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Preface

This book is the sequel to Pure Mathematics 1 by J. K. Backhouse and S. P. T. 
Houldsworth, revised by P. J. F. Horril. The two books bring the work up to the 
standard required for examinations in Mathematics and Further Mathematics 
at Advanced level; some carefully selected S-level topics have also been included.

The revised edition takes into account the changes in syllabuses which have 
taken place since the original version was produced in 1963. However the 
authors hope that the artificial and damaging distinction between so-called 
‘modern’ and ‘traditional’ mathematics will soon disappear and that school 
mathematics will once again be seen as a unified subject.

Readers familiar with the earlier editions will note that less emphasis has been 
placed on heavy manipulation of algebraic and trigonometrical identities and 
that certain topics have been omitted because they have gone out of fashion. On 
the other hand, there are several entirely new chapters, namely

Chapter 8, Further matrices and determinants 
Chapter 15, Second order differential equations 
Chapter 21, Further vector methods.

Chapters 8 and 21 follow up the work done on these topics in Book 1, and 
Chapter 15 continues the work started in the revised and expanded Chapter 14 
of Book 2; there is also a section on differential equations in Chapter 17, 
Numerical methods. The introduction to complex numbers now appears in 
Book 1, and Book 2 contains a sequel to it (Chapter 20). This edition contains 
an index, and there is also a table of the contents of Book 1.

The exercises have been extensively revised and include a wide selection of 
questions from recent GCE papers.

The individual reader has been kept in mind, and he or she is advised to work 
through the questions in the text marked Qu.; the class teacher will find that 
many of these are suitable for oral work. In the exercises, certain questions have 
been marked with an asterisk *; this indicates that they contain a useful result or 
method for which room has not been found in the text.

Once again, I would like to thank the authors of the original books for 
entrusting me with the task of revision; their help with preparing the drafts and 
reading the proofs has been invaluable. I would also like to thank everyone from 
the Longman Group who has helped with the production of these new books.

My thanks are also due to the Master and Fellows of Selwyn College,

XI



Cambridge, and the President and Fellows of St John’s College, Oxford, because 
much of the work involved was done while I was resident at their respective 
colleges. I should also like to acknowledge the valuable help of my colleagues 
and pupils who read the new material. Lastly, I must thank my wife and family, 
without whose support and patience the project would never have been 
completed.

Nottingham 
June 1984

P. J. F. Horril
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Note on degree of accuracy of answers

In order to avoid tedious repetition in the wording of questions the following 
conventions are observed throughout the book, unless there are specific 
instructions to the contrary.

(a) When possible an exact answer is given. To this end it is normally 
appropriate to retain surds and n in the answers where they occur. (The word 
exact is used here in the rather limited sense of being derived from the data 
without any intervening approximation.)

(b) When an answer is not exact, it is given correct to three significant figures, 
or, if it is an angle measured in degrees, to the nearest tenth of a degree.

Acknowledgements

We are grateful to the following examining bodies for permission to reproduce 
questions from past examination papers:

University of Cambridge Local Examinations Syndicate (C); Joint Matricula
tion Board (JMB); University of London, School Examinations Department (L); 
Oxford and Cambridge Schools Examination Board (O & C) and University of 
Oxford Delegacy of Local Examinations (O).

Questions from the above bodies are indicated by the letters shown in brackets.



Mathematical notation
The following notation is used in this book. It follows the conventions employed 
by most GCE Examining Boards.

1. Set notation

e
i
{a, b, c, ...} 
{x: ...} 
n(A)
0
S
A ’
M
Z
Z +
Q
R
€
C=

is an element of.
is not an element of.
the set with elements a,b ,c .. .
the set of elements x, such that ...
the number of elements in set A.
the empty set.
the universal set.
the complement of set A.
the set of natural numbers (including zero) 0, 1, 2, 3 ...
the set of integers 0, ±1, ±2, +3, ...
the set of positive integers +1, +2, +3  ...
the set of rational numbers.
the set of real numbers.
the set of complex numbers.
is a subset of.

Cl
u
n
[a,b] 
(a, b)

is a proper subset of.
union.
intersection.
the closed interval {x € R: a ^  x < b}. 
the open interval (x e IR: a < x < b}.

2. Miscellaneous symbols

= is equal to.

V V/
It. A A\ #

is not equal to.
is greater than, is less than.
is greater than or equal to, is less than or equal to. 
is approximately equal to.
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XV

3. Operations

a + b a plus b.
a — b a minus b.
a x b, ab, a.b a multiplied by b.

a + b, p  a/b a divided by b.
i = n
1 « .i= 1

Cli @2 ... Qn.

4. Functions

f(x) the value of the function f at x.
f: A ^ B f is a function which maps each element of set A onto a 

member of set B.
f: xi—»y f maps the element x onto an element y.
r 1
gof or gf 
lim f(x)

öx
dy
dx 
d ny 
dx"
f'(x), f"(x), ... f(n,(x) 
Jy d x

y dx

[F(x)]J

the inverse of the function f. 
the composite function g(f(x)). 
the limit of f(x) as x tends to a.

an increment of x.

the derivative of y with respect to x.

the nth derivative of y with respect to x.

the first, second, ... nth derivatives of f(x). 
the indefinite integral of y with respect to x.

the definite integral, with limits a and b.

m - m -

5. Exponential and logarithmic functions

e or exp x 
loga x 
In x 
lgx

the exponential function, 
logarithm of x in base a logarithms. 
loge x. 
log 10 x.

6. Circular and hyperbolic functions

sin x, cos x, tan x 
cosec x, sec x, cot x 
sin - 1 x or arcsin x

sinh x etc.

the circular functions sine, cosine, tangent, 
the reciprocals of the above functions, 
the inverse of the function sin x (with similar abbrevi
ations for the inverses of the other circular functions), 
the hyperbolic functions.

7. Other functions

Va the positive square root of a.
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M
ni

the modulus of a.
n factorial; ni = n x (n — 1) x (n — 2) x ... x 3 x 2 x 1. 
(0! =  1) 

n\
—------ - when n, r e I\l and 0 < r ^  n,
rl(n — r)]

n n(n — 1)... (n — r + 1) 
r\

when n e Q and r e l\l.

8. Complex numbers

z or w
Re(z)
Im(z)
kl
arg(z)

the square root of — 1.
a typical complex number, e.g. x + iy, where x, y e R
the real part of z; Re(x + iy) = x.
the imaginary part of z; Im(x + iy) = y.
the modulus of z; |x + iy| =  yj{x2 + y2).
the argument of z.
the complex conjugate of z.

9. Matrices 

M
M “1
MT
det(M)
adj(M)
I

10. Vectors

|a| or a 
â
y , k
AB^
| AB | or AB 
a.b 
a a b

a typical matrix M.
the inverse of a matrix M (provided it exists), 
the transpose of matrix M. 
the determinant of a square matrix M. 
the adjoint of a square matrix M 
the identity matrix.

the vector a.
the magnitude of vector a.
the unit vector with the same direction as a.
unit vectors parallel to the Cartesian coordinate axes.
the vector represented by the line segment AB.
the length of the vector AB.
the scalar product of a and b.
the vector product of a and b.



Chapter 1

Integration
Introduction
1.1 In Book I t  we dealt with the differentiation of powers of x, polynomials, 
products and quotients, composite functions, trigonometrical functions, and we 
also discussed implicit functions and parameters.

Now that we come to extend the scope of integration we find that it is not, 
unfortunately, merely a matter of putting into reverse the techniques for 
differentiation; we have learned a technique fbr differentiating (3x2 + 2)4 as it 
stands, but can we integrate this function without first expanding it? Even 
consider the simple function x"; we can differentiate this whenever n e <Q, but we 
must bear in mind the gap which remains to be filled later in this book when we 
discover how to deal with j x -1 dx.

Integration is, in fact, less susceptible than differentiation to concise system
atic treatment. It presents a broad front, and the reader’s experience of it will 
gradually expand, so that by quick recognition of an increasing number of forms 
of integrand (i.e. the function to be integrated) there is developed the power to 
discriminate between the many possible lines of attack.

Recognising the presence of a function and its derivative
1.2 The very first thing to search for in any but the simplest integrands is the 
presence of a function and its derivative; with this, we may often guess the 
integral to be a certain composite function, check by differentiation, and adjust 
the numerical factor. Two examples follow to illustrate this method.

Example 1 Find j x(3x2 + 2)4 dx.

[We note that the x outside the bracket is a constant x the derivative of 
the expression inside the bracket. We deduce that the integral is a function of 
(3x2 + 2).]

t Pure Mathematics /, J. K. Backhouse, S. P. T. Houldsworth and P. J. F. Horril, published in 1985 by 
Longman and hereafter referred to as Book 1.

1



2 Pure Mathematics 2 1.2

dx

, . A { ±
dx [30 

Hence

{(3x2 + 2)5} = 5(3x2 + I f  x 6x = 30x(3x2 + I f

(3x2 + 2)H = x(3x2 + 2 f

x(3x2 + I f  dx = — (3x2 + 2)5 + c

Example 2 Find J sin2 4x cos 4x dx.

[We note that cos 4x is a constant x the derivative of sin 4x, and we deduce 
that the integral is a function of sin 4x.]

{sin3 4x} = 3(sin 4x)2 x cos 4x x 4 = 12 sin2 4x cos 4x 
dx

Hence

j  sin2 4x cos 4x dx = sin3 4x + c 

Qu. 1 Differentiate:

(a) (2x2 + 3)4, (b) V(x2 -  2x + 1), (c) 2,

(d) sin (4x — 7), (e) tan3 x, (f) cos2 3x.

Qu. 2 Find the following integrals, and check by differentiation:
(a) j  x(x2 + l)2 dx, (b) j  (2x + l)4 dx, (c) j  (x2 + l)3 dx,
(d) j \  sin 3x dx, (e) j  x2 ^/(x3 + 1) dx, (f) j  sec2 x tan x dx.

Pythagoras’ theorem. Odd powers of sin x, cos x, etc.
1.3 Pythagoras’ theorem in the forms

cos2 x + sin2 x = 1, cot2 x + 1 = cosec2 x, and 1 + tan2 x = sec2 x

(see Book 1, §16.6), may be used to change some integrands to a form susceptible 
to the method of §1.2. In particular, it enables us to integrate odd powers of sin x 
and cos x.

Example 3 Find J sin5 x dx.

j sin5 x dx = J sin4 x sin x dx
= j  (1 — cos2 x)2 sin x dx 
= j (sin x — 2 cos2 x sin x + cos4 x sin x) dx 

.'. j  sin5 x dx = — cos x + § cos3 x — cos5 x + c
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Qu. 3 Find: (a) j  sin3 x dx, (b) j  cos5 x dx.

Qu. 4 Find: (a) j  cos3 x sin2 x dx, [Write cos3 x as cos x(l — sin2 x).]
(b) J sin3 x cos2 x dx.

Qu. 5 Find |  sec x tan3 x dx. Remember —  (sec x) = sec x tan x. 
dx

Even powers of sin jc, cos jc f

1.4 Two very important formulae derived from the double-angle formulae are 
cos2 x  = + cos 2x) and sin2 x  = -j(l — cos 2x). (See Book 1, §17.3).

Their use in integrating even powers of sin x and cos x is illustrated in the 
latter part of Exercise la, which also gives practice in the use of other formulae, 
including the factor formulae. (See Book 1, §17.8.)

Exercise la
1 Differentiate: 

(a) (5x2 -  l)3,

(d) cot 5x,

(g) tan yjx,

(2x2 — x +  3)2’

(e) cos (5x — 1),

(h) sec2 2x,

(c) j / (x2 + 4), 

(f) sin2 y,

(i) ,/cosec x.

Find the following integrals in Nos. 2-4:

2 (a) j x(x2 — 3)5 dx, (b) J (3x — l )5 dx, (c) j x(x + 2)2 dx,

(d ) (x2 + 1):
dx, (e)

x +  1
(x2 +  2x — 5)'

dx,

(f) |  (2x -  3)(x2 -  3x +  7)2 dx, (g)
2x

(4x2 -  7)2
dx,

(h) j 2x y/(3x2 — 5) dx,

(j)

(1)

3 (a) 
(c) 
(e) 
(g)

-  1
dx,

J ( x 3 ~  3x)

|  (2x 2 — l )3 dx.

|  .3 cos 3x dx,
J cos x sin x dx,
J sin 3x cos2 3x dx, 
J sec5 x tan x dx,

(i) J (x3 + l)2 dx,

(k) r ^(2x -  4x + 1)3/2 dx,

(b) j sin (2x -I- 3) dx, 
(d) j  ̂cos 2x dx,
(f) |  sec2 x tan2 x dx, 
(h) j cos x ^/sin x dx,

tThis section and the latter part of Exercise la may with advantage be delayed and done in 
conjunction with later parts of the chapter.
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(j)

Ex la

(i) J x cosec2 x2 dx,

(k) J cosec3 x cot x dx. 

4 (a) J cos3 x dx,

cos
J x

dx,

(b)

(c) |  sin3 2x dx,
(e) |  sin5 x cos2 x dx,
(g) J sec4 x dx,
(i) J tan5 x sec x dx.

(d) |  cos3 (2x + 1) dx,
(f) |  cos3 x sin3 x dx,
(h) |  cosec x cot3 x dx,

5 Find J tan x sec4 x dx, (a) as a function of sec x, (b) as a function of tan x, and 
show that they are the same.

6 Show that the integral given in No. 3(c) may be obtained in three different 
forms.

Nos. 7 onwards may be delayed (see footnote to §1.4).
X

7 Express (a) sin1 2 — in terms of cos x, (b) cos2 3x in terms of cos 6x.

X
8 Find (a) J cos2 x dx, (b) j sin2 — dx, (c) J cos2 3x dx.

9 Express sin4 x in terms of cos 2x, and cos2 2x in terms of cos 4x. Show that 
j  sin4 x dx = |x  — 5 sin 2x + 3*2 sin 4x + c.

10 Find J cos4 x dx.
11 Find the following integrals:

X X
(a) j sin2 x dx, (b) J cos2 — dx, (c) j sin4 2x dx, (d) j cos4 — dx.

12 Write down a formula for cos x in terms of cos —, and show that
2

1 , x----------- dx = tan — + c
1 + cos x 2

13 Find the following integrals: 

(a) J y/(l + cos x) dx, (b)
cot x

^/(l — cos 2x)
dx,

(c) j  sin 2x sin2 x dx, (d) 2 sin x cos — dx. 
2

14 (a) Factorise sin 3x + sin x. (See Book 1, §17.8.)
(b) Express 2 sin 3x cos 2x as the sum of two terms.
(c) Find j  sin 3x cos 2x dx.

15 Find the following integrals:

(a) J sin x cos 3x dx, (b)
3x x

2 cos —  cos — dx, 
2 2

(c) |  sin 4x sin x dx.
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Changing the variable
1.5 In Example 1 we found that

x(3x2 + 2)4 dx = ^ ( 3 x 2 + 2)5+c

The integral is a function of (3x2 + 2). If we write 3x2 + 2 as u, then the integral is 
a function of u; this suggests that we might make the substitution u = 3x2 + 2 in 
the integrand, and integrate with respect to u. Let us see how this can be done. 

Let

y = J x(3x2 + 2)4 dx

then

~  = x(3x2 + 2)4 
dx

If u =  3x2 + 2, x may be expressed as a function of u. Then, by the chain rule,

d y d y dx
du dx du

' du
= x(3x2 + 2 Y

dx
du

Integrating with respect to u,

y = x(3x2 + 2)4 —  du 
du

du dx
But u = 3x2 + 2, —  = 6x and —  =

dx du
1

6x

x(3x2 + 2)4 dx = x(3x2 + 2)4 —  du 
6x

= J 5u4 du

= ioU5 + c  

= ^ (3 x 2 + 2)5 + c

Qu.6 Find j  sin2 4x cos 4x dx; put u =  sin 4x. 
Qu.7 Find j sin5 x dx; put u = cos x.

Comparing the foregoing text and questions with the solutions of Examples 1, 
2 and 3, it might appear that we have merely introduced a more cumbersome 
technique; however, the power of changing the variable lies in its application to a 
wide class of integrals not susceptible to the method of §§1.2, 1.3.

In general, let f(x) be a function of x, and let

y = j  f(x) dx
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Then

1.5

dy
dx

= f(x)

If u is a function of x, then by the chain rule

d y dy dx
d u dx du

• ^Z
du

= f(x)
dx
du

y = du

f*
f(x) dx f(x) ^  du 

du

Thus an integral with respect to x may be transformed into an integral with 
respect to a related variable u, by using the above result, and substituting for f(x)

and —  in terms of u. 
du

Example 4 Find j  x^(3x — 1) dx

'1
x j { 3 x -  l ) ^ d u

2 u
(u + l)u — du 

3 3

: |  ( |u 4 + |u 2) du

= ¿ u 5 + ^ u 3 + c

= Tj5U3(3u2 + 5) + c

j x^(3x -  1) dx = i f iP x  -  l)3/2(9x + 2) + c

Sidework:

Let yj(3x — 1) = u.

x = i(u2 + 1).

dx 2 u
cto= T

Qu.8 Find the following integrals, using the given change of variable:
(a) j  XyJ(2x + 1) dx, v/(2 x + l)  = u,
(b) j  XyJ{2x + 1) dx, 2x + 1 = u,
(c) J x(3x — 2)6 dx, 3x — 2 = u.

Exercise lb
1 Find the following integrals, using the given change of variable:

(a) J 3xv/(4x — 1) dx, -J{4x — 1) = m>
(b) J x^(5x + 2) dx, 5x + 2 = u,
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(c) j  x(2x — 1 )6 dx,

(d ) dx,
y/(x ~  2)

(e) J (x + 2)(x — l)4 dx,

(f) |  (x -  2)5(x + 3)2 dx, 

■ x(x -  4)
(g)

(h )

(x — 2)2

x -  1
yj(2x + 3)

dx,

dx,

2x — 1 =  u,

\J(x — 2) = u,

x  — 1 = u, 

x  — 2 = u,

x — 2 = u, 

yj(2x + 3) = u.

2 Repeat Nos. 1(a) and 1(d) using a different change of variable in each case.
3 Of each of the following pairs of integrals, one should be found by a suitable 

change of variable, the other written down at once as a composite function of 
x, as in Example 1 on p. 1:
(a) j  XyJ(3x — 4) dx and j  x^J(3x2 — 4) dx.
(b) J x(x2 + 5)6 dx and j  x(x + 5)6 dx,

(c)
s / ( x ~  1)

dx and
V(*2 -  !)

dx.

4 Find the following integrals, using a suitable change of variable only when 
necessary:

f  3x2 — 1
<b> T-s— V ^ d x ,(a) j  xn/(2x2 + 1) dx,

(c) J 2xn/(2x — 1) dx, 

(e) |  sin x^cos x dx,

(x3 -  x + 4)3 

(d) |  cos3 2x dx,

(f) |  cot2 x cosec2 x dx,

(i)
3x

V ( 4 ~ x )

I)3 dx, (h)
X

J ( 2 x 2 -  5)

dx, (j)
'sin^/x  ,
— ~— dx.

V*

dx,

Definite integrals and changing the limits
1.6 The method of changing the variable is also applicable to definite integrals. 
It is usually more convenient to change the limits to those of the new variable at 
the same time.

As a reminder that one must be ever watchful for the presence of a function 
and its derivative in an integrand, two examples of this type are also given 
here.
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Example 5 Evaluate
'3

1/2
Xy/( 2x + 3) dx.

'* = 3

x= 1/2

, dx
x J (  2x + 3) —  du ■- 

du

'9
j(u — 3)m1/2 j  du

4
-9

(ju3/2 — | m1/2) du

Let 2x + 3 = u.
x = j ( u -  3). 

dx l 
du 2

-Lj,5/2 _J...3/210« 2U
9 X U

4 3 9
(24.3- 13 .5 )-(3 .2 -4 )

12 4

=  11.6

Example 6 Evaluate (a)
r 3

J 2 s / ( x
X
~2~ dx, (b)

n/4
cos3 x sin x dx.

o

(a)
. 2

X
T (x2 3)1/2

3

2

= (9 — 3)1/2 — (4 — 3)1/2

(b)

= V 6 - 1
-Jl/4 _ -

cos3 x sin x dx = — \  COS4 X
Jo

=  ( - i x i ) - ( -
_  _ 3 _  16

Exercise lc
1 Evaluate the following definite integrals by changing the variable and the 

limits:

(a)
* 3

XyJ(x — 2) dx,
2

(b)

f 2 X(c)
, V P*

(d)

f° x + 3
(e) —,----------dx.

-3/8 + 1)

x(x — l)4 dx, 
o
'2

(2x — l)(x — 2)3 dx,
1

fThe reader should note that, in practice, this integral will of course first be written down as given 
(i.e. as an integral with respect to x). When it is decided to change the variable, dx is changed to

— du; it is then necessary to specify that the limits are still those of x. 
du
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2 Evaluate the following definite integrals either by writing down the integral as 
a function of x, or by using the given change of variable:

(*71/6
(a) sec4 x tan x dx

J 0
i* n/2

(b) sin5 x dx
J 0

f"/2 cot X
(c) n/6 Vcosec3 X

3 Evaluate:

(sec x = u),

(cos x = u), 

(cosec x = u).

(a)

(c)

(e)

(g)

(i)

o v /( 1 _ x 2 ) dX’
'0

x(x2 — l)4 dx,
-  1

M x ~ 2 . 
1/2 (x + 2)3(x — 6)3 *’

' i t/2
cos3 x dx,

-n/2
•n/2

sin x^/cos x dx.
. o

(b)

(d )

(f)

(h )

' 4

2x^(4 — x) dx,
o
%n/4

sec4 x dx,
o

(x +  1)(2 — x)4 dx,
-1

*8/3 x + 2
5/3 7 ( 3 ^ 4 )  dX’

4 Calculate the area enclosed by the curve y = x /7(*2 — 1), the x-axis, x = 2 and 
x = 3.

5 Calculate the area under y = sin3 x from x = 0 to x = 2n/3.
6 Calculate the volume of the solid generated when the area under y = cos x, 

from x = 0 to x = n/2 is rotated through four right angles about the x-axis. 
(See §1.4.)

7 The area of a uniform lamina is that enclosed by the curve y = sin x, the 
x-axis, and the line x = n/2. Find the distance from the x-axis of the centre of 
gravity of the lamina. (See §1.4.)

Integration using the inverse trigonometrical functions
1.7 The inverse trigonometrical functions were introduced in Book 1, §18.7. 
Some readers may need to revise this topic before proceeding further; Qu. 9-12 
are included for this purpose.

Qu. 9 The following angles lie between 0 and 90° inclusive. Express them in 
degrees, and in radians in terms of ti:
(a) tan - 1 1, (b) sin - 1
(d) cos “ 1 j, (e) |  cos - 1

(c) I  sin 1 1, 
(f) cos-1 1,
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(g) 2 cos 1 (h) 3 cos 1 0, (i) fco t 1 1,

(j) sec-1 2, (k) 2cosec~1^/2.
Qu. 10 Express the following angles in radians, leaving ti in the answers:
(a) 20°, (b) 70°, (c) 150°, (d) 300°, (e) 405°.
Qu. 11 Express the following angles in degrees:
(a) 1 radian, (b) 0.03 radian, (c) 1.25 radians,
(d) 0.715 radian, (e) ti/5 radian.
Qu. 12 Express the following (acute) angles in radians:
(a) 2 sin - 1 0.6, (b) tan -1 1.333, (c) f  cos- 1 0.3846.

The inverse sine function may be written as arcsin x, or as sin - 1 x. Both forms 
are in current use and both will be used in this book to familiarise the reader 
with them.

The expression V 0 — x2) may be reduced to a rational form by changing the 
variable to u, where x = sin u; thus

V 0 — x 2) = yj(l — sin2 u) =  yjcos2 u = cos u 

This is used in the following example.

Example 7 Find 

1 dx
7(1 - x 2) du

V o - * 2)

d u -

dx.

1

V(1 — sin2 u) 

1

cos u du

cos u du
cos u

Let x = sin u.

dx
—  = cos u. 
du

= u + c

= arcsin x + c

s j i a
2 2

b x )
djc

1.8 The reader should check that the integral found in §1.7 is not susceptible to

the change of variable V 0 —x 2) = u; 
- 1

1
dx merely becomes

V o - “2)

V i1 - * 2)
du. However, changes of variable involving a trigonometrical

substitution, such as was successfully applied in this case, open the way to 
finding a very important group of integrals. Here are two examples of the type of 
substitution we shall be using.

If x =  5 sin u,

V(25 — x 2) =  V(25 — 25 sin2 u) =  V{25(1 — sin2 u)} =  5 cos u
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If x = ^r-sin u,2
7(3 — 4x2) = 7(3 — 4 x |  sin2 u) = 7(3(1 — sin2 u)} = 7*3 cos u

Qu. 13 Reduce each of the following to the form k cos u, and give u in terms of 
x in each case:
(a) V(9 -  x2), (b) 7(1 -  25x2), (c) 7(4 -  9x2),
(d) 7(7 — x2), (e) 7(1 — 3x2), (f) 7(3 -  2x2).

We see that to deal with 7 (a2 — b2x 2) we write

a2 — b 2x 2 as a2 — a2 sin2 u
thus b2x 2 = a2 sin2 u, and x = (a/b) sin u. Note that u — arcsin (bx/a) and, for the 
substitution to be valid, and of use, u must be real and not n/2, so |bx| < |a|; this 
condition is implicit in 7 (a2 — b2x 2) being real and not zero.

Example 8 Find
7 ( 9 - 4 x 2) dX

1 dx 1 3
—7—---- T“ - r ~ a u =  „  . , —  X -  cos u du
7(9  — 4x2) d« J 7 (9  — 9 sin2 u) 2

1 3  a------------  X -  COS U QU
3 cos u 2

= yu + c

1 . / 2 x N= -  arcsin I —  )+c

9 — 4x2.
9 — 9 sin2 u.

= |  sin u.

dx 3 
—  = -  cos u. 
du 2

1 _ /2 x N
(This answer could also be written -  sin“ 1 ( —  ) + c.)

Qu. 14 Find the following integrals:

1
(a) dx,

7 ( 4 - x 2)

Qu. 15 Prove that

(b) f i
7(1 — 3x2) dX’ (C) 

1 _ 1
J 7 (a2 - b 2x 2) —  y

bx

7 (1 6 - 9 x 2

+ c.

dx.

2 , ,2  2a + b x dx

1.9 In §1.8 we made use of Pythagoras’ theorem in the form cos2 u + sin2 u = 1; 
we shall now find that an alternative form, 1 +  tan2 u = sec2 u, helps to effect 
other useful changes of variable.
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Qu. 16 Find
1

1 + x2
dx by taking x as tan u.

Qu. 17 Reduce each of the following to the form k sec2 u,'and give u in terms of 
x in each case:
(a) 9 + x2, (b) 1 + 4x2, (c) 25 + 9x2,
(d) 3 + x2, (e) 1 + 5x2, (f) 7 + 3x2.
Qu. 18 Find the following integrals:

(a) 4 + x-
dx, (b)

1
1 + 16x2

dx, (c)
1

3 + 4x‘
dx.

Example 9 Evaluate
’ 3 /2  i

v,3/2 3 + 4x2
dx.

’ * = 3 /2  J d x

Jx = v3/2 3 + 4 x 2 du "
3 + 4x2. 
3 + 3  tan2 u.

'71/3 1 V3
3(1 + tan2 u) 2

sec2 u du
71/4

6n/4

V3 u
6 V3

V 3^
72

71/3

Let x  = 22 tan u.
2

dx V 3 
—  = -V- sec u. 
du 2

71/4 X tan u U

- 5) 3
2 V3 n

3
V3 1

n
2 4

Exercise Id
(Nos. 1-4 are revision exercises on Book 1, §18.7.)

1 The following angles lie between 0 and 90° inclusive. Express them in 
degrees, and in radians in terms of k:

(a) arccos—j-, (b) arccot 1,
v 2

.(c) - ß  arccot V 3,

¡2
(d) arcsin (e) ^ 3  arcsin j, (f) |  arcsec yj2,

(g) |  arctan 1, (h) \  arccosec 2.
2 Express the following angles in radians:

(a) 32°, '(b )  60° 21', (c)5°4E , (d) 235° 16'.
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3 Express the following angles in degrees:
(a) 2 radians, (b) 0.08 radian, (c) 1.362 radians, 
(d) n/6 radian.

4 Express the following (acute) angles in radians:

(a) sin 1 0.8, (b) \  cos 1 J, (c) 2 tan 1 0.625.

(In this question, the alternative notation, sin - 1 x, etc., is employed to give the 
reader some practice in using it.)

5 Express the following in the form k cos u, and give u in terms of x in each 
case:
(a) V( 16 -  x2), (b) V( 1 -  9x2), (c) 7(9 -  4x2),
(d) V( 10 -  x2), (e) V( 1 -  6x2), (f) 7(5 -  3x2).

6 Find the following integrals:

(a) 7(25 - x 2) dX’ (b)

,d»JU - v * ’ (e)

1

7 ( 1 - 4 x 2) 

1

7 0  - I * 2 )

dx, (c)

dx, (f)

1

7 ( 4 - 9 x 2 

1

7(2  -  3x2

dx, 

- dx.

7 Express the following in the form k sec2 u, and give u in terms of x in each 
case:
(a) 16+ x2, (b) 1 + 9x2, (c) 4 + 3x2,
(d) 2 + x2, (e) 1 + 3x2, (f) 5 + 2x2.

8 Find the following integrals:

(a)

( d )

1

25 + x2 

1

dx,

dx,

(b)

(e)

1

1 + 36x2 

1

dx,

„ 5 + x2 

9 Find the following integrals: 

1

1 + 6x'
dx,

( c )

(f)

1

16 + 3x2 

1

3 + 10x2

dx,

dx.

(a)

(c)

dx,
9 + 2x2 

1

7 ( 3 - 2 x 2)

(b)

dx, (d)

7 ( 4 - 5 x 2) 

' 2

dx,

3 + 5x-
dx.

10 Evaluate the following integrals, leaving n in your answers:

(a)

(d)

V 3

1 + x -
dx,

0 9 + x:
dx,

(b) L V<4
(c)

(e)
’1/6 j 

o 7 ( l - 9 x 2) dX’ (f)

1/2 7(1  ~  x 2 >

V 3  i  

-2 57(4 — x2)

dx,

dx.
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11 (a) Find
V(9 -  x 2)

dx using (i) x = 3 sin u, (ii) x = 3 cos u.

(b) Evaluate
1

dx using (i) x = 3 sin u, (ii) x = 3 cos u.
3/2  V ( 9  “  * 2 )

12 Find the following integrals, using the given change of variable: 

1
(a)

(b)

V { 4 - ( x + l ) 2} 

1

dx, x + 1 = 2 sin u,

dx, x — 3 = 3 tan u.
9 + (x -  3)2 

13 Find the following integrals: 

1
(a)

( c )

(x + 3)2 + 25 

1

3(x -  2)2 + 5

dx, (b)

dx, (d)

1

V { 4 - ( x - l ) 2}

1

dx,

dx.
V { 9 - 3 ( x + l) 2}

* 14 (a) 2x2 — 12x + 21 may be written 2(x2 — 6x + 9) + 21 — 18 = 2(x — 3)2 + 3. 
Write the following expressions in the form a(x + b)2 + c (see Book 1, 
§10.3):
(i) x2 — 6x+16, (ii) 3x2 — 12x+14, (iii) 2x2 — 4x + 5.

(b) Find the following integrals:

(i) I n — . r dx, (ii) ( - 2 . I— —r r dx>

(iii)

x — 2x + 5 

1
: dx, (iv)

2x2 + 4x + 11 

1
dx.

x2 — 4x + 13 ’ J 4x2 — 8x + 7

15 (a) 1 + 6x — 3x2 may be written 4 — 3(x2 — 2x + 1) = 4 — 3(x — l)2. 
Write the following expressions in the form a — b(x + c)2:
(i) 3 — 2x — x2, (ii) 5 + 4x — x2, (iii) 7 + 2x — 2x2.

(b) Find the following integrals:

(i) ^(3 — 2x — x2) (ii)

(iii)
I v /(12 + 4 x _ x 2 ) dX’

(iv)

1
dx,

16 Evaluate:
' 3 1

(a) dx, (b)

y/{l + 8x — 4x2)

1

V (-2 x 2 + 12x-9 ) 

1

dx.

dx.
2 x2 — 4x + 5 ’ J _ j yj(3 — 2x — x2)

*17 Find the following integrals by writing each integrand as two fractions:

(a) 3 — x 

%/(! - X 2)
dx, (b)

2x + 3 
s j ( 4 - x 2)

dx.
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18 Show that j  VO — x2) dx = j  sin 1 x + ^ / ( l  — x2) + c. 
Find the following integrals:

(a) V o - * 2) dx, (b)

19 Show that
1

(1 — x2)3/2 

Find the following integrals: 

1

( P W * ' -  <c)

dx = x(l — x2) 1/2 + c.

V(4-
dx.

(a)

(c)

( l - 9 x 2) V ( l - 9 x 2) 

1

dx, (b) V o - * 2) dx,

xV(*2 -  1)
dx.

Trigonometrical functions of numbers
1.10 At this stage it is advisable to discuss some of the implications of the 
definite integrals evaluated in Exercise Id.

Let us find the area under the curve 

Fig. 1.1). The element of area = ySx =

y = J (9 _  4x2} from x = 0 to x = 1 (see

—;—  --- =- ôx, and the required area is
V(9 -  4x2)

1  ̂ dx
o V<9 -  4*2) iu

’ 0 . 7 2 9 7

Jo V (9(1 -  sin2 u)} 2
cos u du

0 . 7 2 9 7

0

= 0.365, correct to three 
significant figures

9 -  4x2.
9 — 9 sin2 u.

Let x = I  sin u.

dx ,
—  = 4 cos u. 
du

X sin u U

1 2/3 0.7297 rad.
0 0 0

Now if we retain x as our variable (see Example 8), the integral is evaluated as

2x
T

1

0
-  1 2

3

It may at first sight seem surprising that the number 0.365 can measure, at one 
and the same time, units of area and the angle \  sin “ 1 § in radians. These two 
aspects must be reconciled, and it is apparent that we must extend our 
definitions of the trigonometrical ratios to include the functions of numbers, as 
well as of angles.

Thus sin u may be considered as a function of the number u which, as u moves
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V(9 -  4x2)

from — co to + oo, oscillates between — 1 and + 1 with period 2n. (See Book 1, 
§16.2.) The sine of a given number is the same as the sine of the angle given by 
that number of radians; thus

sin 2 =  sin (2 radians) x  sin 114° 35' =  sin 65° 25' x  0.9093

[sin 2 »0.9093 can easily be obtained from a calculator, but make sure the 
calculator is in radian mode.]

Qu. 19 Find the values of
(a) cos (jt/6), (b) sin (c) tan 1.2, (d) cos 3, (e) sec 6.
Qu. 20 Find the following numbers between — ti/2 and n/2 inclusive:
(a) sin-1 1, (b) tan“ ‘ (—1), (c) sin“ 1)^), (d) tan“ 1 2.

Exercise le
1 Find the value of

(a) cos (it/ 12), (b) sin 1.5, (c) tan 0.0806, (d) cosec f.
2 Prove that arcsin x + arccos x = n/2.
3 Find the following numbers, in terms of it, or to three significant figures: 5

(a) tan 1 3, (b) ^ 3  tan 1 (^3),
2

(c) -s in

(d) cos “ 1(-0.375), (e) sec“ 1 it.

Find x in terms of y if

(a) tan -1 x = tan “ 1 y +
it

(b) cos“ 1 x = 1 K
4 ’

cos y — —.
6

5 Sketch the graph of y = 1 /^16  — x2), and calculate the area under the curve 
(a) from x = 0 to x = 2, (b) from x = 2 to x = 3.
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6 Sketch the graph of y = 1/(1 + x2) from x = —3 t o x = + 3 ,  and calculate the 
area under the curve (a) from x = 0 to x = 1, (b) from x = 1 to x = 2.

7 A particle moves along a straight line so that t s after starting it is x m from a 
point O on the straight line, where x = 10 cos t.
(a) How far from O is it after 0, tt/2, n, 3k/2, 2tc s?
(b) When is it first at a distance 5 m from O?
(c) When is it first 5 m on the negative side of O?

8 A particle moves along a straight line so that t s after the start it is x m from a 
point O on the line, where x = 5 sin jt.
(a) How far from O is it after 0, n, 2n, 2k, 4k s?
(b) How long does it take to travel the first 3 m from O?

9 Evaluate the following, correct to three significant figures:

(a)
1

1
1 + x 2

dx, (b)
' 0.8  j

o V o - * 2)
dx,

(c)
1

i 4 + 25x'
dx, (d)

' 4 / 3

i J ( 2 5 - 9 x 2
dx,

(e)
' v 3__ 1___
i/2 3 + 4x2

dx, (f)
' - 1 / 2  J

- i  V<4 “ 2x2) dX

Exercise If (Miscellaneous)
Find the integrals Nos. 1-20, which are arranged by types in the order in which 
they occur in the chapter:

1 j x2n/(x3 — 1) dx.

7 j  cos4 2x dx.

13

16

19

dx.
7 ( 6 - 5 x 2)

1
3x2 + 6x + 5

1
(4 — x2)2^3/2 dx.

(x2 -  l)3

4 J sec2 x7cot x dx. 5 j cos3 4x dx

dx.

10 j  cos 3x cos 2x dx. 11 

1
14

x(3x — 7)4 dx. 

dx.

dx. 17 dx.

20

1 + 8 x 2 

x + 1

7(5  -  * 2 )

1
x27(16 — x2)

dx.

3 j  sin 2x cos2 2x dx. 

6 • 2 X  Jsin — dx.

8 j  7(1 — cos x) dx. 9

12

15

■ X 2 X 4sin — cos — dx. 
3 6

dx.
7(5 + x) 

1
7(5 — 4x — x2 

18 J 7(9 — x 2) dx.

dx.
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21 Find (a)

(d ) V o - * 2)

2. dx, (b)
x )

2\ dx, (e)

1 + x2

2 — x

Vo - * 2)

dx, (c) J xVO — *2) dx, 

dx.

Find the integrals Nos. 22-44: 

x + 2
22

25

V (3 * - l)
dx. 23 j  jXy/(x2 + 2) dx.

2 X . 3 X
cos — sinJ — dx. 

2 2
26

3V (4--
dx.

28 j  (x — l)2(x + 3)5 dx. 29 

1
V ( 4 - * 2)

dx.

31
, 3x2 — 12x + 16 

34 J V<4 -  *2) d*-

dx. 32 ■ 2 X  Asin — dx.

37 J sin5 2x dx. 

tan x
40

43

44

V(cos 2x + 1) 

r 1

38

dx. 41

35 j  sec5 x tan x dx. 

1
(1 + x2)" 

x

dx.

1 + x4
dx.

*V(*2 - 9)
1

dx.

24

27

30

1
x2v o —*2)

3

dx.

V < 36-*2)
2 + x

dx.

V(9-
<lx.

33 j  V)cos 3x + 1) dx.

36

39

V(4 —9x6)
dx.

3x 5x
sin —  cos —  dx.

2 2

42 |  cos xVcos 2x dx.

( l - x ) V ( l - x 2)
dx (put x = cos u; show integral = cot -  + c).

Evaluate Nos. 45-49:
f 3

45

47

49

2x V (5 x + l)d x .  46
'nl 2

cos x cosec3 x dx.

. x  x , 
sin — cos — dx. 

o 2 2

v 3 1

48

n/4

•0
cos4 — dx. 

4

(4 — x 2 \3 / 2 dx.



Chapter 2

Exponential and logarithmic 
functions
Exponential functions
2.1 The word exponent is often used instead of index, and functions in which 
the variable is in the index (such as 2X, 10smx) are called exponential functions. 1"

The graph of y  = ax
2.2 Let us first consider the function 2X. A table of values follows, and a sketch 
of y = 2X is given in Fig. 2.1.

Table of values, y = 2X

X - 3 - 2 - 1 0 1 2

2 X 1
8

1
4

1
2 1 2 4

As x-> — co, 2X -+ 0, and so the curve approaches the x-axis but does not meet it.

Qu. 1 Copy and extend the above table to include values of 1.5* (from x = — 3 
to x = + 3), and of 2.5X, 3* (both from x = — 2 to x = + 2). Sketch, with the same 
axes, the graphs of y = lx, y = 1.5X, y = 2X, y — 2.5X, y = 3X. What do you notice 
about the gradient of y = ax at (0, 1) as a takes different values greater 
than 1?
Qu. 2 How would you deduce the shape of the graph of y = (¿)x from 
Fig. 2.1?

tThe graph of y = 10* is usually encountered during the elementary introduction to logarithms; in 
Book 1, §9.5 equations such as 2* = 3 are solved. It is probably only in these contexts that the reader 
has previously met exponential functions.

19
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The gradient of y = a* at (0,1); a limit
2.3 We shall confine our attention for the time being to exponential functions 
of the form ax, where a is taken to be a constant real number greater than 1. 
Since a0 = 1, the graph of y = ax (Fig. 2.2) passes through the point A(0, 1), and 
we let the gradient of the curve at this point be m.

With the usual notation, if B is the point (Sx, aSx), then the gradient of AB is

Sy _ a bx -  1 
¿x Sx



Now as <5x->0, the gradient of AB->/w.
aSx -  1

It follows that the limit, as ¿x->0, of — ----- is m, the gradient of y = ax at
ox

(0, 1).
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The form of —  dx ( a l

2.4 The limit just established enables us to investigate the gradient of y = ax 
at any point P(x, y) on the curve. With the usual notation, if Q is the point
(x + <5x, y + c>}>),

y + 5y = ax + ix
. Sy = ax + dx -  ax = ax(aSx -  l)

dy (  a6x —
.'. the gradient of PQ, —  = ax\ ——

O X  V O X
( 1)

Now as <5x-»0, the gradient of PQ->the gradient of the tangent at P; also, 
since we have shown that

aix -  1 
dx

—► m

then the R.H.S. of [\)-^max.

. d>’. . —  = madx

d
Thus — (ax) = max, where m is the gradient oi y  = ax at the point (0,1). 

dx

We have already noted (see Qu. 1) that as a increases, the gradients of the 
curves y = ax at (0, 1) increase; for every value of a there is an appropriate value 
of m, and it is reasonable to suppose that we should be able to express m in terms 
of a. However for the time being we must be satisfied with some numerical 
approximations for m which we will now proceed to find.

Approximate derivatives of V  and 3X
2.5 The following table was used to draw the graphs of y = 2X and y = 3* in 
Fig. 2.3; >’ = m2x + 1 and y = m3x + 1 are the respective tangents at (0, 1).

Table of values for y = 2X and y = 3X

X - 2 3
”  2 - 1 1

2
1
4 0 i i  1 3

2 2

2 X 0.25 0.35 0.5 0.71 0.84 1 1.19 1.41 2 2.83 4

y 0.11 0.19 0.33 0.58 0.76 1 1.32 1.73 3 5.20 9



Qu. 3 (a) Measure the gradients of the two tangents in Fig. 2.3, and deduce
d d

approximate expressions for (2X) and — (3X).
dx dx

(b) Now calculate the gradient of y = 2X where x = 1, and the gradient of 
y = 3* where x = j .  Check from the graph.
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Figure 2.3

Qu. 4 Tangents were drawn to a graph of y = 2X, and their gradients were 
measured and entered in the following table:

X - 3 - 2 - 1 0 1 32 2 52

H<NII 0.125 0.25 0.5 1 2 2.83 4 5.66

dy
dx 0.08 0.18 0.37 0.62 1.33 1.90 2.82 3.68

Confirm graphically that these results indicate that

d
approximate expression for —-(2X).

dx

dy
dx

oc y, and deduce an



The exponential function e*
2.6 It has been established in the previous section that

4

«  0.7 x 2X 
ax

and
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-Ji-(3x)w 1.1 x 3X dx
d

Since, in general, —  (a*) = kax, these results suggest that for simplicity we should 
dx

find a value of a between 2 and 3 for which k = 1; this number is called e, its value 
is approximately 2.71828, and it will be found to play a vital part in the further 
development of mathematics from this point.

Let us now summarise what we know about e.

Definition

e is the number such that the gradient of y = ex at (0, 1) is 1. ex is called the 
exponential function.

Thus
d

—  (ex) = ex, or if y =  ex, 
dx

Also |  ex dx = ex + c.

Since x may be any real number, the domain of the exponential function is R. 
However ex is always positive, so the range of the exponential function is IR + . 
(See Book 1, §2.8.)

Qu. 5 Letting 1 cm represent 0.1 on each axis, plot the graph of y = ex, taking 
values of x at intervals of 0.05 from —0.5 to +0.5, and making use of tables or a 
calculator for ex and e ~ x. Obtain the gradient of the tangent to the curve at the 
point given by x = 0.08 (a) by drawing and measurement, (b) by measuring the 
ordinate, (c) by differentiation.

Example 1 Find ^  when y =  e3x2. 
dx

[Here we have a composite function of x. This example is written out in full as 
a reminder of the technique involved, but the reader should be able to 
differentiate in one step.]

3 x 2y = e

Let u = 3x2, then y = e".

du
dx

and dy
du

eu
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dy dy du
Now, by the chain rule, —  = —  x —  = e“ x 6i.

dx du dx

• d y  3x>. . — = 6x e
dx

Example 2 Find (a) j ex/2 dx, (b) J x2 e*3 dx, (c)
d

dx ( e n

(a) Since ~ ( e xl2) = |e*/2, then f ex/2 dx = 2e*/2 + c.
dx

(b) Since ~  (e*3) = 3x2 e*3, then f x2 e*3 dx = ^e*3 + c.n v **

( c ) dx dx

Qu.6 Differentiate with respect to x:
(a) (2x3 + l)5, (b) sin (2x3), (c) e2*3, (d) ey\
(e) e x2, (f) etanx, (g) e 'x, (h) esin>.

Qu.7 Find the following integrals, and check by differentiation:

(a) (x2 + l)2 dX’ (b) J x sin (x2) dx, (c) J x ex2 dx,

(d) f sin x ecosxdx, (e) |  2ex/3 dx, (f) J 3e2xdx,

(g) J \ x  e3*2dx, (h) J cosec2 2x ecot 2xdx.

Exercise 2a
1 Make rough sketches of the graphs of the following functions:

(a) e2x, (b) 2~x, (c) 2l/x, (d) 2*\ (e) 3e*, (f) e*+1.
2 With the same axes, sketch the graphs of y = esin * and y =  ecos *; are these 

functions periodic?
(a) Is the function es,n * odd, even or neither?
(b) Is the function ecos* odd, even or neither?

3 Is the function e ~ *2 odd, even or neither? If its domain is IR, what is its range? 
Sketch the graph of y = e

4 Use the following table of values to draw the graph of y = 3*, taking 2 cm to 
represent 1 unit on each axis:

X - 2 7
4

3
2

5
4 - 1 3

4
1
2 - i  0

>’= y 0.11 0.15 0.19 0.25 0.33 0.44 0.58 0.76 1

1 1 3 5 3 7
4 2 4 4 2 4

3* 1.32 1.73 2.28 3 3.95 5.20 6.84
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Draw the tangents to the curve at the points given by x = — §, — 1, - 

j ,  1, measure their gradients, and confirm graphically that ^

Deduce an approximate expression for _d_
dx (3*).

25

- i o ,

= ky.

Differentiate with respect to x in Nos. 5-8.

5 (a) 4e\ (b) p 3x 
c  ?

(e) e~2x, (f) e3*,
(i) e5/x, (j) e ^ x ,

6 (a) gCOS X (b) esec x,
(e) e “cot x, (f) çc o se c 2 x

(i) gs in  3f (j) g t a n x 2

7 (a) e v ( x 2 + 1) (b) e u - x 2r

(e) p s e c 2 3x (f)
1

çCosec x  ’

(i) exy, (j) ee".

QX
8 (a) x2 ex, (b)

X

(e)
ex

(f)
COS X

sin x x e

(i)
ÇÜX

(j) tan" ex,
sin bx ’

9 Find the following integrals:

(c) e2x+1, (d) p 2 x 2 
c  j

(g) ex2 + 3, (h) r -  2e* ,
(k) p f ljc 2 + b  c » (1) e V i .

(c) q 3 t a n  y (d) p S in  2 x

(g) p v /c o s  X  
c  > (h) pd  s in  b x

C  9

(c) g S i n 2 4 x (d) g t a n  ( x 2 +  1 )

(g)
1
V  - 2 9

QX
(h) g X  s in  x

(c) ^  esm x, (d) e*2 cosec x,

(g) exc\  (h) eax sec bx,

(k) ex(cos x +  sin x).

(a) j 3ex/2 dx, (b) J e x dx, (c) J ex/3 dx,

(d) |  2e3x_1 dx, (e) |  ^ e x2 dx, (f) i x 2 e~x3 dx.

r ecot x
(g) j sin x ecos x dx, (h) J (1 + tan2 x)e ,anxdx, (i) ■ 2 dx, smx x

(j) j x ~ 2e1/xdx.

10 Find the equation of the tangent to the curve y = ex at the point given by 
x = a. Deduce the equation of the tangent to the curve which passes through 
the point (1,0).

11 Find the volume of the solid generated by rotation about the x-axis of the 
area enclosed by y = ex, the axes, x = 1.

12 Find —  (x ex), and deduce f x ex dx. 
dx 1
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13 Investigate any maximum or minimum values of the function x ex, and then 
sketch the graph of y — x  ex. Find the equation of the tangent to this curve at 
the point where x = —2.

In Nos. 14-17, A and B are constants; in each case show that the differential 
equation (see Book 1, §6.1) is satisfied by the given solution.

d2v
1 4 — j  = 4  y; y = A e 2x + B e 2x.

ax

15 ^  + 4 ^  = 0; s = A + B e “4',
d r  di

d2v dv
16 —-4 + 4 ~ - + 3y = 0; y = A e  X + Be 3x.dx dx

d2v dv
17 d F  ~ 6 d7 + 9y = ° ; F = e3'M  + Bt).

18 If f(x) = e4x cos 3x, show that f'(x) = 5e4x cos (3x + a), where tan a = | .  
Deduce expressions of a similar form for f"(x) and f"'(x).

19 Iff(x) = e5x sin 12x, show that f'(x) = 13e5x sin (12x +/?), where tan j) = 12/5. 
Write down an expression for f"(x).

20 Show that the 9th derivative of ex sin x is 16^/2 ex sin (x + 7t/4).

Further theory of logarithms
2.7 Since a logarithm is an index (or exponent), the discussion of exponential 
functions leads naturally to further consideration of logarithms. It is advisable at 
this stage to restate some of the ideas covered in Book 1, §§9.4, 9.5.

Definition

The logarithm ofb to the base a, written loga b, is the power to which the base must 
be raised to equal b.

Thus, since 102 = 100, 2 = log10100,
and if ax = b, x = loga b.

The reader should already be familiar with the following basic rules:

logc (ah) = log, a + logc b 
log, (alb) = log, a -  log, b 

log, («") = n log, a

Remember also that if y = \oga x then x =  ay, and that if we eliminate y from 
these two equations, we obtain

On the other hand, eliminating x gives

y = ioga (a>)



We shall now show that loga b log cb
loge a '
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Let x = log„ b,

ax = b

21

Taking logarithms to the base c of each side, 

logo (a*) =  logc b  

x logc a = logc b

lo g c  b
X  =

l o g c  a

i.e. i a lo8c b
logo b  =  ---------1

l o g e «

Qu. 8 Express as a single logarithm:
(a) 2 log10 a —j  log10 b + 2,
(b) logc (1 + x) -  logc (1 — x) + A, where A = logc B. 

Qu. 9 Express in terms of logc a:

(a) loge (2a), (b) logc a2,

(e) logc V a, (0 loge ^ ,

1 2
(c) loge-, (d) loge-, a a

(g) logc ~ 2  * (h) loge (2a) “1.

Qu. 10 Solve the equations:
(a) 32* = 27, (b) 1.2X = 3.

Qu. 11 (a) Prove that log2 10 = -— ?—- .
logio 2

(b) Evaluate loge 100 correct to 3 significant figures, taking e as 2.718.

Natural logarithms
2.8 Logarithms to the base e are called natural logarithms, or Napierian 
logarithms, in honour of John Napier, a Scotsman, who published the first table 
of logarithmic sines in 1614. It is not surprising that the idea of logarithms was 
discovered independently at about the same time by Joost Biirgi, a Swiss; there 
was a pressing need to reduce labour involved in computation, especially in 
astronomy and navigation.

Napier’s first publication on this topic fired the imagination of Henry Briggs, 
who visited him to discuss the practical application of the discovery; the fruit of 
this meeting was the eventual introduction of logarithms to the base 10, or

b b/c
tThe identity -  = —  provides a mnemonic. 

a a/c
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common logarithms, for computation. However, it should be remembered that 
neither Napier nor Burgi put forward the concept of a base, with the logarithm 
as an index; this idea does not appear to have been fully developed until about 
the middle of the eighteenth century. The choice of e as‘the base, though less 
convenient than 10 for computation, provides a new function loge x of 
fundamental importance.

Qu. 12 Evaluate loge 2 correct to three significant figures, taking e as 2.718, 
and using logarithms to the base 10. Check your answer with a table of natural 
logarithms, or a calculator.

Exercise 2b
1 Express as a single logarithm:

(a) 2 log10 a - 2  + log102a,
(b) 3 loge x + 3 — loge 3x,
(c) 4 loge (x -  3) -  3 loge (* -  2),
(d) 2 loge (1 + y) + J loge (1 ~ y) + loge k-

2 Express in terms of loge a:
(a) loge 3a, (b) loge a3, (c) loge (a/3),
(d) loge (1/a3), (e) loge (3/a), (f) l o g e i j a 1),
(g) loge(^a).

3 Express as the sum or difference of logarithms:
(a) loge cot x, (b) loge tan2 x, (c) loge (x2 -  4),

4 Solve the equations:
(a) f  log10 a3 -  log10 j a  -  2 log10 a =  4, (b) log10 y -  4 log,, 10 = 0.

5 Solve the equations:
(a) 22/x = 32, (b) 3X +1 = 12.

6 Evaluate loge 3 correct to three significant figures, taking e as 2.718, and 
using logarithms to the base 10.

Solve the equations in Nos. 7-10.

7 32<1 + x)- 2 8  x 3x + 3 = 0.
8 log10 a + log„ 100 = 3.
9 log10 (19x2 + 4) -  2 log10 x -  2 = 0.

10 log10 x + log10 y = 1, x + y = 11.

The notation loge x has the great virtue that it emphasises that the base of the 
logarithms is e. However, in recent years In x has been universally adopted as the 
standard abbreviation ( the n signifying that these are Napierian, or perhaps 
natural logarithms). From here onwards we shall use this notation exclusively.

Notation
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Qu. 13 Express as a single term:

(a) In x + In y — 1, + .n f
In the function In x, the independent variable x must be a positive real number 

(it must not be zero, nor must it be negative), in other words the domain of the 
logarithmic function is R + (or some subset of R + ). When x > 1, In x is positive, 
it is zero when x = 1 and it is negative when 0 < x < 1; its range, in other words, 
is R. In this context, if the domain is not explicitly stated, it should always be 
assumed that it has been chosen so that only logarithms of positive numbers 
are required. For example, in the function In (1 + x), it should be assumed that 
x >  — 1, or again, in the function In (2 — x), it should be assumed that x < 2  
is intended.

The reader is strongly advised to commit the following important identities to 
memory:

In (ex) = x  and e]nx = x  

Qu. 14 Simplify:
(a) e2 (b) e lnx, (c) e(1/2)lnx,
(d) In (esin x), (e) { In (e*2), (f) In (^/e*).

The derivative of In x
2.9 Figure 2.4 shows the graph of y = In x (or x = e*); this curve is the reflection 
in the line y = x of the graph of y = e* (which is shown as a dotted curve). This is 
to be expected because In x and e* are inverse functions (see Book 1, §2.16).

Figure 2.4
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To find — (In x), we write y = In x as 
dx

Differentiating each side with respect to x,t

(a) y = In 2x = In 2 + In x

d y 1
’ ' dx x

(b) y = In x2 = 2 In x

d y 2
' ’ dx x

(c) y = In (x2 + 2)

Let u = x2 + 2, then y = In u.

d u dy 1
—  = 2x and —  = -
dx du u

dy dy dw 1
dx du dx u

dy 2x 
‘ ’ dx x2 + 2

tO r we may differentiate each side with respect to y.

dy 1 1
' ' dx e* x

dy
Example 3 Find if

—  = eJ
d y
dx - x,



<d> f  = ,ri 7 ( ? T T i  ”  -  5 to <*2 +  •)

dy 1 1 2x x 2 + 1  — x 2
' ' dx x 2 x2 + 1 x(x2 + 1)

d y 1
' ' dx x(x2 + 1)
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Qu. 15 Differentiate with respect to x:
(a) (x2 — 2)5, (b) cosec x2, (c) e*2,
(d) In (x2 — 2), (e) In sin2 x, (f) In sin x2.

Qu. 16 If y = In {x^(x + 1)} find ^  (a) by differentiating the logarithm of a 

product as it stands, (b) by first writing y as the sum of two logarithms.

Qu. 17 Differentiate with respect to
(a) In (3x),
(d) In y,
(g) l n ( x - l ) 3,
(j) In cos 3x,

(m) In 7 (* 2 -  1),

(b) In (4x),
(e) In (2x3),
(h) In (4i),
(k) In (2 cos3 x),

(n) ln ( ^ T F '

(c) In (3x + 1),
(f) In (x3 — 2),
(i) In (3 sin x),
(1) Ini (4 sin2 3x),

(ax) and J  ax dx

2.10 In §2.4 we found that = max, m being the gradient of y = ax at (0, 1).
dx

When a = e, m — 1; we can now find m for other values of a.
Let y = ax, then

In y — In ax = x  In a

Differentiating with respect to x:

d dy d
—  (In y) x —  = —-(x In a) 
ay dx dx

. . -  x —  = In a 
y dx

• 1

dx
(ax) = ax In a ( 1)
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Qu. 18 Find — (4X) reproducing the above method in full. Find the gradient of
dx

the curve y = 4X at (2, 16).
Qu. 19 Find the gradient at (0, 1) of the following curves, to four decimal 
places: (a) y = 2X, (b) y — 3*.
Qu. 20 Differentiate with respect to x: (a) 10x, (b) 23x+1.

It follows from (1) on the previous page that 

j  ax In a dx = ax + k
C xa

ax dx = -—  + c 
J In a

Qu. 21 Find -^-(5X) and deduce f 5* dx. 
dx

Qu. 22 Find -^-(2*2) and deduce f x 2*2 dx. 
dx

Qu. 23 Find the following integrals:
(a) j  32x dx, (b) |  x2 e*3 dx, (c) J 2un * sec2 x dx.

