 + y2 — 2x — 6y + 5 =  0.

4 Prove that the line y =  2x is a tangent to the circle x 2 + y2 — 8x — y + 5 = 0 
and find the coordinates of the point of contact.

5 Show that the line x — 2y + 12 = 0 touches the circle x2 + y2 — x — 31= 0  
and find the coordinates of the point of contact.

6 The line 2x + 2y — 3 = 0 touches the circle 4x2 -I- 4y2 + 8x + 4y — 13 = 0 at 
A. Find the equation of the line joining A to the origin.

7 Find the equation of the circle whose centre is at the point (5, 4) and which 
touches the line joining the points (0, 5) and (4, 1).

8 Find the equation of the tangent to the circle x2 -I- y2 — 2x + y — 5 = 0 at the 
point (3, — 2). If this tangent cuts the axes at A and B, find the area of triangle 
OAB.

9 Find the length of the tangents to the circle x2 + y2 — 2x + 4y — 3 =  0 from 
the centre of the circle x2 + y2 + 6x + 8y — 1 = 0.

10 A tangent is drawn from the point ( — a, 0) to a variable circle, centre (a, 0). 
What is the locus of the point of contact?

11 Prove that the circles x2 + y 2 + 3x + y = 0 and x2 +  y2 — 6x — 2y =  0 touch 
each other. Find the coordinates of the point of contact and the equation of 
their common tangent at that point.

12 Show that the line y = x + 1 touches the circle x2 + y2 — 8x — 2y + 9 = 0. 
What is the equation of the other tangent to the circle from the point (0, 1)?

13 A circle passing through the point (4, 0) is orthogonal to the circle 
x2 + y2 = 4. Find the locus of the centre of the variable circle.

14 The circle x2 + y2 — 2x — 4y — 5 = 0 has centre C, and is cut by the line 
y = 2x + 5 at A and B. Show that BC is perpendicular to AC and find the 
area of the triangle ABC.

15 Find the equation of the circle which passes through the points (0, 2), (8, — 2), 
(9, 5). Verify that it also passes through the point (2, 6).
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16 Find the coordinates of the points A and B at which the line x — 3y = 0 meets 
the circle x2 + y2 — lOx — 5y + 25 = 0. Find also the coordinates of the point 
T where the circle touches the axis OX and verify,that OA x OB = OT2.

17 A triangle has vertices (0, 6), (4,0), (6, 0). Find the equation of the circle 
through the mid-points of the sides and show that it passes through the 
origin.

18 Two circles have their centres on the line y + 3 =  0 and touch the line 
3y — 2x = 0. If the radii of the circles are ,/ l3 , find the coordinates of their 
centres and also their equations. [Hint: use similar triangles.]

19 A and B have coordinates ( — 3,0) and (3, 0). Show that the locus of a point P 
which moves such that PB = 2PA is a circle with centre ( — 5,0) and radius 4.

20 Show that the line y = mx + c touches the circle x2 + y2 =  a2 if 
c2 = a2(1 + m2).



Chapter 22

Further topics in coordinate 
geometry
The equation of a straight line
22.1 Straight lines occur so often in coordinate geometry that it is worth while 
learning to write down their equations by a quick method. Example 9 in 
Chapter 1 was done by two methods, and what follows is an extension of the 
second.

Example 1 Find the equation o f the line with gradient — §, which passes through 
the point (1, —4).

[Think: the line has equation y = — § x + c, therefore it may be written 

3y + 2x = constant

Now since the line passes through (1, —4), the constant may be found by 
substituting these coordinates in the left-hand side.]

The equation of the line is

3y + 2x=  —12 + 2 
i.e. 2x + 3y + 10 = 0

Note. Check that the line (a) has gradient — f , (b) passes through (1, —4).

Given the equation of a line, it is easy to write down the equation of a 
perpendicular line through a given point. For example, if we require the 
equation of the line perpendicular to 4x + 5_y + 7 =  0 which passes through 
(6, — 5), we interchange the coefficients of x and y, changing one of the signs, and 
balance the equation as before. Thus the perpendicular is 5x — 4y = 50.

Example 2 Find the equation of the line joining the points (a, 0), (0, b).

The gradient of the line is — b/a. Therefore, using the method of Example 1, its 
equation is ay +  bx = ab.

415
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Dividing through by ab, the equation becomes

a b

which is known as the intercept form of the equation of a line.

Exercise 22a
1 Write down the equations of the lines with the given gradients which pass 

through the given points:
(a)
(c)
(e)
(g)
(i)

gradient 1, through (3, 2); 
gradient \ ,  through (0, — 6); 
gradient — j ,  through (3, — 6); 
gradient — f , through ( — 3, — 4);

(b) gradient —2, through (1, —3); 
(d) gradient — 5 , through ( — 2, 5); 
(f) gradient through ( —1 , 1);
(h) gradient f , through ( — 2, 5);
(j) gradient — t, through (at2, 2at);gradient 1/i, through (at2, 2at)

(k) gradient — cot 9, through (a cos 9, a sin 9);
(l) gradient — 1/ t 2, through (ct, c/t).
Write down the equations of the perpendiculars to
(a) 3x + 2y — 1 =  0, through (2, 2);
(b) Ax — 3y +  7 =  0, through the origin;
(c) 5x + 6y + 11 = 0, through ( — 3, 5);
(d) 3x — 2y — 7 =  0, through (—1,3); (e)
(f) ax +  by + c =  0, through (x t , y j ); (g)
Write down the equations of the lines which make the following intercepts on 
the x- and y-axes respectively:
(a) 3,2; (b) -1 ,2 ;  (c)*,*; ( d ) ~ i i
Write down the equations of the lines joining the following pairs of points: 
(a) (0, 2), (3, 0); (b) ( -  1, 0), (0, 5); (c) ( -  i  0), (0, f).
The perpendicular from the origin to a straight line is of length p and makes 
an angle a with the x-axis (see Fig. 22.1). What intercepts does the line make 
on the axes? Write down the equation of the line.

ty — x = at2, through (h, k); 
t2y + x =  2ct, through (ct, c/t).

Figure 22.1



6 Use the method of §22.1 to find the equations of the following straight lines:
(a) with gradient 3, through (4, 3);
(b) with gradient — through (2, — 1);
(c) with gradient f , through (1, 1);
(d) with gradient — f , through (0, — 3);
(e) joining (3, 2) and (2, — 4);
(f) joining (1, 3) and ( — 3, —6);
(g) joining ( — 1, 2) to the mid-point of (3, 5) and (5, — 1);
(h) through (2, 1), perpendicular to 2x — y = 0;
(i) through ( —1,3) perpendicular to 3x + 4y — 2 = 0;
(j) the altitude through A of the triangle A(l, 3), B(2, — 1), C(3, 5);
(k) the altitude through B of the triangle in (j);
(l) through (h, k), perpendicular to t2y + x = 2ct.

7 Show that the rectangular hyperbolas xy = 1 and x 2 — y2 = 1 are orthogonal.
8 Show that the ellipse 16x2 + 25_y2 = 400 and the hyperbola 4x2 — 5y2 = 20 are 

orthogonal.
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Polar coordinates
22.2 If someone asks me at Harrow to tell him where Enfield is, I may reply 
that it is about 19 km East and 9 km North, or I might tell him that it is roughly 
21 km away on a bearing N 60° E. These two descriptions of the position of 
Enfield correspond to the two systems of coordinates used in this book. The first 
is the basis of Cartesian coordinates and we have already met the second in the 
chapter on vectors. (See also §10.9.)

Let P be any point and let OP =  r, where O is the origin (see Fig. 22.2) and let 
OP make an angle 9 with the x-axis, then r and 9 are called the polar coordinates 
of the point P, and the coordinates may be written (r, 9). The x-axis is sometimes 
called the initial line.

It should be noticed that, while a bearing is usually measured in a clockwise 
sense from North, in mathematics the polar coordinate 9 is normally represen­
ted in an anti-clockwise sense.

Thus in Fig. 22.3, the coordinates of A are (2, 30°) and those of B are (3, 90°). A 
point may be described in different ways, for instance C may be written as
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(2, 210°), (2, — 150°), ( — 2, 30°) and so on. If, for any reason, a unique way of 
referring to each point is required, r may be taken to be positive and 8 to lie in 
the range — 180° <8 ^  180°.

Figure 22.3

Example 3 Sketch the curve whose polar equation is r = a( 1 + 2  cos 8). 

Take values of 0, and calculate 1 + 2 cos 8, as below.

8 0°

oo

45°

O
 

i
o

 
1 

so 90° 120° 135°

0O

CO o 0

2  cos 8 2 1.732 1.414 1 0 - 1 -1.414 -1.732 - 2

1+2 cos 8 3 2.732 2.414 2 1 0 -0.414 -0.732 - 1

Plot these values (see Fig. 22.4). Now if a is any angle, cos ( — a) =  cos a, 
therefore the same values of r will be obtained for negative values of 8. Thus the 
curve may be completed.

Example 4 Find the polar equation of a line such that the perpendicular to it from 
the origin is of length p and makes an angle a with the x-axis.

In Fig. 22.5, N is the foot of the perpendicular from the origin to the line, and 
let P be any point (r, 8) on the line.

In the triangle ONP, N is a right angle and angle PON = 8 — a. (or a — 0).

.'. r cos {8 — a) — p (or r cos (a — 8) = p)

Therefore, in either case, the polar equation of the line is r cos (8 — a) =  p.
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Figure 22.4

Figure 22.5

Relations between polar and Cartesian coordinates
22.3 In Fig. 22.6, P is the point (x, y) in Cartesian coordinates and (r, 6) in 
polar coordinates, and PM is an ordinate.

Now, by the definitions of cosine and sine given in §16.1,

x y
cos 0 = — and sin 9 = — 

r r
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Therefore x and y are given in terms of r and 8 by the equations 

x  = r cos 0 and y  = r sin 0

If, on the other hand, we are given the values of x and y, we can, by inspecting 
the diagram in Fig. 22.6, write down the values of r and 6.

By Pythagoras’ theorem,

r2 = x 2 + y 2
: . r =  ± V ( * 2 + y 2)

In most cases the positive square root should be taken, but on some occasions it 
may be necessary to use the negative one. (For instance, in Example 3 above, at 
the point x = a, y = 0, r is equal to — a.)

The angle 6 can be found by elementary trigonometry. In Fig. 22.6, 6 is given 
by

tan 0 = —
x

[Here again, care must be taken. For example, the point x = — 1, y = — 1, gives 
tan 0 = + 1, but in this case 8 is equal to — 135°, not 45°; if in doubt, consult the 
diagram. Compare this with the modulus and argument of a complex number 
(see §10.9).]

Example 5 Find the Cartesian equations of 
(a) r = a( 1 + 2  cos 8), (b) r cos (8 — a) = p.

(a) r = a{ 1 + 2  cos 8)

[The cos 8 suggests the relation x = r cos 8, so multiply through by r.]

.'. r2 = a(r + 2r cos 8)
.'. x2 +  y2 =  fl{^/(x2 + y 2) + 2x}

.'. x2 + y2 — lax  = a lj(x2 + y2)
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Therefore the Cartesian equation of r = a( 1 + 2  cos 0) is

(.x2 + y2 — 2 ax)2 = a2(x2 + y2)

(b) r cos (0 — a) = p

cos (0 — a) may be expanded (see §17.2),

.'. r cos 0 cos a + r sin 0 sin a = p 

Therefore the Cartesian equation of r cos (0 — a) = p is 

x cos a + y sin a = p

Note. The perpendicular from the origin to this line is of length p and makes 
an angle a with the x-axis. This form of the equation of a straight line is known 
as the norm al or perpendicular form.

Exam ple 6 Find the polar equation of the circle whose Cartesian equation is 
x 2 + y2 = 4x.

x2 + y2 = 4x

Put x = r cos 0, y = r sin 0, then

r2 cos2 0 + r2 sin2 0 = 4r cos 0 
.'. r2 = 4r cos 0

Therefore the polar equation of the circle is r = 4 cos 0.

Exercise 22b
1 Sketch the curves given by the following polar equations:

(a) r = a (l+ co s0 ), (b) r = a cos 20, (c) r = a ( l — sin 0),
(d) r = a sin 30, (e) r = a sec 0, (f) r = a tan 0,
(g) r = acosjO, (h) r = a(l +  sin 20).

2 Find the polar equations of the following loci:
(a) a circle, centre at the origin, radius a;
(b) a straight line through the origin, inclined at an angle a to the initial line;
(c) a straight line perpendicular to the initial line, at a distance a from the 

origin;
(d) a straight line parallel to the initial line at a distance a;
(e) a circle on the line joining the origin to (a, 0) as a diameter;
(f) a circle, radius a, touching the initial line at the origin and lying above it;
(g) a circle, radius a, centre on the initial line at a distance c from the origin;
(h) a point which moves so that its distance from the origin is equal to its 

distance from the straight line x =  2a.
3 Pj is the point (rt , QJ, P2 is (r2, 02) and 02 > 0i- Show that the area of the 

triangle O P iP 2 i s j r i r2 sin (02 — 0:). Deduce that if the Cartesian coordinates 
of P t and P2 are (x^y!) and (x2, y2), then the area of O P ^  is
\ ( x 1y2 - x 2y 1).



4 Deduce from the result of No. 3, that the area of the triangle Piix!,}^), 
^ 2^ 2, y2), p 3(*3,f3) is

H (x 2y3 -  x 3y2) + (x3yi -  x iy 3) + (x iy 2 -  x 2y j }

[If new axes are drawn at (x3, y3), the coordinates of P x and P2 referred to 
them are (xt -  x3, y x -  y3) and (x2 -  x3, y2 -  y3).]

5 Obtain the polar equations of the following loci:
(a) x 2 + y2 = a2, (b) x 2 — y2 =  a2, (c) y = 0,
(d) y2 = 4a(a — x), (e) x 2 + y2 — 2y = 0, (f) xy = c2.

6 Obtain the Cartesian equations of the following loci:
(a) r = 2, (b) r =  a(l + cos 9), (c) r = a cos 9,
(d) r  = a tan 0 , (e) r = 2a(l + sin 29), (f) 2r2 sin20 = c2,
(g) l/r=  l + e cos 9, (h) r = 4a cot 9 cosec 9.

7 Express the following straight lines in the form x  cos a + y sin a = p. State the 
distance of each line from the origin and give the angle which the per­
pendicular from the origin makes with the x-axis.
(a) x + ^J3y — 2, (b) x — y = 4, (c) 3x + 4y — 10 =  0,
(d) 5x — 12y + 26 = 0; (e) x + 2y — 2 = 0, (f) ax + by + c =  0.

The distance of a point from a line
22.4 Given a point P ^ x ^  y^) and the line

ax + by + c = 0

we shall first find the distance, r, of Pj from a point P2 on the line, such that 
PXP2 makes an angle a with the x-axis (see Fig. 22.7).
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Figure 22.7



P2 has coordinates (xj + r cos a, yi + r  sin a), but, as P 2 lies on the line 
ax + by + c = 0, its coordinates satisfy the equation, therefore

a(xx + r cos a) + b(y1 + r sin a) + c = 0

r(a cos a + b sin a) = — (axx + byx + c)

ax1+ by1+c
■ r = ------------n r ~-—  (!)a cos a + b sin a

Now take the case when P !P 2 is perpendicular to the line ax + by + c = 0. 
The gradient of ax + by + c = 0 is — a/b, therefore the gradient of Pj P2 is b/a.

b
tan a = -

a

, b2 a2 + b2
sec a = 1 + —y —̂

a a
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cos a = ± ¡~ 2—
y/(a2 + b2)

and, since tan a = b/a, 

b
sin a = ± -7—2— rT- 

V(a2 + b2)

so in the denominator of equation (1)

/  a2a cos a + b sin a = + 1  —; +
J ( a 2 + b2) V( a2 + b2)/

= ± J ( a 2 + b2)

Therefore the perpendicular distance of (xl5 y x) from the line ax + by + c = 0 is

axx + by i + c+ -

^J{a2 + b2

The plus or minus sign should be chosen so that this is a positive quantity, in 
other words, the perpendicular distance is

ax i + byx + c 
s/{a2 + b2)

Example 7 Find the distances of the points (a) (1, 3), (b) (— 3,4), (c) (4, — 2) from 
the line 2x + 3y — 6 =  0.

The distance of (x1? y x) from the line ax + by + c =  0 is

axx + byx + c

VV + b1)
Therefore the distances of (1,3), ( — 3,4), (4, —2) from 2x + 3y —6 = 0 are
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respectively
, , 2 x 1 + 3  x 3 - 6
(a)

(b)

(C) "  V(22 + 32

7 (2 2 + 32) ■

2 x ( - 3) + 3 x 4 - 6

J 13’ 

=  0,
7 ( 22 + 32)

2 x 4  + 3 x ( — 2) — 6 4

V 13’

The formula is more easily remembered if two points are noticed: (1) the 
numerator is obtained by substituting the coordinates of the point into 
the equation of the line (remember that the perpendicular distance is zero 
if the point lies on the line), (2) the denominator is the square root of the sum of 
the squares of the coefficients.

Qu. l Find the distances of the given points from the following lines:
(a) (3, 2), 3x — Ay + 4 = 0;
(c) (0, -  3), x + 5y + 2 = 0;
(e) ( -  4, 2), 3y = 5x — 6;
(g) (0, a), 3y = 4x;
(i) (X, Y), 1 2 x -5 y  + 7 = 0;

(b) (2 ,-1 ) , 5x+12y = 0; 
(d) (2, 5), x + y -  1 =  0;
(f) (2, 1), y =  fx  + i;
(h) (p,q), 3x + 4 y -3 p  = 0; 
(j) (X i.yJ, 8x=  15y.

Example 8 Find the equations of the bisectors of the angles between the lines 
4x + 3y — 12 = 0 and y = 3x.

[The angle bisectors are the locus of a point which is equidistant from the two 
lines, and this provides a method of finding their equations.]

Let P(3f, Y) be a point on the locus, then the distances of P from the lines 
4x + 3y — 12 = 0 and y — 3x = 0 are

AX + 3 7 —12 Y-33C
± _ 7 (4 2 + 32) and ± V(32 + 12)

But P is equidistant from the two lines, therefore 

4X + 3 Y - 1 2  t Y - 3 X  
5 “  ± ^7 T o ^

[One ±  sign has been dropped, since there are only two distinct equations: one 
given by the same sign each side, the other by different signs.]

Simplifying these equations we obtain

4 7 1 0 ^  + 3 7 1 0 7 -  12710 = 5 7 -  15X

and

4 7 l 0 2 f + 3 7 1 0 7 -  12710= - 5 7 +  153C 

Therefore the equations of the angle bisectors of the lines are 

( 4 7 1 0 + 15)x + ( 3 7 l 0 - 5 ) y - 12710 = 0
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and
(4^/10- 15)x + (3710 + 5 ) y -  12^10 = 0

Example 9 Find the equations of the tangents to the circle

x 2 + 7  — 4x — 2y — 8 = 0

which are parallel to the line 3x + 2y = 0.

[This will be done by using the result that the perpendicular distance of a 
tangent from the centre of a circle is equal to the radius.]

The required tangents are parallel to the line 3x + 2y = 0, therefore their 
equations may be written in the form

3x + 2y + c = 0

where c is a constant to be determined for each tangent.
To find the centre and radius of the circle

x2 + y2 — 4x — 2y — 8 = 0

x2 -  4x + 4 + y2 -  2y + 1 =  8 + 4 + 1

Therefore the centre is (2, 1) and the radius is 713.
Now the distance of the point (x, ,yj) from the line ax + by + c = 0 is 

|(axj + by{ + c)/7(a2 + b2) |, therefore the distance of the centre of the circle 
(2, 1) from the line 3x + 2y + c = 0 is

3 x 2 + 2 x 1 + c

But if the line is a tangent, this distance is equal to the radius, therefore

• • i  (8 + c) = 13

Taking the positive sign, 8 + c = 13, and so c = 5. With the negative sign, 
— 8 — c = 13, and so c = — 21.

Therefore the equations of the tangents parallel to 3x + 2y = 0 are
3x + 2y + 5 = 0 and 3x + 2y — 21 = 0.

Exercise 22c
1 Write down the distances of the given points from the following lines:

(a) (2, 5), 4x + 3y — 2 = 0; (b) ( - 1 ,  3), 12x -  5y = 0;
(c) ( —2,0),4x + y —2 = 0; (d) (3, 5), x -  y + 2 = 0;
(e) (— 1, 7), 2x = 5y + 1; (f) (0, 0), 3x =  4y + 6;

.'. (x — 2)2 + (y — l)2 = 13

7(32 + 22)

(g) (2, 3), y = f  x + 7
(i) (0, 0), x cos a. + y sin a = p;
(k) (c, 2c), 8x = 15y;

(h) ( l , 4) , ix  + i y  = l;
(j) (X, Y), 5x — 12y + 1 = 0 ;
(1) (xl , y l ),y =  l x - ^ .
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2 Find the equations of the bisectors of the angles between
(a) 3x + 4y — 7 = 0, y -  1 =  0; (b) 4x -  3y + 1 =  0, 3x -  4y + 3 = 0;
(c) 5x + 12y = 0, 12x + 5y — 4 = 0; (d) x + y — J = 0, the x-axis.

3 Find the equations of the bisectors of the acute angles between
(a) 3x — 4y + 2 = 0, x + 3 = 0; (b) 5x + 12y + 9 = 0, 5x — 12_y + 6 = 0;
(c) x + y + 1 = 0, x = ly.
[Draw figures to determine which equations give the required lines.]

4 What is the locus of a point which moves so that it is equidistant from the 
point (2, — 3) and the line x + 2y = 0?

5 Find the locus of a point which is equidistant from the line 3x — 4y + 7 = 0 
and the point (3,4) on the line.

6 What is the locus of a point which moves so that its distance from (2, 2) is half 
its distance from x + y + 4 = 0?

7 Find the equations of the tangents to the circle x2 + y2 + 4x + 8y — 5 = 0 
which are parallel to the line 4y — 3x = 0.

8 Show that the line 3x + 2y =  0 touches the circle x2 + y 2 + 6x + 4y = 0, and 
find the equations of the perpendicular tangents.

9 Find the equation of the circle in the first quadrant with radius 2 which 
touches the y-axis and the line 3y — 4x — 3 = 0.

10 Prove that the line y = mx + c touches the circle x2 + y2 = a2 if 
c2 = a2(l + m2). Also find the condition that the line lx + my + n = 0 should 
touch the circle.

Parameters
22.5 Consider a circle, radius a, centre at the origin (see Fig. 22.8). Let P(x, y) 
be any point on the circle, and let the angle between PO and the x-axis be 0, then

x = a cos 0 and y = a sin 0

Figure 22.8



These equations, which give the coordinates of any point on the curve in terms 
of 0, are called parametric equations, and 0 is called a parameter.

If we wish to refer to a particular point on the curve, a single number, the 
corresponding value of 0, will determine it. Thus 0 = 60° gives the point 
(a/2, yj3a/2). On the other hand, if we were given a value of x, say ja , there are 
two corresponding points: (a/2, x/3a/2) and (a/2, —j3a/2). Another advantage 
of parameters is that we may write down the coordinates of a general point on 
the curve (a cos 0, a sin 0). If we wrote (x1; y1), we should also have to bear in 
mind the equation Xj2 + y t2 = a2.

Another example of parameters was used in §22.4. The point

(*i + r cos a, yj + r sin a)
lies on the straight line through (xl5 y j  with gradient tan a, and in this case the 
parameter, r, is a distance. However, it is not always possible to give an easy 
interpretation of a parameter in terms of angles or distances.
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Example 10 Plot the graph of the curve given parametrically by the equations 
x = t2 — 4, y = t 3 — 4t, for values o f t from —3 to +3.

A table of values is shown below.

t - 3 - 2 - 1 0 1 2 3

x = t2 - 4 5 0 - 3 - 4 - 3 0 5

y = t 3- 4 i -1 5 0 3 0 - 3 0 15

Figure 22.9
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The graph has been plotted in Fig. 22.9, and the values of the parameter, t, have 
been written against the corresponding points. The arrows indicate the direction 
of motion of a point on the curve as t increases from 3 to +3.

Example 11 Sketch the curve given parametrically by x = sin 0, y = sin 20.

A few values of 0 will give all the points we need.

0 0 45° SO
 

; O ; 
°

1 135° 180°

x = sin 0 0 0.7071 1 0.7071 0

y = sin 20 0 1 0 - 1 0

Plotting these points and joining them by a curve we obtain the part of the curve 
in Fig. 22.10 which lies to the right of the y-axis.

Now sin ( — a) = — sin a, so that negative values of 0 change the signs of x and 
y. Therefore the rest of the curve may be drawn in symmetrically.

Qu.2 Sketch the locus given by x = t2, y = 1 — t2, for real values of t. Is it the 
line x + y = 1?

The graph of the curve given parametrically by the equations x = t2 — 4, 
y = t3 — 4i was plotted for values of t from — 3 to + 3 in Example 10. The 
question may well have risen in the reader’s mind, ‘What is the equation 
connecting x and yT  This can be found by eliminating t from the equations

x = f2 — 4 y = i 3 — 4t

Notice that y = tx. Therefore we may substitute t = y/x in either of the
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equations above. Choosing the simpler,

x3 = y2 — 4x2

Therefore the Cartesian equation of the locus is y2 = x 2(x + 4).

Example 12 Find the Cartesian equation of the locus given parametrically by the 
equations x — sin d,  y = sin 2 d  (see Example 11).

y  =  sin 2d ,  but sin 2 d  = 2 sin d  cos d, therefore

y  = 2  sin d  cos d  

y 2 =  4  sin2 d  cos2 d

Now x = sin d,  therefore 1 — x2 = cos2 d,  and so the Cartesian equation of the 
locus is y2 = 4 x 2 ( 1  — x2).

The process of obtaining parametric equations from a given Cartesian 
equation is not so easy as the reverse, but one method is illustrated in the next 
example.

Example 13 Obtain parametric equations for the locus y2 = x3 — x2.

Put y  = (x in the equation y 2 = x3 — x2, then

t 2X 2 =  X 3 — x2 
.-. t 2 = x -  1 

x = t 2 + 1

Therefore the locus may be represented by the parametric equations
x = i2 + 1, y = r3 + t.

Note. This method is not suitable for all equations, but it works well when the 
terms are of degree n and n — 1.

Exercise 22d
1 Plot the curves given parametrically by the equations:

(a) x = t2 + 1, y = t +  2; from t = — 3 to t = + 3.
(b) x = t2, y  = t3; from f = — 3 to t = + 3.
(c) x = t , y =  1/t; taking t = +4, +3, +2, ±1 , ±-\, ±  j ,  +£.
(d) x = 1 + t, y =  3 — 2f;
(e) x = at2, y = 2at;
(f) x = t2, y =  1/t;

2 + 3t 3 — 2t
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(h) x = 3 (t+ i/t) , y = 2(r — l/t);
(i) x =  3 cos 9, y = 2 sin 9;
(j) x = 4 sec 9, y = 3 tan 9.
Find the values of the parameters and the other coordinates of the given 
points on the following curves:
(a) x = t ,y  = 2/t; where y =  1^.
(b) x = at2, y = 2at; where x = fa.

(c) x = 1 + 1
1 ^ 7 ’ y =  -

2 + 31 
l - t

; where y = — f.

(d) x = a cos 9, y = b sin 9; where x = ja.
3 Find the Cartesian equations of the loci in No. 1.
4  By substituting y = tx, find parametric equations for the loci whose 

Cartesian equations are
(a) y4 = x5, (b) y = x 2 + 2x, (c) y2 = x2 + 2x,
(d) x2 = x3 — y3, (e) x3 + y3 = 3xy.

5 Show that the parametric equations
(a) x = 1 + 2f, y = 2 + 3f, (b) x = l/(2t — 3), y =  t/(2t — 3),
both represent the same straight line, and find its Cartesian equation.

2 — t 
1 + 21’

6 Show that the line given parametrically by the equations x =

y = y ~^2i Passes through the points (6, 7) and ( — 2, — 1). Find the values of t 

corresponding to these points.
7 P is the variable point (t2, 3t) and O is the origin. Find the coordinates of Q, 

the mid-point of OP, and hence obtain the locus of Q as P varies.
8 P is the variable point (at2, 2at) on the parabola y2 =  4ax, and Q is the foot 

of the perpendicular from P to the y-axis. Find the locus of the mid-point of 
PQ.

9 The line joining the origin to the variable point P(i, 1/i) meets the line x = 1 
at Q. Find the locus of the mid-point of PQ.
Find the coordinates of the points nearest to the origin on the curve x =  t, 
y = 1/i. What is their distance from the origin?
Find the coordinates of the points on the curve x = at2, y = 2at where the 
distance from the point (5a, —2a) is stationary. Distinguish between max­
ima, minima and points of inflexion.

12 Find the equations of the chords joining the points with parameters p and q 
on the following curves:
(a) x = t2, y = 21; (b) x =  t, y = -  1/i;
(c) x =  t 3, y = t; (d) x = t + l/t, y = 2i.

13 Determine the point on the parabola x = at2, y = 2at where the distance to 
the line x — y + 4a = 0 is least and find the least distance.

14 Find the values of f at the points of intersection of the line 2x — y — 4 = 0 
with the parabola x = t 2, y = 2t and give the coordinates of these points.

15 Find the points of intersection of the parabola x = t 2, y =  2t with the circle 
x2 + y2 — 9x + 4 =  0.

10

11



Example 14 Find the equation of the tangent to the rectangular hyperbola 
xy = c2 at the point P(ct, c/t), and show that, if this tangent meets the axes at Q 
and R, then P is the mid-point of QR.

The gradient of the curve is given by

dy dy Idx
dx df / di

But y = c/t, 

dy c
' ' dt t2

and x = ct,

. dx
'• d i ~ C

dy —c/t2 1
dx c t2

Therefore the equation of the tangent at P is

yt2 + x = 2 ct

This tangent meets the axes at Q(2cf, 0) and R(0, 2c/t) therefore P(ct, c/t) is the 
mid-point of QR.

Example 15 Find the coordinates of the points where the line 4x — 5y + 6a = 0 
cuts the curve given parametrically by (at2, 2at).

If the line 4x — 5y + 6a = 0 meets the curve at the point (at2, 2at), then its 
coordinates must satisfy the equation of the line. Therefore

4at2 — lOat + 6a = 0 
.'. 2f2 — 5i + 3 =  0 

.-. (2f — 3)(f — 1) =  0
t = f  or 1

Therefore the coordinates of the points of intersection are (fa, 3a) and (a, 2a).

Exercise 22e
1 Find the equations of the tangents and normals to the following curves at the 

given points:
(a) x = t2, y = t3, (1, -  1); (b) x = t 2, y = 1/t, ( f , 2);
(c) x = at2, y = 2at, (a, — 2a); (d) x = ct, y =  c/t, ( — c, — c);
(e) x = f2 — 4, y = t3 — 4t, ( — 3, — 3); (f) x =  3 cos 9, y = 2 sin 6, (§, ̂ /3).

2 Find the equations of the tangents and normals to the following curves at the 
point whose parameter is t:
(a) x = t 3, y  = 312; (b) x = at2, y = 2at;
(c) x = 4 i3, y = 3f4; (d) x = c t,y  = c/t;
(e) x = a cos t, y = b sin t; (f) x = a sec t, y = b tan t.
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3 Find the equations of the chords joining the points whose parameters are p
and q on the following curves. Deduce the equations of the tangents at the 
points p by finding the limiting equations of the chords as q approaches p. 
(a) x = t2, y = 2t; (b) x = l/t, y = t2;
(c) x  = ct, y = c/t; (d) x  = a cos t, y = b sin t.
[Hint: cancel a factor of p — q in the gradients.]

4 Find the equation of the normal to the parabola x = at2, y = 2at at the point 
(4a, 4a). Find also the coordinates of the point where the normal meets the 
curve again.

5 Find the coordinates of the point where the normal to the rectangular 
hyperbola x  = ct, y = c/t at (2c, jc) meets the curve again.

6 Find the coordinates of the point where the tangent to the curve x =  l/t, 
y = t 2 at (1, 1) meets the curve again.

7 Find the equation of the tangent to the parabola y2 = 4ax at the point
(at2, 2at). For what values of t does the tangent pass through the point
(8a, 6a)? Write down the equations of the tangents to the parabola from 
(8a, 6a).

8 Find the equations of the tangents to the hyperbola x = ct, y = c/t from the 
point (§c, \c).

9 Find the equations of the normals to the parabola x = at2, y = 2at from the 
point (14a, — 16a).

10 The normal to the hyperbola x = ct, y = c/t at the point P with parameter p 
meets the curve again at Q. Find the coordinates of Q.

11 Show that, if a tangent to the curve x = l/t, y = t2 meets the axes in A and B, 
then PB = 2AP.

12 Show that the tangent at the point t on the astroid x = a cos3 t,y  = a sin3 1 is 
the line y cos t + x  sin t = a sin t cos t. Show that the tangent meets the axes 
in points whose distance apart is a.

The parabola
22.6 As no new method is required, work on the parabola is given in the form 
of exercises. It is intended that any result proved may be used in later questions.

Definition

The locus of a point equidistant from a given point and a given line is called a 
parabola. The given point is the focus and the given line the directrix.

Exercise 22f
1 Use compasses and graph paper to plot a parabola from the definition.
2 Given a parabola, take axes with the x-axis through the focus, perpendicular 

to the directrix, and the origin where the x-axis meets the curve. Let the focus 
be (a, 0) and show that the equation of the parabola is y2 =  4ax. [It follows 
from the definition that the equation of the directrix is x =  — a.]



3 Verify that the point (at2, 2at) lies on the parabola y2 = 4ax for all values of t, 
and that every point on the parabola is given thus.

4 Find the equations of the tangent and normal to the parabpla y2 = 4ax at the 
point (at2, 2at).

In Fig. 22.11, the tangent and normal at the point P on the parabola y2 =  4ax 
meet the x-axis at T and G, and the y-axis at T' and G'. PN is parallel to the 
y-axis. S is the focus. LD is the directrix and L is the foot of the perpendicular 
from P to the directrix.

Further topics in coordinate geometry 433

5 Show that ST' = T'L and deduce that
(a) /.LPT' = /_SPT' [use the definition of the curve],
(b) /.SPG = LKPG.
[This proves the optical property of the parabola, i.e. that light from a point 
source at the focus is reflected in rays parallel to the axis.]

6 Show that L, T', S are collinear (i.e. lie on a straight line), and that LS is 
perpendicular to PT.

7 Show that TS = SP = SG.
8 Show that LPST is a rhombus and that LPGS is a parallelogram.
9 Show that NG = 2a.

10 If the parameters of the points P and Q are p and q, show that the tangents to 
the parabola meet at the point (apq, ap + aq).

11 If PQ passes through the focus prove that, with the notation of No. 10,
pq= - l .
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12 Show that the tangents at the ends of a focal chord meet on the directrix.
13 Show that if the tangents at the ends of a focal chord meet the tangent at the 

vertex at U and V, then Z.USV is a right angle.
14 Show that the locus of the mid-point of a focal chord is y2 =  2a(x — a).
15 Show that if the tangents to the parabola at P and Q meet on the line x =  ah, 

then the locus of the mid-point of the chord PQ is y2 = 2a(x + ah).
16 If the tangents to the parabola at P and Q intersect on the line y =  k, find the 

locus of the mid-point of PQ.
17 Find the values of t for which the normal at (at2, 2at) passes through the 

point (5a, 2a). Hence find the equations of the normals to the parabola from 
(5a, 2a).

18 Find the equations of the tangents to the parabola from the point (4a, 5a).

Exercise 22g (Miscellaneous)
1 Show that the ellipse 4x2 + 9y2 = 36 and the hyperbola 2x2 — 3y2 = 6 are 

orthogonal.
2 Sketch the curve whose polar equation is r  = a cos 39.
3 Sketch the curve whose polar equation is r = a(l + sin 9) and from this 

obtain a sketch of the curve r(l + sin 6) = a.
4 Find the polar equation of a parabola, taking the focus as the origin and the 

axis as the initial line.
5 Calculate the area of the triangle A(2, 5), B(3, — 1), C(4, 6).
6 Find the polar equation of (x2 + y2 + ax)2 = a2(x2 + y2) and the Cartesian 

equation of r(l + sin 9) = a.
1 Express the equation lx  — 24y — 10 = 0 in perpendicular form and state the 

distance of the line from the origin.
8 Find the equations of the bisectors of the angles between

(a) 6x — ly  + 11 = 0, 2x + 9y — 3 = 0; (b) 7x — y = 3, x + y = 2.
9 Find the locus of a point which moves so that its distance from the line 

y + x — 2 = 0 is equal to its distance from the point ( — 1, — 1).
10 Find the equations of the tangents to the circle

x2 + y 2 — 12x — 14y + 75 = 0

which are parallel to the line 3y — x = 0.
11 A straight line through the point (1, 1) and the variable point P(i, 1/i) meets 

the y-axis at Q. Find the locus of the mid-point of PQ.
12 The chord PQ of the hyperbola x = ct, y = c/t meets the axes at A and B. 

Show that the mid-point of PQ is also the mid-point of AB.
13 Find the equations of the tangent and normal to the curve x = t3 — t2, 

y = t2 — 1 at the point (4, 3).
14 Find the equation of the tangent at P(f2, 1/i) to the curve xy2 = 1. If the 

tangent meets the x-axis at Q, find the locus of the mid-point of PQ.
15 The tangent at P(i2, 1/i) to the curve xy2 = 1 meets the y-axis at A, the x-axis 

at B and the curve again at Q. Show that AP:PB:BQ = 1:2:1.



16 Find the equations of the tangents to the parabola x =  at2, y = 2at from the 
point (5a, 6a).

17 Find the coordinates of the point where the normal to the parabola x = at2, 
y = lat at (9a, 6a) meets the curve again.

18 Show that if the tangent at P(t, t 3) to the curve y = x 3 meets the curve again 
at Q, then the y-axis divides PQ in the ratio 1:2.

19 A tangent to the rectangular hyperbola x = ct, y = c/t meets the axes at A 
and B. Show that the area of triangle AOB is constant.

20 Show that if the tangent to a parabola at P meets the axis at T, and N is the 
foot of the perpendicular from P to the axis, then TN is bisected by the 
vertex.
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Chapter 23

Variation and experimental laws
Variation
23.1 ‘Variation’ in its mathematical sense is concerned with certain ways in 
which one variable depends on one or more others. The idea is bound up with 
ratio and proportion which the reader will have met in elementary arithmetic. 
Some readers may need to revise these ideas and to appreciate their power for 
the first time.

Proportion arises in arithmetic in a number of ways. For instance the 
circumference C of a circle is proportional to its radius r: this is usually 
expressed in the form of an equation,

C = 27ir

Sometimes a graph shows us that two variables are in proportion; for example 
Fig. 23.1 shows the ‘travel graph’ of a car moving at a steady speed of 50 km/h 
along a road. Note that: (1) the gradient of the graph is uniform, (2) the straight 
line passes through the origin.

Yet another aspect of proportion, and indeed the most basic, is used in 
arithmetic when we use ratios.

To summarise, if y is proportional to x, then
(a) y = kx, where k is some constant,
(b) the graph of y against x is a straight line through the origin,
(c) if Xj, y, and x 2, y2 are corresponding values of x and y, then

Zi = i i  
y 2 x 2

Note that any one of these statements follows from either of the others. The 
equivalence of (a) and (b) is familiar from the work of Chapter 1. The equivalence 
of (b) and (c) can be seen by writing (c) in the form

X i  x 2

which shows that (xj, yx) and (x2, y2) lie on the same straight line through the 
origin.

436
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In the last paragraph we used the phrase,

‘y is proportional to x’

Sometimes another phrase with exactly the same meaning is used instead, 
namely,

‘y varies as x’

Other examples of variation will already be familiar to the reader. For instance, 
the area A of a circle is given in terms of its radius r by the equation

A = nr2

Here A is not proportional to r, but it is proportional to r2 and we express this 
by saying that ‘A varies as the square of r\

Another example is the volume V of a sphere in terms of its radius r. The 
equation connecting V, r is

V  =  j  n r 3

Again, V is not proportional to r, but it is proportional to r3 and we express this 
by saying that ‘V varies as the cube of r\

Kinematics provides another example. If a distance of 60 km is travelled at a 
constant speed u km/h, the time t h is given by the equation

t = 60/u

We may say that t and u are inversely proportional, or we may express this by 
saying ‘i varies inversely as u\

The ‘inverse square law’ may be familiar to the reader: one example of this is



the force F exerted by the Earth on a given satellite at distance r from the centre 
of the Earth. The equation connecting F and r is

k
F = - r  (where k is a constant) 

r

This may also be expressed by saying that ‘F varies inversely as the square of r\

Qu. 1 Express the following equations as statements involving the word 
‘varies’:

(a) s = 16i2, (b)V  = nr3, (c)y = ^ ,
x

^ T=2 /̂2^1, ^  P = l ^ ’ ^  Tl = d*'
Suppose that a number of spheres are made out of wood of uniform density. 