Exercise 2c
1 Differentiate with respect to x:

(a) In (4x), (b) 4 In x, (c) In (2x — 3),

(d) ln(iy), (e) In 2 , (f) ln x 4,

(g) In (x2 -  1), (h) In 3x2, (i) 3 In x2,

(j) In (x + l)2, (k) In (2t3), (1) I n - ,
X

(m) ln(|x), (n) In yjx, (o) In r —,2x

(P) I n - ,X
(q) ln x “ 2, (r) log10 x,

(s) In p - , (t) ln ^ x .

2 Differentiate with respect to x:

(a) In cos x, (b) In sin2 x, (c) In tan 3x,

(d) In cos3 2x, (e) In (2 cot2 x), (f) In (3 cos2 2x),

(g) In tan (h) In sec x, (i) In (sec x + tan x),



(j) ln cosec x2, 

3 Find:
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, , sin x + cos x
(k) In —-------------.

sin x — cos x

n  d , / l  - x
(a) 7 - In h r — , dx 1 + x

d (x+  l)2 
(c) — In

(b) ^ l n  {xV(x2 - l ) } ,

(d) —  In {x + 7 (x 2- l ) } .
dx V ( x - l ) ’

4 Differentiate with respect to x:

(a) In t, (b) x In x, (c) x2 In x,

X

lnx
(g)

(e) x In y,

(h) t~~, In x

(j) In (In xk), (k) lnesinx.

5 Differentiate with respect to x: 
(a) 5*, (b) 2X\  (c) 32* ' 1,

(f) y lnx , 

(i) (lnx)2,

(d) eln

6 (a) Find —  (3 )̂ and deduce f 3X dx. 
dx

(b) Find —  (2*2) and deduce f x 2xl dx. 
dx

7 Find the following integrals:
(a) J 10xdx, (b) J 23x dx, (c) J x 3x2 dx,

8 Find -7— (x In x) and deduce f In x dx.
dx

(d) J 2C

9 Find —  (x 2X) and deduce f x 2X dx. 
dx

10 Find (a) In (x — 2), (b) In (2 — x).
dx dx

Sketch on the same axes the graphs of In (x — 2), In (2 — x), y

11 Sketch on the same axes the following curves:

(a) y = \nx, y = ln ( -x ) ,  y = ~ ,
x

(b) y = In —, _v = l n ( - - ) ,  y = - ~ ,
x \  x ] x

sin x dx.

1
x — 2
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(c) y =  In (x — 3), y = In (3 — x), y =
x — 3

(d) y = In
1

y =  In
1

3 — x y = 3 — x

12 Given that x e R +, write down the range of the following functions: 
(a) y = l n ( l + x 2), (b) y = ln(l/x).
Sketch the graph of each of these functions.

f ( x )
djc

fW
2.11 The result x" dx n ■ 1 + c holds for all rational values of n, except

n = — 1; this hitherto puzzling gap may now be filled. Since we have established 
d 1

that —  (In x) = —, it follows that
dx

— dx = In x + c 
x

or — dx = In (Ax) where c = In k

Example 4 Find the following integrals:

1

W J -

(a)

(b) 2x — 1
dx.

¿ “H — dx 
x

(b)
1

= j  In x + c 

=  ln { k j x )

dx

where c = In k

_ 2 x - l

This is best tackled in reverse by guessing the form of the integral.

J:
1

dx = j  ln (2x — 1) + (
2x — 1

Qu.24 Find the following integrals:

(a) jTd*, (bijife «dJ^T dx.
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Qu. 25 Find the following integrals:

35

(a)

(b)

f  1------ - dx, using the substitution u = 2x + 3,
J 2x + 3

dx, using the substitution u = 1 — x.
1 - x

Qu. 26 Evaluate - dx.

Qu. 27 (a) Show that the answer to Example 4(b) may be written 
In {A(2x — 1)1/2}, and express c in terms of A.

(b) If | l n ( x  — i)  + c may be written as In {kyj(2x— 1)}, express c in 
terms of k.

An integral of the form 

substitution u = f(x).

—̂  dx may be reduced to the form f  -  du, by the 
f(x) J u

f'(x)
f(x)

dx
_  f f X x )  d x

J fW * dw
du

f'(x) 1
-----* E T ^ duu f (x)

u

= In u + c 

= In f(x) + c

Hence

dx = In {k f(x)}

From now onwards we must be prepared to recognise, in yet another form, 
the integrand involving a function of x and its derivative. As before, such an 
integral may be found by substitution, or usually it may be written down at once.

Example 5 Find
x

x 2 + 1
dx.

d 2x
Since —  In (x2 + 1) = — - ,

dx x +  1
f

—5— — dx = j  In (x2 + 1) + c 
x2 + 1

= In {kyjix2 + 1)} where k = In c
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Qu. 28 Find the following integrals:
(• 2

(a) 7 7 1----^ 2  (b )  J X 2 COS X 3 d x ,

x  — 1
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(d )

( x 3 -  2 ) 2

v-2

d x , (e) - 2x
dx, (f)

d x

(c) J x2 e*3 dx, 

2x
3 — x2

d x ,

(g) j  cot x dx.

Qu. 29 Find
J x — 1

(a) using the substitution u = x — 1,
(b) by first dividing the numerator by the denominator.

r i-  dx when a, b are negative
Ja X
12.12 An important point must be cleared up. Reference to Fig. 2.4 reminds us 
that as the value of x goes from 0 to + oo, the value of In x goes from — oo to 
+ x ;  In x is not defined for negative values of x. This presents us with an apparent 
paradox which may be demonstrated in graphical terms as follows.

Referring to the graph of y = 1/x in Fig. 2.5 it is apparent that the two shaded 
areas are equal in magnitude and of opposite sign. However, we soon get into 
trouble if we seek to evaluate the appropriate integral with the negative limits; 
thus, is it true to say that

r i d , -
“

In x
J — 2 *

Figure 2.5

t §2.12 should be delayed until after the reader has answered No. 1 of Exercise 2d.
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We could now write this as In
- 1
^ 2

= In j  = In 2 1 — In 2, and thus obtain a

correct figure for the area, but the working is not valid, since the expression 
‘In (— 1) — In (— 2)’ is meaningless.

We surmount this difficulty as soon as we realise that for negative values of x, 
although In x is not defined, In ( —x) does exist, and

—  In (— x) = ---- = — (See Fig. 2.6)
dx —x x

Thus, if a and b are negative, | — dx = In ( —x)

(Using the modulus sign, we could write this as —
cm  r

— dx = In |x| 
Ja x L . This form

of the result could be used for a and b both positive and for a and b both 
negative; notice however that a and b must not have opposite signs.)

Hence the left-hand shaded area in Fig. 2.5 = " i d ,
- 2  *

In (— x) 

= ln 1 — In 2

= -  In 2

Qu. 30 Evaluate (a) (b)
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Qu. 31 Evaluate
1

dx, using the change of variable x = — u.

Qu. 32 Can any meaning be assigned to dx?
- 7  X

Example 6 Find the area enclosed by the curve y = ------ and
x — 2

(a) the lines x =  4, x =  5, and the x-axis,
(b) the line x = 1, and the axes. (Fig. 2.7.)

Figure 2.7

(a) The required area =
x — 2

dx

In (x — 2)

= In 3 — In 2 

=  In |

(b) I If we proceed as in (a) but with the new limits, we obtain the meaningless

= In (— 1) — In (— 2).’ We must note that when x >  2,In (x -  2) 

1
x — 2

dx = In (x — 2) +  c
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but when x < 2 ,  

1
x — 2

dx =  In (2 — x) + c

i.e. when x > 2 or x < 2,
x — 2

dx = In |x —2| +c

The required area - f -Jo * -
dx

_ o
In |x —2|

= ln 1 -  In 2 

= — In 2

Qu. 33 Find {In (x — 3)} and {In (3 — x)}.
UA LIA

Qu. 34 Sketch the curve y = —î— , and evaluate:
x — 3

(a) x — 3
dx, (b) f -J — 2 X

dx.

1 f 5 1
Qu. 35 Sketch the curve y — - ----- and evaluate | ------- dx.

2 — x 2 — x

Exercise 2d
1 Find the following integrals:

(a) I ¿ dx’

(d )

(g)

(j)

(m )

1
2x + 8 

3x

dx,

dx,

ix + 2
dx,

(P) I c o t-d x ,

(b) I - d x ,

(e)

(h)

(k)

(n)

1
dx,

3 — 2x

2x + 1 
x2 +  x — 2

dx,

i 3x

l

2x + 3 

3 — 2x

dx,

dx,
x — 4 

(q) J cot (2x + 1) dx,

( c ) {

(f)

(i)

(1)

1
dx, 

2 dx,

2x — 3 

x
1 — x

2x — 3__
3x2 — 9x + 4

2X dx,

i dx,

(o) j  tan x dx,

f(r) J - t a n - d x ,



40 Pure Mathematics 2 Ex 2d

(s)
1 — sin 2x ,
------ dx, (t)
x — sin x

1 — tan x 
1 + tan x

dx, (u)
' 2 + tan2 x 

x + tan x
dx.

2 (a) Sketch the curves y = In (2x — 1), and y = In (1 — 2x).

(b) Find ~  In (2x — 1) and In (1 — 2x). 
dx dx

(c) Evaluate
1

! 2x — 1
dx and

1
2x — 1

dx.

3 Sketch the curve y —
x — 4

and evaluate:

r 2
(a)

> 7 = 4 * * ’ ( b ) J , i ^ 4 dX'

4 (a) F i n d  - / - I n  ( - 3 — )  a n d  /  in (
dx V 3 — x /  dx V x — 3

(b) Sketch on the same axes the graphs of y = — In (3 — x), y = — In (x — 3), 
y = 1/(3 — x), and find the area enclosed by the latter, the lines x = 5, x = 6, 
and the x-axis.

(c) Find the area under y=  1/(3 — x) from x = 0 to x =  1.
5 Evaluate the following:

(a)

(d )

(g)

(j)

(m )

' 8 1 hx -d x ,
2 2x 

‘5 1
3 l - 2 x

dx,

3 2x -  1 ,
—=---------- dx,

o xz — x + 1

0 2 -  -

- 0 . 5  X 1

"/4 sec2 6 
*16 tan0

dx,

dd.

f 4/3 1
(b)J,

^ 0 . 2 5  i

(e) I ------ r  dx,

(h)

( k )

-0.25 2x + 1

dx,
4 x — 2
*n/2

cot 6 d a
n/3

(c)

(f)

0)

(i)

! x — 5
dx,

f x2 + 2
dx,

V2
5 x +  1 
7 x + 3

dx,

'Jt/6
tan 2x dx,

Exercise 2e (Miscellaneous)
(For integration see Exercises 13e and 13f.)

1 Prove that logfl b = l/(logb a), where a,b e R + . Solve the equation

log2 x + logx 2 = 2.5

2 Solve the equation x 1 23 = 0.12. (L)
3 Solve the equation logfl (x2 +  3) — logfl x = 2 loga 2. (O & C)
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4 Solve the equations
(a) 6X + 2 = 2(32x), (b) log* 0.028 = 3, (c) log10 x = log5 (2x). (L)

5 If logi0 y = 2 — log10 (x2/3), express y as a function of, x not involving
logarithms; hence show that, if x = 8, then y = 25. (O & C)

6 Prove that log„ x = * .
log), a

Given that log10 3 = 0.4771 and that log10 e = 0.4343, calculate the value 
of In 0.3, giving your answer correct to three significant figures.

7 Given that 2 logj, x + 2 log* y = 5, show that logj, x is either j  or 2. Hence
find all pairs of values of x and y which satisfy simultaneously the equation 
above and the equation xy  = 27. (JMB)

8 (a) The functions f) and f2, each with domain D = {x: x e IR, x > — 1}, are
defined by

fj(x) = In (x + 1) f2(x) = x2 + l

For each function state the range. Show that an inverse function fx 1 
exists and, using the same axes, sketch the graphs of y = fj(x) and 
y = fj" ^x). Show that an inverse function f2 1 does not exist and suggest 
an interval such that f2, restricted to this interval, will have an inverse 
function.

(b) Functions gt and g2, each with domain IR, are defined by

gi(x) = In (1 + x2) g2(x) = 1 + x

Given that gxg2 and g2gt are the composite functions defined on IR, find 
expressions for gig2(x) and g2gi(x) and state whether each of these 
functions is odd, even or neither. (L)

9 Using the same scale and axes, draw the graphs of y =  2x and y = 2 x, 
between x = — 3 and x = + 3. Use your graphs to estimate:
(a) the root of the equation 2X — 2_x = 3,
(b) the value of ^32  — f j f j -
Give both results correct to two significant figures. (L)

10 (a) Two quantities x and y are connected by the equation y = a ebx, where a
and b are constants. If y = 1 when x =  1, and y = 3 when x = 4, find the 
values of a and b, correct to 3 decimal places.

(b) Solve the equation 22x — 2X+2 — 5 = 0. (L)
11 A function y is of the form y = axn + bx where a, b, and n are constants. 

When x is equal successively to 1, 3, and 9, the corresponding values of y are 
4, 6, and 15. Find two relations between a and b not involving n, and hence 
find the numerical values of a, b, and n (the last to three places of decimals).

(O& C)
12 Prove that log2 e — log4 e + log8 e — log16 e + ... = 1, where e is the base of

natural logarithms. (See p. 28.) (JMB)
13 If y = A e~x cos (x + a), where A and a are constants, prove that

d2y dy d4y
,a ) j ?  + 2d U 2 y = 0 ' <b> i ? +4>" 0-

(O& C)
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14 A particle is moving in a straight line. The displacement x, from an origin O 
on the line, is given at time t by the equation

* “ (3/4)‘ (a sin t + b cos t)x = e

dx
Initially t = 0, x =  4, —  = 0. Find the constants a and b. Determine also 

dt
(a) the time elapsing from the start before the particle first reaches O,
(b) the time taken from O to attain the greatest displacement on the negative

side of the origin. (JMB)
15 Find the maximum and minimum values of the function (1 + 2x2) e _x2.

(O& C)
16 If y = e x cos x, determine the three values of x between 0 and 3u for which 

d y
dx

= 0. Show that the corresponding values of y form a geometric pro

gression with common ratio — e

. i r  j  ¿y i /3  + 4 cos x17 (a) Find —  if y = In -— --------
dx \4  +  3 cos x

(b) If v = e4x cos 3x, prove that — 8^  + 25v = 0.
dx dx

18 Functions f and g are defined as follows:

(JMB)

(O& C)

f: x i (x e R +) 1
g: x i 1 — x (x e R, x < 1)

Give the ranges of f, g and gof.
Give definitions of the inverse functions f_1, g -1 and (gof)-1 in a form 

similar to the above definitions. (C)
19 Find the real value of x satisfying the equation

ex — e x = 4

Show that for this value of x, ex + e~x =  2^/5. (L)
20 Find the maximum and minimum values of x2 e “*, and sketch the graph of

this function. Find the equation of the tangent to the graph at the point at 
which x = 1. (L)

21 Show, by means of a sketch graph, or otherwise, that the equation

e2x + 4x — 5 =  0

has only one real root, and that this root lies between 0 and 1.
Starting with the value 0.5 as a first approximation to this root, use the 

Newton-Raphsont method to evaluate successive approximations, showing 
the stages of your work and ending when two successive approximations 
give answers which, when rounded to two decimal places, agree. (C)

tReaders who need to revise the Newton-Raphson method will find it in Book 1, Chapter 24.
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22 The function f with domain R is defined by f(x) = eC0SJC.
(a) Prove that f is periodic and state the period.
(b) Determine whether f is an odd function, an even function or a function 

which is neither odd nor even.
(c) Sketch the graph of y =  ecos "'for —2 n ^ x ^  2n.
(d) State, with reason, whether the inverse function f 1 exists.
(e) If f_ 1 does not exist, determine a subset D of R which is the domain of a

function g, with g(x) =  f(x), x e D, and g_ 1 exists. (L)



Chapter 3

Partial fractions
Introduction
3.1 Early training in algebra teaches us how to ‘simplify’ an expression such as

1 1 2 
----------------- by reducing it to —=— -  (see Book 1, Appendix).
x — l x + l x — 1

We have now reached the stage when the reverse process is of value. Given a 
5

: whose denominator factorises, we may split it up intofraction such as
x2 + x — 6

its component fractions, writing it as -
1 1

it is now said to be in partial
x — 2 x + 3

fractions. Just one example of the several applications of this must suffice for the 
present. No change of variable yet discussed would enable us to find 

5
------—----- — dx as it stands, but using partial fractions,
(x -  2)(x + 3)

5
(x -  2)(x + 3)

dX :
1 1

dx
I x — 2 x + 3j 

=  In (x — 2) — In (x + 3) + c 

f/c(x — 2)
= In

x + 3

Qu. 1 Express each of the following as a single fraction:

(a)
1

(b)
2x — 1 1

1 — x 1 + x ’ x 2 + 1 x + r

Qu. 2 Express in partial fractions:

4 ... 1

( c ) + + -(x — l)2 x — 1 x + 1

(a) (x — 2)(x + 2) ’ (b) (c)
1

2 x 3 ’ (d)
1

n(n + 1)

Unfortunately most partial fractions cannot be obtained by trial and error 
quite as easily as those in Qu. 2. The reader need only consider attempting Qu. 1 
in reverse, to be convinced that we need some technique to find partial fractions;

44



we shall find that this involves us in handling algebraic identities, so we must 
discuss these briefly.

4

Identities
3.2 Let us first distinguish clearly between an equation and an identity, x 2 = 4 is 
an equation, which is satisfied only by the two values x =  ±2. But

x 2 — 4 = (x + 2)(x — 2)
and

x 2 + 2x — 2 = (x + l)(x — 1) + 2{x + 1) — 3

are both identities, and for them the L.H.S. = R.H.S./or any value of x; moreover, 
if the R.H.S. is multiplied out, the coefficients of x2, x and the constant term will 
be identical on each side.

Example 1 Find the values of the constants A, B, C such that 

5x + 3 = Ax(x + 3) + Bx(x — 1) + C(x — l)(x + 3)

First method
Collecting like terms on the R.H.S.,

5x + 3 = (A + B + C)x2 + (3/4 -  B + 2C)x -  3C 

Equating coefficients of x2,

0 = A + B + C (1)
Equating coefficients of x,

5 = 2 A - B  + 2C (2)
Equating constant terms,

3 = —3C (3)

From (3), C = — 1, and substituting this value into (1) and (2), and solving 
these equations simultaneously, we obtain A = 2, and B = — 1.

Second method

5x + 3 = Ax(x + 3) + Bx(x — 1) + C(x — l)(x + 3)

Putting x = 0,

3 = 0 + 0  -  3Cf
.-. C=  - 1

Putting x = — 3,

—15 + 3 = 0 + B( — 3)( — 4) + 0
.'. - 1 2 =  12B

: .B  = - 1

Partial fractions 45

fThis should be compared with equation (3) above.
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Putting x = 1,

5 + 3 = A x 1 x 4 + 0 + 0
A = 2

It should be noted that the identity holds for any value of x, but we have 
chosen those particular values which make all but one term on the R.H.S. vanish 
each time.

Qu. 3 l x 2 +  9x -  10 = A(x -  3)(x + 4) + B(x + 2){x + 4) +  C(x + 2){x -  3).
(a) Obtain three equations in A, B, C by substituting x =  — 1, 0, 1 in this 
identity.
(b) Find the values of A, B, C by substituting more convenient values of x.

Qu. 4 Find the values of the constants A , B, C in the following identities:
(a) 22 — 4x — 2x2 = A(x — l)2 + B(x — l)(x + 3) +  C(x + 3), using the first 
method in Example 1,
(b) 5x + 31 = A(x +2)(x — 1) +  B(x — l)(x — 5) + C(x — 5)(x + 2), using the 
second method in Example 1,
(c) 1 3 x - 11 = A ( 3 x - 2 )  + B(2x+  1).

Qu. 5 Put x = 1 to find the value of A in the identity

x2 + x + 7 = A(x2 + 2) +  (Bx + C)(x — 1)

Now substitute any other values of x to find B and C.

The substitution method is fast, but often it may be combined with the 
method of equating coefficients for greater speed and simplicity (e.g. having 
found A in Qu. 5, equate coefficients of x2 to find B). The latter method also 
gives us a deeper insight into the nature of identities. Let us consider the 
statement

‘x2 — 5x + 8 s  A(x + 3) +  B(x — l)2’

Applying the method of substitution we obtain A = 1, B = 2; however, when A 
and B are given these values we do not have an identity!

This apparently alarming breakdown is readily explained when we apply the 
method of equating coefficients. This shows that for only two unknowns we have 
the three equations, B =  1, 4̂ — 2J3 = — 5, and 34 + B = 8, which are not 
consistent. Thus we cannot find values for A and B to form the ‘identity’ given 
above.

Since we shall soon be concerned with forming identities, the method of 
equating coefficients will be a valuable check that the number of unknown 
constants introduced corresponds to the number of equations to be satisfied.

Qu. 6 Can values of A, B, C be found which make the following pairs of 
expressions identical?
(a) 2x + 3 and A{x + l)(x — 2) + B(x +  l)2 + C,
(b) x2 — 8x + 30 and A(x — 3)2 + B(x + 2).



Partial fractions 47

Exercise 3a
1 Express each of the following as a single fraction: 

3 2 ... 1
(a)

(c)

x + 3 x — 2’ 

4 1

(b)

(d)

2 1
+(x +  2)2 x + 2 3x — 1’

1 2
+ ■

2 + 3x2 1 — x’ w  x2 + 1 x — 1 (x — l)2

2 Express in partial fractions:

(a)
2x

(3 + x)(3 — x)’ (b) a2 — b2’ (c)
1

5 x 6 ’ (d )
1

P(1 - P Ï

3 Use the first method of Example 1 to find the values of the constants A, B, C 
in the following identities:
(a) 3lx — 8 = A(x — 5) + B(4x +  1),
(b) 8 — x = A(x -  2)2 + B(x -  2)(x + 1) + C(x + 1),
(c) 71 + 9x -  2x2 =  A(x + 5Xx + 2) +  B(x + 2)(x -  3) + C(x -  3)(x + 5),
(d) 2x3 — 15x2 — 10

= A(x -  2)(x + 1) +  B(x + l)(2x2 + 1) + C(2x2 + IX* -  2).
4 Use the second method of Example 1 to find the values of the constants A, B, 

C in the following identities:
(a) 2x — 4 = A(3 + x) + B{1 — x),
(b) 8x + 1 = A(3x -  1) + B(2x + 3),
(c) 4x2 + 4x -  26 = A(x + 2)(x -  4) +  B(x -  4)(x -  1) + C(x -  l)(x + 2),
(d) 17x2 — 13x — 16

s= A(3x + l)(x -  1) +  B(x -  lX2x -  3) + C(2x -  3X3x + 1)
5 Can values of A, B, C, D be found which make the following pairs of 

expressions identical?
(a) 2x2 — 22x + 53

and A(x — 5Xx — 3) +  B(x — 3Xx + 2) + C(x + 2Xx — 5),
(b) x + 7 and A(x — 2) + B(x + l)2,
(c) 3x2 + 7x + 11 and (4x + B)(x + 2) + C(x2 + 5),
(d) x + 1 and A(x — 2) + B(x2 + 1),
(e) x3 + 2x2 — 4x — 2 and (Ax + B)(x — 2)(x + 1) + C(x + 1) + D(x — 2).

6 Find the values of A, B, C if x3 — 1 is expressed in the form

(x — lX-4x2 + Bx + C)

Factorise: (a) x3 +  1, (b) x3 — 8, (c) x3 + 27,
(d) 8x3 — 27, (e) 27x3 + 125.

7 Express x3 + 1 in the form x(x — IX* — 2) +  Ax(x — 1) + Bx + C.
8 Find the values of a and b if x4 + 12x3 + 46x2 + ax + b is the square of a 

quadratic expression.
9 Write down the quadratic equation whose roots are a, [i. If the same 

equation may also be written ax2 + bx + c =  0, express a +  p and aP in terms 
of a, b, c.



10 If a, P, y are the roots of the equation px3 + qx2 + rx + s = 0, deduce 
expressions for a + P + y, Py + ya + aP, a.Py in terms of p, q, r, s.

s

Type I —  denominator with only linear factors
3.3 We shall find that in the more straightforward cases which we have to deal 
with at this stage, partial fractions fall into three main types; each will be 
illustrated by a worked example, and the reader is strongly advised to work 
through the questions following each of these, before going on to consider the 
next type.

In practice, a question of considerable length and complexity may depend 
upon the correct determination of partial fractions in the early stages; to avoid 
fruitless labour at a later date, the habit of checking partial fractions should be 
firmly established from the start, and they should be thrown back into one 
fraction mentally, the numerator obtained being checked with the original.

First we deal with a fraction whose denominator consists of only linear 
factors.
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Example 2 Express
l lx  +  12

(2x +  3)(x + 2)(x -  3)
in partial fractions.

Let 1 lx + 12 _  A
Ct (2x + 3)(x + 2)(x -  3) = 2x + 3 

constants to be found. It follows that

+
B

x + 2
C

+
x — 3’

where A, B, C are

1 lx + 12 _  A(x + 2)(x -  3) +  B(x -  3)(2x + 3) +  C(2x + 3)(x + 2)
(2x + 3)(x + 2)(x -  3) “  (2x + 3)(x + 2)(x -  3)

.'. 1 lx + 12 = A(x +  2)(x -  3) + B(x -  3)(2x + 3) +  C(2x + 3)(x + 2)

Putting x = 3,

33 + 12= 0
.-. C = 1

Putting x = — 2,

- 22+ 12=  0
.-. - 1 0 =  SB 

b  = —2

Putting x = —

— ^ + 1 2  = A x -2 x ~y~
' _  9 -  - S .  A

2 — 4  A
A = 2

+ 0 + C x 9 x 5

+ B x ( —5) x (— 1) +  0

+ 0

. 1 lx  + 12 2 2 1
(2x + 3)(x +  2)(x - 3 )  2x + 3 x +  2 + x — 3

+ 0
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c;__  d u c  2(x + 2Xx -  3) “  2(x -  3X2x + 3) + (2x + 3)(x + 2)Since the R.H.S. = -------------------—----- —-----—----- —------------------ , we
(2x + 3Xx +  2)(x — 3)

check the coefficients in the numerator.

Check: Coefficient of x2 = 2 — 4 + 2 =  0.
Coefficient of x =  —2 + 6 +  7 = 11. 
Constant term = —12+18 + 6 = 12.

Qu. 7 Express in partial fractions:

(a)
6

(b)
X

(x + 3)(x — 3) ’ (2 +  x X 2 -x )’

(d)
3x + 1

(e)
3 — 4x

(x + 2)(x + l)(x — 3)’ 2 + 3x — 2x2'

(c )
x — 1

3x2 — llx  + 10’

Type II —  denominator with a quadratic factor
3.4 Fractions which can be split solely into partial fractions are necessarily 
proper, by which is meant that the degree of the numerator is less than the degree 
of the denominator.f Moreover, the partial fractions themselves are always 
proper.

Bearing this in mind we can now discover how to deal with a fraction having 
in the denominator a quadratic factor which does not factorise.

Let
3x + 1

(x — l)(x2 + 1)
A ‘numerator'

x - l + x2 +  1

Then 3x + 1 = A(x2 + 1) + ‘numerator’ x (x — 1)

From our previous work on identities, we see, by equating coefficients that there 
are three equations to be satisfied. It follows that there are three constants to 
determine,J and therefore the ‘numerator’ must contain two of them; thus the 
only way to write the second partial fraction, so that it is proper, is in the form
Bx + C
x2 + 1 '

t  With an improper fraction, we divide first, and we obtain a quotient and partial fraction, thus

x 2 + x + 1 3 1 1------------- = 1 + --------------= 1 + ---------------,
(x — IX* + 2) (x — IX* + 2) x — 1 x + 2

and

x3 + 2x2 — l x  — 18 
x2 — 9

= x + 2 +
2x

(x + 3Xx -  3)
= x + 2 +

1
x + 3

+ 1
x — 3

tin  general, the number of constants to be found is the same as the degree of the denominator of the 
original fraction.
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Example 3 Express
3x + 1

(x — l)(x2 + 1)
in partial fractions.

3x + 1 _  A Bx + C
( x -  l)(x2 +  l) = x -  1 + x 2 + l

3x + 1 = A(x2 + 1) + {Bx + C)(x — 1)

Putting x = 1, 4 =  2A + 0, A = 2.

Putting x = 0, 1 = A — C, 1 = 2 — C, .'. C = 1. 

Equating coefficients of x2, 0 =  A + B, .'. B = — 2.

. 3x +  1 _  2 1 -  2x _  2___ 2x — 1
' ' (x — lXx2 +1) x — 1 + x2 +  1 x —1 x2 +  l

Check: Coefficient of x2 = 2 — 2 = 0.
Coefficient o fx  = — ( — 2 — 1) =  +3. 
Constant term = 2 — 1 = +1.

Qu. 8 Express in partial fractions:

(a)
6 — x

(b)
4

(1 -  x)(4 +  x2)’ (x +  lX2x2 +  x +  3)’

(c)
5x + 2

(d)
3 +  2x

(x+  l)(x2 - 4 ) ’ (2 — x)(3 +  x2)’

Type III — denominator with a repeated factor

3.5 Here we take as an example  -----—\ W r i t t e n  as  -----„w }— ------ -
(x + 2)(x -  l)2 (x + 2Xx2 -  2x + 1)

A Bx + K
this suggests Type II and the partial fractions------ H— =—  ----- Certainly we

x + 2 x — 2x + 1
have the correct number of constants to be found to identify this expression with 
the original fraction; however, the denominator of the second partial fraction 
factorises, and so we have not gone far enough.

Bx + K _  B(x -  1) +  B + K
( x - i ) 2 = ( ^ T j 5

_  B B + K
x — 1 + (x — l)2

Writing C for B + K, we obtain

Bx + K _  B C 
(x -  l)2 = x -  1 + (x -  l)2

This indicates the appropriate form when we have a repeated factor. (See also 
Qu. 10.)
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Example 4 Express
\ + 2)(x -  l)2

1
in partial fractions.

1 A B  C
Let(x + 2) ( x - l )2 = x + 2 + x — 1 + (x -  l)2

1 _  A(x — l)2 + B(x — l)(x +  2) +  C(x + 2)
' ' (x + 2)(x — l)2 (x +  2)(x — l)2

.'. 1 = A(x — l)2 + B(x -  l)(x + 2) + C(x + 2) 

Putting x = —2, \= 9 A , A = \ .

Putting x = 1, 1 = 3C, .'. C = j.

Equating coefficients of x2, 0 =  A + B, B  = — 5.

1 _  i 1 1
' ' (x + 2)(x -  l)2 = 9(x + 2) _  9(x -  1) + 3(x -  l)2

Check: Expressing the R.H.S. as a single fraction with denominator 
(x + 2)(x — l)2, the numerator is ç{(x — l)2 — (x + 2)(x — 1) + 3(x + 2)}.

Coefficient of x2 = |{1 — 1) = 0.
Coefficient o fx  = |{ — 2 —l + 3 )  = 0.
Constant term = ^{1+2 + 6) =1.

Qu. 9 Express in partial fractions:

x + 1 „ , 2x2 — 5x +  7
(a) (x + 3)2 (b) (x — 2)(x — l)2

Qu. 10 Find the values of A, B, C, D, if

x3 — 10x2 + 26x + 3 _  A i B C  i D
(x + 3)(x -  l ) 3 = x + 3 + x -  1 + (x -  l ) 2 + (x -  l ) 3

Improper fractions
3.6 As already implied, an improper fraction is one whose numerator is of 
degree equal to, or greater than, that of the denominator. To deal with this we first 
divide the numerator to obtain a quotient and a proper fraction, and then split 
the latter into partial fractions. Thus

x4 — 2x3 — x2 — 4x + 4 _  x2 — 2x + 7
(x —3)(x2 + l) X+  + (x — 3)(x2 + 1)’

Often, instead of doing long division, it is quicker to proceed as follows:

2x2 + 1
(x — l)(x + 2)

2(x2 +  x — 2) — 2x + 5 
x2 + x — 2

= 2 +
5 — 2x

(x — l)(x + 2)’
etc.



Qu. 11 Express the following in the form of a quotient and a proper fraction:
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(a)

(b)

x3 + 2x2 -  2x + 2
(x — l)(x + 3) 

3x2 — 2x — 7

(by long division),

(x -  2)(x + 1)

Qu. 12 Express in partial fractions:

x2 — 7

(by the short method suggested above).

(a) (b)

Exercise 3b
Express in partial fractions:

i / , x -  111 (a)

(c)

(e)

2 (a)

(c)

(e)

3 (a)

( c )

4 (a)

5 (a)

( c )

6

x3 — x2 — 4x + 1
x2 — 4

(x + 3)(x — 4) ’

3x2 — 21x + 24 
(x +  l)(x -  2)(x -  3)’

8x2 + 13x + 6 
(x +  2X2x + lX3x +  2)’

5x2 — lOx + 11 
(x -  3)(x2 +  4) ’

3x2 — 2x +  5 
(x — l)(x2 + 5)’

20x + 84 
(x + 5)(x2 -  9)’

x — 5
(x — 2)2 ’

5x2 +  2
(3x + l)(x + l)2’

3x3 + x + 1 
(x — 2)(x +  l)3

x3 + 2x2 -  lOx -  9 
x2 — 9

2x4 -  4x3 -  42 
(x -  2)(x2 + 3) ’

3x + 7

(see Qu. 10),

(b)

(d )

(f)

(b)

( d )

(f)

(b)

(d)

(b)

(b)

(d)

x(x + 2)(x — 1) x2(x +  2)’

25 — x2

4x2 +  x +  1 
x(x2 — 1)

2x3 + x2 — 15x — 5 
(x +  3)(x — 2) ‘

2x2 — x +  3 
(x +  l)(x2 + 2)’

l lx
(2x -  3X2x2 + 1)’

2x3 — x — 1 
(x -  3)(x2 +  1)'

5x + 4
(x — l)(x + 2)2’

x4 + 3x — 1 
(x + 2)(x — l)2’

3x2 + 2x -  9 
(x2 - l ) 2 '

3(x2 — 3)
(x — l)(x + 2)’

x4 — 6x2 + 3 
x(x + l)2 -

2x4 -  17x -  1
(x — 2)(x2 + 5)'



12

15

68 + l lx  
(3 + x)(16 — x1 2)

x + 4
6x2 — x — 35

x2 + 2x + 18 
x(x2 + 3)2

10

13

16

2 x +  1

x — 2
x2(x — l)2 '

1
x4 + 5x2 + 6

11

14

17

2x2 +  39x + 12 
(2x + l)2(x -  3)'

7x +  2 *
125x3

1
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8'

x4 — 9

Summation of series
3.7 An introduction to the summation of series was given in Book 1, Chap
ter 13. There are some series which may be summed by the use of partial 
fractions; the method of application is illustrated in the following example.

Example 5 (a) Express
n(n + l)(n + 2)

in partial fractions, and (b) deduce that

1
+

1
1 x 2 x 3  2 x 3 x 4

2
(a) Let

+ ... +

= -  +

1 1 1
n(n +  IX« + 2) 4 2(n + l)(n + 2)

B
+n(n + lXn +  2) n n + 1  n + 2

2 = A(n +  IX« +  2) +  B(n +  2)n +  Cn(n + 1) 

Putting n = 0, 2 = 2/1, .'. A — l.

Putting n = - l ,  2 = —B, B =  —2.

Putting n = — 2, 2 = 2C, .'. C = 1.

1 2 1 
+

n(n + lXn + 2) n n + 1  n + 2

Check: Coefficient of n2 = 1 — 2 + 1 = 0. 
Coefficient of n =  3 — 4 + 1 = 0 .
Constant term =  2.

(b) If S = 

2 S =

1
+ ■

1
1 x 2 x 3  2 x 3 x 4

2 2

H- ... H— >
1

+ ■1 x 2 x 3  2 x 3 x 4

From Part (a) it follows that

+ . .. +

n(n + lXn +  2) 

2
n(n + lXn +  2)

1„„ : i  2 i \  \ 2 i \  / i  2 n  / 1 2  
2S = ,J _ 2 + 3)  + ( 2 ~ 3  + 4)  +  ( 3 _ 4 + 5)  + --- +  ( n _ ^ T T  + ^ T 2
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We see that the majority of terms when grouped three together in a different 
way, such as -j — f  + have zero sum. We then have to pick out those terms 
which remain at the beginning and at the end, and this is.most easily done if we 
set out the working in columns.]

From Part (a)
2

1 x 2 x 3

2
2 x 3 x 4

2
3 x 4 x 5

1 2 1

Adding,

1 1 
2 ~ (n +  l)(n +  2)

1
S = -  —

1
4 2(n + l)(n + 2)

1
The reader should also note that as oo,

2(n + l)(n + 2)
► 0; thus the

1 1 1infinite series -— -— -  + -—  ----- + -— -— - + ... is convergent, and its sum
1 x 2 x 3  2 x 3 x 4  3 x 4 x 5

to infinity is £ (see Book 1, §14.4).

I l l  1 , 1
Qu. 13 Show that -— -  + -— -  + -— 7 + ... + —----- 77 = 1

1 x 2 2 x 3  3 x 4 n(n +  1) n + 1

Integration
3.8 We have already shown in §3.1 how partial fractions may be applied to 
integration. Two more examples follow.
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Example 6 Find 

2x — 1

2 x - l
( x  +  1) :

dx.

Let + ■
B

(x + l)2 x + 1 (x + l)2

2x — 1
(x +  1):

dx

: we find that A = 2, B = —3. 

3
dx

x + 1 (x +  1)2J 

= 2 In ( x + l J  + S f x + i r ' + c

Qu. 14 Find (a) 

Qu. 15 (a) Find

x — 9 

x
4 — x

1 , ru, f 2x + 2 ,2 ~ ^ dx’ (b) I p ----- xzrdx.(2x — 3)2

2 dx without using partial fractions.

(b) Find this integral using partial fractions.

5 + xExample 7 Evaluate 

5 + x

x)(5 -|- correct t0 ^ree significant figures.

Let + ■
Bx + C

(1 — x)(5 +  x 2) 1 — x 5 +  x ; we find that A = 1, B = 1, C =  0.

5 + x
2 ( l - x X5  + x2 d* - 1 i T h  + TTs',dx

- In (x — 1) +  ^ In (5 +  x2)

= ( - l n 2 + ± l n  14) —(—In 1 +± l n  9)
= 5 In 14 —In 2 —In 3 

(= j  (In 10 + In 1.4)- I n  6)|
= —0.472 (correct to three significant figures)

Example 7 also revises an important point. If x < 1,

------ dx = — In (1 — x) + c1 — x

However, if x > 1, as the limits show to be the case here, 

dx = - In  (x — 1) + c (See §2.12.)1 - .

Qu. 16 Can 5 + x
o (1 -  x)(5 + x2)

dx be evaluated?

fThis step is only necessary when using four-figure tables.
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Qu. 17 Evaluate (a)
2 (x + 2)(x -  1)

dx, (b)
’2 3x2 + 2x + 2 , ------------------dx

J 1 (x+ lX x2 + 2) '

Exercise 3c

1 Express
n(n + 2) in partial fractions, and deduce that

1 1 1
+ - ----7 +

2 Express

1 x 3  2 x 4  3 x 5

n + 3

+ . . .+-
1 2n + 3

(n — l)n(n + 1) 

5 6

n(n + 2) 4 2 (n + 1 )(n + 2)

in partial fractions, and deduce that

+1 x 2 x 3  2 x 3 x 4  3 x 4 x 5 + ... + n + 3
(n -  l)n(n + 1) =  H -

n + 2 
n(n + 1)

3 For the series given in No. 2 write down (a) the nth term, (b) the sum of the 
first n terms, (c) the limit of this sum as n-*- oo.

2 2 2
4 Prove that the series -— -  + -— -  + -— - + ... is convergent, and find its

1 x 2  2 x 3  3 x 4
sum to infinity.

5 Find the sum of the first n terms of the following series:

(a)

(b)

(c )

(d )

(e)

(f)

1
+

1 1
1 x 4  2 x 5  3 x 6 + . . . ,

1 1 1
+ ~----7 +  ^ 7  + ...,2 x 4  4 x 6  6 x 8

1 1 1
+ ~— x +3 x 6  6 x 9 9 x 12

1 1 1
+ ----r- + ■

+ ...,

2 x 6  4 x  8 6 x 10

1 1
+ ■

1
1 x 3 x 5  2 x 4 x 6  3 x 5 x 7

1 2 3

+ ...,

+ + ■3 x 4 x 5  4 x 5 x 6  5 x 6 x 7

6 Find the sum of the first n terms of the following series, remembering that 
2n — 1, 2n + 1, etc. are odd for all integral values of n:

(a)

(b)

2 2 2
+ ^— 7 +1 x 3  3 x 5  5 x 7

1 1

+ . . . ,

+ + -
1

1 x 3 x 5  3 x 5 x 7  5 x 7 x 9 + ...,
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(c)
2 3 4

+ -— — = + ■1 x 3 x 5  3 x 5 x 7  5 x 7 x 9

7 Find the following integrals:

1

+ ....

(a)

( c )

(e)

(g)

(i)

(k)

( m )

x(x — 2 ) 

7x + 2

dx,

3x3 + x'
dx,

4x — 5

2x2 + 2x + 3 
(x + 2)(x2 + 3)

4x — 33

i 
i

i

dx,

(b)

( d )

(f)

{ (x + 3X!3X5x -  2)
dx,

16 — x‘
dx,

dx,

(2x + IX* 2 -  9) 

x 2 — 8 x + 5

dx, (h)

dx, (j)

4x — 5 

2 2  -  16x
(3 + xX2 -  xX4 -  x) 

5x + 2

dx,

J ( x -

(2x + IX* 2 +  9)

x 3 — 18x — 2 1  

(x + 2Xx -  5)

dx, (1)

dx, (n)

2 )2(x + 1) 

6  — 9x
dx,

dx,

27x3 + 8 

37
4(x -  3X1 + 4x2)

dx.

8  (It is intended that all the parts of this question should be answered at one 
sitting, in order to bring out the comparison between the forms.) Find the 
following integrals:

(a)

(c)

(e)

(g)

(i)

(k)

(m)

1

1/

1 + x2 

+ x
+  X 

X

1 — x2 

1

dx, 

2 dx, 

dx,

Vi1 - * 2)
dx,

(b)

(d)

(f)

(h )

1 +  x 2 

1
1 — x 

x

dx, 

2 dx,

dx, (x < 1), (j)

V*1 - * 2)
1 + x

V n - * 2) 
1

dx,

dx,

i

1 + x

x
(1 - x )

dx, 

dx.

(1)

1 — x 

1
(1 — x)

dx, (x > 1), 

2 dx,



Ex 3c

9 Evaluate the following, correct to three significant figures:
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(a) (b)
^ ( 1 - x X l + x 2)*

- dx,

3 13x + 7-------------------------- dx
o (x — 4)(3x2 + 2x +  3)

10 Find the volume of the solid generated when the area under y = ------ from

x = 3 to x = 4 is rotated through four right angles about the x-axis. If the 
solid is made of material of uniform density, where is its centre of gravity?

(c)
x - 9

x(x — l)(x + 3)
dx, (d)



Chapter 4

The binomial theorem
The expansion of (1 + x)n when n is not a positive 
integer
4.1 The binomial theorem that

(1  +  x ) n =  1 +  nx  +
n(n 1) 2 #i(#i

— * + ----- !)(«
3!

2) 3 _i_---- X i  +  . . .

provided — 1 < x  < +1, was used in Chapter 14 of Book 1, but the general term 
in the expansion was not discussed for values of n other than positive integers. 
The term in x r is found to be

n (n -  1)... ( n - r +  1)
--------------i-------------*r!

The proof of this, for values of n other than positive integers, is outside the scope 
of this book. In the case when n is a positive integer, the term in xr has been 
shown (Book 1, §14.3) to be

"Crxr =
ni

(;n — r)!r! '
Dividing numerator and denominator by (n — r)!, we obtain 

n (n -  1) ... (n — r + 1) r
------------- ;------------ x

Note that n(n — 1) ... (n — r + 1) contains r factors. If the reader can remember 
that this expression is n\/(n — r)! (when n is a positive integer), it may help him or 
her to remember that the last factor, n — r + 1, is 1 greater than n — r.

Using the notation

^  n(n — 1) (w — 2) ... (» — r + 1)

the expansion can be written

(1 + x)" = 1 + [ x + x 2 + j r  + ...

59
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Example 1 Find the general terms in the expansions in ascending powers of x of
(a) (1 + x)~ l, (b) (1 — 2x)~3.

s
(a) (1 + x)_1. The general term is

( - l ) ( - 2 ) . . . ( - r K / r !
= (— lyT x 2 ... rxr/r\
= ( - 1  Yxr

(b) (1 — 2 x ) '3. The general term is

(— 3)(— 4) ... ( —2 — r) x ( — 2xJ/r\

= ( -  l)r3 x 4 ... (r + 2) x ( -  iy2rxr/rl 

r!(r+ l)(r + 2) 2rxr
2 * 7 T

= (r + 1) (r + 2)2r ~~1 xr

The expansion obtained in the first part of the last example,

( 1  + x) _ 1  =  1 — x  + x 2 —... + ( — l)rxr + ...

is frequently required and should be memorised. Note that the right-hand side is 
an infinite geometrical progression with first term 1 and common ratio — x, 
therefore its sum to infinity is 1/(1 +  x), provided — 1 <  x <  -f-1 (see Book 1, 
§13.9).

The approximation for (1 — x) 1 obtained by taking the first three terms of 
the binomial expansion, i.e.

(1 — x)“ 1 * l + x  + x2

is quite good provided x is small. For instance, when x =  0.2,

L.H.S. =  0.8_1 = 1.25 

and R.H.S. =  1 +  0.2 + 0.04 = 1.24

Fig. 4.1 shows the graph of y = (1 — x)~1 (continuous curve) and the graph of 
y = 1 + x +  x2 (broken curve).

We can see from this diagram that the graphs are close together (showing 
that the approximation is quite good) for |x| < 0.5; they begin to diverge when 
0.5 < |x| <  1, but when |x| > 1, the curves are totally unrelated. The approxim
ation between — 1 and +  1 could be improved by taking an extra term of the 
binomial expansion, i.e.

(1 — x)- 1 s: 1 +  x +  x2 + x3

With x =  0.2, the R.H.S. is equal to 1.248, which is clearly nearer to the exact 
value than is the value we obtained from the previous approximation. The 
reader is advised to plot the graphs of y =  (1 — x)_1 and y =  1 +  x +  x2 +  x3.
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These graphs should be quite close together for |x| < 1. (Readers who are 
fortunate enough to have access to a microcomputer with High Resolution 
Graphics should also try plotting some of the graphs obtained by including 
further terms of the binomial expansion). However it should be noted that, 
although the approximation for |x| <  1 can be improved by taking more terms of 
the binomial expansion, outside this interval the binomial expansion is totally 
useless.

Q u.l Write down and simplify the general terms in the expansions of
(a) (1 + x)-2, (b) (1 — 3x)~\ (c) (1 — ix )~ 3, ( d ) ( l + x ) “4.

It is worth noting that the coefficients in the expansions of (1 — x) \  
(1 — x) 2, (1 — x)-3, ... are contained in Pascal’s triangle (Book 1, §14.1).

(1 — x)~1 

( I - * ) - ’ \

\
\ l  '~2 \ l

1 4 6 4 1



Example 2 Find the first three terms and the general term in the expansion in 
ascending powers of x of

x + 5
(1 + 3 x ) ( 2 - x )

Expressed in partial fractions, 
x + 5 _  2 1

(l + 3x)(2 — x) l + 3x + 2 —x

(The reader should verify that this is so.)

2(1 + 3x)_1 = 2{1 — 3x + 9x2 — ... + (— l)r(3x)r +...}
= 2 — 6x + 18x2 —... +  (— l)' x 2(3x)r + ...

( 2 - x ) “ 1 = 2_1(1 - ¿ x ) “ 1
= t{1 + j x  + *x2 +  ... +  (ix)r +...}
= T + 4* + i x 2 +  ... + (i)r + 1Xr + ...

Therefore the sum of the two expansions is

2 \ -  S ix  + 18ix2 + ... +  { ( -  l)r x 2 x 3r + ( |) r+1}xr + ...

For the expansion to be valid,

— 1 < 3x < + 1 and — 1 < — j x  < 1

Multiplying the pairs of inequalities by j  and — 2 respectively,

— |  < x <  + i  and 2 > x > —2f 

Therefore the expansion is valid when — ̂ < x  < + | .

Example 3 Find the first three terms and the term in xr in the expansion in 
ascending powers of x of (x + 2)(1 + x)12.

(1 + x)12 =  1 + 12x + ~^2, ^  x 2 + ••• + 12Cr-iXr“ 1 + 12Crxr + ... +  x12 

.'. 2(1 +  x)12 = 2 + 24x + 132x2 + ... + 2x12

and
x ( l + x ) 12= x +  12x2 + 66x3 + ... + x13

Adding

(x + 2)(1 + x)12 = 2 + 25x + 144x2 + ... +  x 13

To find the term in xr, we must multiply

the term in xr in the expansion of (1 + x)12 by 2 and 
the term in xr_ 1 in the expansion of (1 + x)12 by x.
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(When an inequality is multiplied by a negative number, the direction of the inequality sign is 
reversed. (See §6.1.)
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Thus the term in xr is

2 x i2Crxr + x x 12Cr_1xr” 1

f 2x121 12! 1
"  {(12 -  r)\r\ + (13 -  r)!(r -  1)! J *

12! (2  1 \
(12 — r)!(r — 1)!\ r  + 13- r j *

12!(26 — r) r 
(13 — r)\r\ X

Qu.2 Find the terms in xr in the expansions in ascending powers of x  of 
(a) (1 - x ) ( l  + x )20, (b) (2x + 3)(1 — x)10.
Qu.3 Find the general term in the expansion of (2x — 1)/(1 + x)2 (a) by the 
method of Example 3, (b) by expressing the function in partial fractions.

Example 4 Sum to infinity the series

(a)
3 x 9 ,
2 x 4

3 x 9 x 1 5  ,
;— r x + - ’2 x 4 x 6

1 1 x 2  1 x 2 x 5
( b) --------------1---------------
K ’ 4 4 x 8  4 x 8 x  12

1 x 2 x 5 x 8 
4 x 8 x 12 x 16 + ""

3 3 x 9
(a) Let = ! - - *  + — .

3 x 9 x 1 5  ,------------- x 3 +
2 x 4 x 6

Note that there is a factor of 3r in the numerator and a factor of 2r in the 
denominator of the term in xr.

r , 1 ,, > , 1 x 3 ( 3 * ) 2
S, = l - 2 ( 3 x )  + — —

- . + 1 - 1  W - i

1 x 3 x 5  (3x)3
2s 3r + '"

S j = ( l  + 3x) 1/2, provided |x| < ^

/u\ t . o 1 1 x 2 1 x 2 x 5  I x 2 x 5 x 8
( ) et 2 = 4 - 4 x 8 + 4 x 8 x 1 2 - 4 x 8 x 1 2 x 1 6  +  -

Here the denominators are 4r xr!

„ 1 1 x 2  1 1 x 2 x 5  1 I x 2 x 5 x 8  1
'• “  4 “  x 27 + ---- 4 3---- x 5 7 -----------? ------  X J F + -

By altering some signs, we can arrange that the factors in the numerators 
become terms of an arithmetical progression.
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• s  1 I 1(~ 2 ) :: 1 I 1 | H - 2 ) ( - 5 ) ( - 8 )  1
' ‘ 2 ~  4 +  42 2! + 43 3! 44 4 ! + '"

. „ 1 .. 3 i( —I) .. 32 i ( - f ) ( - | ) . . 3 3 i( —1)( —f)( — t) .. 34
' ' — 3 X 4 2 !  X 4 ^ + 3! X?  + 4! x ^  + -

The series has a sum to infinity since — 1 < f  <  +  1.

1 +  S2 — (1 + 4)
s2 =  W - 1

3 U / 3

The expansion of (1 +  at)" when \x\ > 1
4.2 It will be recalled that the expansion of (1 +  x)" in ascending powers of x is 
only valid for |x| < 1. If, however, |x| > 1, the function can be expanded in 
ascending powers of 1/x.

(1 + x)n = {x(l + x 1)}" = x " ( l + x  1)"

When |x| > 1, it follows that |x -1 | < 1, so that we may write

( 1 + ^ 4 + „ ( I )  + ^ ( l Y + ...

n ( n - l ) . . . ( n - r + l ) / l  
r! \ x + .

Qu. 4 Expand the following in ascending powers of 1/x, giving the ranges of 
values of x for which the expansions are valid:

(a) (1 +  x) \

( d )  ----- =r,(x — l)(x — 2)

(b) (2 + x)-2, (c) (l +  3x)-2,

(e)
x

x2 + 1 ’

Exercise 4a
1 Find the first three terms and the general terms in the expansions of the 

following functions in ascending powers of x. State the ranges of values of x 
for which the expansions are valid.

(a) (l +  3 x )- \

(d) (1 - i x r 2,

(b) ( l - 2 x ) - \

(e) ( 1 + x ) - 3,

(h) (2 — 3x)3 ’

(c) ( 1 + x ) “2,

(f) (2 +  x ) -1,

(i) V ( ! + 4

2 Express the following functions in partial fractions and find the first three
terms and the general terms in their expansions in ascending powers of x.
For what values of x are the expansions valid?
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(a)

(d)

(1 -  x)(l + 2x) ’ 

5
1 — x — 6x2 ’

^  (1 + x) (x + 2) ’ ^  x2 + 2x + 1 ’

x + 
( x - 2 ) 2 ’ (f)

x +' 2
x ^ l '

3 Expand the following functions in ascending powers of x, giving the first 
three terms and the general term, and state the necessary restrictions on the 
values of x:

(a)
1

(b)
X

1 + x2 ’ 1 — x2 ’

(d) (1 +  x)(l — x)10, (e)
4

(x +  3)(l + x ) ’

(g)
x +  7

(x + l)2(x — 2)

(c)
1 — x 
1 +  x ’

(f)
x + 5

(3 — 2x)(x — 1) ’

4 Expand the following functions in ascending powers of 1/x, giving the first 
three terms and the general terms. State the necessary restrictions on the 
values of x.

(a) (2 + x) \

( d )
x +  2 
x + r

(g)
2x + 4

(x — l)(x +  3) ’

(b) (3 —x ) - 3, (c)
x — 1

(C) (x +  2)2 ’ (f)

2x
(i)

(1 — 2x)-2,

1
x2 — 5x + 6 ’

1
1 — x + x2 — x3

5 Expand (x — 2)1/2 as a series of descending powers of x as far as the third 
term. By substituting x =  100, evaluate y jl  to five significant figures. [Hint: 
V98 = 7V2.]

6 Obtain $ 2  to five places of decimals by substituting x =  1000 in the 
expansion of (x +  24)1/3 in descending powers of x.

In Nos. 7-10, use the binomial expansion to find the values of

7 (16.32)1/4 to five places of decimals.
8 sj 9.09 to six places of decimals.

9

10

1
(10.04)2 

1

to four significant figures.

V17
to four places of decimals.

11 Expand the function (1 +  2x)1/2(l — 3x)_1/3 in a series of ascending powers 
of x as far as the term in x2. [Hint: multiply the first three terms of the 
expansion of (1 + 2x)1/2 by those of (1 — 3x)_1/3, ignoring terms in x3 and 
higher powers of x.]



In Nos. 12-17 expand the functions in series of ascending powers of x as far as 
the terms indicated.
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12

13

1
1 + x + 2x2 

1
(1 + 2x + 3x2)2

14 ^(1 + S x ^ l  +  2x), (x2

15 —----- , (x3 .
1 + x

, (x3). [Write y — x + 2x2.]

(*3)-

16
1 — V(1 + 2x) ’ 
and denominator by x.]

(x2). [Expand the denominator; then divide numerator

17
l - ^ ( l - 3 x ) ’

(x3).

18 The field H  on the axis of a bar magnet of moment M  at a distance d from its 
centre is approximately 2M /d3. Suppose that in calculating the value of H, 
values of M and d differ by ± 2%  and ± 1%  respectively. What is the 
greatest possible percentage error in calculating the value of H?

19 If a clock with a seconds pendulum registers x s too few per day, what is the 
time of one beat of the pendulum?

One beat of a seconds pendulum takes ii(l/g)112 s, where / is the length of 
the pendulum and g is a constant. If the length of the pendulum increases by 
0.04% owing to expansion, calculate the number of seconds it will have 
failed to register in a day.

20 If a pendulum beats seconds (see No. 19) at a place where g =  981 cm/s2 and 
is then removed to a place where g is 0.05% less, how many seconds will it 
have failed to register in a day?

21 The heat H produced by an electric current flowing through a resistance R 
with potential difference V for a time t is given by H = JV 2t/R, where J  is a 
constant. If V, t, R are given percentage increases x, y, z which are so small 
that the squares and products of x, y, z may be neglected, find the percentage 
increase in the value of H.

22 The period of oscillation T  of a vibration magnetometer is given by the 
formula

T = 2n

If the quantities /, M, H are estimated with errors of p, q, r per cent, 
respectively, find the corresponding percentage error in T  if the squares and 
products of p, q, r may be neglected.
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Sum to infinity the series in Nos. 23-30 stating the necessary restrictions on the 
value of x.

23 1

24 1 — x +

l + i _ i + 2 +4  8 + ■•8

1 x 3 1 x 3 x 5
x 3 +

1 x 3 x 5 x 7
1 x 2  1 x 2 x 3  ' 1 x 2 x 3 x 4

25 1 + 4x + 12x2 + ... + (n +  l)2"x" + ....

_- , 2 2 x 3  2 x 3 x 4
26 1 — ,  + -— ï — 7— q +■•••3 3 x 6  3 x 6 x 9

1 1 x 2  1 x 2 x 5  I x 2 x 5 x 8
^ 6  6 x 12 ^ 6 x 12 x 18 6 x 12 x 18 x 24

x4 - . . . .

28 1 — 6x +  24x2 - ... +  ( -  l)"(n + l)(n + 2)2n~1xn + ....

X2 X3 X4
29 x — — — 1 x 3  — — 1 x 3 x 5 — —....

1 1 x 4  1 x 4 x 7
30 1 + 4 +  4 ^ 8  + 4 x 8 ^ 1 2 + '

Relations between binomial coefficients
4.3 We first show how the greatest coefficient in a binomial expansion may be 
found. A similar method may be applied to find the greatest term. In this section 
n and r represent positive integers.

Example 5 Find the greatest coefficient in the expansion of (2x +  3)12.

The coefficient of xr is given by 

12!
ur = r i ! 2 - r-2r3
r (12 -  r)!r! ' 

and the coefficient of xr + 1 is given by 

12!
Mr + 1 — ' r+l o l l —r-2r+13

(11 — r)!(r+ 1)!