Then, unless we know the density of the wood, we cannot calculate the weight W 
of one of these spheres from its diameter d. We can, however, say that

W  varies on the cube of d

or write

W = kd3 (where k is a constant)

Further, if Wr, d, and W2, d2 are the weights and diameters of two of the spheres,

Wl ~ kdi3 
W2 = kd23

so that, by division,

WL = v
W2 d 3

Now, if we know the weight and radius of one of the spheres, this last equation 
provides us with a very convenient way of calculating the weight of any other 
when its diameter is known.

Example 1 A number of spheres are made out of wood of uniform density. A 
sphere with diameter 7 cm weighs 0.11 kg. How much will a sphere of diameter 
9 cm weigh?

As we have seen above, W  varies as d3. Hence if W1, dx and W2, d2 are the 
weights and diameters of the two spheres,

W2 d23

It is often helpful to tabulate the data and it is worth noting that the algebra of 
the question is simplified if we place the quantity to be found in the line labelled 
( 1 ):
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weight (kg) diameter (cm)

(1) Wi 9
(2) 0.11 7

Then substituting into the equation Wl/W 2 = d13/d23,

Wx _ 93
o i l - ?1

93
^ = 0 . 1 1  X  ^ 3

= 0.23 to two significant figures

Therefore the sphere of diameter 9 cm weighs 0.23 kg, correct to 2 significant 
figures.

[Example 1 illustrates the power of the method: an alternative way of tackling 
this question would have been to find the density of the wood from the data 
numbered (2) in the table.]

Qu.2 In Example 1, what is the effect on W  of (a) doubling d, (b) trebling d‘l 

We saw on page 438 (just above Example 1), that from the statement,

‘W varies as the cube of d' 

could be deduced the equation

W2 d23

which connects corresponding values W1? d1 and W2, d2. It is important for the 
following work to be able to convert a statement to an equation quickly and 
easily, so some more examples of this process follow.

If we are given that

y  varies as the square of x’

this is simply another way of saying

y  is proportional to x2’

From this it follows immediately (see page 436) that
(a) y = kx2, where k is some constant,
(b) the graph of y against x2 is a straight line through the origin,
(c) if x1; y 1 and x2, y2 are corresponding values of x and y, then

.Vi _  V
y 2 V

On the other hand, if we are given that 

'y varies inversely as the square of x’



this is simply another way of saying
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‘y is proportional to —=■
x

from which it follows immediately that
(a) y = k /x 2, where k is some constant,
(b) the graph of y against 1/x2 is a straight line through the origin,
(c) if Xj, y t and x 2, y 2 are corresponding values of x and y, then

h  =  ] / V
y 2 l / * 2 2

or, multiplying numerator and denominator of the right-hand side by
Xi2X22,

y  2 * i 2

Note that, in this case of inverse variation, the x’s are upside down compared 
with the y’s. ‘Inverse’ comes from the same root as ‘invert’, one meaning of which 
is to ‘turn upside down’.

Qu.3 Write down equations (i) with fc’s, (ii) with suffixes, similar to those in the 
last three paragraphs for the following statements:
(a) p varies as q,
(b) p varies inversely as v,
(c) v varies as the cube of x,
(d) u varies as the square root of /,
(e) F varies as the square of c,
(f) H varies inversely as the square of d,
(g) T  varies inversely as the square root of g,
(h) A varies as the nth power of s,
(i) the cube of A varies as the square of v.

Example 2 The length l of a simple pendulum varies as the square of the period T 
(time to swing to and fro). A pendulum 0.994 m long has a period of approximately 
2 s ,find (a) the length of a pendulum whose period is 3 s, (b) an equation connecting 
l and T.

(a) Tabulating the data:

length (m) period (s)

(1) / 3
(2) 0.994 2

/ varies as T2.
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' ' 0.994 22

.'. / = 0.994 x 9 
4

= 2.236

Therefore the length of a pendulum whose period is 3 s is 2.24 m.

(b) Tabulating the data again, we enter / and T  in the row numbered (1):

length (m) period (s)

(1) l T
(2) 0.994 2

Substituting in the same equation as before,

/ _  T2
0.994 “  ~¥

I = 0.2485T2

Therefore the equation connecting l, T is l x  0.25 T2.

Qu. 4 In Example 2, find the effect on l of (a) doubling T, (b) trebling T. What is 
the effect on T of doubling /?
Qu. 5 Find the period of a pendulum whose length is 0.3 m from the data of 
Example 2. Time ten swings to and fro of such a pendulum and compare this 
with your answer.

Example 3 The weight w N* of an astronaut varies inversely as the square o f his 
distance d from the centre of the Earth. I f  an astronaut’s weight on Earth is 792 N, 
what will his weight be at a height of 230 km above the Earth? Take the radius of 
the Earth to be 6370 km.

We tabulate the data:

distance from the
centre of the Earth

weight (N) (km)

(1) w 6370 + 230 = 6600
(2) 792 6370

*The newton (N) is the absolute unit of force in SI units. The magnitude of 1 kg wt varies with the 
value of g, since 1 kg wt gives to a mass of 1 kg an acceleration of g m/s2. In contrast, 1 N gives to the 
same mass a fixed acceleration of 1 m/s2, by definition. Hence in a context of varying gravitational 
pull we use this constant, or absolute, unit of force the newton.
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Now w varies inversely as d2, so if wq, d1 and w2, d2 are corresponding values, 

wi d22
v 2 = d ?

w _  63702 
' ' 792 “  66002

w = 792 x
63702
66002

= 737.7

Therefore the astronaut’s weight would be 738 N.
To find the height above the Earth at which his weight would be halved, we 

again tabulate the data:

distance from the
centre of the Earth

weight (N) (km)

(1) 396 d
(2) 792 6370

Again using w1/w2 = d22/d 12, for the new w1? du

396 _  63702 
792 _  d2

d2 = 2 x 63702 

.'. d = j 2 x  6370 

= 9010

Therefore the height above the Earth at which his weight would be halved is 
9010-6370 km = 2640 km.

Qu.6 Find an equation in the form w = k/d2 connecting the weight of the 
astronaut in Example 3 and his distance from the centre of the Earth.
Qu.7 With the equation of Qu. 6, find the effect on w of (a) doubling d,
(b) trebling d.
Qu.8 Discuss whether the first of the following pairs of variables varies as 
some power of the second and, if so, state what power:
(a) the cost c of 100 copies of a book and the price p of one,
(b) the cost C of a square of plywood and its side a,
(c) the weight w of a spherical lead shot and its radius r,
(d) the length l of a rectangle of given area and its breadth b,
(e) the surface area S of a scale model and its length l,
(f) the area A of an equilateral triangle and its side a,



(g) the side a of an equilateral triangle and its area A,
(h) the volume V of a regular tetrahedron and its side a,
(i) the side a of a regular tetrahedron and its volume V. ,

Exercise 23a
1 The area of a circular sector containing a given angle varies as the square of 

the radius of the circle. If the area of the sector is 2 cm2 when the radius is 
1.6 cm, find the area of the sector containing the same angle when the radius 
of the circle is 2.7 cm.

2 The distance of the horizon d km varies as the square root of the height h m 
of the observer above sea level. An observer at a height of 100 m above sea 
level sees the horizon at a distance of 35.7 km. Find the distance of the 
horizon from an observer 70 m above sea level.

Also find an equation connecting d and h.
3 The length l cm of a simple pendulum varies as the square of its period T  s. A 

pendulum with period 2 s is 99.4 cm long; find the length of a pendulum 
whose period is 2.5 s.

What equation connects l and T?
4 Assuming that the length of paper in a roll of given dimensions varies 

inversely as the thickness of the paper, find the increase in length when the 
thickness of paper in a 100 m roll is decreased from 0.25 mm to 0.20 mm.

5 A certain type of hollow plastic sphere is designed in such a way that the 
mass varies as the square of the diameter. Three spheres of this type are 
made: one has mass 0.10 kg and diameter 9 cm; a second has diameter 14 cm; 
and a third has mass 0.15 kg. Find the mass of the second, the diameter of the 
third, and an equation connecting the mass m kg and the diameter d cm of 
spheres of this type.

6 The circumference C inches of a circle of radius r inches is given by the 
formula C = 2nr; if C¡, r, and C2, r2 are corresponding values of C, r,
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(a) What formula gives the circumference C cm of a circle of radius r m? 
Does equation (1) still hold?

(b) Given that 1 inch = 2.54 cm, what equation gives the circumference C cm 
of a circle of radius r inches? Does equation (1) still hold?

7 Boyle’s law states that, under certain conditions, the pressure exerted by a 
given mass of gas is inversely proportional to the volume occupied by it. The 
gas inside a cylinder is compressed by a piston in such a way that Boyle’s law 
may legitimately be applied. When this happens, the volume is decreased 
from 200 cm3 to 70 cm3. If the original pressure of the gas is 9.8 x 104 N/m2, 
find the final pressure of the gas.

8 The number of square carpet tiles needed to surface the floor of a hall varies 
inversely as the square of the length of a side of the tile used. If 2016 tiles of



side 0.4 m would be needed to surface the floor of a certain hall, how many 
tiles of side 0.3 m would be required?

9 If the volume of a model 10 cm long is 72 cm3, what is. the volume of a similar 
model 6 cm long? What is the length of a similar model with volume 
100 cm3?

10 The maximum speed of yachts of normal dimensions varies as the square 
root of their length. If a yacht of 20 m can maintain a maximum speed of 
12 k, find the maximum speed of a yacht 15 m long. Obtain an equation 
connecting a yacht’s maximum speed v k and its length / m.

11 For similar printing type, the number of characters on a given size of page 
varies inversely as the square of the height of the type. On a certain page 
2200 characters of height 6 mm could be printed. How many characters of 
similar type of height 5 mm could be printed on the page? When 7000 
characters have to be printed on the page with similar type, what height 
would the type be if the height is a multiple of 0.1 mm?

12 (a) If y varies as x3 and x varies as t2, does y vary as any power of t? [Hint:
write the statements y varies as x3, x varies as t2 as equations with 
constants k, X.]

(b) p varies inversely as q; q varies as the square of r. Does p vary as any 
power of r?

13 When I drive round a certain corner at 18 km/h, the sideways frictional force 
between the tyres of my car and the road is 1050 N. The sideways frictional 
force F N varies as the square of the speed v km/h. Find an equation 
connecting F, v and use it to find
(a) the total sideways frictional force at 27 km/h,
(b) the speed at which the sideways frictional force is equal to 6170 N which 

is half the weight of the loaded car.
14 Assuming that the power H kW developed by a certain car travelling on a 

level road varies as the cube of the speed v km/h, find an equation connecting 
H, v for this car, given that it develops 50 kW at 65 km/h. Find the power 
developed by it at 30 km/h along a level road.

15 The speed of a certain point on a high-speed centrifuge varies as the angular 
velocity of the centrifuge, and the acceleration of this point varies as the 
square of the angular velocity. Find the percentage changes in the speed and 
acceleration of the point when the angular velocity is increased from 56 000 
rev/min to 60 000 rev/min.

16 The cube of the surface area of a regular icosahedron varies as the square of 
its volume. By what factor will the surface area of a regular icosahedron be 
increased if its volume is doubled?

17 The period T s of a given pendulum varies inversely as the square root of the 
acceleration due to gravity g m/s2 at the location of the pendulum. Find the 
percentage change in the period of a pendulum moved from Greenwich, 
where g = 9.812 m/s2, to New York where g = 9.802 m/s2. [Hint: use the first 
two terms of the expansion of (1 + x )1/2.]

18 The volume and areas of similar solids vary respectively as the cubes and 
squares of their linear dimensions. Some similar solids are placed in an
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upward current of air. Assuming that the upthrust of the air current varies as 
the surface area of the solid and that the weight of the solid varies as its 
volume, show that some of the solids will rise if their linear dimensions are 
small enough.

19 The square of the period (time to go round its orbit) of an Earth satellite 
varies as the cube of its mean distance from the centre of the Earth. The 
period of the Moon is 28 days and its mean distance from the centre of the 
Earth is 380 000 km. Find the period, to the nearest minute, of an Earth 
satellite whose mean distance from the surface of the Earth is 470 km, given 
that the radius of the Earth is 6370 km.

Also find an equation giving the period of an Earth satellite T  hours in 
terms of its mean distance d km from the centre of the Earth.

20 Like and unlike poles of two bar magnets repel and attract each other 
respectively with a force which varies inversely as the square of the distance 
between the poles. The poles of each of two bar magnets are at a distance 2d 
apart. The magnets are placed in line with two unlike poles of the magnets at 
a distance d apart. They are then placed in line with two unlike poles at a 
distance 2d apart. By what factor is the attractive force between the magnets 
decreased?
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Joint variation
23.2 So far we have only considered examples of variation where one variable, 
say y, varies as some power of another variable, say x. But there are many 
examples in science, engineering and everyday life when one variable depends on 
two or more others. For example, the volume V of a right circular cylinder is 
given in terms of its radius r and height h by the formula

V = nr2h

If we consider a metal rod of uniform circular cross-section which can be cut 
into lengths, we have a case of this law in which the radius is constant and so

the volume varies as the length

or, using the symbol ‘oc’ as an abbreviation for ‘varies as’,

Vceh

On the other hand, if circular discs are cut out of sheet metal or plywood, h will 
be constant and so

the volume varies as the square of the radius 

or Vocr2

To summarise, for a right circular cylinder,

if r is constant, V oc h 
if h is constant, Veer2
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In experimental work, if one variable depends on two or more others, it is 
most convenient to see how the first depends on each of the others in turn while 
the remainder are held constant. As an illustration of this, consider the discharge 
of water through a circular hole. The volume of water V will depend in some way 
on

(a) the radius r of the hole,
(b) the velocity v of the water,
(c) the time t over which the discharge takes place.

It is found that
(1) if v, t are constant, V oc r2,
(2) if t, r are constant, Vazv,
(3) if r, v are constant, V oc t.

It will be seen that the equation

V = kr2vt (k constant)

satisfies the conditions (1), (2), (3) and hence it is natural to write

V oc r2vt

Qu. 9 Express the statement ‘If z is constant, y varies as x; if x is constant, y 
varies as the cube of z’, as a single equation.
Qu. 10 Write the statement, ‘If h, t are constant, W varies as the square of r; if r, 
t are constant, W  varies as h; if r, h are constant, W  varies inversely as t \  as a 
single statement using the sign ‘oc’.

When one variable varies as two or more others, the word jointly is sometimes 
used. For example, with the data of the last paragraph, we might say that V 
varies jointly as v, t and the square of r.

Qu. 11 ‘The kinetic energy T  of a flywheel varies jointly as its mass m and as 
the square of its radius r.' Express this statement (a) as an equation with a 
constant k, (b) as a statement using the sign ‘oc’.
Qu. 12 ‘F varies jointly as m and the square of v, and inversely as r.’ Express 
this statement as an equation.

For purposes of calculation, we can rewrite statements in the form

x3
A = k — (where k is some constant)

in terms of the ratios of corresponding values A l , x 1, t l and A 2, x 2, t 2 of the 
variables. We have

. A i  ^  * i 3A i  
' ’ A 2 x 23/t2
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Multiplying numerator and denominator by t1t2,

Aj = x l 3t2 
A2 x23ii

Note that A varies inversely as t, and that the ratio t 1/r2 is ‘upside down’.

Qu. 13 If x l5 y u Zj and x2, y2, z2 are corresponding values of x ,y ,z , write 
down equations connecting x l5 yq, zt and x2, y2, z2 when
(a) z varies jointly as x and the square of y,
(b) z varies as y and inversely as the square of x,
(c) z varies as the cube of x and as the square of y,
(d) z varies as x when y is constant and z varies as y when x is constant,
(e) z varies as the square of x when y is constant and z varies as the square of y 

when x is constant,
(f) z varies as the square root of x when y is constant and inversely as y when x 

is constant.

Example 4 The total sideways force experienced by a given car rounding a 
circular bend at a constant speed varies as the square of the speed of the car and 
inversely as the radius of t he circle. A certain car goes round a bend of radius 50 m 
at 72 km/h and experiences a total sideways force of 12 kN. What sideways force 
will it experience on going round a bend of radius 30 m at 54 km/h?

Let the sideways force be F kN, the speed be v km/h, and the radius r m, then

Foe — 
r

Therefore, if E,, vu rt and F 2, v2, r2 are corresponding values of F, v, r,

Fi _  v i2/r i ^  v12r2 
F2 v22/r2 v22r i

F (kN) v (km/h) r( m)

(1) F 54 30
(2) 12 72 50

F 542 x 50 
' ' 12 “  722 x 30

12 x 32 x 5 
F =  42 x 3

= £  = 11.25 4

Therefore the sideways force on the car will be approximately 11 kN.
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Variation in parts*
23.3 As an example of variation in parts, consider the cost of having a floor 
covered with lino tiles. First of all, a man and some materials have to be 
transported to the site. Here the cost of the man’s time and the cost of the 
running of a van may be taken to vary as the distance s km from the firm’s 
premises and so we may write this part of the cost as £ks, where k is some 
constant to be found. Second, there is the cost of materials and the man’s time 
doing the job, which may be taken to vary as the area A m2 of the floor, and so 
this part of the cost may be written £KA, where K  is another constant to be 
determined. Hence, if the total cost is £C,

C = ks + KA

Let us suppose that the cost of two contracts is as given in the following table. 
How much would it cost to lay 40 m2 of lino tiles at a distance of 75 km from the 
firm’s premises?

cost distance area
£C s km A m 2

C 75 40
265 45 50
155 60 27

Substituting from the bottom two lines of the table into

C = ks + KA 

we get

(1) 
(2)

4 x (1) — 3 x (2):

1060 -4 6 5 =  (200 -81 )K

265 = 45k + 50 K 
155 = 60k + 27 K

From (2),

155 =  60k + 135 

.-. 20 = 60k 

•••* =  *
Substituting K  = 5, k =

C = is + 5A

*The reader is advised to delay reading this section until he has worked at least some of Exercise 23b 
Nos. 1-12.
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When s = 75, A = 40,

C = ^ x 75 +  5 x 40 = 225

Therefore the cost of laying 40 m2 of lino tiles at a distance of 75 km would be 
£225.

Qu. 14 The cost £C of manufacturing a certain number of wooden cubes for 
children is made up of two parts, one of which is constant and the other of which 
varies as the cube of the side x cm of a brick.
(a) Express the above statement in symbols.
(b) Find the cost of making 1000 1{ cm cubes if the same number of 2 cm and 

1 cm cubes cost respectively £18 and £11.

Exercise 23b
1 The area of a sector of a circle varies jointly as the angle at the centre and the 

square of the radius. Given that the area of a sector containing an angle of 
36° in a circle of radius 10 cm is 31.4 cm2, find the area of a sector containing 
an angle of 12° in a circle of radius 5 cm.

2 The number of revolutions per minute of a bicycle wheel varies as the speed 
of the bicycle and inversely as the diameter of the wheel. A wheel of diameter 
63 cm makes 151.5 revolutions per minute when the bicycle is moving at 
18 km/h. Another bicycle has wheels of 35 cm diameter; how many revol­
utions per minute will one of its wheels make when the bicycle is moving at 
30 km/h?

3 The flow of water through a circular orifice varies as the square of the 
diameter of the orifice and as the square root of the head of water. Given that 
200 litres of water per second flow through an orifice of diameter 25 mm 
when the head of water is 4 m, find the flow of water through an orifice of 
diameter 10 mm when the head of water is 9 m.

4 The kinetic energy of a car (including passengers) varies jointly as the total 
mass and the square of the speed. A car of total mass 1000 kg travelling at 
72 km/h has a kinetic energy of 200 kJ. What is the kinetic energy of a car of 
total mass 1500 kg travelling at 108 km/h?

5 The volume of a given mass of gas varies directly as its absolute temperature 
and inversely as its pressure. At an absolute temperature of 283 K and a 
pressure of 73 cm of mercury, a certain mass of gas has volume 200 cm3. 
What will its volume be at standard temperature and pressure, i.e. absolute 
temperature 273 K and pressure 76 cm of mercury? Also find an equation 
which expresses the volume V cm3 of the gas in terms of its absolute 
temperature T  K and its pressure p cm of mercury.

6 The rate at which an electric fire gives out heat varies as the square of the 
voltage and inversely as the resistance. If a fire with resistance 57.6 ohms 
gives out approximately 1 kW when the voltage is 240, at what rate will heat 
be given out by an electric fire with resistance 69 ohms when the voltage is
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220? Also find an expression which gives (approximately) the output in kW 
of an electric fire of resistance R ohms when the voltage is V.

7 The frequency of the note emitted by a plucked wire of a certain type varies 
as the square root of the tension of the wire and inversely as its length. A wire 
of length 0.61 m under a tension of 31 N emits a note of frequency 130 s 1. 
What will be the frequency of the note emitted by a similar wire of length 
0.25 m under a tension of 100 N? Find an equation which gives the number of 
oscillations per second /  in terms of the length l m and the tension F N.

8 When a note is produced by blowing across the top of a bottle with a circular 
mouth, the frequency of the note varies as the internal diameter of the mouth 
and inversely as the square root of the volume of the bottle. Blowing across a 
certain bottle, I obtain a note whose frequency is approximately 203 s_1. 
What is the frequency of the note I should obtain by blowing across the top 
of a bottle with four times the capacity, and with three-quarters the mouth 
diameter of the first?

9 The period of a simple pendulum varies as the square root of its length and 
inversely as the square root of the acceleration due to gravity. On the Earth, 
the period of a pendulum 99.4 cm long is 2 s. Assuming that the acceleration 
due to gravity on the surface of the Moon is one-sixth of that on the Earth, 
what would be the period of a pendulum 1 m long on the Moon?

10 The effectiveness of a spin drier is measured by the central acceleration at a 
point on the internal surface of the rotating drum. This acceleration varies as 
the internal diameter of the drum and as the square of its angular speed. 
Which would be the more effective: a spin drier with internal diameter 0.5 m 
running at an angular speed of 1600 rev/min, or one with internal diameter 
0.3 m running at 2000 rev/min?

11 The rate at which heat is conducted through a metal plate varies jointly as 
the area of the plate and the temperature difference between the two sides, 
and inversely as the thickness of the metal. For quick heating of the contents, 
which saucepan would be better; one with a diameter 15 cm and thickness 
2 mm, or another with diameter 20 cm and thickness 3 mm?

12 The light received at a point varies as the power of the source and inversely 
as the square of its distance from the point. Assuming that each bulb 
converts an equal proportion of its power into light, which gives better 
illumination: a 60 W bulb at \ \  m, or a 100 W bulb at 2 m?

13 The annual cost of running a certain car is made up of two parts, one of 
which is fixed and the other of which varies as the distance run by the car in 
the year. In one year the car ran 6000 km at a total cost of £900; in the next 
year it ran 7200 km at a total cost of £950. Flow much would it cost to run 
the car in a year during which it ran 12 000 km? To what extent is the 
assumption about the cost justified?

14 The cost of printing a circular on octavo paper is partly fixed and partly 
varies as the number of copies printed. If 100 and 500 copies cost £8.25 and 
£14.25 respectively, how much will 200 copies cost? Find an equation which 
gives the cost £C of n copies.



15 When a body is being uniformly accelerated, the distance travelled is the sum 
of two narts: one part varies as the time, the other varies as the square of the 
time. The distances travelled by a body in 2 s and 3 s from its original 
position are respectively 32 m and 57 m. How far will it travel from its 
original position in 4 s? Find an equation which gives the distance s m in 
terms of the time t s from its original position.

16 In good road conditions, the driver of a car moving at 30 km/h can stop the 
car in 11.4 m, and if the car is moving at 60 km/h it can be stopped in 33.6 m. 
This stopping distance is made up of two parts, one of which varies as the 
speed of the car, and the other of which varies as the square of the speed. In 
what distance can the driver stop the car if it is moving at 80 km/h? Find an 
equation which gives the stopping distance s m in terms of the speed v km/h.

If the car can just be stopped in 25 m, how fast is it moving?
17 Basic slag is advertised in 5 kg packs at £1.25,10 kg packs at £2.25 and 20 kg 

packs at £4.25. It is suggested that the cost £C of these packs is partly 
constant and partly varies as the mass m kg of basic slag. If this is so, what is 
the equation which gives C in terms of ml

18 The price of a ticket to a dance is made up of two parts, one of which is fixed 
and the other of which varies inversely as the number of people expected at 
the dance. For a certain dance, it is found that the price of a ticket would 
need to be £3 if 100 people were to attend, but if 150 people attended the 
price of a ticket would need to be £2.50 in order to cover the cost. What 
would be the price of a ticket in order to cover the cost if only 75 people 
attended? If the price of a ticket was fixed at £2.70, how many people would 
have to buy tickets for the cost to be covered?

19 When a certain volume of wax is cast into a square prism, the surface area of 
the prism may be expressed as the sum of two parts, one of which varies as 
the square of the side of the cross-section and the other of which varies 
inversely as the side of the cross-section. If the side of the cross-section is 
2 cm, the surface area of the prism is 28 cm2. When the side of the cross- 
section is 1 cm, the surface area of the prism is 42 cm2. What will be the 
surface area of the prism when the side of the cross-section is 2 \  cm?

Also find a formula which gives the surface area S cm2 of the prism in 
terms of the side x cm of the cross-section.

20 The volume of a cap of height h cut off from a sphere of radius r (by a plane at 
distance r — h from the centre) is the sum of two parts, one of which varies 
as the square of h and the other of which varies as the cube of h. Use 
the formulae for the volumes of a hemisphere and a sphere (i.e. the volume 
of the cap when h = r and when h = 2r) to find a formula for the volume V of 
the cap in terms of h, r.
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Graphical determination of laws
23.4 A simple experiment is performed to investigate the relationship between 
the tension in an elastic band and its extension, by fixing the upper end and 
suspending bodies of different masses in turn from the lower end. The tension



O' N) in the band (given by the weight of each body) is tabulated against the 
corresponding extension (x cm) measured to the nearest mm.
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X 0 1 1.8 2.5 3.3 4.3 5.3

y 0 1 2 3 4 5 6

extension in cm

Figure 23.2

When these results are illustrated graphically (see Fig. 23.2) we see that it is 
possible to draw a straight line about which the points are closely scattered; such 
a line is then drawn, and we make it pass through the origin since we know that 
y = 0 when x = 0.

A straight line through the origin of gradient m has the equation

y =  mx

and, allowing for experimental error and the limited accuracy in measuring x, we 
may reasonably deduce this to be the relationship between the x and y  of our 
experiment. Referring to the straight line drawn, when x = 4, y x  4.6, and its 
gradient m x 4.6/4= 1.2 correct to 2 significant figures.

So by this experiment we have determined that the law connecting the tension 
in the given band (y N) and its extension (x cm) is

y x  1.2x

Qu. 15 A trolley accelerates down a slope from rest to v km/h in t s as shown 
by the following table. Determine graphically the law giving v in terms of t.
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V 0 10 20 30 40 50 60

t 0 2.5 4.7 7.1 9.7 11.9 14.5

Example 5 The following estimate is received for printing copies of a pamphlet.

No. of copies 50 100 200 500

Cost in £ 11.50 12.50 14.50 20.50

(a) Obtain a law giving the cost, £y, o f x copies.
(b) Estimate the cost of 350 copies.

Figure 23.3

(a) Fig. 23.3 shows a straight-line graph, so we assume that the printer has used 
a linear law connecting x  and y to make his estimate, i.e. there is an equation 
connecting the variables of the form

y = mx + c

Now c is the intercept on the y-axis (see §1.7) and so we can refer to the graph 
to find that c = 10.5, and (from the triangle ABC) that the gradient

20.50 -  14.50 
500-200

6
300

Therefore the law is

y = 0.02x + 10.5

(b) When x =  350,

* t
;
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y — 0.02 x 350+ 10.5 
= 7.0+10.5 
= 17.5

Therefore the cost of 350 copies is £17.50.

Qu. 16 From the solution of Example 5 (a), when x =  0, y = 10.5. What 
interpretation may be given to this result?

Note that in Fig. 23.3 we have included the origin of the coordinates (that is 
to say each axis is calibrated from zero) and thus we were able to utilize the 
y-intercept to find c. This advantage must often be sacrificed in favour of the 
increased accuracy obtainable by using a larger scale; Example 6 demonstrates 
how the equation of a straight line is determined in these circumstances.

Example 6 Find the equation of the line y = mx + c in Fig. 23.4.

Figure 23.4

The gradient m is found from the triangle PQR (chosen so that the length of 
PQ is a whole number of units).

32m =  — = 6.4

Substituting in y = mx + c, 

y — 6.4x + c

To find c, substitute the coordinates of a convenient point on the line, e.g. when 
x = 10, y = 78.



.‘.78 =  6.4 x 10 +  c 
: . c = u

Therefore the required equation is y = 6.4x + 14.

Qu. 17 Find as accurately as possible the equations of the lines (a), (b), (c) in 
Fig. 23.4. (Note that two of these lines have negative gradients.)
Qu. 18 The upper end of a coiled spring was fixed and bodies were hung in 
turn from the lower end. The mass of the bodies (y g) and the corresponding 
lengths of the spring (x cm) were recorded as follows:
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X 8.4 9.5 10.1 11.0 11.7 12.6 13.5 14.3

y 30 40 50 60 70 80 90 100

Find a law giving y in terms of x over this range, and estimate the unstretched 
length of the spring.

Linear check of non-linear laws
23.5 As we saw in §23.1, a non-linear law connecting two variables may often 
be considered in such a way that it involves a linear relationship. For example, if 
we suspect that two variables x and y are inversely proportional, we wish to 
show that xy = k, where k is a constant, i.e. y = k x  1/x; this may be done by 
plotting y against 1/x and seeing if the points lie close to a straight line through 
the origin.

To take another example, let us suppose that the designer of a car windscreen 
wishes to find out if the air resistance (R N) is proportional to the square, or the 
cube, of the velocity (v km/h); he carries out an experiment which yields the 
following results:

V 20 30 40 50

R 4 14 33 60

The reader may check from a rough sketch that the graph of v against R does no 
more than indicate that R might vary as some power of v, which is of no real 
assistance. This problem is dealt with in the following question.

Qu. 19 With the data of the preceding paragraph, plot the following graphs, 
letting 1 cm represent 5 N:
(a) R against v2 (on the r2-axis let 1 cm represent 200),
(b) R against v3 (on the r 3-axis let 1 cm represent 10 000).
Deduce an approximate relationship giving R in terms of v.
Qu. 20 A marble was allowed to run down a sloping sheet of glass and the time 
(t s) taken to roll s m from rest was measured by a stop watch. The results were
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as follows:

23.5

s 1 2 3 4 5

t 1.4 2 2.5 2.8 3.2

Confirm that the law relating s and t is s = kt2, and determine the value of the 
constant k to two significant figures.

Reduction of a law to linear form using logarithms*
23.6 The method of Qu. 19 is severely limited, since we assume a relationship 
R = kvn, then we guess some integral value of n and test for it. It would be better 
to employ a method which tests for any rational value of n, and this is possible if 
we use logarithms. (At this point it may help some readers to refer back to Qu. 5 
and Qu. 6 on p. 180)

Suppose that we wish to test the law

R = kvn (1)

where k and n are constants. If it is valid,

log1oR = log10(krn) 
l°gio R = l°gio v" + logio k
l°gio R = n log10 v + log10 k (2)

Writing log10 R as y, log10 v as x and log10 k as c, (2) becomes

y = nx + c

which represents a straight line of gradient n.
Thus if we plot log10 R against log10 t; and we obtain a set of nearly collinear 

points, this means that we have established the linear relationship (2) and 
confirmed the law (1); we then draw the ‘best’ straight line. Its gradient 
determines the value of the constant n, and the constant k is found from the 
y-intercept c, or by the method of Example 6.

Qu. 21 From the data of Qu. 19 the following table has been prepared:

* = logiov 1.30 1.48 1.60 1.70

y — i°g10 R 0.60 1.15 1.52 1.78

Using a scale of 0.1 to 1 cm, plot log10 R against log10r and deduce that 
R»0.0005t>3 (see Example 6, p. 454).

When a given mass of gas is compressed or allowed to expand slowly, so that 
there is time for the transfer of heat between the gas and its surroundings, its 
temperature remaining constant, the pressure (p) and the volume (F) are said to

*The reader should work some of Nos. 1 to 12 in Exercise 23c before proceeding with this section.



undergo an isothermal change and obey Boyle’s law pV = k, a constant. If 
however the compression or expansion takes place suddenly, and there is no 
appreciable exchange of heat between the gas and its surroundings, then there is 
a change in the temperature of the gas, and the pressure and volume undergo an 
adiabatic change which does not conform to Boyle’s law.

Boyle’s law may be written p = kV ~ 1; the experimental data from an adiabatic 
change suggest that in this case we have the same form of relationship, p = k V , 
but that n has some value other than — 1.

Example 7 A given mass of air expands adiabatically and the following measure­
ments are taken of the pressure (p cm of mercury) and volume (V cm3):
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V 100 125 150 175 200

p 58.6 42.4 32.8 27.0 22.3

Confirm that p = k V  and determine the values o f the constants k and n.

Assuming that p = kV", and taking logarithms to the base 10 of each side,

logioP = logio F" +  logi0 /c 
logio P = n log10 V + log10 k

Writing log 10 p as y, log10 V as x, log10 k as c,

y = nx + c

Since this is a linear relationship between x and y, we hope to find that log10 V 
plotted against log10 p will yield points lying nearly on a straight line. From the 
following table the points have been plotted in Fig. 23.5, and the ‘best’ straight 
line has been drawn.*

x = log10 V 2.000 2.097 2.176 2.243 2.301

y = i°gto p 1.768 1.627 1.516 1.431 1.348

The gradient n is found from triangle PQR

Therefore the equation of the straight line is 

y= — 1.4x + c

•Provided that the experimental errors are random, then a reliable aid to drawing the ‘best’ straight 
line is to make it pass through the point whose coordinates are the averages of the coordinates of the 
plotted points; this point is shown in Fig. 23.5. Sometimes there is also a point whose exact 
coordinates are known; such a point is (0,0) in Fig. 23.2.
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Figure 23.5
*See footnote, page 457

But from the graph, when x = 2, y=  1.77,

.'. 1.77= - 1 . 4 x 2  + c 

.'. log10 /c = c = 4.57
.'. k = 37 150 = 37000 to two significant figures

Hence the experimental data confirms the relationship given between p and V, 
namely

p x  37 000 F “ 1-4

There are other types of variation which may be confirmed by using 
logarithms to reduce them to a linear relationship; in laws of growth, for 
example, one of the variables is often in an index.



Variation and experimental laws 459

If P = kax, where k, a, are constants,

log10P = log10a* + log10/c 
• logio p  = x log10 a + log10 k

and writing log10 P as y, log10 a as m, log10 k as c,

y = mx + c

This is a straight-line equation which reveals a linear relationship between x and 
log,o P-

Example 8 The frequency ( /  oscillations per second) and the interval (x 
semitones) of each note of aC  major scale are given in the table below; show that f , 
x are related by a law in the form f  = kax and determine the constants k, a.

Note c D E F G A B C

X 0 2 4 5 7 9 11 12
/ 256 287 323 342 384 431 483 512

Assuming that /  = kax, and taking logarithms to the base 10 of each side,

l°gio / =  l°gio a* + log10 k 
logio / =  * logio a +  logio k

Writing log10 /  as y, logi0 a as m, log10 k as c,

y = mx + c

This shows that we must, from the data, establish a linear relationship between x 
and log10 / .  From the following table the points have been plotted in Fig. 23.6 
and the ‘best’ straight line has been drawn; we have confirmed that the law is of 
the form /  = kax.

X 0 2 4 5 7 9 11 12

y = log io / 2.408 2.458 2.509 2.534 2.584 2.634 2.684 2.709

Figure 23.6



If we now consider the straight line in Fig. 23.6 to have the equation 
y = mx + c, we see from the triangle PQR that its gradient

0.25
m = log10 a = = 0.025

From antilogarithm tables or a calculator, a = 1.059.

We may now write y = 0.025x + c.

From the graph, when x = 0, y = 2.408.

.'. c =  log10 k =  2.408

From antilogarithm tables or a calculator, k = 256.

Hence from the data we deduce the required law to be 

/  = 256 x 1.059* *

Qu. 22 A remote and isolated tribe came under the influence of medical 
missionaries in 1935, when a very careful count of the population was made. 
Less reliable counts were made in later years, as shown in the following table:
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Year 1935 1940 1950 1955

Lapse of years (t) 0 5 15 20
Population (P) 2070 2500 4200 5100

Show that the data points to the operation of a law of the form P = ka‘, and 
determine the constants k, a. Also estimate the population in 1948.

Two final points deserve mention, starting with a word of warning. A 
graphical method may confirm that a certain law is obeyed but only within the 
given ranges o f values of the variables; guard against false deductions. For 
example, remember that an elastic band may be stretched beyond its elastic 
limit; or a gas undergoing changes of pressure and volume may also be 
approaching a change of state.

Secondly, the use of logarithmic graph paper has not been mentioned in this 
chapter. It can be a time-saver in repetitive work, and the reader who has 
mastered the idea of this last section will have no difficulty in using it should the 
need arise.

Exercise 23c
1 A round bolt with nominal diameter D mm has a countersunk head of 

diameter A mm. D and A are found to be as follows:

*In fact standard musical pitch has been set slightly higher than that used in this example, with 
/ =  440 for A above middle C, giving /  = 261.6 for middle C. Also, since the ratio of the frequency of 
a note to that of an octave below is 2:1, a '2 = 1 and calculation gives a better value of a as 1.05946. 
Thus the corresponding law for a correctly tuned piano is / =  261.6 x 1.059*.
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D 6.4 7.9 9.5 11.1 12.7 15.9 19.0 22.2 25.4

A 11.7 14.6 17.5 20.4 23.4 29.2 35,0 40.9 46.7

Find the linear equation giving A in terms of D. Does A vary as D2 
2 The mass m kg of a 300 mm square of lead sheeting of thickness t mm is given 

as follows:

t 1.25 1.80 2.24 2.50 3.15 3.55

m 1.275 1.835 2.285 2.550 3.215 3.625

Obtain a linear relation giving m in terms of t. What is the connection 
between the gradient of the graph of m against t and the relative density of 
lead?

3 A marble was dropped from a height hi cm and observed to rise to a height 
h2 cm. Four such observations are given in the table below:

K 4 9 16 22

^2 H 3 s i n

Does it appear that there is a law connecting /i1; /i2? If so, what is it?
4 A letter in a daily paper gave the following table relating the deaths in a 

certain group due to lung cancer with the number of cigarettes smoked per 
day.

No. of cigarettes
per day n 0 1 to 14 15 to 24 over 25

Deaths per 100 000 
per annum d 7 57 139 227

Investigate the justification for assuming from these figures that a linear 
relationship exists.

5 Some printers quoted the price of a small book as follows:

No. of copies 500 1000 2000 5000 6000

Cost in £ 650 865 1300 2600 3035

Does this bear out the idea that one gets a reduction for ordering in 
quantity? Can you estimate the cost of (a) 3500 copies, (b) getting the type set 
up ready to print, without running off any copies?

6 A man bought a car when the distance travelled registered as 71 km, the fuel 
tank containing an unknown amount of petrol. According to his log book, 
he bought 20 litres of petrol at the following kilometre readings:

907, 1123241, 432, 685,



Estimate the average number of km travelled per litre of petrol up to the last 
distance.

Given that the car ran out of petrol at 1378 km, estimate the quantity of 
petrol originally in the fuel tank.

7 While some water was cooling, the temperature was recorded at minute 
intervals as follows:
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Time t minutes 0 1 2 3 4 5 6

Temperature 9°C 62 61.5 61 60.5 60 59.5 59

Find an equation giving 8 in terms of t. Can you expect this equation to hold 
over a wider range of values? Give reasons for your answer.