The ratio of these coefficients is

ur r + 1  3
x -

ur+1 12 —r 2



68 Pure Mathematics 2 

Therefore ur < ur+l if

4.3

3r + 3 <  24 -  2rf 

5r < 21

That is, «! < u2, u2 < u3, u3 < u4, u4 < u5, but u5 <fc u6. Therefore the coefficient 
of x5 is the largest. Its value is 792 x 2s x 37.

Qu.5 Find the greatest term in the above expansion when x =  2.

Now some series involving the binomial coefficients will be considered. For 
brevity we shall write

(1 + x)" =  C0 + C jX  + c2x 2 + ... +  c„x"

So far we have not assigned any meaning to nC0. Since, in general, "Cr = cr, it is 
most convenient to define "C0 = 1; and, if we define 0! = 1, we can write

It should be noted that cr is only used for "Cr. Other coefficients such a s " 1Cr 
and 2"Cr will not be abbreviated in this way.

Example 6 Find the values of
(a) c0 +  Cj + ... + c„,
(b) c0 - 2 c ! +  3c2 - . . .  +  ( - l)"(n+l)c„,
(c) j c 0 + + {c2 + ... + cj(n  + 2).

(a) (1 +x)" = c0 + CjX + ... + c„xn.
Substituting x =  1,

Co + Ci + ... + c„ = 2"

d(xn)
(b) Remember that ——  = nx" *.

dx

x(l + x)" =  C0 X + C2X2 + C2X 3 +. . .  +  cnx n+l 

Differentiating with respect to x,

( l + x f x  l + x x n ( l  +  x)"-1 = c0 + 2ctx + 3c2x2 +. . .  +  (n + l ^ x "  

Substituting x =  — 1, 

c0 -  2ci + 3c2 —... + (— l)"(n +  l)c„ =  0

c ="C = __ - ___
r r (n -  r)!r!

for all values of r from 0 to n.

F12 — r is positive so the inequality sign is unchanged.
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(c) Remember that J x" dx = xn+i/(n + 1) +  k.

(1 +  x)" =  C0 + CjX + c2x 2 +  ... +  c„xn 
.'. x(l +  Xf  =  C0X +  CjX2 +  c2x 3 +  ... +  c„xn+1

Integrating the R.H.S. with respect to x  between 0 and 1, we obtain

2co + tci +  i c2 + ••• + cJ(n  +  2)

For the L.H.S., we write

x(l + x)" = {(1 + x) — 1} (1 +  x)n

I x ( l + x ) nd x = f  {(1 +x)" + 1 — (1 +  x)"} dx 
Jo Jo

V(l+ x)"  + 2 (1 +x)"~K1T
|_ n +  2 n + 1 Jo

2n+2 — 1 2"+1 — 1 
n + 2  n + 1

which is the sum of the series.
Alternatively, the integral could have been evaluated by the substitution 

u=  1 + x.

Certain relations between the binomial coefficients may be obtained by 
equating coefficients (see p. 45). For example, the identity

(1 +  x)" + 2 =  (1 +  x)2(l +  x)"

may be expanded in two different ways:
(a) 1 + n+2C1x + ... + n+2Crxr + ... +  "+2Cn + 2xn + 2,
(b) (1 + 2x + x2)(c0 + ct x +  ... +  crxr +. . .  +  c„x").

The term in xr in (b) is obtained by multiplying crxr by 1, cr_1xr ' 1 by 2x, 
cr_2xr_2 by x2. Equating coefficients of xr in the expansions (a) and (b),

n + 2Cr = cr +  2cr- 1 + c r- 2 (2 ^ r ^ n )

Qu.6 What relations are obtained by equating coefficients of 
(a) xr+1, (b) xr+2?

Example 7 Prove that c02 + c 2 + ... +  c 2 = 2"C„.

[The expression 2"Cn suggests the use of (1 + x)2n, and the terms c 2 suggest 
the square of (1 + x)n.]

(1 +  x)"(l + x)n = (1 + x)2n
.’. (c0 +  ctx + .. ' + c„x”)(co + ct x + ... + cnx") =  (I + x )2n

[2nC„ is the coefficient of x" on the R.H.S.]
Equating coefficients of x",

c0Cn + c l cn- l +. . .  +  c„ - l c1 + c nc0 = 2nC„



4.3

C02 + Ci2 + ... + c J 1+ cn2 = 2nC„

Exercise 4b
1 Find the greatest coefficients in the binomial expansions of the following:

(a) (x + 2)10, (b)(3x + l)8, (c) (4x + 3)12,
(d) (2x + 5)20, (e) (x +  f ) 11, (f) (3x -  2)9,
(g) ( 12 - 1  lx)“ 2, (h) (7 — 5x)-3 .

2 Find the greatest terms in the binomial expansions of
(a) (2x + 3y)12, w h e n x = l ,  y = 3;
(b) (x +  2y)1 °, when x = y =
(c) (4x + 5y)8, when x =  i  y = $;
(d) (3x — 5)-2, when x =  1^.

Prove that

3 C o - C i + c 2 - . . .  + ( - l)"cn = 0.
4 + 2c2 + 3c3 + ... + nc„ = n x 2"~1.
5 Cq + 2cj + 3c2 + ... + (n +  l)c„ =  2" 1(n +  2).
6 Cj —2c2 + 3c3 —... + (—l)n + 1nc„ = 0.
7 2 x lc2 +  3 x 2c3 + ... + n(n — 1 )c„ =  n(n — l)2n_2.
8 2ct — 6c2 + ... + (— l)"+1n(n + l)c„ = 0.
9 l 2ct + 22c2 +. . .  + n2c„ = n(n + l)2n“ 2.

10 l 2c0 + 22Cj +  ... + (n + l)2c„ = (n + l)(n + 4)2n~2.
11 i co - yCi  + ... + (-l)"c„/(n +  2)=  l/{(n+  l)(n + 2)}.
12 c0 + ^ c1 + jc2 + ... +  c„/(n + 1) = (2n+1 — 1 )/(n +  1).
13 *c0 - K  + ... + ( -  1 )"cj(n + l)(n + 2) = l/(n + 2).
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But cr = c„_r (see Book 1, §12.4),

Exercise 4c (Miscellaneous)
\ _j_ 2x + 3x2

1 Express the function ------ —------r- in partial fractions.
(1 — x)(l + x2)

If x is so small that powers higher than the third may be neglected, expand 
the function in the form A + Bx + Cx2 + Dx3. (JMB)

2 Find numbers A, B, and C such that the fraction

2x
0 ^ x ) ( l  + x 2) is equal to

A B +  Cx 
1 — x + 1 + x2

Hence obtain the expansion of the fraction in ascending powers of x as far 
as x5. Between what values must x lie in order that this expansion may be 
valid? (JMB)

3 (a) Without using tables, find the value of — — .

(b) Expand (1 — 3x)1/3 in ascending powers of x as far as the term in x3. By 
taking x = i ,  evaluate ^ 5  correct to two decimal places. (C)
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4 Express in partial fractions
x2 + 2x -f- 8 

x3(x 4- 2)

Hence express in partial fractions y2 + 7
and expand this

(y - 1)3̂  + 1) ’
expression in ascending powers of y as far as y2, stating for what values of y 
this expansion is valid. (C)

7x + 3
5 (a) Express —----- —-----—r  in partial fractions, and hence find the coeffi-

(3x -  l)(x +  1)̂
cient of x" when this expression is expanded in ascending powers of x.

(b) Write down the first three terms of the binomial expansion of 
(1 — T^5o)1/3- Hence evaluate (37)1/3 to six decimal places. (O & C)

6 Write down and simplify the first three terms in the binomial expansions of 
(1 + x)1/2 and (1 + x)-1/2.

AB is a chord, of length 2ka, of a circle of radius a. The tangents to the 
circle at A and B meet in C. Show that, if k is so small compared with unity 
that k 1 is negligible, the area of the triangle ABC is a2k 3 + ja 2k s. (L)

7 Use the binomial theorem to evaluate to four significant figures.

8 Prove that, if x is so small that its cube and higher powers can be neglected,

1 +  x 
1 — x

— 1 +  X +  ;
1

By taking x = ^ , prove that J 5  is approximately equal to JpiL. (C) 
9 (a) Find the percentage increase in the value of x 2y*/z when the percentage 

increases in x, y, z are p, q, r, respectively, if the squares and higher powers 
of p, q, r can be neglected.

(b) Obtain the first four terms in the expansion of
1 + x

(i) in a series of 

(L )
(1 —x)3’

ascending powers of x, (ii) in a series of descending powers of x.
10 (a) By means of the binomial theorem evaluate (10.02)10 to the nearest 

thousand.
(b) Write down the expansion of (1 — x)-2 in ascending powers of x and 

deduce that

£  , , , _ a + (b — a)xY  (a + bn)x" =  — ----- -,— , when x <  1
B = o (1 -  x)1

CO «H _i_ 1 9
Prove that £  = -  (JMB)

n = 0 5 4
11 Use the binomial series to write down the first four terms of the expansion of 

(1 + y ) ~ 1/2 in a series of ascending powers of y.
Hence find, in terms of cos 6, the coefficients clt c2, c3 in the expansion of 

(1 — 2x cos 6 + x2)~1/2 in the form 1 + ct x  + c2x 2 + c3x3 + ....
Prove that, when 0 = 0, every coefficient in the series is equal to +1. 
[You may assume throughout that the expansions are valid.] (JMB)
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12 (a) If x is small compared with unity and powers of x  higher than x 6 are 
neglected, show that

1
1 + x'

=  1 -  x2 + x4 -  x6

Prove that the error in this approximation is less than x8.
(b) Expand ^/(l +  x) as far as the term in x3.
(c) Find the coefficients of x2n and x2"+1 in the expansion in ascending

powers of (1 — x)2/(l +  x)2. (L)
13 Write down the series for ^/(l +  x) in ascending powers of x as far as the term

in x

Show also that the error in taking ¿(6 +  x)
1

2 + x
as an approximation to

^/(l + x) when x is small is approximately x4/128.
14 Prove (do not merely verify) that, if E denotes the function

(C)

2 — x +  2^/(1 — x)

then £  =  2 — x — 2^/(1 — x).
Deduce that, if x is small, E is approximately equal to j x 2 

15 Express

(O&C)

in partial fractions, and hence expand the ex-
(x +  2)2(2x + 1)

pression as a series in ascending powers of x, giving the first four terms and 
the coefficient of x".

Show that, for values of x so small that x4 may be neglected, the given 

expression can be represented by —— + ^x3 for some number k 

independent of x, and find k. (O & C)

16 Write down, without proof, the binomial expansion for ^(1 — 2x) in 
ascending powers of x, giving the first three terms and the general term. 

Prove that the sum of the first two terms exceeds y/(l — 2x) by exactly 1

1 — x + ^/(l — 2x)

By putting x =  0.005, obtain from the first two terms of the expansion an 
approximation for J 11, and determine to how many places of decimals your 
approximation is correct. (C)

17 Show that, if x is so small in comparison with unity that x3 and higher 
powers can be neglected,

(1 — 4x)1/2(l +  3x)1/3 
(1 +  x)1/2

= ! -  f x - ^ x 2 (L)
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18 (a) Find and simplify the term independent of x in the binomial expansion of 
1

x2 -
2x

(b) Write down and simplify the first four terms in the expansion in 
ascending powers of x of(l +  3x)1/3. Hence evaluate -^1.03 correct to five 
places of decimals. (JMB)

10— 17x +  14x2
19 Express —--- — -  ----- T in partial fractions of the form

F (2 +  x)(l — 2x)2

A B C
2 + x + 1 — 2x (1 — 2x)2

10— 17x +  14x2
Hence, or otherwise, obtain the expansion of— -----—— r—-y

(2 x) (1 ^x)
in ascending

powers of x, up to and including the term in x3. State the restrictions which 
must be imposed on x for the expansion in ascending powers of x to be valid.

(C)
20 Show that for any positive integral value of n there are two values of a such

that the coefficients of the powers of x in the three middle terms of the 
expansion of (1 + ax)2" are in arithmetical progression. Show also that the 
product of these values of a is independent of n. (L)

21 If cr is the coefficient of xr in the binomial expansion of (1 + x)", where n is a 
positive integer, prove that
(a) c0 + c2 + c4 + ... = Cj +  c3 +  c5 + ... = 2"_1,
(b) c02 + Cj2 + c 2 + ... + c 2 = (2n)!/(n!)2,
(c) c0 + 2cj + 3 c 2 +. . .  + {n +  l)c„ = (n + 2)2" l . (L)

22 (a) Find which is the greatest term in the expansion of (3 + 2x)14 in
ascending powers of x when x = 5/2.

(b) Prove that three consecutive terms in the expansion of (1 +  x)", where n is 
a positive integer, can never be in geometrical progression. (L)

23 (a) If the expansion of (1 + x)" in ascending powers of x is denoted by

(1 + x)" = c0 + c3x + c2x 2 + c3x3 +  ... +  crxr +. . .

write down the values of c0, cu c2, c3 in terms of n, and the value of cr in 
terms of n and r. State the range of values of x for which the expansion is 
valid whatever the value of n.

If n > — 1, determine the range of values of r for which

Cr- 1

(b) Use the binomial expansion to calculate the value of (1 + t^ o)200 correct 
to four places of decimals. (JMB)

24 Show that the first three terms in the expansion in ascending powers 
of x of (1 + 8x)1/4 are the same as the first three terms in the expansion of 
(1 + 5x)/(l + 3x).
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Use the corresponding approximation

(1 + 8x)1/4
1 + 5x 
1 + 3x

to obtain an approximation to (1.16)1/4 as a rational fraction in its lowest 
terms. (JMB)

25 (a) Show that, when x is small, the expansion in powers of x  of the function

(1 + x)p + (1 — x)p — 2(1 + x 2)q

is of the form

a2x 2 +  a4x4 + a6x 6 +. . .

If a2 = 0, find q in terms of p. If, in addition, a4 = 0 and p is not equal to 
0, 1, or 2, find the values of p,q,a6.

(b) Show that, when x is large and positive,

(x2 + x)1/2 +  (x2 + 3x)1/2 =  2x +  2, approximately. (JMB)



Chapter 5

Three-dimensional trigonometry
Introduction
5.1 In Book 1, Chapter 15, we considered a number of problems concerning 
lines and planes in three dimensions, to which we applied the notation and 
techniques of vector geometry. In this chapter we shall examine similar 
problems, but we shall solve them by using pure trigonometry. A mature 
mathematician must learn to be flexible and to select the best approach to a 
given problem.

Drawing a clear figure
5.2 To begin with, it needs to be emphasised that some of the questions will be 
very difficult without a clear figure. In general, the four following basic rules 
should be adopted:

(a) Parallel lines are drawn parallel.
(b) Vertical lines are drawn parallel to the sides of the paper.
(c) East-West lines are generally drawn parallel to the bottom of the paper, and 

North-South lines are drawn at an acute angle to East-West lines.
(d) All unseen lines should be dotted in.

B
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In Fig. 5.1, AB and CD are vertical posts. Notice that the angle NOE is 
marked a right angle, because this is what it represents.

Qu. 1 Copy Fig. 5.1 and draw AC. Mark in all the right angles at A and C.
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The angle between a line and a plane
5.3 When calculating the angle between a line and a plane, we are concerned 
with calculating the angle between two lines: the given line, and another line 
lying in the given plane. An infinite number of lines can be drawn, lying in the 
plane and passing through the point in which the given line meets the plane, and 
each line will yield a different angle. Which line should we take?

In Fig. 5.2, the line QR meets the plane n in O. In order to find the angle 
between QR and n, take any point P on QR and drop a perpendicular PN to the 
plane; now join N to O and 0 is the angle required. ON is the projection of OP 
onto the plane it.

Figure 5.2

Qu. 2 Copy Fig. 5.2 and draw any line lying in n and passing through O. Let M 
be the foot of the perpendicular from P to this line. Show that angle POM is 
greater than angle PON.

The result of Qu. 2 shows that 0 is the least angle between QR and any line 
which can be drawn in n and passing through O.

Example 1 Fig. 5.3 represents a rectangular box 9 cm x 6 cm x 6 cm with its lid 
open at an angle of 30°. Calculate the angle between BD' and the plane CDD'C'.

BD' meets the plane CDD'C' in D'. Take any other point on BD': B is an 
obvious point. Drop the perpendicular from B to the plane: BC. The angle we 
want is BD'C. Select triangle BD'C and mark in lengths (see Fig. 5.4). We must 
calculate CD' or BD' first. CD' is easier, so draw triangle CC'D' and again mark 
in lengths.
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Figure 5.3

In triangle CC'D',

CD'2 =  62 + 92 = 117 
C D ' = 71171

Now mark the length of CD' in triangle BCD'.

c o . O - Æ
6

.'. e = 29.0°

Therefore the angle between BD' and the plane CDD'C' is 29.0°.

B C
Figure 5.4

Qu.3 Calculate the angle between
(a) BD' and the plane BCC'B', (b) AC' and BD'.
Qu. 4 Calculate the angle between BP and the plane ABCD.

The angle between two planes
5.4 When calculating the angle between two planes we are again concerned 
with calculating the angle between two lines, one in each plane.

t l f  a calculator is being used, intermediate calculations (such as ^117) should be delayed, unless 
explicitly required by the question. Writing down intermediate steps can lead to a build-up of 
rounding errors.
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Referring to Fig. 5.5, in order to find the angle between two planes n and it', we 
select a point C on their common line AB and draw lines PC and CQ in ti and tt', 
respectively, and at right angles to AB. PCQ is the angle we want. This angle is 
called the dihedral angle of the two planes.

Figure 5.5

Qu. 5 Copy Fig. 5.5 and draw a line PR parallel to AB; join CR. Let P', R' be 
the feet of the perpendiculars from P, R, respectively, to 7t'. Show that angle 
RCR' < angle PCQ.

Example 2 VABCD is a right pyramid on a square base ABCD of side 10 cm. 
Each sloping edge is 12 cm long. Calculate the angle between the faces VAB and 
VBC.

To obtain a good figure first represent the base ABCD as a rhombus, then dot 
in diagonals to meet at N. Put up the vertical NV and choose V so that AV does 
not coincide with DV (see Fig. 5.6).

VB is the common line of the two planes. Draw AX perpendicular to VB, then, 
since the figure is symmetrical about VDB, CX is also perpendicular to VB. The 
angle we want is AXC, so we must work in triangle AXC.

First we want to find AX and AC.
In triangle VAM (see Fig. 5.7), VM2 = 122 — 52 =  119.

.-. VM =  VH 9 cm

Area of triangle VAB = 5^119 = ^ x  AX x 12.

• AY V H 9  
6

In triangle ABC (see Fig. 5.7), AC2 =  102 +  102 =  200.

.-. AC = 72 0 0 =  10^2
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V

Figure 5.6

In triangle AXN (see Fig. 5.8), AN = |A C  = 5^2.

x

Figure 5.8

sin 6 -

6 = arcsin 6

= 51.06'
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Z-AXC = 102.1°

Therefore the angle between the faces VAB and VBC is 102.1°.

Qu. 6 If, in Example 2, X is any point on VB, prove that triangle ABX
= triangle BCX. Hence prove that if AX is perpendicular to VB, then CX is also
perpendicular to VB.
Qu. 7 If, in Example 2, Y is the mid-point of BC, show that VYN is the angle 
between VBC and ABCD, and calculate it.

Exercise 5a
1 A cuboid is formed by joining the vertices AA', BB', CC', DD' of two 

rectangles ABCD and A'B'C'D'. AB = 6 cm, BC = 6 cm, CC' =  8 cm. X and 
Y are the mid-points of AD and CD, respectively. Calculate:
(a) the angle between XB' and the base ABCD,
(b) the angle between the plane XYB' and the base ABCD,
(c) the angle between the plane BB'X and the plane BB'Y.

2 A right pyramid VABCD stands on a rectangular base ABCD. AB = 6 cm, 
BC = 8 cm, and the height of the pyramid is 12 cm. Calculate:
(a) the angle which a slant edge makes with the base,
(b) the angle which the slant face VAB makes with the base,
(c) the angle between the two opposite slant faces VBC and VAD.

3 A hanging lamp is supported by three chains of equal length, fixed to points 
A, B, C in the ceiling which form an equilateral triangle of side 16 cm, and the 
lower ends are connected at a point 20 cm below the ceiling. Calculate
(a) the length of each chain,
(b) the angle which each chain makes with the ceiling.

4 Two equal rectangles 3 m by 4 m are placed so that the longer sides XY 
coincide. The angle between their planes is 50°. Find the angle between the 
diagonals which pass through X.

5 A right pyramid stands on a square base of side 8 cm. The height of the 
pyramid is 10 cm. Calculate the angle between two adjacent faces.

6 Three mutually perpendicular lines meet at O and equal lengths OA, OB, 
OC are cut off. Find the inclination of ABC to ABO.

7 O is the middle point of the edge AD of a cube, of side 6 cm, whose faces 
ABCD, A'B'C'D' are similarly situated. Calculate (a) the sine of the angle 
between the plane OCD' and the face CDD'C' of the cube, (b) the sine of the 
angle between the edge DD' and the plane OC'D'.

8 Calculate the vertical height and the slope of the slant edges and faces of a 
regular tetrahedron of side 8 cm, which stands on a horizontal base.

9 The roofs of an L-shaped house slope at 45°. What is the inclination to the 
horizontal of the line in which the two roofs meet?

10 In Fig. 5.3, taking the same dimensions, calculate the angle between CP and 
the plane C'D'PQ.

11 A solid is formed by placing a pyramid with square base of side 15 cm and 
height 20 cm on top of a cuboid with the same dimensions of base and the



same height. Calculate the angle which a line drawn from the vertex of the 
pyramid to a bottom corner of the solid makes with the base.

12 In a regular tetrahedron ABCD, P is the mid-point of.AB. Calculate the 
cosine of the angle between the planes PCD and BCD.

13 In a regular tetrahedron ABCD, Q is the middle point of AD. Find the angle 
between the line BQ and the plane DBC.

14 In a tetrahedron ABCD, AC = 13 cm, AB = 12 cm, BC = 5 cm, 
CD = ,/41 cm, BD = 4cm, and AD = 12 cm. Calculate the cosine of the 
angle between the planes ABC and BDC.

15 Three adjacent edges of a rectangular box are AB = a cm, AD = b cm, and 
AF =  c  cm. Find the angle between the planes BDF and BAD.

16 In a tetrahedron PQRS, P is vertically above Q, one corner of the horizontal 
base QRS. PS = PR = a, PQ = 2b, and QR = QS = RS = b. A is the mid
point of PQ. Calculate the sine of the angle between the planes PRS and 
ARS.

17 A pyramid on a rectangular base has equal slant edges. Prove that a slant 
edge makes an angle cot “ ‘^/(cot2 a +  cot2 P) with the base where a and [5 are 
the angles which the slant faces make with the base.

18 In a tetrahedron ABCD, the base ABC is an equilateral triangle of side a cm 
and the edges DA, DB, DC are all b cm long. X is the centroid of the face 
ABD. Prove that the angle CX makes with the base is arctan \  J(3b2/a2 — 1).

19 OA, OB, OC are unequal mutually perpendicular lines. Prove that 
cos Z_BAC = cos Z-OAB x cos Z.OAC.

20 The base of a tetrahedron is an equilateral triangle. The slant edges are of 
equal lengths a and make angles 9 with each other. Prove that the height of 
the tetrahedron is 1 ^ ( 3  + 6 cos 9).

Algebraic problems in trigonometry
5.5 Apart from the later questions in Exercise 5a we have so far dealt only with 
numerical examples. We have obtained solutions, but we shall now want to 
generalise these solutions in order to understand more clearly how the results 
depend upon what is given. We shall find, also, that the result often suggests to 
us the best method of proof.

Two useful hints for solving problems are
(a) draw a clear figure marking in the given facts distinctly, and right angles 

in particular,
(b) the method is often suggested by the result to be proved.

Example 3 A man notices two towers, one due North and one in a direction 
N 9 E. I f  the angle o f elevation P of both towers is the same but the height o f one is 
twice the height of the other, prove that

„ 5 cot2 P — cot2 a
9 = arccos---- ------=—-----

4 cot2 P

where a. is the angle of elevation of the top of one tower from the top of the other.
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The towers are BD, height h, and CE, height 2h. The horizontal plane through 
D cuts CE at F (see Fig. 5.9).

CF = FE =  h

[The result shows that we need cos 6, and this suggests that the cosine formula 
should be applied to triangle ABC. See Book 1, §18.3.]

From triangles ABD, DFE, ACE,

AB = h cot P BC = DF = h cot a AC = 2h cot /?

By the cosine formula in triangle ABC,

. h2 cot2 B + 4h2 cot2 B — h2 cot2 a
cos 6 = -------------------------- ----------------

2 x h cot P x 2h cot P

5h2 cot2 P — h2 cot2 a 
4h2 cot2 P

„ 5 cot2 P — cot2 a
.'. 6 = arccos------ ------=—-----  *

* Qu. 8 Draw a triangle ABC and its circumcircle, marking the centre, O. Show 
that L  BOC = 2A, where L  BAC = A. By considering the isosceles triangle OBC, 
show that

a
sin A

= 2 R

where R is the radius of the circumcircle.
b c

[Similarly it can be shown that —-----and —------
sin B sin C

equal 2R. This enables us to



Three-dimensional trigonometry 83 

prove a more general form of the sine rule (see Book 1, §18.2), namely

a b c
-- --------=  ---- ------- =  — =  2 / fsin A sin B  sin C

This form of the sine rule is used in the next example.]

Example 4 Two vertical walls o f equal height cast shadows whose widths are b m 
and c m when the altitude of the sun is 9. I f  the angle between the walls is a, prove 
that their height is

b2 + c2 + 2be cos a 
cot2 9 sin2 a

m

P

Figure 5.10

PQ is the line in which the two walls meet, and R is the point shadow of P. 
L and M are the feet of the perpendiculars from R to the two walls. Let x  m be 
the height of each wall (see Fig. 5.10).

Since Z.QLR =  Z.QMR = 90°, RLQM is cyclic, and QR is the diameter of 
the circumcircle. L  LQM = a therefore L  LRM = 180° — a.

By the cosine formula in triangle LMR,

LM2 = b2 + c2 — 2bc cos (180° — a) 
= b2 + c2 + 2be cos a



By the sine formula in triangle QLM,
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LM
= 2 R

sin a

where R is the circumradius of triangle LMR and therefore of RLQM. 
But from triangle PQR, the diameter of the circumcircle QR = x cot 9,

LM = x cot 9 sin a
x 2 cot2 0 sin2 a =  b2 +  c2 + 2be cos a

Exercise 5b
1 The angles of elevation of points A, B from a point P are a and P respectively. 

The bearings of A and B from P are S 20° W and S 40° E, and their distances 
from P measured on the map are 3 km and 1 km respectively. A is higher

, A , _. 3 tan a — tan /?
than B. Prove that the elevation of A from B is tan ---------j-------- .

v  ' _
2 A pole is set up at C, a point due East of A and due North of B. M is the mid

point of AB. The angles of elevation of the top of the pole from A, M, B are a, 
y, P, respectively.

Prove that cot2 a + cot2 P = 4 cot2 y. [Hint: a semi-circle can be drawn on 
AB as diameter, with C as a point on the circumference.]

3 A plane slopes down towards the South at an angle a to the horizontal. A 
road is made up in the plane in the direction (¡> E of N. Prove that the 
inclination of the road to the horizontal is tan “ 1 (tan a cos 0).

4 From a point on the ground, two points on the top of a horizontal wall, a m 
apart, are observed at angles of elevation a and /?. The line joining them 
subtends an angle 9 at the point. Prove that the height of the wall is

{sin2 a + sin2 p — 2 sin a sin p cos 9}

5 A mast is erected at a point P. At a point B due West, its angle of elevation 
is a, and at a point C due South, its angle of elevation is p. Prove that 
its angle of elevation at a point due South of B and due West of C is 
c o t-y (c o t2 a -I- cot2 P).

6 A vertical flagstaff of height y m stands on the top A of a tower. The elevation 
of A from a point due South of it is a, and from a point due East is j8. The 
direct distance between these two points, which are in the horizontal plane 
through the foot of the tower, is x m and the elevation of the top of the 
flagstaff from the second point is y. Prove that

m

a sin a sin P
m

x2(cos P — cot y)2
cot2 y (cot2 a +  cot2 P)



7 There are two lights, each / m above level ground, and a m apart. A man, 
whose height is h m, stands anywhere on the ground. Prove that the line 
joining the ends of his two shadows cast by the lights is of length ah/(l — h) m.

8 The angles of elevation of the top of a tower measured from three points 
A, B, C are a, [1, y, respectively. A, B, C are in a straight line such that 
AB = BC = a, but the line AC does not pass through the base of the tower. 
Prove that the height of the tower is

_________ c\ / 2 _________
{cot2 a + cot2 y — 2 cot2 /?}1/2

9 A man observes a flagpole due North of him. He walks in a direction a N of 
W for a distance of x m and finds the angle of elevation p is the same. Prove 
that the angle of elevation when he has walked a further distance x m in the 
same direction is

tan B
arctan —t- — „ . , ,

^/(l + 8 sin2 a)

10 From a point A, a lighted window due North of A has an elevation a. From a 
point B, due West of A, the angle of elevation is p. Prove that the angle of 
elevation from the mid-point of AB is

2
arctan —;------- =---------- ,—

^/(3 cot2 a + cot2 P)

11 A factory is built within a rectangular plot ABCD. The elevations of the 
tallest chimney on the building from the three corners A, B, C are a, P, y 
respectively. Prove that its elevation from the fourth corner D is

arccot ^(cot2 a + cot2 y — cot2 P)

12 A vertical rectangular target faces due South on a horizontal plane. The area 
of the shadow is l j  times the area of the target when the sun’s altitude is a. 
Find the bearing of the sun.

13 A vertical tower stands on horizontal ground. From a point P on the ground 
due South of the tower the angle of elevation of the top of the tower is a. 
From a point Q on the ground, South-East of the tower, the angle of 
elevation is p. Prove that the bearing of Q from P is
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arctan
cot P

y/2 cot a — cot P
E of N

14 A triangle ABC is drawn on a plane sloping at 6 to the horizontal. A, B are 
on the same level and C is below them. CA, CB makes angles a, P with the 
horizontal plane through AB.

Prove that, if L  ACB = C,

sin 9 =
^{sin2 a + sin2 P — 2 sin a sin P cos C}

sin C
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15 A building at B is x m higher than a building at C, and there is a third 
building at A, taller than either. The angles of elevation of the tops of the 
buildings at A, B from the top of that at C are a, /?, respectively, and the angle 
between the vertical planes through CB and CA is 9. The angle between the 
vertical planes through BA and BC is <f>. Prove that the building at A is

x tan a sin </>
-----— ——----— m higher than the building at C.
tan 0 sin (9 + <t>)

16 A vertical post of height h m rises from a plane which slopes down towards 
the South at an angle a to the horizontal. Prove that the length of its shadow 
when the sun is S 9 W at an elevation ft is

h j(  1 + tan2 a cos2 9)
——  ---------------— m

tan p +  tan a cos 9
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17 A right pyramid of height h stands on a square base of side a. Prove that the 

angle between adjacent sloping faces is arccos

18 A right pyramid stands on a regular hexagonal base and its slant faces are 
equal isosceles triangles of base angle a. Prove that
(a) the angle between a slant face and the base is arccos 3 cot a),

, , , , . 2 sin2 a — 3
(b) the angle between adjacent faces is arccos —„ . ,-----.

2 sin2 a

a2 +  4h2 J

19 A vertical flagpole of height one unit stands on top of a vertical tower of 
height h units. At points on level ground distant x units and y units from the 
foot of the tower, where x #  y, the flagpole subtends equal angles of 
magnitude 9. Prove that
(a) x + y = cot 9,
(b) xy  is independent of 9. (C)

20 One face of a cube has vertices A, B, C, D and the four edges of the cube 
perpendicular to this face are AA', BB', CC', DD'. Each edge is of length a. 
The cube rests with the edge AB on a horizontal table and the edge AD 
inclined at an angle a to the horizontal. Denoting the angles of inclination to 
the horizontal of the diagonals AC' and DB' by 9 and 4> respectively, prove 
that

3 cos2 9 = 2 — sin 2a, and that 3 cos2 (j> = 2 + sin 2a (C)



Chapter 6

Some inequalities and graphs
Some inequalities
6.1 Anyone who has studied mathematics up to this level will be thoroughly 
used to manipulating equations, but many readers will not be familiar with 
inequalities. An inequality is a statement that one number is less than (or greater 
than) another. Thus the statement, ‘The sum of the squares of two numbers is 
greater than or equal to twice their product’, may be written in the form

a2 + b2 ^  lab

To prove this,

L.H.S. -  R.H.S. = a2 + b2 -  lab =  (a -  b)2
But (a — b)2 is a square and so is greater than or equal to zero, and the inequality 
is proved.

Note that the equality occurs only if a = b, therefore we may write

a2 + b2 > lab (a #  b)
(Throughout this chapter we shall be concerned with real numbers and the 
reader should assume that any letters which are used represent real numbers.)

Inequalities may be manipulated in much the same way as equations but with 
certain important reservations (see Qu. 1-4). The rules that will be used here are

(a) we may add any number (positive or negative) to each side of an inequality,
(b) we may multiply each side of an inequality by any positive number,
(c) if each side of an inequality is multiplied by a negative number, the inequality 

is reversed.

We illustrate these three rules by applying them to the inequality 5 <  9:

(a) 5 + 2 < 9  + 2 and 5 —13 < 9  —13,
(b) 5 x 3 < 9 x 3, .
(c) 5 x (— 4) > 9 x (— 4).

Note particularly that these statements are about algebraic (or directed) 
numbers. If two such numbers are represented by points on an axis going from 
left to right, the greater is on the right. Thus — 8 < — 4 and — 20 > — 36.
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Qu. 1 If a = x, then a2 = x 2. Consider the inequality a < x  if (a) a = 3, x = 5,
(b) a = — 7, x = 4. Is a2 < x2?
Qu. 2 If b = y, then 1 /b = 1 /y. Consider the inequality b.< y if (a) b = 2, y = 4, 
(b) b=  - 3 ,  y =  1. Is l/b < l/y?
Qu. 3 If a = x, b = y, then a — b = x — y. Consider the inequalities a < x , b < y  
if a = 5, x =  6, b = 4, y = 7. Is a — b < x — y?
Qu. 4 If a < x, b < y, is ab < xyl Try a = — 3, x = 2, b = — 4, y — 5.
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Example 1 Find the values of x for which
x + 3 
x — 1

>2.

(Inequalities such as this are usually easier to handle if one of the sides is zero, 
so the first step is to subtract 2 from both sides.)

x + 3 
x -  1

—  2 >  0

Putting the L.H.S. over a common denominator of (x — 1), we obtain 

x +  3 — 2(x — 1)
1

> 0

The numerator (or top line) of this fraction is zero when x = 5, and the 
denominator is zero when x = 1. To obtain the inequality we require, these terms 
must have the same signs, so consider the table below:

x < l  l < x < 5  x > 5

5 — x 
x -  1

+ +
-  + +

5 — x
x — 1 -  + -

From this table we can see that the interval required is 

1 < x < 5

[It should be emphasised that x represents a real number and so the statement 
1 < x < 5 means that x can be any number (not just whole numbers) between 1 
and 5.]

Qu. 5 Sketch the graphs of y =
x + 3 
x — 1

and y — 2, and use your diagram to

illustrate the result of Example 1.

Example 2 For what values of x is the function 2x2 + 5x —• 3
(a) negative, (b) positive?



Let f(x) = 2x2 + 5x — 3 = (2x — l)(x + 3). f(x) is zero when x =  |o r  x = — 3, so 
consider the signs of the factors in the following intervals:

Some inequalities and graphs 89

x < — 3 — 3 < x < \ i < x

x + 3 — + +
2x — 1 - - +

f(x) + - +

Alternatively, sketch the graph of the function f(x). As x -> + oo, f(x)-> + oo; 
f(i) =  f( — 3) = 0. The curve is sketched in Fig. 6.1.

Figure 6.1

By either method, the function is negative if — 3 <  x < j  and positive if 
x < — 3 or x >

Example 3 Show that 3x2 + lOx + 9 cannot be negative and find its least value.

Completing the square (see Book 1, §10.3),

3x2 + 10x + 9 = 3(x2 + ^ x  + ^ )  +  9 —^
= 3 (x + |)2 + f

Since (x + 1)2 is a square, the least value it can take is zero, so that 3x2 + lOx +  9 
cannot be zero and its least value is §.

A similar method may be applied to functions of more than one variable.



Example 4 Show that a2 + b2 + c2 — be — ca — ab cannot be negative. Under 
what circumstances is it zero?

a2 + b2 + c2 — be — ca — ab 
= %(b2 +  c2 — 2 be + c2 + a2 — 2 ca +  a2 + b2 — lab)
= i{(6 -  c)2 + (c -  a)2 +  (a — b)2} > 0

The equality occurs only when each square is zero, that is when a = b = c. 

Example 5 I f  (x2 — x + 1 )y =  2x, within what interval does y lie?

Writing (x2 — x + l)y =  2x as a quadratic equation in x,

x 2y — x( y + 2) + y = 0

The roots of the equation ax1 + bx + c = 0 are real when b2 — 4ac ^  0 (see 
Book 1, §10.2). Therefore, for real values of x,

{ - (y  + 2)}2 - 4 y 2 ^ 0  
.'. -  3y2 + 4y + 4 JsO 

(2 + 3y)(2 — y) ^  0

Hence, if x is real, y lies in the interval — |  ^  y ^  2 (see Fig. 6.2).

90 Pure Mathematics 2 6.1

Figure 6.2

Exercise 6a

For what intervals do the following inequalities hold?

1 (a)
x +  1
2 — x < 1, (b)

x + 1  
2 — x

> 1. 2 (a)
4 — x 
x + 2

<3, (b)
4 —x 
x + 2

>3.

3 (3 — x) (x +  2) > 0.
5 2x2 + x — 15 <0.
7 (4x — 3)(x + 1) > 2.

2x2 -  7x -  4 
3x2 — 14x + 11 >

4 (2x -  5)(3x + 7) > 0.
6 10 + x — 2x2 <  0.
8 (5x — 7)(x — 3) < 16x.

10
(x — l)(x — 3) 
(x +  l)(x — 2)



Prove the following inequalities and find the extreme values of the functions 
concerned.

11 x 2 — 5x + 1 > 0. 12 4x — x 2 — 5 < 0. ■
13 2x2 + 3x + 2 > 0. 14 5x -  3x2 -  3 < 0.

Find the intervals of x and y for which there are no real points on the following 
loci:

15 y2 = x(l -  x). 16 3x2 + 4y2 = 12.
17 y2 = x(x2 — 1). 18 (x — 2)(x — 3)y = 2x — 5.
19 (x2 + l)y = 3x + 4.

For what intervals are the following equations satisfied by real values of ffl

20 sin 8 = - — J-. 21 cos 9 = * +  ̂.
x + 1 3 — x

22 sin 8 + cos 8 = x. 23 Show that (a + b)2 ^  4ab.
24 Verify the identity

a3 + b3 +  c3 — 3 abc = (a + b + c)(a2 + b2 + c2 — be — ca — ab)

and deduce that the arithmetic mean of three unequal positive numbers
x, y,z  [^(x +  y + z)] is greater than their geometric mean [(xyz)1/3].

25 Express 5x2 — 12xy + 9y2 — 4x + 4 as the sum of two squares and show that 
the expression is positive except for one pair of values of x and y.

Rational functions of two quadratics
6.2 In this section we shall be concerned with rational functions of two 
quadratics, that is, functions of the form

ax2 + bx + c 
Ax2 + Bx + C

where a, b, c, A, B, C are constants. The method of the last section will be used.

Example 6 Sketch the curve y = ^ — II +  •
p J (x +  l)(x — 3)

First note the following:

(a) when y = 0, x = 1 or x = — 2;
(b) when x = 0, y = f ;
(c) when x =  — 1 or x =  3, the denominator of the fraction is zero so that there is 

no corresponding value of y; the function is discontinuous at these points. If x 
differs from 1 or 3 by a small amount, the denominator is small and so y is 
large. Therefore y -♦ oo a s x - > -  1 and x —► 3;

(d) given any value of x, other than 1 or 3, there exists one and only one value of
y. Note that since the equation is a quadratic in x, there are in general two 
values of x corresponding to each value of y;
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(e) the sign of y may be determined by inspecting the signs of the factors x + 2,
x + 1, x — 1, x — 3;

x <  —2 — 2 < x < — 1 — 1 < x < 1 1 < x <  3 3 < x

x + 2 — + + + +
x + 1 - - + + +
x — 1 - - - + +
x  — 3 — — — - +

y + - + - +

x 2 + x - 2

If x is large, the terms in x  and the constants are small compared with x 2 so that 
y as x 2/x 2 = 1. If we substitute y = 1 in the equation,

x 2 — 2x — 3 = x 2 + x  — 2

Therefore the graph crosses y =  1 at ( — -j, 1).

Our findings are shown in Fig. 6.3; the shading denotes areas where the curve 
cannot lie (see stage (e)).

The graph is then sketched as in Fig. 6.4.

Figure 6.3
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Figure 6.4

The lines x = — 1, x = 3, y = 1, which are represented by broken lines, are 
called asymptotes. Note that the curve approaches them ever more closely, 
without meeting them, as it recedes from the origin. It is possible, however, for 
the curve to cut an asymptote, as at ( — %, 1).

Care should be taken to find from which sides the graph approaches the 
asymptotes. For x = — 1 and x =  3 this was ensured by examining the sign of y. 
For y = 1 the point of intersection with the graph was found. Another method 
for the latter is to take a second approximation for y, namely

If x > 0 , the numerator is greater than the denominator, so that the graph 
approaches y = 1 from above. On the other hand, when x is large and negative, 
y < l .

Example 7 Prove that (3x — 9)/(x2 — x — 2) cannot lie between two certain 
values. Illustrate graphically.

Regard this equation as a quadratic which gives x in terms of y, then

(x2 — x — 2)y = 3x — 9 
.'. yx2 - x ( y  + 3) +  9 - 2 y  = 0

x2 + x
x2 — 2x

(1)
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When x is not real,

{— (y +  3) }2 — 4y(9 — 2y)<0  
9y2 — 30y + 9 < 0 

3(3y — l)(y — 3) < 0
? < y  < 3

Therefore there are no real values of y between ^ and 3.

Now y = ^  ^  2) ’ an<̂  we may proceed as in Example 6.

(a) If y =  0, x = 3.
(b) If x =  0, y = 4 f
(c) The lines x = — 1 and x = 2 are asymptotes; the function is discontinuous 

when x =  — 1 and x =  2.
(d) There is only one value of y for each value of x.
(e) The sign of y is obtained:

x < — 1 — 1 < x < 2 2 < x < 3 3 < x

x + 1 — + + +
x — 2 - - + +
x — 3 — — — +

y - + - +

Figure 6.5
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(f) As x-> oo, y-»0.
(g) The values of x  corresponding to y =  7 and y =  3 are found from equation (1).

[Note that y = 5 and y = 3 make the discriminant ‘b2 — 4ac’ =  0, so that 
equation (1) on page 93 has equal roots. The sum of the roots is (y + 3)/_y, 
therefore x = j(y  + 3)/y.] When y =  3, x =  5; when y =  3, x =  1.

Our findings are shown in Fig. 6.5 and the curve has been sketched in Fig. 6.6.

Figure 6.6

Example 8 Sketch the curve y = 2x/(x2 +  1).

(a) The curve cuts the axes only at (0,0).
(b) As a quadratic in x, the equation is x 2y — 2x + y = 0.
For real values of x,

(— 2)2 — 4_y2 >  0 
/. 4(1- y ) ( l +303*0 
.'. — 1 <  + 1

(c) When y =  —l ,x =  — 1, and when y — +  1, x =  +1. Therefore (— 1, — 1) is a 
minimum and (1, 1) a maximum.
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(d) As x —♦ go, y->0.
(e) Since x 2 + 1 is positive, x and y have the same sign; x 2 + 1 is never zero, so 

the function is continuous.
»

The curve has been sketched in Fig. 6.7.

Figure 6.7

Exercise 6b

Sketch the following curves.

1

4

y =  

y =

x — 2 
x + 3

x2 — 1

^ x2 -  4x + 1 
y ~  x 2 -  4x +  4 '

2 y =
X

x — 1

5

8

2x — 4
(x 1 ) (x 3) 

( * - l ) 2
x(x — 2)

3 y =
x

x2 - r

(x — l)(x + 3) 
(x — 2)(x + 2)

9
( x - 2 ) 2 
x(x +  2) ’

For each of the following curves, find the intervals within which y cannot lie. 
Illustrate graphically.

10

13

4
(x 1) (x 3) 

4x2 — 3x

1 1
3x — 6 

x(x +  6)

14 y =
(x — 3)(x — 1)

(x — 2)2

1 2 y =
1

x 2 + 1 '

15 y =
x 2 + 1 

x2 — x — 2 ’

Find the turning points of the following and sketch the curves.

16 y =

18 y =

x2 — 4x 
x2 — 4x + 3 ’

x2 — 3x 
x2 +  5x + 4"

17 y =

19 y =

x2 — x — 2 
x2 — 2x — 8

2x2 -  9x + 4 
x2 — 2x + 1



Some inequalities and graphs 97

Some tests for symmetry
6.3 The remainder of this chapter is devoted to further aids to curve sketching, 
and the most useful of these is symmetry. •

First consider the graph of y =  x2 (Fig. 6.8 (i)), which is symmetrical about the 
y-axis. If the point (h, k) lies on the curve, we have k = h2, and so the point 
( — h,k) also lies on the curve. In general, if an equation is unaltered by replacing 
x by —x, the curve is symmetrical about the y-axis. The graphs of all even 
functions are symmetrical about the y-axis.

Similarly, if the equation of a curve is unaltered by replacing y by — y, there is 
symmetry about the x-axis (Fig. 6.8 (ii)).

Fig. 6.8 (iii) represents the curve xy = 1, which has rotational symmetry about 
a point, the origin. If (h, k ) lies on the locus, so does (—h ,— k ). In general, if an 
equation is unaltered when x and y are replaced by — x and — y respectively, the 
curve is said to have rotational symmetry about the origin. The graphs of all odd 
functions have rotational symmetry about the origin.

Qu. 6  Which of the following show symmetry about (i) the y-axis, (ii) the 
x-axis, (iii) the origin?

(b) y2 = x(x + 1),
(d) x2 -  3xy + y2 =  1,
(f) x2y -  x +  y3 = 0,
(h) tan y = sin x.

Qu.7 Some equations are unaltered by the following substitutions:
(a) x = y, y = x; (b) x =  -  y, y =  -  x.
About what lines are the corresponding curves symmetrical?
Qu. 8  Show that a curve which is symmetrical about the x- and y-axes has 
rotational symmetry about the origin.

(a) 4x2 + y2 = 1,
(c) x5 + y5 = 5xy2,
(e) y2 = x2(x + l)(x -  1), 
(g) y2 = cos x,

Example 9 Sketch the curve x2 — y2 =  1.

(a) The equation shows symmetry about both axes and the origin.
(b) Since y2 = x2 — 1, y is not real when x is numerically less than 1.
(c) When y = 0, x = ±  1.
(d) As x increases in magnitude, so does y.
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(e) On differentiation, 

d v
2 jd i - 2*

d y x
' '  dx V(x2 -  1)

1 d yas x-* ±  1, - —  
dx

■ oo

and

as x-> +  oo, ----- ► ± 1
dx

(f) Since y2 = x 2 — 1, when x, y are large, y2 is nearly equal to x2. Thus the curve 
approaches the lines y=  ±x.

The curve has been sketched in Fig. 6.9.

The form y2 = f(x)
6.4 If an equation can be expressed in the form y2 = f(x), then it will have 
a number of special features. Since y2 cannot be negative, x must be limited 
to values for which f(x) is non-negative; for any such value we can write 
y =  ±  ,/f(x), so the graph will be symmetrical about the x-axis.

Example 10 Sketch the graph of y2 = x(x — 2)2.



The factor (x — 2)2 is never negative so the sign of the R.H.S. is determined by 
the factor x. So x must be greater than, or equal to, zero to obtain real values of 
y. Also, y is zero at x =  0 and x = 2.

Consider y2 = x(x — 2)2.
On differentiating, we obtain

2y^p- = (x — 2)2 + 2x(x — 2)
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d y (x — 2)(3x — 2) 
dx ~~ + 2x1/2(x — 2)

= +
3x — 2
2 ^

dv 2
From this we can see that —  = 0 when x = and that

dx 3

and

as x ->• 0, d)> nn
dx

as x -* 2,

as x —► oo,
dx

The graph of y2 = x(x — 2)2 is shown in Fig. 6.10.

Figure 6.10

[It should be noted that the equation y2 = x(x — 2)2 cannot be regarded as a 
rule for expressing y as a function of x, because there are two values of y for each
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value of x. However y =  + yjx(x — 2) and y = — x(x — 2) could be regarded 
as two functions whose graphs could be combined to produce the graph of 
y2 = x(x — 2)2.]

«
Qu.9 Find the gradient of
(a) y2 = x(x -  2) (x -  4), (b) y2 = x2(x + 2),
at the points where the graphs cut the x-axis.

Sketch the curves by the method of Example 10.

Simple changes of axes
6.5 The equation of a circle, centre C(a, b) and radius r, is (Book 1, §21.1)

(x -  a)2 + (y — b)2 = r2

and the equation of an equal circle, centre the origin, is

x2 + y2 = r2

Therefore, if new axes CX and CY were taken parallel to Ox and Oy, the 
equation of the former would become

X 2 + Y2 = r2

This is equivalent to making the substitutions

X  = x — a Y = y — b 

or, as is often more convenient, 

x = X  + a y = Y  + b

These relationships may easily be verified from a diagram.

Such a change of axes is sometimes helpful in curve sketching. Thus

(y — i)2 =  4(x + 2) 

becomes

Y2 = AX

referred to parallel axes through ( — 2, 1) and the curve is now easily drawn, as in 
Fig. 6.11.

Note that the equation y = ax2 + bx + c may be written

> + 4a - C- a{X + Ta

2

Referred to parallel axes through
b_
2a'

b2 — 4 ac 
4 a

the equation becomes

Y = a X 2

which is a parabola (see Book 1, §10.4 and §22.6).
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Example 11 Sketch the function 1 +  2 sin (0 +  jri) for values of 9 from 0 to 2n.

Write y = 1 + 2 sin {6 + 
y — 1 = 2  sin (0 + 571)

With the substitutions

© = 0 + 57r and Y - y — 1 (1)

^ 
▼
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the equation becomes

6.5

Y = 2 sin 0

The graph of Y = 2 sin © has been sketched in Fig. 6.12. Writing 6 = y = 0 in 
equations (1), the origin of the d, y  axes is found to be (jrc, — 1), referred to the 0 , 
Y axes. The 6, y axes were then drawn to pass through this point.

The form y  =  l/f(x )

6.6 Example 12 Sketch on the same axes the graphs of
(a) y = (x+  l)(2x -  3), (b) y =  l/{(x +  l)(2x -  3)}.

(a) The graph of f(x) =  (x + l)(2x — 3) is a parabola meeting the x-axis at 
(— 1,0) and (1 |, 0). As x-> ±  oo, y-*  + oo. See the broken line in Fig. 6.13.

Figure 6.13

(b) The reciprocal of f(x) is sketched as follows:
(i) the signs of f(x) and l/f(x) are the same,
(ii) as f(x)-> oo, l/f(x)->0 and vice versa,
(iii) when f(x)= ±  1, l/f(x) has the same value. 

The two graphs are shown in Fig. 6.13.
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Sketch the following curves:

1 2x2 + y2 = 4.
3 x 2y=  1.
5 y2 = x(x — 2).
7 y2 = x \2  -  x).
9 y2 = x2(l — x 2).

11 y2 ={x2 — 1) (4 — x 2).
13 y=  l/(x2 - 4 x  + 3).
15 y = (x — 2)2 + 1.
17 y = 1 + j  cos (x + in)
19 y = 1/(1 +  2 sin x), 0 ^ x ^ 4 ti.

2 2x2 — y2 = 4.
4 x2y2 =  4.
6 y2 = x3(4 -  x).
8 y2 =  x2(x2 — 1).

10 y2 = x2(2 -  x)3.
12 y = l/{(x — 2)(5 — x)}.
14 xy(x2 - l ) = l .
16 ( x - l ) ( y  + 2)=l .
18 y =  3 — 2 sin (2x — ¿rc).
20 y = 1/(1 — 2 cos 2x), 0 ^  x ^  2ti.

Exercise 6d (Miscellaneous)
1 Determine the intervals in which

, . 2 . , ,  „ 2x2 -  4x +  5 x2 -  4x + 3
(a) x2 -  4x + 3 > 0, (b) ------j“— —  > (c) ------ —  > °-

2 By completing the square, or otherwise, prove that the inequality

x2 — 2px + q > 0

holds for all values of x if and only if q > p2. Find the intervals in which the 
inequality is broken if q =  p2 — 1. (L)

3 Write down conditions that the roots of the equation ax2 + bx + c = 0 may 
be real and positive.

Prove that if these conditions are satisfied, the roots of the equation

a2y2 + a(3b — 2c)y + (2b — c)(b — c) + ac = 0

are real and positive. (L)
4 Show that, if A is positive but not greater than 3, the roots of the equation

(A -  2)x2 -  (8 -  2A)x -  (8 -  3A) =  0 

are real.
Find the range of values of A for which one root is real and positive and the 

other root is real and negative.! (L)
5 Prove that ax2 + bx + c is positive for all real values of x if a > 0 and

b2 < 4ac.
Find the range of values of k for which x 2 + kx + 3 + k is positive for all 

real values of x. Deduce the range of values of k for which k(x2 + kx + 3 + k) 
is positive for all real values of x. (JMB)

f i t  is a common practice, especially in examination questions, to use the phrase ‘range of values’ 
when an interval is required: this should not be confused with the use of ‘range’ to mean the set of 
images of a function f(x).



6 Show that, if a, b, c are real, a2 + b2 + c2 — be — ca — ab cannot be negative.
Show also that the roots of the equation

3x2 — 2x(a + b + c) + be + ca + ab = 0

are real, and find the relation between a, b, c if one root is three times the 
other. (L)

7 Find the ranges of values of a in the interval 0 <  a ^  2rc for which the roots of 
the equation in x

x2 cos2 a + ax{yj 3 cos a +  sin a) +  a2 = 0

are real. (C)
8 Prove that ax2 + 2bx + c has the same sign as a except when the equation 

ax2 + 2bx +  c = 0 has real roots and x lies between them.
By using the substitution x =  x' + 4, y = y' — 1, or otherwise, prove that, 

for any real values of x and y,

x 2 + 2xy + 3y2 — 6x — 2y ^  — 11 (JMB)

9 Show that the expression x2 + 8xy — 5_y2 — k(x2 + y2) can be put in the form 
a(x + by)2 when k has either one or other of two values. Find these values 
and the values of a and b corresponding to each value of k.

Prove that when the variables x and y are restricted by the relation 
x2 + y2 = 1 but are otherwise free, then

-  7 <  x2 + 8xy -  5y2 O  (O & C)

10 If the roots of the equation ax2 + 2bx + c = 0 are real and unequal, prove 
that the function
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(a +  c)(ax2 + 2 bx + c) — 2 (ac — b2)(x2 + 1)

is positive for all real values of x.
11 Prove, by first squaring, that, if 0 < x < 1,

-  rW 2 •( 1 - X )
4 — 3x

(JMB)

and deduce that

4 — 3x
Hence prove that (1 — x)1/2 differs from —— — by less than

(4 — x) (4 — 3x) "

By putting x = 5 , show that J 2  differs from 99/70 by less than 2 x 10“4.
(O& C)

12 (a) Find what restrictions must be imposed on the values of x and y in order 
to satisfy both the inequalities
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x>  y and
x + 1 y + 1

(b) Show that b2 + c2 ^  j(b + c)2, and hence find the range of values of a for 
which the simultaneous equations

a + b + c = 1 
a2 + b2 + c2 = 3

may be satisfied for real values of b and c. 
13 (a) If pq > 0, prove that p/q > 0.

Find the intervals in which

(JMB)

(i)
1 — 4x

>0, (ii)
2x

+ ■ >3.
2x — 3 x —1 x — 2

(b) In one diagram sketch the three straight lines

x + y — 3 = 0, y -  j x  -  5 =  0, y — 3x + 10 = 0

and shade the region in which the following three inequalities are all 
satisfied:

x + y — 3 > 0, y — j x  — 5 > 0, y — 3x + 10 > 0 

In a second diagram shade the region in which none of them is satisfied.

14 Prove that — t <
1< - ,

+ 4
Draw in the same diagram the graphs of

x
y : y =  x +  1

x2 + 4 ’
from x = — 4 to x = +4, and deduce that the equation

x
= x + 1

x2 + 4
has only one real root in this interval. Find the value of this root as 
accurately as you can. (O & C)

15 Prove that, if x is real, the function (2x2 — 5x + 2)/(x — 1) can assume all real 
values.

Sketch the graph of y = (2x2 — 5x + 2)/(x — 1) from x = — 1 t o x = + 3 ,  
omitting the portion given by the values of x very near to + 1. (L)

16 For what real values of x is -— = 1?

Solve the inequality — i- 
1 + 2x

17 Determine the set of values of x for which 

6 ... 6

1 + 2x  

< 1.

(a) x + 1
< x, (b) |x| + l < x .

(O& C)

(O& C)
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18 Find the set of values of x for which
(a) x 2 — 5x + 6 ^  2, (b) l/(x2 — 5x + 6) ^  j .

x(x + 2)
19 Find the set of values of x for which

x — 3
< x + 1."

20 Solve the inequality
2x

x + 1
> x, (x e R, x #  — 1).

(O& C)

(C)

(C)

21 The function f is defined for real values of x (except — 1 and 2) by 

x + 2
f(x) =

x2 — x — 2

Find the set of values taken by f(x) and sketch the graph of y = f(x). (C)
22 Given that y{x — 1) =  x2 + 3, where x is real, show that y cannot take any 

value between — 2 and 6.
Find the asymptotes of the curve y =  (x2 + 3)/(x — 1) and sketch the curve, 

showing the coordinates of the turning points. (C)
23 Given that f(x) =  x — 1 + l/(x + 1), x real, x /  1, find the values of x for 

which f'(x) =  0. Sketch the graph of f, showing the coordinates of the turning 
points and indicating clearly the form of the graph when |x| becomes large.

(JMB)
24 Show that the graph of y = (x2 — l)/(x2 +  4x) has no real stationary points

and sketch this graph. (JMB)
25 The domain of the function f is the set D = {x: x e R, x #  — 1, x #  1}. The

function f: R is defined by

(x — l)(x + 1)

Find the coordinates of the maximum point on the graph of f and state the 
equation of each of the asymptotes of the graph.

Sketch the graph showing in particular how the curve approaches each of 
its asymptotes. (L)



Chapter 7

Further equations and factors
Equations reducing to quadratics
7.1 Certain types of equation can be solved by reducing them to a quadratic 
equation and, as no new principles are involved, this topic is simply illustrated 
by examples. There is no need to read all the Examples 1 to 6 before attempting 
Exercise 7a—some readers will prefer to work the corresponding questions 
before going on to the next example.

4x 84
Example 1 Solve the equation---- -------1— 5 — = 11.

3 x +  4x

Substitute y = x2 + 4x in the given equation.

y 84
• ^ H---- = 11

3 y

.-. y 2 — 33y + 252 =  0
O'— 12)(y — 21) =  0

(a) If y =12,
x2 + 4x -  12 = 0 
(x +  6Xx — 2) =  0

.’. x =  —6, 2

(b) If y =  21,
x2 +  4x — 21 = 0 

.'. (x +  7Xx — 3) =  0
.’. x =  - 7 ,3

Therefore the roots of the equation are —7, —6, 2, 3.

Example 2 Solve the equation ^J(5x — 25) — J (x  — 1) =  2.f

The method used is to isolate one square root on one side of the equation and 
then to square both sides.

+ By convention the square root sign is always taken to mean the positive square root, e.g. v-9 = +  3.

107
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7 ( 5 x - 2 5 ) - 7 ( x - l )  =  2
V(5x - 2 5 )  = 2 + V(x - 1 )

5x — 25 =  4 +  4^/(x — l) + x — l 
4x -  28 = 4^(x -  1) 

x - 7  = y j ( x -  1)

Squaring,

x2 — 14x + 49 = x — 1 
x2 -  15x + 50 = 0 
(x — 5)(x — 10) = 0

Now check the values x =  5 and x =  10 in the original equation.

If x = 5, L.H.S. = 7 0  -  7 4  = - 2  

Therefore 5 is not a root of the equation.

If x = 10, L.H.S. = 725 -  7 9  = 2 

Therefore the only root of the equation is 10.

Example 2 illustrates the need for checking the roots obtained by squaring 
both sides of an equation.

Example 3 Find the coordinates of the points of intersection of the circles 
x 2 + y2 — 6x + 4y — 13 = 0 and x 2 + y2 — lOx + lOy — 15 = 0.

To find the points of intersection, we solve simultaneously the equations

x2 + y2 — 6x + 4y — 13 = 0 (1)
x 2 + y2 — lOx + lOy — 15 =  0

Subtracting,

4x — 6y + 2 =  0

.'. 2x =  3y— 1 and 4x2 = 9 y 2 — 6y +  1 

4 x (1):

4x2 + 4y2 -  24x +  16y -  52 = 0

.’. (9y2 -  6y + 1) +  4y2 -  12(3y -  1) + 16y -  52 = 0

.-. 13y2 — 26y — 39 = 0 

.'. 13(y + l)(y — 3) = 0

Substituting y = — 1 and y = 3 in 2x = 3y—1, we obtain x = —2 and 
x = 4, respectively.

Therefore the circles meet at ( — 2, — 1), (4, 3).

The next example uses one of the results (Book 1, §9.7) that if a, p are the roots 
of the equation ax2 + bx + c =  0, then <x + P = — b/a and ap = c/a.



Example 4 Find where the normal at (at2, 2at) to the parabola y2 = 4ax cuts the 
curve again.

4

The gradient at (at2, 2at) is given by

d y dy dx 2 a 1
dx di dt 2 at t

Therefore the gradient of the normal is — t and its equation is

tx + y — at3 — 2 at = 0

To solve simultaneously with y2 = 4ax, multiply the former by 4a:

t x 4ax + 4ay — 4a2t3 — 8a2i =  0 
.'. ty2 + 4ay — 4a2t3 — 8a2t =  0

Now one root of the equation is y = 2at (since the normal meets the curve at 
(at2, 2at)). But the sum of the roots is —4a/t. Therefore the other root is

- y - 2 a t =  -2 a (i +  2/t)

x =  y2/(4a) = a(t + 2 /t)2

Therefore the normal meets the parabola again at 

(a(t + 2/t)2, —2a(t + 2/t))

(For another method, see Exercise 9a, No. 7.)
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Example 5 Show that, if the equations 

x 2 + ax + 1 = 0  and x 2 + x + b = 0 

have a common root, then (b — l)2 = (a — 1X1 — ab).

If Xj is a root of both equations, 

x 2 +  axj  +  1 = 0
Xi2 + Xj + b =  0

We must now eliminate x 1 from equations (1) and (2). Subtracting,

x fa  — 1) + 1 — b = 0

(b~  1)x, = • ( ^  1)
(a  — 1)

We may now substitute for Xj in (1) or (2), or proceed as follows. 

a x (2 ) - ( l ) :

x 12(a — 1) + (ab — 1) = 0

. . x ,- = (1 - a b )  

( a -  1)

( 1)
(2)

(3)

( a # l ) (4)
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From (3) and (4),

(b— l)2 1 - a b
(a — l)2 a — 1

( b - l ) 2 = ( a - lX l - a f c )  (a #  1)

The next example shows a method which can be used to solve a quartic 
equation whose coefficients are arranged symmetrically in the form

Ax4 + Bx3 + Cx2 + Bx + A = 0

Example 6 Use the substitution y = x  + 1/x to solve the equation 

2x4 -  9x3 + 14x2 - 9 x  + 2 = 0

Let y = x H—  
x

.'. y2 = x2 + 2 + ^

Dividing both sides of the given equation by x 2,

2x2 — 9x + 14------ | - ^ t =  0

1
2 1 x  + 2-1— % ) — 91 x H—  1 + 10 — 0

1
x ] \  x ,

2y2 - 9 y +  10 =  0 

. '. ( y -2 X 2 y -5 )  =  0

(a) If y =  2, (b) If y =  f.

x 4— = 2  
x

x2 — 2x + 1 =  0 
(x — l)2 =  0 

x = 1

x + -  =  f
X

2x2 — 5x + 2 = 0 
(2x -  IX* -  2) = 0 

x = i, 2

Therefore the roots of the equation are j, 1, 1, 2.

Qu. l  Show that the substitution y = x + 1/x transforms the quadratic equa
tion ay2 + by + c = 0 to the form ax2 + bx + d + b/x + a/x2 = 0.

Exercise 7a
Solve the equations in Nos. 1-19.

1 (x2 — 2x)2 + 24 = 1 l(x2 — 2x). 2 x2 + 2x = 34 + 35/(x2 + 2x).
3 2 - 5 e " x +  2e 2x =  0. 4 4X- 5  x 2X + 4 =  0.
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5 x2 +  9/x2 = 10. 6 x4/3 + 16x - 4 / 3  _ 17.
7 V(x + l) + V (x -2 )  = 3. 8 f ( x  --5) + y/x = 5.
9 "Cj X 1 T X II 10 2V(x + 4)--yj (x — 1) = 4.

11 2 f ( x  -  1) + f ( x  -  4) =  x. 12 y/(X-- i )  + 2 f i x — 4) =  4.
13 2yJ(2x — 12) — y/(2x — 3) = 3. 14 xy = 4, x - 2  y-

oIICN1

15 x2 + y2 — 2x — 2y — 23 = 0, x --  7y +  31 = 0.
16 3x — 4y — 5 = 0, x2 + y2 + 2x + 4y — 20 = 0.
17 x2 + y2 — 8x + 6y =  0, x2 + y2 — 5x +  lOy = 0.
18 x 2 + y2 + 8x — 4y + 15=0, x2 + y2 + 6x + 2y - -15 = 0.
19 4x2 + 25y2 = 100, xy = 4.
20 One root of the equation in x

bx2 — x(ab + 2a + 2b) + 2 a(a +  b) =  0

is a. Use the formulae for (a) the sum, (b) the product of the roots of a 
quadratic equation to find the other root of the equation.

21 Repeat No. 20 for the equations
(a) cx2 — acx + dx + cx — ad — ac =  0,
(b) ax2 — bx2 — a2x  + abx + ax + bx — a2 — ab =  0.

22 Find the equation of the normal to xy = c2 at (ct, c/t) and obtain the 
coordinates of the point where the normal cuts the curve again.

23 A chord of gradient 2 passes through the point (ap2, 2ap) on the parabola 
y2 = 4ax. Find the coordinates of the other end of the chord.

24 A line with gradient t cuts the rectangular hyperbola at (ct, c/t). Find the 
coordinates of the other intersection.

25 For the ellipse b2x 2 +  a2y 2 = a2b2, find the coordinates of the other end of 
the chord through (a, 0) with gradient a/b.

26 Find the condition that the equations

x 2 + 2x +a = 0, x 2 + bx + 3 = 0

should have a common root.
27 Show that, if the equations

x 2 + 2 px + q = 0, x 2 + 2 Px +  <2 = 0

have a common root, then, (q — Q)2 + 4(P — p)(Pq — pQ) =  0.

28 Solve the equations

ay + bx + c = 0, Ay +  Bx +  C = 0 

and deduce the condition that the equations 

ax2 + bx + c = 0, A x2 + Bx + C = 0 

should have a.common root.

Solve the following equations:

29 6x4 — 35x3 + 62x2 — 35x +  6 =  0.
30 4x4 + l7x3 +  8x2 +  17x +  4 =  0.
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A theorem about ratios
7.2

7.2 There is a theorem about ratios which on occasions can greatly simplify 
algebraic working and which sometimes shortens working in trigonometry.

I f  7 = -  — ^  =  ..., then for any numbers l, m, n ..., not all zero, 
b d f

a c e la + mc + ne + ...
b d f  lb + md + n f+ ...

To prove this, let a/b = c/d = e/f = ... = k, say.

. '.a  = bk, c = dk, e = fk  etc.

la + mc + n e+ ... lbk + mdk + nfk + ... 
lb + md + nf + ... lb + md + nf+ ...

k(lb + md + n f+ ...)  
lb + md + nf +  ...

= k

a c e la + mc + ne + ...
' b d f  lb + md + nf + ...

Qu. 2 With a = 3, b = 5, c =  6, d = 10, e =  12,/ = 20, l =  5, m = — 2, n =  — 1, or 
other suitable numbers, verify that the above ratios are equal.

Express the result of the theorem in your own words.

w, , „ c , a - c  b - dExample 7 I f  -  =  - , prove tha t------=  ------
b d a + c  b + d

d Q
Let -  = - = k ,  .'. a = bk,c = dk.

b d

a — c bk — dk b — d
" a + c bk + dk b + d

Qu. 3 With a = 6, b =  8, c = 3, d = 4, or other suitable numbers, check the 
result of Example 7.

b c — da c a
Qu. 4 If — = —, prove th a t----- -

b d a + b c + d 
la + mb Ic + md

* Qu. 5 Prove that, if % =  then ,
b d Aa + pb Ac + pd

numbers such that A, p are not both zero.

, where l, m, X, p are any

Example 8
c a2 — b2
- , prove that —=—  
d a +b

c2 — d2 
c2 + d2'
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.  a  c
L c ,b = j = k ■

a

a = bk, c = dk. 

b2k2 - b 2 k2 -  1
a2 + b2 b2k2 + b2 k2 + 1 

"•2 - d2 k2 — 1
Similarly - ,  „

c2 + d2 k2 + 1
, and the result is proved.

(Nos. 1-10 of Exercise 7b are on the above work.)

Example 9 Prove that, in triangle ABC,

b — c B — C B + C
------ = tan —-—  cot —-—

By the sine formula,

b c 
sin B sin C

b — c sin B — sin C 
" b  + c sin B + sin C

_  2 cos j{B + C) sin j(B — C)
2 sin %(B + C) cos %(B — C)

.'. 7— - = cot 2(B + C) tan %(B — C) 
b + c

(Now work Nos. 11-15 of Exercise 7b.)

Example 10 Solve the simultaneous equations,

2x + 3y + 4z =  8, 3x —2y —3 z = —2, 5x +  4y + 2z = 3.

2x + 3y + 4z = 8 (1)
3x — 2y — 3z =  — 2 (2)
5x + 4y + 2z = 3 (3)

y and z may be eliminated equally easily. We eliminate y as follows:

2 x (2) +  (3): l lx  — 4z =  — 1 (4)
3 x (3) — 4 x (1): 7 x - 1 0 z = - 2 3  (5)

5 x (4) -  2 x (5): 41x = 41

.'. x = 1, z =  3, y = —2

We could regard the three equations in Example 10 as the equations of three 
planes in a three-dimensional space (see Book 1, §15.13), in which case the
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solution x = l  ,y =  — 2, z = 3, gives the coordinates of the point of intersection of 
the three planes, i.e. (1, —2, 3).

Q u.6 Solve Example 10 by eliminating z instead of y. '

(Now work Nos. 16-20 of Exercise 7b.)

Exercise 7b
a c e

In Nos. 1-10 it is given that -  =  -  =  -.
b a J

Complete the statements in Nos. 1-4.

t a c 2a — c 
1 6 = d = '

2 -  =  -  = -------- .
b d 3b -A d

a — c 2a +  3c 
b - d  = '

a + c
b + d 3 b - d

Prove the results in Nos. 5-10.

a + 2c 3 a + c
b + 2d = 3b+ d'

a2 + c2 c2 + e2
b2 + d2 d2 + f

a + 2b 2 a + b
c + 2d 2c + d

a —c + e  a + c —e
b - d + f  b + d - f  

8 ^  =

10

a2 c2 — e2
b2 ~ d2 - f

3c + 2c c + e 
3d + 2 f ~  J + f

In Nos. 11-15 use the sine formula to prove that, in triangle ABC, 

11 sin^B  — C) = - — ^cos^A. 12 cos ^{B — C) =  sin \A .

13 ———7-— -  = tan \B  cot \C.
a —b + c  a + b —c

15 a cos 2B + 2b cos A cos B = c cos B — b cos C.

14 a + ^ ~l~c =  cot cot jB.

Solve the equations in Nos. 16-20.

16 2a + b + 3c=  11, 
a + 2b — 2c =  3, 
4a + 3b + c = 15.

19 a — 36 + 6c = 5, 
a +  6b + 2c =  4, 
2a +  b + c =  7.

17 3p + 2q + 5r = 7, 
2p — 4q + 9r = 9, 
6p — 8q + 3r = 4. 

20 d — 2e +  3 /=  4, 
5d + 6e — 7 /=  8, 
7d — 5e + 6/ = 4.

18 2x + 3y + 4z =  —4, 
4x + 2y + 3z =  —11, 
3x + 4y + 2z =  — 3,
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Homogeneous expressions
7.3 An expression, or equation, is said to be homogeneous if every term is of the 
same degree. For instance, x2z + 3x3, 3x + 2y —4z, 1 /x + l /y + l /z  are homo
geneous expressions of degree 3, 1, —1 respectively.

Qu.7 Which of the following expressions are homogeneous? State the degree 
of those that are:
(a) x3 + y3 + z3, (b) 3yz + zx  — 2xy, (c) x 2 + y 2 + 2x + 2y,

(d) — + — + — , (e) x3 +  y3z + z3x, (f) x4 +  y2z2 + xyz2.
yz zx xy

Example 11 Solve, for the ratio x\y, the equation x 2 — 3xy — 40y2 =  0.

x2 — 3 xy — 40y2 = 0 
.'. (x -  8_y)(x + 5>>) = 0

.'. x —8y = 0 or x +  5y = 0

.’. x:y =  8 or —5

Example 12 Solve for x:y:z the equations 

6x — 5y — 6z = 0 lOx +  7 y — 33 z =  0

6x — 5y — 6z =  0 (1)
lOx + ly  -  33z = 0 (2)

5 x (1): 30x — 25y — 30z =  0
— 3 x (2): — 30x — 21y +  99z = 0

Adding, — 46y -I- 69z =  0
.-. - 2 y  + 3z =  0 (3)

Substituting 3z = 2y in (1),

6x — 5y — 4y = 0 
.’. 6x — 9y = 0
.-. 2 x - 3 y  = 0 (4)

Writing (4), (3) as ratios,

x:y = 3:2 y:z = 3:2

Writing these ratios so that the number corresponding to y is the same in each, 

x:y =  9:6 y:z =  6:4 

.'. x:y:z =  9:6:4

The two equations in Example 12 could be regarded as the equations of two



planes through the origin. The solution, which could be written in the form
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x y z 
9 = 6 = 4

would then be the equation of their common line (see Book 1, §15.14).
It may be noticed that a number of the equations used in coordinate geometry 

are homogeneous in x, y, a, b, c, e.g. the parabola y2 = 4ax, the ellipse 
b2x 2 + a2y2 = a2b2, the rectangular hyperbola xy = c2. One advantage of using 
homogeneous equations is that equations and expressions derived from them 
are homogeneous, which provides a method of detecting slips. For example the 
following equations cannot have been derived correctly from equations homo
geneous in x, y, a, b.

x 2 + y2 = ax + b

x — y — ab = 0

a2x 2 + b2y2 x 2 + y2 
xy x

x .-  + y =  b 
a

The reader who is used to checking dimensions in applied mathematics and 
physics will see that the expressions, ‘A homogeneous expression of degree n’, 
and ‘An expression whose terms all have dimensions [L"]’, are equivalent. Thus 
the terms of the equations ay2 = x 3, x 2 + y2 = a2, b2x 2 — a2y2 = a2b2 have 
dimensions [L3], [L2], [L4], and they are homogeneous expressions in x, y, a, b 
of degree 3, 2, 4, respectively.

Consider now the equation of the tangent to y2 = 4ax (homogeneous in x, y, a) 
at P(at2, 2at). The coordinates of P are lengths, so that t is a ratio, or it may be 
said to have dimensions [L0].

d y dy dx 2a 1
dx di di 2 at t

. | dy , . . 1
Check: —  is a ratio, so is -. 

dx t
Therefore the tangent at P is x — ty + at2 = 0,

Check: the equation is homogeneous in x, y, a.

Symmetrical and cyclic expressions
7.4 Symmetrical functions of a, ß were introduced in Book 1, §9.8. They are 
expressions such as a + ß + 2a.ß, ct/ß + ß/ct, which are unchanged when a, ß are 
interchanged. This idea can easily be extended to functions of several variables. 
For instance, yz -I- zx + xy, x3 + y3 +  z3 -I- a3 are unchanged when any two of 
the variables included in the expressions are interchanged. These, then, are said 
to be symmetrical in x, y, z and x, y, z, a respectively.



On the other hand, expressions such as

{b — cXc — a)(a — b) and a2(b — c) + b2{c — a) +  c2(a — b)
*

are changed if two of a, b, c are interchanged, but are unaltered if a is replaced by 
b, b by c, and c by a according to Fig. 7.1. Such expressions are said to by cyclic 
in a, b, c.
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When dealing with cyclic expressions in, say, three variables a, b, c, the X 
notation (Book 1, §13.8) gives a convenient shorthand. Thus

X be = be + ca + ab (1)

X a2(b — c) = a2(b — c) + b2(c — a) + c2(a — b) (2)

The term X determines the others which are written down according to the 
method indicated in Fig. 7.1. Note the order of the terms: in (1) the position of a 
term is determined by the letter it lacks', in (2) the letter which is squared is also 
the letter lacking in the brackets, and it determines the positions of the terms.

Q u.8 Write in full cyclic expressions in the three variables a, b, c given by 

(a) X (b) X a(b + c), (c) X K (d) X ab2c2.

Some useful identities
7.5 Certain identities will be needed occasionally in this book and for 
convenience they are grouped together here, which is appropriate because the 
identities are given in homogeneous forms:

(a + b)3 = a3 + 3a2b + 3ab2 + b3 (1)
(a — b)3 = a3 — 3 a2b + 3ab2 — b3 (2)

a3 + b3 = (a + ¿)(fl2 — ab + b2) (3)
a3 — b3 = (a — A)(a2 + ab + b2) (4)

a3 + b3 + c3 — 3 abc = (a + b + c)(a2 +  b2 + c2 — be — ca — ab) (5)



(1) and (2) follow from the binomial theorem and are easily written down with 
the help of Pascal’s triangle (Book 1, §14.1).

(3) and (4) may be obtained as follows. Consider a3 +  b3 as a function of a. 
When we substitute a=  —b the expression vanishes and so, by the remainder 
theorem (Book 1, §9.9), (a + b) is a factor. The other factor is found by inspection 
or long division.

Similarly, a3 — b3 vanishes when the substitution b — a is made, therefore 
(a — b) is a factor.

Qu. 9 Verify the identities (3) and (4).

Identity (5) may be verified by long multiplication of the R.H.S., but it is more 
instructive to proceed as indicated in the table below.
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factors from brackets:

term in first second result

a3 a a2 a3

a2b
{ l

— ab 1 
a2 J

0

f fl — bc^
abc \b — ca > — 3 abc

\c — ab I

Not only is the term in a2b zero, but since the R.H.S. of (5) is symmetrical 
in a, b, c, the terms in a2c, b2c, b2a, c2a, c2b are zero too. Hence the R.H.S. is 
a3 + b3 + c3 — 3 abc.

Qu. 10 Verify the following identities by the method above:
(a) (a +  b + c)2 = £  a2 +  2 £  be,
(b) (a + b + c)3 =  £  a3 + 3 £  a2{b + c) +  6abc,
(c) (a + b +  c)4 s  £  a4 + 4 £  a3(b + c) +  12 £  a2bc +  6 £  b2c2.
Qu. 11 Check the identities in Qu. 10 by the substitutions a = b = c = 1. (This 
check does not prove they are correct but it is worth doing when you have 
expanded expressions like these.)

Example 13 Factorise:
(a) 27a3b6 — 8c3, (b) a3 + b3 + c3 + 3ac(a + c).

(a) 21a3b6 -  8c3 = (3ab2)3 -  (2c)3
= (3 ab2 — 2c\9a2bA + 6ab2c +  4c2)

(b) a3 + b3 + c3 + 3ac(a + c) = b3 + a3 + 3a2c + 3ac2 + c3
= b3 + (a + c)3
= {b + (a +  c)}{b2 — b(a + c) + (a +  c)2}
= (a +  b + cXa2 + b2 + c2 — be + 2 ca — ab)
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Exercise 7c
Solve the equations in Nos. 1-5 for the ratio x:y.

1 6x2 - x y -  12y2 = 0. 2 2x2 -  7xy -  30y2 = 0.
3 x3 — 3x2y + 4y3 = 0. 4 6x3 +  7x2y — 7xy2 — 6y3 =  0.
5 4x4 -  37x2y2 + 9 /  = 0.

Solve for Nos. 6-10 the ratios x:y:z.

6 2x + 3y — z =  0, 3x — 2y + 4z =  0.
7 4x — 5y + 6z =  0, 2x +  3y — 4z =  0.
8 ax + by + cz = 0, bx + a y — cz = 0.
9 a2x + ay + z = 0, x + ay + a2z = 0.

10 x cos 0 — y sin 9 +  z = 0, x sin 9 + y cos 6 — z =  0.

Write in full the cyclic functions in x, y, z given by

11 I * 4 1 2 £ l /(y z ) .  1 3 £ x 2(y + z).
14 X x 2y. 15 X * / •

Show that:

16 X -  z) =  0. 17 X ^  + z) = 2 £  >’z-

Factorise:

18 1 -  t3. 19 64x3 + y3. 20 8 + 27z3.
21 125y3 —z6. 22 a6 - b 6.

*23 Use the result of No. 22, together with the identity

a6 — b6 = (a2 -  b2Xa4 + a2b2 + b4)

to show that a4 + a2b2 + b4 = (a2 + ab + b2\a 2 — ab + b2).
* 24 Find the sum of the geometric progression

xn_ 1 + xn~2a + ... + xan~2 + an~i

Hence, or otherwise, show that

x" — a" = (x — aXx"-1 + x n~2a + ... + xan~2 + a"-1)

*25 Given the polynomial f(x) =  b„xn + bn- 1xn~1 + ... +  b^x + bQ where br is a 
constant, use the result of No. 24 to show that

f(x) —f(a )s(x  —aXc-i-i*"“ 1 +  ••• +GX + C0)
where cr is a constant. (This proves the remainder theorem.)

Roots of cubic equations
7.6 It has been shown (Book 1, §9.7) that if a, /? are the roots of the equation
ax2 + bx + c = 0, then a +  ft =  — b/a, a/? = c/a.



120 Pure Mathematics 2 7.6

We now consider the cubic equation 

ax3 +  bx2 + cx + d = 0 (a #  0)
«

Let a, p, y be the roots of the equation

ax3 + bx2 + cx + d = 0

Now the equation with roots a, p, y may be written

(x -  ocX* -  P)(x  -  V) =  0

x3 -  (a + P + y)x2 +  (Py + yoc + aP)x -  =  0

Writing the original equation as

, b 7 c d
x3 + - x 2 + - x  +  -  = 0 

a a a

and equating coefficients of x2, x, and the constant terms,

a + P + y -
b
a

Py + yx + ixP = -  
a

„ d
<*py =  —a

Qu. 12 Write down the sum, the sum of the products in pairs, and the product 
of the roots of the equations:
(a) 3x3 — 4x2 + 2x + 5 =  0, (b) x3 = 1,
(c) 7x3 + 6x — 5 =  0, (d) (x + l)3 =  (x +  2)2,
(e) x3 — 5x2 + 2 =  0, (f) x3 +  x2 + x +  1 = 0.
Qu. 13 Write down the equations whose roots have the following sums, sums 
of products in pairs, and products respectively:
(a) 6, 11, 6, (b) 0, -1 3 , -1 2 , (c) 14, 0, -288.

Example 14 The equation 3x3 +  6x2 — 4x + 7 = 0 has roots <x, P, y. Find the 
equations with roots (a) 1/a, 1 //?, 1 jy, (b) P +  y, y + a, a + /?.

(a) If x is a root of the given equation 

3x3 + 6x2 — 4x + 7 =  0

then y =  1/x is a root of the required equation. Substituting x =  1/y, it follows 
that the required equation is

- - + 7 = 0
y

i.e.

7y3 -  4y2 +  6y +  3 = 0
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(b) If x is a root of the given equation, then y =  oc + j? +  y — x i s a  root of the 
required equation.

, ' . y = —2 — x  or x = — y — 2 
3x3 + 6x2 -  4x + 7 =  0

■ 3( — y3 — 6y2 — 12y — 8) +  6(y2 + 4y + 4) — 4( — y — 2) + 7 =  0 
- 3 y 3-  12y2 - 8 y +  15 = 0

Therefore the required equation is 3y3 + 12y2 + 8y — 15 = 0.

Qu. 14 What substitutions would have been required in Example 14 to find the 
equations with roots
(a) a2, p2, y2, (b) a -  2, P -  2, y -  2,

The method used is to form an equation with roots a, ¡1, y; in order to find the 
values of £  Py and aPy we use the identities:

From (1), 16 = 66 + 2 £  Py.

■ ■ ■ lP y= -  25
From (2), 280 -  3aPy = 4(66 +  25).

.'. a Py =  — 28

Therefore a, p, y are the roots of the equation

x3 — 4x2 — 25x + 28 = 0

The L.H.S. vanishes when x = 1, therefore x — 1 is a factor. Hence

(x — l)(x2 — 3x — 28) =0  
.'. (x -  l)(x + 4)(x -  7) = 0 

.'. x =  - 4 ,  1, 7

Therefore the equations are satisfied b y a  =  — 4, p=  l ,y  = 7 and the other five 
permutations of these numbers.

It is worth noting that the product of the degrees of the three given equations 
is 6 and that six solutions are obtained.

Example 15 Solve the equations

a + P + y = 4 a2 +  p2 + y2 =  66 a3 + p3 + y3 = 280

(a + P +  y)2 =  a2 + p2 + y2 + 2 (Jiy +  ya +  a/?) 
a3 + P 3 + y 3 -  3aPy  =  (a + P  +  y)(a2 +  P 2 +  y2 — Py  -  ya — a)?)

( 1)
(2)
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Repeated roots
7.7 For the quadratic equation ax2 + bx + c = 0 with roots a, p,

s

a +  P = — b/a <x.p = c/a

If the roots are equal, substitute P = a, then

- b 2 c
a a

.'. 4a2 =
b2 4c

a

b2 = 4ac

The cubic equation ax3 + bx2 + cx + d = 0 may be treated similarly, but it is 
more instructive to consider the problem graphically. Figure 7.2 shows two 
cubic curves of the form y = ax3 + bx2 + cx + d(a>  0). The y-axis is not shown: 
the point to emphasise is that, if the equation y =  0 has a repeated root, the 
x-axis is a tangent.

Figure 7.2

dy
In this case, —  = 0 has a root in common with y = 0. dx

Hence, if the equation ax3 +  bx2 + cx + d = 0 has a repeated root, the 
equations



ax3 + bx2 + cx + d = 0 
3 ax2 + 2 bx + c = 0
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have a root in common.

Example 16 Given that the equation 18x3 + 3x2 — 88x — 80 = 0 has a repeated 
root, solve the equation.

If 18x3 + 3x2 — 88x — 80 = 0 has a repeated root, then it is also a root of the 
equation

~  (18x3 + 3x2 — 88x — 80) = 0 
dx

.'. 54x2 + 6x — 88 =  0 

2(3x + 4)(9x — 11) = 0

The sum and product of the roots of 18x3 + 3x2 — 88x — 80 = 0 are respectively
- ¿ a n d  4?.

If x = is a repeated root, the other is — £ — ^  = — y|. The product is 
(J§L)2( — ff), which does not check.

If x = — f  is a repeated root, the other is — 4 + § = f. The product is 
(— f)2(f) = 1r> which is correct.

The roots, then, are — f, — f, f.

Qu. 15 In Example 16, verify that the sum of the products of the roots in pairs 
is -44 .
Qu. 16 If f(x) = (x — a)2g(x), show that (x — a) is a factor of f'(x).
Qu. 17 If the equation ax3 + bx2 +  cx + d = 0 has three equal roots, find the 
conditions that must be satisfied by a, b, c, d.

Example 17 Find the equation of the tangent to y = x 3 at the point (t, i3) and find 
the coordinates of the point where the tangent meets the curve again.

Therefore the tangent at (t, t3) has gradient 3t2. Therefore its equation is

3t2x — y — 2t3 = 0

To find the point of intersection with y = x3, solve the equations 
simultaneously.

3t2x -  x3 -  2f3 = 0 
.'. x3 — 3i2x +  2i3 = 0

Now, since the line is a tangent to the curve, two of the roots are t, t. The sum 
of the roots is zero, so the other root is — 21. Therefore the line meets the curve 
again at ( - 2 1, —St3).



Qu. 18 Check that ( —2i, — 8t3) lies on the tangent in Example 17. Also check 
that the product of the roots is correct.

j
Exercise 7d

1 Write down the sum, the sum of the products in pairs, and the product of the 
roots of the equations
(a) 3x3 — 4x2 — x +  2 =  0, (b) 4x3 +  5x — 6 =  0,
(c) (x + l)3 + 2(x +  l)2 — 3(x + 1) +  4 =  0,
(d) 3(x +  l)3 =  2(x -  l)2.

2 Write down the equations whose roots are a, [i, y, when Z  a, Z  a/fy are> 
respectively:
(a) 2, 0 , - 5 ;  (b) - 3 ,  2, 6; (c) 0, - 1 ,  5.

3 The equation 2x3 +  3x2 — 13x — 7 =  0 has roots a, P, y. Find the equations 
with roots
(a) a +  1, P +  1, y + 1; (b) 1/a, l/P, 1/y;
(c) a - 2 ,  f i - 2 , y - 2 ;  (d) Py,ya,a.p.

4 The equation x 3 +  3x2 — 3x — 10 =  0 has roots a, /?, y. Find the equations 
with roots
(a) — a +  P + y, a -  P +  y, a +  P -  y; (b) 2a +  1, 2/1 +  1, 2y +  1;

(C) T ’py ya txp

5 If the equation x3 +  3hx + g = 0 has roots a, P, y, find the equations with 
roots
(a) a2, p2, y2; (b) 1/a2, 1 /p 2, 1/y2; (c) a3, p 3, y3.

6 Repeat No. 5 for the equation ax3 + bx2 + cx + d = 0.
7 For the equation x 3 +  3hx + g =  0, with roots a, p, y, find

(a) Z  a2> (t>) Z  P2y2' (c) Z  given that Z  0(4 =  (Z a2)2 ~  2 Z  0 V -
8 For the equation x 3 +  3hx + g = 0, with roots a, /?, y,

(a) show that a3 =  — 3hot — g, and use similar expressions for /?, y to deduce 
that Z  0(3 =  — 3h Z  « — 3g,

(b) show that a4 =  — 3/ia2 — ga. and deduce that Z  0(4 =  — 3hZ a2 — g Z  a- 
Find Z  a2> Z  a3’ Z  0(4 3n terms of g and h.

9 For the equation x 3 +  3ax2 +  3bx + c = 0, with roots a, P, y find
(a) Z  <*2> (b) Z  a3> (c) Z  a4

10 Find the relation between a, b, c, d if the roots of the equation

ax3 + bx2 + cx + d = 0

are in (a) arithmetic, (b) geometric progression.
Find the equation whose roots are the reciprocals of the roots of the given 

equation and deduce the condition that the roots of the given equation are in 
harmonic progression.

11 Find the relation between a, b, c, d if one root of the equation

ax3 + bx2 + cx +  d = 0 

is equal to the sum of the other two.
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12 Solve the equation 54x3 — 11 lx 2 + 74x —16 =  0, given that the roots are in 
geometric progression.

13 Solve the equation 64x3 — 240x2 + 284x — 105 =  0, giv6n that the roots are 
in arithmetic progression.

Solve the equations in Nos. 14-16, given that each has a repeated root.

14 12x3 — 52x2 +  35x + 50 = 0.
15 18x3 + 21x2 — 52x + 20 =  0.
16 12x3 — 20x2 — 21x +  36 =  0.
17 Find the condition that the equation x3 — 3hx + g =  0 should have a 

repeated root. What conditions must be satisfied if all its roots are equal?
18 Sketch the graph of y2 = x3. Find the point where the tangent at (t2, t3) meets 

the curve again and show that the axes divide the chord in constant ratios.
19 Find the equation of the normal at (at2, 2at) to the parabola y2 =  4ax. This 

equation is a cubic in t. Find the condition that it should have two equal 
roots.

20 Find the equation of the tangent to x 2y =  1 at the point (t, 1/t2). Also find the 
ratios in which the axes divide the segment of the tangent bounded by the 
curve.

Solve the following simultaneous equations.

21 a + P + y =  — 2, a2 +  /?2 +  y2 =  14, a/fy =  6.
22 a +  ft + y =  4, a2 +  f 2 + y2 =  38, a3 + j83 +  y3 =  106.
23 a +1? + y = 0, a2 + f 2 + y2 = 42, a3 +  /?3 +  y3 =  — 60.
24 a + 0 + y =  2, a2 + p2 + y2 =  14, a3 +  f 3 +  y3 = 20.
25 The equation ax4 + fix3 +  cx2 +  dx +  e =  0 has roots a, ji, y, 5. Find, in terms 

of a, b, c, d, e, the sum of the roots, the sums of the products of the roots in 
pairs and threes, and the product of the roots. Find also, the equations with 
roots
(a) 1/a, l/P, 1 /y, 1 /<$; (b) a2, f 2, y2, 82.

26 Prove that tan 3x = (3 tan x — tan3 x)/(l — 3 tan2 x). Hence, or otherwise, 
solve the equation i3 — 6t2 — 3r + 2 =  0 correct to two significant figures.

27 Use the identity sin 39 = 3 sin 6 — 4 sin3 6 to solve the equation

8x3 — 6x + 1 = 0

correct to four significant figures.
28 Use the substitution x = 2 sin 9 to solve the equation 3x3 — 9x +  2 =  0 

correct to three significant figures.
29 The equation x3 + 3x2 + 3 =  0 has a root somewhere in the interval 

— 5 < x < 3. Find between which two integral values of x in this interval the 
function f(x) =  x3 + 3x2 + 3 changes sign and find the root of the equation to 
the nearest integer.

*30 Show that the cubic equation t3 +  3at2 + 3bt + c = 0 can be reduced to the 
form x3 + 3/x + g = 0 by means of the substitution t =  x — a. Obtain/ and g 
in terms of a, b, c and explain how any cubic equation may be solved 
graphically by drawing a straight line to cut the graph y =  x3.
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Exercise 7e (Miscellaneous)
1 Solve the equations:

(a) 9x2/3 + 4x~2/3 = 37;
(b) x + 2y = 3, 3x2 +  Ay2 + 12x = 7. (O & C)

2 Solve the equations:

,a); - j t j =l  ~ k h '  o»v*+V(2*+u=7.
where the positive values of the square roots are taken. (O & C)

3 Solve the equations:
(a) 32<*+11 — 10 x 3* + 1 =  0;
(b) x2 + Ay2 = 25, x y + 6 = 0. (O & C)

4 (a) If (x +  l)2 is a factor of 2x4 + 7x3 + 6x2 +  Ax + B, find the values of A
and B.

(b) Prove that, if the equations x 2 + ax+  b = 0 and cx2 +  lax  — 3b = 0 
have a common root and neither a nor b is zero, then

, 5a2(c — 2)
(c +  3)2

(O & C)

5 (a) Prove that, if two polynomials P(x) and Q(x) have a common linear 
factor x — p, then x — p is a factor of the polynomial [P(x) — Q(x)]. 
Hence prove that, if the equations

ax3 +  4x2 — 5x — 10 = 0 ax3 — 9x — 2 = 0

have a common root, then a = 2 or 11.
(b) Prove that, if x +  1/x =  y + 1, then

(x2 — x + l)2 y2 
x(x -  l)2 =  y -  1

Hence solve the equation (x2 — x +  l)2 — 4x(x — l)2 =  0. (O & C)
6 (a) Show that the equation J ( x 2 + 2) — y/(x2 + 2x + 5) =  1 has no solution

if it is assumed that the square roots are positive.
(b) Show that, if x3 +  3px + q = 0 and x =  y — p/y, then y3 satisfies a certain 

quadratic equation.
By solving the quadratic equation in the case p = q = 2, obtain one 

root of the equation x3 +  6x + 2 = 0 leaving your answer in surd form.
(O & C)

7 Factorise completely the expression a2(b3 — c3) +  b2(c3 — a3) +  c2(a3 — b3).
( C )

8 Prove that the remainder when the polynomial P(x) is divided by (x — a)2 is

(x — a)P'(a) + P(n)

where P'(x) is the derivative of P(x) with respect to x.
Given that x* + bx + c is divisible by (x — 2)2, find the value of b and of c.

(C )



9 The roots of the equation x3 — 5x2 + x +  12 = 0 are a, y. Calculate the 
value of (a + 2)(/? + 2)(y + 2). (C)

10 (a) Given that a/b = c/d, prove that each of these ration equals

ka + Ic 
kb Fid
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where k, l are any numbers for which kb + Id #  0. 
Solve the simultaneous equations

x x + y x — y + z 
T = 3 2

x2 + y2 + z2 + x + 2y + 4z — 6 = 0

(b) Find positive integers a, b for which x4 + 2x2 + 9 =  (x2 + a)2 — b2x 2 and 
hence find the quadratic factors of x4 + 2x2 + 9. (O & C)

11 Solve the equations:
(a) V (2 -x )  + V(x + 3) = 3,

x — y z — y 2 z -
(b) 1

x + 3y + 2z =  4. (O & C)

12 Solve the simultaneous equations

atx + brf +  c t z  =  0  

a2x  + b2y + c2z = 0

for the ratios x:y:z.
Hence, or otherwise,

(a) solve the equations

x  +  Ay + 2z =  0  

2 x  — y + z =  0  

8 x  +  5 y  +  6 z  =  6

for x ,  y, and z; and
(b) find the condition that the quadratic equations

a xx2 + hjX + Cj = 0 
a2x 2 + b2x +  c 2 =  0

should have a common root. (C)
13 (a) Solve the equation x 3 — x 2 — 5 x  + 2  = 0.

(b) Find the only solution of the equation

V ( 4 x - 2 )  +  V ( x +  1 ) - 7 ( 7 - 5 x ) =  0  ( O & C )

14 (a) Solve V ( 4 x  + 13)  -  V ( x  + 1) = ^ ( 1 2  -  x) .

(b) One root of the equation 3 x 3 + 1 4 x 2 + 2 x  — 4  = 0  is rational. Obtain 
this root and complete the solution of the equation. (C)

15 (a) One of the roots of the equation 2 1 x 3 — 5 0 x 2 — 3 7 x  — 6  = 0  is a positive
integer. Find this root and hence solve the equation completely.
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(b) Three numbers a, /?, y are in arithmetical progression and two of them 
are roots of the equation x2 + ax +  b = 0. Prove that the third is either 
— %a or one of the roots of the equation y2 + ay + 9b — 2a2 = 0.

(O & C)
16 (a) Show that, if the roots of the equation x 3 — 5x2 +  qx — 8 =  0 are in

geometric progression, then q = 10.
(b) If a, /?, y are the roots of the equation x3 — x 2 + 4x + 7 = 0, find the 

equation whose roots are /J +  y, y + a, a + p. (C)
17 Prove that, if a is a repeated root of the equation f(x) =  0, where f(x) is a 

polynomial, then a is a root of the equation f'(x) = 0.
Given that the equation 4x4 + x 2 + 3x + 1 = 0 has a repeated root, find its 

value. (C)
18 (a) Use the remainder theorem to express x 3 + l x 2 + x — 18 as a product of

two factors.
(b) Find the value of the constant p for which the polynomial

x* + x 3 +  px2 + 5x — 10 

has x + 2 as a factor.
(c) Show that if y = (x — a)2 V where V is a polynomial in x, then dy/dx is

a polynomial with x — a as a factor. Hence or otherwise find the values 
of the constants k and l for which x4 — 2x3 + 5x2 + kx + l has a factor 
(x -  l)2. (JMB)

19 Given that two roots of the equation x4 + bx3 + cx2 + dx + e = 0 are such 
that their sum is zero and also that b, c, d and e are all non-zero, prove that 
the product of these two roots is d/b and that the product of the other two 
roots is be/d. Hence, or otherwise, prove that b2e + d2 = bed.

Solve the equations
(a) x4 + x3 — l x 2 — 3x — 3 = 0
(b) x4 — x3 + 2x2 — 3x — 3 = 0
assuming that in each case two of the roots, not necessarily real, are such that 
their sum is zero. (JMB)

20 The roots of the equation x 3 = qx + r are a, /?, y. Prove that
(a) a2 +  /?2 +  y2 = 2q,
(b) a3 + p3 + y3 = 3r,
(c) a5 = qa3 + ra2,
(d) 6(a5 + p5 + y5) = 5(a3 + 03 + y3)(a2 + p2 +  y2). (O & C)



Chapter 8

Further matrices and determinants

Book 1, Chapter 11), and we have seen that it plays an important role in finding 
the inverse of M (see Book 1, §11.5) and in finding the transformation which 
corresponds to M (see Book 1, §11.6). In this chapter, we shall be looking more 
closely at determinants and their properties. Any ‘square’ matrix has a 
corresponding determinant; the determinant of a 3 x 3 matrix will be defined in 
the next section. The ideas involved in studying an n x n determinant are no 
more difficult than those involved in a 2 x 2 determinant, but since a n n x n  
matrix contains n2 entries, the work involved in higher order determinants 
becomes very laborious.

Before embarking on the study of 3 x 3 determinants, it is necessary to 
introduce some standard notation:

(a) the determinant of a given matrix M is written det(M),
(b) when it is necessary to write out the determinant in full, the array of 

numbers is enclosed in a pair of vertical lines (instead of the round 
brackets used in matrices),

(c) the matrix formed by interchanging the rows and columns of a matrix M is 
called the transpose of M and it is written MT.

Introduction
8.1 We have already met the determinant of a 2 x 2 matrix M =

and

Qu. 1

129
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Qu.2 Given that A =  ^  ^  and B = ^   ̂J ,  verify that

det(AB) = det(A) det(B).

*Qu.3 Prove that, for any 2 x 2  matrix M, det(MT) = det(M).

3 x 3  determinants
8.2 We shall frequently need to refer to a general 3 x 3  matrix in this chapter, 
and, when this is necessary, we shall write

Definition

det(M) = Uj
b2
h

A
C3

ai 
a3

+ c.
c3

«2
« 3

b2 
b3 '

Notice that the three 2 x 2  matrices in this definition are obtained by deleting 
the row and column containing the letter by which each is multiplied. This 
definition can easily be extended to cover determinants of higher order.

When the 2 x 2 determinants are multiplied out, we obtain

det(M) = a1(b2c3 -  b3c2) -  b1(a2c3 -  a3c2) + c1(a2b3 -  b2a3)
= a±b2c3 — a 1h3c2 — b3a2c3 + b1a3c2 + cl a2b3 — cl b2a3

For convenience, these terms should be re-arranged so that in each term the 
letters occur in alphabetical order. Putting the terms with +  signs first, we have

det(M) = ai b2c3 -I- a2h3Ci +  a3bl c2 — aYb3c2 — — a2b3c3

When written in this form, we can see that the terms in which the suffixes 1, 2, 3 
occur in clockwise cyclic order (see Fig. 8.1 (i)) the sign is ‘plus’, and when the 
suffixes go the other way round (see Fig. 8.1 (ii)) the sign is ‘minus’.

(»)

Figure 8.1
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Example 1 Evaluate
7 2 3 
4 1 5 
2 0 3

= 7
1 5 
0 3

- 2 4 5 
2 3

+ 3
4 1 
2 0

= 7(3 -  0) -  2(12 -  10) +  3(0 -  2) 

= 7 x 3  — 2 x 2  + 3 x (  — 2)

= 2 1 - 4 - 6  

=  11

Example 2 Solve the equation
x — 3 1 - 1
— 7 x  +  5 — 1
— 6 6 x — 2

= 0.

x — 3 
- 7

1
x + 5

- 1
- 1 = ( x - 3 )

x +  5 - 1
(L v 'y

- 6 6 x — 2 0 X  z
- 7  - 1
— 6 x — 2

— 7 x +  5 
- 6  6

= (x — 3)(x2 + 3x — 10 + 6) — ( — 7x+14  — 6) — 

— (—42 + 6x +  30)

= (x — 3) (x2 + 3x — 4) — ( — 7x +  8) — (6x — 12) 

=  x3 — 13x +  12 + 7x — 8 — 6x + 12 

= x3 — 12x + 16

Hence we must solve the cubic equation 

x3 — 12x +16 = 0 

Factorising,

(x — 2)(x2 + 2x — 8) =  0 
(x — 2)(x — 2)(x +  4) =  0

x = 2 or —4

Example 3 Prove that
1
y

y2 z2
= (* - ) ’)(}'-z)(z-x).
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1 1 1
y Z X z

+
x y

X y z = 2 2 — r „2 „2 ,,2
2 2 2 y Z X Z x y

X y Z

= (yz2 — zy2) — (xz2 — zx2) + (xy2 — yx2)

= yz2 — zy2 — xz2 + zx2 +  xy2 — yx2 

= z2(y — x) — z(y2 — x 2) + xy(y — x)

=  z2(x - y )  + z(x + y)(x -  y) -  xy(x -  y)

= (x — y)( — z2 + zx + zy — xy)

= ( x - y ) { ~ z ( z - x )  + y(z -  x)}

=  ( x - y ) ( z - x ) ( y - z )

=  ( x - y ) ( y ~ z ) ( z - x )

[Note, however, that this is not the best way to do this example; we shall shortly 
be meeting a much more efficient method for tackling problems like this (see 
Example 6).]

Exercise 8a
1 Evaluate:

(a) 3
5 2 
3 4 , (b)

7 1 
2 - 1 , (c)

21 14 
15 10 , (d)

91 35 
65 25

2 Simplify:

(a)
x y

- y  x
5 (b)

x2 xy 
xy y2

(c)
cos 9 -  
sin 9

-sin 9 
cos 9 (d)

x + 1 
- 1

1
x — 1

3 Prove that det(M) =  det(MT), where M =
a b 
c d

4 Solve: 

(a)
x x 
5 3x

*5 Given that M

= 0, (b)

a b

x — 2 1
2 x — 3

= 0.

, . and N = I ^ ^ ), prove that
c d J \ r  s

det(MN) = det(M) det(N) 

1
6 Prove that det(M ) = j , where M = I °  ^ 

det(M) vc d
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7 Evaluate:

2 - 1 0
(a) 3 2 0 , (b)

4 7 3

3 6 9
(c) 4 8 12 , (d)

5 7 13

4
2
3

8 Solve the equation
x  + 3 
- 1  

1

3 
1

- 2

5 - 1
5 - 1
6 -1

5
x — 3 

1

6
- 1  
x + 4

=  0.

*9 Prove that for any 3 x 3  matrix det(M) = det(MT).

10 Given that A =
3

i 2
0 1

2 - 1 ° and B = I 1 - 3 2
4 2 l ' Vl 1 - 1

find AB and verify

that det(AB) = det(A) det(B).

Properties of determinants

8.3 As in the previous section, M is the matrix

det(M) = alb2c 3 + a2b3c1 + a3b1c2 — at b3c2

The properties of determinants, (a)-(g) below, are true for matrices of any 
order, even though in the text we shall only refer to the 3 x 3  matrix M.

(a) det(M) = det(MT).

MT =

'«1 K c A
a2 bi c2 ) , and

«3 ^3 C3/

a3b2Cl ~-a 2b1c3 (1)

Ui a2 a3
i>2 b3

Ci C2 c3
= a fb 2c3 - b3c2)--  M^iCa -  b3Ci) + u3(biC2 -  b2cf)
= aib2c3 —cq h3c2— a2bt c3 + a2b3c3 + a3b3c2 — a3b2c3
= aib2c3 + a2b3c3+ a3b3c2 — al b3c2 — a3b2c3 — a2b3c3
= det(M)

This property is especially valuable, because it means that whenever one of the 
statements, below, refers to a row of M, the same statement can be made about 
the corresponding column of M, without further proof.

(b) I f  M has a pair of identical rows (or columns) then det(M) = 0.
This follows immediately from making the appropriate substitutions in (1).
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(c) I f  each element in a row (or column) of M is multiplied by k, then det(M) is 
multiplied by k.f
This may be easily checked by making the appropriate substitutions in (1).

«1 K c i «1 b i
A step like , ka2 kb2 kc2 = k a2 b2 c2

a3 b3 c3 a3 b3 c3
‘taken out’ of t

, where a factor k has been 

le second row, is very common, when simplifying determinants.

(d) Interchanging a pair of rows (or columns) of M, changes the sign of det(M). 
Once again this is easily verified.

(e) I f  the elements of one row (or column) of M are multiples of the elements of 
another row (or column), then det(M) = 0.
For example, put bx =  ka2, b2 = ka2 and b3 = ka3 in (1); it should be easy to see 
that det(M) = 0. (Property (b) could be regarded as a special case of this in which 
k = 1.)

(f) I f  each element of one row (or column) of M  is replaced by a new element 
consisting of the original element plus a multiple of the corresponding element from 
another row (or column), then the value of det(M) is unchanged.
Suppose, for example, that the elements in the first row of M are replaced by 
al + ka2, bj + kb2, c\ +  kc2. The new determinant is now

fli + ka2 b3 + kb2 cx + kc2 

a2 b2 c2

a3 b3 c3

and this equals

(a, + ka2)(b2c3 -  c2b3) - (b2 + kb2)(a2c3 -  c2a3) +  (cx +  kc2)(a2b3 -  b2a3) 
= aAb2c3 -  c2b3) -  bl(a2c3 -  c2a3) + c fa 2b3 -  b2c3) +

+  ka2(b2c3 -  c2b3) -  kh2(a2c3 -  c2a3) + kc2(a2b3 -  b2a3)

a1 b\ c  i a2 b2 C 2

a2 b2 C 2 + k a2 c 2

a3 b3 C 3 a3 ¿>3 C 3

= det(M) (since, by Property (b), the second determinant is zero)

This property is very useful when simplifying determinants (see Example 5, 
below). The notation ^  +  kr2 is a convenient way of saying that the new 
first row is the old first row plus k times the second row. Similarly, c'2 =  c2 + kc3 
would mean ‘form a new second column by adding k times the third column to 
the existing second column’.

t  But remember that when a matrix is multiplied by a scalar k, every element must be multiplied by k.
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(g) det(AB) =  det(A) det(B).
The proof of this for 2 x 2 matrices is not difficult (see Exercise 8a, No. 5), but it 
is rather tedious since there is a lot of rather elementary algeb/a to be done. For 
3 x 3  matrices the task becomes even more troublesome; if the reader has a great 
deal of time and patience he or she could try writing out the proof, otherwise it 
should be taken on trust!

1 3 35
Example 4 Evaluate 3 21 15

1 5 5

This determinant is zero, because c3 = 5ct (see Property (e)).

Example 5 Evaluate
10 40 56 
1 5 7
3 4 6

10 40 56 2 0 0
1 5 7 = 1 5 7
3 4 6 3 4 6

5 7
= 2

4 6

= 2 x 2  

= 4

(r'j = r1-  8r2, Property (f))

Example 6 Factorise
1 1 1
x y z
x 2 y 2 z2

If x = y, the first two columns would be equal, and hence, by Property (b), the 
determinant would be zero. Hence, by the remainder theorem (see Book 1, 
Chapter 9), (x — y) is a factor. Similarly (y — z) and (z — x) are also factors. Since 
each term of the expansion is of degree three, there are no further algebraic 
factors. However there could be a numerical factor k, so, at this stage, we can 
deduce that

1 1 1
X y z
X2 y2 z-

k ( x - y ) ( y - z ) ( z - x )

However if we look at the first term of the expansion of the determinant, we see 
that it is + yz2, and if we look for the same term from expanding the factors, we 
see that it would be kyz2. Hence k = 1. Therefore, the factorised form of the 
determinant is (x — y)(y — z)(z — x).
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The reader should compare this method with the more elementary method 
used in Example 3. The method used in Example 6 is especially useful in 
determinants which are, in some way, symmetrical and the factors can be 
‘spotted’, by exploiting the symmetry and using the remainder theorem, as 
above.

a a3 a4
Example 7 Factorise b b3 b4

c c3 c4

Firstly, notice that a is a factor of the first row, b is a factor of the second and c 
of the third. So, by Property (c), we can write

a a3 a4 1 a2 a3
b b3 b4 = abc 1 b2 b3
c c3 c4 1 c2 c3

Then, as in Example 5, above, (a — b), (b — c) and (c — a) are factors. However, by 
inspection, we can see that every term in the expansion of the original 
determinant would have a total degree of eight. The factors extracted so 
far, namely, abc(a — b)(b — c) (c — a), would only yield a total degree of six. 
Consequently, we need a further factor of degree two, which is symmetrical in 
a, b and c. The only possibilities are (a2 + b2 +  c2) and (be + ca + ab), or some 
combination of these. So we must now consider

abc(a — b)(b — c)(c — a) {2(a2 + b2 + c2) + p(bc + ca + ab)}

However, inclusion of the term (a2 + b2 + c2) in the final factor would yield 
terms in a5, b5, c5 which, by inspection of the determinant, are not required. 
We can therefore discard this term. We are left with the additional factor 
p(bc + ca + ab). By inspection, e.g. of the term ab3c4, we see that p = 1. Hence the 
factorised form of the determinant is abc(a — b)(b — c) (c — a) (be + ca + ab).

Exercise 8b

The numerical exercises are intended to give the reader practice in using the 
standard properties o f determinants; they should not be done by more elementary 
methods.

21 31 50 21 10 30
1 Evaluate: (a) 17 3 35 » (b) 9 - 6 3

22 31 52 1 - 1 0

39 91 143 11 31 41
2 Evaluate: (a) 296 43 151 , (b) 1 2 2

51 119 187 13 36 47
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207 52 135 12 i 16
3 Evaluate: (a) 184 17 120 . (b) 12 14 18

69 109 45 110 110 0

a X x -
4 Show that x  + a a ;

x x + a c

X 1 2
5 Solve the equation 1 X 2

1 2 X

= 2(x3 + a3).

=  0.

p q r
6 Factorise r P <1

<1 r P
X yz x2

7 Factorise y zx y 2

z xy z2

X2 X 1
8 Factorise 1 X2 X

X 1 x:

9 Prove that, if (x1,>>1),
1 1 1
x t x2 * 3 = 0.
Fi y 2 y  3

10 Prove that, if, in three dimensions, (xi, y u  z j ,  (x2, y2, z2) and (x3, y 2, z3) lie

in a plane through the origin, then

, Z l ) > ( * 2

x2 * 3

y 2

Zz z 3

=  0.

Cofactors
8.4 In the following sections it will be convenient to refer to a standard 
determinant A, where

«1 K C1
A = a 2 b2 C 2

« 3 bs C 3

Definition

The cofactor of an element of a 3 x 3  determinant is the 2 x 2  determinant 
obtained by deleting the row and column containing that element and multiplying



by + 1 or — 1 according to the pattern:

138 Pure Mathematics 2 8.4

+ -  -̂
-  + -
+ -  +

A cofactor is always designated by the capital letter corresponding to the 
element to which it belongs.

No doubt this definition sounds rather complicated; it is not as complicated 
as it seems if we write out the nine cofactors in full. They are:

Ai = b2 c2 Bi =
a2 c2 Ci =

a2
b3 c3 ° 3 c3 a3

A 2 = bi Cl
b 2 = ai Ci C2 =

b3 c3 a 3 c3

a 3 = K Ci
b 3 = a3 Ci

c 3 =
ai

b2 C2 a2 c2 a2

b2
b3

b!

b i
b3

Expanding the determinant in the usual way, we can see that

A = a1A l + b l Bl + c l Cl 

and the reader should verify that

a2A2 + b2B2 + c2C2 and a3A 3 + b3B3 + c3C3 
are also equal to A.

Expanding the determinant by columns we can see that A x + a2A2 + a3A 3, 
bjBj + b2B2 + b3B3 and c1Cl +  c2C2 + c3C3 are also all equal to A. In other 
words, whenever the elements of one row (or column) are combined with the 
cofactors of the same row (or column), the sum is equal to A. However, notice 
what happens when the elements of one row are combined with the cofactors of 
a different row. For example, consider

ai A2 + b1B2 + c j C2

(i.e. the elements of the first row, combined with the cofactors of the second row). 
Writing the cofactors as 2 x 2 determinants, we have

— a1
b i
b3

«1
« 3

Cl

c3
Cl «1

«3
b1
b3

«1 b i
ai bi
a3 b3

Ci
Ci
c3

= 0 (because this determinant has a pair of identical rows)

The reader should verify that this will happen whenever the elements of a 
row (or column) are combined with the cofactors of a different row (or column). 
(In this case the cofactors are sometimes called alien cofactors.)