8 The flow of water through a circular hole is thought to vary as the square 
root of the head of water. For a certain hole, the following results were 
obtained:

Head of water, h m 1.5 3 4.5 6

Flow of water, x litres/min 119 170 205 240

Do they confirm the conjecture? Estimate the flow of water through the hole 
when the head is 5 m.

9 A crane on a building site displayed the following figures:

Load in tonnes 2 1.5 1 0.75

Radius in metres 7.5 10 15 20

Do these figures confirm the expectation that the radius is inversely 
proportional to the load? Is there an equation giving the load / tonnes in 
terms of the radius r metres?

10 The mass m kg of 100 m lengths of a certain type of steel wire rope is given for 
nominal diameters d mm as follows:

d 8 9.5 11 13 16 19

m 21.6 30.5 40.9 57.2 86.6 122

Examine the suggestion that the mass varies as the square of the nominal 
diameter of the rope.

11 A hose squirts a stream of water horizontally and the height of the stream 
y m at distance x m along level ground is estimated to be as follows:

Distance x m 0 2 4 5 6 7 8

Height y m 3.50 3.40 3.10 2.88 2.60 2.28 1.90



Obtain an equation in the form y = a + bx2 connecting these values 
approximately.

12 For purposes connected with a survey, the digits 0, 1, 2,...., 9 were required 
in a random order. However, when they were taken from a list of random 
numbers, it was noticed that the intervals between new digits tended to 
increase. Noting the intervals on a number of occasions the following 
averages were obtained:
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Position of 
digit p 1 2 3 4 5 6 7 8 9  10

Average 
interval i 1.0 1.2 1.4 1.4 2.1 1.7 2.3 4.0 3.9 16.2

Find a law in the form p = a — b/i. [In finding a, use the fact that i = 1 when 
p = 1.] Hence express i in terms of p.

13 The periods and mean distances of some of the planets are given in the table 
below:

Period P days 87.97 224.7 365.3 687.0 4333 10 760

Mean distance s in
millions of km 58 108 150 228 778 1426

Find a law in the form P = ksn.
14 For a certain survey in which n people are to be interviewed, a market 

research organisation calculates that it has an even chance of obtaining 
correct within p% the percentage in favour of the product concerned in the 
survey, n and p are related as below:

n 500 1000 2000 5000 10 000

p 1.51 1.07 0.75 0.48 0.34

Find how p varies with n.
15 Some molecules are made out of two atoms. The moment of inertia and the 

distance between the nuclei of the atoms is given for four such molecules in 
the table below:

Moment of inertia /  (10 40 g cm2) 1.34 2.66 3.31 4.31

Distance between nuclei r(10~8 cm) 0.92 1.28 1.42 1.62

Find a law in the form I = kr". (Source of data: S. Glasstone, Theoretical 
Chemistry.)

16 The widths of successive whorls of a shell of Turbo duplicatus have been
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measured:

Position of 
whorl n 1 2 3 4 5 6 7 8

Width of whorl 
w cm 3.33 2.84 2.39 2.03 1.70 1.45 1.22 1.04

Find a law in the form w = abn. (Source of data: H. Moseley, Phil. Trans. 
1838, 356.)

17 Two substances in a chemical reaction have the same initial concentration a 
moles per litre, and after t min the concentration of each is (a — x) moles per 
litre. The following experimental results were obtained:

t 5 15 25 35 55 120

a — x 10.24 6.13 4.32 3.41 2.31 1.10

In order to establish that this is a second-order reaction (i.e. the rate of 
dx

reaction is a quadratic function of x) show graphically that a linear 
di

relationship exists between t and the reciprocal of (a — x); deduce that
dx ,
— = k(a — x) , and determine the value of k, the reaction velocity constant. 

18 A given mass of ozone is subjected to an adiabatic change and the pressure
p 10 10 N/m2 and volume V cm3 are observed as follows:

Volume V cm3 100 90 80 70 60 50

Pressure p (10~10 N/m2) 1.18 1.35 1.57 1.82 2.27 2.87

Verify graphically that pv7 = k, where y, k are constants, and determine the 
value of y.

19 Steinmetz’s law, E = i/ß 1 6, gives an approximation for the energy lost per 
cycle of magnetisation in a transformer core, where the energy lost is E 
ergs/cm3, the maximum magnetic flux density is B gauss, and 17 is the 
Steinmetz coefficient for the given material. Values of B and E are tabulated 
below:

B 1000 2000 3000 4000 5000 6000

E
0.316 0.956 1.83 2.90 4.14 5.55

103

Use a graphical method to show that these values agree with the given law, 
and determine the value of 17 for this material.



20 In the Ehrenfest game, n balls numbered from 1 to n are placed in a container 
A and another container B is left empty. Numbers in the range 1 to n are 
drawn at random. When a number is drawn, the corresponding ball is 
transferred from the container it is in to the other container. In such a game 
with n = 100, the total T balls left in container A after x numbers had been 
drawn was as follows:
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X 0 10 20 30 40 50

T 100 92 84 78 72 68

Find a law in the form T =ab x, where a, b are constants, to fit these data as 
well as possible. As x becomes large, can T  be expected to obey this law?



Chapter 24

Iterative methods for solving 
equations
Introduction
24.1 One of the most common tasks in mathematics is to solve an equation. In 
this book we have already solved a variety of different equations. We have 
solved quadratic equations by factorisation or by the formula, we have solved 
other polynomial equations by factorising them and we have solved some 
carefully selected trigonometrical equations.

Consider, however, the following problem. Fig. 24.1 represents a circle, whose 
centre is at O, and whose radius is one unit. Can we find the value of 9, in 
radians, so that the area of the shaded segment is exactly 0.5 square units?

Figure 24.1

Since the angle 9 is measured in radians, the area of the sector OAB is j9 r2, 
and since r = 1, this is just j9. The area of the triangle OAB can be obtained from 
the standard formula, \ab  sin C; in this case a = 1, b =  I, and C = 9, so the area 
of the triangle OAB is j  sin 9. The area of the shaded segment is the difference of 
these two areas, i.e.

jd  — ^sin 9

The problem is to find the value of 9 so that this area is 0.5 square units. In other

466
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words we need to solve the equation 

— j  sin 9 = j  

or 6 — sin 6 = 1

None of the methods for solving equations at our disposal (apart from drawing a 
graph) would enable us to solve this equation; indeed it is impossible to find an 
exact solution. However, there is no doubt that such an angle exists, and with a 
little experimentation using tables or a calculator, it is possible to see that an 
approximate solution is 9 = 2.

In this chapter we shall develop methods by which approximate solutions to 
equations can be obtained. An approximate solution should not be despised, for 
it can be very useful, and, as in the example above, it may be the only solution 
available. The value of such an answer is greatly enhanced if it is possible to give 
an estimate of its degree of accuracy.

Later in the chapter we shall return to the equation 6 — sin 9 = 1, but first we 
shall tackle a simpler problem, namely, can we find the square root of a given 
number without using square root tables, or the square root function on a 
calculator?

An iterative method for finding square roots
24.2 What is the square root of 18? Or, to put it another way, solve the 
equation

x 2 = 18

Since we are not going to use tables or the square root function on a calculator, 
the most sensible first step is to check through the ‘square numbers’

1, 4, 9, 16, 25, 36, 49, ...

and note that 18 lies between 4 and 5, and that it is nearer 4 than 5. So we 
might say

‘the square root of 18 is 4, correct to the nearest whole number’

This at least gives an approximate answer and it indicates the degree of accuracy 
of this approximate answer.

We shall now use this ‘first approximation’ to obtain a better ‘second 
approximation’, and this in turn will be used to form an even better ‘third 
approximation’. Such a procedure is called successive approximation, or 
iteration.

The method we shall use to find the successive approximations will depend 
upon the fact that if x is exactly equal to J 18, then 18/x is exactly equal to J 18. 
If x does not equal ^/18, then

either x  is less than ^18, in which case 18/x is greater than ^18, 
or x  is greater than ^18, in which case 18/x is less than ^ /18.

In both cases, we can say that 18 lies between x and 18/x.
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Consequently, using ^/18 « 4  as a ‘first approximation’, we know that 18 
lies between 4 and 18/4, i.e. between 4 and 4.5, so we take as our ‘second 
approximation’ the average of these two numbers, i.e. ,

Now we repeat the process, using ^  18 «  4.25. Once again we know that ^18 
must lie between 4.25 and 18/4.25, and so we take as our ‘third approximation’ 
the average of these two numbers. In other words the third approximation is

(The arithmetic at this stage is becoming rather heavy, and a calculator or tables 
may be used to lighten the load. However, square root tables and the square root 
function on the calculator are not allowed!)

We now have a very good approximate value of the square root of 18, and we 
know that the exact value lies between 4.24265 and 18/4.24265 ( = 4.24263). So 
we are now able to say that

,y 18 = 4.243, correct to four significant figures

knowing that we are justified in claiming this degree of accuracy.
This procedure can be summed up as follows: writing xr for the rth 

approximation, the (r+  l)th approximation is given by

This is called an iterative formula for finding ^18. More generally, the iterative 
formula for finding the square root of any positive number, N, is

Qu. l Use the iterative formula above, to find the square roots of
(a) 17, (b) 40, (c) 85, (d) 96, correct to four significant figures.

Historical note. This method for calculating square roots is a very old one. It 
was used by the Babylonians more than three thousand years ago. Today it is 
frequently called Newton’s algorithm, but this is hardly fair to those great, but 
nameless, mathematicians from Mesopotamia.

If a programmable calculator or a microcomputer is available, the reader 
should try to write programs to solve some of the equations in this chapter by 
iteration. Iterative methods are ideally suited to such an approach, because the 
same basic sequence of steps is repeated over and over again; this can be done 
very rapidly and accurately on a programmable calculator or a microcomputer.

correct to six significant figures



Further iterative formulae
24.3 If we were given the iterative formula

Iterative methods for solving equations 469

but we did not know how it had been constructed, would it be possible to 
discover the equation which it is designed to solve? The answer is ‘Yes’, provided 
the sequence

x u x 2, x 3, x A, . . .

tends to a limit. Suppose that x„ -» X ,  as n -> oo, then for a large value of n, the 
iterative formula could be written

Y +
1 8

~X

This equation could then be simplified, as follows:

18

Y 2= 18
So, as expected, we see that the equation which is solved by the iterative formula 
above is

x 2= 18

Example 1 S ta r t in g  w i th  x t = 4 , u se  th e  i t e r a t i v e  f o r m u la

x  — 5 — —X r + i - 5  ^

to  f in d  x 2 , x 3 , a n d  x 4 , g iv in g  th e s e  va lu e s  c o r r e c t  to  th r e e  s ig n if ica n t f ig u re s .  F in d  
the  e q u a t io n  w h ich  is so l v e d  b y  th is  i t e r a t i v e  fo r m u la .

= 4.5, exactly

x 3 =  5 -
2

45

«  4.55556

= 4.56, correct to three significant figures
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2
*4 ~ 5 "  4.55556 

% 4.56098

= 4.56, correct to three significant figures

The successive values of xr appear to be tending to a limit, namely 4.56.
(N o te .  If you are using a calculator for the arithmetic, the successive values 

x2, x 3, x4 etc. should be retained on the calculator. It is poor technique to use 
the c o r r e c te d  value of x r to calculate xr+1. However, if you are answering an 
examination question which requires a specific degree of accuracy in presenting 
answers, you should always follow this instruction; it is usually there to simplify 
the task of marking the answer and it is very unwise to upset the examiner!)

To find the equation which this iterative formula solves, we write this limit as 
X ,  then, for large values of r, the iterative formula becomes

X = 5 — —
X

When this is simplified we obtain 

X 2 — 5X + 2 = 0

So x = 4.56 is a root, correct to three significant figures, of the equation

x2 — 5x + 2 = 0

(This equation is of course a quadratic equation, and using an iterative method 
to solve it is using a sledge-hammer to crack a nut. However, at this stage it is 
more convenient to use fairly simple equations for the examples. If this equation 
is solved by the formula, the solution would be

5 ±  J l 7
x  = ---- ^----= 4.56 or 0.44, correct to two decimal places

The iterative formula has produced the first of these, but not the second. 
However, we could use the fact that the sum of the roots is 5 to calculate the 
second root, i.e. 5 — 4.56 = 0.44.)

As we have seen above, if the sequence x1,x 2,x ! ,x 4, ... converges, then we 
can deduce the equation from the iterative formula. This suggests that if we have 
a given equation and we wish to construct a suitable iterative formula, all we 
need to do is to rearrange the equation in the form

x = f(x)

and the corresponding iterative formula will be 

x,+ i =f(xr)

Example 2 F orm  an  i t e r a t i v e  f o r m u la  to  so lv e  th e  e q u a t io n  

x3 — 5x + 1 = 0



a n d  use it to  f i n d  th e  r o o t  w hich  lies  b e tw e e n  0 a n d  1, c o r r e c t  to  th ree  s ign if ican t  
f igures .

The given equation can be arranged in the form 

5x = x3 + 1

x3 + 1 
X _ 5

consequently we shall take as the iterative formula 

xr3 + 1
*r+l = --- ?---
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and, starting with x 1 =0, we obtain

*2 =  ^  =  0.2 

1.008
x, = = 0.2016

x„ =

5

0.20163 + 1

= 0.201639, correct to six significant figures

In view of the very small change from x3 to x4, it would be reasonable to 
conclude that we are now v e r y  near to the exact answer. Consequently we could 
claim, with some confidence, that the root of the equation is 0.202, correct to 
three significant figures.

However, the reader must not run away with the idea that a n y  rearrangement 
of the original equation will yield a suitable iterative formula. Consider, for 
example, the following equation:

x2 — 5x + 3 = 0

It is easy to verify that this has a root between 4 and 5.
The rearrangement

x2 + 3
x = --------

5

produces the iterative formula

xr2 + 3 
xr+1 =  - T -

If we start at Xj = 5, the succeeding values of xr, correct to four significant 
figures, are

25 + 3
x2 =

5
5.6
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5.62 + 3 
5

6.8722 + 3_

10.042 + 3

= 6.872 

= 10.04 

=  20.78

These values of xr are getting further and further away from the root we were 
expecting; we say the sequence X i,x 2, x 3, ... is diverging. However, the 
rearrangement of the original equation was by no means the only possible one. 
Consider, for example,

x =  5 — — 
x

This gives the iterative formula

xr

and if we start, as before, with x l = 5, we obtain

x2 = 5 —
3
5

= 4.4

x3 = 5 -
3

44
= 4.318

X II en 1 3
= 4.305

4.318

3
= 4.303

4.305

* 6 = 5 -
3

= 4.303
4.303

(The root given by the quadratic formula is 4.303.)

So this second rearrangement has worked satisfactorily.

We can see from this that not all rearrangements of a given equation lead to a 
suitable iterative formula. We could decide to discard any iterative formula 
which produces a divergent sequence, but it would clearly be more satisfactory if 
we had some method for discriminating between a formula which produces a 
divergent sequence and one which produces a convergent sequence; we shall 
tackle this in the next section.



Iterative methods for solving equations 473

Exercise 24a
1 Use the iterative formula in §24.2 to find the square roots of

(a) 12, (b) 30, (c) 50, (d) 75,
giving your answers correct to three significant figures.

2 Use the iterative formula

starting at = 2, to find x 2, x 3 and x4, giving your answers correct to three 
significant figures. Find, in its simplest form, the equation which is solved by 
this iterative formula.

3 Adapt No. 2 so that it can be used to find 201/3.
4 Show that the equation x 2 — 5x + 1 = 0 can be arranged as x = (x2 + l)/5, 

or, alternatively, as x = 5 — 1/x. Hence write down two possible iterative 
formulae which might be used for solving this quadratic, and, starting from 
x 1 = 0.2, find the values of x2, x3 and x4 which are produced by each of these 
iterative formulae.

Only one of these sequences appears to converge; use this sequence to 
write down the (two) roots of the quadratic equation.

5 The cubic equation x3 — lOx + 1 =  0 can be rearranged in the form
jc = (jc3 + 1)/10.

Use this rearrangement to form an iterative formula and use it to find, 
correct to four significant figures, the root which lies between 0 and 1. (Start 
with x3 = 0.)

6 Solve the equation in §24.1, that is f? = sin 6> + 1, by an iterative method, 
starting from 9 = 2. (6 is measured in radians.)

1 Show that the equation x2 — 8x + 10 = 0, has a root between 1 and 2.
Show that the iterative formula xr + i = 8 — 10/xr, can be formed from this 

equation, and, starting from x 1 = 1, calculate the values of x2, x3 and x4. 
Comm,ent on your results.

8 The iterative formulae

(a) xr + 1
2xr3 + 10 

3xr2
and

10
(b) xr+1 = —

X r

can both be obtained by rearranging the equation x3 — 10 = 0.
Starting from x l = 2, find the values of x2, x3 and x4, which are produced 

by these iterative formulae. Only one of these sequences converges; use this 
one to find ^  10, correct to four significant figures.

9 The fifth root of a real number N can be calculated from the iterative formula

xr+i = 4xr +
N

5

Use this formula to find the fifth root of 50, correct to three significant 
figures. [Hint: start with x l = 2.]
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10 The product of the roots of the quadratic equation

x 2 — px + q = 0

is q, so if xr is an approximate value of one of the roots, the other could be 
written qjxr. Use the fact that the sum of the roots of this quadratic equation 
is p to find a new approximation to the first root. Hence deduce the iterative 
formula

*r+l = P “ ~
xr

Use this iterative formula to solve the quadratic equation

x 2 — 7x + 3 =  0

giving your answers correct to three significant figures.

Iteration — the test for convergence
24.4 In the preceding sections we have seen that an iterative formula 

xr + 1 = f(xr)

can be used to produce a sequence of values of xr 

Xi, x2, x3, x4, ...

the value of x y being selected by trial and error. We have also seen (but not 
formally proved) that, provided the sequence tends to a limit, which we shall call 
X, then x = X  is a root of the equation

x = f(x)

In this section we shall examine the conditions under which we can expect the 
sequence x1,x 2,x 3,x 4, ... to converge. (Example 1 will be used as an 
illustration, so the reader is advised to read through this example again before 
proceeding.)

Fig. 24.2 shows the graphs of y = x and y = f(x), where f(x) = 5 — 2/x. The 
graphs intersect at P(A', Y).

The x-coordinate of the point P, that is X, is a solution of the equation 

x = f(x)

This is the root of the equation which we expect to obtain from the iterative 
formula

xr+i = f(xr)

The diagram in Fig. 24.3 shows an enlargement of the region around the point 
P in the previous diagram. It also shows the points P 1;P 2,P 3, whose 
coordinates are (xl5 y j ,  (x2, y2), (x3, y3) , ... respectively, where x l5 x2, x3, ... are 
the successive approximations given by the iterative formula.
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Since the point Pr, whose coordinates are (xr, yr), lies on the curve y = f(x), the 
y-coordinate is given by

JV =  f(JCr)

and this in turn is equal to xr+1, so the coordinates of Pr can be written 
(xr, xr +!). This lets us produce the following geometrical method for construct­
ing the points P l5 P2, P 3, ... (see Fig. 24.4). First mark the point (x1,x 2), 
remembering that Xj is selected on a trial-and-error basis. From P, draw a line 
horizontally, i.e. parallel to the x-axis, and call the point where this meets the 
line, Qj. The points P t and Q x have the same y-coordinate and Q x lies on the 
line x = y, so the coordinates of Q 2 are (yl5 y j .  But yq = x2, so these coordinates 
could be written (x2, x2). From Qj we now draw a line vertically, i.e. parallel to 
the y-axis. The point where this meets the curve has the same x-coordinate as Q! 
and so its coordinates are (x2, x3). This is the point P2. We now repeat the



operation to construct the subsequent points P3, P4, P5, b u t  because space 
is limited, only the first few points are printed.
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In this diagram we can see the points P 2, P2, P3, ... getting closer and closer 
to the point P itself, and so the x-coordinates x t , x2, x3, ... will be getting closer 
and closer to X, or, to put it more formally, xr -> X, as r-* oo.

Although the function f(x) = 5 — 2/x has been used in this illustration, a 
diagram like that in Fig. 24.4 could be drawn for other functions provided f'(x) 
lies between 0 and 1. If the gradient is greater than 1 the picture is quite different. 
Fig. 24.5 shows the same construction applied to the graph of a function whose 
gradient is greater than 1. In this case, each step moves Pr further and further 
away from P.

y = *

Figure 24.5



The diagrams in Fig. 24.6 show the corresponding constructions for graphs 
whose gradients are negative.

Iterative methods for solving equations A ll

(i) 00

The first diagram (in which — 1 < f'(x) < 0) shows the points P l5 P2, P 3, ... 
getting closer and closer to P; in other words, the sequence x1;x2,x 3, ... 
converges when |f'(x)| < 1. In contrast the second diagram (in which f'(x) < — 1) 
shows these points moving further and further away from P, and so the sequence 
x1; x2, x3, ... diverges when |f'(x)| >  1.

From these diagrams we can conclude that the sequence x 1,x 2,x 3, ... will 
converge if |f'(x)| <  1. To ensure that this sequence converges rapidly, the initial 
approximation should be as close as possible to the exact root and the function 
f(x) should be selected so that |f'(x)| is as small as possible.

(A more rigorous proof is beyond the scope of this book; any reader who 
wishes to know more should consult a more specialised textbook. This topic 
usually comes under the heading ‘Numerical methods’.)

Example 3 Show that one of the iterative formulae

(a) xr+ l= (xr2 + 3)/5, (b) xr + j = 5 -  3/xr,

produces a convergent sequence for x a  5, and the other does not.

In iterative formula (a),

f'(x) =
2x
y

hence,

f'(5) = 2

Since |f'(5)| > 1, formula (a) will not produce a convergent sequence when x *  5.
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In formula (b), 

f(x) = 5 -  -
X

f'(x) =
X

hence,

H 5).2=0.12

In this case j f'(5) | <  1, so formula (b) will produce a convergent sequence when 
x % 5.

(Note. These formulae were used earlier in this chapter, see pp. 471-472.)

Exercise 24b

Which of the following iterative formulae should, according to the test in the 
preceding section, produce a convergent sequence, x j , x2, x3, . . . ,  in the region of 
the value of x indicated? (These iterative formulae were used in Exercise 24a.)

, U  12\  
1 Xr+1 = ~2\Xr + ^

3 xr+1

5 xr + 1 =

xr2 + 1 
5 ’

xr3+ 1
10

x a  0.2. 

x «  1.

10
7 xr+ j = 8 ----- ; x »  1.

xr

9 xr+1 = x *2 . 
x /

-, 2xr 42 xr +  ̂ -j- 2•> x%2.
3 x /

4 xr+1 = 5 ----- ; x «0.2.

6 6r+1 = sin 9r + 1; 9 x 2 .

0 2xr3 +10
o  X r + 1 —  T . .  2 > X  ~  /.3xr

50
10 xr + 1 = 4xr + —r ) 5; x x  2.

The Newton-Raphson method
24.5 We now come to a particular method of iteration known as the 
Newton-Raphson method (it is frequently called Newton’s method). Through­
out this section we shall be considering the task of solving an equation of the 
form F(x) = 0 and the exact root we are seeking will be denoted by X.

As with all iterative methods, the first step is to find an approximate root. This 
can be done quite conveniently by drawing the graph of y =  F (x). The exact root 
is the x-coordinate of the point where the graph crosses the x-axis. Fig. 24.7 
shows the graph of y = F(x) and the point P(X, 0).
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Now consider the enlargement of the region surrounding P, which is shown in 
Fig. 24.8.

In this diagram, the point Q is near the point P and its x-coordinate xr is an 
approximation to the exact root X , i.e. xr «  X. The coordinates of Q then are 
(xr, F(xr)). Newton’s method consists of drawing a tangent to the curve at Q, 
and, if this line meets the x-axis at R, using the x-coordinate of R as the next 
approximation to X. In other words R is the point (xr+1; 0). It is clear from the 
diagram that xr+1 will be a better approximation than xr.

(The reader is advised to draw the corresponding diagram for a graph whose 
gradient is negative, and also to consider the effect of F(xr) being negative. From 
these diagrams the reader should be able to see that Newton’s method will yield 
the desired approximation, provided F'(x) is not zero near the exact root.)

From the diagram in Fig. 24.8, we can produce a formula for xr+1; in terms of 
the function F(x) and xr.

We know that

NQ = F(xr)
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and by elementary trigonometry

24.5

i.e.

NQ
RN

= tan a

RN
NQ 
tan a

But, since the line RQ is the tangent to the curve at Q, tan a is equal to the 
gradient at Q. In other words

tan a = F'(xr)

So we can write

F(xr
'(*r

Now, from the diagram we can see that

OR = ON -  RN

. . OR = xr F(xr)
F'(xr)

and since Newton’s method is to use the x-coordinate of R as the new 
approximation, we have

= * , -
F(*r)
F'(xr)

Example 4 Verify that the equation x3 — 5x — 40 = 0 has a root between x = 3 
and x = 4. Use the Newton-Raphson method to find this root correct to three 
significant figures.

In this example,

F(x) =  x 3 -  5x -  40 

Putting x = 3 gives

F(3) = 2 7 -  1 5 - 4 0 =  -2 8  

and, putting x = 4,

F (4) =  64 — 20 — 40 = + 4

Since F(x) has changed sign between x = 3 and x =  4, the graph of the function 
must cross the x-axis in this interval, so there is a root between 3 and 4. (This 
assumes that F(x) is continuous between these points; special care must be taken 
if F(x) is known to have a discontinuity near the root being investigated.)

The Newton-Raphson iterative formula is

F(xr)
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and, in this case

F(x) = x3 — 5x — 40 

and, differentiating,

F'(x) = 3x2 — 5

So, the iterative formula to solve this equation is 
xr3 — 5xr — 40

X r+  1 =  x r i  2 c3 x / — 5

As |F(4)| is much smaller than |F(3)|, the root appears to be nearer 4 than 3, so 
we start with x t =4, then

. 6 4 - 2 0 - 4 0

= 3.907

(Note. The value of x2 is printed here, correct to four significant figures. If you 
are using a calculator, each intermediate value should be stored in the memory 
for use in the next iteration. It is important to understand that calculating x2 as 
accurately as possible from a particular value of x i does not mean that the root 
has been found to the same degree of accuracy; at this stage it would be unwise 
to claim that more than the first one or two significant figures have been 
determined.)

This value of x2 should now be substituted into the Newton-Raphson 
formula. This gives

x 3 = 3.904(45)

In view of the very small change between x2 and x3, we could now safely claim 
that, correct to three significant figures, the root is 3.90.

This example illustrates some of the virtues of the Newton-Raphson formula. 
Firstly, provided F'(x) is not zero near the root, it is unnecessary to check 
whether the sequence converges. Secondly, the sequence converges very rapidly; 
in other words it is only necessary to calculate a few values of xr in order to get a 
very accurate answer.

Example 5 Use the Newton-Raphson formula to solve the equation

9 — sin 0 = 1

giving your answer correct to three significant figures.

(This is the equation which arose from the problem in §24.1.) Firstly, the 
equation must be arranged in the form

0 — sin 9 — 1 = 0



and note that the function needed is
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F(0) = 0 -  sin 0 -  1 

and consequently 

F'(0) = 1 — cos 0

The iterative formula we require is

Starting from 6l = 2 (see §24.1, and remembering that 0 must be measured in 
radians),

02 =  2 -
2 — sin 2 — 1 

1 — cos 2
1.93595

and

03 = 1.93456 

and hence

04 = 1.93456

(These values have, for convenience, been rounded off to six significant figures.) 
As the changes in 02, 03, 04, have been so small, we can fairly confidently 
conclude that, correct to three significant figures, the root is 1.93.

Extreme care should be taken when rounding off numbers which have already 
been rounded. If, in the example above, 02, 03 and 04 had been rounded to four 
significant figures, they would have read

d2 = 1.936
03 = 1.935
04 = 1.935

Rounding 04 to three significant figures would have given (wrongly) 1.94.

Exercise 24c

Use the Newton-Raphson method to find the root of each of these equations 
which is near the given value. Give your answers correct to three significant 
figures.

1 x3 — 4x2 — x — 12 = 0; x, = 5. 2 x4 — 3x3 — 10 = 0; x x = 3.
3 2 sin 0 = 0; 0X = 2. 4 x3 — 5x2 =4; x x = 5.
5 x3 = lOx + 10; x, = 3.5. 6 3 tan 0 + 40 = 6; 0X = 1.
7 x4 - 4 x 3 - x 2 + 4 x - 10 = 0; xx=4.
8 x3 = 5x + 32; x l = 4.
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9 Verify that the equation x3 — 2x — 5 = 0 has a root between x =  2 and x = 3, 
and find this root correct to three significant figures.

10 Find, correct to three significant figures, the smallest positive root of
5x5 = 5x + 1.

Exercise 24d (Miscellaneous)
1 Use the iterative formula

to find the square roots of (a) 200, (b) 450, (c) 700, (d) 1000.
2 Repeat No. 1, using the Newton-Raphson method to solve equations of the 

form x 2 — N = 0.
3 Prove that the iterative formula formed by applying the Newton-Raphson 

method to the equation x 2 — N = 0 can be written

(In other words prove that the iterative formula explained in §24.1 can be 
deduced from the Newton-Raphson formula.)

4 Prove that if X  is an exact root of an equation f(x) = 0, then substituting 
xr = X  in the Newton-Raphson formula gives xr+1 = X.

5 Verify that the equation 10 cos x — x = 0 has a root between x = 1 and x = 2. 
Using x = n/2 as a first approximation, show that the next approximation, 
given by applying Newton’s formula once, is 5rc/11.

6 Sketch the graphs of y = x and y = j  cos x, and, from your sketch, estimate 
the value of x such that x = j  cos x.

Use the iterative formula xr+1 =  y cos xr to solve this equation.
7 Solve the equation x = \  cos x (see No. 6), by the Newton-Raphson method.
8 The equation 5x = cos x has a root near x = 0.5. Solve this equation using 

the iterative formula xr+ l= 0.2 cos xr.
Sketch, on a large scale, the graphs of y = x  and y =  0.2 cos x near this 

root and mark the points P^X j .Xj ), Q i (*2> x 2\  Pi(x 2’ x 3\  Q i (x 3> * 3 ),  

P3(x3, x4), Q 3 ( x 4 , x 4 ),  etc. (see §24.4) to illustrate that the sequence 
x ! ,x 2,x 3, ... converges.

9 Repeat No. 8 for the iterative formula xr + 1 =  10 — 15/xr, starting at x3 =  8.
Find the quadratic equation which is solved by this iterative formula and 

check your answer by applying the quadratic formula to this equation.
10 Show that the cubic equation x3 — 3x + 1 = 0 can be arranged in the form

By applying the test in §24.4, show that only one of these arrangements could 
be expected to produce a convergent iterative method, starting at x3 = 0.2. 
Use this arrangement to solve the equation.

where N  e R +

(a) x = i(x 3 + 1), (b) x = -—~



11 A cuboid has volume 100 cm3, surface area 150 cm2, and its length is twice its 
breadth. What are its dimensions?

12 When the height of water in a hemispherical bowl is h, the volume of water in 
the bowl is n(rh2 — ^h3), where r is the radius of the bowl. Find the height of 
the water when half the volume of the bowl is filled.

13 If I pay £100 on January 1st for fifteen consecutive years and draw £2100 on 
January 1st of the next year, what rate of compound interest do I receive?

14 A donkey is tied by a rope to a point on the circumference of a circular field 
of radius r. If the donkey is to be allowed to graze half the area of the field, 
how long should the rope be?

15 Show graphically, or otherwise, that the equation x3 — x — 1 = 0 has only 
one root and find the integer n such that the root a satisfies n < tx < n + 1.

An iterative process for finding this root is defined by

Xi = l, xr + 1 =(xr + 1)1/3

for all r e IN +. Obtain, to three places of decimals, the values of x2 and x3. 
Show, on a sketch graph, the line y = x and the curve y = ( x + l ) 1/3, 
indicating on this graph the relation between x1; x2, x3 and the root a. (L)

16 Find, by the Newton-Raphson method, the solution of the equation*

x2 + 20 In x = 400

giving your answer correct to three significant figures. [Hint: let x3 = 15.]
(O& C)

17 Show graphically that the equation x2 = 7 log10 x + 2.347 has two real 
positive roots.

Taking x = 2.2 as an initial approximation to the larger of these roots, 
obtain a second approximation by writing the equation in the form 
x = y](7 log10 x +  2.347) and using an iterative method.

Work to three decimal places and give your answer to two decimal places.
(O & C: MEI)

18 Using the Newton-Raphson process, solve the equation

V-,c + V(x "*" i) + \Ax + 2) = 5
giving your answer correct to three significant figures and showing that you 
have achieved this degree of accuracy. (C)

19 A solution of the equation x = f(x) is to be attempted using the iteration 
xr + j = f(xr), starting with an initial estimate x , . Draw sketch graphs showing 
y = x  and y =  f(x) to illustrate the following possibilities regarding the 
convergence towards, or divergence from, the root x — a.
(a) Xj > a and the successive iterates (approximations) steadily decrease, 

with the value a as a limit.
(b) Xj > a and the successive iterates are alternately less than a and greater 

than a, but approach a as a limit.

484 Pure Mathematics 1 Ex 24d

*The function In x is the natural logarithm of x; in order to do this question the reader will need to 
know that its derivative is 1 jx. See Book 2, Chapter 2.



(c) > a and the successive iterates get steadily larger.
Use an iterative method to find a non-zero root of the equation 

x = arctan (2x) correct to 2 significant figures. ' (C)
20 Show that the equation ,3 — 6x +  1 =  0 has a root between x =  0 and x =  1. 

Three possible rearrangements of the given equation in the form x = F(x) 
are
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x — ^/ (6x — 1) 
x = i( x 3+ 1) 
x = x3 — 5x + 1

Only one of these rearrangements will provide an iterative method, of the 
form xr+1 = F(xr), which converges to the root between 0 and 1. Use this 
rearrangement to find this root correct to 3 significant figures. (C)



Chapter 25

Groups
Introduction
25.1 Before starting to study this book, the reader was probably already 
familiar with the algebra of the real numbers, and in the course of the book, we 
have discussed the algebras of complex numbers, matrices and vectors. We have 
seen that, although many of the underlying principles of these topics are similar, 
there are important differences: in matrices, for example, AB is not always the 
same as BA. Since the early part of the nineteenth century, some of the most 
influential mathematicians have devoted much of their attention to the underly­
ing structure of algebra, and, in the course of their research, they have produced 
new and unusual forms of algebra. Among the most important figures in these 
developments were Abel (1802-1829), Galois (1811-1832) and Klein 
(1849-1925). Readers who are A level candidates may be interested to note that 
Galois was only seventeen when he produced some of his most original work, 
and Abel was only nineteen when he solved one of the most famous problems in 
mathematics — he proved that it is impossible to find a general solution of the 
quintic equation.

In this chapter, we shall be looking at one of these algebraic structures, the 
group; Abel, Galois and Klein all made major contributions to group theory. 
The actual term ‘group’ was first used by Galois.

Latin squares
25.2 Look at the twelve tables in Fig. 25.1. They are all examples of Latin 
squares — their chief characteristic is that each of the elements employed 
appears once, and once only, in each row and each column.

These tables should be read like a ready reckoner; the ‘product’ AT is to be 
found in the space which is in the row labelled X  and the column labelled Y 
(Fig. 25.2). For example, in table (vi), qp = r and rq = e; in table (xi), DB = C. 
Notice that the order of the elements can make a difference. In table (x), for 
instance, CA = D, but AC = B.

Q u.l In table (vi), find p(qr) and (pq)r.

486
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(i) e x  (ii) e p q (¡ii) 0 1 2

e e x  e e p q 0 0 1 2
X x  e p p q e 1 1 2 0

q q e p 2 2 0 1

(iv)
P Q R

(v)
0 1 2 3

(vi)
e p q r

P P Q R 0 0 1 2 3 e e p q r

Q R p Q 1 1 2 3 0 p p e r q
R Q R P 2 2 3 0 1 q q r p e

3 3 0 1 2 r r q e p

(vii) (viii)
1 3 1 9 I A B C

1 1 3 7 9 I I A B C
3 3 9 1 7 A A I C B
7 7 1 9 3 B B C I A
9 9 7 3 1 C C B A I

(ix (x)
e P q r S I A B C D

e e P q r s I I A B c D
p p q r s e A A I D B C
q q r s e p B B C I D A
r r s e p q C C D A I B
s s e p q r D D B C A 1

(xi) (xii)
I A B C D E 1 A B C D E

I I A B C D E I I A B C D E
A A B I E C D A A B C D E I
B B I A D E C B B C D E I A
C C D E I A B C G D E I A B
D D E C B I A D D E I A B C
E E C D A B I E E I A B C D

Figure 25.1

Qu. 2 In table (vi), solve the equation qx  ~  r. 

Qu. 3 In table (xi), simplify (AB)(CD).
Qu. 4 In table (xii), solve x2 =  B.
Qu. 5 In table (x), show that C{BD) #  (CB)D.



488 Pure Mathematics 1 25.2

I— 4
I I
I I
I t
I I

Figure 25.2

From Qu. 1-5, it can be seen that the Latin squares in Fig. 25.1 demonstrate 
many algebra-like properties and that questions containing instructions like 
‘solve’, ‘find’, ‘simplify’, can be asked about them. However, they also contain 
some properties which look rather peculiar. In Qu. 5, for instance, we saw that 
C{BD) was not the same as (CB)D.

In order to restrict the algebra to a structure which is fairly closely related to 
the algebra of real numbers, we shall impose on the Latin square two further 
important restrictions:

(a) there must be an identity element, that is, an element e, with the property 
ex = xe = x, where x is any of the other elements,

(b) if x, y and z are any of the elements used in the Latin square, then 
x(yz) = {xy)z. This is the associative law.

The first of these restrictions eliminates table (iv) and restriction (b) eliminates 
table (x).

A set of elements which can be arranged as a Latin square and which has the 
properties (a) and (b) above is called a group. (A more formal definition is given 
in §25.8.)

Isomorphisms
25.3 Look at tables (ii) and (iii) in Fig. 25.1. Are they really different? Certainly 
they employ different symbols, but if we change the 0, 1, 2 of table (ii) into e, p 
and q respectively, we see that the basic structure of the two tables is exactly the 
same; we say the two groups are isomorphic. The reader should now try to 
produce a group with three elements which has a structure which is different 
from the structure of tables (ii) and (iii). (It should not take long to discover that 
no other structure is possible.)
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Now look at tables (v) and (vi): they appear to be different, but, as we have just 
seen in tables (ii) and (iii), this may be due to the use of different symbols. Let us 
change the e, p, q and r of table (vi) into 0, 2,1 and 3 respectively. This is called a 
one-to-one correspondence, and we write it in the following way:

e <-> 0, p <-> 2, q <-> 1, r <-> 3 

Table (vi) now reads as shown in Fig. 25.3.

Figure 25.3

0 2 1 3

0 0 2 1 3
2 2 0 3 1
1 1 3 2 0
3 3 1 0 2

At first sight this appears to be different from table (v), but if we re-write it with 
the numbers in the order 0, 1,2, 3, we obtain the table shown in Fig. 25.4 and we 
can see that this is identical to table (v). So, tables (v) and (vi) are isomorphic.

Figure 25.4

0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Qu. 6 (a) Use the one-to-one correspondence

e <-» 0, p <-> 2, q <-> 3, r <-> 1

to show that tables (v) and (vi) are isomorphic.
(b) Set up a one-to-one correspondence between the elements of tables 

(v) and (vii), and hence show that they are isomorphic.
Qu. 7 Explain why tables (v) and (viii) are not isomorphic.
Qu. 8 Show that any group of four elements is isomorphic either to table (v) or 
to table (viii).

There are two, and only two, distinct groups with four elements. Their group 
tables are shown in Fig. 25.5.

Figure 25.5

e a b c (ii) I e a b c

e e a b c e e a b c
a a b c e a a e c b
b b c e a b b c e a
c c e a b c c b a e

The table in Fig. 25.5(ii) represents the group known as the Klein group; table
(i) represents a cyclic group (see §25.5). Notice that in the Klein group the 
product of any element with itself (which can be seen in the diagonal of the table 
which goes from the top left-hand corner to the bottom right) is always equal to 
e, the identity element.
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The table used to specify a group is often called a Cayley table, after Arthur 
Cayley (1821-1895), the Cambridge mathematician who made many important 
contributions to the development of modern algebra. .