Further matrices and determinants 139

Qu.4 Evaluate the determinant below, and find the values of its nine cofactors. 
Verify that they satisfy the relationships in the preceding section.

1 2  3 
3 1 0
2 - 1  1

These properties of cofactors can be exploited to produce an important 
method for solving linear equations, known as Cramer’s rule. (This was first 
published by Gabriel Cramer in 1750.)

Cramer’s rule
8.5 Consider the following three linear equations, and the associated determi
nant as discussed in the previous section.

a1x + b1y + CjZ =  d1 
a2x + b2y + c2z =  d2 
a3x + b3y + c3z = d3

Multiplying the first by A u the second by A 2 and the third by A 3 (where 
A 1,A 2,A 3 are the cofactors corresponding to a1,a 2 and a3 respectively) and 
adding, we obtain

(a1A 1 + a2A2 + a3A 3)x + (b1A l + b2A 2 + b3A 3)y + ( c ^  + c2A 2 +  c3A 3)z 
= + d2A 2 + d3A 3

Now, using the relationships established in the preceding section, we can see that 
the coefficient of x is A, and the coefficients of y and z are both zero. Hence, we 
have

Ax = d1A 1 + d2A2 + d3A 3

b i Cj
b2 c2 
b3 c3

This determinant is the original determinant A, with the first column replaced by 
du d2 and d3. It is convenient to abbreviate this determinant to At . (This 
abbreviation can be used more generally if we write A(, to mean the determinant 
formed by replacing the ith column of A by dt , d2 and d3.) The result we have 
just obtained can then be written Ax =  At . Proceeding in a similar fashion, it is 
fairly easy to show that Ay = A2 and Az = A3. Hence the solutions to the three 
linear equations can be expressed in a very neat form, namely

Ax = Aj, Ay = A2, Az = A3 (1)

and, provided A ^  0, we can divide through by it and obtain,

x = Aj/A, y = A2/A, z = A3/A

This is Cramer’s rule.



However, if A is equal to zero, we must not divide by it. In this case the 
equations (1) read
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0x = A!, 0y = A2, Oz = A3

and these have no solution unless A1; A2 and A3 are also zero. If these three 
determinants are equal to zero, then it is possible to find a solution (see 
Example 9, below).

Example 8 Use Cramer’s rule to solve

x  — 2y — 3z = 0 
3x + 5y + 2z = 0 
2x + 3 y— z = 2

Using the notation from the previous section,

A =
1 - 2  - 3
3 5 2
2 3 - 1

= 1 x ( - l l )  +  2 x ( - 7 ) - 3 x ( - l )  =  - 1 1 - 1 4  + 3 =  - 2 2

A1 =
0 - 2  - 3  
0 5 2
2 3 - 1

=  2

A2 =

- 2  - 3  
5 2

1 0 - 3
3 0 2
2 2 - 1

= 2 x ( + 11) = 22

=  - 2 1 - 3  
3 2

= —2 x ( +  11) =  —22

A3 =

=  2

1 - 2  0 
3 5 0
2 3 2

= 2 x ( +  11) =  22

Hence, by Cramer’s rule, x = Ax/A = 22/( — 22) = — 1,
y = A2/A = — 22/( —22) = + 1, 
z =  A3/A =  22/(—22) = — 1.
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Example 9 Solve the equations

x + 2y + z = 1
3x + y = —2 
5x + 5y + 2z = 12

1 2 1
A = 3 1 0

5 5 2

= 1 x (  + 2 ) - 2 x (  +  6 ) + l  x ( +  10)

=  2 - 12+10 

=  0
Also At = A2 = A3 = 0. (The detailed working is left to the reader.) Hence, in this 
case, Cramer’s rule gives

0 x x  = 0, 0 x y  =  0, 0 x z  =  0

Now it is certainly possible for values of x, y and z to exist which satisfy these 
equations, but Cramer’s rule is not very helpful, in this special case. If we return 
to the original equations and eliminate z from the first and third equations, we 
obtain

2x + 4y + 2z =  14 
5x + 5y + 2z=  12

and subtracting, we have

3x +  y = — 2

This is identical to the second equation. (If the right-hand side had not been — 2, 
we would have had to have concluded, at this stage, that there was no solution; 
if, on the other hand the equations had been distinct, we could have solved them 
to find x and y, but Cramer’s rule has already shown us that this is not possible.)

Although we cannot solve 3x + y = — 2 and find a unique solution, we can let 
x = t, where t is any real number. Having assigned this value to x, we have no 
choice in the value of y, it must be —2 — 31. Then, substituting these values for x 
and y into the first of the original equations, we have

z = 7 — i — 2( —2 — 3t)
= 11 + St

Hence, we have a set of solutions,

x = t y = —2 — 3t z = l l  + 5i

where t is any real number.
(Compare this with Book 1, §15.14.)

Qu.5 Give a geometrical interpretation of the result of Example 9.
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Example 10 Solve the equations

8.5

x + 2 y + z = 7
3x +  y = —2 
5x + 5y + 2z =  10

(Notice that the first two equations are the same as those in Example 9, and in 
the third equation only the constant is different. As in Example 9, A = 0, but this 
time Ax #  0.)

A1 =
7 2 1 

- 2  1 0 
10 5 2

= 7 x (  + 2 ) - 2 x ( - 4 ) + l  x ( — 20) 

= 14 + 8 - 2 0

=  2

Since Aj # 0 , there is no solution.

Qu.6 Give a geometrical interpretation of the result of Example 10.

Cramer’s rule is of considerable interest because of the light it sheds on the 
behaviour of simultaneous linear equations; in practice, most readers will find 
that elimination is usually the most satisfactory method to use. (See Chapter 7, 
Example 10.)

Exercise 8c

The questions in this exercise are intended to give the reader practice in using 
Cramer’s rule.

Solve the simultaneous equations:

1 x + y + z = 6,
2x + y — z =  1, 
x — y + z = 2.

4 5x — 7y +  3z =  0,
2x — 3y +  5z =  — 1, 
3x —4y + 2z = 1.

2 2x + 3y + z = 1, 
x — y +  z = 4,

5x + y + 3z = 10.
5 lOx +  20y +  40z = 1, 

3x +  7 y + 10 z = 0, 
25x +  12y + 37z = 0.

3 7x+  y+  z = — 1, 
x — 3y + 2z = 0,
x +  4y — 3z = 4.

6 Find the condition for the simultaneous equations below to have no 
solution:

x + 5y + az = 2 
2x + y + 3z =  1 
7x + 8y + 8z = k



In Nos. 7-10, the equations should be regarded as the equations of three planes 
which
(a) meet in a (unique) point, or
(b) meet in a common line, or
(c) do not meet.
The reader should distinguish between these three possibilities. In case (a) the 
coordinates of the point of intersection should be found and in case (b) the 
general form of any point on the common line should be found. (In the latter 
case, the form of the answer is not unique; the form printed in the answers at the 
back of this book can be obtained by putting x = i.)
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7 2x — y + 4z = 0, 8 x +  y + z = 0,
3x + Ay + 12z = 0, x — y + z = 0,
l x  — 9y + 8 z = 0. y  — z = 0.

9 x + 2y + 3z = 4, 10 2x + y — z = 5,
2x + y + 5z = — 2, x + 2y + z = 4,
4x + 5y + 1 lz = 6. 3x + 9y +  6z =  7.

The inverse of a 3 x 3 matrix
a x bt

8.6 As in the previous sections, M = I a2 b2 , and the capital letters,

A u A2, A3, etc., are used to represent the cofactors which correspond to the 
elements alt a2, a3, etc.

Definition

The adjoint of the matrix M is

The standard abbreviation for ‘the adjoint of matrix M’ is adj(M). Notice that 
adj(M) is the transpose of the matrix formed by replacing each element of M by 
its cofactor.

Qu.7 Given that A = 1 1 1 \3 2 1 J, find adj(A) and determine the matrix
.1 2 3 /

product A adj(A).

Qu. 8 Repeat Qu. 7, for A =
1 - 1
2 1
0 1

The product M adj(M) is always a diagonal matrix, that is, a matrix in which 
all the elements are zero, except those on the ‘leading diagonal’ (the diagonal 
which goes from the top left-hand corner to the bottom right-hand corner). To



see the reason for this, we must look at the working in detail:
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M adj(M) =

a,A , + + C jC t

a2A i + b2B l + c2Ci 

a3A i + b3B t + c3Ci

^2 ^ 3\
B2 b 3 j 
C2 c j

a1A 2 + biB2 +  c,C 2 

a2A 2 + b2B2 +  c2C2 

a3A 2 + b3B2 + c3C2

ciiA3 + biB3 + c,C2 
u2A 3 + b2B3 + c2C3

a3A 3 + b3B3 + c3C3

Now, each term which is on the leading diagonal, consists of an element of one of 
the rows of M combined with its own cofactor; this, as we saw in §8.4, is always 
equal to A, the determinant of M. Each term which is not on the leading 
diagonal consists of an element from a row of M, combined with an alien 
cofactor; this, as we also saw in §8.4, is always zero.

Hence,

M adj(M) =
A 0 0 
0 A 0 
0 0 A

= A I

where I is the 3 x 3 unit matrix (see Book 1, §11.5).
The reader should verify that adj(M) M is also A I

Qu. 9 Verify that the answers to Qu. 7 and Qu. 8 are equal to A I.

This enables us to tackle a problem which in Book 1, §11.5, we had to 
postpone. In that section we found the inverse of a general 2 x 2  matrix, but we 
did not attempt to find the inverse of any other square matrix. In view of the 
long and tortuous path we have had to follow in order to arrive at a point where 
we can tackle this problem, it is not surprising that in the earlier chapter we 
postponed it! If, now we look at the product M adj(M) = A I, we can see that the 
problem is almost solved; only one more step is necessary, namely, divide each 
side by A; we then have

A

In other words M ~1, the inverse of M, is .
A

(A must not equal zero; if it does, there is no inverse matrix, i.e. M is a singular 
matrix.)

( '  1 ^Example 11 Find the inverse of A = I 1 1 —11.
\1 - 2  3 /

/  1 - 5  - 2  
adj(A)= 1 —4 2 2

V—3 3 0
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1 /  1 - 5 - 2
1 - 1 - 4 2 2
2 3 / 1 - 3 3 0

(Notice that det(A) is required, but it is not necessary to work it out separately, 
because we know it must be the —6 which appears on the leading diagonal.)
Hence

A-‘= - U
(  i - 5 - 2

- 4 2 2
- 6  1

V-3 3 0

Example 12 Find the inverse of the matrix

equations in matrix form and hence find x, y and z:
x + 2y + 3z = 6 

2x + y + z = 5 
3x + y — 2z = 1

Let A =

. Write the following

A adj(A) =

and

(The reader should note that this step serves two purposes; it checks the 
accuracy of the arithmetic up to this point, and it evaluates det(A). In this case, 
det(A) = 8.) Hence

^—3 7 - 1 '
7 - 1 1  5

-1 5 - 3 ,
The simultaneous equations can be written

■ i - D O - i t
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The matrix of the coefficients is the matrix A, whose inverse we have found. 

Multiplying both sides by A \  the left-hand side becomes ( y |, since

A 1 A = I, and I

Hence x = 2, y = — 1 and z = 2.

Exercise 8d

where possible, the inverses of the following matrices.

1 -1 0 7
1 4 - 3
1 2 - 1

'1 p q\
0 1 o
0 0 1 /

Solve the following simultaneous equations, using matrices (see Example 12).

8 x — y + 2z = 4, 
x + 2y + 3z = 2,

3x +  z =  4.

9 x — 10y + 7z = 13, 
x  + Ay — 3z = — 3,

— x +  2 y — z = —3.



10 2x + y + z =  4, 
x — y — 2z — 0, 

5x — 2y — 4z = 3.
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11 Given that A =

(a)A -',(b)B -> ,(c)A B ,(d)(A B )

/ 2
12 Repeat No. 11 with A = I 1

V2 - 1

0
2 1, / I - 1

1
0

and B =  I 0 2 1
1 i ) ' V i 3 0

, find

r 1,, and verify that (AB) - 1 B

1 ° \  / - I 2 0
5 2 I and B = [ 1 3 2
1 1 /  V 2 0 1

13 Given that A and B are non-singular square matrices of the same order, 
prove that (AB)-1 = B ‘A -1. [Hint: consider the product (AB)(B-1A-1).] 
(You may assume that matrix multiplication is associative.)

What is the corresponding result for (ABC)-1?

Exercise 8e (Miscellaneous)

In Nos. 1-3, evaluate the determinants.

2 1 - 5 1 - 2  3 1 0 - 2
1 (a) 3 7 0

4 2 1
, (b) 2 1 0 

4 7 1
, (c) 2 7 3 

1 4 0

1 5 7 1 7 11 17 34 119
2 (a) 2 3 1 , (b) 2 17 23 , (c) 26 221 91

7 21 23 7 54 79 7 7 0

1 0 0 1 X y
3 (a) 0 cos a — sin a , (b) 0 1 z

0 sin a cos a 0 0 1

4 Express in factors:

1 1 1 X X X
(a) yz zx xy , (b) * y  y

y + z z + x x + y x y z

5 Given that M = 

and find M -1.

cosacos)? cos a sin ß —sin a 
— sin ß cos ß 0

sin a cos ß sin a sin ß cos a *
, evaluate det(M)

*6 Prove that, for any two 3 x 3  matrices M and N, (M N)T =  NT MT. [Hint: it 
is sufficient to consider the element in the ith row and jth  column.]

7 Prove that if A AT = I, then det(A) =  1.
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7 2  V3 1' 
V 2 0 - 2
7 2  —V3 1,

, prove that N N T = NTN = I.

(Any matrix with the property N NT = I, is called an orthogonal matrix.)
9 Find the non-trivial solution of the simultaneous equations

x + y — z = 0 
5 x — y — z =  0 
4x + y — 2z =  0

(The solution x = 0, y = 0, z = 0, is a trivial solution; a non-trivial solution is 
one in which x, y and z are not all zero.)

*10 Prove that the equations

11 Given that (using the notation of §8.3) a 3 x 3 matrix has the property, 
r3 = arj + j?r2, where a, /? e R, prove that real numbers X and /j. can be found, 
such that c3 = Xc3 + fic2.

12 A transformation, in three dimensions, is given by

write down the matrices which give the following transformations:
(a) a reflection in the plane z =  0,
(b) a rotation about the z-axis through 90°,
(c) a reflection in the plane x = y.

13 Show that the equation

UjX + brf + c3z = 0 
a2x + b2y + c2z = 0 
a3x + b3y + c3z = 0

ai b1 c3
have a non-trivial solution, if and only if a2 b2 c2 = 0.

b3 c3

Write down the images of the unit vectors

x2 — y2 — 1

can be expressed in the form (x y)
b —a

= 1. Transform this equa-

( 1)

written

(2 )
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What is the relationship between the curves represented by equations (1) and
(2)?

14 Express the equation

— 2x2 + 4N/3xy + 2y2 = 1

in matrix form (as in No. 13), and transform it by writing

'* \  (  i - V 3Y * n
j )  vV3 l A ^

What is the relationship between the curves represented by the two 
equations?

2 = ^ oreac^ va ûe °f^>15 Find two values of k such that

find corresponding values for x and y.

16 Repeat No. 15 for ( ^  i s ) ( A ‘ ( *

19 4 '
17 Show that if M = ( ) and X =

1 16.
1 4 

- 1  1
then

X 1MX =
15 0

0 20

By writing M in the form XDX x, where D = ^ ^  > show that

M" = XDnX 1

and hence show that

U  15" + 4 x 20"
M":

5 V —15" + 20"
-4 x 15" + 4 x 20”'
4 x 15"+ 20"

/ I  - 3  0 '
18 Find the inverse of the matrix 1 2  0 1

\ 4  1 3/
Hence solve the equations

x — 3y — u = 0, 2x + z — 6 = 0 and 4x +  y +  3z — c = 0, 

for x, y, z in terms of a, b, c. (O & C)

f x\
19 The linear transformation I y' I =  M | y I, where M is a 3 x 3 matrix,

( l \  ( ° \  f ° \
maps the points with position vectors I 0 1,1 1 1,1 0 I, to the points withV o } V o /  V l /
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position vectors
3\  / 2 \
2 I, I 1 I , ( 0 j , respectively. Write down the matrix M
j )  \oJ Vo,

and find the inverse matrix M T Show that the transformation with matrix 
M maps points of the plane x + y + z — 0, to points of the plane x = y, and 
verify that the inverse transformation with matrix M _1, maps points of the 
plane x = y, to points of the plane x + y + z =  0. (L)

20 Prove that
(b + c)2 a2 a2

b2 (a + c)2 b2 = 2 abc(a + b + c)3. (JMB)
c2 c2 (a + b)2

21 The matrix A is
3 1 1
1 0 - 2  

,10 3 1
matrix B, such that AB = BA = O.

. Show that A is singular. Find a non-zero

(JMB)

22 Find the inverse A 1 of the matrix A =

(AB) 1 where B

'  1 0 ° \
- 1 1 0 I . Find also B 1 and
V 3 2 1 /

Given that AB , find x, y and z. (L)

23 Find the complete solutions of the two systems of equations:

(a) 3x + 4y + z = 5, (b) 3x + 4y + z = 5,
2x — y — z = 4, 2x — y — z =  4,
x + 3y + z = 1. 5x +  14y + 5z =  7.

/ 3 1 “ 3\24 M is the matrix 1 1 2 a 1 ).
V o 2 a )

( O )

(a) Find two values of a for which M is singular.

f x\ '
(b) Solve the equation MI y I = I 5^ 1 in the case a = 2, and determine 

whether or not solutions exist for each of the two values of a found in (a).
(C)

25 If a, b and c are real, find the factors of the determinant 

b + c c + a a + b 
A = c + a a + b b + c 

a + b b + c c + a 

Show that, if A = 0, then either a + b + c = 0, or a — b = c. (C)



Chapter 9

Coordinate geometry
Conic sections
9.1 In this chapter we shall be dealing with three curves, the parabola, ellipse, 
and hyperbola, which are all known as conic sections or conics. The Greek 
mathematicians even before Euclid (third century b.c.) were interested in these 
curves and examined their properties by pure geometry starting from their 
definitions by means of sections of a cone. From the point of view of coordinate 
geometry it is better to start from another definition (which can be shown to be 
equivalent) that a conic is the locus of a point which moves so that its distance 
from a fixed point bears a constant ratio to its distance from a fixed line (see 
Fig. 9.1).

Figure 9.1

The fixed point S is called the focus. The fixed line is called the directrix. The 
constant ratio is called the eccentricity and is denoted by e. Thus, if P is a point

151
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on the locus, M is the foot of the perpendicular from P to the directrix and if

SP
PM

then the locus of P is a conic.

When: e = 1, the conic is a parabola, 
e < 1, the conic is an ellipse, 
e > 1, the conic is a hyperbola.

We shall first take the parabola, which was briefly mentioned in Book 1, 
Chapter 22.

The parabola
9.2 Given the focus S of the parabola and the directrix, we are at liberty to take 
what axes we find most convenient. First note that the figure formed by the focus 
and directrix has an axis of symmetry through S perpendicular to the directrix. 
This we take as the x-axis, as shown. If we now plot a few points, using the 
definition of the locus given in the last section,

an indication of the shape of the curve may be obtained (see Fig. 9.2). (The 
plotting may be done very simply using squared paper and a pair of compasses.) 
It now seems reasonable to take the y-axis through the point on the axis of 
symmetry mid-way between the focus and directrix. This point is called the 
vertex of the parabola. Let the distance from the vertex to the focus be a; then

the focus S is (a, 0) 
and

the directrix is the line x = —a

If P(x, y) is any point on the parabola, and M is the foot of the perpendicular 
from P to the directrix,

SP2 = (x -  a)2 + y2 
and

PM = x + a

But from the definition,

SP
—  = 1, so SP2 = PM 2

.'. (x — a)2 + y2 = (x + a)2 
.'. x2 — 2ax + a2 + y2 = x 2 + lax  + a2 

.'. y 2 =  4ax

which is the standard equation of a parabola.
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directrix

M

♦
x

Figure 9.2

Qu. 1 Find the equations of the parabolas:
(a) focus (— a, 0), directrix x = a,
(b) focus (0, b), directrix y = —b.

Example 1 Find, in terms of a, m, the value of c which makes the line y = mx + c 
a tangent to the parabola y2 = 4ax. Also obtain the coordinates of the point of 
contact.

y = mx + c

Multiply both sides by 4a.

4ay = m x 4ax + 4ac

Substituting from y2 = 4ax and collecting terms,

my2 — 4ay + 4ac = 0 (1)

The line will be a tangent if this equation has equal roots (see Book 1, §10.2)

.'. ( — 4a)2 =  16mac

a
m

When the roots of equation (1) are equal, they will be given by half the sum of the 
roots,

1 4a 2a

Now
1 a 

4a m2

2
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Therefore the point of contact is —
\m  m

Note that the equation of a general tangent to y2 =  4ax may be written 

a
y =  mx H—  (m #  0)

m

This last result leads us to a very useful way of representing a point on the 
parabola. Substituting t= l/m ,  we see that the tangent

x
y = -  + at 

t

touches the parabola at (at2, 2at). Since the tangent was a general one, we have 
shown that any point on the parabola y2 = 4ax may be written (at2, 2at). The 
equations x =  at2, y = 2at are called the parametric equations of the parabola 
y2 = 4ax.

Qu. 2 Verify, by substitution, that (at2, 2at) always lies on the parabola 
y2 = 4ax.

We have found the equation of the tangent at (at2, 2at), but a more direct 
method follows in Example 2.

Example 2 Find the equation of the tangent to y2 = 4ax at (at2, 2at).

To find the gradient at (at2, 2at),

dy dy / dx
dx d t / df

But y = 2at, x  =  at2,

dy 2a _  1
' ’ dx 2at t

The equation of the tangent is obtained by the method of Book 1, §22.1, which 
will be used from now on.

x — ty — at2 — t x  2at 
i.e.

x — ty + at2 = 0

*Qu.3 Show that the equation of the normal to y2 =  4ax at (at2, 2at) is 

tx + y  — at3 — la t =  0

Example 3 Show that the equation o f the tangent to the parabola y2 = 4ax at 
(Xi, yt) is yy1=2a(x + x 1).
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Differentiating both sides of y1 = 4ax with respect to x, to find the gradient:

2y

, dy 4a 2a , ,
Therefore at (Xj, y j , —  = -— = —, and the tangent is 

dx 2 y 1 y i

lax  — yxy = 2axy — y 2
.'. yiy  = 2ax — 2 ax1 + y t2

Now (x1; y,) lies on the parabola, so y¡2 = 4axy.

y\y  = 2 ax — 2ax1 + 4ax! 
yyi =2a(x +  Xj)

Qu.4 Find the equation of the normal to y2 =  4ax at (x1; yi).

Example 4 Find the equation of the chord joining the points (at12, 2atx), 
(at22, 2at2).

The gradient of the chord is

2at1 — 2at2 2 a(t1 —12)
aty2 — at22 a(ty — i2)(ii + t2)

2
11 + h

Therefore the equation of the chord is

2x — (ty + t2)y =  2aty2 — (ix +  t2) x 2aty 
= -  2atyt2

Therefore the chord is 2x — + t2)y + latyt2 = 0.

*Qu. 5 As t2 -* ty, the chord approaches the tangent at ty. Deduce the equation 
of the tangent from the equation of the chord.

Definitions

Any chord of a parabola passing through the focus is called a focal chord. The axis 
of symmetry is usually simply called the axis of the parabola. The focal chord 
perpendicular to the axis is called the latus rectum.

To find the length of the latus rectum of the parabola y2 = 4ax, substitute
x = a;

y2 = 4a2 
.'. y =  + 2a

Hence the length of the latus rectum is 4a.
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The reader is advised to work all the questions in Exercise 9a, using the 
parametric coordinates (at2, 2at) whenever the opportunity arises. The point 
(at2, 2at) is frequently abbreviated to the point t.

Exercise 9a

1 Find the coordinates of the point of intersection of the tangents at the points 
i1; t2 of the parabola y2 = 4ax.

2 Points tu t2 lie on the parabola y2 = 4ax. Find a relation connecting t x, t2 if 
the line joining the points is a focal chord.

3 Prove that the tangents at the ends of a focal chord of a parabola are 
perpendicular.

4 Find the focus of the parabola x 2 = 2y.
5 Find the equation of a parabola whose focus is (2, 0) and directrix y=  —2.
6 Find the equation of the parabola whose focus is (— 1, 1) and directrix x = y.
7 Find the gradient of the normal to the parabola y2 =  4ax at P(at2, 2at) and 

the gradient of the chord joining P to (at12, 2a tj. Deduce the coordinates of 
the point where the normal at P cuts the parabola again.

8 Prove that the foot of the perpendicular from the focus of a parabola on to 
any tangent lies on the tangent at the vertex.

9 Find the points on the parabola y2 = 8x where (a) the tangent and (b) the 
normal are parallel to the line 2x + y = 1.

10 The tangents at the end of a focal chord meet each other at P and the tangent 
at the vertex at Q, R. Show that the centroid of the triangle PQR lies on the 
line 3x + a = 0.

11 Find the point of intersection of the normals at the points tu t2 of the 
parabola y2 = 4ax.

12 Prove that, in general, from any point (h, k) three normals can be drawn to a 
parabola.

13 If the normals from a point (h, k) meet the parabola y2 = 4ax at the three 
points tj, t2, t3, show that t3 + t2 + t3 = 0.

14 PQ is a variable chord of a parabola. If the chords joining the vertex A to P 
and Q are perpendicular, show that PQ meets the axis of the parabola in a 
fixed point R, and find the length of AR.

15 Find the equations of the tangents to the parabola y2 =  4ax from the point 
(16a, 17a).

16 If the tangents at the end of a focal chord of a parabola meet the tangent at 
the vertex in C, D, prove that CD subtends a right angle at the focus.

Further examples on the parabola
9.3 Example 5 Find the focus and directrix of the parabola y2 = 2 a(x — 4a) and 
give the length o f its latus rectum.
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The equation y2 = 2a(x — 4a) may be written in the form 

Y2 = 2 aX

by the substitutions y = Y, x — 4a = X. We have thus taken new axes as shown 
in Fig. 9.3.

Figure 9.3

The parabola y2 = 4bx has focus (b, 0), directrix x  = — b and latus rectum 4b. 
Comparing this with Y2 = 2aX, it follows that the latter has focus (\a, 0), 
directrix X  = — ja  and latus rectum 2a. Therefore, with the original axes (see 
Fig. 9.3), the focus is (9a/2, 0), the directrix x = 7a/2 and latus rectum 2a.

Example 6 Show that the equation y = 5x — 2x2 represents a parabola and find 
the length of its latus rectum.

We shall try to express the equation in the form X 2 = —4a Y. The equation 
may be written as

This is now in the form X 2 = —4a Y, giving the latus rectum as length j.

Q u.6 Find the coordinates of the focus and the equation of the directrix in 
Example 6.
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Example 7 I f  the line lx + my + n = 0 touches the parabola y2 = 4ax, find the 
equation connecting l, m, n, a.

Since any tangent to y2 = 4ax may be written

x — ty + at2 = 0

let it represent the same tangent as 

lx + my + n = 0 

Comparing coefficients,

n
al

Therefore the condition is am2 =  In.

( 1)

(2)

1 t at2
7 ~ m n

t =
m

and

m2 n
l2 al

The next two examples have been chosen to illustrate the use of symmetrical 
relationships between tx, t2. When symmetry exists, the working is made easier 
and care should be taken to use symmetrical equations and expressions.

Example 8 A chord of the parabola y2 = 4 ax subtends a right angle at the vertex. 
Find the locus o f the mid-point of the chord.

Let the ends of the chord be P f a t f ,  2 att), P2(at22, 2 at2). Then the gradient of 
the line joining the vertex 0(0, 0) to P x is

2 atj
a t,2

2_
h

Similarly the gradient of O P2 is —.
h

P i P2 subtends a right angle at O if O P1; O P2 are perpendicular,

. 2 2
.. — x — = — 1 

tt t2

■ • = —4

The mid-point of P XP2 is given by 

x _ a(h2 + t22)

( 1)

(2)

y =  a(tj + t2) (3)



[Note that we have three equations, (1), (2), (3), from which to eliminate the two 
parameters tu t2■ Note, also, that these equations are symmetrical in tu t2■ Here, 
as is often the case, we use the following identity.]

(*1 +  h ) 2 = t i 2 +  t 2 +  l t xt 2

Substituting from equations (3), (2), (1):

a a

Therefore the locus is y2 = 2a(x — 4a).

Example 9 Show that the equation of the normal to the parabola y1 = 4ax at the 
point (at2, 2at) is

y + tx — 2 at + at2

The normal at a point P(ap2, 2ap) meets the x-axis at G. Find the coordinates 
of the point G. H is the point on PG produced, such that PG = GH; find 
the coordinates of H in terms of p and show that H lies on the parabola 
y2 = 4 a(x — 4a).

The gradient of the parabola at the point (at2, 2at) is given by 

dy dy Idx 2a 1
dx di / di 2at t

Hence the gradient of the normal is — t, and consequently the equation of the 
normal at the point (at2, 2at) is

y + tx = 2 at + at3

The equation of the normal at the point (ap2, 2ap) is 

y + px = 2 ap + ap3

and we obtain the x-coordinate of G (see Fig. 9.4.) by putting y = 0. Therefore 
at G

px = 2 ap + ap3 
i.e. x = 2a + ap2

Hence G is the point (2a + ap2, 0).

Let H be the point (X, T), then since G is the mid-point of PH,

^(ap2 + X) = 2 a + ap2 
ap2 + X  = 4a + 2ap2

X = 4a + ap2 (1)
Similarly,

%2 ap + Y) = 0 
.'. 2ap+ 7  =  0

.'. Y=  - 2 ap
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(2 )
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Hence H is the point (4a +  ap2, — lap).

Eliminating p from equations (1) and (2) gives

X - A a  + a [ - ^

. Y2 
= 4 a + —4 a

.'. Y2 = 4a(X -  4a)

Hence the point H lies on the curve y2 = 4a(x — 4a). This is the equation of a 
parabola, with its vertex at (4a, 0).

Example 10 A variable tangent is drawn to the parabola y2 =  4ax. I f  the 
perpendicular from the vertex meets the tangent at P, find the locus of P.

Let the variable tangent be

x — ty + at2 = 0 (1)

Then the perpendicular from the vertex (0, 0) is

tx + y = 0 (2)

P(x, >’) satisfies equations (1), (2) so that the locus of P may be found by



eliminating t from these equations. [Note that it is not necessary to solve them to 
find the coordinates of P in terms of f.]

From (2), t = — y/x. Substituting in (1),

y 2 y 2x H------b a—y = 0
x x

So the locus of P is x3 + xy2 + ay2 =  0.

Coordinate geometry 161

Exercise 9b
1 Show that the equation x 2 + Ax — 8y — 4 = 0 represents a parabola whose 

focus is at ( — 2, 1). Find the equation of the tangent at the vertex.
2 Prove that x = 3t2 -b 1 and y = ^{3t +  1) are the parametric equations of a 

parabola and find its vertex and the length of the latus rectum.
3 Find the focus of the parabola y = 2x2 + 3x — 5.
4 Prove that the line y = mx + %m + l/m  touches the parabola y2 = 4x + 3 

whatever the value of m.
5 If ax + by + c = 0 touches the parabola x 2 =  4y, find an equation connecting

a, b, c.
6 A parabola, symmetrical about the axis of y, passes through the points (1, 3) 

and (2, 0). Find its equation and that of the tangent at (1, 3).
7 Prove that the circles which are drawn on a focal chord of a parabola as 

diameter touch the directrix.
8 A variable chord of the parabola y2 = 4ax has a fixed gradient k. Find the 

locus of the mid-point.
9 A chord of the parabola y2 = 4ax is drawn to pass through the point (—a, 0). 

Find the locus of the point of intersection of the tangents at the ends of the 
chord.

10 The difference of the ordinates of two points on the parabola y2 =  4ax is 
constant and equal to k. Find the locus of the point of intersection of the 
tangents at the two points.

11 Find the locus of the mid-points of focal chords of the parabola y2 = 4ax.
12 The tangent at any point P of the parabola y2 = 4ax meets the tangent at the 

vertex at the point Q. S is the focus and SQ meets the line through P parallel 
to the tangent at the vertex at the point R. Find the locus of R.

13 Show that y = ax2 + bx + c is the equation of a parabola. Find its focus and 
directrix.

14 Two tangents to the parabola y2 = 4ax pass through the point (xl5 y j .  Find 
the equation of their chord of contact.

15 Find the points of contact on the parabola of the tangents common to the 
circle (x — a)2 -b y2 = 4a2 and the parabola y2 = 4ax. [Start by writing down 
the equation of the tangent at (at2, 2at).]

16 The normal at the point P of the parabola y2 =  4ax meets the curve again 
at Q. The circle on PQ as diameter goes through the vertex. Find the 
x-coordinate of P.



17 Prove that rays of light parallel to the axis of a parabolic mirror are reflected 
through the focus.

18 A variable chord of the parabola y2 = 4ax passes through the point (h, k). 
Find the locus of the orthocentre of the triangle formed by the chord and the 
tangents at the two ends.

19 A tangent to the parabola y2 = 4ax meets the parabola y2 = 8ax at P, Q. 
Find the locus of the mid-point of PQ.

20 Find the locus of the mid-point of a variable chord through the point (a, 2a) 
of the parabola y2 = 4ax.

162 Pure Mathematics 2 Ex 9b

The ellipse
9.4 An ellipse was defined at the beginning of this chapter. Given a fixed point 
S, the focus, and a fixed line, the directrix, if P is a point on the locus and M is the 
foot of the perpendicular from P on to the directrix, then

SP
PM

( e < l )

e is called the eccentricity of the ellipse.

Qu.7 On a sheet of squared paper, rule the directrix along one line near the 
edge, take the focus 2.7 cm in and plot an ellipse with a pair of compasses, taking 
e = 4/5. Measure the width of the ellipse parallel and perpendicular to the 
directrix.

Figure 9.5

The result of Qu. 7 should be like the ellipse in Fig. 9.5, only larger. It follows 
from the definition that an ellipse is symmetrical about the line through S 
perpendicular to the directrix, so we take the x-axis along this axis of symmetry. 
Let the x-axis cut the ellipse in A', A, as shown in Fig. 9.5. It appears from our 
drawing that there may be an axis of symmetry parallel to the directrix, so we



shall take the y-axis passing through the mid-point of A'A, parallel to the 
directrix.

Let A be (a, 0) so that A' is ( — a, 0); let S be (s, 0) and le£ the x-axis cut the 
directrix at N(n, 0). We shall now find s, n in terms of a, e.

A', A lie on the ellipse and so, by the definition of the locus,
SA' , SA

= e and TT7 = eA N  AN
Hence

a + s =  e(n + a) 
a — s = e(n — a)

Adding,
. a2a = 2en n = -

e
Subtracting,

2s = 2ae s — ae
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Therefore S is the point (ae, 0) and the equation of the directrix is x = a/e.
To find the equation of the ellipse, let P(x, y) be any point on the locus, then

SP
PM

SP2 = e2PM 2

But SP2 = (x — ae)2 + y1, and PM = a/e — x.

(x — ae)2 + y2 = e2 — x^

x2 — 2aex + a2e2 + y2 = a2 — 2aex + e2x 2 
x2(l — e2) + y2 = a2( 1 — e2)

+ 1
a2 a2( 1 — e2)

Therefore the equation of the ellipse is 
x 2 v 2
-2 + Vy = 1 where b2 = a2(l — e2) 
a b

Note that we have also found that the focus S is (ae, 0) and the directrix is 
x = a/e; but since the equation of the ellipse is unaltered by replacing 
x by —x, it follows that there is another focus ( — ae, 0) and another directrix 
x = —a/e. Hence

the foci are (ae, 0 ) and ( — ae, 0 )
a a

the directrices are x  = -  and x = ----
e e



The axes of symmetry meet at the centre of the ellipse. Any chord passing 
through the centre is called a diameter.

The diameter through the foci is the major axis and the perpendicular 
diameter is called the minor axis.

Qu.8 Show that the lengths of the axes are 2a, 2b.
Qu.9 Find the length of the semi-axes of the ellipse x2/16 + y2/9 = 1.
Qu. 10 Find the eccentricity of the ellipse x 2/25 + y2/ 16 = 1/4.
Qu. 11 Find the foci of the ellipse x 2 + 4y2 = 9.

Parametric coordinates for an ellipse
9.5 When dealing with an ellipse
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working is generally made easier by using a parameter, but the question arises of 
what parameter to use. Now an equation in the form

( )2 + ( )2 = i
suggests the identity 

cos2 8 + sin2 8 = 1

Thus, if we write x = a cos 6, y = b sin 9, the equation

will always be satisfied. We therefore take as a general point on the ellipse 

(a cos 8, b sin 0)

8 is called the eccentric angle of the point.
In Book 1, §22.5, we saw that the parameter 9 for a circle in

x = a cos 6, y = a sin 9

could be interpreted in terms of an angle. This is not so simple for an ellipse but 
it will now be done.

In Fig. 9.6, P is the point (a cos 9, b sin 8) on the ellipse x 2/a2 + y2fb2 = 1 and 
P' is a point on the circle x 2 + y2 = a2 (called the auxiliary circle) such that OP' 
makes an angle 8 with Ox. Since P, P' have the same x-coordinate, a cos 9, PP' is 
perpendicular to the major axis of the ellipse. Therefore the eccentric angle 9 of 
any point P may be found as follows: draw the ordinate of P to meet the 
auxiliary circle at P', join P' to the origin, then OP' makes an angle 8 with the 
positive x-axis.

Qu. 12 Show how to obtain the y-coordinate of the point (a cos 8, b sin 8) 
from a circle of radius b. Draw two concentric circles and hence plot an ellipse.
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Figure 9.6

x 2 y2
Example 11 Find the equation of the tangent to the ellipse — + ^  = 1 at 

(a cos 9, b sin 9).

The gradient ^  = 
dx

dy
d9

dx 
d6'

x = a cos 9, y = b sin 9

dy b cos 9 
’ ' dx —a sin 9

Therefore the equation of the tangent is

b cos 9 x  + a sin 9 y  = b cos 9 x a cos 9 + a sin 9 x b sin 9 
.'. bx cos 9 + ay sin 9 = ab{cos2 9 + sin2 9)

Therefore the tangent is

bx cos 0 + ay sin 0 — ab = 0

*Qu. 13 Show that the equation of the normal to the ellipse x 2/a2 + y2/b2 = 1 at 
(a cos 9, b sin 9) is

ax sin 0 — by cos 0 — (a2 — b2) sin 0 cos 0 = 0

If the general point on the curve is taken to be (xl5 y j ,  it is frequently 
necessary to bring in the extra equation

This is why working is usually easier when parameters are used.



*Qu. 14 Show that the equation of the tangent at (xl5 }q) to the ellipse
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xxi ,yy  i _,
2 *■ »2 *■a b

Verify that this gives the equation found in Example 11 for the tangent at 
(a cos 8, b sin 8).

Example 12 Find the equation of the chord of the ellipse

x-  + y-  = i 
a2 + b2

joining the points whose eccentric angles are 6, <j>.

The ends of the chord are (a cos 8, b sin 8), (a cos <j>, b sin fi), therefore the 
gradient of the chord is

b sin 8 — b sin <t> 2b cos 10  + fi) sin j(8 — fi)
a cos 8 — a cos —2a sin $(8 + (f>) sin j(8 — <j>)

b cos j{8 + f  ) 
a sin j{8 + 4>)

Therefore the equation of the chord is

b cos ^{8 + (j>) x + a sin ^ 8  + (j>) y
= b cos j{8 +  4>) x a cos 8 + a sin %(d + <j>) x b sin 8

R.H.S. =  ab{cos 8 + <p) cos 8 + sin j(8 + <j>) sin 0}
= ab cos $ 0  + <t>)~ 8}
= ab cos {̂(¡> — 8)
= ab cos j{8 — 4>)

Therefore the equation of the chord is

bx cos j{8 + </>) + ay sin j(8 + <j>) — ab cos ^{0 — <j>) =  0

*Qu. 15 Show, by putting <j> = 8, that the equation of the chord approaches the 
equation of the tangent at 8 as (j> -► 8.

Example 13 A tangent to the ellipse

at the point P meets the minor axis at L. I f  the normal at P meets the major axis at 
M, find the locus o f the mid-point of LM.
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Let P be the point (a cos 9, b sin 8), then the tangent at P has equation 

bx cos 9 + ay sin 8 — ab = 0
b

This meets the minor axis x =  0 at L 0, — „
\  sin 8

The normal at P is

ax sin 9 —by cos 8 — (a2 — b2) sin 6 cos 8 = 0

This meets the major axis y = 0 at M 

The mid-point of LM is given by

cos 8,0  .

a2 -  b2x  = —------cos 8 y =  -2a 2 sin 8

8 can be eliminated from these equations by means of the identity 

cos2 8 + sin2 8 = 1

Therefore the locus of the mid-point of LM is

2ax \ 2 ( b  Y  , 
a2- b 2)  + U )

Exercise 9c
1 Find the foci and directrices of the ellipse

(a) 4x2 + 9y2 = 36, (b) x2 + 16y2 = 25.
2 Write down the equation of the tangent to

2 2
(a) — + = 1 at (3 cos 8, 2 sin 8),

(b) 9x2 + 16y2 = 25 at (1,1).
3 Find the equation of the normal to

(a) 9x2 + 16y2 = 25 at (1, 1),
(b) x2 4- 2y2 = 9 at (1 ,-2 ).

4 A point moves so that its distance from (3, 2) is half its distance from the line 
2x + 3y = 1. Why is the locus an ellipse? Find the equation of the major axis.

5 P is any point on an ellipse; S, S' are the foci. Prove directly from the focus- 
directrix definition of the ellipse that SP +  S'P =  2a, where 2a is the length of 
the major axis.

6 Find the relation between the eccentric angles of the points which are at the 
ends of a focal chord.

7 Prove that the chord joining points of an ellipse whose eccentric angles 
are (a -I- /?), (a — /i) is parallel to the tangent at the point whose eccentric angle 
is a.

8 Find the equation of the tangent to the ellipse x2/a2 + y2/b2 = 1 at the end of 
the latus rectum which lies in the first quadrant.



9 The tangent at P to an ellipse meets a directrix at Q. Prove that lines joining 
the corresponding focus to P and Q are perpendicular.

10 Find the coordinates of the point of intersection of the tangents to the ellipse 
x 2/a2 + y2/b2 = 1 at the points whose eccentric angles are 6, (j>.

11 P is any point on an ellipse and S, S' are the foci. Prove that the normal at P 
bisects the angle S'PS.

12 Find the locus of the mid-point of the line joining the focus (ae, 0) to any 
point on the ellipse x 2/a2 + y2/b2 = 1.

13 The eccentric angles of two points P, Q differ by a constant k. Find the locus 
of the mid-point of PQ.

14 The normal at the point (a cos 6, b sin 6) on the ellipse x 2/a2 +  y2/b2 = 1 
meets the axes at L, M. Find the locus of the mid-point of LM.

15 A variable tangent to the ellipse x2/a2 + y2/b2 = 1 meets the axes at R, S. 
Find the locus of the mid-point of RS.

16 Prove that the tangents to the ellipse x 2/a2 + y2/b2 =  1 at points whose 
eccentric angles differ by a right angle meet on a concentric ellipse and find 
its equation.

17 Prove that perpendicular tangents to the ellipse x 2/a2 + y2/b2 =  1 meet on 
the circle x 2 + y2 = a2 + b2 (called the director circle).

18 The tangents to the ellipse x2/u2 + y 2/b2 = 1 at P, Q meet at the point 
(xj, yj). Show that the equation of the chord of contact PQ is

x*i_ m _
a2 + b2

[Use the results of No. 10 and Example 12.]
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Further examples on the ellipse
9.6 Example 14 Find the condition that the line y =  mx + c should touch the 

x 2 y2
ellipse —r- + —j- = 1. 

a2 b2

The equation of any tangent to the ellipse may be written 

bx cos 6 + ay sin 6 — ab =  0

Let this equation represent the same tangent as the given line which we shall 
write as

mx — y -I- c = 0

Comparing coefficients,

b cos 6 a sin 6 —ab
m — 1 c

a am  ■ a b. . cos 6 = ------ , sin V =  -
c c
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But cos2 6 + sin2 0=1 .

a2m2 b2
• • —2—  ̂t  = 1 c c

Therefore y = mx + c touches the ellipse if 

c 2 =  a 2m 2 +  b2

Qu. 16 Work Example 14 by eliminating y between the two equations and 
writing down the condition that the resulting quadratic in x should have equal 
roots.

X2 y2
Example 15 Prove that perpendicular tangents to the ellipse -^  +  p- =  1 meet

on a circle and find its equation.

From Example 14 we see that the equation of a general tangent to the ellipse 
may be written

y = mx + (a2m2 + b2)112 
(y — mx)2 = a2m2 + b2
m2(x2 — a2) — 2xym + y2 — b2 = 0 (1)

If (x, y) is a point of intersection of two perpendicular tangents to the ellipse, we 
may regard equation (1) as a quadratic equation for m, the gradient of the 
tangents. Since the tangents are perpendicular the product of the roots of the 
equation is — 1,

= - 1

y2 — b2 = a2 —x 2

Therefore the equation of the locus is

x 2 + y2 = a2 + b2

This is called the director circle of the ellipse.

Example 16 A variable straight line with constant gradient m meets the ellipse

at Q, R. Find the locus of P, the mid-point of QR.

Let the equation of the line be

y = mx + c (1)

To find the coordinates of Q, R, we would solve the equation of the line and the
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equation of the ellipse 

b2x 2 + a2y2 = a2b2 

simultaneously:

b2x 2 + a2(m2x 2 + 2 mxc + c2) — a2b2 = 0 
x 2(b2 + a2m2) + 2a2mcx + a2c2 — a2b2 = 0

The x-coordinates of Q, R, say x u x 2, are the roots of this equation. But if P is 
the point (X , Y),

X = % x l + x 2)

-2 a2mc
b2 + a2m2

Now the coordinates of P satisfy equation (1), so 

Y = mX + c

(2)

(3)

Therefore we may find the locus of P by eliminating c between the equations (2), 
(3). Substituting

c = Y — mX

in equation (2) rearranged as 

X(b2 + a2m2) = — a2mc

we obtain

X(b2 + a2m2) = — a2m(Y— mX) 

Therefore the locus of P is 

b2x + a2my = 0

which is a diameter of the ellipse.

Exercise 9d
1 Write down the equations of the tangents to

(a) x2/4 + y2/9 = 1 with gradient 2,
(b) x2 +  3y2 = 3 with gradient — 1,
(c) 4x2 +  9y2 = 144 with gradient j.

2 Without solving the equations completely, find the coordinates of the mid
points of the chords formed by the intersection of
(a) x — y — 1 = 0  and x2/9-I-y2/4 =  1,
(b) lOx — 5y +  6 = 0 and 4x2 + 5y2 = 20,
(c) 2x -(- 3y — 4 = 0 and y2 = 8x.

3 Prove that the line x — 2y + 10 = 0 touches the ellipse 9x2 + 64y2 = 576.
4 Find the equations of the tangents to the ellipse x2 + 4y2 = 4 which are 

perpendicular to the line 2x — 3y = 1.



5 The line y = x — c touches the ellipse 9x2 + 16y2 = 144. Find the value of c 
and the coordinates of the point of contact.

6 Find the condition for the line y = mx + c to cut the ellipse x 2/a2 + y2/b2 =  1 
in two distinct points.

7 The line y = mx + c touches the ellipse x 2ja2 + y2/b2 =  1.
Prove that the foot of the perpendicular from a focus on to this line lies on 

the auxiliary circle x 2 + y 2 = a2.
8 Find the locus of the foot of the perpendicular from the centre of the ellipse 

x 2/a2 + y 2/b2 = 1 on to any tangent.
9 Find the equation of the normal at the point (xl5 y x) on the ellipse

x 2/a2 + y2/b2 = 1.
10 Find the coordinates of the mid-point of the chord formed by the intersec

tion of
(a) y = mx + c and b2x 2 + a2y2 = a2b2,
(b) lx + my + n = 0 and y2 =  4ax.

11 Find the equation of the diameter bisecting the chord 3x + 2y= 1 of the 
ellipse 4x2 -I- 9y2 = 16.

12 Find the equation of the line with gradient m passing through the focus (ae, 0) 
of the ellipse b2x 2 + a2y 2 = a2b2.

If the line meets the ellipse in P, Q, find the coordinates of the mid-point of 
PQ and show that they satisfy the equation

a2my + b2x  = 0

By substituting the value of m obtained from this equation into the 
equation of PQ, find the locus of the mid-point of PQ.

13 A variable line passes through the point (a, 0). Find the locus of the mid
point of the chord formed by the intersection of this line and the ellipse
b2x 2 + a2y2 = a2b2.

14 Find the locus of points from which the tangents to the ellipse

b2x 2 + a2y2 = a2b2 

are inclined at 45°.
15 Lines of gradient m are drawn to cut the ellipse b2x 2 + a2y2 = a2b2.

Prove that the mid-points of the chords so formed lie on a straight line 
through the origin with gradient —b2/(a2m). Deduce the equation of the 
chord whose mid-point is (h, k).

16 Show that a general tangent to the circle x 2 + y2 — a2 = 0 may be written

y = m x±  ayj( 1 + m2)

A variable tangent to the circle x2 + y2 — a2 = 0 meets the ellipse 
b2x 2 + a2y2 = a2b2 (b > a)t at P, Q. Find the locus of the mid-point of PQ.

17 A variable tangent to the ellipse b2x 2 + a2y2 = a2b2 meets the parabola 
y2 = 4ax at L, M. Find the locus of the mid-point of LM.
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fThe major axis lies along the y-axis.



18 The chord of contact of the point (x1; >■,) with respect to the ellipse
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cuts the axes at L, M. If the locus of the mid-point of LM is the circle 
x 2 + y2 = 1, find the locus of (x1; y j .  [Use the result of Exercise 9c, No. 18.]

The hyperbola
9.7 In §9.4, certain results were obtained for the ellipse. The working is so 
similar for the hyperbola that it is left to the reader to obtain the corresponding 
results. Starting with the focus-directrix definition with e > 1 the reader should 
work through the following questions.
Qu. 17 On a sheet of squared paper, rule the directrix along one line near the 
middle, take the focus 4 cm out towards the nearer edge and plot part of a 
hyperbola (there are two branches of it) taking e — 2.
Qu. 18 Show that, with suitable choice of axes, the equation of a hyperbola 
may be written

where b2 = a2{e2 — 1),
the foci are (ae, 0) and ( —ae, 0),

a u
and the directrices x  = -  and x  = — .

e e

Qu. 19 Show that any point on the hyperbola x 2/a2 — y2/b2 = 1 may be 
written

(a sec 0, b tan 0)

Qu. 20 Show that at (a sec 6, b tan d) on the hyperbola

the equation of the tangent is 

bx — ay sin 0 — ab cos 0 = 0 

and the equation of the normal is 

ax sin 0 + by — (a2 + A2) tan 0 = 0

Qu. 21 Show that the equation of the tangent at (xl5 to the hyperbola 
x 2/a2 — y2/b2 =  1 is

yyi t
a2 b2 ~

Show that the equation of the tangent in Qu. 20 may be deduced from this.



Coordinate geometry 173

Asymptotes to a hyperbola
9.8 Example 17 Find c in terms of a, b, m if y = mx + c is a tangent to the

1 1  * x y
hyperbola —=■---- =- = 1.

a b2

Solving the two equations simultaneously,

b2x 2 — a2y2 = a2b2
b2x 2 — a2(m2x 2 + 2mcx +  c2) — a2b2 = 0 

x 2(b2 — a2m2) — 2a2mcx — a2(b2 +  c2) =  0 (1)

The line is a tangent if and only if this equation has equal roots,

i.e. if and only if ( — 2a2mc)2 = —4(b2 — a2m2)a2(b2 + c2) 
a2m2c2 = —(b2 — a2m2)(b2 + c2) 
a2m2c2 = — b4 — b2c2 + a2m2b2 + a2m2c2 

b2c2 = a2m2b2 — b4

Therefore y = mx + c is a tangent to the hyperbola if and only if 

c2 = a2m2 — b2

[Compare the method of Example 14, §9.6.]

In Example 17, the value of x at the point of contact is given by half the sum of 
the roots of equation (1) since the roots are equal.

a2mc
’ ' X= b2 — a2m2

_  a2msJ{a2m2 — b2)
= + a2m2 — b2

Therefore, at the point of contact,

_  _  a2m
X= + J(a2m2 - b 2Y

Hence a s m ^ i  b/a, x->cc and, since c2 = a2m2 — b2,c -> 0, so that 

b
y = + - x

a

may be regarded as the limit of a tangent to the hyperbola as the point of contact 
tends to infinity.

One way of remembering the equation of the asymptotes

is that, when x, y are very large, terms other than those of the highest degree may 
be neglected in comparison.
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The rectangular hyperbola
9.9 There is a special case of the hyperbola which has interesting properties 
and so receives special attention. A rectangular hyperbola is one whose 
asymptotes are perpendicular. The asymptotes of

x 2

a2
b

are y =  ± -  x 
a

and these are perpendicular when

b
a

= - 1

that is when b = a. Hence

represents a rectangular hyperbola and its asymptotes are

x — y = 0, x + y = 0

The fact that the asymptotes are perpendicular enables us to write the
equation of the rectangular hyperbola in a very simple way. Let (x, y) be any
point on the curve in Fig. 9.7, then

2 2 2 x — y = a

Note that this equation can be written

(X -  y)(x + y) = a2 (1)

Figure 9.7



If we rotate the plane through 45° the asymptotes will coincide with the axes 
(remember that under such transformations we always regard the axes as fixed); 
the two branches of the hyperbola will then occupy the first and third quadrants 
(see Fig. 9.8).
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Figure 9.8

Using the matrix method described in Book 1, §11.7 (d), the point (x, y) will be 
mapped on to point (X , 7), where

cos 45° —sin 45° 
sin 45° cos 45'

= ± ( l - 1 
v n i  i

= J L ( x ~ y  
V2 \ x +  y. 

1 1
Hence X  = (x -  y) and 7  = (x +  y), i.e.,

(x — y) = s/2 X  and (x +  y) =  x/27

Substituting these expressions into equation (1) gives

2X7 = a2 
X Y  = \a 2

Hence, with the rectangular hyperbola in its new position, any point on the



curve with coordinates (x, y) satisfies the equation
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The eccentricity of x 2 — y2 = a2 is given by a2 = a2(e2 — 1) from which we 
find that e = j 2  and hence the foci are (± J2a, 0). Now a = v''2c, so the 
foci of xy = c2 are on the major axis at a distance 2c from the centre 
(see Fig. 9.8). Therefore the coordinates of the foci of xy  = c2 are Q2c, ^J2c) and 
(-V 2c, -V2c).

The reader should now work through the following questions which contain 
very important results for problems on the rectangular hyperbola.

Qu. 22 Show that any point on the rectangular hyperbola xy = c2 may be 
represented by

Qu. 24 Show that the gradient of the chord joining the points (ctl, c/tj), 
(ct2, c/t2) on the hyperbola xy  = c2 is

and that the equation of the chord is 

x  + t lt2y - c { t i + i 2) = °

Qu. 25 Verify that the equation of the chord in Qu. 24 becomes the equation of 
the tangent in Qu. 23 when t1 = t2 = t.

Further examples on the hyperbola
9.10 The following examples do not illustrate any new principles but rather 
serve to show that the same methods that were used for problems about the 
ellipse may also be used in connection with the hyperbola.

Qu. 23 Show that the gradient of the hyperbola at (ct, c/t) is

Show also that the equation of the tangent is 

x  + t2y  -  le t  =  0

and that the equation of the normal is

t2x  —y — ct3 + -  = 0  
t

1

Example 18 A tangent to a hyperbola at P meets a directrix at Q. I f  S is the 
corresponding focus, prove that PQ subtends a right angle at S. (Fig. 9.9.)
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Let P be the point (a sec 0, b tan 9) on the hyperbola

Figure 9.9

The tangent at P is

bx — ay sin 9 — ab cos 0 =  0 

This meets the directrix x = a/e at a point given by 

ba
----- ay sin 0 — ab cos 0 = 0
e

y sin 0 =
0(1 — e cos 0)

_ . f  a b{ 1 —e cos 0)
'• Q 1S -  ------- ---------\e  esin 0

Therefore the gradient of QS 

h(l — e cos 0)
esin0  0(1— e cos 0)

m, a
----ae
e

a(l — e2) sin 0

The gradient of PS

0 tan 0 0 sin 0
m2 —-------------- = ------------------asec9 — ae a(l — ecos0)
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b( 1 — e cos 0) b sin 9
a ( l—e2)sin9  a ( l—ecosd)

a2( 1 — e2)

since b2 = a2(e2 — 1). (See §9.7.)
Therefore SQ and SP are perpendicular and so PQ subtends a right angle 

at S.

Example 19 S is a focus of the hyperbola

and P is the foot of the perpendicular from Son to a variable tangent. Find the locus 
of P.

y = m x±  (a2m2 — b2)112 (1)

is the equation of a general tangent to the hyperbola.

x + my — ae = 0 (2)

is the equation of the perpendicular from S to the tangent.
The coordinates of P satisfy equations (1) and (2), and so we may find the 

locus by eliminating m between these equations.
From (1),

y2 — 2 mxy + m2x 2 = a2m2 — b2 

From (2),

m2y2 + 2 mxy + x 2 = a2e2 

Adding,

y2(l + m2) + x2(l +  m2) =  a2m2 — b2 + a2e2 
R.H.S. = a2m2 + a2 since b2 = a \e 2 — 1)

.'. y2(l + m2) + x2(l +  m2) =  a2(l + m2)

Therefore the locus of P is x2 + y2 = a2, which is the auxiliary circle.

Example 20 PQ is a chord of the rectangular hyperbola xy  = c 2 and R is its mid
point. I f  PQ has a constant length k, find the locus of R.

Let P be (cp, c/p) and Q be (cq, c/q). Then, if R is (x, y),

x = jc(p + q) (1)

c(p +  q)

y = 2 pq
(2 )
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Since the length of PQ is given to be k,
2

PQ2 = (cp — cq)1 + = k2

c2(p — q)2{l + p2q2) =  k2p2q2 

From (1) and (2), p + q = 2x/c and pq =  x/y.

Now (p — q)2 =(p + q)2 — 4pq, so that (3) becomes 

c2{{p +  q f  -  4pq}{\ + p2q2) = k2p2q2 

Substituting for p + q and pq,

(3)

Therefore the locus of P is 4(xy — c2)(x2 +  y2) =  k2xy.

Exercise 9e
1 P is any point on the rectangular hyperbola xy = c2. Show that the line 

joining P to the centre, and the tangent at P, are equally inclined to the 
asymptotes.

2 P is any point on the hyperbola x 2/a2 — y2/b2 =  1 and Q is the point (a, b). 
Find the locus of the point dividing PQ in the ratio 2:1.

3 Prove that the product of the lengths of the perpendiculars from any point of 
a hyperbola to its asymptotes is constant.

4 The normal at any point of a hyperbola meets the axes at E, F. Find the locus 
of the mid-point of EF.

5 Find the coordinates of the point at which the normal at (ct, c/t) meets the 
rectangular hyperbola xy =  c2 again.

6 Any tangent to the rectangular hyperbola xy  =  c2 meets the asymptotes at L 
and M. Find the locus of the mid-point of LM.

7 The normal at any point on the hyperbola xy  =  c2 meets the x-axis at A, and 
the tangent meets the y-axis at B. Find the locus of the mid-point of AB.

8 Find the equation of the chord of the hyperbola xy =  c2 whose mid-point is 
(*1, Ji)-

9 Show that, in general, four normals can be drawn from any point to the 
rectangular hyperbola xy = c2.

10 The normal at any point P of the rectangular hyperbola xy = c2 meets the 
y-axis at A, and the tangent meets the x-axis at B. Find the coordinates of the 
fourth vertex Q of the rectangle APBQ in terms of t, the parameter of P.



11 Find the locus of the foot of the perpendicular from the origin on to a 
tangent to the rectangular hyperbola xy = c2.

12 Find the condition that the line lx + my +  n = 0 shouldj touch the rectangular 
hyperbola xy = c2.

13 Prove that the locus of middle points of parallel chords of the rectangular 
hyperbola xy = c2 is a diameter.

14 Find the locus of the point of intersection of perpendicular tangents to the 
hyperbola x2/a2 — y2/b2 = 1.

15 Find the locus of the foot of the perpendicular from the origin to a tangent of 
the hyperbola x 2ja2 — y2/b2 = 1.

16 PQ is a variable chord of the hyperbola x 2/a2 — y2/b2 = 1 with constant 
gradient mx. Show that the locus of the mid-point of PQ is a diameter with 
gradient m2 such that m1m2 = b2/a2.

17 The chord AB of a hyperbola meets the asymptotes at M, N. Prove that 
AM = BN. [Show that AB and MN have the same mid-point.]

18 Find the equation of the chord joining the points (a sec 9, b tan 9), 
(a sec (j>, b tan </>) on the hyperbola x 2/a2 — y2/b2 = 1.

19 The tangent at any point P on the hyperbola x 2/a2 — y2/b2 = 1 meets the 
asymptotes at Q and Q'. Prove that PQ = PQ'.

20 P, Q, R are three points on a rectangular hyperbola such that PQ subtends a 
right angle at R. Show that PQ is perpendicular to the tangent at R.

180 Pure Mathematics 2 Ex 9e

Exercise 9f (Miscellaneous)
1 The distance between the foci of an ellipse is 8 and between the directrices is 

18. Find its equation in the simplest form.
2 R, S are two fixed points a distance 5 units apart and the point P moves so 

that PR + PS is constant and equal to 12 units. Find the locus of P.
3 P is any point on a parabola and S is the focus. Prove that the circle on SP as 

diameter touches the tangent at the vertex.
4 The equation of a parabola is y2 =  12x—12. Find the equations of the 

straight lines that pass through the origin and cut the parabola where x = 4. 
Find also the equations of the tangents to the parabola that are parallel to 
these lines.

5 Show that the line 5y — 4x = 25 touches the ellipse x2/25 + y2/9 = 1 and find 
the equation of the normal to the ellipse at the point of contact. What is the 
eccentricity of the ellipse?

6 Find the equations of the tangents to the hyperbola 3x2 — 4y2 = 1 which 
make equal angles with the axes.

7 The perpendiculars from the foci of the hyperbola b2x 2 — a2y2 = a2b2 on to 
any tangent are of length pu p2. Prove that |pip2| = b2.

8 The gradients of the tangents to the parabola y2 = 4ax and the rectangular 
hyperbola xy = c2 at the point at which they cut are m1 and m2 respectively. 
Prove that m2 = —2m1.

9 Find the coordinates of the mid-point of the chord x + y — 1 = 0 of the 
parabola y2 = 6x.



10 Show that the equation 2x2 + y2 = 6y represents an ellipse with eccentricity 
jy/2. Find the coordinates of the centre and the length of the minor axis.

11 Show that x 2 + 4x — 8y — 4 =  0 represents a parabola .whose focus is at 
( — 2, 1). Find the equation of the tangent at the vertex.

12 A man stands on a ladder which rests on smooth horizontal ground against 
a smooth vertical wall. Prove that his feet will describe part of an ellipse as 
the ladder falls.

13 Find the eccentricity and focus of the curve y2 — 4y + 2x +  2 = 0 and write 
down the equations of the tangent and normal at the point (j, 1).

14 P (a sec 6 ,  b tan 0) is any point on the hyperbola x 2/a2 —  y2/b2 =  1 and N is 
the foot of the perpendicular from P to the x-axis. NT is drawn to touch the 
auxiliary circle at T. Prove that the line joining T to the centre of the circle 
makes an angle with the x-axis equal to 9.

15 Show that, if the chord joining the points P{ap2, 2ap), Q(aq2, 2aq) on the 
parabola y2 = 4ax passes through (a, 0), then pq=  — 1.

Further, the tangent at P meets the line through Q parallel to the axis of 
the parabola at R. Prove that the line x + a = 0 bisects PR. (O & C)

16 Show that the tangent at the point P, with parameter t, on the curve x = ct, 
y = c/t has the equation x + t2y = 2ct
This tangent meets the x-axis in a point Q and the line through P parallel to 
the x-axis cuts the y-axis in a point R. Show that, for any position of P on the 
curve, QR is a tangent to the curve with parametric equations x = ct, 
y = c/(2t). (L)

17 The chord PQ of a parabola y2 = 4ax, where P is the point (ap2, 2ap) and Q 
is the point (aq2, 2aq) subtends an angle of 90° at the origin. Show that 
pq = - 4 .

As p varies:
(a) show that the tangents to the parabola at P and Q meet on a fixed 

straight line and find the equation of this line,
(b) show that the chord PQ passes through a fixed point and find the

coordinates of this point. (L)
18 Prove that the equation of the tangent to the ellipse

x 2 y2
+ tt = 1 (a > 0, b > 0) a b
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x y
at the point P (a cos 6, b sin 9) is — cos 6 + — sin 9 = 1

d U

The tangent at P meets the axes Ox and Oy at X and Y respectively. Find the 
area of the triangle OXY.

The points A and B have coordinates (a, 0) and (0, b) respectively. Show 
that the area of triangle APB is ja b (cos 6 + sin 9 — 1).

Prove that, as 9 varies in the interval 0 < 6 < jn, the area of the triangle 
APB is a maximum when the tangent to the ellipse at P is parallel to AB. 
Prove also that triangle OXY has its minimum area when triangle APB has 
its maximum area. (C)
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19 Find the equation of the tangent at the point (ct, c/t) on the rectangular 
hyperbola xy = c2.

Tangents drawn from the point R(h, k) touch the* hyperbola at points 
P(cp, c/p) and Q(cq, c/q). Find h and k in terms of p and q.

The mid-point M of the chord PQ is (xM, yM).
(a) If R lies on the straight line y = mx, prove that M also lies on this line.
(b) If R lies on the rectangular hyperbola xy = jc 2, prove that M also lies on

a certain rectangular hyperbola. State the least distance of M from the 
origin. (O & C)

20 If a particle is projected under gravity from a point on a level plane with 
velocity V at an angle of elevation a, the range

_  V2 sin 2a 
g

and the greatest height

V2 sin2 a 
" -------

With axes through the point of projection, the equation of the parabolic 
trajectory is

y = x tan a —
2V2 cos2 a

Show that this equation may be written

( x - jR ) 2
2F2cos2 a /rr 
------------- (if -  y)

g
and determine the coordinates of the focus, and the equation of the directrix.



Chapter 10

Series for e* and In (1 + x)
Introduction
10.1 The expansion of functions of a variable as series has considerable 
theoretical and practical importance. There are some problems that are most 
easily tackled by means of series, for instance estimating the value of the 
constant e, and there are problems in science and engineering which have no 
practicable solution except by series. Further, the development of computers has 
considerably added to the practical importance of approximate numerical 
solutions to problems. So far in this book only the function (1 + x)" has been 
expanded in a series and in this chapter two more functions, e* and In (1 + x) will 
be considered.

The exponential series
10.2 The fundamental property of the function e* is that

If two assumptions are made:

(a) that cx can be expanded as a series of ascending powers of x and
(b) that the nth derivative of such a series is the sum to infinity of the nth 

derivatives of the individual terms,

it is easy to find the coefficients of the terms in the series.
Suppose that

ex = a0 + a!X + a2x 2 + a3x 3 + ... + anx n... (1)

Differentiating (1) once, twice, and three times respectively,

ex = «i + la 2x + 3 a3x 2 + . . . +na„x"~1 + ... (2)

e'

>X 2a2 + 3 x 2a3x + ... +  n(n — l)a„x" 2 + ...

3 x 2a3 + ... + n(n — l)(n — 2)a„x" ~ 3 + ...

(3)

(4)
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10.2

Differentiating (1) n times,

e* =  n\an + ... (5)

Now substituting x = 0 in (1), (2), (3), (4), (5),

1 = a0 
1 = a t 
1 = 2  a2 
1 =  3 x 2a3 
1 =  n\a„

Substituting the values we have just found for a0, au a2, a3, a„ into equation (1), 

* = 1 + J : + 2i + 3i + '" + nT + '"

This series is often denoted by exp x  and it is valid for all values of x (see below).

Qu. l Write down the first four terms and the general terms in the expansions 
of: (a) e~x, (b) e*2, (c) e3x in ascending powers of x; (d) e1/x, (e)_ 1/x2 in descending 
powers of x.
Qu. 2 (Another method of proof.) Find the coefficients of the terms in the 
expansion of e* by equating coefficients in equations (1) and (2) above.

Alternatively, the expansion of e* can be obtained by integration. The 
assumption is made that x"-»0 as n-> oo when |x| < 1. This has already been 
assumed in connection with infinite geometrical progressions (Book 1, §13.9). 
Most readers, however, will prefer to leave this proof until the second reading, in 
which case they should proceed to Example 1, p. 185.

Let the variable x lie in the range of values from 0 to c, where c is any positive 
constant, thus

0 < x < c

Now e° =  1,

.’. 1 < e x < e c

Integrating from 0 to x,

x < e* — 1 < x ec

Again integrating from 0 to x,

¿x2 <  e* — 1 — x < j x 2 ec

Integrating a further n — 2 times,
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X" X— < e —
X2

1 - J - - . .
x"“ 1 x"

• — t------ - < — e‘n! 2! (n -  1)! n!

When oo, x"/n! ->0 (proved below),
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Therefore the difference between ex and the series

(n -1 )!

approaches zero as n -* oo.

To prove the series for negative values of x, take

a < x < 0 
ea < ex < 1

Integrating from x to 0,

— x e a < l  — ex < —x 

Again integrating from x to 0,

It is left to the reader to complete the proof.
Note that the expansion of ex is valid for all values of x. It is clear that exp x 

must have a finite sum for any value of x, since it has been shown that the sum to 
infinity is ex, which is finite.

To show that xn/n! ->0 as n-* oo, let ur =  xrjr\

ur + 1 _ xr+1 r! _  x
ur (r + 1)! xr r + 1

Let k be the first integer greater than or equal to 2x, then if r > k,

But xk/k\ is finite and (j)" k-*0 as n-* oo, therefore x”/nl-*0  as n-* oo.

Example 1 Find the value of e correct to four places of decimals. 

Substituting x = 1 in the series for ex,

j x 2 ea < ex — 1 — x < j x 2

“ r + l  1

U r 2

M* + l < l U k  U k  + 2  < ( } ) 2 U k , . . . , U n < ( j ) " - k U k



The working is shown, although readers may prefer to use 1.00000 
a calculator, if available. Each term in the series, after the 1.00000 
first, is obtained from the previous one by dividing by 1, 2, 0.50000
3,..., 9,... respectively. The working has been taken to five 0.16667
places of decimals. The value obtained for e is 2.7183, correct 0.04167 
to four places of decimals. 0.00833

0.00139 
0.00020 
0.00002 (5) 
0.00000
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2.71828

It can be shown that e is irrational, and it can also be shown that e is 
transcendental, that is, e satisfies no algebraic equation in the form

a0 + a1x + ... + a„xn = 0

where the coefficients a0, au ...,an are integers.

Example 2 Find the first four terms in the expansions in ascending powers of x of 
(a) e1 “*2, (b) ex_x2, giving the general term in (a).

(a) e1 x2 = e1 x e

= e< 1 + ( - x 2) +
2 !

2 \3

+ ( ~ * 2)
3! + ... + (- x 2y + ...

. e1 *2 = e{l — x 2 +  ^x4 — ¿x6 + ... + ( — 1 f x 2r/rl + ...}

(b) ex x = 1 + (x — x2) +
2 , ( x - x 2)2 _ ( x - x 2)3

2 !
+ ■

3!
+ . . .

. . e
= 1 + x -  x2 + jx 2 - x i + ... + ^ x 3 + ... 

1 = 1 + x — tx2 — 4x3 + ...

Example 3 Find the sum to infinity o f the series 

, 3x 5x2 7x3
1 + T T + ^ r + i r  + -

The general term is * x". We aim to find terms in the form x'/rl, so the
n\

general term is split up as

x" 2 n xn „ x' 
— + — x = - + 2 x x

n — 1

nl nl (« - ! ) !

Therefore the series may be written:

(n>  1)
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1 + (x + 2x x 1) + ( — + 2x x x ) +
X 3 „  X 2

3 ! + 2 x * 2! + ...

X 2 X 3 x4 x2 ' x3= l +  x + — + — + — + ... + 2x x l  + 2x x x  + 2x x  — + 2x x  — + ...

= ex + 2x ex = (1 + 2x) ex

Exercise 10a
1 Use the expansion exp x to find the values of (a) e01, (b) 1/e, (c) ^/e, giving 

your answers correct to four places of decimals.

In Nos. 2-10, expand the functions of x as far as the fourth non-zero terms and 
give the general terms.

2 e*3.
5 e2+x.

8 (1 + 2x) e~2x.

11 Find the greatest terms in the expansion of ex when x =  10.

In Nos. 12-15 expand the functions in ascending powers of x as far as the term 
in x3.

12 ex2 + 2x. 13 ex2~3x+1. 14 . 15 1 ~ 6 < •
1 -I- x ex -  1

16 Find the limits of the following functions as x approaches zero:

. . ex —(1+x)  e2x - ( l + 4 x )1/2 ex + e " x- 2
e2x — (1 + 2x)’ b) e_x —(1 —3x)1/3’ (c) ex2 -  1

3 ^(ex). 4 (l/ex)2.
6 1/V(ex). 7 ( 1 +  x)ex.

Find the sums to infinity of the following series: 

2x 3x2 4x3
1 7 1 + i i  + i r  + i r  + -

3x 9x2 21 x 3
1 8 1 + 2r  + i r  + ^ r  + -

19 1 + — + — + ... [Start by writing down the series for ex and e x.]

x3 x5
20 X+ 3! + 5! +
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The logarithmic series
10.3 The geometric series 1 — u + u2 — u3 + ... has a sum to infinity (Book 1, 
§13.9) of 1/(1 + u). So we may write

—-— = 1 — u + u2 — u3 + ...
1 +  U

Assuming that the integral of the sum of an infinite series is the sum of the 
integrals of its terms, integrate between 0 and x:

The nth term of the geometric series is (— l)"-1«"-1 so that the nth term 
of the logarithm series is (— l)"~lx"/n. Since the geometric series only has 
a sum if |u| < 1, we should expect that the logarithmic series would be valid 
when |x| < 1 but it can also be shown that the series has a sum when x = 1 (see 
Exercise 10b, No. 25; see also Fig. 16.3, p. 316). Thus

provided — 1 < x  <  1.

Note that if x is replaced by — x in this series,

provided — 1 < x < 1.

We can, however, prove the expansion of In (1 + x) without making the 
assumption about integrating an infinite series which was made at the beginning 
of this section. It is suggested that most readers should omit the following proof 
on first reading and proceed to Example 4.

Consider the sum of n terms of the geometric progression

1 — u + u2 — . . . + ( — 1)” 1u" 1 = — ——
1 + u

Integrating from 0 to x,

where

We now examine what happens to Rn as n-* oo.



Case 1: 0 < x ^  1. Consider the function u"/( 1 +u), where u lies in the range 
0 ^  u ^  x. The least value of the denominator is 1, so
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(K siu"
1 + u

Integrating with respect to u from 0 to x, 

u"
0 <

o 1 +  n
du < 1> du

0 < li?„| <

.-.¡R. I<

u,n+ 1

n + 1
,n+ 1

si

x" + 1 
o n + l

1
n + 1 n +1 

Hence if 0 < x 1, R„->0 as n->oo.

Case 2: — 1 <  x < 0. Consider the function ( — l)"u"/(l + u), where u lies in the 
range x ^  u <  0. We now have

( - l ) V  (— l)"u"
1 + u 1 +  x

Integrating with respect to u from x to 0,

*° ( — l)"u"0 < du <

IKJ <

1 + u

~ ( — l)"u" +

r ° (-i)"u" 
J x  1 + -X

du

. (1+xXn+l)

( - i ) n 1
<

(1 + x)(n +1) (1 + x)(n + 1)

Hence if — 1 < x < 0 (but not for x = — 1), Rn -»0 as n -* oo.

Case 3: x = 0. Both sides of the expansion are zero. Therefore
■y* 2 y> 3

l n ( l + x )  =  x - -  + - - . . . + ( - i r 1-  + ...
2 3 n

provided — 1 < x ^  1.

Example 4 Expand as series in ascending powers o f x: 

(a) In (2 + x), (b) In (2 + x)3, (c) In (x2 -  3x + 2).

(a) In (2 + x) = In {2(1 + |x)}

= In 2 + In (1 + jx)
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In (2 + x) = In 2 + \ x  - (i*)2
+ ••• + ( - ! ) ' +

.M n(2 + x ) = l n 2 + | - ^  +  . . . + ( - i r ^  + ...

The expansion is valid if — 1 < j x  <  1, i.e. if — 2 < x <  2.

(b) In (2 + x)3 = 3 In (2 +  x).

Therefore, using the result of part (a),

. . .  ,, , ,  „ 3x 3x2 , . 3x"
ta(2 +  *)’ = 3 t a 2  +  T - x  +  . . . + ( - i r ‘ ï r ^  +  ...

The expansion is again valid if — 2 < x ^  2.

(c) In (x2 — 3x + 2) = In {(1 — x)(2 — x)}
= In (1 — x) +  In (2 — x)

v2
In (1 — x) = — x — :

x"
n

From (a),

, „  , , - x x" x"In 2 —x) = ln2 —-  -  — ----------
2 8 2 x n

Adding,

In (x2 —3x + 2) = In 2 —^ x - j | x 2 - . . . - ^ - { 1 + ( |)n} - . . .

For the expansions to be valid, x must satisfy both — 1 ^  x < 1 and — 2 < x < 2, 
i.e. — 1 <  x < 1.

Qu. 3 Expand in ascending powers of x:
(a) In (1 + 4X), (b) In (3 — x), (c) In (x2 — 2x + 1).
Give the first three terms and the general term and state the ranges of values of x 
for which the expansions are valid.

Example 5 I f  \x\ > l , show that

1 1 ( - l ) 1̂ 1In (1 + x) = In x H------ ——~ +  ... H--------- ------1- ...
x 2x nx

[We are told that |x | > 1, so we express the series in terms of —, which is 

numerically smaller than 1.]

In (1 + x) =  In {x(l +  1/x)}
=  In x +  In (1 +  1/x)



ln (1 + x) = ln x + ---- + ... +
1
x

1
2 ?
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nx" + . . .

Other series have been devised for the calculation of logarithms and one of 
these will now be obtained.

In (1 + x) ^
x 2 X 3 +1

x 2 n - i X 2"

2 3 4 2n — 1 2  n
? d 2 n- 1X X X X X

2 3 4 2 n — 1 2n

+ . .

The expansions are valid if — 1 <  x ^  1, — 1 ^  x < 1, respectively, so for both to 
be valid, — 1 < x < 1.

Subtracting,

. / l + x \  /  x3 x2"“ 1
ln( r ^ j - 2 ( x + y  + -  + 2^rT + -

Dividing by 2 and writing

\ + x
1 — x

we obtain 

In
l + x \  x 3 x 2n 1
------  1 = X + ——|- . • • + ----- —
1 — x / 3 2n *-1 + ...

provided — 1 < x < + 1.

The advantage of this series may be seen by attempting to calculate, say, In 1.5 
by two methods.

(a) Substitute x = y in

In (1 + x) = x —j x 2 + ^x3 — ... + (—l)"~1x n/n + ...

In 1.5 = 5 — i  +  A  — A  + lio  ~  384 + 8̂ 6 — 2^8 + •••

(b) Substitute x = |  in

ln ( r r y )  =  2\ x  +  + ^ * 5 +  -  +  x 2" - 7(2  n - 1) + . . .  j .

In 1.5 — 2(y +  37T + 15625 + •••)
= 0.4055 to four places of decimals

It is clear that the value correct to four places of decimals can be obtained far 
more rapidly by the second series.

Note that, using log10 1.5 =  log10 e x ln 1.5, log10 1.5 can be obtained. (The 
abbreviation lgx is sometimes used for log10x; with this notation we could write 
lg 1.5 =  lg e x ln 1.5.)



Example 6 Find the first three terms in the expansion of
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In (1 + x)
In (1 — x)

in ascending powers of x.

_ In (1 + x) ,
Let -— ----- - = a0 + cqx + a2x + ..., where a0, a l5 a2 are constants to be

In (1 — x)
determined.

.'. In (1 +  x) =  In (1 — x) (a0 + ajX + a2x 2 + ...) 

x2 x3 /  x2 x3 \
• ' • X - y + y - . . .  = i -  X -  y -  y -  ... j  (fl„ + CJjX + Ü2X2 + ...)

Equating coefficients of x, x2, x3:

1 = —a0 
— ~~ l ao ai 

3 =  ~ ï a 0 — I a l  ~  a 2

from which we obtain

üq — 1) — 1> a 2
1
2

In (1 + x) 
' ' In (1 -  x)

1 + x - - x 2 + ...

Qu. 4 Write down the first three terms of the expansion of 

ascending powers of x.

Ig (1 + x) 
lg (1 -  x)

in

Example 7 Find the sum to infinity of the series

1 1 1 1 1 1  
1 x 2  3 2 x 3  3 3 x 4  3

The general term is

1 1 
n(n + 1) X 3"

which may be expressed in partial fractions as

T 1 \  1 
n ~  n + 1 j  3"

Therefore the series may be written
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1
1 1 1 1 1 1 1

x - x XT X —T + .. X ----h ..3 2 32 3 33 n 3"

1 1 1 1 1 1 1 1
2 A 3 3

A  —
32 _ 4

X — .,
33 n + 1 X 3"

= - l n ( l - i )  + S = - l n f  + S

where S = — ^ x ^ 
2 3

• - M * -

1 1 1 1
_ 3 X ? _ 4 X 3I _

1 1  1 1 1
-------x —̂ ----- x —=-
3 2 32 3 33

1 1
+ T X 3"

1 1
n+  1 X 3 ^

=  l n ( l - i )

S = 3 1 n f +1

Therefore, from (1), the sum of the series is 2 In § + 1.
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Exercise 10b
1 Expand the following functions in ascending powers of x, giving the first 

three or four terms, as indicated, and the general term. State the ranges of 
values of x for which the expansions are valid.
(a) In (3 + x), (4), (b) In (1 -  |x), (4), (c) In (2 -  5x), (4),

(d) In (1 -  x2), (4), (e) In (3), (f) In (3).

Find the first three terms and the general terms in the expansions of the 
functions in Nos. 2-8. State the necessary restrictions on the values of x.

2 In
2 — x
3 — x 3 In

1
3 -  4x -  4x2

6 In (1 + x + x2)
7 In {(1 + x)1/x}.

5 In ^/(x2 +  3x + 2).

[Hint: (1 — x3) = (1 — x)(l +  x + x2)] 
8 In (1 — x + x2).

Expand the following functions in ascending powers of x as far as the terms 
indicated. State the ranges of values of x for which the expansions are valid.

9 10 ex In (1 + x), (x3).

12 {In (1 — x)}2, (x4).
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13 By substituting x = ^ in the expansion of In {(1 + x)/(l — x)} in ascending 
powers of x, find the value of In 2 correct to four significant figures. Taking 
In 1.5 =  0.4055, estimate the value of In 3.

In Nos. 14-16, take In 2 =  0.693 147 and In 3 = 1.098 612.

14 Find In 10 correct to four places of decimals by substituting x = % in the 
expansion of In(1 +  x). Deduce an approximate value of lg e.

15 Find the value of In 7 by substituting x =  £ in the expansion of 
In {(1 + x)/(l — x)}. Give your answer correct to four places of decimals.

16 Find the value of lg 11 correct to four places of decimals. Use the expansion of 
In {(1 + x)/(l — x)} with x =  0.1. Take lg e =  0.434 29.

17 Find the limits of the following functions as x approaches zero:

(a) In {(1 — x2)1/jc2},

In {(1 + x)2} + x2 — 2x
(c) In (1 — x3)

(b)

(d)

In (1 + x) — x 
In (1 — x) + x ’

ln(l  — xj + x ^ l  + x) 
l n ( l + x 2)

Find the sums to infinity of the following series.

, 1 1 1 1  1 1 1 
8 3 - 2 X 9 + 3 X 2 7 ~ 4 X 8T + ” ‘

, 1 1 1 1 1 1 1
1 9 2 + 2 X ? + 3 X ?  + 4 X F  + -

, 1 1 1 1 1 1 1
20 — +  — X —r +  — X —r  +  — X ~7q +  ...

4 3 43 5 45 7 47

„ , 1 2 1 22 1 23
21 ‘ - 2 * 5  + 3 * ? - 4 * ?  + -

“  ' +372 i  + 5T2j + 7T25 + -

*23 Integrate the inequalities 
1 1

< < 1
(1 + t)2 1 + t

from 0 to u and deduce that 

u

(t>  0)

1 + u
< In (1 + u) < u (u>0)

Sketch the graph of y = 1/x and illustrate the latter inequalities graphically. 
Also prove that, if — 1 < u < 0,

1 + u
< In (1 + u) < u



24 Sketch the graph of y=  1/x and show that, when n is a positive integer 
greater than 1,

1 1  1 , 1  1
2 3 n 2 n _  1

25 Let s„ denote the sum of n terms of the series

1 _ 1 - l 1 _ A - l 1 _ 1 - l

By considering the terms of the series in pairs, show that s2n increases 
as n-* oo. By considering the terms of the series after 1 in pairs, show that 
s2n + 1 is less than 1 and decreases as n-> oo. Show that |s2„l — |s2n+i|-*-0 
as n-* oo. What can you conclude about s„ as n-* oo?
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Exercise 10c (Miscellaneous)
1 By expanding the integrand of

1 + x
dx

as a series of powers of x and integrating term by term, find the series for 
In (1 + x), assuming your method to be valid provided that |x| <  1.

1 H" x
Write down the series for In (1 — x), obtain the series for In------  and

1 — x

deduce a series for In — in terms of —— —.
n m + n

Hence calculate In 8 correct to five places of decimals, given that 
In 7 =  1.945 910. (JMB)

2 Assuming that |x| < 1, write down
(a) the sum of the infinite geometric series 1 + x2 + x4 + ...,
(b) the first three terms of the series for In (1 + x).
Obtain the first two terms of the series for

"1 + xN
1 — x ,

Assuming also that x is positive, show that the sum of the remaining terms of 
this series is less than

5(1 — x2)
(JMB)

3 Write down the expansions of In (1 + x) and In (1 — x), stating for what 
values of x they are valid. Prove that,
(a) if — \  < x then

In (1 + x — 2x2) =  x — fx 2 + lx 3 — ̂ x 4...
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(b) if m/n is positive,

, m „ (Ym — n\ 1 fm  — n
In — = 2 < -------I + — I --------

n l\m  + n j  3 \m  + n
m — n 
m + n + . . .

4 Prove that, when a > 0,

(a) In (a + x) =  In a + In

(L )

(b) ax = exln
Write down the first three terms of the expansions of ln (1 + y) and ey. 
Prove that the expansion of ax — 1 — x ln (a + x) as a series of ascending 

powers of x begins with a term in x2, and find the coefficient of x2 in this 
term. (O & C)

5 (a) Write down the expansion of ln (1 + x) in ascending powers of x, giving 
the first three terms and the coefficient of x m; state the limitations on the 
value of x.

Prove that

2 ln n -  ln (n +  1) -  ln (n -  1) = .n 2 n 3 n

stating the necessary restriction on the value of n.
Given that ln 10 = 2.302 59 and ln 3 = 1.098 61, calculate the value of 

ln 11 correct to four places of decimals.
(b) Find the coefficient of x" in the expansion of (1 +  3x)e_3x as a series of 

ascending powers of x. (O & C)
6 Find the sum of the first n terms of a geometric progression of which the first 

term is a and the common ratio is r.
If p is any odd positive integer and q any even positive integer, and if x > 0, 

prove that

1 —x + x2 — . . . — xp < —-— < 1 — x + x2 — ... + x*
1 + x

Deduce that

x
I

xp+1 x
— t  < In (1 +  x) < -  
p + 1 1

xq+l
q +1

By taking p = 5, q = 4, x = 0.1, calculate the value of ln (1.1) correct to six 
places of decimals. (JMB)

7 (a) Write down the expansions of ex and ln (1 + x) in series of ascending 
powers of x, giving in each case the first three terms and the nth term.

(b) By considering the factors of (1 — x3), obtain the coefficients of x3n, 
x3n + i, x3n + 2 in the expansion of ln (1 +  x + x2).

(c) Obtain the first two non-vanishing terms in the expansion of

(x — 1)(1 — ex) — ln (1 + x) 

in ascending powers of x. (O &C)



8 (a) Prove that if x p = {xy)q = (xy2)' for all values of x and y, then 
2 pr = q(p + r).

(b) Assuming the expansion for ln(l  +  x) in ascending^ powers of x, prove 
that
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In 1 + x \  1 , 1 .
------  =  x + - x 3 +  - x 5 +
1 — x J 3 5

and, when 0 < 9 < jn, deduce that

sin 9 + j  sin3 9 + -j sin5 9 + ... — In (tan 9 + sec 9)

(c) Establish the identity

n2 = {n + 2 )(n +  1) — 3(n + 2) +  4 

and hence find the sum of the series

l 2 22 32
— + — “h —~
3! 4! 5!

9 (a) Prove the identity

1 + 2x + 2x2 +  x3 =
(1 + x)(l -  x3) 

1 — x

and hence expand In (1 + 2x + 2x2 +  x3) in ascending powers of x as far 
as the term in x6, stating the necessary restrictions on the values of x. 

(b) Write down the series for ex and e x in ascending powers of x.
Prove that, if x4 and higher powers of x are neglected, then

x
1 — e -2x

1
2

(O & C)

10 Assuming that x is sufficiently small, find the values of p and q, other than 
zero, for which

(1 + x)p — In (1 + <5fx) = 1 + ax3 + ...

where the terms omitted contain powers of x higher than the third. 
Determine the value of the coefficient a. (JMB)

11 Write down the expansion of In (1 + x) in ascending powers of x, giving the 
general term and stating for what real values of x the expansion is valid.

Determine a and b so that the expansion of

1 +  ax 
1 +  bx

In (1 + x)

may contain no term in x2 or x3, and show that with these values

1 + bx x x2 2x3
1 + ax 2 + 3 9

neglecting powers of x above the third. ( O & C )
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12 Give the expansion of In (1 +  x) in ascending powers of x and state for what 
range of values of x the expansion is valid.

By taking logarithms or otherwise, verify that, when n is large, an 
approximate value of (1 + 1/n)" is

e
11

lÂn2
7

Ï6«1
(O & C)

13 (a) 

(b)

Expand In------ in ascending powers of x, giving the first four terms and
1 — x

the general term.
Show that the first non-zero coefficient in the expansion of

(1 — x2)1/2(l — x3)1/3

in ascending powers of x is that of x5. (L)
14 Write down the series for In (1 -I- x) in ascending powers of x and state the 

range of values of x for which it is valid.
Prove that, if n > 1,

In
n

n -  1
1 , n + 1

> -  > In ------
n n

and deduce that, if n is a positive integer,

1 - t - lnn> l +  ^-E-^-H- — + — > I n (« +  1)2 3 n

15 Write down the expansion in ascending powers of x of In

— 1 < x < 1.
By using partial fractions, obtain the sum of the series

1 + x  
1 — x

(C)

where

oo v2n
y  — -----------À  {In -  l)(2n + 1)

when 0 < x < 1.
Find the sum of the first N  terms of the series when x = 1 and deduce that

æ 1 i

(2n — l)(2n + 1) = 2 (C)

16 State the first four terms in the series expansions of (1 + x)", In (1 + x). 
Find the sum of the infinite series

1 1 1 1 1 1 1
— +  -  X  —5- “h —X —cr- +  .,. .  + -  X  —
2 2 l 2 3 23 n 2"

(JMB)

17 (a) If 0 < x < 1 and f(x) is the sum of the infinite series
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show that, for x in this range, 

2x
f = (1 4- x2) f(x)

f + x 2

(b) Sum to infinity the series

1! + 2! + 3! +

18 Sum to infinity each of the following series:

. , , 2x 3x2 4x3
(a) 1 + 7|- + -5 r  + ^ T  + -->

(L )

(b) +1 x 2 2 x 3 3 x 4
+ ..., if |x| < 1,

, . . 5 5 x 7  5 x 7 x 9
(c) 1 +  x  +  x— 7  +  x— 7— 7  +  • • • •3 3 x 6  3 x 6 x 9

19 The function f(i) is defined, for non-zero values of t, by the relation

. . .  i (e+\Ht) = - t

(L )

Prove that (a) f(i) =  f( - 1), (b) f(2t) = f(t) + — .

i2 t3
Using the expansion e' = 1 + t + — + — + ..., show that, if t is small 

enough for t3 to be neglected, then

f ( 0 = l + A t 2 (C)
20 Show that, if x is so small that x6 and higher powers of x may be neglected, 

In (1 + x) = x — \ x 2 + ^x3 — jx 4 + ^x5 

Deduce that, for such values of x,

I"(t± 7) = 2(x + ? 1 + ? 5
By giving a suitable value to x in this last result, prove that, for large N,

/N + 1\ 2 2 2
In

2
N + 3N3 + 5 N 5kN -  1

Hence show that, for large N,
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Further differentiation
Logarithmic differentiation
11.1 The object of the first three sections of this chapter is to extend the 
reader’s powers of differentiation and to revise earlier work. In the course of this 
we shall also discuss how to integrate certain functions.

Logarithmic differentiation is a powerful method which can considerably 
simplify the differentiation of

(a) products (and quotients) of a number of functions,
(b) certain exponential functions.

It is best introduced by examples but first it is advisable to revise some 
of the properties of logarithms and how to differentiate functions of y with 
respect to x.

Qu. 1 In {a3y/b/c2) = In a3 +  In ^Jb — In c2,
=  3 In a + ^ In b — 2 In c.

(See §2.7.) Write in a similar form:
(a) In (a2b), (b) In (a3/b3), (c) In yj(abc),
(d) In (aijb/c3), (e) ln (l/c4), (f) In ( A
Qu. 2 log10 10 000 = log10 104 =  4. Simplify in a similar manner:
(a) log10 1000, (b) log10 (1/100), (c) log2 (24),
(d) ln(e2), (e) ln(e2x), (f) In (e3*2).
Qu.3 Differentiate with respect to x:
(a) In x, (b) ln( l+2x) ,  (c) l n ( l —x),
(d) In 4x3, (e) In sin x, (f) In tan x.

When differentiating functions of y with respect to x we can, if need be, use the 
chain rule,

dz dz dy
dx d y dx

Thus if z = y4,

200
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dz 
' ' dx

= 4y3 x dy
dx

Qu.4 Differentiate with respect to x:
(a) 3y2, (b) y3, (c) cosy, (d) In y.

Express, in your own words, a rule which will help you to differentiate any 
function of y with respect to x. Use this rule to differentiate with respect to x:
(e) 5y4, (f) 3/y2, (g) J y ,  (h) tany.

Example 1 Differentiate
e*2 ,y(sin x) 

( 2 x + l ) 3 ‘

e*2 ^/(sin 
(2x + l)3

In y = In (e*2) + In ^/(sin x) — In (2x +  l)3 
= x2 + j  In sin x — 3 In (2x + 1)

Differentiating with respect to x,

1 dy „ cos x
- - t-  =  2x +  — —  y dx 2 sin x

6
2x+  1

dy e*2 ,/(sin x) f cos x 
’ ' dx (2x + l)3 { X + 2 sin x — 1 2 x + l f

(There are occasions when this is the most convenient form in which to use the 
derivative, but here we shall go on to simplify the expression in brackets.)

2x +
COS X

2 sin x
6

2xT T
4x2 + 2x — 6 

2x + 1 +
COS X 

2 sin x

• f!i
' ' dx

—7——  4 {(8x2 + 4x -  12) sin x +  (2x + 1) cos x}
2^(sin x)(2x +1)

Q u.5 Use the method of Example 1 to differentiate with respect to x:

(a)
x + 1 
x — 1 ’

V (*2 +
(2x — l)2 ’ (c ) ( x - 1 ) 3

Example 2 Differentiate 10* with respect to x.

Let y = 10*.
.'. In y = In 10*

= x In 10
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Differentiating with respect to x,

11.1

d y
dx

10

= 10* In 10 
dx

Example 3 Differentiate, with respect to x, (a) 2*2, (b) xx.

(a) Let y = 2x2.
In y =  In 2*2 

= x2 In 2

Differentiating with respect to x, 

1 dv = 2x In 2
y dx

dy
dx

: 2x 2x In 2

(b) Let y = xx.
.'. In y =  In xx

= x In x

Differentiating with respect to x,

1 d y 1 ,
-  —  = x x — h i  x l n x  
y dx x

= 1 +  In x

dv—  = (1 + In x)x* 
dx

Qu. 6 We have shown in Example 2 that the derivative of 10x is 10x In 10. 
Write down a function whose derivative is 10x. What is j  10x dx?
Qu. 7 Differentiate with respect to x:
(a) 2X, (b) 3X, (c) (|)x, (d) 105x, (e) 10x2.
Qu. 8 From your answers to Qu. 7, write down:
(a) j  2X dx, (b) J 3X dx, (c) J (j)x dx, (d) J 105x dx.

Integration by trial
11.2 In Qu. 6 we had an example of what may be called ‘integration by trial’. 
This procedure was discussed in §1.2 and §2.10; its stages are shown in the next 
two examples.
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Example 4 Integrate 2 x with respect to x.

(Stage 1: make a guess. From the last section it is to be expected that the integral 
involves 2~x.)

Let y = 2 x 
.'. In y = —x In 2

(Stage 2: differentiate.)

. 1 dy. . -  —  = — In 2 
y dx

' dx
— 2~x In 2

(Stage 3: compare with the given functions.) We have an extra constant factor of 
- In  2.

(Stage 4: alter the guessed function.)

d /  2 *  
dx \ — In 2 =  2 '

2~x
2 x dx = -  —  + c 

In 2

Example 5 Integrate x In x with respect to x.

(Stage 1: make a guess.) When we differentiate a product, we differentiate each 
function in turn and multiply by the other; so, to integrate x In x, try integrating 
one factor and multiply by the other. As we do not know how to integrate In x, 
we had better try j x 2 In x.

Let y = j x 2 In x.

(Stage 2: differentiate.)

dy 1 2 1
dx 2 x

d f i  2I \  . 1. . —  I - x  In x =  x In x + -x  
dx \ 2 / 2

(Stage 3: compare with the given function.) We have an extra term of \ x  on the 
right-hand side.

(Stage 4: alter the guessed function.)

d
dx

- x 2 In x — - x 2 
2 4

, 1 1■ x In x + -x  — -x  2 2 = x In x

J x In x dx = ^x2 In x — ¿x2 +  c
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(a) (3x + l)1/2, (b) sin x cos5 x, (c)  -----------
(1 + cos x)

(d) 5X, (e) 22x, (f) In x.

Inverse trigonometrical functions
11,3 The functions sin 1 x, tan 1 x (or arcsin x, arctan x) have been intro
duced in Book 1, §18.7. We will now turn to the problem of differentiating such 
inverse trigonometrical functions. This will be illustrated by examples but, for 
some readers, a little revision may be advisable. Remember that, in this context, 
radians must be used.

Qu. 10 y = sin 1 x means ‘y is the angle (or the number) whose sine is x’ so that 
sin y = x. Rewrite:
(a) y = tan_1x, (b) sec“ 1x = y, (c) cos~l p = q.

Qu. 11 Differentiate with respect to x:
(a) y2, (b) sin y, (c) tan y, (d) sec y.

Example 6 Differentiate with respect to x:
(a) sin_1x, (b) tan“ 1 (x2 + 1).

(a) Let y = sin 1 x.
.'. sin y = x

Differentiating with respect to x,

1 — sin2 y =  1 — x2. 
.‘. cos2 y = 1 — x2.

dy .cos y —— = 1 
dx

(y was our own introduction, so we must get dy
dx

in terms of x.)

d y 1
"  dx 7 ( 1 _ x 2 )

(b) Let y = tan 1 (x2 + 1).
.'. tan y = x 2 + 1

Differentiating with respect to x,

2 dy o sec v — = 2xdx
1 + tan2 y = 1 + (x2 + l)2. 

.'. sec2 y = x4 + 2x2 + 2.
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d y
(We must again express —  in terms of x.)

dx

(x4 + 2x2 + 2) ^  = 2x 
dx

dy 2x
' ' dx x4 + 2x2 + 2

Qu. 12 Differentiate with respect to x:
(a) cos-1 x, (b) c o t ' 1x, (c) sin_1(2x+l) .

Exercise 11a
1 Express in the form p In a +  q In b + r In c:

(a) In (a3b4), (b) In (a/h), (c) In ^J(a3/b),
(d) \n(a2b/ jc ) ,  (e) In J(ab/c), (f) In {l/ff(abc)}.

2 Write the following in a form which does not use the logarithm notation:
(a) lg 100 000, (b) log2 8, (c) In e4,
(d) ln^/e, (e) In e*3, (f) ln (l/e2x).

Differentiate Nos. 3-10 with respect to x, using logarithmic differentiation:

(2x + 3)3 
1 — 2x

ex/2 sin x

^ (x 2 + l)^(x2 — 1)' **xexcosx'

7 T . 8 103x. 9 10 x/2. 10 l/10x.

Integrate with respect to x:

11 5X. 12 8X. 13 (i)x. 14 32x.
15 Convince yourself that elna = a (see §2.7). Write ax in the form exlna and

hence find (ax). 
dx

16 Find |  ax dx by writing ax = exlna.

Differentiate with respect to x:

17 ta n ^ x .  18 s e c ^ x . 19 sin_1(x+l ) .
20 c o s 1(2x —1). 21 t a n '^ l / x 2). 22 2cos_15x.

23 Find: (a) —  (sin “ 1 x + cos " 1 x), (b) —  (tan “ 1 x + cot ~1 x).
dx dx

Explain these answers.

24 Find -^-(sin-1 x) and hence write down
dx

(a) ^  (sin“ 1 2x), (b) ~  (sin 1 x2), (c) ^  {cos^1 ^/(l -  x2)}.
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• d28 sin x. [Find —  (x sin 1 x).]
dx

Differentiate with respect to x:

29 x~x. 30 xsin*.
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Integrate with respect to x by trial:

25 V(4x + 3). 26 x(2x2 + l)3. 27 In x.

Local maxima and minima; the first derivative test
11.4 We have already met the first derivative test in Book 1, Chapter 5. The 
diagrams in Fig. 11.1 illustrate (i) a local maximum and (ii) a local minimum. 
(The + and — signs indicate the sign of the gradient.)

dv
At a turning point, —  = 0 and it changes sign; in the case of a maximum (see 

dx
diagram (i)) it changes from + to — as x increases, whereas at a minimum it 
changes from — to + (see diagram (ii)). 

dv
If however —  = 0 but does not change sign, then we have a stationary point of 

dx
inflexion (see Fig. 11.2).

Figure 11.2

The first derivative test is very easy to apply, especially if one makes a habit of 
factorising the derived function, as the next two examples show.
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Example 7 Investigate the stationary points on the graph of 

y = x2e x

and sketch the curve, 

y = x2e~x

so

— = 2xe x — x2e * 
dx

= (2x — x2)e x

= x(2 — x)e x

dvFrom this we can see that —  is zero when x = 0 and when x = 2. We know that
dx

e_x is always positive, so the sign of the gradient is determined by the other
dvfactors. By inspection, we can see that —- is negative when x < 0, and that
dx

dy dvbetween 0 and 2, —  is positive. When x > 2, —  is negative again, 
dx dx

Therefore there is a local minimum at (0,0), and a local maximum at (2,4e-2). 
The curve can now be sketched (see Fig. 11.3).

Example 8 Investigate the stationary values o f the function 

f(x) = x3 — 3x2 + 3x 

and sketch the graph of y =  f(x).

In this case,

f'(x) = 3x2 — 6x + 3 
= 3(x2 — 2x + 1)
= 3(x — l)2
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We can see that f'(l) is zero, but as (x — l)2 is a square, it can never be negative. 
In other words, the gradient of y = f(x) is zero at x = 1, but everywhere else it is 
positive. Therefore there is a point of inflexion at (1,1) (see Fig. 11.4).

Qu. 13 Investigate the stationary values of the function xe x and sketch the 
graph of y =  xe *.

Local maxima and minima; the second derivative test
11.5 The second derivative test depends on the fact that if the gradient of a 
curve y = f(x) is increasing with x, the rate of change of the gradient is positive; if 
the gradient is decreasing, its rate of change is negative. To put it another way, let 

d y
us consider the graph of —  plotted against x, bearing in mind that the gradient 

dx
d2y dv

of this curve is given by -y-^; if the ordinate, — , is increasing with x, the

d2y
dx2’ 
■ dy 
dx

d2y .gradient, — j , is positive; if is decreasing, is negative.
%1a  C Ia  CIa

Looking back to Fig. 11.1, we see that at a local maximum, the gradient is 
decreasing (it is changing from a positive value, through zero, to a negative value 
as x increases); so at such a point the derivative of the gradient function is 
negative. In other words, if y = f(x), and at x = a

dy . d2y
—  is zero and — j is negative, then y  has a (local) maximum at x = a;

on the other hand, if

dy  : d2y
dx

is zero and is positive, then y  has a (local) minimum at x = a.
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Fig. 11.5 shows (as a continuous curve) a graph representing y = i ’(x), with 
positive gradient at x = a, i.e. f"(a) > 0, and f'(a) =  0. The dashed curve represents 
the corresponding graph of y = f(x), showing a minimum when x  = a.

Qu. 14 Draw a diagram, like Fig. 11.5, illustrating the graphs of y = f'(x) and 
y = f(x), with f"(a) < 0 and f'(a) = 0.

Example 9 Use the second derivative test to investigate the stationary values of 
the function xe *

Let y =  xe- *.

. dF..  —  = e — xe 
dx

= (1 — x)e- *

From this we can see that there is a stationary value of 1/e when x =  1. 

d2y—— = — e * — e * +  xe * 
dx

= —2e-x + xe- * 

d2y
When x =  1, — y = —2e-1 + e -1 = —e -1. This is negative, so by the second 

dx
derivative test, there is a local masimum of 1/e when x = 1.

It is important to understand that no conclusion can be drawn from the
d2vsecond derivative test when —-=■ is zero. (It is a common mistake to think that
dx2

there is always a point of inflexion in this case. If the reader has any doubts on
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dv d 2vthis point, consider y = x ; both —- and are zero at x =  0, but the function
dx dx

clearly has a minimum at this point.)
Although examination papers frequently direct the candidate to use the 

second derivative test (and it is a foolish candidate who ignores the examiner’s 
instructions), if you are free to choose your own method, the first derivative test 
is often the simpler one to use.

Points of inflexion
11.6 We have already met stationary points of inflexion, see Fig. 11.2. In 
Fig. 11.2(i), the gradient is positive everywhere except at the stationary point, 
where it is zero, i.e. at this point the gradient has a minimum value. In 
Fig. 11.2(h), the gradient is negative everywhere except at the stationary point, 
where it is zero, so at this point the gradient has a maximum value. In general, a 
point of inflexion is a point where the gradient has a local maximum or

d y
minimum value. Fig. 11.6 shows some points of inflexion for which —  #0 .

dx

Looking at Fig. 11.6(i), we see that the gradient is always positive; it is 
decreasing as it approaches the point of inflexion, and after that it increases 
again, i.e. the gradient has a minimum value at this point of inflexion. The reader 
should analyse the other diagrams similarly. (On a graph, a point of inflexion is 
easily recognised, because the graph ‘crosses its own tangent’ at such a point.)

Points of inflexion are easily located by applying the first derivative test to the 
gradient function, i.e.

d2y
at a point of inflexion — = is zero and it changes sign 

ax
(In the case of y = x4, mentioned at the end of §11.5, the second derivative, 

namely 12x2, does not change sign at x =  0.)

Example 10 Find the points of inflexion of the function y =  ^  and sketch 
its graph.

48
12 + x2 ’

We are given y so in this case,
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dy — 96x 
dx = (12 + x2)2

dy •
From this we can see that —  is zero when x = 0, and that its sign changes from

dx
positive to negative as x passes through zero, so there is a local maximum at this 
point. The maximum value of the function is 4.

To find the points of inflexion, we differentiate again:

d2y — 96 96 x 4x2
dx2 = (12 + x2)2 (12 + x2)3

/  —(12 +  x 2) + 4x2\
V (12 + x2)3 )

= 96
' 3x2 — 12 \  
(12 + x2)3/

288(x -  2)(x + 2) 
(12+ x2)3

d2y
From this we can see that — 5- is zero at x = ±2, and that it changes sign at these 

dx2
points. Hence there are points of inflexion at (— 2, 3) and (+  2, 3).

In order to sketch the curve, notice that y is always positive and that it tends 
to zero as x tends to infinity. Also, this is an even function, so its graph is 
symmetrical about the y-axis (see Fig. 11.7).

Qu. 15 Find the point of inflexion on y = 2x3 — 18x2 + 12x +  80.

Exercise l ib
Find the nature of the stationary points of 

4 1
1 x(x — 3)2. 2 x H— =-. 3 x — 2 H---------. 4 x — In x.

x2 x — 3

Find the points of inflexion in Nos. 5 and 6.
5 y = x4 — 54x2. 6 y =  x4 — 4x3 + 6x2 — 4x.

7 Sketch the graphs of Nos. 1-6.
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In Nos. 8-11, find the maxima and minima of the functions of 9 in the interval
0 ^  9 <  2k:

8 sin 9 + j  sin 29. Sketch the graph.
9 (sin 0)/(l +  sin 9). Sketch the graph.

10 In cos 9 — cos 9.
11 cos 9 — j  cos 39. Sketch the graph.
12 Find the turning point of the function x e ‘ * and determine its nature. Show 

that there is a point of inflexion when x = 2 and sketch the curve.
13 Find the turning point of the function 10 arctan x — j x 2 and sketch the 

curve.
14 Show that the function x In x has a minimum at (1/e, — 1/e). Given that 

x In x -»0 as x -> 0, sketch the graph of the function.
15 Show that ex cos x has turning points at intervals of n in x. Distinguish 

between maxima and minima and show that these values are in a geometrical 
progression with common ratio — e*.

16 A right circular cylinder is inscribed in a sphere of given radius a. Show that 
the volume of the cylinder is nh(a2 — ih 2), where h is the height of the 
cylinder. Find the ratio of the height to the radius of the cylinder when its 
volume is greatest.

17 A right circular cylinder is inscribed in a given sphere. Show that, when the 
area of the curved surface is greatest, the height of the cylinder is equal to its 
diameter.

18 A funnel is in the form of a right circular cone. If the funnel is to hold a given 
quantity of fluid, find the ratio of the height to the radius when the area of the 
curved surface is a minimum.

19 A right circular cone of vertical angle 29 is inscribed in a sphere of radius a. 
Show that the area of the curved surface of the cone is rca2(sin 39 + sin 9) and 
prove that its greatest area is 87ta2/(3^/3).

20 An open box has a square horizontal cross-section. If the box is to hold a 
given amount of material and the internal surface area of the box is to be a 
minimum, find the ratio of height to the length of the sides.

The nth derivative
11.7 Although we have found the first and second derivatives of given 
functions many, many times in this book, we have hardly ever looked at the 
third, fourth or even higher derivatives. However there are many occasions 
when these are required and it is very helpful if we can find a general form of the 
nth derivative (as in other contexts, it should be assumed that n is used here to 
represent a positive integer). It is convenient to use the notation y„ to represent 
d "y 
dx"

First let us consider some very simple cases. The simplest of all is y = e*, 
because this function does not change when it is differentiated, so y„ = ex. Also if 
y = eax, then yn = a”eax.



Simple powers of x are also straight forward. For example if y = x4, then

y l = 4xl , y2 = 12x2, y3 = 24x, y4 = 24, and y„ = 0 i f n > 4
*

More generally, if we are given y =  xN, then

y i = N x N~l, y2 = N(N — l)xN_2, y3 =  N(N — 1)(]V — 2)xN~3, 

and

yn = N(N - \ ) ( N - 2 ) . . . ( N - n +  l)x'v"'’

If N  is a positive integer then we can write 

N<
y„ = 7T-,-----x N ", if n s: N, and(N — ny.

y„ = 0, if n > N

In the case of y =  sin x, the successive derivatives are ± cos x or + sin x, 
depending on the number of times we have differentiated. To be precise, we can 
write

ym =  ( - ! ) "  sinx 

and
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>"2n + i =  (— 1)" cos x, where n e IN

The reader should be able to work out the corresponding result for cos x.

Example 11 Given that y = x 2ex, prove that y„ = e*[x2 + 2nx + n(n — l)],/or all 
positive integers n.

As this result has to be proved for all positive integers, the method of 
mathematical induction is clearly the best approach.

We are given that y = x2e*, so on differentiating we obtain

y 1 = x2ex + 2xe*
= ex(x2 + 2x)

Hence the proposition is true for n =  1. Now we suppose it is true when n = N, 
i.e.

yN = ex(x2 + 2 Nx + N 2 — N)

Differentiating this by the product rule gives

yN+l= ex(x2 + 2Nx + N 2- N )  + ex(2x + 2N)
= ex(x2 + 2 Nx + 2x  + N 2 + N)
= e*[x2 + 2 (N + l)x + N(N  + 1)]

This is the original proposition, but with n = N  +  1. Hence, by the principle of 
mathematical induction, the proposition is true for all positive integers.
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Leibnitz’s theorem
11.8

11.8 Example 11 was a particular case of a general rule,# known as Leibnitz’s 
theorem, which enables us to write down the nth derivative of a product. In 
other words, it generalises the product rule.

We shall write, as in the prouuct rule itself,

y = uv, where u and v are functions of x

Then, differentiating once by the product rule, gives

=  U^V +  UV j

Differentiating again gives

y 2 = (u2v + u ^ i)  + («J«! +  uv2)
= u2v + 2ulvl + uv2

Differentiating for the third time gives

y3 = u3v + 3u2v i + 3utv2 +  uv 3

Now these coefficients should look familiar to the reader; they are the same 
numbers which appear in the expansion of (a + b)3, i.e.

(a + b)3 = a3 + 3 a2b + 3 ab2 + b3

The reader should have no difficulty in verifying that y4 has the same coefficients 
as the expansion of (a + b)4. This suggests that in general, the nth derivative will 
be

Tn  =  "«»’ +  ( ” ] «  n - l » ’l  +  (  n2 J » n - 2 ' , 2  +  +  ( ” ) « n -r*V +  ■ ■ ■ + U V „

( n \ n\
WhereW  = ( ^ ) ! H (See H 1)'

It is not difficult to prove this by mathematical induction; the proof is left as 
an exercise for the reader.

Qu. 16 Prove Leibnitz’s theorem by induction.

n + V 
r

Hint: remember that

n \ ti
r + ( r -  1

(Historical note: Gottfried Wilhelm Leibnitz (1646-1716) was a contemporary 
of Sir Isaac Newton. They both discovered the subject we now call calculus at

d y
about the same time. Leibnitz in particular invented the notation — , etc.)

dx
Leibnitz’s theorem could have been used to give the result of Example 11. 

Starting from y = x2ex and applying Leibnitz’s theorem, we have

, n n n —1
y„ = x zex + - x  (2x) x e '  +  - x  — — x 2 x ex

= ex[x2 + 2 nx + n(n — 1)]

2



Example 12 Given that y = f(x) = (sin “ 1 x)2, show that
(a) (1 — x2)y,2 = 4 y ,

(b) (1 — x2)_v2 = x y t  +  2,
(c) (1 - x 2)y„ + 2 - ( 2 n +  l)xy„+1 - n 2y„ = 0,
(d) f(" + 2)(0) = n2f<n,(0),
(e) f'2n)(0) = [(n -  l)!]2 x 22"“ 1.

(a) y = (sin - 1 x)2,

dv _ 1

^(1 — x2)yt =  2 sin“ 1 x 

Squaring,

(1 — x2)yi2 = 4(sin_1 x)2 
= 4y

(b) Differentiating the result of (a) gives 

2 (1 - x 2)y1y2 - 2 x y 12 = 4 y 1

i.e. (1 -  x 2)y2 -  xyt = 2

(i - * 2)y2 =  *yi +  2

(c) We now use Leibnitz’s theorem to differentiate the result of (b) n times.

n, „ , n (n — 1). n(1 - x 2)y„ + 2 + Y (-2x)yn + i + y x — -— (-2)y„ = xy„ + 1 + -  x y„

(1 -  x 2)yn + 2 ~  2nxy„+t -  n(n -  l)yn -  xyn+1 -ny„  = 0 
■ (1 - x 2)yn + 2 - ( 2 n +  l)xyn + 1 - n 2y„ = 0

(d) Putting x = 0, and writing f(n)(0) for the value of y„ when x = 0, we have
fln + 2,(0) -  n2f(n)(0) =  0

i.e. f(n+2)(0) = n 2f<n,(0)

(e) We can see from part (a), that f(0) =  0, f(1,(0) =  0, and from part (b) that 
f(2)(0) = 2. If we now use f(n+2)(0) = n2f,n,(0) and start at f(1)(0) = 0, we can see that 
all odd derivatives are zero. The even ones will read

f(2,(0) = 2  
f(4)(0) = 22 x f<2)(0)

= 22 x 2 
f(6,(0) = 42f,4,(0)

= 42 x 22 x 2 
f(8,(0) = 62 x 42 x 22 x 2

Further differentiation 215
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In general,

f(2n)(0) = (2n -  2)2 x ... x 62 x 42 x 22 x 2
= (2"~1)2 x [ ( « -  l)2 x ... x 32 x 22 x l 2] x 2 ' 
= (2"~1)2 x [ ( « -  l)!]2 x 2 
= [(n — l)!]2 x 22n_ 1

Exercise 11c (Miscellaneous)
Differentiate the functions in Nos. 1-7 with respect to x.