Exercise 25a

The questions in this exercise refer to the Cayley tables in Fig. 25.1.

1 Given that I =  ^   ̂J and J = ^ q \ j , write out the Cayley table for I

and J  under matrix multiplication.
Show that this is isomorphic to the group represented by table (i). What is 

the identity element?
2 In table (xi), solve the following equations, i.e. find x and y:

(a) Cx = A, (b) Dx = B, (c) yC = D, (d) yD = A.
3 In table (xi), simplify

(a) B(CD), (b) (BC)D, (c) C(DE), (d) (CD)E, 
and verify that B(CD) = (BC)D and that C(DE) = (CD)E.

4 If x is any element of a group and e is the identity element, then the element 
x* such that x.x* = x*.x = e, is called the inverse of x.

Copy and complete the table below, showing each element of table (vi) and 
its inverse:

x

x

r

5 Repeat No. 4 for table (xi).
6 Complete a Cayley table showing the products of the (complex) numbers, 

1, i, — 1, — i. Show that this table represents a group which is isomorphic to 
the group represented by table (vi).

7 Complete a Cayley table for the set of products of the complex numbers

e = l , a = b 1 _ V 3 .  
2 2 1

Show that this table represents a group which is isomorphic to the group 
represented by table (ii).

8 Complete a Cayley table for the products of the four matrices,

Show that this table represents a group which is isomorphic to the group 
represented by table (vi).

9 Complete a Cayley table for the products of the four matrices,
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Show that this table represents a group which is isomorphic to the group 
represented by table (vii) (the Klein group).

10 Complete a Cayley table for the products of the eight matrices,

1 =

P =

1 0 
0 1

-1 0
0 1

B = - 1  0
0 - 1

i)

c=  

s =

0 1
- 1  0

0 -
-1 l

Further groups
25.4 The groups introduced so far in this chapter have arisen from the Latin 
squares in Fig. 25.1, from complex numbers (Exercise 25a, Nos. 6 and 7), and 
from matrices (Exercise 25a, Nos. 8, 9 and 10). In this section, and the next, we 
shall look at two further situations which give rise to groups.

One very fruitful source of examples of groups is finite arithmetic (mod n) 
where n e Z  + . [This concept may be new to some readers; however, it is 
not very complicated! In finite arithmetic (mod n), only the integers less 
than n are used. They are added or multiplied in the ordinary way, but any 
multiple of n is discarded, e.g. 3 x 2 = 6 = 1 (mod 5); 6 x 7 = 42 = 2 (mod 8); 
5 + 6=11 = 4  (mod 7). Table (vii) in Fig. 25.1 uses all the products of 1, 3, 7 and 9 
(mod 10).]

Example 1 Draw a Cayley table, showing all the products of 1, 2, 3, 4 (mod 5). 
(See Fig. 25.6.)

1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Notice that this is isomorphic to the cyclic group. (Rearrange the elements in the 
order 1, 2, 4, 3.)

Example 2 Draw a Cayley table, showing all the sums of the integers 0,1, 2, 3, 4, 
(mod 5). (See Fig. 25.7.)

Figure 25.7

0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Example 3 Show that the integers 1, 2, 3, 4, 5 do not form a group when they are 
multiplied (mod 6).
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In the table representing a group, every element must appear once and once 
only in each row and column (the Latin square property). We can see that the 
table of products of 1, 2, 3, 4 and 5 (mod 6) (See Fig. 25.8) does not have this 
property.

Figure 25.8

1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

(An extra element, namely 0, has also appeared.)

Cyclic groups
25.5 It is convenient, at this stage, to introduce another technical term which is 
used in group theory; the number of distinct elements in a group is called the 
order of that group.

We have seen in §25.3 that there are just two groups of order four, the cyclic 
group and the Klein group. Their Cayley tables are shown in Fig. 25.9.

(i) I A B C
(H)

I P Q R

/ I A B C / / P Q R
A A I C B P P I R Q
B B C A I Q Q R I P
C C B I A R R Q P I

this case / is being used for the identity element; this is the

Figure 25.9

normal practice when capital letters are used to represent the elements.)
We must also introduce another technical term here, namely the period 

of an element. (Powers of an element are formed like powers of a number, i.e. 
C2 = C x C, etc.) The period of an element X  is the smallest positive integer k, 
such that X k = I. In Fig. 25.9, table (ii), each element has a period of 2. In table
(i), A has a period of 2, but what are the periods of B and C? If we list the powers 
of these two elements, we obtain:

C 1 = C, C2 = A, C3 = CA = B, Ca = CB = I 

and B l =B,  B2 = A, B3 =B A  = C, BA = BC = I

So we can see that both B and C have a period of 4. Notice also that the 
successive powers of B (and C) produce all four elements of the group. We say 
that B (and C) is a generator of the group. A generator of a group will always 
have the same period as the order of the group. In the Klein group, shown in 
table (ii), there is no element which will generate the group.

Q u .9  Find the period of each of the elements in table (xii), Fig. 25.1. Which 
elements generate the group?
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Definition

A group which can be generated by the powers o f a single element is called a cyclic 
group. The standard symbol for a cyclic group of order n is C„.

For a given positive integer n, it is a simple matter to write down the Cayley 
table C„ generated by an element A. Suppose that

A 1 = A, A 2 = B, A 3 = C, A4 = D and A 5 = I

(Remember that the period of A is equal to the order of the group, which in this 
case is 5.) Then the Cayley table is as shown in Fig. 25.10.

I A B C D

I I A B C D
A A B C D I
B B C D I A
C C D I A B

Figure 25.10 D D I A B C

If, instead of using the distinct letters I, A, B, C and
generator A, then the table looks like Fig. 25.11,

I A 1 A 2 A 3 A4

/ I A 1 A 2 A 3 A4
A 1 A 1 A 2 A3 A4 I
A 2 A 2 A 3 A4 I A 1
A 3 A 3 A4 I A 1 A2

Figure 25.11 A4 A4 I A 1 A2 A3

and if we write it out again, omitting the letters and
we obtain the table in Fig. 25.12. (In the case of I we
the 0.)

0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2

Figure 25.12 4 4 0 1 2 3

: A0 and we record

Now we have seen this table before (see Fig. 25.7). It is the table for addition 
(mod 5). Consequently, C5, the cyclic group of order 5, is isomorphic to the 
group of the sums of the integers 0, 1, 2, 3, 4, (mod 5).

The argument which has just been applied to C5, could be applied to any 
cyclic group. Hence we can conclude that C„ is isomorphic to the group formed 
by adding the integers 0, 1, 2, 3, ..., (n — 1), (mod ri).
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Symmetry groups
25.6 In this section we shall be considering the symmetries of some plane 
figures (solid objects can also be symmetrical, but pla'ne figures are easier to 
draw on a flat page!). Consider the rhombus in Fig. 25.13.

Figure 25.13

A rhombus illustrates the two kinds of symmetry which can be found in plane 
figures; it can be reflected in the two axes, and it can be rotated in its own plane, 
about O, through 180°. Most people have an intuitive feeling for symmetry, but 
if it is necessary to spell it out in words, we could say that a symmetry is a 
transformation of the figure in which the image coincides with the original position 
of the figure. In order to distinguish between the four vertices we shall mark each 
one in a distinctive manner. Fig. 25.14 shows the effect on the rhombus of the 
four symmetry transformations:

H -  a reflection in the x-axis 
V -  a reflection in the y-axis 
R a rotation about O, through 180°
I -  the ‘no change’ transformation, i.e. the identity element

i H V R

Figure 25.14

Now consider the effect of applying a second (but not necessarily different) 
transformation. (There is a convention in this subject, that ‘apply transformation 
X and then apply transformation Y’ is written YX, and any subsequent



transformations are written on the left of any existing ones. This is the same 
convention as that used in composite functions; see §2.10.) There is not sufficient 
space to show all the sixteen possible pairs of transformations chosen from I, H, 
V and R, but Fig. 25.15 shows the effect of applying H and then one of the others.
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The remaining pairs are left as an exercise for the reader. (A copy of Fig. 25.13 
cut out from a piece of cardboard is a useful aid.) The results of the combined 
transformations are shown in Fig. 25.16; the four pairs shown in Fig. 25.15 
appear in the column labelled H.

first transformation

I H V R

second I I H V R
transformation H H I R V

V V R I H
R R V H I

The reader should, by now, be able to recognise this table; it is the Klein group.
Other groups can be produced from the symmetries of other symmetrical 

polygons. The regular polgons give rise to an especially important set of groups 
— the dihedral groups. The dihedral group produced by a regular n-sided 
polygon is always written D„. The symmetry transformations will consist of n 
rotations, through angles which are multiples of 360°/n, and n reflections, so 
there are 2n elements in the dihedral group D„. We shall now examine D3, the 
dihedral group of the equilateral triangle, in detail.

As in the previous example, we start with the figure in its standard initial 
position, with its vertices marked (Fig. 25.17), so that we can distinguish between 
them. The diagram also shows the three axes of symmetry marked c, d and e.
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The six elements of D3 will be 

I -  the identity
A -  a rotation, in the plane of the triangle, about O, through 120°
B -  a similar rotation, but through 240°
C -  a reflection in axis c 
D -  a reflection in axis d 
E -  a reflection in axis e

The effects of these six transformations on the standard triangle are shown in 
Fig. 25.18.

first
transformation

Figure 25.18

initial
position

/ \ v- 
/ \ '

/A  'nB • \
' iK

' A.1

N

D

There is insufficient room to show the thirty-six combinations of two 
transformations, but to illustrate the procedure, the six transformations ob­
tained by making transformation C, and then one of the others, are shown in 
Fig. 25.19.

The remaining results are left as an exercise for the reader. The full set of 
results appears in Fig. 25.20. (The results shown in Fig. 25.19 appear in the 
column headed C.)
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initial
position

c |

second
transformation

first
transformation

z  / \ X
X

XA
/

+
/B

\ Xc \ IV

Figure 25.19

Figure 25.20

AC = E BC = D c c  = I

I A B c D E

I I A B c D E
A A B I E C D
B B I A D E C
C C D E I A B
D D E C B I A
E E C D A B I

DC = B EC = A

This group has an important feature which does not appear in any group of 
order less than 6 — the order of the transformations matters, for example, 
DA = E, but AD = C. Groups in which X Y  =  YX, for all pairs of elements X  
and Y are called commutative (or Abelian) groups. The dihedral group D 3 is not 
a commutative group.

Note that in Fig. 25.20, the elements are not symmetrical about the leading 
diagonal (the one that goes from the top left-hand corner to the bottom right). In 
an Abelian group, the Cayley table is always symmetrical about this diagonal.

Exercise 25b

Construct a Cayley table for each of the following groups:

1 The products of the integers 1, 2, 3, 4, 5, 6 (mod 7).
2 The sums of the integers 0, 1, 2, 3 (mod 4).
3 The cyclic group C6, generated by an element x, such that x6 = e, the identity 

element.
4 The dihedral group D4, i.e. the symmetries of a square, using I for the identity 

element, R, R2, R3, where R is an anti-clockwise rotation through 90°, for the



rotations, and A, B, C, D for the reflections in the axes marked a, b, c, d in 
Fig. 25.21.
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c

Figure 25.21

5 The dihedral group D6, i.e. the symmetries of a regular hexagon, using I for 
the identity element, R, R2, R3, R4, R5, where R is an anti-clockwise rotation 
through 60°, for the rotations, and A, B, C, D, E, F for the reflections in the 
axes marked a, b, c, d, e, f  in Fig. 25.22. (Since there are 144 results to find, it is 
suggested that this might be done as a class exercise.)

d

Figure 25.22

Subgroups
25.7 In the preceding sections the reader has met a fairly wide selection of 
groups and has probably noticed that in several of them it is possible to spot a
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group within the group. In Fig. 25.1, table (vi), for instance, the elements e and p 
form a group of order 2, and in table (xi), the elements /, A, B form a group of 
order 3. Whenever a subset S of a group G is itself a group, we say S is a subgroup 
of G. (We may regard the whole group, and the identity element alone, as two 
rather special subgroups of G. If it is necessary to exclude these two special cases, 
we use the phrase proper subgroup.)

Qu. 10 List all the subgroups of the group in Fig. 25.1, table (vii).
Qu. 11 List all the subgroups of the group shown in Fig. 25.1, table (xi).
Qu. 12 List all the proper subgroups of C6, the cyclic group generated by an 
element x.

Group theory
25.8 As with any other technical subject, the deeper one goes into it the more 
necessary it becomes to ensure that all the terms used are clearly defined. In this 
section we shall define and illustrate some of the more common terms used in 
group theory. (Some of them have already been mentioned.) In these definitions 
it will be convenient to use S to represent the set of elements under 
consideration.

(a) A law of binary composition.
This is any rule for combining two elements to produce a new element; for 
example, adding a pair of integers, finding the product of a pair of rational 
numbers, adding a pair of vectors, finding the product of a pair of 2 x 2 matrices. 
If we wish to have a symbol to represent a law of binary composition and we do 
not wish to use + , —, x or h-, it is usual to use a small circle o; however the 
symbol is frequently omitted altogether, as it is in ordinary multiplication.

(b) Closure.
We say a set S is closed, under a binary operation o, if, for any pair of elements a 
and b which belong to S, the ‘product’ aob also belongs to S. For example, if we 
add a pair of even numbers, the result is also an even number; the product of a pair 
of 2 x 2 matrices is another 2 x 2  matrix; the sum of two vectors is another vector. 
these are all examples of closed operations. On the other hand, the sum of two 
odd numbers is not an odd number; the scalar product of a pair of vectors is not 
another vector: these are examples of operations which are not closed.

(c) An identity element.
This is an element e of the set with the property that, given any element x of the 
set S, cox = xoe = x. (When capital letters are used it is usual to use /  for the 
identity element.) We have already seen many examples of identity elements, e.g.

number 1 is the identity element when multiplying real numbers, and the number 
0 is the identity element when adding real numbers.

is the identity element when multiplying 2 x 2  matrices, the
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(d) An inverse element.
If x is any member of the set S, then the element x*, such that xox*  = x* ox = e, 
is called the inverse of x. (It is frequently written x _ 1.) When adding integers, the 
inverse of an integer a is the integer — a (e.g. — 5 is the additive inverse of +  5); in 
multiplication, the inverse of the (non-zero) rational number a/b is b/a (e.g. 2/5 is

(e) Commutativity.
A pair of elements a and b are said to commute if ao b is equal to boa, i.e. the 
order does not matter. If every pair of elements of a group commute, we say the 
group is commutative. (Commutative groups are frequently called Abelian 
groups, after the young Norwegian mathematician Henrik Abel, who did much 
original work in this branch of mathematics.) Note that not all groups are 
commutative, vide Fig. 25.1, table (xi).

(f) Associativity.
The law of binary composition is said to be associative in the set S if, for 
every triplet a, b, c of elements of set S, ao(boc) = (aob)oc (i.e. the position 
of the brackets does not matter). Clearly both addition and multiplication 
of real numbers is associative, but division is not, e.g. 72 -f- (6 3) =  36,
but (72 -f- 6) -r- 3 = 4. Both addition and multiplication of complex numbers are 
associative and the same is true for addition and multiplication of (compatible) 
matrices.

Qu. 13 Which of the following sets are closed under the given law of binary 
composition?
(a) Even integers; multiplication.
(b) {1, 2, 3, 4, 5, 6); multiplication (mod 7).
(c) Prime numbers; addition.
(d) Complex numbers; multiplication.
Qu. 14 In which of the following systems does every element have an inverse? 
In the cases where there are elements which do not have an inverse, give an 
example of such an element.
(a) Rational numbers; multiplication.
(b) Non-zero complex numbers; multiplication.
(c) 2 x 2  matrices; multiplication.
(d) {1, 2, 3, 4); multiplication (mod 5).

With these technical terms at our disposal, we can now state the formal 
definition of a group.

A group is a set of elements {e, a ,b ,c ,...}  and a law of binary composition, with the 
following properties:
(1) The set is closed under the law of binary composition.

Definition
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(2) The law of binary composition is associative.
(3) There is an identity element.
(4) Every element has an inverse. *

Notice that a group does not have to be commutative and that the number of 
elements does not have to be finite.

Example 4 (a) Show that the set {0, 1, 2, 3} under addition (mod 4) forms a 
group, (b) Show that the set {1, 2, 3} under multiplication (mod 4) does not form a 
group.

(a) The table of addition (mod 4) is shown in Fig. 25.23.

Figure 25.23

0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

By inspection, we can see that it is closed; and since it is derived from ordinary 
arithmetic, it is associative. The identity element is 0.

The table below shows that every element x has a corresponding inverse x*.

X 0 1 2 3

X * 0 3 2 1

Hence it does satisfy all the group properties.

(b) The table for multiplication of the numbers 1, 2, 3 (mod 4) is shown in 
Fig. 25.24.

Figure 25.24

1 2 3

1 1 2 3
2 2 0 2
3 3 2 1

Although this exhibits some of the group properties, it does not exhibit them all. 
It is not closed and the element 2 has no inverse. Hence it is not a group.

Example 5 In a given set S, with a law of binary composition o , there is a left 
identity e, that is, an element e with the property that if x is any member of set S 
theneox  =  x, and a right identity f , that is, an element f  with the property that if 
x is any member of set S, x o f  = x. Prove that e = f.

Consider the ‘product’ eo f. Since e is a left identity, e o f= f ,  and, since /  is a 
right identity, e o f  = e. Hence e = / .

(Formal proofs, such as that in Example 5, are common-place in university 
level books on group theory; they will be kept to a bare minimum in this book.)
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We shall now prove that a group, as defined in this section, will have a Cayley 
table which exhibits the ‘Latin square’ property which was used to introduce this 
topic in §25.1. The ‘Latin square’ property requires that in each row (and in each 
column) each element should appear once, and once only. We shall prove this for 
a row; it is left as an exercise for the reader to prove it for a column.

Consider the row corresponding to the element a. This row contains all the 
products of the form a ox, where x  is any member of the set S. It is necessary to 
prove two things:

(1) that, given an element b, it must appear somewhere in a’s row, i.e. it must 
be possible to find a solution of the equation aox  = b.

(2) that, if a o x = a o y, then x = y. (This ensures that each ‘product’ appears 
once only in a’s row.)

The proofs are as follows:

(1) Consider the product a*ob, where a* is the inverse of a. We know that 
such an element exists (inverse property), and we know that a* o b is a member of 
set S (closure property). If we put x = a*ob into the left-hand side of the 
equation a o x = b, we obtain

a ox  =  ao(a*ob)
= (aoa*)ob (associative property)
= eob  (inverse property)
= b (identity property)

Hence x = a*ob is the solution we require.

(2) Given that aox  = aoy, multiply both sides by a* (we know that such an 
element exists by the inverse property), hence

a*o(ao x) =  a* o (a o y)
(a* o a) ox = (a* o a) oy  (associative property)

eox = eoy  (inverse property)
x = y (identity property)

Hence, if a ox  =  aoy, then x =  y.

Exercise 25c
In this exercise, it may be assumed that every set mentioned is associative under the 
given law of binary composition.

In Nos. 1-5, a set of elements S and a law of binary composition o are given. In 
each question say whether the set S is, or is not, a group under o . If you decide it 
is not, give a clear reason for your decision.

1 The natural numbers; multiplication.
2 The odd integers (positive and negative), together with zero; addition.
3 The non-zero rational numbers; multiplication.
4 Numbers of the form 2k, where k e Z; multiplication.
5 Non-singular 2 x 2  matrices; multiplication.



In Nos. 6-8, a finite group is given. In each case find a standard group e.g. a 
cyclic group, to which it is isomorphic. Draw up a table showing each element 
and its corresponding inverse. «

6 {1, 4, 7, 13}; multiplication (mod 15).
7 The complex numbers, e = l ,  a = j  + (^/3/2)i, b=  — i  + (^/3/2)i, c = — 1, 

d = —j  — (v-' 3/2)i, / =  j  — (v;3/2)i; multiplication.
8 The 2 x 2  matrices
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multiplication.
9 Verify that the functions I(x) = x, A(x) = 1/(1 — x), B(x) = (x — l)/x, 

C (x)= l/x , D(x)= 1 —x, E(x) = x/(x — 1), form a group when they are 
combined by forming composite functions. Tabulate each element and its 
inverse and, in the same table, show the period of each element. Is this a 
cyclic group?

10 Prove that, with a restriction which you should specify, the numbers of the 
form a + b-J2, where a ,b e Q ,  form a group under multiplication. What is 
the inverse of a + b^jT!

11 Repeat No. 10 for the complex numbers a + bi, where a, b e  R, under 
multiplication.

12 Find a subset of the integers 1, 2, 3, ... 11, which, under multiplication 
(mod 12), forms a group.

Cosets
25.9 Most of the finite groups which we have met so far in this chapter have 
been groups of fairly small order. In order to develop the subject further we need 
to look more closely at a group of higher order than those we have examined up 
to this point. By way of example, we shall look at the group whose Cayley table 
is shown in Fig. 25.25. (It is actually the dihedral group D6.) Notice that the 
elements of the group are not scattered in a random fashion, they appear in tidy 
3 x 3  boxes; as we shall see, this is no accident. But first, we must meet another 
important technical term — coset.

(In the remainder of this chapter, the symbol o for the rule of binary 
composition will be omitted. The product of a pair of elements x and y will be 
written xy, just as in elementary algebra.)

Definition

/ /  H = {e, a, b, c, ...} is a subgroup of a group G, and if x is any member of the 
group G, the set o f products

{xe, xa, xb, xc, ...}
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is called the left-coset of H with respect to x. Similarly the set 

{ex, ax, bx, cx, ...}

is called the right-coset with respect to x.

This rather bare definition may be difficult to assimilate at the first reading, so 
let us consider a particular group. Look at the Cayley table, in Fig. 25.25.

I A B c D E p Q R 1 s 1 T U

I I A B c D E p Q R ' s T U
A A B I D E C Q R P ! T U s
B B I A E C D R P Q ' U . 1 s T

C C E D I B A S U T ! P R Q
D D C E A I B T S U ! Q P R
E E D C 1 B A I U T S I R Q P

P P Q R 11 S T U I A B i C D E
Q Q R P 1 T U S A B I ! D E C
R R P Q U s T 1 B I A i E C D

S S U T
T

P R Q C E D 1 / B A
T T s U Q P R D C E ! A I B
U U T s R Q P E D C 1 B A IFigure 25.25

This group has several subgroups. We shall consider just one of them, the set 
{I, A, B} which can be clearly seen in the top left-hand corner of the Cayley 
table. We shall call this subgroup H.

(The reader’s attention is drawn to the fact that the letters H, G etc., which 
represent groups will be printed in a special typeface, but the letters which 
represent individual elements are printed in italics.)

The cosets IH, AH, BH are {/, A, B}, {A, B, /} and {B, I, A) respectively. 
These can be clearly seen in Fig. 25.25; they are the first three elements in each of 
the first three rows of the table. Bearing in mind that sets which contain the same 
members are equal (see §2.6), we see that

IH =  AH = BH

In the next three rows of Fig. 25.25, we can see the three cosets CH, DH and EH. 
Once again notice that they are equal, i.e. they are equal to {C,D,E}. The next 
three rows contain the cosets PH, <2H and RH and we can see that they equal the 
set {P, Q, R} and, in the final three rows, we can see the cosets SH, TH and l/H, 
which are equal to {S, T, U}.

The set of elements in G, then, can be broken down or partitioned into four 
distinct cosets, namely {/, A, B}, {C, D, E}, [P, Q, R} and {S, T, U}. This is a 
particular example of Lagrange’s theorem, which will be proved in the next 
section. Lagrange’s theorem states that if H is a subgroup of a group G, then the 
order of H is a factor of the order of G. (In the case of the group in this section, the 
order of H was 3 and the order of G was 12.) The proof of Lagrange’s theorem



follows the method outlined above, that is, it sets out to partition G into distinct 
cosets, each containing h elements, where h is the order of H. The reader may 
find it helpful to refer back to this particular case while, reading the general 
proof.

Lagrange’s theorem
25.10 Lagrange’s theorem states that if G is a finite group of order g and H is a 
subgroup of G, of order h, then h is a factor of g.

Notice that if H is an improper subgroup, that is, it is either {/}, where I is the 
identity element, or G itself, the theorem is trivial, so we need only prove it when 
H is a proper subgroup of G.

Before embarking on the proof, we shall prove three lemmas. (A lemma is a 
minor theorem which forms part of the proof of a more important one.)

Lemma (1) The h members of the coset xH are distinct.

Proof This follows immediately from the fact that they all come from the same 
row of G, and so, by the ‘Latin square’ property, they must be distinct.

Lemma (2) I f  x is not a member of H, then the coset xH and H are disjoint sets.

Proof (The method of proof in this lemma will be reductio ad absurdum, and so 
the first step is to assume there is an element of xH, say the element xa, which 
does belong to H.)

Suppose that xa = b, where b e H, then, multiplying both sides by a -1, we 
obtain

(xa)a ~1 = ba~l 

hence

x(aa~ l) = bcT1 (associative law)

xe = ba~* (because a “ 1 is the inverse of a)

x = ba~1 (because e is the identity element)

Now b is an element of the subgroup H and so is a -1, and since in any group 
‘multiplication’ is closed, it follows that ba~1 is a member of H. Hence x e H. 
However this contradicts the fact that x does not belong to H, so the assumption 
that xa belongs to H is false. Hence no element of xH belongs to H, i.e. the sets 
xH and H are disjoint.

Lemma (3) I f  y is not a member of the coset xH, then the cosets xH and yH are 
disjoint.

Proof The proof of this lemma is very similar to that of Lemma (2) and so it is 
left as an exercise for the reader.

The stage is now set for the proof of Lagrange’s theorem.
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Let H = {e, a, b, c, ...} be a proper subgroup of G. Because it is a proper 
subgroup, there is at least one member of G which is not a member of H; let this 
element be x. Consider the coset xH. By Lemma (1), we know that xH contains h 
distinct elements and, by Lemma (2) we know they are different from the h 
members of H. So the sets xH and H together account for 2h members of G. If 
this exhausts G then g = 2h and the proof of the theorem is complete. But if xH 
and H do not exhaust G, there must be at least one more element of G 
unaccounted for. Let this element be y and consider the coset yH. Once again, 
Lemma (1) tells us that it contains h distinct elements; Lemma (2) tells us they are 
different from the members of H, and Lemma (3) tells us that they are different 
from the members of xH. So we have now accounted for 3/i members of G; if this 
exhausts G, then g = 3h. Failing that, we repeat the argument. Since G is a finite 
group, we must eventually reach a stage when G is exhausted. When this 
happens, the elements of G will have been partitioned into a number of distinct 
cosets, each containing h elements. In other words g is a multiple of h, which 
completes the proof of the theorem.

It follows from Lagrange’s theorem that if the order of G is a composite 
number (i.e. not a prime number) then any subgroup of it must have an order 
which is a factor of g. For example, if G is a group of order 12 then any proper 
subgroups it may have must have 2, 3, 4 or 6 elements (but Lagrange’s theorem 
does not say that such subgroups must exist.)

Qu. 15 Find all the proper subgroups of the group D6 in Fig. 25.25 and verify 
that their orders are factors of 12.

There is a very important corollary to Lagrange’s theorem; if the order of a 
group is a prime number, then it can have no proper subgroups. Consequently no 
element can have a period which is less than the order of the group (if it did, this 
element and its powers would form a proper subgroup), and hence the group 
must be cyclic. So any group of order p, where p is a prime number, is 
isomorphic to the cyclic group Cp.

Generators
25.11 In §25.5 we saw that some groups can be generated by a single element; 
that is, every element; in the group can be expressed as a power of a single 
element, called the generator of the group. It will be remembered that such 
groups are called cyclic groups and that all cyclic groups of the same order are 
isomorphic to one another. Not all groups, however, are cyclic; the Klein group 
(see Fig. 25.9 (ii)), for instance, is not cyclic. We can say, however, that it is 
generated by two elements P and Q, because the only remaining element R can 
be expressed in terms of P and Q; indeed in this particular example R is equal to 
PQ. When it is possible to express every element of a group in terms of just two 
elements x and y, we say that the group is generated by x and y. In a large and 
complicated group it may be necessary to have a large number of generators. 
Example 6 illustrates a group of order 6, generated by two elements p and r.



Example 6 A group of order 6 consisting of the elements e, p, q, r, s and t 
(e being the identity element) has the following properties:

q = p2, s = pr, t = p2r and p3 = r2 = s2 = e

Draw the Cayley table of this group.

Without any working, it is possible to complete part of the Cayley table, as 
shown in Fig. 25.26.
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e

e e
P
q
r
s

P
q
r
s

P

P
q
e

q r s t

q r s t
e s 
P t 

e
e

Figure 25.26 t t

In order to complete the p row, consider the products ps and pt: 

ps = p(pr) = p2r — t
pt = p(p2r) = p3r = er = r

To complete the q row, we look at the products qs and qt:

qs = (p2)(pr) = p3r = er = r 
qt = (P2)(p2r) = p*r = pr = s

Before we tackle the next two rows, notice the following useful identities.

Since s2 = e, and s = pr, we can write 

(pr)(pr) = e

and, on removing the brackets,

prpr = e (1)

[In the next few lines, we shall follow the usual rule of ‘doing the same thing to 
both sides of the equation’, but, because multiplication in this group is not 
commutativq, we must make it clear whether the given element is to be placed on 
the right or on the left of the existing terms.]

Multiplying on the right by r,

prprr = er

hence, noting that r2 = e,

PrP = r

and multiplying again on the right by p2, we obtain

pr = rp2 =  rq

If, on the other hand we had multiplied (1) on the left by p2, we would have
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obtained

25.11

rpr = p2 = q

and multiplying this on the right by r gives 

rp = qr

These identities are very useful for completing the remaining rows of the Cayley 
table. For the r row, we require the products rp, rq, rs and rt:

rp = qr = t 
rq = pr = s 
rs = rpr =  q
rt =  rp2r =  (pr)r = pr2 = pe = p 

To complete-the s row, we must find sp, sq, sr and st:

sp = prp = r
sq = prq = ps = t
sr = prr = pe = p
st = prp2r = (prp) (pr) = rs = q

The final row is left as an exercise for the reader. The complete Cayley table is as 
shown in Fig. 25.27.

Figure 25.27

e p q r s t

e e p. q r S t
P p q e s t r
q q e p t r s
r r t s e q p
s s r t p e q
t t s r q p e

Exercise 25d (Miscellaneous)
Whenever the symbols I or e are used in this exercise, you should assume they are 
intended to represent the identity element. When you are required to prove that a 
certain system is a group, the formal definition in §25.8 should be used.

1 Show that the set {1, 3, 5, 7} forms a group under multiplication (mod 8).
2 Compile the Cayley table for the set {3, 6, 9, 12} under multiplication 

(mod 15). Name the identity element and draw a table showing each element 
and its inverse.

3 Show that the set of matrices of the form l P ^ ^ ), where p, q e R, forms a
V° 4 /

group under matrix multiplication. (The associative property may be 
assumed.)

4 Given that x and y are two elements of a group G, and given that x has a 
period of k, show that yxy“ 1 also has a period of k.
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5 Consider the Latin square in Fig. 25.28.

Figure 25.28

I A B C D E 'F G

I I A B C D E F G
A A I G F E D C B
B B E I G F A D C
C C F E I G B A D
D D G F E I C B A
E E B G D A F G I
F F C E A B G I E
G G D A B C I E F

(a) Find the group which is generated by G.
(b) Find the group which is generated by A.
(c) Find the group which is generated by A and F.

6 Using the Cayley table in No. 5, find all the left-cosets of the subgroup 
{I, A}.

7 Given that f(x) = (1 + x)/(l — x), and combining functions by forming 
composite functions, show that f generates the cyclic group C4. List the 
functions which make up this group.

8 Given that the elements x, y and (xy) of a group all have a period of 2, show 
that xy = yx.

9 Prove that the set of integers {1, 2, 4, 5, 7, 8} forms a group under 
multiplication (mod 9). Find the period of each element and show that the 
group is isomorphic to the cyclic group C6.

10 Given that M is the 2 x 2 matrix ( C° S a ), show that
\ — sin a cos a )

M 2
cos 2a 

— sin 2a
sin 2a 
cos 2a

, . , , /  cos na sm na \ , TI
Prove by induction that M "= . , where n e Z  . Hence

\  — sin na cos na )
show that if a = 2n/N, where N e Z +, M generates the cyclic group CN. 

I l f  Prove that the group in Fig. 25.29 can be generated by R and S, provided 
R 2 = S2 = (R S f = /.

Figure 25.29

1 P Q R S T

I I P Q R s T
P P Q I T R S
Q Q I P S T R
R R s T I P Q
S S T R Q I P
T T R S P Q I

tThese questions could be undertaken by several students working together.
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12+ A group G is generated by two elements x and y, such that

x4 =  e, x 2 = y2 and xy  = yx3

Prove that x3y =  yx  and x2y = yx2. Hence show that the group contains 
exactly 8 members: e, x, x 2, x3, y, yx, yx2 and yx3. Write out the Cayley table 
of G.

13+ A group G is generated by three elements x, y and z, which satisfy

x3 =  y2 = z2 = (xy)2 = (yz)2 = xzx2z = e

Prove that (a) zx =  xz, (b) yz = zy, (c) yx = x2y. Hence find all the members of 
G, expressing each one in the form xaybzc, where a ,b ,ce  Z +.

14 Consider the Latin square in Fig. 25.30.

p Q R s U V w X

p s R W V P u X Q

Q X S P w Q R u V
R Q V s X R w p V
S V w X u S p Q R
u p Q R s u V w X
V u X Q p V s R Q
w R u V Q w X S p
X W p u R X Q V sFigure 25.30

(a) Simplify: (PQ)R, P(QR), R(SU), (RS)U, {VW)X, V{WX).
(b) Name the identity element.
(c) Assuming that the associative law is satisfied, show that this Latin square 

is a group.
15 In No. 14, find two subgroups of order 4. Partition the group into the four 

left-cosets with respect to the subgroup generated by the element S.
16 The multiplication table for the set {e, a, b, c, d} is given in Fig. 25.31.

Figure 25.31

e a b c d

e e a b c d
a a e c d b
b b d e a c
c c b d e a
d d c a b e

Using this table, determine (ab)c, a(bc), (bc)d, b(cd). Ascertain which of the 
group axioms are satisfied by the given set under the given multiplication. 
Find two subsets from the above set which form a group under the given 
multiplication. (L)

17 (a) Prove that the set of non-zero real numbers form a group under the 
operation defined by x o y =  2xy. State the identity of this system, and give 
the inverse of x.

+See previous page.
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(b) A set of four 2 x 2  matrices forms a group under matrix multiplication.

Two members of the set are q ^  and Find the other

members and write out the group table. (L)
18 Show that the four matrices

A =
i  0 
0 1 
i  0

/  0 Vi o \ 
C= Vi 0Vi > 

V  0 Vi 0 /

/  0 -Vi o\
D= -Vi o -Vi 

\  0 -Vi 0/
form a group under matrix multiplication (which may be assumed to be an 
associative operation). Give the operation table (i.e. the Cayley table) for this 
group.

Determine whether or not this group is isomorphic under multiplication 
to the group consisting of the four matrices

19 Prove that the integers {..., —3, —2, —1,0, 1, 2, ...} form a group G under
the operation of ordinary addition. Give an example of a proper subgroup. 
Prove that the powers of 2 1 ,2 ,4 , . . . }  form a group H under
ordinary multiplication.

Establish an isomorphism between G and H and give the subgroup of H 
corresponding under this isomorphism to your previous subgroup of G.

(C )
20 You are given that the set of real 2 x 2  matrices with non-zero determinants 

is a group G under multiplication. Show that the set S of all matrices of the

form A = ( Ul ) (with a1 and a2 taking real values, but not both zero) is
\«2 a j

a subgroup of G. Is it Abelian (i.e. does AB =  BA for all A, B e S)? Given an 
arbitrary element A e S, find an element C e S (if there is one) such that 
C2 = A. If there is one is it unique?

Find an element J  € S (if there is one) such that J 2 =  — I, where I is the 
identity matrix.

Comment briefly on the relationship between the set S and the set of all 
complex numbers (x + iy).

(Oxford Colleges Entrance Examination)



Appendix
Elementary algebra — revision
The object of this Appendix is to give the reader some extra practice, if it is 
needed, in the algebraic manipulation which he or she will meet in this book.

Readers who are confident about their command of algebra may omit the 
Appendix; others may find it useful to ‘brush-up’ particular topics. Some 
teachers may wish to use it as a preliminary course in basic algebra before 
embarking on the rest of the book.

Simplification
Example 1 Simplify (x + h)2 +  (x — h)2.

(x -I- h)2 + (x — h)2 =  x 2 + 2xh + h2 + x 2 — 2xh + h2
= l x 2 + 2 h2 
=  2(x2 + h2)

Exercise 1
Simplify:

1 (x + h)2 -  (x -  h)2. 

3 (x + h)3 — (x — h)3.

2 (x + h)3 + ( x -  h)3.

4 x(l — 2x2) + 2x(l — x2).

2y — 1 _  3
3 — x “  ~ 4 '

3i2 + 2t3 t 2 
( 1 + i ) 2 ^ ( 1 + t ) 3 '

7 (2 V i-3 ) ( l+ V 0 -

O VX VX 
(Vx _ 1 ) (Vx + 1) ’

-  +  -

xy

512
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Factorisation
Example 2 Factorise 2x(2x +  l)2 +  (2x + l)(4x2 — 3). *

(When factorising an expression like this, it is important to spot any common 
factors; in this example (2x + 1) is a common factor.)

2x(2x + l)2 +  (2x + l)(4x2 -  3) =  (2x + 1) [2x(2x + 1) + 4x2 -  3]
=  (2x +  1) (4x2 + 2x + 4x2 — 3)
=  (2x + l)(8x2 + 2x — 3)
=  (2x + 1) (2x — 1) (4x + 3)

(Note that if an expression can be factorised, this should be done.)

Exercise 2

Factorise:

1 35x2 + x — 6.
3 2x2 — xy — y2.
5 xy + 3 y — 2x — 6.
7 (x + 3) (x2 + 3) + x(x +  3)2 
9 (x + 3)2 -  (x -  7)2.

2 2x2 — 98.
4 xy  + ay + xb +  ab.
6 x(x + l)2 + (x + l)(x2 — 3). 
8 5(x + l)2 + 7x(x + 1).

10 (x — 2)3 +  5x(x — 2)2.

Fractions
Example 3 Express as a single fraction:

(a)
1 2

2 + x + 1 — 3x ’ (b)
1 1

~á*b + ab3 '

1 2 1 1 — 3x 2 2 + x
2 + x + 1 — 3x 2 + x 1 — 3x + 1 — 3x 2 +  x

(1 -  3x) + 2(2 +  x)
(2 + x)(l — 3x)

1 — 3x + 4 +  2x 
(2 + x)(l — 3x)

5 — x
= (2 + x)(l -3 x )

1 1 b2 a2
a*b + ab2 ~ t f P  +  a W

_  a2 + b2 
a3h3

(In this part, notice that a3b3 is the lowest common multiple of the original 
denominators a3b and ab3.)
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Exercise 3

Express as a single fraction:

1 1 X y1 ------- . 2 --- hx y y X

1 1 1 1
3 —T “1“ — • 4 H— ~—

a2 a ab2 a2b

5 - C  + ‘
x —h x + h

1 2
1 — x 2 +  x

„ n 1
9 — -  +

n + 1 (n + l)(n + 2) '

1 1
(x +  h)2 x2 ' 

x 2
x +2 2 + x

, 0 ( 7 î l ?  + ( i f i )  + 1'

Further simplification 

Exercise 4

Simplify:

2T — 2t 
1 T 2 — t 2

2 y - 2 t  =  y ( x - t 2).

, 1 - 1 A A T - t
3 1 - t  ■ 1/T — 1/t '

5 N(4N2 -  1) + 3(2N + l)2. £ a b
J (a  + b) yj(a +  b)

a/b + c/d
8

(x + h)3 — x3
1 + ac/(bd)' h

1 x2 9 10 / [1 — 2t/(l + t2) |
V(1 + * 2) V(! + * 2)(1 + * 2)' V 11 + 2i/(l + t1) J

Completing the square
(Completing the square is a very useful technique which appears in several 
different contexts. It depends on the identity

(A + B)2 = A 2 + 2AB + B 2

as the following example illustrates. In each of the questions below, there is a 
number missing wherever a box has been printed.)
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Example 4 Complete: (□  x +  □  )2 =  25x2 + 70x + □ . ,

Comparing this incomplete statement with the identity above and, in 
particular, comparing the term 25x2 with A 2 in the identity, we see that A = 5x. 
Comparing the middle terms, namely 70x and 2AB, and bearing in mind that 
A = 5x, we can see that B = l. Lastly, the final term on the right-hand side 
should be B 2 and so the missing number in the last box is 49. The complete 
statement is

(5x + 7)2 = 25x2 + 70x + 49

Exercise 5

Complete the following:

1 (x + 3)2 = x2 + D x + 9.
3 (3x + 2)2 =  9x2 + □  x + 4.
5 ( x -  D)2 = x2 - 1 4 x +  □ .
7 (x + \ ) 2 = x 2 + □  x + □ .
9 (D x 2 +  3)2 =  100x4 + 60x2 + □ .

2 (x — 5)2 = x2 — □ x +  □ .
4 (x + □  )2 = x2 + lOx +  □ .
6 (2x + □  )2 =  □  x2 + 12x + □ .
8 ( i x -  D)2= D x2- x + □.

10 (lx  + □  y)2 = □  x2 + ^xy + □  y2.

Changing the subject of a formula
y  — k

Example 5 (a) Make y the subject of ------ =

(b) Make x the subject of m =
x + a 
b — x

(a)
y —k x —h

a b 

Multiply both sides by a:

, ( x - h )
y ~ k  =  a~x — - —

x — h 
b

= l {x~ h)

Add k to both sides:

y = z ( x ~ h) + k b

(b) (This is slightly harder because x appears more than once; the purpose of 
the first few steps is to rearrange the equation so that x appears once only.)

x +  a



m(b — x) = x + a 
mb — mx = x + a

Add mx to both sides and subtract a from both sides:

mb — a = x + mx 
= x(l + m)

(This has achieved the first objective; x now appears once only.) 

Now, divide both sides by (1 + m):

mb — a
------ = *1 + m

mb — a
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Multiply both sides by b — x:

Exercise 6

In each question, the letter which is to be made the subject is printed at the end 
of the line in brackets.

1 y = mx + c, (m).

2 b = a(l — e), (e).

3 y2 = (x + a)2 — (x — a)2, (x).

y — k x — h
1 K — k H - h ’

5 3mc = (4 + 3m) (c — 4), (c).

6 ax — x + 1 — h = 0, (x).

7 T = 2n J L , (0-

8 T = 2n J 1- , (#)•

9 2x + 2 y + 2mx — 4my + 1 = 0 , ,(m).

10 2x — 3y — 3mx + 2my — 2m + 4 = 0, (m).

Linear and quadratic equations
Example 6 Solve the equation j(2x — 3) — ^(x — 2) =

i(2x -  3) -  i(x  -  2) = l



3(2x -  3) -  2(x -  2) = 7 
6x — 9 — 2x + 4 = 7

(Be very careful over the +  sign in front of the 4: this is a very common source of 
error!)

Simplifying the left-hand side gives

4x -  5 = 7 
4 x =  12

and hence

x = 3

[It is a wise precaution to check the answer by substituting x =  3 in the original 
equation. The L.H.S. gives

}(2x -  3) -  i(x -  2) = i(6 -  3) — j(3 -  2)
= i  x 3 - i  x 1
=  H - i  
=  11

Example 7 Solve the equation tx — t2 = T x — T2, expressing x in terms of t 
and T.

tx - t 2 = T x - T 2 
tx - T x  = t 2 - T 2

Factorising this gives

x ( t - T ) = ( t - T ) { t  +  T)

Dividing both sides by (t — T) we have 

x = (t+  T)

(However, it should be noted that the final step, namely dividing by (t — T), is 
only permissible if t ^ T ,  because one must never divide by zero. If t does equal 
T, the original equation is true for all values of x.)

Exercise 7

Solve the following equations:

I 2x + 1 =  16 — 3x.

3 x 1 4 x - 5  x - 7
x + 1  x — 2 ' x + 1  x — 2 ’
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Multiply both sides by 6:

5 2x2 — 17x +  21= 0 . 6 x2 = 5x +  14.
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x x  + 1 x + 4'
a

In Nos. 8-10, express x in terms of the other letters.

„ x — ct cT — x , ,
8 —-— = — -— . 9 5x2 — 16tx + 3i2 =  0.

10 tx2 + ( tT — l)x — T =  0.

Simultaneous equations
(The reader will have solved simultaneous equations before, but the method of 
substitution may be new. In Example 8, substitution is merely an alternative to 
other possible methods, but in Example 9, it is the only way the equation can be 
solved.)

Example 8 Solve the simultaneous equations

7x + 2 y = l l  (1)
4x + y = 7 (2)

Equation (2) can be rearranged to give

y = 7 — 4x

Substituting (7 — 4x) for y in equation (1):

lx  + 2(7 — 4x) — 11

Removing the brackets,

lx  + 14 — 8x = 11 
.'. 14 — x = 11 

.'. x = 3

Putting x = 3 in equation (2) gives

12 + y =  7
y = — 5

Hence the solution is x = 3, y = — 5. (This should be checked by substituting 
these values into equation (1).)

Example 9 Solve the simultaneous equations

x 2 + y2 = 25 r2 
2 y + x =  10 r

giving the answers in terms of r.

From the second equation we have 

x =  lOr — 2y
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Substituting this into the first equation gives

(lO  — 2y)2 + y2 =  25r2 .

Removing the brackets,

100r2 — 40 ry + Ay2 + y 2 = 25 r2

i.e. 100r2 — 40 ry + 5y2 = 25 r2 
.'. 5y2 — 40ry +  75r2 = 0

After dividing both sides by 5, this becomes

y2 — 8 ry + 15r2 =  0 
.■ .(y -3 r)(y -5 r)  = 0

Therefore either y — 3r =  0, or y — 5r = 0.

y = 3r or 5r

Substituting these values into the equation 2y A x — lOr, gives

either 6r +  x= 10 r, i.e., x =  4r 
or 10r + x= 10 r, i.e., x =  0

Hence the solution is

x = 0 and y = 5r

or

x = 4r and y = 3r

(It should be carefully noted that each solution consists of a value of x and a 
value of y.)

Exercise 8

Solve the following equations:

1 7x + 4y=10, 2 6x + y =  9,
5x + 3y = 7. 4x — y = l l .

3 5x + 2y + 1 = 0, 4 y2 = 4x,
y = lx  + 3. y =  x .

6 y2 = 4x + 1,
y = x + 1.

5 xy  = 64, 
Ax — y = 60.

In Nos. 7-10, express x and y in terms of the other letters.

7 2y = x + Ac, 8 ty = x + t2,

9 xy = \,

5y = x +  25 c. Ty = x +  T2, (where t #  T). 

10 x2 — y2 =  16a2,
t2x - y  = t3 — l/t. y =  3x — 12a.
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Equations of higher degree
(Equations of degree more than two can be very troublesome to solve unless 
they can be factorised. However when factors can be found, the same idea which 
is used in the solution of quadratic equations by factorisation may be used, 
namely that a product of real numbers (see §2.1) can only be zero if one of the 
factors is zero.)

Example 10 Solve the equation x3 — 5x2 + 6x = 0.

Since x  is a factor of each term in the equation, we can re-write it as 

x (x 2 — 5x + 6) = 0

and on factorising the quadratic, we have

x(x — 2)(x — 3) =  0 

Hence

x = 0 or x — 2 = 0 or x — 3 = 0 

Therefore x = 0, or 2, or 3.

(Notice that although it is tempting to ‘divide through’ by x, if we do so, we lose 
the solution x = 0.)

Example 11 Solve the equation x4 — 5x2 — 36 = 0.

(Although this is an equation of degree 4, we may treat it as a quadratic in x2.)

X 2- 5 X - 3 6  = 0, where X  = x2

Factorising:

(X -9 )(X  +  4) =  0 
i.e. (x2 — 9) (x2 + 4) = 0

The factor (x 2 + 4) cannot be zero (not, that is, unless we use complex numbers, 
see §10.6), so if x is a real number we must deduce that

x2 — 9 = 0 
.-. x2 = 9

Therefore x = +  3, or — 3.

Exercise 9

Solve the following equations. In Nos. 6-10 express x in terms of the other 
letters.

1 x3 — 4x = 0.
3 x3 — x2 — 20x = 0. 
5 9x4 + 5x2 -  4 = 0.

2 x3 = l x 2.
4 x4 — 17x2 + 16=0. 
6 x3 + kx2 =  0.



7 (x — a)3 — b2(x — a) = 0. 
9 x4 -  a4 = 0.

8 x3 + a2x = 0.
10 ( x - p ) 3 = q3.

Exercise 10 (Miscellaneous)
1 Simplify:

(a) ^/{(a — b)2 + 4ab}, (b) (a + b)3 — 3ab(a + b).
2 Factorise:

(a) K 2(K + l)2 + 4(K + l)3, (b) N(N  + 1)(2N + 7) + 6(N +  1)(N + 3).
3 Express as a single fraction:

, , 1 _  _ J ___ _  2___________ 2N + 3
W  ( x - h ) 2 (x + h)2’ [ ’ ( N + l ) ( N  + 3) {N+ l)(JV + 2)'

4 Simplify:

(a) n 2̂ + 1J 2 ~  (b) N ^ N  +  1 ) { 2 N  +  l )  +  9 { N  + l ) +  12>-

5 Complete the following:
(a) (7x + □  )2 =  49x2 + 42x + □ , (b) (x + D)2 + □  = x2 + l x  +  13.

6 Make x the subject:
(a) u = ^(3x  + 3), (b) u = 5x2 + 1.

7 Solve the following equations, expressing x in terms of a:

(a) ^ (x — a) + -  (2x + a) = ~ , (b) l x 2 + 4ax — 3a2 =  0.

8 Solve the following equations, expressing x in terms of c and t:
(a) c/t = (x — ct)/t2, (b) x — cjt =  — f2(x + ct).

9 Solve the following simultaneous equations, giving the answers in terms of a:
(a) 7x — 4y + 5a = 0, (b) y2 =  4ax,

9x — 5y — a = 0. 4y = 3(x — a).
10 Solve the following equations, giving the answers in terms of k:

(a) x5 + k2x = 0, (b) x6 -  7k3x 3 -  8k6 = 0.
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Answers
Chapter 1
Qu. 1 ( - 3 ,  2), (2 ,-3 ) , (0,0).
Qu. 3 (a) 13, (b) ^41, (c) 7{(r -  P f  + (s -  <l)2}-

Qu. 4 (a) (5, 6), (b) ( -  1, 4), (c) ( -  f , -  f), (d) ^ ± L f i ± l >j .

Qu. 5 (a) | ,  (b) f , (c) -  f , (d) -  , (e) 0, (f) (s -  q)/(r -  p), (g) -  1, (h) b/a.
Qu. 6
Qu- 7 ¥ , - A , - l .
Qu. 8 (a) -  i  (b) -  4, (c) i  (d) (e) -  l/(2m), (f) a/b, (g) 2/m.
Qu. 9 (a) parallel, (b) perpendicular, (c) neither.
Qu. 10 5, 2 0 ,-1 .
Q u .ll 2 ,0 ,- f .
Qu. 12 (a) ( — j ,  0), (1, 0), (b) (0, — 1).
Qu. 13 (a) yes, (b) no, (c) no, (d) no, (e) yes, (f) yes.
Qu. 14 (a) 0, (b) 2, (c) 3, (d) j ,  (e) — 1.
Qu. 15 (a) y = \x ,  (b) y  = — 2x, (c) y  = mx.
Qu. 16 (a) i  (b) - 1, (c) f , (d) i ,  (e) q/p.
Qu. 17 (a) y  = 3x + 2, (b) y  = 3x + 4, (c) y  = 3x — 1, (d) y  = jx  +  2,

(e) y =  ^x  + 4.
Qu. 18 (a) f, 2, (b) i ,  i  (c) - 3 , - 6 ,  (d) l  -  f, (e) 0, -  4, (f) -  l/m, -  n/m. 
Qu. 19 (a) y  = 0, (b) x = 0, (c) x =  4, (d) y  = — 7.
Qu. 20 (a) 5x -  2y -  26 =  0, (b) 5x +  2y -  1 = 0.
Qu. 21 (a) 3x -  2y -  19 = 0, (b) 12x + 5y -  1 = 0.
Qu. 22 y — yx = m(x — x j .
Qu. 23 (a) ( 4 i  1), (b) (1, 5), (c) (0, c), (d) ( -  a, c -  a).
Qu. 24 No. They are parallel.
Qu. 25 ( - | , 0 ) ,  (|,0).

Exercise la, page 4

1 (a)4,(b)5,(c)6,(d)13,(e)V 74,(f)10.
2 (a) (3, 2), (b) (5, f ), (c) (1, 3), (d) (0, i), (e) ( -  i  -  f ), (f) ( -  6, -  7).

522



Answers 523

Page 4
3 17. 4 5 ( - | , - | ) .  6 P, R, S.
7 A,B,D;V50. 8 13, 6j.

Exercise lb, page 14

1 (a)f,(b) — i,(c ) - A , ( d ) f
3 (a) l,(b) - l ,(c )V 3 ,(d )  -1 /V 3 .
4 (a) perpendicular, (b) parallel, (c) perpendicular, (d) parallel,

(e) perpendicular, (f) neither.
6 750; (3 i  4f). 7 *734; (f, -  If). 8 10, 1, 2, 26; ±2, ±4.
9 — 27, — 1, 1, 27; — 2,0, 2. 10 (a) yes, (b) no, (c) no, (d) yes.

11 —— + 5 '—.
12 (a) (V, 0), (’- 3 ,  0), (0, -  12), (b) (f, 0), (*, 0), (0, 2), (c) (0, 9), and touches 

x-axis at (3,0), (d) (9,0), and cuts y-axis, touches x-axis at (0,0),
(e) (— 1,0), (0, 25) and touches x-axis at (5,0),
(f) (1,0), ( -1 ,0 ) , (3,0), ( -3 ,0 ) ,  (0,9).

13 (a) y = x, (b) y = - x, (c) y = |x ,  (d) y =  *x -  4, (e) x =  - 5 ,
(f) y  = - f x  + 5.

14 (a) y =  11, (b) x =  4, (c) y =  6x — 10, (d) y =  — 8x + 2, (e) y = — f  x — 1.
15 y = |x . 16 M(0, -  f ); S(5, -  1). 17 (a) (b -  q)/(a -  p), 7, (b) -  f .

Exercise lc, page 18

1 (a) 4x — y — 1 = 0, (b) 3x — y + 11 = 0, (c) x — 3y — 17 = 0,
(d) 3x + 4y -  41 = 0, (e) 3x -  6y -  4 =  0, (f) 20x + 12y + 31=0.

2 (a) 3x — 4y + 21 =  0, (b) 5x +  4y -  23 = 0, (c) 3x + l l y - 35 =0,
(d) x -  5y -  19 =  0, (e) 2x + 3y -  7 =  0, (f) 2x -  y + 1 = 0.

3 (a) (7, -  7), (b) ( -  f , -  J^), (c) (M  -  V), (d) (4, -  7).
4 (a) 3x — 4y + 1 = 0, (b) 5x — 2y + 16 = 0, (c) 7x — y — 28 = 0,

(d) 3x -  4y -  6 = 0.
5 2x — 5y + 19 = 0. 6 26x + 4y -  21 = 0.
7 7x — lOy — 70 = 0; 7x + lOy = 0. 8 2 x - 7 y - 3 = 0 .  9

10 (2 ,-5 ). 11 4 x - 3 y - 1 3  = 0;5. 1 2 x  + 4 y -1 5  =  0.
13 7x —4y —43 = 0. 14 (0, 0), (16, 64). 15 7  512 = 167 2.

Exercise Id, page 19

1 5x + y — 33 = 0.
2 2x + 7 y - 14 = 0; 2 x - 7 y - 14 = 0.
3 (a) 3x — 5y + 14 =  0, (b) 3x + 5y — 14 = 0, (c) 2x + 5y + 14 = 0.
4 mlm2 = — 1, (a) 5x + 2y — 11 = 0, (b) 2x — 5y — 16 = 0.
5 (0,0), (2, f ), (5, -  f ); y = 0, 9x + 2y -  21 = 0, (2f, 0).
6 (a) 3x + 2y + 5 =  0, (b) 2x + 7y — 19 = 0, (c) 2x + 5y + 11 = 0.
7 (a) 2x -  3y -  14 = 0, (b) 3x + 2y -  8 = 0, ( f f , ^ ) .
8 785, 6x + 7y -  85 = 0. 9 (1, 8), 52. 11 (a) AB = AC = 13, (b) 12, 78.

12 2x + y -  17 =  0, 72f. 13 x -  y =  0, 2x +  2y -  9 =  0, ( f , 3), (3, §), f  75.
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Page 20
14 x + 3y + 2 = 0, x — 3y — 4 =  0. 15 x + Ay — 9 = 0.
16 3x + 4y + 1 = 0, Ax — 3y — 7 = 0.
17 13x -  8y = 0, 4x + y — 30 = 0, x — 2y + 12 = 0, ( ^ ,  ^ ) .
18 x + 2y +  4 =  0, 8 x - y  +  15 = 0, 10x + 3 y -4 5  = 0. 19 ( iV 3,i>/3).
20 (-11,3),174. 21 3x + 4y — 15 = 0, 4x — 3y — 1 =  0.
22 3x + 2 y - 2  = 0,4x + y + 1 =0, 23 13x + y - 2 2  = 0.
24 9,73^/13,2^.

Chapter 2
Qu. 1 (a) F, (b) T, (c) F, (d) F.
Qu. 2 (a) -  2.5, (b) - 3 , - 5 ,  (c) + 5 , - 5 ,  (d) + V3, -  V3.
Qu. 3 (a) {x: x e R, x #  3}, R, (b) {x: x e R, x ^  10}, {y: y e R, 0 ^  },

(c) {x: x e R, |x | ^  5}, {y: y e R, | y| <  5}, (d) {x: x e R, x #  ±5}, 
y e R, y < 0 or y > ^ }, (e) R, [y :} ie R ,0 < y  

Qu. 4 (a) many-to-one, (b) one-to-one, (c) not a function, (d) many-to-one.
Qu. 7 Odd. Qu. 8 2. Qu. 9 9. Qu. 10 7.389. Qu. 11 1.
Qu. 12 0.5.

Exercise 2a, page 27

1 (a) {1, 4, 9, 16, 25}, (b) {1, i  ¿, |} , (c) {2, 4, 6, 8, 10}, (d) {5, 9, 13, 17, 21}.
2 (a) {0, 1, 4, 9}, (b) { -  24, -  6,0, + 6, + 24}, (c) {0, 1, 16, 81},

(d) A -t 1 I  i- I t\u / 12>3>4>5>6>7>8/ '
3 (a) (1, 4, 9, 16, 25, 36, 49, 64, 81}, (b) {9, 16, 21, 24, 25},

(c) (1, 2, 3, 4, 5, 6, 7, 8, 9}, (d) {±, 1, H , 2, 2*, 3, 3*, 4, 4*}.
4 (a)F,(b)T ,(c)T ,(d)T .
5 {1,2,3}.
6 (a) {5,10, 15,... 95}, {7, 14, 21, ... 98}, {35, 70}, {5, 7,10,14,... 95,98},

(b) multiples of 35, (c) 19, 14, 2, 31.
7 (a) {3, 6, 9 ,... 18}, (b) {4, 8, 12, 16, 20},

(c) {1, 2,4, 5, 7, 8, 10, 11, 13, 14, 16,17, 19,20},
(d) {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19},
(e) {1, 2, 5, 7, 10, 11, 13, 14, 17, 19}, (f) the same as (e).

8 (a) 0.3, (b) 0.285714, (c) 0.27.
9 2 .

10 (a)yj, (b) j i i , (c)f.

Exercise 2b, page 32

1 ( a ) l ,(b )1 2 6 ,(c ) l& (d ) -7 . 2 {1, 6,11, 16, 21, 26}.
3 {y: y e U, y  ^  {}. 4 {y: ye[R,0 < y ^  1}. 5 {x: x eR ,x  < 25}.
6 fg: x i ► 5x2 + 1, gf: x i-> (5x + l)2.
7 (a) (5 +  h)2 = 25 + lOh + h2, (b) 10 + h. 8 2a +  h.
9 (a) 8, (b) -  1000, (c) i  (d) 125a3, (e) a3/27, (f) a3 + 3a2h + 3ah2 + h \

(g) 6a2h +  2h3, (h) 3a2 + h2.
10 (a) 56, (b) 91, (c) 2, F: x i-> (x — 21)/7.
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Exercise 2c, page 37

18 (a) translation a to the right, (b) translation a vertically upwards,
(c) ‘stretch’, x k, parallel to the y-axis, (d) reflection in the x-axis,
(e) reflection in the y-axis.

Exercise 2d, page 46

1 (a) x = 7, (b) x = -  3, (c) x =  — 0.2, (d) x = (a — l)/5.
2 (a) i = 7, (b) t = 5.5, (c) t = 4, (d) t = l/a + 5.
3 (a) f~x(x) =  24 — 2x, (b) f” x(x) =  3 +  2x, (c) f” x(x) =  f(5x — 1),

(d) f-1(x) =  (7 — 10x)/3.
4 (a) r  x(x) =  9x/5 + 32, (b) f" x(*) = x/180 + 2, (c) f~1 (x) =  x/2n,

( d ) r 1(x) = |(x  + 9 ) -7 .
5 (a) F *: t k* J ( t  -  5), (r >  5), (b) t ^  i2/25, (c) F~l: t ^ ^ / t  + 5,

(d )F _1: t t - » i3 - l .
6 (a)gM :x t-» l/x  + 3 ,(x #  0), (b) g“1: x (1/x -  l)/2, (x #  0),

(c) g~ *: x i-*- 4 — 3/x, (x #  0), (d) g~l: x t-> x/(2 — x), (x #  2).

Exercise 2e, page 52

1 (a) 2.5, (b) 0, (c) oo, (d) 0.
2 (a) 6, (b) 10, (c) 75, (d) oo.
3 (a) f(0) =  1, (b) not possible, (c) not possible, (d) 3.
4 (a) continuous, (b) discontinuous (c) discontinuous, (d) continuous.
5 ±  3, f(3) =  4, f( — 3) = — 2.

Exercise 2f, page 53

1 (a) {8, 23, 48, 83, 128}, (b) { i f , | , f , | } .
2 (a) 6, (b) 12, (c) 30, (d) — 60.
3 (a) 2, (b) -  10, (c) -  12, (d) 2(a -  5).
4 {2t: re  Z, r >  0}, non-negative integers.
5 (a) 5(x + l)2, (b) 25x2 + 1.
6 (a) 5x, (b) 7 — x, (c) (7 — x)/5, (d) 7 — 5x.
7 { y : 0 < y ^ l } .
8 gf(x) = x/(x2 + 2x — 15), x /  0, 3, — 5.
9 (a) one-to-one, (b) one-to-one, (c) many-to-one, 

fgh(x) = 10/(x2 + 5) + 2, {y: 2 < y 4}.
10 a = 5, 6 = 2.
11 (a) 7, (b) 1.
12 (a) {y: 0 sj y ^  2}, (b) {x: x Ss 0}, {y: 0 <  y < 4}, J(4 /x  -  1), {x: 0 < x ^  4}, 

{y: 0 ^  y < oo}.
13 f(x) = x p, p e  Q.

Chapter 3
Qu. 1 The circle.
Qu. 2 90°.
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Qu.3 PQ -> 0, QO 0, PQ/QO = 5 .
Qu.4 3, 2^, 2.1, 2.01; 2.
Qu. 5 Q -* P; gradient of PQ —> gradient of tangent at P; 2.
Qu. 6 4.
Qu. 7 - 3 , - 2 ,  1,4.
Qu. 8 (a) 6x, (b) lOx, (c) x, (d) 2cx, (e) 2x, (f) 2x.
Qu. 9 4x3.
Qu. 10 6x2.
Qu. 11 (a) 12.x2, (b) 20x3, (c) 2ax, (d) 4nx"~l, (e) k(n + l)x".
Qu. 12 (a) 3x2 + 4x + 3, (b) 16x3 — 6x, (c) 2ax + b.
Qu. 13 (a) 12x2 — 4x, (b) 2x — 1, (c) 5.

Exercise 3a, page 68

1 12xn  2 21x6. 3 5. 4 5. 5 0. 6 1 0x -3 .
7 12x3 — 6x2 + 2x — 1. 8 8x3 + x 2 — \x .  9 3ax2 +2bx + c.

10 18x2 — 8. 11 15x2 +  3x. 1 2 - 1 .  13 0. 14 12x2 - 3 .
15 a x - 2 b .  16 4x + 2. 17 6 x - 3 . 18 x2 -  1. 19 2 x - l .
20 6x. 21 x + i .  2 2 f x - f  23 x. 24 1; 2. 25 1; 1.
26 3; - 4 .  27 - 5 ;  4. 28 28; -3 6 . 29 9; -2 4 . 30 (4, 16).
31 ( -  2, -  8), (2, 8). 32 (0, 0). 33 ( f , - 1). 34 ( -  1, 8), (1, 6).
35 (2, -  12). 36 (0, 1), (f, -& ) .  37 (1, 0).
38 (1,4), (3,0).

Exercise 3b, page 71

1 (a) 4x — y — 4 = 0, (b) 24x — y — 46 = 0, (c) x + y — 1 = 0, (d) 8x + y — 5 = 0,
(e) 18x + y + 54 = 0.

2 (a) x + 4y -  18 = 0, (b) x + 24y -  1204 =  0, (c) x -  y + 1 = 0,
(d) x -  8y -  25 = 0, (e) x -  18y + 3 = 0.

3 9x — y — 27 = 0; x + 9y — 3 = 0. 4 16x — y = 0; x + 16y = 0.
5 2x — y — 10 = 0. 6 4x + y — 3 = 0. 7 y  + 4 = 0 ;y -2 3  = 0.
8 y - 10 = 0; y + 17 = 0.

Exercise 3c, page 72

1 6, 6x — y + 2 =  0, ( — f, — f). 2 lOx —y — 16 =  0, ( —4, — 56).
3 5x — y — 1 = 0, (2, 4), (4, — 8). 4 4x -  2y + 5 = 0, (f, &).
5 (0,0), (1,0), (2,0), y = 2x, x +  y -  1 = 0, y = 2x -  4.
6 x — y + 3 = 0, x — 2y + 12 =  0, (6, 9).
7 y = — 5x -I- 4, (2, — 6), y = — 4x + 2.
8 ( — 2, 0), x — 2y + 2 = 0, x + 2y — 2 = 0, (0, 1).
9 y =  3x + 2, y = 3x + 6. 10 ( -  V i - i V f ) ,  (0, 0), ( /§ ,  £ / f ) .

11 3x —y —9 = 0, x + 3y —33 =  0,20. 12 (0 ,-3 ).
13 6x — y — 9 = 0, (1, 1). 14 2x + y + 16 = 0, ( -1 6 , 16).
15 2x — y — 1 = 0, 6x — 3y — 8 = 0, ^^5 .
16 4/1, y -  k = Ah{x -  h), y = ± 12x. 17 (1,4), (3, 12).
18 (a) f': x 1—► 3, g2 x 1—► 2x, (b) 3, 20, (c) (3x + 4)2, 6(3x +  4).
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Chapter 4
Qu. 1 6.1 m, 12.2 m/s.
Qu. 2 (a) 1.0 m, 10 m/s, (b) 4.9 (2h + h2) m, 4.9(2 + h) m/s.
Qu. 3 9.8 m/s.
Qu. 4 (a) 24.5 m, 24.5 m/s, (b) 11 m, 22 m/s, (c) 2.0 m, 20 m/s,

(d) 4.9 (4h + h2) m, 4.9 (4 +  h) m/s; 19.6 m/s.
Qu. 5 (a) 6.9, 23.6, 50.1, 86.4 m below top, (b) 11.8, 21.6, 31.4,41.2 m/s,

(c) 26.5 m/s.
Qu. 6 (a) 19.8, 29.6, 39.4, 10 + 9.81, m/s,

(b) straight line through (0, 10) of gradient 9.8.

Exercise 4a, page 78

1 (a) 10.5 m, 10.5 m/s, (b) 13,15, (15.4 — 4.9h) m/s, (c) 15.4 m/s.
2 v = 24.5 -  9.8t, (a) t =  0, 5 seconds, (b) 19.6, 29.4, 29.4, -  29.4 m; 14.7, 4.9,

— 4.9, — 34.3 m/s, (c) below ledge; falling, (d) t = 2.5; 30.6 m, (e) 2.4 m.
3 v = 3 + 2i; (a) At O, 3 m/s, (b) t = 0, or — 3,

(c) t = — f , |  m from O on the negative side, (d) — 3 m/s.
4 (a) 0, 8,9, 8,0, — 7 m; on AO produced. __^

(b) 6, 2, — 2, — 6 m/s; moving in direction AO.
(c) t = 3; 9 m from O, on OA.

5 (a) 11.59 a.m., 12.03 p.m., (b) 1 km, (c) ^  km/min = 17g km/h,
(d) ^ km/min = 20 km/h.

6 (a) 11.57 a.m., 12.02 p.m., (b) yg km, (c) yf km/min = 20 f  km/h,
(d) j  km/min =  30 km/h.

7 29.4 m/s.

Exercise 4b, page 80

1 2.5 m/s2. 2 3 m/s2. 3 (a) 18 km/h per s, (b) 64 800 km/h2.
4 (a) 3.6 km/h per s, (b) 1 m/s2, (c) 12 960 km/h2. 5 6.25 s.
6 —1.5 m/s2; —5. 7 130 km/h.

Exercise 4c, page 83

1 (a) + 5.6 m, + 0.7 m/s (up), — 9.8 m/s2 (decreasing speed),
(b) + 1.4 m, —9.1 m/s (down), — 9.8 m/s2 (increasing speed),
(c) — 12.6 m, — 18.9 m/s (down), —9.8 m/s2 (increasing speed).

2 24.9 m, 29.8 m/s, 9.8 m/s2.
3 (a) 31.5 m, — 4.2 m/s, (b) t = 2*, (c) 32.4 m, (d) 2.5 m,

(e) — 9.8 m/s2 (constant).
4 (a) 18, 54, 114 m/s2, (b) 58 m/s2.
5 (a) t = 2, (b) t = | ,  m from O on OA; t =  2, at O, (c) §y, m, (d) 3 m/s,

(e) 1 m from O, on OA; towards O ( — 1 m/s); increasing (a = — 2 m/s2).
6 9m from O on AO produced (s = — 9); towards O (+  15 m/s); 

decreasing (a =  — 14 m/s2).
7 (a) After 0, 1, 2 s, (b) 2, — 1, 2 m/s; — 6,0, + 6  m/s2, (c) 0 m/s, (d) 0 m/s2.
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Exercise 4d, page 84

1 0.7 m/s. 2 16 m/s, 14 m/s2. 3 84 m/s, 4 m/s2.
4 0 cm /s,—4 cm/s2, 14 s, 18 cm.
5 (a) 1, 3 s, 4, 0 cm, (b) — 6, + 6 cm/s2, (c) — 3 cm/s.
6 0 cm/s, 16 cm, ( —24 cm/s).
7 (24n — 5) cm, (24n + 7) cm/s, 24 cm/s2.

Chapter 5
Q u. 1 (a) 2x -  4, (b) 6x, (c) 6x2 -  lOx, (d) 2x -  2, (e) 3x2 -  4x -  3.
Q u .2  ( a ) ( l ,2 ) ,(b ) ( - |,  - 5 i ) , ( c ) ( | ,  -* ).
Q u. 3 (a) | ,  highest, (b) lowest, (c) — lowest, (d) — f , highest.
Q u. 4 (a) — 4 x '5, (b) — 6x~3, (c) — 6x~4, (d) — fx ~ 4, (e)

(f) 4x — 3 — 5x ~2, (g) 1 - 3 x ~ 2 + 8x ' 3.
Q u. 5 A, E min., D, F max., B, C inf!.; G max., I min., H inf!.;

K max., J, L, infl.
Q u. 6 (a) neg., pos., decreasing, (b) pos., pos., increasing,

(c) neg., zero, neither.

Exercise 5a, page 91

1 (a) 6x — 2, (b) lOx + 4, (c) 2 — 4x, (d) 6x + 1, (e) 48x + 6.
2 (a) ( -  2j, -  8|) , (b) (&, 7If), (c) ( |,  -  4), (d) ( - 1 , 7&).
3 (a) 2j, lowest, (b) — 6, lowest, (c) f , highest, (d) — 25, highest.
4 (a) — 24, least, (b) 4, greatest, (c) 16, greatest, (d) — 64, least.
6 12.1m, I f  s. 7 50 m by 50 m. 8 10 cm.
9 250 m, 500 m, 125 000 m2. 10 50 m, 5 s. 11 2 cm, 3 cm.

Exercise 5b, page 97

1 (a) 0, infl., (b) 0, y max., (c) 2, y max.; 3, y min., (d) — 3, y max.; 5, y min.,
(e) — 6, y max.; — 1, y min., (f) 1, y min.; 3, y max., (g) — 3, y min.; 4, y max.,
(h) — 6, y min.; 1, y max., (i) — 5, y min.; 3, y max.,
0 ) -  y max.; 0, infl.; y min., (k) - 2, y  max.; 2 , y min.

2 (a) — min.; max., (b) 0, max.; — 27, min., (c) 0, max.; — , min.,
(d) — 2, max.; + 2, min., (e) , max., — 9 min.

3 (a) (— 2, 16) max.; (2, — 16) min., (b) (4, 2jj)  max.; (3, — 7) min.,
(c) (0,0) min.; (2, 4) max., (d) (4, 3) min.,
(e) (34, I8I 1 7 ) max.; (12 , — 144) min.

4 (a) 0, min., (b) 3, infl., (c) 0, infl.; f^, max., (d) 19, infl.; 3, min.
5 18cm3; x = l .  6 744cm3;x  = f. 7 2 cubic feet.
8 8/n cubic feet. 9 -^¡(5/n) cm; 2^(5/rc) cm. 11 4 cm.

12 6, 6, 3 cm.

Exercise 5c, page 100 

1 (0, 0), (3, 0); (0,0) min., (2,4) max.
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Page 100
2 (0,0), (6,0); (0, 0) max., (4, — 32) min.
3 (0,0),(l,0);(iiV )m ax.,(l,0)m in.
4 (-1 ,0 ), (2, 0), (0, 2); ( -1 ,0 )  min., (1, 4) max.
5 (0,0), (2,0); (0, 0) min., (1,1) max., (2,0) min.
6 (0, 0), (8,0); (0, 0) infl., (6, -  432) min.
7 (±  1,0), ( ± 3,0), (0, 9); (0, 9) max., (+  y/5, — 16) min.
8 (0, 0), ( -  4/32,0); ( -  2, -  48) min.
9 (0, 0), (I5 , 0); (0,0) max., (1, — 1) min.

10 (0, 0), (+  0); ( — 1 , 2) max., (0, 0) infl., (1 , — 2) min.
11 (0, 0), ( —^/f, 0); ( — 1, 3) max., (0, 0) min.

Exercise 5d, page 102

2 v = 6r2 — 22i + 12, a = \2t — 22; (a) 4 m from O on BO produced ( 5  = — 4),
(b) away, (c) 8 m/s (v = — 8), (d) decreasing, (e) 2 m/s2 (a =  + 2).

3 (a) 3 m from O on OB (s = +  3), (b) away, (c) 4 m/s (n =  — 4), (d) increasing,
(e) 10 m/s2 (a = — 10).

4 After ̂ - s ; s =  - 1££.
5 (a) 100 m from O on OA (s = +  100); approaching A at 40 m / s  (v = + 40); 

retarding at 14 m/s2 (a = — 14), (b) t =  3^ to t = 12, (c) t = 7 f .

Exercise 5e, page 103

1 (a) (1, 6) max., (3, 2) min.; (b) ( — 1, 15) max.; (2, — 12) min.;
(c) ( —1,2) max., (1, —2) min.; (d) (1, — 1) min., ( — j ,  5 |)  max.;
(e) (0, 0) max., ( -  2 , -  16), (2, -  16) min.; (f) ( — | ,  §7) max., (1 , 1) min.

2 ( — 2, 27) max., (1, 0) min., ( — 3j, 0).
3 ±1. 4 (a) max., (b) infl. 5 j/= 1 j = 1 j  =  0.
6 2 f ,x  + 3 y - 7  = 0. 1 a = 2, b = - 4 ,  c = -  l. 8 x + i2y - 4 i  = 0.
9 4x — y ±  15 = 0. 10 256 cm3. 1132  m.

12 (a) 4 \  cm2, (b) 4 cm2. 13 xss (17x2 — 16x1 + 8/2), min. 16 48 m2.
17 2nr(r + h); (a) (12/r) — r, 7tr(12  — r2), (b) r = 2. 18 (a) 5 cm, (b) 6 cm.
19 V = nr2(5 — 2nr), 125/(27ti) x  1.47 m3. 20 10 m by 10 m by 5 m.
21 6 cm by 3 cm by 4 cm. 24 20.
25 AP2 = x 4 - x 2 + l , ( i V 2 , i ) , ( - W 2 , |) .

Chapter 6
Q u. 1 (a) 2 x  +  c, (b) mx  +  c, (c) x 3 +  c, (d) -fx 2 +  c, (e) | x 5 +  c, (f) 3x  +  x 2 +  c,

( g ) i x 1 - i x 3 + c, ( h )$ax2 + bx + c.

Qu. 2 ( a ) — ^ x ~ 2 +  c =  + c ,  (b) -  ^ x -3  +  c =  — j  +  c> (c) - 2 X ““1 +  c,

in - 1)
(d ) *  . ~  +  c.

n — 1

Qu- 3 —  +  c is m eaningless.
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Qu.4 y = 4x + 18. A straight line of gradient 4 through ( — 2, 10).
Qu.5 v=  15 +  9.81r, s = 15i + 4.905i2.
Qu. 6 + 9.8 m/s (rising), —9.8, — 29.4 m/s (falling); 14.7, 14.7 m (above

start), — 24.5 m (below).
Qu. 7 (a) 9, (b) 42, (c) — 6, (d) 35.
Qu. 8 12fm.
Qu. 9 (a) 13 m past O, (b) 5 m past O, (c) 7 m past O, (d) 100 m short of O.
Qu. 10 (a) 72, (b) 9, (c) 36, (d) 21.
Qu. 11 (a) 3 i, (b) 9, (c) 2, (d) -  8, (e) -  38, (f) 9*.
Qu. 12 25.
Qu. 13 (a) 9, (b) 81.
Qu. 14 2\.
Qu. 15 j .

Exercise 6a, page 108

1 (a) j x  + c, ¿x3 + c, -jx3 + f x 2 + c, f x 3 + 6x2 + 9x + c, — ¿ x -4 + c,
§x“ 3 + c;

(b) \ a t 2 + c, j j t*  + c, \ t 3 — j t 2 — 2t + c, — - t ~ n + c, — t~ l + 3t + t2 + c;
n

(c) ay ~1 + c, — ky ~ 1 + c, |_y3 — y + 6y 7 1 + c.
2 (a) y = ax3 + c, (b) s = | t 4 + c, (c) s = ut + ja t2 + c, (d) x = t + t ~1 +  c,

(e) y = t + 3f ~1 — 2i “ 2 +  c, (f) A = — x ~1 — x — f  x3 + c.
3 x — 6y + 34 = 0. 4 y =  x2 + 5x — 25. 5 ji = x f j - 1Jx —
6 (1, 0), (3,0). 7 (4,0); y = 9 tf  = ■W -  8 s = | f 2 +  8/i -  8.
9 A = c — 3x ix  2 + x 3 + ¿x 4; | f .