1 (a)

2 (a)

3 (a)

4 (a)

1 — x2’ 

x + 1

!)’
1

(2x + l)(3x — 2)’ 

/ 2x+  1
, 2x — r

5 (a) (x2 + l)2(x3 + l)3,

c i n ^  v

6 (a)

(b) sin 1 —,
x

(b) sin3 x cos2 x,

(b) ecos 2x,

(b) tan -1

(c) e2* cos 3x.

(c) x In x — x.

(c) In sin 2x.

( l + x \
(c)

e*
V  ~  x ) ’ e2x e

(tan x), (c)
In x
I f ’

cos x

7 (a) 2*2,

8 If y = e2x cos 3x, show that — 4 + 13>» = 0.

(b) sin"

(b) x2x.
j ( i + x 2y

d y A d y
dx2 dx

9 If y = x e x, show that

d2v dv d3y dy
3—2 + 2 + y = 0 and that — r = 3 -f-  + 2y
axz dx dx3 dx

10 (a) Show that the gradient of the ellipse b2x 2 + a2y2 =  a2b2 at the point
d2.y 
dx2

point. [For the method, see Book 1, §7.8.]
(b) The equation of a curve is given parametrically by the equations

(a cos 6, b sin 6) is (— b/a) cot 0 and find an expression for at that

1 + i3’ 1 +  i3

dyShow that —  =

d2_y .

3t d2y . ,
, „ — ^  and that — 5- =  48 at the point (7, 5).

dx 2 — t dx

11 Find —V in terms of the parameter when 
dx
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(a) x =  t2 —  4, y = t3 — 41 ,

(b) x = cos3 t, y — sin3 £,
(c) x = a(6 — sin 0), y = a(l — cos 8).

12 (a) Differentiate sin x from first principles.
d d u dv

(b) Prove that ~ ( u v ) = v -— f m— .
dx dx dx

13 (a) Differentiate tan x from first principles.

(b) Prove tha t
d x \ v j  \  dx dx //

14 Differentiate arcsin x +  x ^ (l — x2) with respect to x and hence find

|  ,/( l  — x2) dx

15 Differentiate x arctan x — j  In (1 +  x2) with respect to x. Hence write down 
j  arctan x dx.

16 Find the maximum and minimum values of the function

(a + b sin x)/(b + a sin x)

where b> a>  0 in the interval 0 <  x ^  2n. Sketch the graph when a = 4, 
b = 5.

17 Find the maximum and minimum values of y given by the equation

x3 + y3 — 3 xy =  0

18 Investigate the stationary values of
1 + x2

and sketch the graph of

1 + x2
x fii

19 Given that y = ------ , prove that y„ =
1 — x (1 -x ) ',n +1 *

20 Show that
d"

(b) -j-^ (sin x) = sin (x + nn/2),(a) —  (sin x) =  sin (x +  n/2), 
dx

d d"
and find similar expressions for —  (cos x) and —— (cos x).

dx dx
21 Prove that

d"
(a) (e* cos x) =  2n/ e* cos (x + nn/4), 

d"
(b) -j-^ (eax sin fix) =  (a2 + b2)"'2 eax sin (fix + noc), where tan a =  (b/a).

22 Show that the function y = tan x — 8 sin x has two stationary values between 
x = 0 and x = 2n. Draw a rough graph of the function between these values 
of x and show that, if the equation

tan x — 8 sin x = b

has four real roots between 0 and 2rt, then — 3ff3 < b <  3^/3. (O)



23 By first putting the expression into partial fractions, or otherwise, find the 
first and second derivatives of the function

3% — 1
(4x — l)(x + 5)

Find the coordinates of any maxima, minima and points of inflexion that 
the function may have, and draw a rough sketch of its graph. (O)

24 Prove that, if f'(a) = 0 and f"(a) is negative, then the graph of the function f(x) 
has a maximum at the point whose abscissa is a.

Prove that the function
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sm x cos x 
1 + 2 sin x +  2 cos x

has turning points in the range 0 ^  x <  2n when x =  ¿ti and x = |ti, 
distinguishing between maximum and minimum values.

Prove that the tangents at the origin and at the point (\n, 0) meet at a point 
whose abscissa is (O & C)

25 Find the shortest distance between two points, one of which lies on the 
parabola y2 = 4ax, and the other on the circle x 2 + y2 — 24ay + 128a2 = 0.

26 Chords of the hyperbola xy = c2 cut both the branches and pass through the 
point (2 ^3c, 0). Find the length of the shortest of these chords.

27 Given the four points P x (x1; y j ,  P 2 (x2, y2), P3 (x3, y3), P4 (x4, y4), show 
that the variable point P (x, y), whose parametric form is given by

(
1 -  3i + 3i2 - 13 
31 — 612 + 3i3

3r2 -  3r3
t3

where 0 t ^  1

has the following properties:

(a) P x is an end point of the curve (when t = 0),
(b) P4 is the other end point (when t = 1),
(c) the gradient at P 3 equals the gradient of P t P2,
(d) the gradient at P4 equals the gradient of P3P4.

(Such a curve is called a Bezier curve; it is widely used in computer-aided 
design.)

Find the parametric form of the curve when Pi, P2, P3 and P4 are the 
points (0, 1), (1, 2), (4, 0) and (5, 1) respectively. Draw a diagram showing P l5 
P2, P3, P4, the line segments P 3P2 and P3P4, and a sketch of the curve.

dy28 Given that (x + l)y =  x, prove that (x +  1) -— b y = 1 and use induction to
dx

prove that

dny d” 1 y
(* + 1)d^ + ”d ^ = ° (n>  2) (O & C)
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29 Given that y = 

that
V(! + x 2)

, prove that (1 + x 2)yt + xy = 0 and hence show

( l+ x 2)yn + (2 n -\)xy„ _ 1+ ( n - \ ) 2yn- 2 =0  

30 Use Leibnitz’s theorem to find

(a) ^ 3  (x3eXX (b) ^ 4  (x cos x)> (c) ^  (x2e2x),
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Further trigonometry
General solutions of trigonometrical equations
12.1 The purpose of this chapter is to revise Chapters 16-19 of Book 1, for the 
benefit of readers who may need it. Since no new work is involved, it consists 
solely of examples and exercises. At this level of the subject, it should be assumed 
that radians are required, unless the question explicitly refers to degrees. In this 
chapter there is more emphasis on general solutions; not all examining boards 
insist on these, but they are not difficult and can be instructive. They are most 
easily obtained by referring to the graph of the appropriate function.

If x = a is a solution of the equation

sin x = k, where |k| sj 1

then so is n — a (see Fig. 12.1, which is not drawn to scale), and since the function 
sin x is periodic (see Book 1, §2.15), with a period of 2n, any multiple of 2ji may 
be added to these solutions. So the general solution can be expressed

x = a + 2nn
or x = (jt — a) T 2mr, where n e  Z

Similarly, if a is a solution of cos x = k, then so is —a (see Fig. 12.2, which is 
not drawn to scale), so the general solution of this equation can be expressed

x = + a + 2nn

220
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Figure 12.2

The equation tan x = k can be solved for any real value of k. However, unlike 
sin x and cos x, the period of tan x is n (not 27t), so if x = a is a solution, we can 
add any multiple of n to it, hence the general solution (see Fig. 12.3) is

x = oc + nn

Qu. 1 Write down the general solutions of the following equations:
(a) sin 0 =  0, (b) c o s 0 = —1, (c) tan 0 = 1 ,
(d) sin 0 = 1 , (e) cos 0 =  0, (f) sin 0 = i,
(g) tan 0 =  — 1, (h) sin 0 = 1/^/2, (i) cos 0 = —1/^/2.

Example 1 Find the general solution of the equation cos 20 + sin 0 = 0.

cos 20 + sin 0 =  0 
.'. 1 —2 sin2 0 + sin 0 =  0 
.’. 2 sin2 0 — sin 0 — 1 = 0 

.'. (sin 0 -  1X2 sin 0 + 1) = 0
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(a) If sin 0 = 1, then 9 = (2n+ f)n = (4n + l)7i/2.
(b) If sin 6 = —j, then 9 = nn — (— l)"g7r.

These may be combined as 9 = j tz + §nn.

Example 2 Find the general solution of the equation sin 39 + sin 29 = 0.

sin 30 + sin 29 = 0 
.'. 2 sin §9 cos j9  = 0

(a) If sin §0 = 0, then f 0 = nn.

.'. 9 = 2nn/5

(b) If cos j9  = 0, then j9  = nn+ jk .

9 = (2n + 1)tc

Therefore the general solution is 0 =  2nn/5 or (2n + l)n.

Example 3 Solve the equation 4 cos x — 6 sin x =  5, for values of x between 0° 
and 360° correct to 0.1°.

4 cos x — 6 sin x = 5

Divide both sides by N/(42 + 62) = J52  = 2^13.

(1 )

Figure 12.4

From Fig. 12.4, tan a. =  3/2. From tables or a calculator a =  56.31°, correct to 
two decimal places, but we shall delay substituting the numerical value of a as 
long as possible. Equation (1) can now be written
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cos x cos a — sin x sin a = 

cos (x + a) =

5
V H

5
V O

(x + a) = 46.10°, 313.90°, 406.10°,...

Now, subtracting a ( = 56.31) from both sides, we obtain

x = -10.21°, 257.59°, 349.79°,...

So the solution, correct to 0.1°, within the required range of values is 

x = 257.6° or 349.8°

Exercise 12a
Solve the following equations. Solutions are given in radians unless tables (or a 
calculator) have been used, in which case the answers are given in degrees.

1 cos 20 = 2 tan 0 = cos 130°.
3 cos 6 = — tan 146°. 4 sin 20 = sin 0.
5 cos 20 = sin 0. 6 sin 20 = cos 0.
7 cos 0 = 3 tan 0. 8 2 tan 0 = tan 20.
9 cos 0 = cos 30. 1 0 sin 30 + sin 0 =  0.

11 sin 0 + sin 30 + sin 50 =  0. 1 2 cos 0 + sin 20 — cos 30
13 cos 40 + 1 = 2 cos2 0. 14 1 — sin 0 = 2 cos2 0.
15 2 cos2 0 = 1 + sin 0. 16 2 tan 0 = 1 — tan2 0.
17 3 tan2 0 = 2 sin 0. 18 2 sin2 0 +  3 cos 0 =  3.
19 3 cot2 0 + 5 = 7 cosec 0. 2 0 sin 20 = cot 0.
21 2 cosec2 0 = 5(cot 0 + 13). 2 2 cos 20 = 5 sin 0 + 3.
23 cos 0 + yj 3 sin 0= 1 . 24 7 cos 0 = 5 + sin 0.
25 7 sin 0 — 24 cos 0 = 25.

Qu.2 Write down the values of
(a) tan - 1 (— 1), (b) sin- 1 (-^ ), (c) cos- 1 ( - l ) ,
(d) tan -1 (^3), (e) sin-1 1, (f) cos-1 1.

Remember that the notation arcsin x, etc., is an alternative to sin-1 x, etc. 
Both forms are in common use, and readers should be prepared to see either in 
examination papers.

Q u.3 Find the values of
(a) arctan^, (b) arccos( — 3), (c) arcsin(0.01),
(d) arcsin (—3), (e) arctan ( — 3), (f) arccos |.



Example 4 Find the general solution of the equation 4 cos 30 + 3 cos 0 =  0.
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4 cos 30 + 3 cos 0 =  0 
.'. 4(4 cos3 0 — 3 cos 0) + 3 cos 0 =  0 

.'. 16 cos3 0 — 9 cos 0 =  0 
.'. cos 0(16 cos2 0 — 9) = 0

.'. cos 0 =  0, + |
.'. 0 = mt + jk , nn + arccos f

Example 5 Solve the equation sin 30 = sin 0. 

sin 30 = sin 0
.'. 30 = 2nn + 0 or 30 = (2n +1)71 — 0 
.'. 20 =  2nn or 40 = (2n + l)7i 

.'. 0 = mi, (2n + l)7t/4

Q u.4 Solve the equation sin 30 = sin 0 by means of the identity 

sin 30 = 3 sin 0 — 4 sin3 0

Example 6 Solve the equation cos 50 = sin 40.

The identity sin <p = cos (jn — <fr) is used.

cos 50 =  sin 40 
.'. cos 50 = cos (jti — 40)

.'. 50 = 2nn ±  (jn — 40)

.'.50  = 27171 + 7̂1 — 40 or 50 = 2nn — + 40

.'. 90 =  (47i +  l)7i/2 or 0 =  (4ti -  1)ti/2

.'. 0 =  (4tx + 1)ti/18, (4ti — 1)ti/2 

Qu.5 Solve Example 6 by writing cos 50 = sin (fn — 50).

Example 7 Show that 2 tan 1 2 + tan 1 3 = 7i +  tan 1 5.

Let A = tan 1 2, B =  tan 1 3, then tan A = 2, tan B = 3, and the left-hand 
side of the equation is 2A +  B. We shall find tan (2A + B).

tan 2,4
2 tan A 

1 — tan2 A
4

1 - 4
4
3

tan (2A + B) =
tan 2A +  tan B

1 — tan 2A tan B
—f  + 3 
1 + 4

1
3

.'. 2A +  B =  nn + tan 1 5 for an appropriate value of n
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Now jtt < A < -j-71, ¿71 < B < jn.

.'. | ti < 2A + B < §7i 

.'. 2A + B = n + tan “ 1 ^

.'. 2 tan-1 2 + tan“ 1 3 = n + tan“ 1 ^

Exercise 12b
1 Write down the values of

(a) sin “ 1 (^ 3 ) , (b) cos “ 1 2),
(d) cos “ 1 0, (e) tan “ 1 (— y/3),

2 Use tables or a calculator to evaluate:
(a) arctan 2, (b) arcsin f,
(d) arcsin (—̂ ), (e) arctan ( —¿),

(c) tan“ 1 (1/^/3), 
(f) sin“ 1 ( — 1).

(c) arccos 
(f) arccos

Find the general solutions of the following equations in 0:

3 3 sin 29 = sin 9.
5 9 sin 30 = 2 sin 0.
7 cos 0 + sin 0 = y/2.
9 sin (0 + a) = 2 sin (0 — a).

11
12
14
16
18
20

4 3 cos 20 + 2 cos 0 = 1 .
6 tan 20 = 4 tan 0.
8 cos 0 — J 3 sin 0= 1 .

10 3 cos (0 — a) = 4 sin (a — 0).
1 + 2  cos 20 = cos 2a + 2 cos 0 cos a.
4 cos 0 — 7 sin 0 + 8 =  0. 
cos 30 = cos 0. 
tan 40 = tan 0. 
cos 40 = sin 30. 
sin 20 + cos 30 = 0.

13 3 cos 0 = 7(sin 0 
15 sin 30 = sin 20.
17 sin 30 = cos 20.
19 tan 40 + tan 20 = 0.

1).

21 Find the general solution of the equation cos 30 =  cos 20. Also express the 
equation as an equation for cos 0 and hence show that cos \ k =  £{ — 1 + 5).
Find a similar expression for cos fn.

Prove the relations in Nos. 22-25.

22 2 tan “ 1 j  = tan “ 1 f . 23 tan “ 1 i  + tan “ 1 i  = jtt.
24 — tan” 11 = tan” 1 j. 25 3 tan” 1 2 — n = tan” 1 (^-).

Exercise 12c (Miscellaneous)
1 Find all the angles between 0° and 360° which satisfy the equations:

(a) sin 0 = cos 127°, (b) 3 cot2 0 =  2 cos 0,
(c) 3 sin 0 — 4 cos 0 = 2. (O & C)

2 Find all the values of x between 0° and 180° inclusive for which
(a) sin 3x = sin x, (b) 2 cos2 x — sin2 x = 1,
(c) sin 2x + cos x = 0.

3 Find all the values of x between 0° and 360° inclusive which satisfy the 
equations:
(a) sin x + cos x =  sin 18° + cos 18°,
(b) sin 2x = cos x sin 3x. (L )
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4 Find the general solutions of the equations:
(a) cos x + cos 3x = cos 2x, (b) 4 cos x — 3 sin x = 2. (C)

5 Find all the values of x (in radian measure) which satisfy the following 
equations:
(a) sin x + cos 4x = 0, (b) cos 2x — 5 cos x + 3 = 0,
(c) tan 2x + tan 4x = 0. (O & C)

6 Give the general solutions of the following equations:
(a) 2 sin 36 — 1 cos 26 + sin 6 + 1 =  0,
(b) cos 6 — sin 26 + cos 36 — sin 46 = 0. (C)

7 (a) Express cos 50 in terms of cos 6. Hence prove that

cos 18° = ±7(10 + 275)

and evaluate cos 54°, leaving your answer in surd form.
(b) Solve the equation sin 4x — sin 3x + sin 2x = 0 completely, expressing 

your answers in radian measure. (O & C)
8 Write down and solve the quadratic equation in x whose roots p and q are 

given by the relations

p + q = i, p q = - j

Use your result to find the simultaneous values of 6 and (p which satisfy 
the equations

cos 6 + cos (p = j ,  cos 6 cos </> = — i

and lie in the interval 0 to 7t inclusive. (JMB)
9 (a) Find all the solutions of the equation

sin 60° +  sin (60° + x) + sin (60° + 2x) = 0 

which lie between 0° and 360°.
(b) Prove that (sin 30)/(l +  2 cos 26) = sin 6 and hence show that 

sinl5° = (7 3 -l) /(2 7 2 ). (L)
„„ _ , , , 3 tan 6 — tan3 6
10 Prove the formula tan 36 = —-—  ---- t t ~-1 -  3 tan2 6

Find the general solution of the equation tan 30 +  tan 20 = 0 and show 
that tan2 ±7t, tan2 frc are the roots of the quadratic equation

x2 — lOx + 5 =  0 (O & C )

11 Find all the solutions in the interval 0° ^  x <  360° of the equations
(a) tan 3x + 1 =  0,
(b) 2 cos2 x +  3 sin x =  0. (O & C )

12 Find all the solutions of the equation 1 + cos 2A = 2 sin 2A in the interval
0° <  A <  360°. (O & C: SMP)

13 By expressing the equations in the form sin (A + B) = R, or otherwise, find all 
the angles which satisfy
(a) sinx + 73  cosx =  1, in 0 < x < 2 r t ,
(b) sin x (sin x +  cos x) =  1, in n < x < 2 n .
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Find the set of values of k for which the equation 

sin x(sin x + cos x) = k

has real roots. * (L)
14 (a) Express yj3 sin x + cos x in the form r sin (x +  8), where r > 0 and

0 <8 < ti/2. Hence, or otherwise, find the general solution for x of the 
equation

y/3 sin x + cos x = sin a + y/3 cos a

(b) Express the products cos A cos B and sin A sin B each in terms of 
cos (A + B) and cos (A — B). Hence, or otherwise, find the values of 8, in 
the interval n/2 < 8 < 3n/2, which satisfy the equation

cot 8 cot(8 — n/6) =  2 + J 3  (L)

15 Given that 7 sin2 x — 5 sin x +  cos2 x = 0, find all the possible values of sin x.
(L )

16 (a) Show that, if sin 2x = 0, then sin 5x = sin x.
Is it also true that, if sin 5x =  sin x, then sin 2x = 0? Justify your answer,

(b) Find all values of x, to the nearest degree, between 0° and 360° for which 
2 tan 3x + 1 = 0. (O & C)

17 Express tan (45° + x) in terms of tan x. Hence, or otherwise,
(a) express tan 15° in the form a + byj3, where a and b are integers;
(b) express tan (45° +  x) + cot (45° +  x) in terms of cos 2x. (JMB)

18 In the triangle ABC, AB is of one unit length and BC = CA = p. The 
point P lies in AB at a distance x from A and is such that L  ACP = 8 and 
Z.BCP = 28. By using the sine rule, or otherwise, show that

State the possible values of 8 as p varies, and deduce that ^ < x < Express 
cos 38 in terms of p. Hence, or otherwise, find the value of x correct to two 
decimal places, when p = 1/^/2. (JMB)

19 Using the expressions for sin {A +  B) and cos (A + B), derive the following 
results:
(a) sin 2A = 2 sin A cos A, (b) cos 2A = cos2 A — sin2 A,
(c) sin 3A = 3 sin A cos2 A — sin3 A,
(d) cos 3A =  cos3 A — 3 cos A sin2 A.
From results (c) and (d) above, obtain an expression for tan 3A in terms of 
tan A.

Find all the values of x in the interval 0° ^  x ^  180°, for which 
tan 3x + 2 tan x =  0

giving your answers to the nearest 0.1° where necessary. (C)
20 Find the sets of values of x that satisfy the following inequalities:

(a) 8x3 — 4x2 — 6x + 3 >  0,
(b) 8 sin3 x — 4 sin2 x — 6 sin x + 3 >  0,
(c) 8 sec6 x — 4 sec4 x — 6 sec2 x + 3 >  0. (C )
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Further integration
Integration by parts
13.1 We have learnt the importance of recognising such integrals as

J x e*2 dx = ^e*2 + c and J 2x cos (x2 + 2) dx =  sin (x2 +  2) +  c

When, however, the integrand is the product of two functions of x but is not 
susceptible to this treatment, e.g. j x e* dx, J x cos x dx, we may often success
fully apply a technique known as integration by parts', this is based upon the idea 
of differentiating the product of two functions of x.

If u and v are two functions of x,

d du
— (uv)=  v —  
dx dx

+ u
di;
dx

Integrating each side with respect to x,

uv = du f  dt> 
r —  dx + u —  dx 

dx dx

i V  Au —  ax = uv 
dx i du

v — dx 
dx

Example 1 Find J x cos x dx.

; = uv — J  v ^  dxdV Au —— dx : 
dx

J x cos x dx = x sin x — j  sin x x 1 dx 

= x sin x +  cos x +  c

Let u = x. 

dv
Let —  = cos x, 

dx

v =  sin x.

This method can of course only be attempted if the factor chosen as —  can be 

integrated; Example 1 illustrates the fact that its successful application usually

228
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depends upon the correct choice of u, since it is this which determines whether
du) -----
dx

dx is easier to tackle than the original integral.

Qu. 1 Check the answer to Example 1 by differentiation. 
Qu. 2 Attempt Example 1 taking cos x as u.
Qu. 3 Find the following integrals:
(a) j x sin x dx, (b) J x cos 2x dx, (c) J x In x dx,

Qu. 4 Find —  (e* ), and deduce 
dx

x 3 ex dx.

(d) J x ex dx.

The integral j tan 1 x dx does not at first sight appear to be susceptible to the 
method under discussion. However, this is one of a small group of integrals

which may be found by taking —  as 1.
dx

Example 2 Find J tan 1 x dx.

dr
if —  dx = uv 

dx
d" Av —  dx dx

tan 1 x x 1 dx =  tan 1 x x x — x x
1 + x2

dx

Let u = tan 1 x.
T  ^  1Let —  = 1, 

dx

v = x.

= x tan  1 x — j  ln (1 + x2) + c 

Qu. 5 Find J In x dx.

Qu. 6 (a) Find (sin-1 x), (b) find f sin-1 x dx.
dx

To some integrals it is necessary to apply the method of integration by parts 
more than once, as is illustrated in the next example.

Example 3 Find j  x 2 sin x dx.

J x2 sin x dx =  x2(—cos x) — j — cos x x 2x dx

= — x2 cos x +  J 2x cos x dx 

j  2x cos x dx =  2x sin x — j  sin x x 2 dx 

= 2x sin x +  2 cos x +  c

.'. j  x 2 sin x dx = —x2 cos x +  2x sin x + 2 cos x + c 

= 2x sin x + (2 — x 2) cos x + c

Let u = x 2.
TLet —  = sin x, 

dx
.’. V  =  —COS X.

Let u = 2x. 
dr

Let —  = cos x, dx
v = sin x.

Qu. 7 Check the answer to Example 3 by differentiation. 
Qu. 8 Find the following integrals:
(a) j x2 cos x dx, (b) j  x2 ex dx.
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Exercise 13a
Ex 13a

1 Find the following integrals, and check by differentiation:
(a) |  2x sin x dx, (b) j \x  ex dx, (c) J x  sin 2x dx,

(d) J x 2 In x dx, (e) J x cos (x +  2) dx, (f) J x ( l+ x ) 7 dx,

(g) J x e2x dx, (h) J x e*2 dx, (i)
In x

2~X̂

(j) J x sec2 x dx, (k) J x" In x dx, (1) j  x 3* dx.
2 Find the following integrals, and check by differentiation: 

(a) j In 2x dx, (b) j sin “ 1 3x dx, (c) J In y 2 dy,

( d ) tan“ 1 (e) J cos 1 t dt, (f) J eVx dx.

3 Find the following integrals (see Qu. 4 on p. 229):
(a) |  x5 e*3 dx, (b) j x e “x2dx, (c) J x 3 e”x2dx,
(d) } x 3 cos x2 dx, (e) J x3 sec2 (x2) dx.

4 Find the following integrals:
(a) J x2 cos 3x dx, (b) j x3 ex dx,
(c) J x2 sin x cos x dx, (d) J x2 e “x dx,
(e) j  (x cos x)2 dx, (f) J x (In x)2 dx.

5 Find the following integrals:

(a) j  x sin x cos x dx, (b) j ^ d x ,

(e) J w tan “ 1 u du,

(g) J x 3 e x dx, (h) J" x(l — x 2)6 dx,

(j) J v e3” dv.
6 (a) Find J x tan2 x dx.

(b) Show that J x sin“ 1 x dx = i(2x2 — 1) sin“ 1

(c) j x(l +  2x)5 dx,

(f) J x e “x2dx,

(i) J t sin2 t dt,

x +  i* \ /( l  —x 2) + c.
7 Evaluate:

(a)
*n/2

x cos x dx, (b) f  x2 ex dx, (c)
%e2

In x dx,
• 0 Jo * 1

(d»j sin " 1 y dy,
0

(e) t sin2 t dt, 
Jo

m j
*10

X  log10 X

Involving inverse trigonometrical functions
13.2 In §11.3 we dealt with the differentiation of inverse trigonometrical 
functions. The frequency with which we meet inverse sine and inverse tangent 
functions in integration is just one good reason why we should be adept at 
differentiating these functions on sight.

If y = sin“ 1 u, where u is a function of x,
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d y d y d u 1 d u
dx d u dx ^/(l — u2) dx 

Thus ^ 3  sin“ ‘ ^1 = 3 1

• 4
and -^-{2 tan 15x} = 2 x - —  ̂ ^

dx 1 1 1 + 25x2

1
x -  =

x 5 =

2 V ( 4 - x 2)

10
1 + 25x2

Qu. 9 Write down, and simplify where necessary, the derivatives of the 
following functions:

x
(a) sin 1 3x, (b) tan 1 2x, (c) sin 1 —,

(e) j  tan 1 3x, (f) 3 tan '
2 ’

(g) j  sin 1 ( x -  1), (h) 2 tan

(d) cos 1 2x,

i /x  + !

The reader should now be able to write down certain integrals, hitherto 
obtained by the change of variable x =  k sin u or x = k tan u.

For example, 

2x
3 + 4x2

k tan 1 —p- + c. Now, 
v 3

dx, written as

2k

1 +4x-
dx, is seen to be of the form

d / ,  . 2 x \  1
—  k tan -7- = -— -r-̂ r x —7-
dx \  7 3/ 1+ fx V 3

Comparing this with the integrand we find k = 1/^/3,

" 2 J 1 , / 2 x \
-----—5- dx = -T- tan —r- + c

_ 3 + 4x2 V3 VV3/

Qu. 10 Find the following integrals:

( a )

(d )

(g)

4 + x2 

1

dx,

7 (1 - 9 x 2) 

1
3 — 2x + x

(b)

dx, (e)

2 dx, (h)

1 + 4 x 2

1
2 + 25x2

5

dx, (c ) i
dx, (f)

dx.

7(9 -  * 2)
2

7(3 — 4x:

dx,

- dx,

7 ( 9 - ( x  +  2 ) 2

The change of variable t =  tan ^

13.3 Of the trigonometrical ratios, two have not yet been integrated in this 
book, sec x and cosec x.
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Now

13.3

1
sec

cosec x =
x x  x

2 sin — cos — 2 tan —2 2 2

dividing numerator and denominator by cos2 —

Thus

cosec x dx ^

1 7 x 
-  sec —2 2

x
tan —2

dx

.'. cosec x  dx = In tan — + cf
J 2

Furthermore,

7171 \ 71
sin I x + — = sin x cos — + cos x sin — = cos x 

2 /  2 2.

.'. cosec I x + — 1 = sec x

Thus

sec x dx : cosec ( x +  — I dx

= ' ntan(f + ï)+c
The above working suggests a change of variable which is of considerable

x 2 tân A
importance. If we write tan — as t, since tan 2A = ---------

2 1 — tarn A

tan x  -
I t

1 - t 2

It is also possible (see Book 1, §17.4) to express sin x and cos x in terms of t.

It
sin x =

1 + t2
and cos x =

1 — f2 
1 + f2

Fig. 13.1 provides a useful mnemonic for these identities. Starting with the fact
2 i  ,

that tan x =  -— one can at once deduce that AC = 1 + t .

tSee footnote to p. 233.
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Figure 13.1
X

When we make the change of variable t = tan —,

di 1 , x
— = -  sec“1 -  
dx 2 2

dx
d7 , x , x

sec — 1 + tan —
2 2

dx
dr 1 + r2

Qu. 11 Find J cosec x dx using the change of variable t = tan —.

Qu. 12 Find
sin 9 

1 + cos 9
d9 (a) by expressing the integrand in terms of ratios of

9 9
(b) by the change of variable t =  tan

Qu. 13 Use the change of variable t = tan — to show that

a , 1 + tsec x dx = In --------b c
1 -  t

Compare this form of the integrand with that obtained earlier and deduce that 

J sec x dx = In (sec x + tan x) + c+

This change of variable is best thought of in more general terms as 
‘t = tan (half angle)’. For example, when applied to J cosec 4x dx it is t = tan 2x;

. Care must be taken to establish
1. , , _ dx . . dxthen 1 =  2 sec 2X gtvmg -  -  ^

the correct numerical factor in the expression for
dx 
d i '

F If tan — is negative J" cosec x dx = In ^ — tan j ' j  + c.

If sec x + tan x is negative sec x dx = In ( — sec x — tan x) + c. (See §2.12.)
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Example 4 Find
1

3 + 5 cos tx
dx.

1 dx 
J 3 + 5 cos jx  dt

d t =
1

J
3 + 5 x

1 - t 2 
1 + 12

J* 3(1 + t2) +  5(1 — t2) dt

J [2(2 + 0 2(2-i)J
= j  In (2 + t) — j  In (2 — t) + c

_  ^  ky/(2 + tan ¿x) 
yj( 2 — tan ¿x)

Let t = tan —.
4

1 = i  sec2 ^  x —1
x
4

dx
dt

dx 4 
di ~  1 + 12'

dx
Qu. 14 Find —  in terms of t if 

dt

(a) t = tan x, (b) t = tan 4x, (c) t = tan fx.

Qu. 15 Find

1
(a) j  cosec 2x dx, (b) 1 +  sin 30

dfl, (c)
V(*2 -  !)

dx (use x = sec u).

The change of variable t =  tan x
13.4 An integrand containing sin x and cos x, particularly even powers of 
these, may often be expressed as a function of tan x and sec x. In such a case the 
change of variable t = tan x is worth trying.

Example 5 Find ------ r-5— dx.r  1 + sin2x

[In this case we divide the numerator and denominator by cos2 x.] 

1
1 + sin2 x

dx =
sec2 x

sec2 x + tan2 x
dx

dx , 
x —  dt

1 + 2 tan2 x dt

Let t = tan x.

dx 1 
dt 1 + 12



Further integration 235

f 1 + f2 1 dt
1 + 2t2 X 1 + t2

1 + 2 12

f 1 f 2 tan x
Qu. 16 Find (a)  --------=— dx, (b) ------—- dx.

1 + cos x cos 2x

Splitting the numerator
13.5 When a fractional integrand with a quadratic denominator cannot be 
written in simple partial fractions, it may often be usefully expressed as two 
fractions by splitting the numerator. To take a simple example, such as the 
reader has already met in Exercises Id and If,

The key to a more general application of this method is to express the 
numerator in two parts, one of which is a multiple of the derivative o f the 
denominator.

= tan x + In ^/(l +  x2) + c

Example 6 Find
f 5x + 7

---------- -  dx.x2 + 4x + 8

Since —  (x2 + 4x + 8) = 2x + 4,
dx

let 5x + 7 = +(2x + 4) + B; whence A = f, B = — 3.

f
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This method is also appropriate for integrands of the form

a cos x + b sin x 
a cos x + /? sin x

since the numerator may be expressed in the form 

A (derivative of denominator) + B (denominator)

Example 7 Find
2 cos x + 3 sin x
------------- :------ dx.

cos x + sin x

Let 2 cos x + 3 sin x =  A( — sin x + cos x) + B(cos x + sin x); whence A =
B = l

2 cos x + 3 sin x
------------- :------ dx =

J cos x + sin x
—̂ ( —sin x + cos x) 

cos x + sin x +
Kcos x +  sin x) 

cos x + sin x
dx

2>

= — j  In (cos x + sin x) + fx + c

Qu. 17 Find (a)
2x + 3

x2 + 2x + 10 ’

( c )
sin x j

----------- :----dx,
cos x + sin x

(b)

(d)

1 — 2x
V ( 9 - ( x  + 2)2}

dx,

2 cos x +  9 sin x
—------------ :----- dx.
3 cos x + sin x

Improper integrals
13.6 There are two types of integrals to be discussed under this heading, and 
we shall consider them in terms of the area under a curve.

Fig. 13.2 shows part of the curve y = 1/x2, to which the x-axis is an asymptote. 
The area under this curve from x = 1 to x =  t (t > 1) is

f '  1 , r
—r dx =

l x 2  %> 1 X



As t -* oo, this area -+1. Thus although the area ‘enclosed’ by y = 1/x2, x = 1 and 
the x-axis is not in fact a finite enclosed area, we see that it can be evaluated as

f' 1the limiting value of the area 1 —j  dx as t-> oo.
J i x

For brevity it is permissible to write
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’°° 1 , 1
dx =

J i x2 X

(Integrals like this are usually called ‘improper integrals of the first kind’.)
We are faced with a similar situation when we consider ‘the area under the 

curve y = 1/^(1 — x2) from x = 0 to x = 1’ (Fig. 13.3), since x =  1 is an asymptote 
to the curve. (Integrals like this are usually called ‘improper integrals of the 
second kind’.)

The area under this curve from x = 0 t o x  = i ( 0 < i < l ) i s

. o V l1 - * 2) ^
As t-» 1, this area -+jt/2.

sin

Thus, although the integrand 1 /^(1— x2) is meaningless when x = 1, the 
limiting process is implied when we write

—;------- dx =
r  "]i

sin “ 1 x
Jo n/0  ~ x ) Jo

Qu. 18 Evaluate:

(a) dx, using the change of variable x = -  ,
1
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(b)
o J ( l - x 2)

dx, using the change of variable x =  sin u.

Qu. 19 Evaluate the following integrals where possible,' otherwise show that 
they are meaningless. Illustrate with a sketch.

(a)

(d )

1
\ d x ,

o *
•3 1
o (x -  1)‘

(b)
-0° ]

„ T T ^ dx- (c)
" l ,— dx, 
i x

i:dx, (e) e x dx, (0 x2)
dx.

Exercise 13b
1 Differentiate the following with respect to x:

(a) sin-1 2x, (b) tan 1(3x + 1), (c) ^ cos 1 2x,

(d)
i /x  — r \ 1 1 X

(f)
2 3x

2 sin
(  3 ,

), (e) -  tan 
2 2 ’

- s in ” 1
3 T ’

(g) cot-1 X, (h) sec-1 X, (i) x2 tan“ ‘ x2

(j) cot-1 x +  tan ~xx.
2 Find the following integrals: 

1
(a)

(d )

(g)

(j)

9 + x:
- dx, (b)

V ( 4 - k 2)

<c)

d y, (c) |  -

(0
+ 9u2 

1

du,

dx.
V (5 -4 * J) '

2 h-3>4 (b) 3 V ( 3 - 6 x 2) dX> W j 2 y 2- 8 y + 1 7 dy’

dx.
y/(l + 6x — 3x2)

3 Find the following integrals:

(a) | cosec — dx, (b) J sec 26 dd,

(d) J sec 4(j> d<f>, 

1
(g)

(j)

1 + sin 2x 

1

dx, (h)

(e) j  sec x cosec x dx, (f) 

sin 6

(c) J cosec 3x dx, 

1

1 — cos 6
d6, (i)

1 + cos y 

1
4 + 5 cos x

d y, 

dx,

5 + 3 cos jO77T de.



4 Use the change of variable tan x =  t to find the following integrals:
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(a)

( c )

1
1 + 2 sin2 x

dx,

dx,

(b)

(d )

1

1 + cos2 x 

5 Find the following integrals: 

x + 5

cos 2x — 3 sin2 x 

1

dx,

1 — 10 sin2 x
dx.

(a)

(c)

(e)

x2 + 3
dx,

3u 8 
u2 + 2u + 5

cos 6
cos 6 + sin 6 

6 Evaluate:

1

du,

d0,

(b)

(d)

(0

y + 4 d y,

i

y 2 + 6y + 9

3 — 7x J 
V (4 x -x 2) dX’

3 cos x — 2 sin x 
cos x +  sin x

dx.

(a)

(b)

(x — 2)2
dx, using the change of variable x — 2 = - ,

'2/3 1 2 
-7—— —-j- dx, using the change of variable x = -  sin u. 

o V(4 -  9x ) 3

7 Evaluate the following integrals where possible, otherwise show that they are 
meaningless. Illustrate with a sketch.

(a)

(d)

(g)

(j)

1
j x — 1 

‘4 1
i ( x~2)  

* 1/2

dx,

■j dx,

In x dx,

(b)

(e)

( h )

1
dx,

o

V(x —2)

° 1 h
( ^ T F dx’

)
x ex dx,

( c )

(0

(i)

1
o (x -  3)2 
o

ex dx,

dx,

' 3 / 2 1
i V (9 -4 x 2

- dx.

1 1
4 + 25x:

dx.

8 The area enclosed by the x-axis, x = 1, x = t, and the curve y =  1/x is rotated 
through 2n radians about the x-axis. What may be said about the volume of 
the solid so generated (a) as £-> oo, (b) as i->0?

*9 Find the area of the ellipse given by the parametric equations

x = 5 cos 6, y =  3 sin 6 

y d x = i , ^ d O .Use the fact that
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10 Find the area of the segment cut off by x = 8 from the parabola given by the 
parametric equations x = 212, y = At.

11 If s =
'*12 sin 0
n cos 6 + sin 0 

S = C = ti/4.

d 6, and C =
'n/2 cos 6

cos 6 + sin 6
dd, prove that

Further integration by parts
13.7 The purpose of this section is to consolidate the method of integration by 
parts, and to introduce an interesting development in its application to certain 
integrals in which the original integral appears again. This gives us the 
opportunity to consider two integrals of great importance in physics,

J eax cos bx dx and j eax sin bx dx 

Example 8 Find J eax cos bx dx.

dr ,u - -  dx = uv — 
dx

Let / = J eax cos bx dx

= -  eax cos bx — 
a

A“ Hv —— dx
dx

-  eax (— b sin bx) dx 
a

1 , b= -  e cos bx + -  
a a

eax sin bx dx

But

eflX sin bx dx = -  eax sin bx —
a

b cos bx dx

1
a

eax sin bx —  / 
a

Substituting in (1),

1
/ =  -  e 

a
ax cos bx + —T eax 

a
b2

sin b x ---- , I
a

Let u = cos bx.

dv
Let —  = eax, 

dx

1
.'. v = -  e“x. 

a

(1)

Let u = sin bx.

dv
Let —  = e“x, 

dx

1
v = -  e° 

a

a2/  =  a eax cos bx + b eax sin bx — b2l 
.’. /(a2 + b2) = eax (a cos bx + b sin bx) + k

/  = eax cos bx dx =
a2 + b2

(a cos bx + b sin bx) + c

Qu. 20 Find J e2x sin 3x dx. 
Qu. 21 Find J ex cos 2x dx, 
(a) taking ex as u throughout,



(b) taking cos 2x as u in the first step, and sin 2x as u in the second.
(c) Can we usefully take cos 2x as u in the first step, and ex as u in the second?
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Exercise 13c
1 Use the method of Example 8 to find the following integrals:

(a) j e3x cos 2x dx, (b) j  e4x sin 3x dx, (c) e ‘ cos -  dt, 2
(d) J ex sin (2x + 1) dx, (e) J e2e cos2 9 d9.

2 Find j sec3 x dx by first proving it equal to \  sec x tan x +  j  j  sec x dx.
3 Find the following integrals:

(a) |  x3 In x dx,

(d) J x sin 3x dx,

(g) j ju 3 e“2 du,

(j) |  In (3x) dx,

(m) |  x " 3 In x dx, 

(P) J y2 cos2 y dy,

(b) J tan 1 2y dy,

(e) j" x2 sin 2x dx,

(h) j  x(2x — l)5 dx,

(k) J x2 e2x dx,

( n )

(q)

(t)

(c) j ^ dx’

(0 |  e3x sin 2x dx.

(i) J x In yj(x — 1)

(1) j"e~y cos ^ dy,

(o) |  In x3 dx,

(r) |  x In (x2) dx,

(s) J 03 sin (02) d9,
4 If C = j eax cos bx dx, and S = j  ea

aC — bS = eax cos bx and

Hence find C and S.

J  sin 11 dt,

j  x cos x2 dx,

J x3 cos 2x dx.
sin bx dx, prove that

aS + bC = eax sin bx

5 Prove that J e 2x sin 3x dx =  3/13.

6 Find the area enclosed by the x-axis and the curve y = x(2 — x)5.
7 A uniform lamina is enclosed by the axes and the curve y = cos x from x = 0 

to x =  n/2. Find the coordinates of its centre of gravity.
8 The area under y = cos x from x = 0 to x = n/2 is rotated through four right 

angles about the x-axis. Find the centre of gravity of the uniform solid so 
generated.

9 Prove that j  cos4 x dx = ^ sin x cos3 x + f  j cos2 x dx.
10 Find the area bounded by the x-axis and that part of the curve y = e3x sin x 

from x = 0 to x = n.

Reduction formulae
13.8 The normal method of finding j cos2 x dx is to use the fact that 
cos2 x = Kl + cos 2x); j  cos4 x dx may be tackled in the same way by expressing



the integrand in terms of cos 2x and cos 4x, but for the integrals of higher even 
powers of cos x the working becomes tedious.

It is instructive to find J cos2 x dx using integration by parts. Once again we 
find that in the process the original integral reappears; this special aspect of 
integration by parts is found to have a most powerful application, not only in 
finding the integrals of high powers of cos x and sin x, but also in establishing 
general formulae for dealing with integrands of high power.
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/ = J cos2 x dx = cos x sin x — j  sin x (— sin x) dx Let u = cos x.

= cos x sin x + 1 (1 — cos2 x) dx dv
Let —  = cos x, 

dx.'. /  =  cos x sin x + x — /

.'. 21 =  cos x sin x 4 -  x +  k .'. v = sin x.

I = j  cos x sin x +  ^x + c

22 Find J cos4 x dx by finding it first in terms of j  cos2 x dx using
integration by parts, and then using the above result.
Qu. 23 Show that

f 6 1 , . 5 ,cos x dx = -  cos x sin x + — cos x sin x +J 6 24
5 5 x 3 x 1

+ — cos x sin x + - — -— -  x + c 
16 6 x 4 x 2

Qu. 24 Find |  cos3 x dx (a) by finding it first in terms of J cos x dx using 
integration by parts, (b) by another method, giving it as a function of sin x only.

Now the real value, in terms of economy, of the results we are beginning to 
establish is apparent when we come to consider definite integrals between 
certain limits. For example, using the result obtained in Qu. 23,

n/2

cos6 x dx =
n/2 5 x 3 x 1

f(x) + 7 ------ a------ 4 *
0 6 x 4 x 2

n/2

where each term of f(x) contains both cos x and sin x, and therefore vanishes at 
each limit.

Hence

"n/2 , J 5 x 3 x 1 n
cos x dx = -— -— X —

o 6 x 4 x 2 2

5n
32

Qu. 25 Show that

1 4
cos5 x dx = -  cos4 x sin x + — cos2 x sin x +

4 x 2  .
- — -  sin x  + c 
5 x 3

• n/2
and evaluate cos5 x dx.



A pattern is emerging in the last but one term in Qu. 23 and in Qu. 25. We 
shall now consider the general treatment of this form.
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Suppose /„ =
■ n/2

cos" x dx (n ^  2).

Using integration by parts,

/„ =
*/2

0
'it/2

sin x (n — 1) cos" 2 x  ( — sin x) dx

= 0 + (n — 1) 

,'"/2
= ( « - ! )

n/2
(1 — cos2 x) cos" 2 x dx

cos" 2 x dx — (n — 1)
'h/2

cos" x dx

-, /„ = ( n -  l)/„_2 - ( n - l ) / „  
nI„ = ( n - \ ) I n- 2

(n >2)

Let u = cos" 1

dn
Let —  = cos x, 

dx

v = sin x.

( 1)

Since this relationship reduces by 2 the power of cos x in the integrand it is 
called a reduction formula.

Replacing n by (n — 2) in (1),

(n ^  4)I ~ —  Il n - 2  —  t 1 n - 4n — 2

Similarly

n — 5
h - 4  = --- j L - b  ( n >6 )n — 4

Thus

j _ n ~  1 ,  _  («  -  1)(« -  3 ) ,
* n  * n ~  2 / /̂ \ * n  — 4n n(n — 2)

(n  — l ) (n  — 3 )(n  — 5)
(n ^  6)

n(n — 2)(n — 4)

If n is odd, e.g. n = 7, we obtain a multiple of / 1; which is

*»/2

0
cos x dx = 1
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If n is even, e.g. n =  6, we obtain a multiple of I 0, which is
•k/2

Jo
1 dx =

Thus

r cos7 x dx =  / 7

and
' n / 2

cos6 x dx =  / 6 
Jo

6 x 4 x 2  16
7 x 5 x 3  X 35

5 x 3 x 1  n  57t 
6 x 4 x 2  X 2 = 32

Qu. 26 Evaluate:

(a)
' n / 2

cos8 x dx,
0

(b)
'nil

cos9 x dx, 
o

(c)
' n i l

cos10 x dx. 
o

Qu. 27 If / .=
' n / 2

sin" x dx, use integration by parts to show that 
o

Qu. 28 Use the change of variable x = n/2 — y to show that
'n/2 C n / 2

sin" x dx = cos" x dx 
Jo Jo

We can now state a reduction formula which the reader should memorise.
fji/2

If / .= cos" x dx or
’n i l

sin" x dx,

n — 1
/„ = ------ /.

Hence, when n is odd,

(n — l)(n — 3)...4 x 2 
n ( n - 2 ) ...5 x 3

and when n is even,

I (n— 1 )(n — 3)...3 x 1 71
n ( n -2 ) . . .4 x 2  2

(These formulae are often called Wallis’ formulae)
A thorough treatment of reduction formulae is beyond the scope of this book, 

but as an introduction to this topic the above ideas are developed more fully in 
Exercise 13d; of particular interest is No. 6, from which the basic formula quoted 
above may be deduced as a special case.
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Exercise 13d
1 Use integration by parts to show that

t

J sin2 x dx = — j  cos x sin x + \ x  + c 

Assuming this result, find J sin4 x dx by the same method, and evaluate 
'* /2

sin4 x dx
Jo

2 Use integration by parts to show that

j sin3 9 dd = — j  cos 9 sin2 8 — f  cos 8 + c 

Assuming this result, find J sin5 8 dd by the same method, and evaluate 
f"/2

sin5 9 dd
jo

3 Evaluate the following:
*«/2 ' n / 2 - n / 2

(a) sin3 x dx, (b) sin6 x dx, (c) 1 sin9 x dx,
J 0 • 0 0

*n/2 ' n / 2 ' n / 2

(d) cos4 x dx, (e) sin10 x dx, (f) sin7 x dx.
0 J 0 • 0

4 Use the change of variable u = 28 to prove that

'* . 8 u 35n
sin8 -  du =  ——

o 2 28

Evaluate the following:
■*71/4

(a) cos7 2y dy, (b)
3n/2

sin5 -  dt, (c)
rm e

Jo '
cos6 3x dx.

*5 Demonstrate graphically that
rn

(i)

(iii)

cos3 9 d8 = 0,

cos4 8 d9 = 2

(ii) sin3 8 dd = 2
’*/ 2

sin3 9 dd,

'n/2
cos4 8 dd.

Evaluate the following:

(a)

(d)

(g)

sin7 8 d0, 
o
•n/2

sin7 9 dt
- n /2
* Tt

sin10 8 dd,

(b)
•n/2 fn/2

cos4 8 d9, (c) sin6 8 d0,
J - n/2 -nil
fn 'nil

cos5 8 d0, (0 cos9 8 dd,
Jo * -njl

(h) j cos8 8 dd.
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*6 (a) Writing
•h/2

cos'" 9 sin" 9 d9 as
•n/2

cms" d9, or Im use integra

tion by parts (taking u a s c "  *) to prove that

m 1
- m , n -  , ¡ m - 2 , n  ^  2 ) ,m + n

and write down / m_2 „, and hence Im in terms of / m_4 „ (m ^  4).
n

(b) Use the change of variable x = — —y to prove that m, and

reduce / m_4,„ to the form /c/ m_4>„_6 (n Ss 6).
fn/2

(c) Show that
C n/2

cos5 9 sin6 9 d9 = —- 
jo 9 9 . .

evaluate this
(i) by reduction to the form k l l 0,
(ii) by writing the latter integral as a function of sin 9. 

(d) Evaluate the following:

cos 9 sin6 9 d9, and proceed to

(i)

(iii)

■n/2 Cnl 2
cos8 9 sin5 9 d9, (ii) cos6 9 sin8 9 d9,

o Jo
•n/2 f n / 2

cos7 9 sin6 9 d9, (iv) cos5 9 sin7 9 d9.
o Jo

7 Use a suitable change of variable and the method of No. 6 to evaluate the 
following:

( a ) x5(l — x2)6 dx, (b) x4(l — x 2)112 dx.

8 I f /„ = x" e ax dx, (a) obtain a reduction formula for /„ in terms of /„_ u

and (b) evaluate
*71/4

x9 e 2x dx.

9 If /„ = tan" 9 <19, obtain a reduction formula relating /„ and I„-2, and

use it to evaluate the following correct to two significant figures:

(a)
‘n/4

tan7 9 <19, (b)
’n /4

tan8 9 d0.

10 (a) If /„ = j sec" x dx, prove that

/„ = — - tan x sec" 2 x + - — \  1„ _ 2 (n ^  2)
n — 1 n — 1

and use this reduction formula to write down an expression relating /„ to
In-6 («>  6).
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(b) Use the result obtained in (a) to find
'«/6

sec8 x dx, and check your

answer by expressing the integral as a function of tan x only. 
f"/3 61 5

(c) Prove that sec7 x dx = — y/3 + — In (2 + ^/3).
Jo ° 16

The mean value of a function
13.9 In elementary arithmetic the idea of the mean (often loosely called 
the average) of a set of numbers is a familiar concept. If we have n numbers 
y i, y2, their mean y is given by

y =  “ (vi  +  yi +  k3 +  ••• +  yn) n

yr

Notice that if each of the n values of yr were replaced by y, the total would be
r — n

unaltered, because ny = £  U-
r = 1

In more advanced work it is frequently necessary to find the mean of a 
continuous function; for example we may wish to find the mean value of the 
temperature over a period of 24 hours, or the mean value of an alternating 
voltage.

The mean value of a function f(x) over an interval x =  a to x =  b is defined as

1
{b-a)

' b

f(x) dx
a

Like the elementary idea of the mean in arithmetic, the mean value of f(x) is 
the (constant) value, ÿ, which should replace f(x) throughout the interval, so that

Figure 13.4



the area under y = y (i.e. the area of the rectangle HKNM in Fig. 13.4) equals the 
area under the curve y =  f(x) from x = a to x = b.

Qu. 29 Find the mean value of
(a) y — x 2, from x = 1 to x = 4, (b) y = sin x, from x = 0 to x = n,
(c) y = \JX> from x = 0 to x = 4, (d) y =  sin2 x, from x = 0 to x = rc/2.

Exercise 13e (Revision)
No list of ‘standard integrals’ is given in this chapter, in the belief that the 
recognition of form is more important than the learning of formulae (see 
Nos. 13-17).
In this exercise,

Nos. 1-7 summarise the main methods dealt with in chapters 1, 2, 3, 13. 
Nos. 8-12 gather together the integrals of some trigonometrical functions and 

inverse functions, to enable the reader to take stock of his or her power of 
handling these integrals.

Nos. 13-17 are designed to develop discrimination in choice of method. These 
questions test the essential skill, recognition of form, and the more experienced 
reader may confine his or her attention to these questions, together with some of 
the less obvious integrals in Nos. 8-12.
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Find the integrals in Nos. 1-6.

(b)1 (a) j  x^ (x2 + 1) dx, 

(c) j  cos5 u du,

x2 + 1
J ( x 3 + 3x -  4) 

(d) J sec6 9 d$,

(e) J sec x tan5 x dx, (f) J x sin x2 dx,

dx,

<■>

(i) l ^ r d x ,

2 Change of variable. 
(a) j  x^/(2x — 3) dx,

(h) j  x(2x2 + 3) 1 dx,

(j)
9

tan -  d$. 
2

(c)

(e)

(g)

(i)

J O - 8 )  ,  

( y - 4 ) 2 dy’

1

(b) J 2x(3x — l)7 dx, 

1

3 + 9u2
du,

( d )

(f)

V(4 - V )
1

d y, 

du,

1
yj(7 + 4x — 2x2) 

1
x j ( 9 x 2 -  1)

dx,

u2 — 6u+ 17 

dx, (h) $ j ( 4 - y 2)dy, 

1
(j) 5 + 4  cos 9

d 9.
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3 Involving exponential and logarithmic functions.

(a) j  e3x dx,

(d) 3 i dY’

(g)
C 1

3x + 9

(b) J 10" dy, 

1
(e)

dx, (h)

3x + 4 

1
1 - x

(c)

dx, (f)

x a dx,
e

1
3 — 2x 

2 dx, (i) J In x dx,

dx (x > |),

(j) j  ev*dx (write as j x1/2x 1/2ex'/2 dx).

4 Partial fractions. 

2
(a)

(d )

9 — x2 

x

dx, (b) 

2 dX’ (e)

1

(4 — x)

5 Integration by parts.

y (y -  3)

2 — x2 
(x + 1)

d y, (c)

3 dx, (f)

x3 — x2

( x - 2 ) 2 
x3+ 1

dx,

dx.

(a) x cos x  dx, 
2

(b) \ - e x dx, (c) J y cosec2 y dy,

(d) j  2y(l — 3y)6 dy, (e) j  x 3* dx, (f) J x In 2x dx,

(g) |  In t di, (h) |  tan ~1 3x dx, (i) j  4X dx,

(j) j x3 sin x dx,
x l x  x 3

(k) Prove I cos4 — dx = -  sin — cos3 — + -w  l 2 2 2 2 4
2 X  Acos — dx. 2

6 Splitting the numerator.

* 2 x -  1
(a)

(c)

4x2 + 3 

cos d

dx, (b)
1 - 4  y

2 cos 8 — sin 0 

7 Evaluate the following:
'2/3 j -

1/3 Vi4 “ 9*2)
'«12

de, (d)

\/( l + 2 y - y 2) 

cos x — 2 sin x
3 cos x + 4 sin x

dy,

dx.

(a)

(d)

dx, (b)
V2 J

cos11 x dx,

l 8 + y
«12

, 1 2

00 1
2 dy, (c) I — ^2 dx,5 ( x - 3 ) 2

(*n/8
(e) | sin120d0, (f) cos6 4y dy,

o
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(g)

(j)

*ji/2

sin8 u du,
-Jl/2

' + 1 

- 1
1

2x — 3
dx.

( h ) cos7 x dx, 
o

(i)
fn/2

cos9 0 sin10 9 d0,
o

8 Find the following integrals:

(a) J sin 5x dx, (b) x jcos — dx, 
3

(c) J tan 5x dx, (d) J cot j x  dx,

(e) cosec x dx use tan — = t 
2

9 Find the following integrals:

(0 sec x dx
x

use tan — 2

(a) (b) J cosec2 4x dx, (c) j  sin2 x dx,

(d) |  cos2 x dx, (e) J tan2 x dx, (f) J cot2 x dx.

10 Find the following integrals:
(a) J sin3 x dx, t(b) J cos3 x dx,
(c) } tan3 x dx (use Pythagoras’ theorem), 

t(d) } cot3 x dx (use Pythagoras’ theorem),
(e) } sec3 x dx (by reduction), t(0  j  cosec3 x dx (by reduction).

11 Find the following integrals ((a) and (b) by expressing the integrands in terms 
of cos 2x, cos 4x, or by reduction, the remainder by using Pythagoras’ 
theorem):
(a) J sin4 x dx, (b) j cos4 x dx, (c) J tan4 x dx,
(d) J cosec4 x dx, (e) } sec4 x dx, (f) } cot4 x dx.

12 Find the following integrals using integration by parts (in (e) and (f) continue 
by using the change of variable x =  sec u):
(a) J sin “ 1 x dx, (b) j cos “ 1 x dx, (c) J tan “ 1 x dx,
(d) J cot“ 1 x dx, (e) j sec“ 1 x dx, (f) J cosec“ 1 x dx.

Find the integrals in Nos. 13-17. 