Exercise 6b, page 112

1 r =  20+  9.8It; s = 20i + 4.90t2.
2 v = — 12 + 9.8f; s = — 12t + 4.9t2; — 2.2 m/s (rising), + 7.6, + 17.4 m/s

(falling), — 7.1, — 4.4 m (above ground level), + 8.1 m (below).
3 (a) s = 3f + 3, (b) s = 2t2 — t — 6, (c) s = t 3 + f t 2 — 2t — 13,

(d) s = -jt3 + 5t +  21~1 — 7.
4 (a) 32, (b) 328, (c )-2 1 , (d) 16.
5 (a) s = 212 +  3t + c, 14 m, (b) s = ^ t 3 — 3t + c, 3^ m;

(c) s =  i t 3 — f t 2 + 2t + c, 3 |m ; (d) s = j t 2 + 3t + 1/t + c, 179^ m.
6 v = }A t2 + B; s = i A t 3 + Bt + c.
7 (a) v = f t 2 + 3, s = j t 3 + 3t; (b) v = 2t + j t 2, s=  —3 + t2 + ¿ t3;

(c) t = - 7 H  10i — i t 2, s = - 7 i t  + 5t2 - i t 3;
(d) v = 2 + 5, s = j j t 3 + 5t +  c; (e) v =  ^ t 3 + c,s = -^jt* + ct + 9j j  — c.

8 (a) 13^ m past O, (b) 2j  m past O, (c) 8 m past O, (d) 1 \  m.
9 (a) s = — 5 + 6f — t2, 5 m; (b) 13 m.

10 (a) I f  s; (b) 8.1 m; (c) 7.7, 2.9 m.
11 (a) 40 km, (b) 20 km/h, (c) 30 km/h.
12 (a) 13^ km/h, (b) 20 km/h.
13 35 m/s, 28 m/s2.
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Page 114
14 k = 6; 4800 m.
15 (a) After 4 s, — 64 m/s; (b) 27 m; (c) 16 m/s, 64 m/s.
16 (a) 11.59} a.m., 12.01} p.m.; (b) s =  ^ (5 + 1 8 t  + 12t2 -  8i3); (c) 20 km/h;

(d) 30 km/h.

Exercise 6c, page 121

1 (a) 3§i, (b) -  2, (c) lOf, (d) 36}&. 2 50.
3 (a )2 6 ,(b )5 8 i(c )2 2 ^ ,(d )2 } . 4 5}. 5 - } .  6 - ^ , 2 } .
7 (a) -  2}, (b) 4, (c) 2 ^ ,  (d) -  }. 8 1}. 9 4}.

10 (a) (0, 0), (4, 8), 5}; (b) ( -  2, 12), (1, 3), 13}; (c) ( -  1, 0), (3,4), 10}.
11 (a) 96, (b) 60, (c) 1}.
12 833}.

Exercise 6d, page 122

1 y = 3 - 3 / x +  1/x2. 2 f(x) =  x2 -  1 +  1/x. 3 20§. 4 -  4}.
5 6}. 6 36. 7 }(4t3 — 27t2 +  60f), 4t — 9, 7}, 7}}.
8 4fm , 1 m/s2. 9 14 m/s2,44 m. 10 y =  x3 — 3x2 + 4x +  8,10}.

11 10}. 14 (t2 -  4t + 3) m/s, l , f  m. ,15 20 m/s, 467 m.
16 3, -  1 m/s2, 11} m, 1, 6. 17 16m/s, 42}m, 85}m. 18 9 m/s, 3 m/s2.
19 9 m/s, 6 m/s2, 2} m.

Chapter 7
Qu. 1 (a) — 4x~5, (b) - 6 x  4, (c) - 4 , ( d )  - ; ^ ( e ) A , ( f )  - “ 4 >(g)-5 ’

A A A A  A

3 1 1
(h )---- g, (i) -  }x 2 +  c, (j) -  2x 1 + c, (k )---- +  c, (1)----- j  +  c>

x x x

Qu. 2

Qu. 3

Qu. 4

Qu. 6

(m) ~  6X2 + C’ ^ 15x3

(a) }x 1/2, (b)

(g) 3y/ X, (h) -

. 2  v -4-/3

+  C.

, ( c ) - W d )
2 j x  3 $ x :-,(e) _____ (f) _ -  -

3^/x4 , ( > 3 ^ x 4

3 jx -
-, (i)f x3/4 +  c, (j) f x 5/2 + c, (k) y x 3 + c,

(1) } ^ x 4 + c, (m) 2y/x + c, (n) -  + c.

(a) 2(x + 4), (b) 3(x + 2)2, (c) 6(3x + 1), (d) -  4(5 -  2x), (e) 3(x + 4)2,
(f) 6x2(x3 + 1), (g) 6x(5 + x2)2, (h) — (2/x2)(2 + 1/x), (i) - 6 x 2(l -  x3),
( M ( } * - 7 ) 2.
(a) 2x + 3, (b) 2x(2x2 + 1), (c) 4(x — 2) (x2 — x — 1),
(d) 2(x + l)(x + 2)(2x + 3). 
, , ,  ,u, 2(3x -  1)
,a )a n d (b |i i T 3 r '
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Qu.7

Qu.8 

Qu.9 

Qu. 10 

Qu. 11

(a) 1, ( b ) ( c )  2x, (d) 2y ^ - ,  (e) y + x ^ - ,  (f) 2xy + x 2<̂ - ,  
ax ax ax ax

(g) y2 +  2 xy
dy
dx

2x — 6y + 3
6x — 2y + 2
2 x + y
3 y2 — x '

2
(a) 2x H— j ,2  

x
1 1

1 2
(x — l)2 ’ (x — l)3 '

t ’ 2at3

Exercise 7a, p a g e  1 2 9

1 (a) 4 ( 2 x  + 3), ( b )  2 4 ( 3 x  + 4 ) 3, (c) - 2 ( 2 x  + 5)~2, (d) 2 ( 3 x  -  1 ) - 1/3, 

( e ) ( 3 - 2 x ) - 3/2, ( f )  1 2 ( 3 - 4 x ) “ 4

2  (a )  t j ( 3 x  +  2 ) 4  +  c ,  ( b )  ¿ ( 2 x  +  3 ) 3 +  c ,  (c )  - ^ ( 3 x  -  4 ) “ 1 +  c ,

(d) j ( 2 x  +  3 ) 3/2 +  c.

- 3  — 4  - 3  - 4

3 (a )  ( 3 x  +  2 )2 ’ ( b )  ( 2 x  +  3 )3 ’ (C) 2 7 ( 3 x  +  l ) 3 ’ ( d )  3 ( 2 x  -  1 )5/3 ‘

4  (a )  - $ ( 2 x - 3 y l + c ,  ( b ) f V ( 3 x  +  2 ) +  c, (c )  2 ( 2 x  -  1 )1/4 +  c.

1 A y
5 (a) 18x(3x2 + 5)2, (b)(18x2 + 10) (3x3 + 5x), (c)— (7x2 - 4 ) ~ 2/3,

(d) -(3 6 x 2 -  8)(6x3 - 4 x ) “ 3, (e) -§ (6 x  -  5)(3x2 -  5x)~5/3.

6 (a) (3x2 +  2)2 ’ (b) V (2  +  x2)3 ’ (C) Vx(l +  Vx)3 ’ (d) P  ( l ~  x  )  ’

( e )  ; “ 2 *3(x2 -  1)4/3 ‘ 

7 (a) 3(3^x -  2x)2 - 2  1(b)
1

8 ( a ) - J ^ ! ,(b);

V x '

1

\/x (2 - j x ) 2 ’

1 V 1'2V i f 2*2- ^ )  2l3( 4 x + ^ \ ( d ) U x -

’ ( x 3/2 - 1)2 ’ Vl"  2x3/2V(x -  1) ’ (C) 6V x^(l -  J x y  
_ . , — 3(2x — 7) 1 —  4x3/2 X  1

9 (a) “^ ----tTaT > (b ) —¡777772------ /“ ^ ( c ) - ------ 2T372 ’ (d )

X

- 1

1 H— r

x2 -  1
> ( d ) - T -

(x2 -  7x)4 ’ ' 7 Vx(x2 -  Vx)3 ’ w  (1 -  x2)3/2 ’ w  Vx(l -  Vx)3 '

10  .a) v v: : \ , « b >  - ^ r ' U )  1

(d )

x 2V (x4 -  1) ’ w  Vx(x + 2V x )2 ’ 3x3/2(l -  2/Vx)2̂ 3 ’
_______ 1_______
4 x 3/2V ( l  -  1 / V x ) '
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Exercise 7b, page 132

1 1458 cm2 3/s. 2 167tcm2/s. 3 ^  cm/s. 4 § cm/s.
5 Decreasing, 871 cm2/s. 6 24. 7 l/(87t)cm/s. *8 l/(27t)cm/s.
9 ¿cm /s. 10 (a) 6 cm, (b) ^ cm/min. 11 30. 1 2 ^ .

13 0.27 cm/s. 14 4.8 litres/min.

Exercise 7c, page 136

1 x(5x + 2)(x + l)2.
1 .  — 4x

2 (9x2 + l)(x2 + l)3. 3 2 (2 x - l)(x + l)2.
2(x — 1)

(x + 1)2 (1 + x 2)2 ’ (x + 1 )3 '

8 2x —f yjx. 9 — x(x + l)(x — 1)2(4 + 7x + 7x2). 10

7 2x(l + x2)(l — 3x2).

2x2 — x + 1

11

14

16

x(2 + 3x2) x(2 + x2)
7 ( 1 + x 2) ' V ( i+ x 2)3
x( — 2x3 + 2x2 + 3x — 4)

13

V(x2 -  l)3 15

(x — l)(3x + 1)
2y/x3

2x + 5

V(^2 + !)

1
2V{x(x + l)3} '

19 + ~^7 (x + 2)
2 7 (x + 1) '

17

2 7  (x + 3)7(x + 2) '

1

20
7 x ( l+ 7 x ) 2 ' 10 27{(1 + x)(2 +  x)3}

(2x + 5)7(x + 1)
2 7  (x + 2)3

Exercise 7d, page 139

2 - 1 , ^ .  3 f.

- 2 y

1 ± i . 3‘ 2-

6 (9, 3), ( -1 ,3 ) . 7 (a)-

2(x — y ■9 2f — r2. 10

3x
1)

,(b)

2x — 2y — 3

y(2x -  y) 
x(2y — x) ’ 

9(t +  2)2 
4(t +  3)

5 (a) y ,  (b ) |7 x .

11 ,2 *

" * 7 7 '
4y — 3x12
3y — 4x ’

Exercise 7e, page 141

1 871cm2. 2 9%. 3 (a) 2.000 83, (b) 5.01. 4 ix .
5 öp/p = — öv/v. 6 (a) I3 , (b) I5 . 7 1 .67t cm3. 8 4%.
9 2%. 10 (a) 25.04, (b) 10.0166. 11 l i% .

Exercise 7f, page 142 
2n

1 (a) — ^ 2+TT’ (b)(n + l)x", (c)i(2a — l)x2<1~2, (d) 2mx2m_1, (e)inxll/2)"_1.

2 ^ 2 k - \ x2k 1 +C’ (b)(l -2 r i )x l ~2n + C’ ^  ~ n2x~U" + c’ (d ){xk + c.

3 (a)^x(1/n)_1, (b)inxu/2,n_l, (c)2(l — ri)/xn, (d) — in x _u/2)n_1,

(e) — |n x “(2/3)n_ K
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Page 143

4 (a )— - x  ,3/n) l, (b) — 4/3, (c) — — x ,3"/2) \  (d)— J x ,
3 n
~2

,V 2

(e) n+  1
■l/("+l)

5 (a) 8x(x2 +  3)3, (b)

1

3x
V ( 2 ^ 3 ) ' <C)2 7 ï ( ^ + ' , 2-

«•)»U  + n  â -
2x

(d)

2 V x{x + yjx)2 
2x — 2

(x2 -  1);:.(c)

3(2x -  x2)4/3 '

7 (a) x(5x -  2)(x -  l)2, (b) (4x +  l)(x + l)‘'2(x -  1)3/2, (c)

8 (a)4' + '

9 (a)

j x ^ x -  l)3 ’

(5x — 3)(x — 1)

x — 2 \  14x2 — 6x — 2 2x2 — 1
» (b)-71773----(c)

2 V (x -2 )

2 \J \ x + l j ,y“' 3 $ ( l - 2x)
1 + x 2 ~  2
r2 1 \2 » (fr)(x2 — l )2 2 (x -  1)3/2

> (c) -

(d) -
1

2 ’ v V ^ 2- ! ) '
1 + x

2 ^/x(x — l )2 ’

2Vxv/(x _  1)(VX~  ^

.» ( a » f c 2 , ( b , 3' - ' ^ + '»(x + 2)3

H (a).
1

2 y/ (x + 1)V (x + 2)-' 
2x

12  ( a ) -

(x3 -  l )2

,(b)
(2x — 5)y/ (x + 2)

13 - 1 .  14

16 2i

V{(x2 - l ) 3(x2 + l)}  
3y — 2x — 4

,(b)

2(x -  1)3/2 ’
(1 ~  V x)(l - x j x )

yJx{X2 — 1)3/2
3x — 2 y

1 - 12

2y — 3x — 2 

17 1

15
2x

t
18 - 1. 19 1%. 20 3%.

22 (a) 4.021, (b) 6.083.

25 l  - f .  26 5x — 4_y = 9.

23 12x2 — 12x — 9, -24 ,24 .

3x2 + 4x 3x2 + 8x + 8

21 2%. 
1

24 t ’ 2a i3 •

28
2(x + 1)3/2 ’ 4 ( x + l )5/2 '

29 H , 1 ^ ,2 , 2.
30 (a) 2 sec 2x tan 2x, (b) 2 sin x cos x, (c) cos x — x sin x, (d) 3 tan2 x sec2 x, 

(e) cos y/x.

31

2 Vx
3t 3(1 + t 2

32 1%. 33 V5-4(i2 — 1) ’ 16t(f2 — l)3 , ,
35 y =  3x + j ,  ($, §), 3y + x = 2^. 36 — m/s, -3 (s2 — bt1) m/s2.
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Page 144
37 x sin t + y cos t = a sin t cos t, x  cos t — y sin t =  a cos 21.

39 0,0, min.;
64V2
2 5 ^ 5 ’

max.

40 x sin 9 — y cos 9 = 2ad sin 6, x cos 0 + y sin 9 = 2a9 cos 9 + 2a sin 9.
41 0.087t cm3.

43 (a) 6x sin (6x2 + 8), (b)

(d);
sec4 x

2V(x + 1)
sec2 J ( x  + 1), (c)

1
1 + cos x ’

2^/tan x (1 — tan2 x)3/2

44 - 5' 78- 4 s V ( ? T i ) '
47 min. (0,0), max. ( — 2, — 4). 
50 min. ( —5,f), max. ( —1,0).

48 - 1 ,2 ,  k = -1 3 , 19, - 8 .  49 2 , - 3 .

Chapter 8
Qu. 1 60 +  50/n; 60.
Qu. 2 (a) §x2 — 4x + c, (b) f  x 3 + 3x “ 1 + c, (c) ^x8/7 + c,

(d) ~ t 2 + if t 3/2 - 3 t  + c.
Qu. 3 (a )1 7 |,(b )A ,(c ) - 5 | .
Qu. 4 (a) (i) A cone, vertex C,

(ii) two cones with common base, vertices A and C, (b) sphere,
(c) hemisphere, (d) ring internal dia. 4, external dia. 8, (e) cylinder.

Qu. 5 (a) 31 7t/ 5, (b) 56ti/15.
Qu. 6 (a) ( f , 0), (b) ( f , 3^2/8).

Exercise 8a, page 149

4 (a) |x 4/3 + c, (b) f  x5/4 + c, (c) | x 6/5 +  c, (d) |/cx4/3 + c, (e) 2x1/2 + c,
(f) | x 2/3 + c, (g) | x 5/6 + c, (h) fx 4/5 + c, (i) f  x5/3 +  c, (j) ^ x 10/3 +  c,

(k)fx5/2 + c, (1) — 3x“ 1/3 + c, (m) ^  xia + 1)la + c, (n) ^ ” - x*""1̂ " + c,

(o) fx 7/2 + f  x5/2 — 2x3/2 +  c, (p) §x3/2 + 4x1/2 + c, (q) j x 2 — f x 3/2 — 6x + c, 
(r) |(x  + 2)3/2 + c, (s) i(x 2 -  3)3/2 + c.

5 (a) — 2> (b) 21, (c) 12|.

Exercise 8b, page 158

1 (a) j x 3 — f x 2 + c, (b) — 2x~ 1 + x _2 +  c, (c)^ai3 + bt — c t 1 + k,
(d) 5x 5 — | x 5/3 + 2x + x “ 1 + c, (e)^y3 +  fy 3/2 + y — 2y~112 + c,
( f ) |s 8/3 + f s 5/3 + | s 2/3 + c.

2 (a) 26 |, (b) 25 |, (c) l f t ,  (d) 3-Jf, (e) 21$, (f) 24 |.
3 (a) 12, (b) — 3 1 i( c ) lA .
4 (a )9 ,(b )lli(c )1 2 ,(d )2 (V 3 -V 2 ).
5 (a) 4\, on the negative side of the y-axis, (b) 4j,  (c) 1^.
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Page 1 5 8

6 18 |. 7 - 3 6 .  8 28$. 9 (a) 4, ( b ) f .
10 ( a ) 1 0 i ( b ) l i ( c ) 4 i ( d ) 4 i ( e ) 2 0 f , ( f ) 2 0 | .
11 (a) f ,  ( b ) i  ( c )A ,  (d )J# , (e) 411, (f) 1 3 f
12 O the r po in ts  o f in te rsec tion  (2, 4) and (4, 4); ly ^ .

Exercise 8c, page 164
1 (a )  1 4 4 k , ( b )  2 8 k / 1 5 , (c )  2 k , ( d )  1 6 k / 1 5 ,  (e) k / 1 0 5 , ( f )  3 k /4 .

2 (a) 1 8 k , (b) 9 k / 2 ,  (c) 9 6 | k , (d) 3 4 ^ k , (e) 3 k / 5 ,  (f) 3 k / 1 0 .

3 (a) 8 k / 3 , ( b )  2 5 6 k / 1 5 ,  (c ) 8 k / 3 , ( d )  1 6 k / 1 5 ,  (e) 1 2 8 k / 1 0 5 ,  ( f )  7 k /3 .

4 ( a )  5 k , ( b )  6 4 k / 1 5 , (c )  3 2 k / 3 , (d )  4 k .

5 \ n r 2h. 6  f n r 3. 7 6 6 1 ^K cm 3. 8 1296k  cm 3. 9 57 | k  cm 3.
10 2 7 4 k  cm 3. 11 1 6 k / 1 5 .  12 3 7 k / 1 0 .  13 3 7 4 k . 14 8k.
15 4 5 k /2 .

Exercise 8d, page 170
1 ( a ) ( ^ , 0 ) , ( b ) ( 0 , f ) , ( c ) ( f , 0 ) , ( d ) ( 0 , | ) .
2 (a) ( f ,  0), (b) (0, f§ ).
3 ( a ) ( 8 , f ) , ( b ) ( i f ) , ( c ) ( ! , m ( d ) ( i ¥ ) .
4 (a) (14, 0), (b) ( f ,  0), (c) (0, n  (d) ( l  0), (e) ( f ,  0), (f) (0, \W ) -
5 \ h  above the base.
6 |r.
7 94 cm.
8  ( 4 r / ( 3 K ) ,  4 r / ( 3 K ) ) .

Exercise 8e, page 170
1 0, (a) I ,  (b) 2 A .  3 A ( l ,  14), B(4, 7 , ) , ^  5. 4 134k.
5 ^ k , 1 6 k . 6 1 2 | k . 7 y i y K .  9 y  =  2 x  — 2. 10 10 |.

11 2 5 5 k . 13 6 | ,  I f .  14 5 f ,  2£.  15 3 4 , ^ .

16 (a) 4, (b) ( I f ,  # ) .  17 ( f ,  I f ) .  18 6 Ü  1 9 ( l t f , 6 £ ) .
20 ÿ k ,M- 21 8k, f. 22 4k, | .  23 24 fK ,f.

Chapter 9
Qu. 1 (a) 2, (b) 6, (c) a, (d) ab, (e) 18, (f) 80, (g) 4a, (h) 6, (i) 35, (j) 16, (k) 36,

(1) ab.
Qu. 2 (a) 3, (b) 3, (c) 9, (d) 2, (e) 8, (f) 243, (g) 16, (h) 8.
Qu. 3 ‘0° = 1’ would have to be derived from ‘0" — 0" = 0°’, but division by

0, or by 0", is meaningless.
Qu. 4 Bases: (a) 10, (b) 10, (c) 3, (d) 4, (e) 2, (f) 4, (g) a.

Logarithms: (a) 2, (b) 1.6021, (c) 2, (d) 3, (e) 0, (f) — 3, (g) b.
Qu. 5 x = log, a, y = logc b, x + y = log, (ab), x -  y = log, (a/b).
Qu. 6 x  =  log, a, nx = log, a".
Qu. 7 (a) 10, (b) 100, (c) 0.1, (d) 1, (e) 0, (f) 4-
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Qu. 8 (a) a, (b) a2, (c) 1/a, (d) 1, (e) 0, (f)
Qu.9 (a)f, - 1 ;  (b) (c) - § ,  (d) -■£,
Qu. 10 (a) x 2 — 7x + 12 = 0, (b) x2 — 3x — 2 = 0, (c) 8x2 +  4x — 3 = 0, 

(d) 3x2 — 2x = 0.
Q u .ll - 3 , 1  
Qu. 12 Polynomials.

Exercise 9a, page 174

1 (a) 5, (b) i ,  (c) 48, (d) j ,  (e) a/b, (f) 15, (g) 21, (h) p/q, (i) l/(4p ), ( j)  9a/(2b).
2  (a) 2 y j 2 ,  (b) 2 y j 3 ,  (c) 3 ^ 3 ,  (d) 5 7 2 , (e) 3 7 5 , (f) 11^/10, (g) 5 7 3 , (h) 4 ^ 2 ,  

( i ) 6 V 2 , ( j )  7 ^ 2 ,  (k) 2 7 1 5 , (1)16V2.
3 (a) 7 1 8 , (b) 7 1 2 , (c) 7 8 0 , (d) 7 2 4 , (e) 7 7 2 , (f) 7 2 16 , (g) 7 1 28 , (h) 71000 ,

( i ) 7 i ( j ) v / i  ( k ) V i  (i) V  f  •
4 (a) 7 5 /5 , (b) 7 7 /7 , (c) -  7 2 /2 , (d) 2 7 3 /3 , (e) 7 6 /2 , (f) 7 2 /4 , (g) -  7 3 /2 ,

(h) 3 7 6 /8 , (i) 7 2  -  1, ( j)  2 +  7 3 ,  (k) (4 +  7 10)/6, (1) 7 6  -  2,
(m) (75  + 7 3)/2, (n) +  3 7 5 , (o) 3 +  2^j2, (p) ( ^ 2  + 273)/6.

Exercise 9b, page 175 <

1 (a) 3 7 2 , (b) 6 7 3 , (c) 4 7 7 , (d) 5 7 10, (e) 2 8 7 2 , (f) 0.
2 (a) 25.5, (b) 2.26, (c) 3.15, (d) 19.5, (e) 0.354, (f) 0.260.
3 (a) f  +  ¿ 7 2 , (b) 9 +  4 7 5 , (c) -  1 +  7 2 ,  (d) 4 -  2 7 3 , (e) -  1 -  7.2,

( f) i  + 17 2 , (g) 17 3 , (h) £ 7 5 , ® J l + j W 3 - (J) I  +  * 7 5 ,  ( k )  f + A 7 2 , ^ 0.

4 (a )5  +  2 7 6 , ( b ) i ( 5  +  7 3  +  7 5  +  7 l5 ) , ( c )  -  7 +  3 7 6 , (d) 4 +  7 1 0 ,
(e) 3 +  2 7 2, ( f ) 7 2 .

5 (a) 2 -  7 2 ,  (b) 4(2 +  7 3 ) , (c) - ( 2  +  7 3 ) , (d) 2 +  7 3 ,  (e) 3 +  2 ^ 2 ,

( 0  6  +  4 7 2 .

Exercise 9c, page 178

1 (a) 5, (b) 3, (c) 2, (d) 7, (e) (f) 1, (g) -  2, (h) -  1, (i) 16, (j) 9, (k) 125, (1) 343,
(m) | ,  (n) f, (o) l i ,  (p)f.

2 (a) 1, (b) i  (c) 1, (d) i  (e) £, (f) 2, (g) 9, (h) 1, (i) (j) -  i  (k) 1, (1) f , (m) 4,
(n) 3, (o)47 (p)f.

3 (a) i  (b) i  (c) i  (d) i  (e) i  (f) 2, (g) 2, (h) 9, (i) H , (j) l i ,  (k) l i ,  (1) M- 

Exercise 9d, page 178

1 (a) 16, (b) 36, (c) 4, (d) 6, (e) l i ,  (f) l i ,  (g) i ,  (h) i  (i) (j) (k) 2 |,  (1) 64,
(m )|, (n) 1.1, (o) 125, ( p ) i

2 (a) i ,  (b) 1, (c) i ,  (d) 2, (e) 2, (f) 1.
3 (a) 2~", (b) 3n+>, (c) 4, (d) 3, (e) 12, (f) 10"/2.
4 (a) x ' 7/12, (b) 2, (c) x"/2 + 3/2, (d) 1, (e) y~q, (f) 1.

1 x  — 2 1 3 + 2x
5 (a) ~  (b) 2x2(l -  x)1/2 ’ (C) -  2x3/2(l + x)1/2 ’ (d) 3(1 + x)4/3 ’

(e)( l - x ) 7 ( l  - x 2) '



1 (a) log2 16 = 4, (b) log3 27 =  3, (c) log5 125 = 3, (d) log10 1 000 000 = 6,
(e) log12 1728 = 3, (f) log16 64 =  f , (g) log10 10 000 =  4, (h) log4 1 = 0,
(i) log10 0.01 = -  2, (j) log2 i ---1, (k) log9 27 = f , (1) log8 £ =  - f,
(m) log1/3 81 =  - 4 ,  (n) loge 1= 0 , (o) Iog16£ =  - i  (p)log1/8 1= 0 ,
(q ) Iog81 27 = | ,  (r) log1/16 4 = (s) log_2/3|  =  2, (t)log_3 ( —-J) = - 1 ,
(u) loga c = 5, (v) log„ b = 3, (w) logp r  = q, (x) log6 a = c.

2 (a) 25 = 32, (b) 32 = 9, (c) 52 =  25, (d) 105 = 100 000, (e) 27 = 128, (f) 9° = 1,
(g) 3 " ■2 = i  (h) 41/2 = 2, (i) e° = 1, (j) 27:l'3 = 3, (k) a2 =  x, (1) 3” =  a,
(m) ac = 8, (n) x y = z, (o) qp =  r.

3 (a) 6, (b) 2, (c) 7, (d) 2, (e) i  (f) 0, (g) i  (h) 2, (i) 3, (j) -  1, (k) 3, (1) -  1.
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Exercise 9e, page 180

E xercise 9f, page 182

1 (a) log a + log b, (b) log a -  log c, (c) -  log b, (d) 2 log a + § log b,
(e) -  4 log b, (f) ^ log a + 4 log b -  3 log c, (g) j  log a, (h) ^ log b,
(i) i  log a + \  log b, (j) 1 + lg a, (k) -  2 -  2 lg b, (1) |  log a - j  log b,
(m) ^ log a + 1 log fo -  ^ k)g c, (n) log b + 1 log a -  \  log c,
(o) i  + 1  lg a - 1 lg b -  % lg c.

2 (a) log 6, (b) log 2, (c) log 6, (d) log 2, (e) log (ac), (f) log (xy/z), (g) log (a2/b), 
(h) log (a2b3/c), (i) log Jix/y), (j) log (p/^/q), (k) lg (100 a3), (1) lg (10a/Jb),
(m) lg (a2/2000c), (n) lg (lOx3/^/^).

3 (a) 3, (b) 2, (c) 2, (d) 1, (e) log 2, (f) log 7, (g) log (h) 0, (i) 0, (j) 3, (k) 2,
(!)!•

4  (a) 2.322, (b) 0.6309, (c) 0.3155, (d) 1.161, (e) -  2.585, (f) 6.838.
5 (a) 3.170, (b) 0.7211, (c) 1.042, (d) 2.303, (e) 1.145, (f) -0.6309.
7 (a) 3.119, (c) 1.297, (c) 23.14, (d) 0.7936, (e) 0.3674, (f) 0.000 759 7.

Exercise 9g, page 187

1 (a) i ;  (b) - i  ( c ) i  - 2 ;  (d) -  1, -  1; (e) 1, -  3; (f) 1, -  5; (g) 4 ,1 ;
(h) 3, - 2 .

2 (a) x 2 — 3x +  4 =  0, (b) x 2 +  5x +  6 =  0, (c) 2 x2 — 3x — 5 =  0,
(d) 3 x2 +  7x =  0, (e) x 2 -  7 =  0, (f) 5 x2 -  6x +  4 =  0, (g) 36x2 +  12x +  1 =  0,
(h) 10x2 +  25x — 16 =  0.

3 ( a ) ^ , ( b ) | , ( c )  - f , ( d )  - ¥ •
4 ( a ) | , ( b ) ^ , ( c ) f f , ( d ) f .
5 (a) 72, (b) 5, (c) — f , (d) — 32.
6 (a) x 2 -  39x +  49 =  0, (b) x 2 -  7x -  1 =  0, (c) x 2 +  35x -  343 =  0.
7 (a) 2x2 +  4x +  1 =  0, (b) x 2 -  4x +  2 =  0, (c) x 2 -  6x +  1 =  0.
8 4 x2 -  49x +  36 =  0.
O 35y  4 .

10 ± 6.
12 (a) -  b c / a 2 , (b) ( b 2 — 2a c ) / a 2, (c) b ( 3 a c  — b 2) / a 3, (d) — b / c ,  (e) (b 2 — 2a c ) / ( a c ) ,

(f) (b 4 — 4 a b 2c  +  2  a 2c 2) / a 4’.

13 (a) ax2 - bx +  c =  0, (b) ax2 +  (b — 2 a)x +  a - b  +  c  =  0,
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Page 188
(c) a2x 2 +  (lac — b2)x + c2 = 0, (d) cx2 — bx + a = 0, (e) a2x 2 — (b2 — 4ac) = 0,
(f) a2x 2 + 3abx + (2b2 + ac) = 0. *

17 2 ,- 9 ,9 ;  3, i
18 (a) ay2 +  y(b — 2a) + a — b + c = 0, a + 1, /? + 1; (b) ay4 + by2 + c = 0,

± yja, ± y/fi; (c) a2y2 + (2ac — b2)y + c2 = 0, a2, jB2.
19 (a) ay2 +(b — 4a)y + 4a — 2b + c = 0, (b) cy2 + by + a =  0,

(c) ay4 — 4ay3 + (6a +  b)y2 — 2(2a +  b)y + a + b + c = 0.

Exercise 9h, page 190
1 (a) -  12, -  12, -  6, 0, 0; (x -  2), or (x +  2); (b) -  1,0, -  2, 19, -  21, (x -  1),

(c) 0, 6, -  2, 88, -  24, x, (d) 3, 0, 0, 3, 3, (x  -  1), or (x +  1).
2 (a) 2, (b) 18, (c) -  11, (d) -  1, (e) 2, ( f )  -  2±.
3 (a) -  3, (b) -  10, (c) 2, (d) 4, (e) 4, (f) 2.
4 (x +  3)(2x — 1). 5 (2x — l) (2 x  +  3 )(3x +  1).
6 (a )(x  — l ) ( x  +  2 )(x  — 3), (b) (x +  l ) ( x  — 2 )(x  — 3), (c )(2x  +  l ) ( x  — 2 )(x  +  2),

(d) (x +  l ) ( x  +  2 )(2x -  1), (e) (x  +  2 )(x  +  3)(2x +  1), (f) (x 2 +  l) ( 2 x  -  1).
7 a  =  3 , b  =  2. 8 p = l ,  q = - 3 .  9 a  =  3, b = -  1,c = - 2 .

10 a =  2, b =  — 1, c  =  — 2.

Exercise 9i, page 191
1 (a) 5V 5 , (b) 7 2 , (c) 18^/3. 2 (a) 18.9, (b) 6.29, (c) 0.642.
3 ( a ) ( l l+ 6 V 2 ) / 7 , ( b )  13 +  2V 2 . 4  (a) i  (b) 8, 27.
5 x  — 3 x 1/3 — 2, 0. 6 (a) 8, (b) 2.
7 (a) 1.079 18, (b) 0.653 21, (c) 0.592 72.
8 (a) 2 +  2 lg a  -  3 lg  b - { lg  c, (b) 1.602 060.
9 (a) 0.698 970, (b) 1.255 273, (c) 0.176 091.

10 (a) 1 i  (b) 3.17. 11 (a) 7.525 cm, (b) 4.402 cm.
12 - I ,  - i ; 9 x 2 - 3 1 x +  1 =  0. 13 1 , 9 ; - 3 .
14 ( a ) 7 i ( b ) x 2 +  5 x - 2  =  0. 15 a  =  3, b  = - 6 3 .
16 (x — 1)(x +  2 )(3x — 2). 17 3. 18 (x +  l ) ( x  -  5)(3x +  1).
19 a =  i , b =  — 1. 20 p = \ 2 , q  =  4.

Chapter 10
Qu. 1 (a) 37, (i); (b) 0, (ii); (c) -  8, (iii); (d) 17, (i).
Qu. 2 f(i) ^  30.
Qu. 4 (a) ± 8i, (b) ± ,/7i, (c) ± f  i, (d) -  3 ±  5i.
Qu. 5 3 ±  5i.
Qu. 6 (a) 2 ± 3i, (b) ± 5i/3, (c) (1 + 5i)/2, (d) (3 ±  5i)/34.
Qu. 7 f  + ii.
Qu. 9 (a) [a + c, 0], (b) [ac, 0], (c) [a -  c, 0], (d) [a/c, 0],
Qu. 11 — y + ix, — x — \y, y — ix.
Qu-12 (a )5 ,(b )l,(c ) l,(d )l,(e )3 ,( f)V 2 .
Qu. 13 (a) 45°, (b) 0°, (c) -90°, (d) -45°, (e) 60°, (f) 120°, (g) -20°, (h) 70°.
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Exercise 10a, page 198

1 (a) l j ,  1, (b) 3,
2

7, (c) ±2.5, (d) 0,-4.
- 6 ± V 6

- , (c ) -

( a ) ^ , ( b ) -

4 (a) 15 ±  V 165

3 ± 7 1 4 9  
10 .(c ) -

Z ± Æ , (d)2 ± Æ

13 ±  V 153  (d )7 ± V 7 3  
2 6

, (b) 0, y f , (c) no  real so lu tion , (d) 5,4-

5 (a) 2 1 x  — 3 + 711 x —3 - V H

(b) 5(x +  1.2 +  V 0 .24 )(x  +  1.2 -  70 .24 ),

7 +  7 ^ i  \  { . . ,(c) I X  +

(d) — 2 x  — 3 +  7 8 9
X  —

8 \k[ <  12.
10 (a) 3, (b) 5, (c) 10, (d) -  17.

Exercise 10b, page 203
1
2
3

5
6

7

10

(a) -  i, (b) 1, (c) i, (d) -  1, (e) -  1, (f) -  i, (g) i.
(a) 4 + 3i, (b) 9, (c) 1 -  5i, (d) 2i.
(a) -  7 + 22i, (b) 8 + i, (c) 2, (d) 25, (e) u2 + v2, (f) 2x2
(g) - 3 q + 2ip, (h) p2 + 4q2.
< \ ■ / u 2 +  3i / , 4 +  7i , 9  + 40i x -  i y(a) - 1, (b)———, (c) —— , (d)——— , (e)

• 2 y 2 +  5ixy,

13
(a) -  5 +  12i, (b)

41 x 2 +  y 2 '
( f ) ^ 0 , ( g ) 4 / 1 3 .

- 9 — 40i, (c) x  — y 2 +  2ixy.
(a) -  2 +  2i, (b) -  2 -  2i, (c) -  ¿(1 +  i).

(a) 2 ±  5i, (b) ±  4 7  7i, ( c ) - ~ - ^ -h , (d) 4( -  1 ±  2i).

4. - l ± 2i.

Exercise 10c, page 209

1 (a) 72 , 45°, (b) 713, 146.3°, (c) 713, -  146.3°, (d) 5, -  53.1°, (e) 5,143.1°, 
(f) 1, 60°, (g) 1, 120°, (h) 1, 180°.

2 (a) 1 , (b) i, (c) - 1 , (d) -  i, (e) 1, (f) 4 7 3 + K  (g) W  3 -  4i, (h) -  } + } j3 i ,
(i) -  ? -  W 3i> (j) + 2Î-

3 (a) 5, 53.1°, (b) 13,22.6°, ( c ) i  -53.1°, (d )^ , -  22.6°, (e) 65, 75.7°,
(f) 5, -  53.1°, (g) 13, -22.6°, (h) 65, -75.7°, (i) 25,106.3°,'(j) 169, 45°.

4 2 i ,- 2  +  2i, - 4 ;  45°, 90°, 135°, 180°.
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P a g e  210
5 (a) |  +  y  3i, i, -  £ +  y  3i; 30°, 60°, 90°, 120°, (b) 2 +  2 y / 3 i ,  8i, -  8 +  S j 3 i ;  

30°, 60°, 90°, 120°.
6 (a2 — b2) + 2abi, ^ .

a2 +  b2
8 (ac — b d )  +  i ( a d  +  be) .

Exercise lOd, page 210

1 (a) 0 ,  (b) (c) f , (d) f , + i, -  i.
2 (i) (a) -  4, (b) -  4, 7/5, (c) -  4, 7/5, (d) -  4, 7/5.

(ii) (a) 0 ,  (b) 0 ,  (c) ±  y (7/5), (d) ± 7(7/5), ± 2i.
3 (a) lOi, 10, 90°, (b) (3 -  4i)/5, 1, -  53.1°, (c) 16, 16,0.
4 (a) (3 +  2i)/13, | i ,  (b) 7 5 , 63.4°, 75 , -  26.6°, 3 +  i, 4 +  3i.
6 Either a = 1/72, b = 1/72, or a = - 1/72, b = -1 /7 2 ; 

z = - 1  +  1 / 7 2  + i/7 2 , or - 1  -  1 / 7 2  -  i/7 2 .
7 (a) 3, — 1, 1 + i, (b) ( — 1 + 7  3i)/2.
8 + (3 + 2i).
9 72/2,45°; i  90°; 72/4, 135°; i  180°.

10 1 + j , 2 - j ;  ,x2 - 3 ( l  + j)x + (2 +  3j) = 0.

Chapter 11
'17  23 29s 
14 20 34,Qu. 1

Qu. 2. (a) 6 5 
8 5

5 0 
0 5

Exercise 11a, page 219

' « G n x y  : w y  >
2 PS =  (3240 7500 10 500 6600 9540 9900).

/1 4  19 24 \  / 3 8 \
3 (a) (19 31), (b ) i 1? 22 2? ) ,  (c) no t possible, (d) i  68 J

1 _2  2 z
7 10

H  - i
11 9

a  b  

c  d

2 0 
0 2

2
15

W|h
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Page 220

14

4 0 
0 4

ad —be 0

3
- 7

0 ad — be

11 - 1  29 \  /1 9  — 2N
10 (a) ( 29 - 1  62 (b) I 9 - 4

1 1 - 7 /  V24 0,

Exercise lib , page 224

1 (a) 1, (b) 14, (c) 30, (d) 1.
2 (a) 0, (b) -fa, (c) a2 + b2, (d) ad — be.
3 (b), (c), (d).
4 (a) 28, (b) ± 4, (c) 1, 4, (d) none.

5 _ 3 \ ( c )5 (a)
u

^ ) . ( b )

(d)
1 /  x 1

x 2 + 1 l —l x

7/20 -11/20 
2/20 6/20

Exercise 11c, page 225 

1 (a)

11

- r > H - u 1 K U 1
, (d) not possible.

• "SK - « H .! - > K - i  3 - » K v i  i

Exercise lid , page 238

1 (a) Reflection in x-axis, (b) reflection in y-axis, (c) rotation through 90°,
(d) reflection in x 4- y = 0, (e) shear parallel to x-axis.

2 (6, 17), (22, 29), (9, 38); 6,150.
0 1\

; rotation, through 90° clockwise.
1 0 

4 na2, nab.

,
6 Rotation and enlargement, a2 +  b2 = 1.
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Page 238
7 Enlargement, with scale-factor ^ 2  and reflection in the line 

y = (tan 22-j°)x; k = s/2, m = tan 22j°.
8 Reflection in y = (tan a)x, where cos 2a = 3/5.
9 /l — a.

10 cos 26 = cos2 6 — sin2 6, sin 26 = 2 sin 6 cos 6.

Exercise lie , page 239

- 1 3 '
1 (a)

(a)

(a)

(a)

31 /  ’ (b) 2̂2 15 ’̂ ^  not P°ssible’ i o

5
- 2

1
•(4

(b)

' a2 + b2 
-11  

13 
2x = ly.
(19, 11), (39, 15), (31, 35); 216
1 ,  -

4 - 3  
6 5

cos 6 — sin 0 
cos 6

1 3
- 1  - 4

a \  sin 6

-5 
4 ■

.  ( c )

2 
0
1/a

, (d) not possible.

, (d) not possible.

8 (

10 (a)

12 M rotation about the origin, through

13 A_1 =

14

an angle — 6; cos 26 = cos2 6 — sin2 6, sin 26 = 2 sin 6 cos 6. 
± 0 0N 
0 
0
ab + bd\  
be + d2 )
1. 2x = 3y, 2v = —3u; reflection in 2x = 3y.

a2 + be 
ac + cd 

15 M2 =  I;
16 k = 2/^/5; rotation, 26.6°, clockwise.

Chapter 12
Qu. 1 (a) 56; (b) 210.

(n — r)!r! '



1 720. 2 360. 3 24, 120. 4 243. 5 72. 6 24.
7 27 000. 8 120. 9 900. 10 120. 11 719. 12 48.

13 5040. 14 168. 15 336,144. 16 3 628 800,3 628 800. 17 78.
18 80. 19 10 368 000. 20 40 320, 384.
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Exercise 12a, page 244

Exercise 12b, page 247

1 (a) 6, (b) 24, (c) 120, (d) 90, (e) 210, (f) 1320, (g) 330, (h) (i) 4, (j) 20,
(k) 120, (1) 2520.

n!6' 10' 12'
(a)3 !’ (b)^ ’ (c)^ T ’ (d)(„.

(i)
ni

0 ) - — ’ (k);

__ , A n + 2)1 K)L ( ru, 52!
3)! ’ W (n -  1)! ’ 1 ' 8!2! ’ 4!3! ’ W  49!3! ’ 

nl(2 n)!
i, 0):(n -  2)!2! (n -  2)!3! ' ' (2n -  2)!2! ’ w (n -  r)!

(a) 20! x 22, (b) 25! x 25, (c) 13! x 12, (d) 14! x 19, (e) n\(n + 2), 
(f) (n -  2)!(n -  2), (g) (n -  1)!(« + 2), (h) nl(n + 2)2.

16! 22! 18! 37!
( a ) ^ ,  (b) — , (c) — , (d) , (e)

(n + 1)!
12!4! 14!8! 7! 11! 19! 18! .(0 -

(n + 2)!
r\(n — r+  1)! r!(n — r + 2)!

Exercise 12c, page 250

1 282 240. 2 362 880,40 320. 3 6720,1680.
4 24 x 17!, 48 x 16!. 5 ^ x 1 3 ! .  6 181 440. 7 20 x 10!.
8 768. 9 16. 10 144. 11 30 240. 12 60 480. 13 528.

14 1 404 000. 15 2400. 16 11 520, 276 480. 17 23 520.
18 100. 19 138 600. 20 34 560,31 680.

Exercise 12d, page 253

1 (a) 45, (b) 15, (c) 35, (d) 126, (e) 70, (f) ±n(n -  1), (g) ¿n(n -  l)(n -  2), 
(h) \n(n -  1), (i) %n(n + 1), (j) %n(n + 1).

2 78. 3 70. 4 252. 5 126. 6^30. 7 252. 8 286.
9 792. 10 200. 11 495. 12 840. '  13 182. 14 420.

15 11 550. 16 34 650. 17 25 200. 18 2142. 19 31 733.

Exercise 12e, page 254

1 2160. 2 1960. 4 15 120. 5 5040,240. 6 360,240.
7 728. 8 jn{n — 3). 9 48. 10 120 960. 11 2520.

12 240,15 552. 13 277 200. 14 4200. 15 5120. 16 504.
17 876. 18 1013. 19 1 693 440. 20 300. 21 319.
22 646. 23 28 732. 24 6006. 25 240. 26 (a) 917, (b) 296.

Chapter 13
Qu. 1 (a) 9, 11; (b) 14, 17; (c) 16, 32; ( d ) ^ , ^ ;  (e) 53, 63; ( f ) |, f ;  (g) 25, 36;

(h) 720, 5040; (i) (j) -  4, -  6; (k) 1, -  1; (1)



Answers

Qu. 2 (i) (a) 6, 8; (b) 8, 16. (ii) (a) 0, -  6; (b) 3, 1 ±.
Qu. 3 (a) 34, (b) 16.
Qu. 4 8, 121,10.
Qu. 5 2 ac/(a + c).
Qu. 6 (a) n(2n + 1), (b) l(n + l)(n + 2)(2n + 3), (c)l(n — l)2n2, (d) n(2n — 1),

(e)l«(2n + l)(4n + 1), (f) n2(2n — l)2.

Exercise 13a, page 258

1 (a) l i  (b) -  3, (c) 0.1, (e) 1, (g) n, (i) 11, (j) -  7, (1) -0 .2 .
2 (a) 75, 147; (b) -  34, -  82; (c) 7 |,  &5n -  3). (d) -  148, 52 -  2n;

(e) — 13İ, i(15 — n); (f) 799,3 + 4«.
3 (a) 23, (b) 13, (c) 31, (d) 21, (e) 91, (f) 13, (g) 2n, (h) n, (i) n, (j) (/ — a)/d + 1.
4 (a) 2601, (b) 632, (c) 420, (d) 288, (e) 250.5, (f) 60 |, (g) 121x,

(h) jn(2a + n — 1), (i) jn{2a + (n— 1 )d}.
5 (a) 444, (b) -  80, (c) 20 100, (d) -  520, (e) n(2n + 4), (f) £n( 11 -  n).
6 2,13,220. 7 3 3 ,-7 2 . 8 5. 9 14,4. 10 7500.

11 7650. 12 31 ,^ ,1481 . 14 60.

Exercise 13b, page 260

1 (a) 3, (b) | ,  (c) -  2, (d) -  1, (f) a, (g) 1.1, (j) 6.
2 (a) 5 x 210, 5 x 219, (b) 10(|)6, 10(|)18, (c) f  (f)1 S f  (f )" \

(d) 3( —f)7, 3 ( - f r  \  ( e H ( - l ) M ( - f r  \  (0 3(i)18, 3Îİ)2- - 1.
3 (a) 9, (b) 8, (c) 7, (d) 8, (e) n + 1, (f) n.
4 (a) 210 — 2, (b)l(35 - ¿ ) ,  (c) 0.03(27 -  1), (d) - ^ { ( | ) 8 -  1},

(e) 5(2"+1 — 1),

5 (a) 2(312 -  1), (b )^ { l - ( Î ) 20}, (c) - 1 (2 50 -  1), (d) 16{1 + ( i ) 17},
(e) 11(1.123 — 1), (f) 1 -  ( i)13, (g) 3(2"- 1), (h) |{1 - ( - ! ) " } .

6 2, 2\, 157İ 7 + 3 , +f .  8 6,131- 9 £10 700 000.
10 6 |. 12 f , - f  1 3 V 2 - l ,5 V 2 - 7 .  14 1023.

Exercise 13c, page 265

1 2550. 2 8. 3 98. 4 | ,  - f , 3 .  5 16400. . 6 432.
7 1,2. 8 17, — 2, lOth. 9 11,2,24. 10 3,4; 3, 7, 11, 15, 19.

11 -2 ,1 ,4 ,7 ,1 0 . 12 - 3 , - 2 .  13 18. 14 18th, 655 360.
15 14. 16 -9 ,5 . 17 2,4,6,8,10. 18 5808. 19 6,8,10.
20 21,5,71,10. 21 £2270. 22 £19 100.

Exercise 13e, page 270

1 (a) l 3 +  23 + 33 + 43, (b) 22 + 32 + ... + n2, (c) 2 + 6 + ... + (n2 + n),

(d) + ^ - r , (e) 22 + 23 + 24 + 25, (f) -  1 + 4 -  9 + 16,
1 x 2  2 x 3  3 x 4

(g) 1 + 22 +  ...+ « " , (h) - 1 + 1 - 1 + i
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3 (a) (n +  1)(2n + 1), (b /n (n  -  1)(2n -  1), (c) n2(2n + l)2, (d) n(n + 2), 
(e) in(3n + 1), (f) n(2n + 3), (g) ¿n(2n2 + 3n + 1), (h) ±n(n + l)(n + 2), 
(i) in (n +  l)(2n + 7), (j)|n(n + 1)(2n+  1), ( k /n ( 2 n -  1)(2n+  1), 
(l)i«(n + l)(n2 + n + 2), + l)(n + 2)(3n + 1).

Exercise 13f, page 272

1 (a) 1 i  (b) 24, (c) i  (d) M, (e)|, (f)rr, (g) f , (h) 40^

Exercise 13g, page 273

1 1683. 2 20. 5 17. 6 2. 7 6n + 7. 8 $ n (n  -  l)(n + 1).
9 27 + 2 9 + ...  + 113. 10 4234. 11 f(3" -  1), 16. 1 2 3 ,2 ,f , f .

14 | , 3 , ^ .  15 35. 16 4, — 12, 15|, 57|. 18 in(2n2 + 3n + 13).
19 (ar + b)/(r + 1), (br + a)/(r + 1). 20 3, 12,48, 3 x4"_1. 2113,9.

Chapter 14
Exercise 14a, page 278

1 (a) a5 + 5a4b + 10a362 + 10a263 + 5ab4 + b5, (b) x3 + 3x 2y + 3xy2 + y3, 
(c) x4 + 8x3y + 24x2y2 + 32xy3 + 16y4, (d) 1 -  4z + 6z2 -  4z3 + z4,
(e) 16x4 + 96x3y + 216x2y2 + 216xy3 + 8 1 / ,  (f) 64z3 + 48z2 + 12z + 1,
(g) a6 -  6a5b + 15a462 -  20a363 + 15a264 -  6ab5 + b6,
(h) a3 -  6a2b + 12a62 -  8b3, (i) 81x4 -  108x3y + 54x2y2 -  12xy3 + y4,
(j) 8x3 + 4x2 + |x  + (k) x5 — 5x3 + lO x - lOx 1 + 5 x '3 - x ' 5,
(l) î^x 4 + x2 + 6 + 16x-2 + 16x~4,
(m) a1 + la%  + 21a5/  + 35a4b3 +  35a3b4 + 21a265 + lab6 + b1,
(n) a10 -  5a8b2 + 10a6b4 -  10a4b6 + 5a2/  -  bi0,
(o) a6 -  3a4b2 + 3a2b4 -  b6.

2 (a) 14, (b) 194, (c) 10/2 , (d) 160/6, (e) 98, (f) 4 0 /2 .
3 32 + 80x + 80x2 + 40x3 + lOx4 + x 5, 32.080 08.
4 1 + x + §x2 +  ï^x 3 + J 55X4, 1.104.
5 64 -  192x + 240x2 -  160x3 + 60x4 -  12x5 + x6, 63.616 96, 5.

1 — (n + l)x" + nx‘ 
(1 - x ) 2

.n + 1
23 1 ,|,2 . 2 6 - n (n + l) ,
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Exercise 14b, page 281

1 (a) 448x5, (b) 1080a3, (c) -  3168i7, (d) 1320x3y8.
2 (a) 84x3, (b) -  14 080x3, (c) 945x4, (d) 190x2.
3 (a) if f , (b) 540, (c) 6048, (d) 1386.
4 (a) 120, (b) -  9120, (c) 4320, (d) 5670.
5 (a) 15x2, (b) 20.
6  (a) 70, (b) 3f.
7 (a) 6 , (b) 14, (c )-1 6 .
8  3/(5x).
9 8/(45x).

1 0  b(r  +  \ ) / { a ( n  — r)}.
11 (a) 1 +  lOx +  45x2 + 120x3, (b) 1 + fx  + 9x2 + ^ -x3,

(c) 1 -  1 lx  + 55x2 -  165x3, (d) 1 + 12x + 6 6 x2 + 220x3,
(e) 256 + 512x + 448x2 + 224x3, (f) 128 -  224x + 168x2 -  70x3.

12 (a) 1.105, (b) 1029.13, (c) 0.965, (d) 253.96.
13 (a) 1 +  3x + 6 x 2 + 7x3, (b) 1 + 12x + 54x2 + 100x3, (c) 1 — 4x + 2x2 + 8 x3,

(d) 32 + 80x + 160x2 + 200x3, (e) 1 — 8 x + 36x2 — 112x3,
(f) 128 + 448x -  224x2 -  2128x3, (g) 81 -  216x + 324x2 -  312x3,
(h) 81 + 108x + 54x2 + 120x3.

Exercise 14c, page 285

1 (a) 10, (b) 5, (c) -  1/8, (d) -  15/128.
2 (a) 1 — 2x + 3x2 — 4x3, — 1 < x < 1; (b) 1 + fx  — fx 2 + ^-x3, — 1 < x < 1;

(c) 1 + fx  + f x 2 ~ r s x 3, — 1 < x < 1 ; (d) 1 - x - f x 2 -  f x 3, -  f  < x < f ;
(e) l - f x  + f x 2 - f x 3, — 2  < x < 2 ; (f) 1 + f x +  i f x 2 + W * 3, ~ $ < x < b
(g) 1 — 3x + 9x2 — 27x3, — f  < x < f; (h) 1 -  f x 2, — 1 < x < 1;
(i) I - J X - 9 X 2 -  s i  x 3, -  1 < x < 1 ; (j) 1 -  x + f x 2 -  f x 3, -  j  <  x  <  \ ;
(k) 1 — x + f x 2 — f  x3, — 2 < x < 2; (1) 1 — 3x + f  x 2 + f x 3, — j  <  x  < f ;
(m) f  — fx  + j x 2 — j g x 3, — 2  < x < 2 ;
(n) 7 2 ( 1  - i x - j j x 2 - x fg x 3), — 2  < x < 2 ;
(o) ^3 (l + i x - g V ^ 2 + 2 l%7 ^ 3)» — 3 < x < 3;
(P) 2 N/ 2 ( 1 ~ * x 2), - J  2 < x < y/ 2 ;  (q) 9 + - j^x +  f ?x 2 +  2 4 3 X3, - 3 < x < 3 ;  
( r ) ^ /9 ( l+ ix 3), - ^ / 3 < x < ^ / 3 .

3 (a) 1.000 500, (b) 0.9612, (c) 0.998 999, (d) 1.0099, (e) 1.0102.
4 (a) 1 + 2x + 2x2 + 2x3, (b) 2 — 3x + 4x2 — 5x3, (c) 1 — f  x + | x 2 — f ix 3,

(d) 1 + x + fx 2 + fx 3, (e) — f  +  fx  — j x 2 +  ^ x 3, (f) 1  -  2 x + f x 2 -  x \
(g) 3 + 4x + l x 2 + 16x3.

5 1 — 4x — 8 x 2 — 32x3, 4.7958.
6  1 — fx  — ^x 2 — in"X3, 3.332 22.
7 1 -  4x -  24x2 -  224x3, 2.499 00, six.

Exercise 14d, page 286

1 252(3x)5(2y)5, 252.

2 (a) 32x5 + 40x3 + 20x + -  + - ^ 3  + — (b) 40^/6.
X ox j Zx
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3 a4 5-  5aAb +  10a362 -  10a2b3 + 5abA -  b5, 77 400.
4 (a) a 11 + l l a 106 + 55a9b2 + 165a8b3, (b) 8064xV, (c) 5376.
5 x5 + 10x4 +  40x3 + 80x2 +  80x +  32, x4 — 8x3 + 24x2 — 32x +  16, 96.
6 4 — 28x + 85x2 — 146x3 + 155x4.
7 (a) 16 + 96x + 216x2 + 216x3 + 81x4, (b) 1 + 12x + 78x2 +  340x3.
8 (a) 1 -  5x +  20x2 -  50x3, (b) 1 -  4x +  10x2 -  20x3.
9 (a) 1 -  3x + 6x2 -  10x3 + 15x4, (b) 1024 + 1280x + 720x2 + 240x3, 1159.

10 (a) 70 (2x)434, (b) 1 + 4x + 12x2 + 32x3.
11 (a) 2520, (b) 1 + ^x -  £x2, 2.080.
12 1 + 4x — 8x2 + 32x3, 1.732 05.
13 a =  2,b =  -f£.
14 3 — 5x + 7x2 — 9x3.

Chapter 15

Q“. 1 (b)(^_3^. (c)

Qu.2 (a)V20,63.4°,(b)Vl8, 
Qu. 3 (2,4).
Qu. 4 (2, 3, 4).

Qu. 8 2x + 3y + z = 5.
Qu. 9 x + 2y + z = 8.
Qu. 10 -7 5 .
Qu. 11 XjX2 +Z1Z2 =0. 
Qu. 12 101°.
Qu. 14 76.7°, 72.1°, 22.6°.

45°, (c) 750, -  171.9°, (d) 2, 90°, (e) 3,0°.

Exercise 15a, page 298

2 (a) 5, 53.1°, (b) 13, 112.6°, (c) 10, -90°, (d) ^ 2 , -45°.

4 — 4.33i + 2.5j.
5 (a) (12,11^), (b) (21, 16), (c)( —21, —5).



Page 299
6 (a) i(c -  a), (b) c -  a, (c) |(c  -  a).
7 |(a  + b + c).

Answers 549

Exercise 15b, page 302

1 Î2  n+  10 m 
m + n \5  n — m

34
-1 9

2 (a)
- 4
- 6
1

• (b) .( c )

(f) ^  m + n
3 — 2, 3; 1.5, -
4 3 , - 2 ; f , i

- 5  
- 3  

-In — m \
3 n — 15m ) '  

-0.5.

17
-6 9 .(d)

-4 .6
-4 .2 .( e )

5
6 2 , - 1 .
7 2:3. ___  ̂ _ _
8 - A b + | c ; ( | - ^ i ) b  + |ic ;O M = fO C ; - ¿ .
9 f b , |a  + | b , i

- 2.2
11.4

Exercise 15c, page 315

5 3x — 3y + z = 1.
6 (7,4,9).
8 (4,5,10).

10 3:1. 11

11 ^y^ = ^2^ + i ^-3^.



1 (a) a +  c, (b ) c -  a, (c) f a  +  | c ,  (d ) f  c  -  f a ,  (e) f c ,  (f) f  c  -  f a ,  (g) f  c  -  f a ,  
(h) f a  +  c, (i) c -  f a ,  (j) -  f a  -  f  c.

2 30, -2 1 .
3  (a) f (a +  b), (b ) 2b -  a, (c) ^ a  +  ^ b ,  (d ) fa  +  f  b, (e) 3a -  2b.
4  (a)0, (b ) 12, 15, (c) 90°.
5 44,64.4°.
7  I  6 
' 5> 5 ’ ->-A-
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Exercise 15d, page 321

12 ( - 3 , - 4 ,0 ) .
13 3, 500 s, 1000^10 m.
14 t = fa  + fb ,m  = fa  + b,OB:BK = 1:1.
15 (a) (4, - 1 ,  - 3 ) , ( f f , f ,  — ̂ ) ,( c ) f .
17 f b - f c .
18 1:4.

1 9  ^  7 ^  3̂ '  ~~ 4 i  +  6 k ’̂ ^  8 i +  (4  +  m  +  8 k > (c ) “  9 ’ (d ) 4 i  +  i i -

Chapter 16
Qu. 1 (a) sin 10°, (b) — tan 60°, (c) — cos 20°, (d) — sin 50°, (e) cos 20°,

(f) — sin 35°, (g) tan 40°, (h) — cos 16°, (i) — cosec 50°, (j) — tan 37°,
(k) — cos 50°, (1) — sin 70°, (m) — tan 50°, (n) cot 20°, (o) cos 67°,
(p) sin 50°, (q) — sec 38°, (r) — cot 24°, (s) — cosec 53°, (t) — sec 8°.

Qu. 3 360°, 180°.
Qu. 4 (a) f, (b) V3/2, (c) 1/72, (d) 1/73, (e) 2, (f) 2/73, (g) 1, (h) 7 '2.
Qu. 5 (a) cot 9, (b) cosec 9, (c) — cosec 9, (d) — tan 9, (e) sec 9, (f) — cosec 9,

(g) — sin 0, (h) sin 9, (i) — tan 9, (j) — cos 9, (k) — cos 9, (1) cosec 9.

Exercise 16a, page 331

1 (a) 0, (b) 0, (c) -  1, (d) -  1, (e) f , ( f )  -  73/2, (g) -  73 , (h) 73/2, (i) -  73/2,
(j) 1/72, (k) -  1/72, (1) -  1/72, (m) - 7 3 ,  (n) 1, (o) 1/73.

3 360°.
4  180°.
5 (a) 180°, (b) 720°, (c) 240°, (d) 360°, (e) 360°.
6 (a) 240°, (b) 225°, (c) none, (d) 230°, 310°, (e) 306.9°, (f) 300°, (g) 240°, 360°,

(h) 270°, 330°.
7 (a) 30°, 150°, 210°, 330°; (b) 30°, 150°, 210°, 330°; (c) 15°, 75°, 195°, 255°;

(d) 67f°, 157f°, 247f°, 337f°; (e) 10°, 110°, 130°, 230°, 250°, 350°;
(f) 90°, 210°, 330°; (g) 45°, 135°, 225°, 315°; (h) 35.3°, 144.7°, 215.3°, 324.7°;
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Page 332
(i) 15°, 45°, 75°, ... 345°; (j) 37.8°, 142.2°, 217.8°, 322.2°;
(k) 11.6°, 48.4°, 191.6°, 228.4°; (1) 23.9°, 83.9°, 143.9°, 203.9°, 263.9°, 323.9°.

8 (a) -  180°, -45°, 0°, 135°, 180°; (b) ±60°, ±90°;
(c) 0°, ±  180°, -  19.5°, -  160.5°; (d) -  150°, -30°, 90°; (e) ±  120°, ±  180°;
( f )  ±60°, ±90°, ±  120°; (g)0°, ±  180°; (h) ±45°, ±  135°;
(i) ±90°, 11.5°, 168.5°; 0) ±40.9°, ±139.1°; (k) ±90°, 41.8°, 138.2°;
(l) -  104°, -4 5 ° , 76.0°, 135°; (m) 23.6°, 156.4°; (n) ±  109.5°.

9 (Maxima first), (a) 1, 90°; -  1, 270°. (b) 3, 0°; -  3, 180°. (c) 2, 0°; -  2, 360°.
(d) i  135°; - i  45°. (e) 3, 270°; -  1, 90°. (f) 5, 0°; 1, 60°. (g) 1, 270°; i ,  90°.
(h) 1,0°; i  180°. (i) -  1, 120°; 1, 0°. (j) no max.; 0, 0°. (k) j ,  90°; no min.
(1) none, (m) none.

10 (a), (c), (d), (e), (g).
12 (a) 180°, (b) 1080°, (c) 60°, (d) 360°, (e) 540°.

Exercise 16b, page 337

1 (a) cos 0, (b) tan 0, (c) cos 0 cot 0.
2 (a) sin 0, (b) tan 0, (c) cosec 0 cot 6.
3 (a) sec 0, (b) sec2 0 tan 0, (c) sin 0.
4 (a) cot 0, (b) cos 0, (c) cosec 0 tan2 0.

5 (a) a2 cos2 0, (b) -  sec 0, (c) a cos 0 cot 0.
a

6 (a) b2 cosec2 0, (b) b2 cot 0 cosec 0, (c) -  sin 0 cos 0.
1 b

7 (a) a2 tan2 0, (b) -  cot 0, (c) sin 0.
a

8 0°, 60°, 300°, 360°. 9 270°. 10 45°, 63.4°, 225°, 243.4°.
11 26.6°, 135°, 206.6°, 315°. 12 60°, 300°. 13 30°, 41.8°, 138.2°, 150°.
14 (a) ± f ,  (b) ± | .  15 Ü  - * •  16 (a) - § f ,

„  *2 y232 ~2 + t j  a b
y2 x 2 

33 --------- = 1¡j2 „2 l -a
= 1

35 (x — l)2 + (y — l)2 = 1.

38 y2(x — l)2 + y2 = 1. 3 9 x 2 + y 2 = 2.

b2 x 234 ^  _  L
y a2

36 x(y  — b) = a c . 37 ^  = 1.
x y

40 x y =  1.

(x + y)2
4

( * - y ) 2

Exercise 16c, page 338

1 (a) — cos 25°, (b) -  tan 27°, (c) sec 51°, (d) sin 35°, (e) cot 46°,
(f) — cosec 36°.

2 (a) -  1, (b) -  y  3, (c) V 3, (d) y  2, (e) -  y  3, (f) -  J 2 ,  (g) -  1, (h) i  (i) i
3 (a) 30°, 150°; (b) 135°, 315°; (c) 36.9°, 323.1°; (d) 22i°, 112i°, 202^°, 292i°;

(e) 37.8°, 142.2°, 217.8°, 322.2°; (f) 60°, 300°; (g) 80.5°, 299.5°;
(h) 14.4°, 105.6°; (i) 96.0°.
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4 (a) 0°, ±180°; -3 0 ° , -150°. (b) ±90°; -  123.7°, 56.3°. (c) 30°, 150°; 90°.

(d) ±  131.8°. (e) 30°, 150°. (f) ±  66.4°, ±  120°.
(g) 45°, -135°; 63.4°, -116.6°. (h) ±60°; -23.6°, -156.4°.

5 (a) max. 5, 90°; min. 1, 270°. (b) max. 4,180°; min. — 2,0°.
(c) max. 4,60°; min. — 4,180°. (d) max. 3, 180°; min. 0,0°.
(e) max. — 1, 180°; min. ¿, 0°. (f) max. 1, 45°; min. 3 , 135°.

6 (a) tan 9, (b) cos 9, (c) sin 9, (d) — cot 9. (e) — cosec 9, (f) — sec 9,
(g) — sin 9, (h) — tan 9, (i) sin 9.

7 (a) cot2 9, (b) sin 9, (c) — cosec 9, (d) 1, (e) 1, (f) sec 9 cosec 9.
8 (a) 90°; 210°, 330°. (b) 41.4°, 318.6°. (c) 0°, 360°; 131.6°, 228.2°.

(d) 23.6°, 156.4°; 16.6°, 163.4°. (e) 60°, 300°. (f) 56.3°, 236.3°.
(g)53.1°, 135°, 315°, 233.1°.

9 (a) f , | ;  (b) -  j f , (c) -fr, (d)
18 b2x2 — a2y2 =  a2b2.
19 (x — l )2 +  (y — l )2 =  1.
20 a2b2 — x 2y2 = a2y2.
2 1  x 2y2 — a2b2 = a2y2.
22 b2x2 — a2y2 = x 2y2.
23 xy = 1.
24 (y + l )2 = x2(l + y 2).
25 y2( 1 + x) = 1 — x.
26 max. 45°; min. —^2 , — 135°.
27 -36.9°, 90°.
28 18°.
29 x = 60°, y = 75°, 345°; x = 120°, y = 15°, 285°; x = 240°, y = 165°, 255°; 

x = 300°, y = 105°, 195°.
30 (a) neither, 0 ^  y ^  2, (b) even, — 1 ^  y ^  5, (c) neither, 5 <  y  ^  15,

(d) even, 0 ^  y ^  2 .

Chapter 17
Qu. 3 (a) 0°, 112.6°, 360°; (b) 53.1°, 323.1°; (c) 48.4°, 205.3°; (d) 119.6°, 346.7°.

Exercise 17a, page 345

1 (a)iV2(V3 + 1), (b) iV 2(V 3 + 1), (c) ¿7 2 (7 3  + 1), (d)¿7 2 ( 1  -  73),
(e) - ¿ 7 2 ( 7 3  + 1), (f) ¿ 7 2 (7 3  -  1), (g) ¿ 7 2 (7 3  -  1), (h) ¿ 7 2 (7 3  -  1).

2 (a )t f ,( b ) f i( c ) H .
3 (a) ff, (b) - f | ,  (c) —1|.
4 (a) | f ,  (b) | f ,  (c) — |f .
5 i  
6 - 2 .
7 45°.
8 135°.
9 (a) cos (x + 60°) = sin (30° — x), (b) cos (45° — x) = sin (45° + x).

(c) tan (x + 60°), (d) sin 26°, (e) sec 39°, (f) cos 15° = sin 105° =  sin 75°.



Answers
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10 (a) (b) i  (c) y  3, (d) o, (e) ±, (f) y  2, (g) y  3, (h) y 6.

13 (a ) i(b ) l ,(c )  — i , ( d ) 2 - V 3 .
}6 (a) 9.9°, 189.9°; (b) 157|°, 337^°; (c) 49.1°, 229.1°; (d) 56.5°, 236.5°.

Exercise 17b, page 349

1 sin 34°. 2 tan 60°. 3 cos 84°. 4 sin 6. 5 cos 45°.
6 tan 6. 7 cos 30°. 8 sin 4A. 9 cos 6. 10 cos 66.

11 j  tan 46. 12 ¿sin 2x. 13 2 cot 40°. 14 2 cosec 26.
15 cos 6.

Exercise 17c, page 349

1 (a) I , (b) 1, (c) — y  3, (d) - y 2 ,  (e) y  2, (f) 2^3 ,  (g) 1, (h) 2 j2 .
2 (a) + i f , ys ', (b) ± x i l i  (c) i — i-
3 ( a ) - ^ , ( b ) M , ( c ) ± { $ .
4 (a) ± | ,  ± y 7 ;  (b) ± f ,  ± f ;  (c) ±  j | ,  ± ^ .
5 ( a ) i - 3 ; ( b ) | , - 2 ; ( c ) - | , | .
6 V 2 - 1 .
7 90°, 120°, 240°, 270°.
8 0°, 180°, 360°; 60°, 300°.
9 30°, 150°; 270°.

10 56.4°, 123.6°; 270°.
11 30°, 150°; 90°, 270°.
12 0°, 180°, 360°; 85.2°, 274.8°.
13 0°, 180°, 360°; 120°, 240°; 36.9°, 323.1°.
14 0°, 180°, 360°; 30°, 150°, 210°, 330°.
15 45°, 225°; 121.0°, 301.0°.
16 18.4°, 161.6°, 198.4°, 341.6°.
17 (a) y = 2x2 — 1, (b) 2y = 3(2 — x 2), (c) y( 1 — x 2) = 2x, (d) x 2y = 8 — x

Exercise 17d, page 353

1 90°, 330°.
2 94.9°, 219.9°.
3 114.3°, 335.7°.
4 204.6°, 351.7°.
5 72.6°, 319.3°.
6 76.7°, 209.6°.
7 28.1°, 208.1°; 159.5°, 339.5°.
8 0°, 180°, 360°; 45°, 225°.

10 max. 2, 330°; min. — 2, 150°.
11 m a x y i3 , 33.7°; min. - ^ 1 3 ,  -146.3°.
12 5,53.1°.
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13 max. 5, 63.4°; min. —^j5, — 116.6°.
14 J2 ,  45°; — ^ 2 , 225°.
15 5, 126.9°; - 5 ,  306.9°.
16 2 ,60°;-2 ,240°.
17 17,298.1°;-17, 118.1°.
18 V 37, 170.5°; - ^ 3 7 ,  350.5°.
19 1, 240°; -  1, 60°.
20 5, 53.1°;-5,233.1°.

Exercise 17e, page 356

1 cos (x + y) — cos (x — y). 2 cos (x + y) + cos (x — y).
3 cos 40 + cos 26. 4 cos 2S — cos 2T. 5 cos 2x — cos 8x.
6 cos 2x + cos 2y. 7 cos A + cos B. 8 cos B — cos C.
9 cos 2x. 10 cos 4x + cos 60°.

Exercise 17f, page 356

1 sin (x + y) + sin (x — y). 2 sin (x + y) — sin (x — y).
3 sin 40 + sin 29. 4 sin 2S + sin 2T. 5 sin8x — sin 2x.
6 sin 2x — sin 2y. 7 sin 2x — sin 6x. 8 sin A + sin B.
9 sin A — sin B. 10 sin R — sin S.

Exercise 17g, page 359

1 2 cos ^(x +  y) cos ^(x — y). 2 2 sin 4x cos x.
3 2 cos (y +  z) sin (y — z). 4 2cos6xcosx . 5 — 2 sinfA  sin^A
6 2cos3xsinx . 7 2 sin 4A sin A. 8 2 sin 66 cos 6. 9 ^ s i n x .

10 yj2 cos (y — 35°). 11 —2 cos 40 sin 0. 12 — sin x.
13 — 2 sin x sin ^x. 14 2 sin 2x cos 80°.
15 2 cos (45° — \ x  + jy)  cos (45° — ix  — -jy).
16 2 cos (45° -  j A  + \B )  cos (45° - \ A - \ B ) .
17 2 sin (fx  + 45°) cos (fx — 45°).
18 2 sin (x +  45°) cos (x — 45°).
19 2 cos (45° ~ { A +  j B)  sin (45° - j A -  ¿B).
20 2 cos (30° + 0) cos (30° -  0).

Exercise 17h, page 360

14 30°, 90°, 150°, 210°, 270°, 330°; 45°, 135°, 225°, 315°.
15 0°, 120°, 240°, 360°; 72°, 144°, 216°, 288°.
16 0°, 180°, 360°; 45°, 135°, 225°, 315°.
17 0°, 72°, 144°, 180°, 216°, 288°, 360°.
18 175°, 355°.
19 45°, 135°, 225°, 315°.
20 25°, 205
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1 ( a ) i f ? ,( b ) - £ r .( c ) i& .
2 (a )fS f,(b )- |g f ,(c )* H .
3 ( a ) i (b ) l ,( c ) l .
4 (a) ± | ,  ± 1 ^ 5 ; (b) ±9^ ± i\ /6 5 .
5 (a) (b)f, — f .

6 ( a ) ^ , ( b ) - »
7 60°, 300°.
8 0°, 180°, 360°; 41.4°, 318.6°.
9 0°, 180°, 360°; 60°, 120°, 240°, 300°.

10 41.6°, 244.7°.
11 79.8°, 347.6°.
12 9x = 4y2 — 18.
13 y(4 — x 2) = 4x.
14 2(t + 2)2/(l + t 2).
15 (1 + i)/(l — 0-
16 13,292.6°;-13, 112.6°.
17 37,71.1°;-37,251.1°.
18 73, 311.1;-73, 113.1°.
21 60°, 120°; 30°, 90°, 150°.
22 0°, 45°, 90°, 135°, 180°; 60°, 120°.
23 0°, 90°, 180°.
24 60°, 180°.
25 45°, 135°; 30°, 150°.

Chapter 18
Qu. 1 54.1.
Qu. 2 6.95.
Qu. 3 (a) 6.49(5), (b) 72.4, (c) 32.2, (d) 43.8, (e) 76.3, (f) 123, (g) 32 600.
Qu. 4 (a) 6 deg/s, (b) 1 rev/min.
Qu. 5 (a) 3000 deg/s, (b) 2-? deg/h.
Qu. 6 120° + 360n°, or 240° + 360n°.
Qu. 7 j n  +  nn.

Exercise 18a, page 370

1 (a) A = 48°, b = 13.8, c = 15.4. (b) B = 56.1°, a = 6.53, c =  5.04.
(c) C = 45.1°, a = 231, b = 213.

2 (a) B =  95°, a = 1.40, c = 1.80. (b) B = 19.7°, b = 4.63, c =  8.29.
(c) A =  32.7°, b = 244, c = 172.

3 (a) B  = 59.1°, A = 72.6°, a = 19.6; or B =  120.9°, A = 10.9°, a = 3.87.
(b) C = 26.7°, A =  24.3°, a = 4.18.
(c) B = 55.5°, C =  96.25°, c =  17.9; or B = 124.5°, C =  27.25°, c = 8.22.

4 (a) A = 38.2°, B =  81.8°, C = 60°. (b) A = 54.6°, B = 78.1°, C = 47.2°.
(c) A = 64.2°, B =  43.5°, C = 72.4°.

Exercise 17i, page 361



556 Pure Mathematics 1

Page 371
5 (a) a = 13, B = 32.2°, C = 87.8°. (b) b = 11.7, A = 72.3°, C = 54.7°.

(c) c = 7.60, A = 82.6°, B =  54.2°.
6 (a) A = 29.5°, B = 38.0°, C = 112.4°. (b) A = 17.9°, B = 120°, C = 42.1°.

(c) = 35.8°, B =  49.3°, C =  94.9°.
7 (a) X = 11.6°, Ö = 73°, C = 48.4°. (b) a = 17.4, B = 33.8°, C = 41.9°.

(c) A = 31.2°, B = 44.6°, c =  58.0.
8 1.43 km.
9 25.8 m.

10 1.0°.

11 347.3°, 3.64 n.mi.
12 200 m.

Exercise 18b, page 373

1 (a) 90°, (b) 45°, (c) 60°, (d) 120°, (e) 30°, (f) 270°, (g) 450°, (h) 720°, (i) 900°,
(j) 240°, (k) 630°, (1) 135°.

2 (a) 2it, (b) ¿ti, (c) ¿tt, (d) tjti, (e) ¿tc, (f) fit, (g) f7t, (h) f n, (i) 3n, (j) in ,  (k) 
( l ) f T T .

3 8 cm. 4 9.6 cm. 5 6 cm. 6 f  rad. 7 3 cm2.
8 4 rad. 9 12 cm. 10 4 cm2.

Exercise 18c, page 374

1 (a) ¿7t, (b) 6n, (c) rc/900, (d) 5it/24. 2 (a) 72°. (b) 5°, (c) 105°, (d) 630°.
3 2.705 cm. 4 3/tc. 5 1.2 rad, 68.8°. 6 6.43 cm. 7 4.03 cm2.
8 (a) 151 cm2, (b) 62.4 cm2, (c) 88.4 cm2. 9 24.1 cm2. 10 22.4 cm2. 

11 j r 2(2n — 9 +  sin 0).

Exercise 18d, page 376

1 (a) iö rev/min, (b) pg deg/s, (c) 7t/1800 rad/s.
2 (a) 1200 deg/s, (b) 207i/3 rad/s.
3 (a) 1536 rev/min, (b) 161 rad/s.
4 0.262 rad/h.
5 (a) IOO71 rad/s, (b) 65n cm/s.
6 (a) 3.89 rad/s, (b) 15.6 cm/s.
7 (a) 40ti rad/s, (b) 1.57 m/s.
8 (a) 35.2 rad/s, (b) 336 rev/min.
9 1600 rev/min.

10 128 rad/s.
11 1.99 x 10“ 7 rad/s, 30 km/s.
12 4.8 km/h.

Exercise 18e, page 378

1 45°+ «360°, or 135°+ n360°.
2 77360°.

Y'll’vO
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3 60° + nl80°.
4 270° + «360°.
5 120° + «360°, or 240° +  «360°.
6 150°+ «180°.
7 n/3 + 2nn, or 5n/3 +  2«n.
8 3n/4 + nn.
9 it/12 + nn, or 5n/12 + nn.

10 n/6 + 2nn, or 1 ln/6 + 2nn; 5n/6 +  2nn, or 7n/6 +  2nn.
11 n/3. 12 n/4. 13 n/4. 14 -n /6 . 15 5n/6.
16 —n/4. 17 — n/2. 18 n. 19 0. 20 n/2.

Page 378

Exercise 18f, page 380

1 (a) a =  13, B = 32.2°, C = 87.8°; (b) b = 11.7, ,4 =  72.3°, C = 54.7°;
(c) c = 7.59, A = 82.6°, B = 54.2°.
(a) b = 73, A = 11.6°, C = 48.4°; (b) a = 17A, B =  33.8°, C =  41.9°;
(c) c = 57.9, A = 31.3°, B =  44.7°.
(a) C = 99.4°, a = 9.54, b = 5.23; (b) either, B = 38.9°, C = 109.9°, c =  9.00,
or, B = 141.1°, C = 7.7°, c =  1.28; (c) B = 146.8°, C = 13.2°, b =  24.0.
(a) 11.5, (b) 9.92, (c) not possible.
(a) 72°, (b) 150°, (c) 67|°, (d) 105°.

l l n  5n 5n 2n  
(a) —  , (b)—-, (c) ——, (d)

6
10.5 cm.

18 12 15

8 n rad/s.
„ 1 n
9 —-  rev/min, ■

720 21 600
rad/s.

10 -7 5  rad/s.
11 4n.
12 No solution.
13 (a) No solution, (b) 2 solutions, (c) 1 solution.
14 16.
15 (a) 210, (b) 21.
16 (cos a, sin a), (cos ¡7, sin /?).

Chapter 19
Qu. 1 (a) l j ,  (b) 2, (c) \ ,  (d) \ ,  (e) sin a, (f) cos a, (g) f , (h) 2, (i) sec2 a.
Qu. 3 2 cos j(A  + B) sin j(A  — B).
Qu. 6 (a) — 3 sin 3x, (b) 2 sin x cos x = sin 2x, (c) 4 cos 2x,

(d) — 3 cos2 x sin x.

Exercise 19a, page 387

1 (a) — 2 sin 2x, (b) 6 cos 6x, (c) — 3 sin (3x — 1), (d) 2 cos (2x — 3),
(e) 15 sin 5x, (f) 8 cos 4x, (g) — 6 cos f  x, (h) cos }(x + 1), (i) 2x cos x2.
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2 (a) — ^ cos 3x + c, (b) ^ sin 3x + c, (c) — j  cos 4x + c, (d) sin 2x + 

(e) jj  cos 6x + c, (f) f  sin Ax +  c, (g) — \  cos (2x + 1)M- c,
(h) |  sin (2x — 1) + c, (i) — f  cos \ x  +  c.

3 (a) 2 sin x cos x = sin 2x, (b) — 8 cos x sin x = — 4 sin 2x,
(c) — 3 cos2 x sin x, (d) 6 sin2 x cos x, (e) — 12 cos3 x sin x,

5
6
7
8 
9

10
11
12
14
17

c,

(0
cos X — sin x

xrrr-----T>(g)o — 6 cos 3x sin 3x = - 3 s in  6x,2^(sin x) 2x/(cos x)
(i) 4 sin 2x cos 2x =  2 sin 4x, (j) — 18 sin2 3x cos 3x,

(k) 24 sin3 2x cos lx,  (1) - f-° S .
7  (sin 2x)

(a) cos x — x sin x, (b) sin 2x + 2x cos 2x, (c) x(2 sin x +  x cos x),
(d) cos2 x — sin2 x = cos 2x, (e) (x cos x — sin x)/x2,
(f) — (2x sin 2x + cos 2x)/x2, (g) (sin x — x cos x)/sin2 x,
(h) x(2 cos x + x sin x)/cos2 x, (i) sec2 x, (j) — cosec2 x, (k) sec x tan x,
(l) — cosec x cot x.
(a) 1 m, (b) 2 m/s2, (c) 0.983 s.
(a) s, (b) — jyJ3 cm/s, (c) — 5, 3 |,  — 3 cm/s2.
(a) 5, (b) -  20.
(a)0 .8 4 1 ,(b )IV 5 ,(c )-JiV 5 .

2n.
^ n + i j 3 , ^ n 2 + 1. 
7 3 - i7 t ,  2 - i n 2. 
^(1 +  cos 2x).

Exercise 19b, page 390

1 (a) 2 sec2 2x, (b) — 3 cosec2 3x, (c) 6 sec 2x tan 2x, (d) — cosec j x  cot
(e) — 2 sec2 (2x + 1), (f) sec (3x — 2) tan (3x — 2), (g) 6 cosec2 (3x + 2),
(h) — 2x cosec2 x2, (i) (sec2 x)l(2^jx).

2 (a) 2 tan x sec2 x, (b) 2 sec2 x tan x, (c) — 6 cot2 x cosec2 x,
(d) — 6 cosec2 x cot x, (e) — 4 sec2 2x tan 2x, (f) — 3 cosec2 3x cot 3x,
(g) sec3 2x tan 2x, (h) 8 cosec4 x cot x, (i) (sec2 x)/(2 7 tan x).

3 (a) tan x + x sec2 x, (b) sec x (sec2 x + tan2 x), (c) x(2 cot x — x cosec2 x),
(d) 3 cosec x(l — x cot x), (e) — cosec x(cosec2 x + cot2 x),
(f) (x sec2 x — tan x)/x2, (g) sec x (x tan x — 2)/x3, (h) x sin x,
(i) 2x sec2 x tan x.

4 (a) |  tan 2x + c, (b) 3 sec x + c, (c) 2 cot j x  + c, (d) — ^ cosec 3x + c,
(e) sec2 x + c,or tan2 x + c, ( f )  tan x + c, (g) sec x + c, (h) — j  cot 2x + c,
(i) — \  cosec 2x + c.

5 1 — ¿7t.

6 2n.
1 (a) 273 , (b) 575, (c) 573.
9 cot2 x =  cosec2 x — 1, —cot x — x + c.
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1 (a) 72°, (b) 150°, (c) 67^°, (d) 105°.
2 (a) llit/6, (b) 5ji/ 18, (c) 5ti/ 12, (d) 2tt/15.
3 (a) 0.909, (b) 1.14, (c) 3.90, (d) -  0.987.
4 10.5 cm.
5 I f  cm., 29.8°.
7 171cm2.
8 1.93 rad.
9 0.515 rad.

10 60°, 72°, 144°, jn ,  frr, f  n rad.
11 7t rad/s.
12 (a) tjq rev/min, (b) n/2l 600 rad/s.
13 44 rad/s, 238 km/h.
14 6.9 rad/s.
15 42.4 rev/min.
16 (a) 1, (b) §, (c) — sin a.
18 (a) 3 cos 3x, (b) j  sec2 jx ,  (c) — 2x sin x2, (d) — sin x/(2^/cos x),

(e) — 6 cosec3 x cot x, (f) 2 sin x, (g) — 18 sec3 2x tan 2x,
(h) (cos 2x)/\y(sin 2x), (i) 12 tan 2x sec2 2x.

19 (a) j  sin 2x + c, (b) — j  cos (2x — 1) + c, (c) 6 sin j x  + c, (d) 2 tan j x  + c, 
(e) — cosec x + c, (f) j  sec 2x + c, (g) — cosec x + c, (h) j  tan 2x + c,
(i) — j  cos x2 +  c.

20 (a) sin x + x cos x, (b) cos x cos 2x — 2 sin x sin 2x,
(c) 2x tan x (tan x + x sec2 x), (d) sec x(x tan x — l)/x2,
(e) —(2 sin 3x sin 2x + 3 cos 3x cos 2x)/sin2 3x,
(f) cos x tan 2x + 2 sin x sec2 2x, (g) (x cos x — 2 sin x)/x3, (h) x2 sin x.

23 (a) 5, (b )-2 0 , (c) 10.
24 (a) 15 cm/s, (b) 14 cm.
25 (a )l,(b )fV 3 ,(c )i7 t,(d ) |.

Chapter 20
Qu.2 4 x - 6 y - 1 3  = 0.
Qu.4 (a) y = x + ^/7, (b) y = ^/3x + ^/ i 3.
Qu.5 (a) (0,0); (b) (0, 0), (3, 6).

Exercise 20a, page 396
1 x2 + y2 = 25. 2 x2 + y2 — 6x — 2y + 6 = 0. 3 4x — lOy + 29 = 0.
4 5x -  3y -  4 = 0. 5 x + 1, y2 = 2x + 1. 6 x2 = 4y.
7 2x2 + 2y2 — x — 1 = 0. 8 3x2 + 3y2 + 36x — 38y + 159 = 0.
9 3x2 — y2 = 48. 10 3x2 + 4y2 = 48. l l x 2 + y2 = 9.

12 y2 = 4ax. 13 3x2 + 4y2 = 12. 1 4 y  = 0. 15 2x + 3y -  13 = 0.

Exercise 20b, page 399
1 (a) (y -  2)(y + 5) + (x + 3)(x -  4) =  0; (b) (y - 1  )(y -  4) + (x -  j)(x + f ) =  0;

(c) y(y -  a) + x(x -  a) = 0; (d) (y -  y j  (y -  y2) + (x -  x j  (x -  x2) =  0.

Exercise 19c‘, page 390
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2 (a) x2 +  y2 =  36, (b) 4x2 + y2 = 64.
3 x 2 + y 2 = 16.
4 xy — 3y + 4x.
5 xy = 3.
6 y = 6x2 +  1.
7 y2 = 8x + 4.
9 x 2 + y 2 = 4.

10 4x2 + 4y2 — 8x + 3 = 0.
11 2y =  x2 +  x + 2.
12 2x + 3y — 13 = 0.
13 xy = 2x + 3y.
14 x2 — 4xy + 5y2 = 4.
15 y2 — xy — y + 2x = 0.

Exercise 20c, page 402

1 (a) 4x — y — 4 = 0, x + 4y — 18 = 0; (b) 4x — y — 2 = 0, x + 4y — 9 = 0;
(c) y + 2 = 0, x + 1 = 0; (d) x + y + 1 = 0, x — y — 3 = 0;
(e) 6x + y + 4 = 0, x — by + 50 = 0; (f) x +  y — 4 = 0, x — y = 0;
(g) 2x — 3y + 1 = 0, 3x + 2y — 5 = 0.

2 (a) ( |,  2); (b) (2, -  2); (c) (6, f); (d) ( - 1, - 1).
3 (1, 0), (3, 0); 2x + y — 2 = 0, x — 2y — 1 = 0; 2x — y — 6 = 0, x + 2y — 3 = 0.
4 5x — y — 11 = 0, 3x + y + 3 = 0.
5 x + 2y -  1 =  0, x -  2y + 1 = 0, (0, {).
6 (0, 0), (1, 1); x = 0, 2y -  x -  1 = 0; y = 0, y -  2x + 1 = 0.
7 4y -  x + 48 = 0, (48, 0).
8 9x — y — 27 = 0, 9x — y + 5 = 0.
9 x + y + 4 = 0.

10 0, 2; y = 0, y — 4x + 4 = 0.
11 x + 4y — 4c = 0.
13 3 x -8 y ± 1 0  = 0.
14 x — y + 4 = 0.
15 n2 = a2l2 + b2m2.

Exercise 20d, page 403

1 2x — 16y + 41 = 0.
2 y2 = 8(x — 2).
3 3x2 + 4y2 — 24x + 36 = 0.
4 8x2 — y2 — 18ax + 9a2 = 0.
5 x2 + y2 + 4x = 0.
6 3x2 +  3y2 + 8x = 0.
7 (x — a)(x — c) + (y — b)(y — d) =  0.
8 (a) x2 + y2 = 144, (b) x2 +  9y2 = 324.
9 x2 + y2 = 36.

10 xy = 4.
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11 bx + ay = xy.
12 4x2 + y2 - 4 x - 8 = 0 .
13 7 , 7 x - y + l = 0 , ( - i - i ) .
14 x + 2y = 12, ( — 6, 9).
15 x + y —4 = 0, x + 9y—12 = 0.
16 ± 1, x — y + 1 = 0, 4x +  4y — 11 = 0.
17 9 y -2 7 x =  19, ( -$ ,£ ) .
18 8x — 28y + 49 = 0.
19 y = x + 1 + 2/x, ( — 2, — 2); x — 2y + 6 = 0, x — 2y — 2 = 0.
20 6x + 12y + 5 = 0.

Chapter 21
Qu. 1 g = - a ,  f = - b ,  c =  (a2 +  b2 - r 2).
Qu. 2 (a) 0, (b) no real length.
Qu. 3 X 2 + Y2 - \ , X 2+ Y 2 - 6 X -  8 7 +  21; 3x + 4y -  11 = 0.
Qu. 4 x + y =  0.

Exercise 21a, page 408

1 (a) x2 + y2 — 4x — 6y + 12 = 0; (b) x2 + y2 + 6x — 8y = 0;
(c) 9x2 + 9y2 — 12x + 6y + 1 = 0; (d) x2 + y2 + lOy = 0;
(e) x 2 + y2 — 6x + 7 = 0; (f) 144x2 + 144y2 + 72x — 96y — 47 = 0.

2 (a) 1, ( -  2, 3); (b) 2, (1, 2); (c) f , (f, 0); (d) }, ( - f ,  2); (e) ^ 2 ,  ( —i .  — i);
(0 1, ( i  i); (g) V(fl2 + b2), (a, b); (h) ^ ( g 2 + f 2 -  c),{-g,  - / ) .

3 (a), (d) if a > 0, (f) if b = 0, (g) if c < 0.
4 x2 + y2 — 4x — 7.y — 15 = 0.
5 (5, 3), yj 10; x2 + y2 — lOx — 6y + 24 = 0.
6 x2 + _y2 — 4x +  6y + 4 = 0.
7 4,6.
8 The y-axis is a tangent.
9 x2 + y2 + 8x — lOy + 16 =  0.

10 x2 + y2 — 4x — 4y + 4 = 0.
11 (2, l) ,x 2 + y2 —4 x - 2 y  —45 = 0.
12 x2 + y2 — 16x + 8y — 5 = 0.
13 (a) x2 + y2 + 4x — 2y = 0, (b) x2 + y2 — lOx — 8y + 28 =  0,

(c) x2 + y2 — 2x — 49 = 0.
14 (4,0), 2.
15 (4,1), 3.

Exercise 21b, page 410

1 (a) 3x -  y =  0; (b) x -  4y + 17 = 0; (c) 4x + y -  11 = 0; ( d )  3x + y -  8 = 0; 
(e) 4x + 9y + 5 = 0.

2 (a) yj 10, (b) V15, (c) yj29, ( d )  2^7 ,  (e) V(xt 2 + yt 2 -  a2), (f) Jc.
3 5.
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Page 411
4 x — y — 1= 0 , x + y — 5 = 0.
5 (23 ,0 ),(0 ,7 |),88 i
6 V13.
7 ^ ( X 2 + Y 2-  4 ) ,2 x -5 = 0 .
8 2x + 3y — 6 = 0.

10 (7,4).

Exercise 21c, page 413

2 (0,0).
4 (1,2).
5 (-2 ,5 ) .
6 y =  2x.
7 x 2 + y2 — lOx — 8y + 33 = 0.
8 4 x - 3 y - 18 = 0, 13i.
9 2^3.

10 x 2 + y 2 = a2.
11 (0, 0), 3x + y = 0.
12 x + y -  1 = 0.
13 2x -  5 =  0.
14 5.
15 x2 + y 2 — lOx — 4y + 4 =  0.
16 (3, 1), ( 7 i  2i); (5, 0).
17 x2 + y2 — 5x — y =  0.
18 (2, — 3), ( — 11, — 3); x2 + y2 — 4x + 6y = 0, x 2 + y2 + 22x +  6y +  117 = 0.

Chapter 22
Qu. 1 (a) 1, (b )£ , (c)iV26, (d) 3 j2 ,  (e) { ^ 3 4 ,  (f)&y/l3,  (g)fa, ( h ) U

(i)lV (122r-5y+7),(j)iV ( SX l - 1 5 y i ).

Exercise 22a, page 416

1 (a) y — x = — 1, (b) y + 2x = — 1, (c) 2y — x  = — 12, (d) 3y + x = 13,
(e) 5y + l x  = — 9, (f) 4y — 3x = 7, (g) 6y + 5x = — 39, (h) 3y — 4x = 23,
(i) yt — x = at2, (j) y + tx = at3 + 2at, (k) y sin 9 + x cos 6 = a,
(1) t2y + x = 2ct.

2 (a) 2x — 3y = — 2, (b) 3x + 4y = 0, (c) 6x -  5y = -4 3 , (d) 2x + 3y = 7,
(e) y + tx = k + th, (f) bx — ay = bxr — ayu (g) y — t2x  = c/t — ct3.

3 (a) x/3 + y/2 = 1, (b) y/2 — x = 1, (c) 2x + 5y = 1, (d) 4y — 3x = 1.
4 (a) x/3 + y/2 = 1, (b) y/ 5 — x =  1, (c) 3y/2 — 2x = 1.
5 p sec a, p cosec a, x cos a + y sin a = p.
6 (a) y — 3x + 9 = 0; (b) 2y + x  = 0; (c) 5y -  2x -  3 = 0; (d) 4y + 3x + 12 = 0; 

(e) y -  6x + 16 = 0; (f) 4y -  9x -  3 = 0; (g) y = 2; (h) 2y +  x -  4 =  0;
(i) 3y — 4x — 13 = 0; (j) 6y + x — 19 = 0; (k) y + x — 1 = 0;
(1) y — t 2x  = k — t2h.
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2 (a) r  = a, (b) 0 = a, (c) r = a sec 0, (d )r = a cosec 0, (e) r«= a cos 
(f) r = 2a sin 0, (g) a2 =  r2 + c2 — 2cr cos 0, (h) r = 2a/(l + cos 0).

5 (a) r = a, (b) r2 = a2 sec 20, (c) 0 = 0, (d) r = 2a/(l + cos 0), (e) r =  2 sin 0,
(f) r2 = 2c2 cosec 20.

6 (a) x 2 + y2 = 4, (b) (x2 + y2 -  ax)2 =  a2(x2 + y2), (c) x2 + y 2 — ax = 0,
(d) x4 + x2y2 = a2y2, (e) (x2 +  y2)3 =  4a2(x + y)4, (f) 4xy =  c2,
(g) x2 + y2 = (/ -  ex)2, (h) y2 = 4ax.

7 (a) 1, 60°; (b) 2 j  2, -  45°; (c) 2, tan ' 1 f  ; (d) 2, tan ' 1 ( -  ¥ );
( e J ^ lO , tan -1 3; (f) c/^J(a2 + b2), tan ~l(b/a).

Exercise 22b, page 421

Exercise 22c, page 425

1 (a)4j, (b) 2yj, ( c ) j y  17, (d)0, (e)$y/29,  (f) l j ,  (g)£y/41, (h)
(i) p, (j) * (5X  - 1 2 7 + 1 ) ,  (k) fie , (1) j(4yi -  3x1 + 2).

2 (a) 3x -  y -  2 =  0, x +  3y -  4 =  0; (b) 7x -  7y + 4 = 0, x + y -  2 =  0; 
(c) 17x +  17y -  4 = 0, 7x -  7y -  4 =  0; (d) x +  (1 ± s/2)y - 1 = 0 .

3 (a) 8x -  4y + 17 =  0, (b) 8y + 1 =  0, (c) 4x +  12y + 5 = 0.
4 4x2 — 4xy + y2 — 20x + 30y + 65 = 0.
5 4x + 3y -  24 = 0.
6 l x 2 -  2xy + 7y2 -  40x -  40y + 48 =  0.
7 4y — 3x — 15 =  0, 4y — 3x +  35 = 0.
8 2x — 3y + 13 = 0.
9 x2 + y2 — 4x — 14y + 49 = 0.

10 n2 = a2(l2 + m2).

Exercise 22d, page 429

2 (a) f , f; (b) ± i  ±  3a, (c) -  2, -  (d) 60°, (^3/2)5.
3 (a) (y -  2)2 =  x — 1, (b) x3 = y2, (c) xy = 1, (d) 2x + y — 5 = 0, (e) y2 =  4ax, 

(f) xy2 = 1, (g) 5x + y — 13 =  0, (h) 4x2 — 9y2 = 144, (i) 4x2 + 9y2 = 36,
(j) 9x2 — 16y2 = 144. 2 2t

4 (a) x = t4, y = i 5; (b) x = t -  2, y =  i 2 -  21; (c) x =  p — y, y = J ;

(d) x =
1

1 - t 3 ’ y =
t

r ^ T 3’ (e) x =
3t

T + t5 ’
3f2

1 + t3 '
5 3x — 2y + 1 = 0.
6 4 4

—  13> —  3-

7 ( j t 2,f i) ,2 y 2 = 9x.
8 y2 =  8ax.
9 x = y(2x — l)2.

10 ( 1, 1), ( — 1, — 1), J 2 .
11 (a, 2a), inflexion; (4a, — 4a), minimum.
12 (a) (p +  q)y - 2 x  = 2pq, (b) p q y ~ x  + (p + q) = 0,

(c) (p2 + pq + q2)y -  x = pq(p + q), (d) (pq -  l)y -  2pqx + 2(p + <?) =  0. 
13 (a,2a),j^j2a.
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Page 430
14 — 1, 2; (1, —2), (4,4).
15 (1, ±2), (4, ±4).

Exercise 22e, page 431

1 (a) 2y + 3x — 1 = 0, 2x — 3y — 5 = 0; (b) y + 4x =  3, 16y — 4x = 31;
(c) x + y + a = 0, x — y — 3a = 0; (d) y + x + 2c = 0, y — x = 0;
(e) 2y + x +  9 =  0, 2x — y + 3 = 0;
(f) 3N/3y +  2 x -  12 = 0, 6^3x  -  4y -  5^3  = 0.

2 (a) ty — 2x — t3 = 0, 2y + tx = 612 + i4;
(b) ty — x — at2 = 0, y + tx =  2at + at3;
(c) y — tx + t4 = 0, ty + x  =  3i5 + 4 i3;
(d) t 2y + x — 2ct = 0, y — t2x = c/t — ct3;
(e) bx cos t + ay sin t =  ab, ax sin t — by cos t = %(a2 — b2) sin 21;
(f) bx sec t — ay tan t = ab, ax sin t + by = (a2 + b2) tan t.

3 (a)(p + q )y~2x  = 2pq, p y - x  = p2;
(b) y + pq(p + q)x = p2 + pq + q2, y + 2p3x = 3p2;
(c) pqy + x = c(p + q), p2y + x = 2cp;
(d) bx cos \ (p  + q) + ay sin \ (p + q) = ab cos j (p — q), 
bx cos p + ay sin p = ab.

4 2x + y — 12a = 0, (9a, — 6a).
5 C -ic , —8c).
6 ( —t, 4).
7 yt — x = at2; 2,4; 2y — x = 4a, 4y — x  = 16a.
8 y + x = 2c, 9y + x =  6c.
9 y + 2x = 12a, y — 4x +  72a = 0.

10 ( - c / t 3, - c t 3).

Exercise 22f, page 432

4 yt — x = at2, y + tx = 2at + at3.
17 2, — 1; y + 2x = 12a, y — x + 3a = 0.
18 y — x — a = 0, 4y — x — 16a = 0.

Exercise 22g, page 434

4 r = 2a/(l — cos 0).
5 6 i
6 r = a ( l—cos 6), x 2 + 2ay = a2.
1  - 3 - r  —  & V - 1  1'  2 5 x  25X ~  5̂  5-

8 (a) 2x -  8y + 7 =  0, 4x + y + 4 = 0; (b) 12x + 4y -  13 = 0, 2x -  6y + 1 = 0.
9 x 2 — 2xy + y 2 + 8x + 8y =  0.

10 x — 3y + 5 = 0, x — 3_y + 25 = 0.
11 2 xy  =  x + 1.
13 x — 2y + 2 = 0, 2x + y — 11 = 0.
14 2t3y + x = 3t2, 2xy2 = 1.
16 x — y + a = 0, x — 5y + 25a — 0.
17 ( H ia, - ^ a ) .



Answers 565

Chapter 23
Note: Approximate answers have generally been rounded,to 2 or 3 significant 
figures. The reader should not assume from the form of an answer that the result 
is exact.

Qu. 1

Qu.2

Qu.3

Qu.4
Qu.5

Qu.6

Qu.7
Qu.8

Qu.9 

Qu. 10 

Qu. 11 

Qu. 12

Qu. 13

Qu. 14 
Qu. 15 
Qu. 16

Qu. 17 
Qu. 18 
Qu. 19

(a) s varies as the square of t, (b) V varies as the cube of r,
(c) y varies inversely as the square of x,
(d) T  varies as the square root of /, (e) p varies inversely as v,
(f) the square of T  varies as the cube of d.
W  is increased by a factor of (a) 8, (b) 27.

(i) (a) p = kq, (b) p =  - ,  (c)v = kx3, (d) U = kyjl, (e) F = kc2, (f) H
v d

(g) T  = — (h) A = ksn, (i) A 3 = kv2.
V*

(n) (a) — = — ,
Pi dl

(MPi v2 , . » 1  *13 , . , U l yj l t F l(b) — = —, (c) — = —t , (d) —  = , (e) —  = c  1

(0
Hi

2 .( 6 ) ^  =

Pi ”l
Ti  = V&2 
T2

, (h) —2. = ——, (i) ———y =  ~~2 •
yjgl ’ A 2 S2" W A ,3 " 2

x2
S,

V 2 y/h

H i  l 2 \ J  g  i  A 2 s 2" A 2 v 2
l is increased by a factor of (a) 4, (b) 9. T  is increased by a factor of yj2. 
1.1 s.

3.21 x 1010 
W_ d2 ' 
w is multiplied by (a) i ,  (b)g.
(a) c varies as p, (b) C varies as a2 over a limited range,
(c) w varies as r 3, (d) / varies inversely as b, (e) S varies as l2,
(f) A varies as a2, (g) a varies as yj A, (h) V varies as a3,
(i) a varies as ÿ  V. 
y = kxz3. 

hr2
W  oc— . 

t
(a) T  = kmr2, (b) T oc mr2.

F = k
mv

> (b) — =
Z2 T2*l

,<f>
z2 y i y / x2

y i X2 t^ i  * 1  y I / J N z i  * i J > i------=r,(c)— = 3 2, ( d — = --------------,
z2 x 2 y2 z2 x 2y2z2 *2y2

z -  2" 2
( e ) - =  2 2z2 x2 y2
(a) C = K + kx3, k, K constants; (b) £11.95. 
v = 4.2t.
The cost in labour and materials before any copies are run off is 
£10.50.
(a) y =  — 3x + 122, (b) y=  13.5x — 71.5, (c) y=  — 12x + 213. 
y = 12x — 72; 6 cm.
R = 0.0005v3.



Qu. 20 k = 0.49.
Qu. 22 k = 2070; a = 1.05. 3700.

Exercise 23a, page 443

1 5.70 cm2. 2 29.9 km, d x 3 . 5 7 j h .  3 155 cm, l «  24.8(5) T2.
4 25 m. 5 0.242 kg, 11.0 cm, m = gYod2.
6 (a) C = 2007ir, yes, (b) C = 5.087ir, yes. 7 2.8 x 105 N/m2. 8 3584.
9 15.6 cm3, 11.2 cm. 10 10.4 k, v = fV(5/). 113168,3.3 mm.

12 (a) y  varies as i6, (b) p varies inversely as r2.
13 F = ^ i v 2. (a) 2360 N, (b) 43.6 km/h.
14 H «  0.000 182r3, 4.92 kW.
15 Increases approx. 7% in speed and 15% in acceleration.
16 1.59.
17 Increase a  0.05%.
19 1 h 37 min, T«2.87  x 10“ 6V 2.
20 275:1472.
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Exercise 23b, page 449

1 15.7 cm2. 2 454.5 rev/min. 3 48 litres/s. 4 675 kJ.

5 185 cm3, V «  51.6 —. 6 0.70 kW, 0.001
P R

7 570s“ 1, / «  1 4 . 2 ^ .  8 7 6 s“ 1. 9 4.91s.
/

10 The former; ratio 16:15. 11 The latter; ratio 27:32.
12 The former; ratio 16:15. 13 £1150. 14 £9.75, C = 6.75 + 0.015n.
15 88 m, s = 10i + 3i2. 16 54.4 m, s =  0.2d +  0.006t>2, 50 km/h.

40
17 C =  0.25 + 0.2m. 18 £3.50, 125. 19 28icm 2, S = l x 2 + — .x
20 V = nrh2 — ^nh3.

Exercise 23c, page 460

1 A = 1.84D. Yes.
2 m = 1.02i; relative density =  gradient x
3 h2 = 0.34V
4 d = l  + 6.8n, taking n to be 0, l j ,  \9j.
5 (a) £1950, (b) £435.
6 11 km/litre, about 17 litres.
7 6 = 62 — jt. No: cooler bodies lose heat more slowly.
8 Yes; about 219 litres.
9 Yes. / = 15/r.

10 m =  0.338V
11 y =  3.50 — 0.025x2.

12 p = 10.6 -  i =  - ^ — . ( Theoretically, i = 10 .
i 10.6 — p \  11 —p
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Page 463
13 P = 0.199s1-50.

14
1

p oc
V " '

15 I = l.6r2.
16 w = 3.94 x 0.846".
17 0.0071.
18 1.28.
19 0.005.
20 T =  100x 1.008 x; no.

Chapter 24
Qu. 1 (a) 4.123, (b) 6.325, (c) 9.220, (d) 9.798.

Exercise 24a, page 473

1 (a) 3.46, (b) 5.48, (c) 7.07, (d) 8.66.
2 2.33, 2.29, 2.29; x3 -  12 =  0.
3 2.71.
4 xr+, = (xr2 +  l)/5; 0.208, 0.209, 0.209; xr+1 = 5 — l/xr; 0, — oo, 5.
5 0.1001.
6 1.93.
7 xr+1 = 8 — 10/xr; —2, 13, 7.23; the sequence does not appear to converge, 

however it eventually converges to 6.45, the other root.
8 (a) 2.17, 2.15, 2.15; (b) 2.5, 1.6, 3.91; 2.15.
9 2.19.

10 6.54,0.459.

Exercise 24b, page 478

Nos. 1, 2, 3, 5, 6, 8, 10 (i.e. not 4, 7, 9).

Exercise 24c, page 482

1 4.74. 2 3.28. 3 1.90. 4 5.15. 5 3.58.
6 0.771. 7 4.15. 8 3.70. 9 2.09. 10 1.04.

Exercise 24d, page 483

1 (a) 14.1, (b) 21.2, (c) 26.5, (d) 31.6. 2 (a) 14.1, (b) 21.2, (c) 26.5, (d) 31.6.
6 0.450. 7 0.450. 8 0.196. 9 8.16. 10 0.347.

11 2.34,4.68,9.13 cm. 12 0.653r. 13 4.1%. 14 1.16r.
15 n = l, x2 = 1.260, x3 = 1.312. 16 18.5. 17 2.17. 18 1.84.
19 1.2. 20 0.167.
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Chapter 25
Qu. 1 p, p.
Qu. 2 p.
Qu. 3 A.
Qu. 4 A, D.
Qu. 6 0 <-> 1, 1 «-> 3, 2 <-> 9, 3 <-» 7, or 0 <-> 1, 1 <-> 7, 2 <-» 9, 3 <-> 3.
Qu. 7 In (h) every element is ‘self-inverse’.

<̂ U‘ 9 A B C D E
------------------------------------  A and E.
6 3 2 3 6

Qu. 10 {1}, {1,9}, {1,3, 7, 9}.
Qu. 11 {/}, {1, C}, {/, £>}, {/, £}, {/, A, Bj, {/, A, B, C, D, £}.
Qu. 12 {e, x3}, {e, x2, x4}.
Qu. 13 (a), (b), (d).
Qu. 14 (b), (d); (a) not zero, (c) not singular matrices.
Qu. 15 {/, C}, {/, D), {I, E), {/, P), {/, S}, {/, T}, {/, U}; {/, A, B}; 

{I ,D,P,T},  {/, E, P,U},  {/, C, P, S};
{/, A, B, P, Q, R}, {/, A, B, 5, T, U}, {/, A, B, C, D, E}.

Exercise 25a, page 490

1 I <—> e, J <—> x, I.
2 (a) D, (b) C, (c) B, (d) C.
3 (a) /, (b) /, (c) D, (d) D.
4 p* = p, r* =  q.

X / A B C D E

X * / B A C D E

6 1 i - 1 — i

1 1 i - 1 — i
1 i - 1 — i 1

- 1 - 1 — i 1
— i — i 1 i - 1
e <-> 1, p <-> — 1, q <-> i, r <-> — i (or q «-» - i , r <-> i)

7 e a 6 8 I A B C

e ? a t> I I A B C
a a 6 e A A B C I
6 a B B C I A

C C I A B
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Page 490

9 I P Q R «

I I P Q R
P P I R Q
Q Q R I P
R R Q P  I

10 I A B C P Q R S

I I A B C P Q R S
A A B C I S R P Q
B B C I A Q P S R
C C I A B R S Q P
P P R Q S I B A C
Q Q S P R B I C A
R R Q S P C A I B
S S P R Q A C B I

Exercise 25b, page 497

1 1 2 3 4 5 6 2 0 1 2
1 1 2 3 4 5 6 0 0 1 2
2 2 4 6 1 3 5 1 1 2 3
3 3 6 2 5 1 4 2 2 3 0
4 4 1 5  2 6 3 3 3 0 1
5 5 3 1 6  4 2
6 6 5 4 3 2 1

3 e X x 2 X 3 X4 X 5

e e X X 2 x 3 x 4 X 5

X X X2 X 3 X4 X 5 e
X 2 X 2 X3 X4  X 5 e X

X3 X3
4  5x x e X X 2

x 4 x 4 x s e x x 2 X 3

x 5 X 5 e x x 2 X 3 x 4

4 I R R2 R3 A B C D

I I R R2 R3 A B c D
R R R2 R3 I B C D A
R2 R2 R3 I R C D A B
R3 R 3 I R R2 D A B C
A A D C B I R3 R2 R
B B A D C R I R3 R2
C C B A D R2 R I R3
D D C B A R3 R2 R I
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Page 498

I R R 2 R 3 R 4 R 5 A B C D E F

I I R R 2 R 3 R 4 R 5 A B C D E F
R R R 2 R 3 R4 R 5 I B C D E F A
R 2 R 2 R 3 R 4 R 5 I R C D E F A B
R 3 R 3 R 4 R 5 I R R 2 D E F A B C
R 4 R 4 R 5 I R R 2 R 3 E F A B C D
R 5 R 5 I R R 2 R 3 R 4 F A B C D E
A A F E D C B I R 5 R 4 R 3 R 2 R
B B A F E D C R I R 5 R 4 R 3 R
C C B A F E D R 2 R I R 5 R 4 R
D D C B A F E R 3 R 2 R I R 5 R
E E D C B A F R 4 R 3 R 2 R I R
F F E D C B A R 5 R 4 R 3 R 2 R I

Exercise 25c, page 502

1 No inverses.
2 Not closed.

1 4 7 13 ,c4.
1 4 13 7

e a b c d /
e f d c b a

/ A B c
, Klein.

I A B c

,C 6.

I A B C D E
I B A C D E

1 3 3 2 2 2

no.

10 (a — by/2)/(a2 — 2b2).
11 (a — ib)/(a2 + b2).
12 {1, 5, 7, 11}, {1, 5}, {1, 7}, {1, 11}, {4, 8}, {3, 9}, {1}.

Exercise 25d, page 508

2 e = 6
X 3 6 9 12

x - 1 12 6 9 3
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Page 509
5 (a) {/, G, E, F}, (b) {/, A}, (c) {/, A, C, F}.
6 {l, A}, {B, £}, {C, F}, {D, G}.
7 ( 1 +  x)/(l — x), — 1/x, (x — l)/(x +  1), x.

9 element 1 2 4 5 7 8

period 1 6 3 6 3 2

12 e X x2 x3 y yx yx2 yx3

e e X X 2 X 3 y yx yx2 yx3
X X X2 X3 e yx3 y yx yx2
x2 x 2 X3 e X yx2 yx3 y yx
x3 X 3 e X x2 yx yx2 yx3 y
y y yx yx2 yx3 X 2 x3 e X

yx yx yx yx3 y X x2 X 3 e
yx2 yx yx 3 y yx e X X2 X3

}'X3 yx~ y yx yx2 x3 e X X 2

13 e, x , .*2, y, xz, x 2y, x2z, yz, xyz, x 2yz.
14 (a) S, S, X , x ,  V U. (b) U.
15 {U,F S, V}, {u , X, R, S} , {U,Q s, Wj {U,S}, {P, V}, {Q, W}
16 e, e, b, d; not associative; {e, a], [e, b}, {e, c}, {e, d}.

17 (a)^,
1

2 x 1(b>0 ?)•(-
-1 O' 
0 - 1 ,)■

18 Yes.
20 Yes; C exists but is not unique; J  =

0 - 1  
1 0

0 1
-1 0

Appendix

Exercise 1, page 512

1 Axh. 2 2x(x2 + 3h2). 3 2/i(3x2 + h2). 4 3 x - 4 x 3.
5 5 y = 2x + 25. 6 8 y = 3x — 5. 7 2i — y/t — 3.

8 (3 + 2t)(l + t). 9 — 1 0 - ^ 4 .
x — 1 xy — 1

Exercise 2, page 513

1 (5x — 2)(7x + 3). 2 2(x + 7)(x — 7). 3 {2x + y)(x -  y).
4 (x + a) (y + b). 5 (x +  3) (y — 2). 6 (x + 1) (x — 1) (2x + 3).
7 (x +  3)(2x2 + 3x + 3). 8 (x +  l)(12x + 5). 9 20(x -  2).

10 2(x -  2)2(3x -  1).

Exercise 3, page 514
, y — x ,  x2 + y2 ,  1 + a A a + b
1  Z  Ô 2  ^  2 l 2  *xv xy or a b
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Page 514

(x — h)(x + h)' 
— (x2 — 2x +  4) 
(x2 + 2) (2 + x)

— h(2x + h) 3x
x 2(x + h)2 ' (1 — x)(2+*x)'
n + 1  x2 + 3x + 3
n+~2 ' (x + i)2 •

Exercise 4, page 514

1 2/(T+t).
2 ty =  x +  t2.
3 - 1  / t .
4 - T t .
5 ( N+l ) ( 2 N+l ) ( 2 N +  3).
6 J (a  + b).
7 (ad + bc)/(bd + ac).
8 3x2 + 3xh + h2.

9 __________1______=___ î___.
y j ( \  +  X 2 )  X  (1  +  X 2 )  (1  +  x 2 ) 3/2

10 (1 — f)/( 1 + t) [or (t — \)/(t + 1), whichever is positive.]

Exercise 5, page 515

1 6. 2 -10 ,25 . 3 12. 4 5,25. 5 7,49. 6 3,4,9.
7 l , i  8 l , i  1. 9 10,9. 10 U i

Exercise 6, page 516

1

4

7

10

m = ( y -  c)/x.
(K — k)(x — h)

y = H - h

2 e = (a — b)/a. 3 x =

■ + k. 5 c = 4 + 3m.

/ = T2g/(4n2). 8 g = 4k21/T2. 9 m =

2x -  3y + 4
m =

3x — 2y + 2

y2/(4a).

6 x = (b — 1 )/(a — 1). 
2x + 2y + 1 

2(2y — x) '

Exercise 7, page 517

1 3 .  2 2. 3 j .  4 17.
7 + 2 , - 2 .  8 c(2T + 3t)/5.

5 7, I f  6 7, - 2 .
9 i/5, 3i. 10 1/t, -  T.

Exercise 8, page 519

1 2 , -  1. 2 2 , - 3 .  3 -7/19,8/19. 4 0, 0; 4, 4.
5 1 6 ,4 ; -1 ,- 6 4 .  6 0, 1; 2, 3. 7 10c, 7c. 8 tT,(t + T).
9 t, 1/i; — 1/t3, — i3. 10 5a, 3a; 4a, 0.

Exercise 9, page 520 

1 0, + 2, -  2. 2 0,0, 7. 3 0, - 4 ,5 . 4 +4, - 4 ,  +1, - 1 .



Answers

Page 520
5 + 2/3, — 2/3. 6 0,0, — k. 7 a, (a + b), (a — b ) . t 8 0.
9 + a, — a. 10 p + q.

Exercise 10, page 521

1 (a) (a 4- b), (or — (a + b) if a + b < 0), (b) a3 + b3.
2 (a) (K + 1)2(K +  2)2, (b) (N  + 1 )(JV +  2) (2JV + 9).
-x i \ 4xh -(21V+ 5)

W (x -  h)2(x +  h)2 ’ ( ’ (N + 2) (IV + 3)'

4 (a) -  (b) 2N( N2 + 6 N+  11).

5 ( a ) 3 ,9 ,( b ) 3 i |.
6 (a) (u2 — 3)/3, (b) ± ^ /{(« — l)/5}.
7 (a) 2a/3, (b) 3a/1, — a.
8 (a)2cr, (b)c(l - t 2)/t.
9 (a) 29a, 52a, (b) 9a, 6a; a/9, — 2a/3.

10 (a) 0, (b) — k, 2k.
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