1
13 (a)

(c)

3 + 4x2 

1

dx, 

dx,
7 0  + *2)

(e) Jx7(3  + x2)dx,

(b)

(d )

(0

V(5 +  8x2) 

x

dx,

2 + 3x2

x +  1
3 + 2x2

dx,

dx,

fThe change of variable y = | tc — x may be used.
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(g)

(i)

14 (a) 

( c )

x — 2
x 2 -  4x + 7

3.x — 11
x2 - 4 x  + 5

1
V (4 -5 x 2) 

2

dx,

dx,

dx,

dx,
„ 9 - x 2 

(e) |  x^(6 — x2) dx,

(g) \ y j { 4 - x 2)dx, 

x — 2
W J V ( 3 - 4 x 2) 

15 (a) J cos x° dx,

dx,

(c )
9 9 AOsec -  cosec -  d0, 
2 2

(e) |  y sec2 y dy,

(g) j  x sin x2 dx,

(i) J sin2 y cos2 y dy, 

1
16 (a) 

(c )  

(e) 

(g)

(i)

1 + cos 0 

1
1 + sin x 

1

d6,

dx,

1 — cos jx  

1

— dx,

cos2 2y — sin2 2y 

1
sin 0 + 2 cos 0 + 1  

17 (a) j  x3 e_x dx,

dy,

d0,

*>/y

(h) J 7 (2 + *2) d*>

(j) Jx7 (2  + 3x)dx.

(b)

( d )

(f)

( h )

( j)

7(1 -  3x) 

3
(16 — x)2 

3x

dx,

dx,

4 — x2 

x

dx,

7(7 -  2x: 

1

dx,

dx.
7(*2 - 9 )

(b) j  x sin 2x cos 2x dx,

(d) j  cos6 x sin5 x dx,

(f) J x sin x dx,

(h) J u2 cos u du,

(j) J sin 5x cos 2x dx.

f— LJ 1 — 5 sir
d0,(b)

(d)

(0 

(h )

^  1 +  tan x

(b) J In (x + 2) dx,

sin 20

2 cos 0 — 4 sin 0 
cos 0 + 3 sin 0

4
cos2 x + 9 sin2 x 

‘ 1 + sin x

d0,

dx,

cos2 X

1

dx,

dx.

1
1 7 ln  t

dt,(c) (d)
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(e) J x tan 1 3x dx,

(g) J 4X dx,

(i) j  x3 In (2x) dx,

sin x

(h) j  x 10* dx, 

(j) j  x3 e*2 dx.

dx,

Exercise 13f (Miscellaneous)
1 Integrate the following functions with respect to x: 

(b) sin 3x cos 5x, (c)(a) ' x2“ x ' ’ x(l + x2)

Prove by means of the substitution t = tan x that

*’,/4 dx _  1 
0 1 + sin 2x 2

dx
and find the value of

'rt/4

jo ( l+ s in 2 x )2'

2 Integrate the following functions with respect to x:

3 + 2x
(a) x(l + x 2)3/2,

"it/2

(b) 1 - 4 x 2’
(c) x2 In x.

Evaluate 

3 Express

x cos2 3x dx.

1 — x2 

’1/2 dx
o

in partial fractions and hence show that

j - ^ i l n J  + i a r a a n ^ l .

4 Integrate the following functions with respect to x:

(a)
1

(b) x arctan x, (c)~ 2 ------- 3 -------T v  W  T i t i a n  A ,  2  , « - « 7 3 'x — 3x + 2 x + 2x + 2

By means of the substitution x =  1 — 1/u4, show that
2W4 j* a w 7i

J5 u(2u4 — 1)1/2 24

5 Integrate the following functions with respect to x: 

x + 6
^  x2 + 6x + 8’

Evaluate

(b) x In x, (c) arcsin x 

(1 + x 3/2)

1/2 V W 1"*)}
dx, by means of the substitution x =

(O & C)

(O & C)

(L )

(O & C)

COS2 4>.

(O & C)



6 Use the substitution u = + ^/(l + x2) to evaluate

>12/5 dx
x(l + x2)3/2
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(O & C)
4/3

7 By making the substitution x =  n — y, or otherwise, prove that

‘ ■ 3 j 2 nx sin x dx = —- 
3

(O & C)

8 Integrate with respect to x: 

(a) cos x cosec3 x, (b)
x +  3

y/(7 — 6x — x2)

By making the substitution x = a cos2 9 + b sin2 6, prove that

9 Integrate with respect to x:

1

(O & C)

(a)

If S =

yj(5 — 4x — x2)’ 

sin x

(b) x3 e x . 

dx and C =
cos x

a sin x +  b cos xa sin x +  b cos x 

find aS + bC and aC — bS. Hence, or otherwise, prove that

C*12 sinx J 3n 4 , (A 
o 3 sin x + 4 cos x 50 25 \3

dx,

(O & C)

10 Evaluate
dx

by means of the substitution x = sec2 (/). (O & C)
i x2V ( x -  1)

11 By means of the substitution x2 = 1/u, evaluate the integral

' 2 dx
Ji *V (5x2 - l )

12 Integrate with respect to x:

(O & C)

^  -2 .4 ’ (b) x3 e - x 2/2
(c)

1
x* — 4 yj(5 + 4x — x2)’

By means of the substitution u = tan x, or otherwise, evaluate the integral

dx (O & C)
fn/2

o 2 + cos x

13 Prove that, if C = j  eax cos bx dx and S = j e“x sin bx dx,

aC — bS = cax cos bx and aS + bC = eax sin bx 
* " /2

Evaluate e2x sin 3x dx. (O &C)
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14 Integrate with respect to x:

(a) j  (2x — 3)~3/2 dx, (b) J x sin x dx, (c) j x ^ x  — 4) dx.

By means of the substitution x = 3 cos2 6 + 6 sin2 6, or otherwise, evaluate 

dx
J 3 V {(x -3 )(6 -x )}

15 Give a geometrical interpretation of the integral

(O & C)

1 = f(x) dx (b > a)

Without attempting to evaluate them, determine whether the following 
integrals are positive, negative, or zero:

(a)
M

x3(l — x2)2 dx, (b)
*n

sin3 x cos3 x dx, (c)
• 0 * 0 « 1/2

e x In x dx. 

(O & C)

16 (a) Let I(Z) =
: (x -  l)p(2 -  x f

rP+ 1 dx (p > 0).

By writing x = 2/y, prove that l l Q l )  = 1(2).
(b) Without attempting to evaluate them, determine whether the following 

integrals are positive, negative, or zero:
•i

x3(l — x)3 dx, sin2 x cos3 x dx, e x sin x dx

(O & C)

17 By means of the substitution y = a — x or otherwise, prove that

f(x) dx =

Hence prove that

x sin x 
1 +  cos2 x

f(a — x) dx

dx =

18 (a) Evaluate the integral 

dx

(n — x) sin x 7t2
—------- j—  dx = —o 1 + cos x 4

tan 1 x dx.

(O  &  C )

(b) If/„  =
o (1 + x 2

-  show that 2nln+l = 2 " +  (2n — 1 )/„.

Deduce the value of
dx

o (1 + x 2)2̂ 3 ' (JMB)
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19 Prove that, if

»n~ Un- 1

’n/2 sin 2nd 
Jo sin 6?

2 ( - l ) " “ 1 
2 n -  1

d8, where n is a positive integer,

Hence prove that u„ = 2 -(l—^ + - (-1)"
2n — 1

20 (a) Prove that, if /„ = J sec2" 8 68, and n > 1,

(2n — 1 )/„ = 2(n — l)/„_ i +  sec2”-2 8 tan 9

(b) Using the result of (a) prove that
*n/4

sec10 8 68 =
Jo

1328
n r

(O & C)

(O & C)



Chapter 14

Differential equations
The general problem
14.1 An equation containing any differential coefficients such as — , is

dx dx
called a differential equation-, a solution of such an equation is an equation 
relating x and y and containing no differential coefficients.

dy
Given the differential equation —  = 3, we obtain the general solution

dx
y = 3x + c, which is the equation of all straight lines of gradient 3. If the data 
also includes the fact that y = 5 when x = 1, we can determine that c = 2, and we 
obtain the particular solution y = 3x + 2.

Thus, in simple graphical terms,

(a) a differential equation defines some property common to a family of 
curves,

(b) the general solution, involving one or more arbitrary constants, is the 
equation of any member of the family,

(c) a particular solution is the equation of one member of the family.

dv
Consider the differential equation —  = x. We can easily solve this with our

dx
existing knowledge, but before we do so, consider for a moment what this 
differential equation tells us: it says that, for any value of x, the gradient is 
equal to x. This information is illustrated in Fig. 14.1.

The solution of the differential equation is

y = j x 2 + c

(in this context, the constant of integration, c, is usually called ‘an arbitrary 
constant’). Equations of this form represent parabolas with the y-axis as the axis 
of symmetry (see Fig. 14.2).

As with the family of lines y = 3x +  c, above, if we are given some further 
information, say when x  =  0, y = 2, then we can find c and identify the particular 
parabola with this property, in this case y = j x 2 + 2.

256
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Figure 14.1

Qu. 1
d 2y 
dx2

Find the general solution of = 0. What is the particular solution

dv
given by —- = 3, and y = — 2 when x =  1? 

dx

Qu. 2 Find the general solution of =  3x2. Illustrate with a sketch.

Qu. 3 For any circle centre the origin | p  = ---- . Solve this equation by writing

d y
it as y —  = — x. 

dx
What is (y2)?

_d_
dx
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d2s
Qu.4 Find the general solution of —-j = a, where a is a constant. What does

dt
ds

this become, given the initial conditions s = 0 and — = «'when t = 0?
dt

Definition

The order of a differential equation is determined by the highest differential 
coefficient present.

Thus the equations in Qu. 1 and 4 are of the second order, whereas those in 
Qu. 2 and 3 are of the first order.

Since each step of integration introduces one arbitrary constant, it is in 
general true that the order of a differential equation gives us the number of 
arbitrary constants in the general solution.

This suggests that from an equation involving x, y, and n arbitrary constants 
there may be formed (by differentiating n times and eliminating the constants) a 
differential equation of order n.

Qu. 5 Form differential equations by differentiating and eliminating the 
constants A, B from the following:
(a) y = Ax + B, (b) y = Ax, (c) r = A cos 6,
(d) xy = A, (e) y = A e*, (f) y =  eBx,
(g) y = A eBx, (h) y = A In x, (i) x =  tan (Ay).
Qu.6 Confirm the given general solution of each of the following differential 
equations:

d2v dv(a) —T  —  -----2y = 0, y = A e2x + B e x,
ax dx

(b) -  4 ^  + 4x = 0, x = e2' (A + Bt). 
dt2 dt

We must now classify some of the simpler forms of differential equations.

First order — separating the variables
dv dv (14.2 The solutions of —  = f(x) and —  = f(_y) which may be written
dx dx

^  = -J— ) depend upon the integrals f f(x) dx and I -j— dv. There are other 
d y  f(y)J  J f(y)
differential equations equally susceptible to direct integration once they have 
been written in a suitable form.

Consider

dy
dx ■ ■ xy ( 1)
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We write this as 

1 d y
y ck =X

then integrating each side with respect to x, 

'1 d y
y dx

dx = x dx

But from §1.5 we know that f(y) dy = dy
f(}0 -r- dx. dx

- d y  =
y

x dx

.'. In y + c = j x 2

.'. In (/cy) = ¿x2, or y = A e*2/2

(2)

Note how the arbitrary constant of integration appears in different forms; we 
have written c as In k, and A as l/k.

Now let us look back at (1) and (2) in the above working. The symbols dx, dy 
have as yet no meaning for us in isolation; they have been used only in

composite symbols such as f(x), J f(x) dx. However, in the present
u a  u a

circumstances it is convenient to think of dx as an ‘x-factor’, and dy as a 
‘y-factor’, and proceed direct from (1) to (2) by ‘separating the variables’ and 
adding the integral sign. The intervening lines provide the justification for this.

Example 1 Solve x2 -p- = y(y ■ 
dx 1).

dy
dx = > 0 - 1 )

Separating the variables,

1
> 0 - 1 )

—  - -}dy =  
y - 1 y

dy = I —5 dx

dx
x l

:. In

or

k ( y - i ) _ 1
y x

k(y — 1) = y e~1/x

Qu. 7 Solve the following differential equations, and check solutions by 
differentiation and elimination of arbitrary constants:

x
y ’

y_
X

(c)
dx
dy = xy,
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(d )
d y

x —  = tan y, 
ax

dv(C) e X ^ = y h
(f) J {x 2 + 1) ^

x
y'

Qu.8 i; — = a, where a is a constant. Solve this equation given that v = u when 
ds

s = 0.

Since Newton’s time, many physical problems have been expressed in terms of 
differential equations (readers who are studying applied mathematics or physics 
have probably met some already). Solving, or at least attempting to solve, a 
differential equation is a very common task for a scientist, and nowadays the 
problem frequently arises in other disciplines, such as economics. What follows 
is an important application of the subject in physics.

It is known that radioactive substances decay at a rate which is proportional 
to the amount of the radioactive substance present. If we use x to represent the 
amount present at time f, we can express this in the form of a differential 
equation, namely,

^  = — kx where k is a positive constant.

For different substances, the rate of decay is different; it is usual to quote the 
‘half-life’ of the substance, that is, the time it takes for half of the original 
quantity to decay. For radium the half-life is about 1600 years. We shall now 
solve the differential equation, that is, express x as a function of t, and hence find 
the value of k. We shall then use the solution to find the percentage of a given 
sample of radium which would still exist after a lapse of 200 years in storage. 
[Remember, in the following working, to distinguish between the arbitrary 
constant of integration A (or x0), and k, a constant which is determined by the 
half-life of radium.]

Separating the variables gives

and

— k d t
J x
integrating,

In x =  —kt + c 
x = e “*'+c

=  e‘ x e ~ k t

and replacing ec by A, we can write 

x =  Ae~kl

This is the general solution of the differential equation. (This particular 
differential equation is extremely common, and, unless specific instructions to



the contrary are given, the solution x = Ae~kt may be quoted.) We now continue 
with the solution.

When t = 0, x = A, in other words A is the original value of x. It is convenient 
to write this as x0, so

x = x0e~kl

Now, we are told that when t = 1600, x = j x 0, consequently
iv  _  v --1600k 2X0 ~ X0C 
■ i _ „ —1600k 

■  ■  2 —  e

i.e. e1600k = 2

Taking natural logarithms,

1600k = In 2,

In 2
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k =
1600

Hence the solution can be expressed
V — V o - < ln 2 /1 6 0 0 )1A — AqC

This, in turn, can be written 

x = x0(e,n 2)~'/1600

But eln 2 = 2, (see §2.8; this step is extremely common in this topic), hence

x = x02 " '/1600

(We can verify by inspection that when t=  1600, x = ^ x 0. It is important to 
check your work like this whenever possible.)

Finally, when t = 200,

x = x02- 1/8 
= 0.917xo

In other words, after 200 years, 91.7% of the original radioactive radium still 
exists.

Exercise 14a
1 By differentiating and eliminating the constants A and B from the following 

equations, form differential equations, and illustrate the geometrical sig
nificance of each:
(a) 3x — 2y+.A = 0, (b) Ax +  2y + 1 =  0, (c) Ax + By = 0,
(d) x2 + y2 = A, (e) y = A x ~ \  (f) y = A(x — 4).

2 By differentiating and eliminating the constants A and B from the following 
equations, form differential equations:
(a) y — A cos (3i + B), (b) y = A + B e 3t, (c) y = A e3* +  B e -3*,
(d) y = A e3x + B e~2x (first multiply each side by e2jc),
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(e) y = e4x (A + Bx) ( first show that ^  = 4 y + Be  
\  dx

3 Obtain the equation of the straight line of gradient which passes through
dy

(5, — 2), by finding a particular solution of the differential equation —  = -A.
ax

dy
4 A family of parabolas has the differential equation —- = 2x — 3. Find the

dx
equation of that member of the family which passes through (4, 5).

dt
5 Find the general solution of the differential equation 61 ---- b 1 = 0, and the

ds
particular solution given by the condition s = 0 when t = — 2.

6 Find the particular solutions of the differential equation

dy
cosec x —  = ex cosec x + 3x 

dx

given by the conditions (a) y = 0 when x = 0, (b) y = 3 when x = n/2. 
7 Find the general solutions of the following differential equations:

dy
dx(a) 3 -  = ^.

dy
(c) (x +  2) ¿  = y, 

dr
(e) —  = i?(i; — 1),

(g)
dy
dx

= tan y,

(b)

dy
(d) —  = sec y, dx

dx
(f) In x —  = 1, 

dy

(h) tan” 1y ^  = l,

dy
(0 y = x — i, dx

(k) ^  = sin 9, 
dr

dv
(m) x —  = y + xy, 

dx

dfl
(o) 9 —  = cos2 9, 

dr

d 9
(q) 2 sin 0 —  = cos 6 — sin 9, 

dr

dx
(s) e' —  = sin t, 

dt

-> dy
(j) (x2 - l ) /  = y,dx

,2 d y(1) x2 -7-  = y + 3, 
dx

dé
(n) —  = tan (f> tan 9, 

d 9

(P) r
y dy
x dx

: In x,

(r) x £ _ 3 . 2 ( ,  +  g ; ,

(t) ex ^  + y2 + 4 = 0. 
dx

8 Find the particular solutions of the following differential equations which
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satisfy the given conditions:

dy(a) ( 1 + cos 26) —- = 2, y = l  when$ = 7i/4, 
at)

dy
(b) — = x(y — 2), y = 5 whenx = 0, 

dx

(c) (1 + x2) ^  = 1 + y2, y = 3 whenx = 2,
dx

(d) ^  = J{  1 — y2), y = 0 when x = n/6. 
dx

9 According to Newton’s law of cooling, the rate at which the temperature of a 
body falls is proportional to the amount by which its temperature exceeds 
that of its surroundings. Suppose the temperature of an object falls from 200° 
to 100° in 40 minutes, in a surrounding temperature of 10°. Prove that after t 
minutes, the temperature, T  degrees, of the body is given by

T= 10+ 190e  *' where/c =  ^  In (^)

Calculate the time it takes to reach 50°.
10 A tank contains a solution of salt in water. Initially the tank contains 

1000 litres of water with 10 kg of salt dissolved in it. The mixture is poured 
off at a rate of 20 litres per minute, and simultaneously pure water is added at 
a rate of 20 litres per minute. All the time the tank is stirred to keep the 
mixture uniform. Find the mass of salt in the tank after 5 minutes. The tank 
must be topped up by adding more salt when the mass of salt in the tank falls 
to 5 kg; after how many minutes will it need topping up?

First order exact equations
14.3 The equation

- dy , 2 2x2xy -— 1~ y = e 
dx

is not one in which the variables may be separated. However, the L.H.S. is

(xy2) and the equation may be solved by integrating each side with respect to 
dx
x; it is called an exact equation and the solution is

xy2 = |  e2x + A

Qu.9 Solve the following exact equations:
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Integrating factors
14.4 There are some differential equations which are not exact as they stand, 
but which may be made so by multiplying each side by an integrating factor.

Example 2
dy '

Solve xy - — h y 
dx

= 3x.

We cannot separate the variables. Can we find a function whose derivative is

the L.H.S. as in §14.3? No. Then can we find a function whose derivative is 
f(x) x L.H.S.?

4— (xv2) = y2 + 2xy this is no good, 
dx dx

(x2y2) = 2xy2 + 2x2y x ^  = 2x( y2 + xy ^  ) = 2x x L.H.S. 
dx dx V dx /

The required integrating factor is 2x.

dy
X yd x + r

= 3x

Multiplying each side by 2x,

2x2y ^ + 2 x y 2 = 6x2 
dx

.'. x2y2 =  2x3 + A

Qu. 10 Find the integrating factors required to make the following differential 
equations into exact equations, and solve them:

, , dy , _(a) x —  + 2y = ex , 
dx

dy(b) x ê  —— + 2ey = x, 
dx

(c) 2x2y — + xy2 = l, (d) r sec2 9 + 2 tan 6 ^  = 2r 1. 
dx at)

First order linear equations
14.5 A differential equation is linear in y if it is of the form

dy
i t l  + Pny = Q

d"y d" *v d" 2y 
d ^  + jPld ^  + 'P2d ^  + -  +  P"- dx

where P u P2,...,P„, Q are functions of x, or constants; it is of the nth order. 
Thus a first order linear equation is of the form
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dy
dx + Py = Q

where P, Q are functions of x or constants. This type of differential equation 
deserves special attention because an integrating factor, when required and if 
obtainable, is of a standard form.

Let us assume that the general first order linear equation given above can be 
made into an exact equation by using the integrating factor R, a function of x. If 
this is so,

R ^  + RPy = RQ (1)
dx

is an exact equation, and it is apparent from the first term that the L.H.S. of (1) is 
d dy d R— (Ry) = R - — I- y ——. Thus (1) may also be written 

dx dx dx

„dy  d R
R & c+ y t e ~ RQ

Equating the second terms on the L.H.S. of (1) and (2), 

d R
y ~dx= RPy

(2)

dR
dx

= RP

Separating the variables,

P dx

.". In R = J P dx 

.'. R = eiPdx

Thus the required integrating factor is e*pdx. The initial assumption that an 
integrating factor exists is therefore justified provided that it is possible to find 
i  P dx.

Example 3

x = 0.

Solve the differential equation
dy
dx

+ 3y = e2x, given that y =  § when

The integrating factor is e*3dx = e3x. Multiplying each side of the given 
equation by e3x,

+ 3e3x
dx y = e5x

e3x y =3e5x +  A
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Therefore the general solution is

y = \ t 2x + A e 3x

But y = f  when x = 0, f  = y + A, A = 1. 
Therefore the particular solution is

y = }e2* + e _3x 

d y
Example 4 Solve - — h y cot x = cos x. 

dx

The integrating factor is
e j  c o .  * d *  =  e i „  s i „  x  =  s i n  x  ( s e e  § 2 . 8 )

Multiplying each side of the given equation by sin x, 

dy
sin x - — I- y cos x =  cos x sin x 

dx
.'. y sin x = j  sin2 x + A 

Therefore the general solution is

y = j  sin x +  A cosec x

dy
Qu. 11 Find the general solution of - — I- 2xy = x. What is the particular

dx
solution given by y = — j  when x = 0?
Qu. 12 Show that the equation in Qu. 10 (a) is of the type under discussion, and 
find the required integrating factor as e*F dx.

Qu. 13 Solve: (a) ^  — y tan x =  x, (b) ^  +  y + 3 = x. 
dx dx

First order homogeneous equations
14.6 In a homogeneous differential equation all the terms are of the same
dimensions. To obtain a clear picture of what is meant by this, suppose x and y
to measure units of length. The term x2y is of dimensions (length)3, or L3; the
. (x2 + y2)2 . . L4 t3term ------------ is of dimensions —  = L .

x L
The dimensions of some other terms are given below:

y_
X

dy .. ày — = hm — 
dx ¿x-*o ox

L
L

L
L2

L
L

L°

L " 1

L°
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( M
d 2y ¿ Id  x )  L°
J T  = lim \  - tdx OX L

dx

Qu. 14 Pick out that member of each of the following groups of terms and 
expressions which is not of the same dimensions as the rest:

(a) xy
dy 
dx ’

x 2 + y 2,

(b)(x + y)2^ ,  x2 ( l  + ^ ) ,  ( ± )  xy, +  xy,
dx

,dy

d y \ 2
dx )

d2y
dx2

d2y
(c) (y + 2x) — , (y2 - x 2) ^ ZJ, XyJ(x2 + y2), 2x + —

dx2

Qu. 15 Which of the following equations are homogeneous?

d y(a) x2 -7— = y2 dx

d2y dy

dy , ,
(b) xy —  = x2 +  y2, 

dx

dy
(d) x2—^  = y-r , (e) (x2 - y2) —  = 2xy,

dx dx dx

1 dy(c) X 2  —  = 1 + xy, ax

A first order homogeneous equation is of the form

= e

Since —  is of dimensions 0, P and Q are homogeneous functions of x and y of 
dx

the same dimensions, i.e. of the same degree. The significant point to note is that, 
if P and Q are of degree n, we may divide each side of the equation by x" and 
thereby obtain

= Q'

where F  and Q' are functions of y/x. 
For example, the equation
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z ^ = ' + i - Tx d x  \ x  J
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when each side is divided by x2, becomes

This suggests the substitutions

y  dy du
— = u and, since v =  ux, —— = u + x —  
x  dx dx

Example 5 Solve xy
dy
dx

■x2 + y2.

Dividing each side by x2,

z ^  = > + i zx dx \x

dy duLet y = wx, then —  = u + x  — .
dx dx

(  d u \ ( 2. .M M +  X—  = 1 + M
V d x )

dw
ux —— = 1 

dx

Separating the variables,

h - i
ud u =  | — dx 

x

ju 2 = In (Bx)
2

= 2 In (Bx)

^  ] =  In (Ax2) where A = B2

Therefore the general solution is

y2 = x2 In (,4x2)

Qu. 16 Solve the following equations by the method of Example 5,

dy
(a) x2 —  = y2 + xy, 

dx
dy

(b) -7- = X -  y,dx

dy

(c) x ‘ f x = 2 f .

Qu. 17 Solve the equation x = 2x + y (a) by the method of Example 5,
dx

(b) by the method of Example 4.



Qu. 18 Solve the equations in Qu. 16 (b) and (c) not using the method of 
Example 5.

The above questions serve not only to illustrate the method under discussion 
but also to stress that the types of equations given in this chapter are not all 
mutually exclusive.
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Exercise 14b
1 Solve the following exact differential equations:

(a) y2 + 2 x y - ^  = ^ ,
d y 1
dx x 2’

(b) xy2 + x2v = sec2 2x, dx

dy ,(d) (1 — 2x) ey - -----2ey = sec2 x,
dx

. , , x dy(c) In y H----— = sec x tan x,
y dx

ds dr
(e) 21 es + t2 es — = sin t + t cos t, (f) e" r2 + 2r e“ —- = — cosec2 u. 

di du

2 Find, by inspection, the integrating factors required to make the following 
differential equations into exact equations, and solve them:

(a) sin y + -x  cos y

1
x

^  = 3 
dx ’ < b ) £ + i - i ,dx x x

^  =  2e*2 
dx

... * , ,d x  (d) y e + y2 e — 
dy

= 1.

3 Solve the following first order linear equations:

(a) 2y = e 2x cos x, (b)
1 ds 
t d t

- 25,

(c) (2x + l)y - e “x2 = 0, (d)
dr
"~r 4" 2r cot 6 = cosec2 6, 
da

(e)
dr

r tan 6 = cos 6, (f)
dy ~ COS X

d0 +
x - f + 2 y

dx 5X

(g)
dy 

X dx
X

y =
X  - V (h) 2 x % -= *dx

- y  + 3,

(i) sin x dy ,
d^ + 3;~

sin2 x, (j) 1+m

2 ) =  2 .
dx x — 2

4 Solve the following homogeneous equations:
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(e) (x2 + y2) ^  = xy,dx

d y
(g) x f a = y  + V(*2 -  y2)' 

d v
(i) y -f- = 2x + y, 

dx

(f) ( 4 x - y ) ^ - = 4 x ,  
dx

d y
(h) x —  = x + 2y, 

dx

(j) x 2^ = x 2 + y 2. 
dx

dy x — y 4-2
*5 Solve the equation —  = ----------- , reducing it to a homogeneous equation

dx x + y

by the change of variables x = X  — 1, y=Y-\-  1. ^Note that this implies

a change of origin to ( — 1, 1) the point of intersection of the straight lines 
x — y 4- 2 = 0 and x + y = 0; see §6.5. The new axes are parallel to the old so 
dy dT 
dx d2f

6 Solve the following equations by the method indicated in No. 5:

< » * -
dy

, -  , ,, (b) 2y —  = x + y -  3.dx x + y — 5 dx

dy y — x + 2
*7 State why the equation —  = ---------- - may not be reduced to a homo-

dx y — x — 4
geneous equation by the method of No. 5. Solve it by the change of variable
y — x = z.

8 Solve the following equations by the method indicated in No. 7:

( a ) d , _ 2 ,  + , - 2 dy
, -  o , , i - (b) (x + y) —  = x + y -  2.dx 2x +  y + l  dx

9 Solve the following differential equations:

(a) (x + 3 ) ^ - 2 y  = (x + 3)3,
dx

(b) x2 ^  = x2 -  xy + y2, 
dx
dy

dy
(c) -— l-(y + 3) cot x =  e cosec x, 

dx

dy 1
(d) sin y +  (x + 3) cos y —  =

dx x

dy
(e) (x -  4y + 2) -f- = x + y -  3,

dx

(f) ^  = y + 2 + e2x(x + 1),
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(g) 2 y In y + x
dy
dx

y .— cot X ,
X

(h) 2 tan 0 —  + (2r + 3) tan2 0 + 2r = 0, 
d0

d y
(l) x(y -  x) —- = y(x + y), 

dx

dy x - y +  1
0 ) t  = --------T“i-dx x — y + 3

10 Find the particular solutions of the following differential equations which 
satisfy the given conditions:

(a) (x + 1) ^  — 3y = (x + l)4, y — 16 when x = 1,
dx

du n
(b) —  + u cot 0 — 2 cos 0, u = 3 when 0 = —,

d0 2

Li y
(c) (x + y) —- = x — y, y = — 2 when x =  3,

dx

(d) (x2 — y2) ^  = xy, y =  2 when x = 4,dx

dx
(e) x — 1 + —  = e _i i -2, x = = l w h e n i = l .

di

Second order equations reducible to first order form
14.7 In this section and the next, we shall consider some rather special second 
order differential equations which can be reduced to first order form. In the 
following chapter we shall tackle more general second order differential 
equations.

d2yTo the form — T = f(x) we may apply direct integration twice, as also to an 
dx

equation such as

d2y
dx2

= 2x

which is exact; giving

x r ^ = x 2 + A and y = - x 2 + ,4 In x + B 
dx 2
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Of wide application to other forms of second order equations is the 
dp

substitution —  = p, from which we obtain 
dx

d2y dp dp d y dp
dx2 dx dy dx ^  dy

Thus
d2y dp

(a) the equation = f(y) becomes p —  = f(y),

d2y dy
dy

(b) an equation containing —-r-, — , y but with x absent, becomes a first order
dx dx

. . dpequation containing p — , p, y, 
dy

d2y dy
(c) an equation containing ——j,  — , x but with y absent, becomes a first order

dx dx
. . dpequation containing — , p, x.

dx

d2y dy
Example 6 Solve (1 + x2) — j  = 2x — .

dx2 dx

, dy , . , d2y dpLet —  = p, and since y is absent, write — 5- as — . 
dx dx2 J "dx

(1+ x 2)
dp
dx

= 2 xp

Separating the variables,

-d p =  [ T~ir~2 dx
J P J 1 + X

In p = In {C(l + x 2)}

■ P =
dy
dx

= C + Cx2

y = C x + jC x 3 + B

Therefore, writing 3A for C, the general solution is 

y = A x3 + 3 Ax + B (1)

This equation contains two arbitrary constants A and B. When we considered

the solution o f ^  =  2x in §14.1, we saw that the solution y = x2 + c represented dx
a set of curves (see Fig. 14.2), and that if we were given some further information, 
for instance a point through which a particular curve passes, we could find the
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value of c which gives the equation of this particular solution. The solution (1) 
above represents a set of cubic curves. To identify one particular member of this 
set, we must be given sufficient information to find the value§ of both constants. 
This could be done either by giving two points through which the curve passes, 
or by giving one point and the gradient at that point (or indeed at some other 
point). For example if we are told that the curve passes through (0, —5) and 
(1, 3), then substituting these coordinates into (1), we obtain

— 5 = <4x03 + 3 x < 4 x 0  + B 
.'. B=  - 5

and

3 = /f x l 3 + 3 x y f x l + 5  
.'. 4A + B = 3 

4A = S 
<4 = 2

So the particular member of the set of curves represented by (1) which passes 
through the two given points is

y = 2x3 + 6x — 5

d2y d2y
Qu. 19 Solve: (a) x — = 2, (b) — r- = x cos x,

dx2 dx2

(c) x
d2y
dx2 + ^  = 9*’,dx

d2 v
( d ) ' ï ? +

dy
dx

2

= COS X.

Qu. 20 Solve: (a) dy
dx

| , giving the general solution.

d2y
(b) (2x — 1) — 2 —  = 0, given that when x = 0,

dx
dy 
dx

dy
y — 2 and —  = 3. dx

dy d2y 2
Qu. 21 Write the differential equation 2 - — h x — = —, by means of the

dx dx2
dy

substitution —  = p, as a differential equation linear in p, and proceed as in § 14.4.
dx

Simple harmonic motion
14.8 The substitutions mentioned in §14.7 arise in a less abstract form in 
mechanics. With the usual notation, the velocity

dx f  . , dy\
v = —  compare with p = —

di V Ax)



274 Pure Mathematics 2 

and the acceleration is

14.8

d2x
di2

dv dr dx dv
At dx dt dx

The reader may already appreciate that in dealing with variable forces, 
Newton’s Second Law of Motion may be usefully written

r, dr 
p - m d?

dr

if P is a function of t

or P = mv if P is a function of x 
dx

A particular case of motion under the action of a force varying with 
displacement is Simple Harmonic Motion (S.H.M.).

Definition

A body moves in Simple Harmonic Motion in a straight line when its acceleration is 
proportional to its distance from a given point on the line, and is directed always 
towards that point.

Before studying this section the reader should have some knowledge of this 
topic. We shall not confine our attention only to finding the general solution of 
the typical S.H.M. equation

d2x -—— = - n zx 
di2

We must discuss in some detail the constants which arise in the solution. Now 
the constant n in the above equation is determined by the physical situation 
which gives rise to S.H.M. For example, if a body of given mass hangs at rest 
from a given spring attached to a fixed point, and is then displaced vertically and 
released, it will oscillate in S.H.M.; in this case the mass of the body, and the 
natural length and elasticity of the spring, together determine the constant n, 
and the periodic time In/n. But n must not be confused with the two arbitrary 
constants which will arise in the general solution of the above second order 
differential equation.

(a) Quite independent of the periodic time is an arbitrary amplitude a, the 
maximum displacement from the centre of oscillation (dependent in the 
above example upon how far we displace the body from its equilibrium 
position before releasing it).

(b) The general solution of the S.H.M. equation will give the displacement x 
from the centre of oscillation at time t; here is the second arbitrary choice, 
the instant at which we take t to be zero.

Example 7
d2x 
dt2

Find the general solution of the Simple Harmonic Motion equation

= —MX.
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, . d2x dt)
is absent, we write — =- as v — .

di2 dx

— n2x 

\v 2 = —\n 2x 2 + c

[At this stage we prefer to express the arbitrary c in terms of the arbitrary 
amplitude a.]

If the amplitude is a, v = 0 when x = a,

0 = —jn 2a2 + c whence c =  jn 2a2 

v2 = n2(a2 — x 2)

We must now deal separately with the positive and negative velocities which 
occur in any position (other than the extreme positions when x = + a). Thus

— n^/(a2 — x2)

[Here it is preferable to use the change of variable x = a cos u on the L.H.S. of 
each equation, rather than the more usual x =  a sin u, since it enables one to 
handle more easily the remaining arbitrary constant.]

The solution of these equations may be written

X
— cos — = nt + £ 

a
and -1 xcos — = nt + £, 

a

x = a cos ( — ni — £') and x  =  a cos (nt + £).

But cos ( — 0) = cos 6, so we may write

x = a cos (nt + e') and x = a cos (nt + e)

for motion in the

positive and negative

directions respectively.
At an extreme position when x = a, and t = t t say, the motion is changing 

from positive to negative direction, both solutions are valid, and

cos (ntl + e') =  cos (nti + e) = 1 
.'. nti + e' and ntt + e are multiples of 2n 
.'. e' = s + 2kn (where k is an integer or zero)

dx , , dx
* ) or 3 7 "

Separating the variables, 

1
+

Vfa2 - ;
dx = n di or

Since t 

dt>



Hence x = a cos (nt + e') = a cos (nt + e + 2kn) = a cos (nt + e). Therefore the 
motion is fully defined by the general solution

x  = a cos (nt + a) • (1)
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Qu. 22 Write down the general solutions of the following equations:

, , d2x
«  j jy  = -4 * .

d2v
(b) dx^ + 9y = 0,

d2y( c ) ^ = - 16*.

Qu. 23 In Example 7 what integrating factor will enable you to obtain the first 
order equation

df /

Qu. 24 A Simple Harmonic Motion of amplitude 2 cm has the equation
d2x „
-j^- = — fx. Write down the solution of this equation given that x = 2 when

t = 0. Find expressions for —- (a) in terms of x, (b) in terms of t.
at

Qu. 25 What special form is taken by the general solution x = a cos (nt + e) if 
the motion is timed (a) from an extreme position (i.e. x = a when t — 0), (b) from 
the centre of oscillation?

The reader is no doubt familiar with the fact that, if a radius OP of a circle 
centre O radius a rotates about O with constant angular velocity n rad/sec, and 
Q is the projection of P on a diameter AB, Q moves with S.H.M. along AB.

Let us take i = 0 at Qu where Z.AOP! = s  radians, and suppose that Q 
moves directly to position Q 2 in time t. Then Z.P1O P2 = ni radians, and 
L AOP2 = (nt + e) radians (Fig. 14.3). Thus if x is the displacement of Q from O 
at time t,

x = a cos (nt + e)

When t = 0, x = a cos e, and so we see the significance of this constant e, which 
is called the initial phase.

Figure 14.3



Qu. 26 What does the general solution x = a cos (nt + s) become if the initial 
phase is (a) 0, (b) —n/21 Illustrate each case with a sketch.
Qu. 27 A Simple Harmonic Motion has amplitude 3 mm. If t = 0 when the 
body is +1.5 mm from the centre of oscillation, what is the initial phase?

The two arbitrary constants which appear in the general solution (1) are the 
amplitude a, and the initial phase e. However, the general solution is often given 
in a form in which these are not explicitly stated.

Expanding the R.H.S. of (1)

x = a cos nt cos e — a sin nt sin e
or x = A cos nt + B sin nt (2)

where

A = a cos £ and B = — a sin e 

In this form we see that the amplitude 

a = J (A 2 + B2) 

and the initial phase

e=lan" ( - + )

Differential equations 277

d xReduction to the form t t  = — n2xat
14.9 In tackling a problem on S.H.M. the reader may inadvertently choose to 
measure displacement from a point other than the centre of oscillation. How an 
equation thus obtained may be reduced to the standard form is illustrated in the 
following example.

Example 8
d2x

Solve — + 9x — 18 = 0. 
dt2

This equation may be written

d2x 
dt2

7 T = —9 (x -2 )

dx du
Let x — 2 = u, then —  = —  and 

di dt

d2u 
’ '• d t2 = —9 u

d 2u 
dt2’

u =  a cos (3t +  e)

The general solution of this equation is



x = a cos (3i + e) +  2

Qu. 28 Solve the following differential equations:

d2y . . , d29
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But x = u + 2,

14.9

(a) J ? + 4,  + 4 = °, (b) ^ + 2 0 - 6  = 0,
H 2 Y

( 0 ^  + | t = - 1.

Exercise 14c
1 Solve the following differential equations:

d 2y 
dx2(a) x X 3  -  1 = °>

d 2 y
(b) cos 9 — ÿ — sin 6 —  = cos 9, 

d 9
&

d 9

d 2 y
<c) e“a ? - 2'

x d x  x  dx

d2y
(d) (2x + 1) + 2 ^  = 0,

dy
dx

d y
2 Use the substitution —  = p to solve the following differential equations: 

dx

<»>

,c ) ( 1 + ï ! ) 0  +  2^ , o .

d2s 1 (  ds
3 Solve the differential equation —-=■ H---— =0, using the substitution

dt 10 \d f /
ds
dt

d2s _ _
= v, and writing (a) as —, (b) as v

dy

dr
d t’

dr 
' ds*

4 Use the substitution —  = p to write the following as differential equations 
dx

linear in p, and proceed as in §14.5:

. , d2y dy t .., d2y 1 dy
( a ) d ^  +  c o t x d^ =  1’ ( b ) d ^  +  ^ T 2 d i  =  x’

(c) x
d 2y dy

+ 2 = x In x.

5 Find the particular solution of the differential equation
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dy
which satisfies the condition that y and —  are both zero when x = 1.

dx

6 Write down the general solution of each of the following differential
equations:

d2s
(a) -r^ = -2 5 s , 

at ( b ) g  + lF  =  0,

, v  ̂ d2s d2y
( d ) 4 ^  + 3y =  0.

7 Find the solution of the differential equation 

d2s
1 6 -^4 -9 5  = 0 

di2

given that s = 4 and — = 0 when t = 0. 
di

8 A body moves in a straight line so that when it is x cm from a point O on the 
line its acceleration is 9x cm/s2 towards O. Write down the differential 
equation which describes this motion, and then present a complete solution 
of it (see Example 7) given that the body is at rest when 2 cm from O, and its 
distance from O is 4-^/3 cm at the instant from which time is measured.

9 A body moves in S.H.M. of amplitude 4 cm and has initial phase — rc/2 s. It 
takes 1 s to travel 2 cm from the centre of oscillation, O. What was its initial 
position, and what is its periodic time?

10 A body moving in S.H.M. is timed from an extreme position, and is found to 
take 2 s to reach a point mid-way between the centre of oscillation and the 
other end of its path. State the initial phase, and calculate the periodic time.

11 A body moves in a straight line so that it is x m from a fixed point on the line 
at time t s, where x = cos 214- sin 21. Write this in the form x = a cos (nt + e) 
and state the amplitude, initial phase, and periodic time of the motion.

12 Repeat No. 11 for x = 3 cos i t  — 4 sin it, giving the initial phase correct to 
three significant figures.

13 The two simple harmonic motions defined by x = a cos (nt + £j) and 
x = a cos (nt 4- e2) are said to have a phase difference of — e2. Find the 
phase difference between the following pairs of S.H.M.:
(a) x = a cos nt, x = a sin nt,

(b) x = 2 cos ^3t 4- x = ^ (c o s  3t — sin 3f),

3 j 2 ' 3 j2
(c) x = —y -  (cos nt — sin nt), x = —̂ — (cos nt + sin nt),

(d) x = a sin nt, x = — a sin nt,
(e) x = 5 cos nt — 5^/3 sin nt, x = 5^/2 cos nt 4- 5^/2 sin nt.
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14 Solve the following differential equations:

d 2y . ... ... _ d20
dx2 

d2s 
di2

given that in (d), x = — 1 when t = 0, and x = — 3 when t = n/4.
15 Solve the following differential equations:

d2y „dy 
dx

Ex 14c

^ 4 = - 4 ( ^  + 3),

(c) 3 ^ 7 2 + 4 t = 1 >

(b) 2 ^ 2 + 9 0  =  3, 

d2x
(d) -j—2—f 4x + 8 = 0. dt2

( a ) d ^ - 2 ^ ■2 = 0, ^  d2y . dy
(b) dx2

d2y dy
<«> o y - n , 2

dx

d2y
dx2

d2x
( c )  1 a  +  *  =  ° .dt2 

d y ''2 
dx

Exercise 14d (Miscellaneous)
Solve the differential equations in Nos. 1—14.

dx
1 cos t —  = x. 

dr

i  d2y 3 sec x — = e .
dx1

,  dy 22 x ------y =  x In x.
dx

4 (1 + cos 0) = (1 — cos 0)
d0
dr'

5 In (y + 1) +

A y

1x dy 
y + 1 dx x(x +  1)

d2y
dx26 3 ~j~ 2 + 4y = 0.

7 (2x — 1) -p- + 8y = 4(2x — l)“ 2. 
dx

dv
9 u —— = In u. 

du

8),£y + (>y_3+,o.

d2x
dr2
d2y

10 9 -yY  + 4x = 0, given that x =  2 when t = 0, and x = — 4 when t = n.

dx2
d y \ dy

11 y + 25 = —  ) , given that —  = 4 when y = 1, and y = |  when x = 0.
dx / dx

d2s d2s
12 —j  + 9(s — 1) =  0, given that s = 2 when t = 0, and —, = —9J3  when

dr dr
r = k/6.

13 Solve the differential equation

dyx~A + 2 y =  e* 
dx

(x > 0)

given that y = 1 when x = 1. (C)
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14 Find the solution of the differential equation 

d y
dx

= xy In x

which satisfies the initial conditions x = 1, y =  1, giving In y in terms of x.
(O & C)

15 Find the solution of the differential equation

2x dyye —  = x 
dx

which satisfies the boundary condition y =  2 when x = 0; give y in terms of x.
(O &C)

16 (a) Find the general solution of the differential equation

^  + 2y = c2x 
dx

Find also the particular solution for which y =  j  when x = 0.
dy

(b) Given that y = Aemx + Be mx, where A, B and m are constants, find —
dx

d2y
and - p H e n c e  form a differential equation relating y and x which does

not contain the constants A and B.
17 Prove that if y = f(x) satisfies the differential equation

dy -
t o  =  - 2 x y -

( L )

then so does y =  kf(x), where k is any real number.
Find the equation of the solution curve through the point (0,1) and sketch 

a graph showing several members of the family of solutions.
(O & C: SMP)

18 Find the solution of the differential equation

dy -- — f- y cot x =  cos 3x, 
dx

for which y = 1, when x = ti/6. (JMB)
19 The temperature y degrees of a body, t minutes after being placed in a certain 

room, satisfies the differential equation

2y dy 
dr2 di

dy
By using the substitution z = — , find y in terms of t, given that y = 63 when

dt
t = 0 and y =  36 when t =  6 In 4.

Find after how many minutes the rate of cooling of the body will have 
fallen below one degree per minute, giving your answer correct to the nearest 
minute. How cool does the body get? (O & C)
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20 A particle moves along the x-axis so that its displacement x from the origin 
O at time t satisfies the differential equation

d2x
—t  +  4x = k
d r

where k is a constant. At times t = 0, ¿n, jiz the values of x are 8, 9, 2 units 
respectively. Find the value of k, and find x in terms of t.

Find the greatest speed of the particle, 
dx

Give a sketch of —  against t for values of t in the range 0 < t <  n. 
at

If the motion starts at t = 0, calculate the times at which the particle is
(a) first at rest, (b) next moving in the positive direction of the x-axis with its 
initial speed.

(The general solution of the differential equation may be quoted.)
(O & C)

21 In established forest fires, the proportion of the total area of the forest which 
has been destroyed is denoted by x, and the rate of change of x with respect 
to time, t hours, is called the destruction rate. Investigations show that the 
destruction rate is directly proportional to the product of x and (1 — x). A 
particular fire is initially noticed when one half of the forest is destroyed, and 
it is found that the destruction rate at this time is such that, if it remained 
constant thereafter, the forest would be destroyed completely in a further 
24 hours. Show that 

dx
12-  = x(1 - x )

and deduce that approximately 73% of the forest is destroyed 12 hours after 
it is first noticed. (L)

22 A chemical substance X  decays, at a rate equal to twice the quantity of X
dx

present, so that —  = — 2x where x is the quantity of X  present at time t. Given 
dt

that initially x = a, find an expression for x in terms of a and t.
The quantity, y, of another substance Y changes so that its rate of increase 

is equal to 2ae~2t — jy. Given that initially y = 0, find an expression for y at 
time t. (L)

23 At any instant, a spherical meteorite is gaining mass because of two effects:
(a) mass is condensing onto it at a rate which is proportional to the surface 
area of the meteorite at that instant, (b) the gravitational field of the 
meteorite attracts mass onto itself, the rate being proportional to the mass of 
the meteorite mass at that instant. Assuming that the two effects can be 
added together and that the meteorite remains spherical and of constant 
density, show that the radius r at time t satisfies the differential equation 
dr
—  = A + Br, where A and B are constants. If r = r0 at t =  0, show that 
di

r =  r0eB' + ^ ( e B' - l ) (L)



Chapter 15

Second order linear differential 
equations with constant coefficients
Introduction; the auxiliary quadratic equation
15.1 This chapter title may seem a rather long and forbidding one but it is not 
as complicated as it may seem at first reading. ‘Second order’ means that the 
second derivative will appear, but not derivatives of higher order; ‘linear’ means 
that none of the terms containing y will be squared, or cubed, or raised to any 
power but one; and ‘with constant coefficients’ means that the coefficients will be 
constants (not variables). In other words we shall be concerned with equations 
of the form

d2y
dx2

4- cy = 0

where a, b, c e IR, and a #  0.
At first, the R.H.S. of the equation will always be zero, but later we shall 

consider equations in which the 0 is replaced by a function of x.
We shall see that the nature of the solution will depend upon the relative 

magnitudes of the constants a, b and c, and we shall frequently need to refer to 
the auxiliary quadratic equation (A.Q.E. for short)

am2 + bm + c = 0

The general solution of the A.Q.E. is

— b ± J (b 2 — 4ac) 
m=  2a

As we know (see Book 1, §10.2) there are three cases which can arise from this:

(a) if b2 > 4ac, the A.Q.E. has two real, distinct roots,
(b) if b2 = 4ac, the A.Q.E. has identical, real roots,
(c) if b2 < 4ac, the A.Q.E. has a pair of conjugate complex roots.

Each case gives rise to a distinct type of solution to the original differential
equation, and we shall consider each of these in turn. But first, note that we have

283
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already solved one important type of second order differential equation, namely 
the S.H.M. equation

d 2y ,

The A.Q.E. for this is 

m2 + n2 =  0 

which has roots 

m = ±in

In other words it is an example of case (c) above, and we already know from 
§14.8 that one form of the general solution of this equation is

y = A cos nx + B sin nx

Second order differential equations frequently arise in mechanics and physics; 
see, for example, Exercise 15b, Nos. 15-21.

Type I — the A.Q.E. with real, distinct roots
15.2 Suppose the roots of the A.Q.E. are a and /?. It can then be written

m2 — (a + (i)m + a/? = 0

and the corresponding differential equation is

So far, we appear to have made the equation even more complicated than it was 
when we started, but now we can simplify it by substituting

This differential equation can be rearranged so that it reads

and this, in turn, can be written

( 1)

The differential equation can then be written

dx (2)

Not only is this simpler, but it is a first order differential equation, and we already 
have a large battery of techniques for solving first order equations.
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The solution of (2) is 

v = Ceax (see §14.2)

where C is an arbitrary constant. Substituting this in equation (1) gives 

d y

285

dx - P y  =  C e *

Once again we have a first order differential equation, and this one can be solved 
by using the integrating factor ei_^dx = e~Px. Multiplying through by this gives

e - p x dy
dx

— /? e _/îx y =

and integrating, this becomes

e~fix y = ——— e(*_<,)x + B 
a - P

where B is an arbitrary constant. Multiplying through by e^x, we have

C
y = ----- - exx +  BePx

a — p

Since C was an arbitrary constant, there is nothing to be gained from writing 
C/(a — P), and so we replace this by another arbitrary constant A. Hence the 
general solution is

y = Ae*x + Befix

where a and [1 are the (real) roots of the A.Q.E.

Example 1 Solve the differential equation

d 2y ^ dy 
dx2 dx 15y = 0

dy
Find the values of the arbitrary constants such that when x = 0, y = 5 and —  = 23.

dx

The A.Q.E. is

m2 + 2 m - 15 =  0 

Hence

(m + 5 )(m — 3) = 0 

.'. m = — 5 or +3

Since the roots are real and distinct, this is a ‘Type T differential equation and its 
general solution is

y = Ae Sx + Be + 3x
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When x = 0, y = 5, so

15.2

5 = A + B

dy
Also, when x = 0, —  = 23, and since 

dx
dy
dx

= — 5Ae 5* + 3Be3x, we have

23= - 5 A  + 3B

Solving this pair of simultaneous equations for A and B gives A = — 1, B = 6. 
Hence the solution which fits the given conditions is

y = — e -5* +  6e3x

dy
In this example we were given the values of y and — , when x = 0. When

dx
differential equations are formed in applied mathematics it is quite common for 
the independent variable to represent t, the time, and frequently the values of the 
dependent variable, and its derivative, will be given for t = 0, since these 
determine the initial state of the system; consequently these values are usually 
called the initial conditions.

Qu. 1 Find the general solutions of the following differential equations:

d2y 
dx2

cPy 
dx2

(a ) =

d2y

d2y
(b>5?

dy12 -^  + 20y = 0, 
dx

dy
dx(C) 2 d ^ - 5 - “ 3j; = 0’ (d) 15-J- ^ - 8 ^ : + y  = 0.

dy
dx

The reader should not assume that all differential equations are expressed in 
terms of x (for the independent variable) and y (for the dependent variable). In 
Qu. 2, z and t will be used.

Qu- 2 Find the general solution of the differential equations:

(a)
cPz
dt2

d2z _
-  25z = 0, (b) 6 — -----z = 0.

d r
dz
dt

Qu- 3 Find the solutions of the differential equations in Qu. 2 which satisfy the
dz

initial conditions, z = 0, and — = 10, when t = 0.
dt

Qu. 4 Solve the differential equation f"(x) — 6f'(x) +  5f(x) =  0, given that 
f(0) = 1 and f'(0) = 9.

Type II — the A.Q.E. with identical roots
15.3 In this type, the A.Q.E. can be written in the form 

m2 — 2 pm + p2 = 0 

This can be factorised to give
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(m -  p)2 = 0

and so the solution of the A.Q.E. is m = p. The corresponding differential 
equation is

a y
d.x2

_ dy , 
2p~ + p2y = 0

Before we tackle this, notice the following very useful transformation. If we write

y = epx v

where v is a function of x, and p is a constant, then 

i> = e ~ pxy

differentiating once,

di>
dx

e
dy
dx

— pe pxy

and differentiating again,

d2v
dx"

= e

= e

d2y
dx2

d2y
dx2

2pe px ^  + p2e pxy 
dx

2
Hence

d2y „ dy ,
a í  ~2p-j~  + p2y =  epx dx2 dx

d2u
dx2

Using this transformation, the Type II second order differential equation

d2y dy , 
d ^ - 2pd x + P y  = °

can be written

epx d2v
dx2

=  0

d2r
dx2

=  0

Integrating once gives

do
dx

A

and integrating again,

v = Ax +  B
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where A and B are arbitrary constants. If we now replace v by e _pxy, we have

e pxy = Ax + B 
y =  (Ax + B)epx

This is the general solution of the Type II equation.

Example 2 Find the general solution of the differential equation 

d2u . du
4 d ir  ~  2 d(j + 9 m =  0

The A.Q.E. is

4 m2 — 12 m + 9 = 0 
(2m -  3)2 = 0 

2m = 3 
m = 3/2

The A.Q.E. has real identical roots, so this is a Type II differential equation, and 
its general solution is

u = e(3/2)8 {Ad + B)

Q u.5 Solve the differential equations:

d2V dV
(a) d ^ + 6 d r + 9 F = 0 ’

d2r dr
(b) 100 —y  — 60 — + 9r = 0. 

dt2 di

Q u.6 Find the solution of the differential equation

d2v dy 
dxI ~ 2 d x + y = ° 

given that when x = 0, y = 0 and when x = 1, y = e.

Type III — the A.Q.E. with complex roots
15.4 Suppose the roots of the A.Q.E. are p ±  iq, where p and q e  R. The sum of 
the roots is

(P + i<?) + (P -  k )  =  2 P 
and the product of the roots is

(P  + i<2)(P -  k)  = P 2 -  i V  = P 2 + <?2 
so the A.Q.E. can be written 

m2 — 2 pm + (p2 + q2) = 0 

and the corresponding differential equation is



Using the same transformation as that used in the previous section, i.e. putting 
y = epxV, we can write the equation

d2r ,
epx — T + q2 epxv = 0 

dx
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and dividing through by epx, we have

d2v , 
d ? + i ' - °

This, however, is an equation which the reader should recognise — it is the 
S.H.M. equation, and we know that its general solution can be written

v = A cos qx + B sin qx

Returning to the original variable y, gives

e~pxy = A cos qx + B sin qx 
y = epx(A cos qx + B sin qx)

This is the general solution of the Type III differential equation.

Example 3 Solve the differential equation

d2x „ dx
——j—h 6 —— 1 Ox = 0dt2 di

dx
given the initial conditions, x = 0 and —  =

di
when t = 0.

The A.Q.E. is m2 + 6m + 10 = 0. 
Solving by the formula,

- 6 ±  J (3 6 -4 0 )m = -------- -------------
2

- 6 ± y /( -4 )
2

= i ( - 6 ± 2 i )

= — 3 + i

Since the roots are complex this is a Type III differential equation, and its 
general solution is

x = e 3,(A cos t + B sin t)

dx
The initial conditions are x = 0 and —-  = 1, when t = 0, so

dt

0 = (A cos 0 + B sin 0) 
A = 0



290 Pure Mathematics 2 

Hence

15.4

x = e 31 B sin t

and

dx
—  = Be~31 cos f — 3Be“ 31 sin t 
d t

dx
Putting t = 0, and —  = 1, gives 

dt

1 = B cos 0 
B=  1

Hence the solution which fits the initial conditions is 

x = e~3' sin t

Qu.7 Find the general solutions of the differential equations:

d2 v - ,
(a) ^ - 2 ^ + 50y = 0,,dy

dx

d2F
(b) — r- + 6 —— h 34F = 0, 

dr2 J ‘
dK
dt

d2r
'd t2

(c) 36 —ï + r = 0.

Qu. 8 Find the solutions to the equations in Qu. 7, which satisfy the 
conditions:

dv
(a) when x = 0, y = 0 and —  = 35,

dx
dV

(b) when t = 0, V = 1 and —— = 7,
dt

(c) when t = n, r = 1, and when t = 3tt, r = 0.

Summary
15.5 To solve a differential equation of the form

r d2>
dx2

+ cy = 0

write down its auxiliary quadratic equation 

am2 + bm + c =  0

and solve it. The general solution of the differential equation then takes one of 
the three forms shown in the table on the facing page.
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type nature of the roots 
of the A.Q.E.

general solution of the 
differential equation

I real, distinct roots, 
m = a or ft

y = Aeax + Bepx

II real, identical roots, 
m = p

y = epx{Ax + B)

III complex roots, 
m = p ±  iq

y = epx(A cos qx + B sin gx)

Since solving a second order differential inevitably entails integrating twice, 
the general solution of such an equation must include two arbitrary constants.

Example 4 Solve the differential equations

d2y d2y d2y
(a) ^ 3  -  4y =

dy
dx(c) + 2 ^  + 5y = 0.

,dyIn each case find the solution for which y = 0 and —  = 2, when x  =  0 and sketch its
ax

graph.

(To save space, some of the simpler steps in the working are left to the reader.)

d2y
( a )  ^ - 4y = °.

The A.Q.E. is

m2 — 4 = 0 
.'. m = ±2

Hence the general solution is

y = Ae2x + Be~2x

Putting in the initial conditions gives A = j, B = — hence the solution which 
fits the initial conditions is

y = i(e2* - e - 2x)

The sketch of this solution is shown in Fig. 15.1.

d2v
(b )  ^  + 4y =  0.

This is the S.H.M. equation; its general solution is 

y =  A sin 2x + B cos 2x 

and putting in the initial conditions gives 

y = sin 2x
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Figure 15.1

Figure 15.2

The sketch of this solution is shown in Fig. 15.2.

(c)
d2y y
dx2 dx

+ 5y = 0.

The A.Q.E. is m1 + 2m + 5 = 0, and the solution of this is 

m = — 1 + 2i

consequently the general solution is 

y = e~x(A sin 2x + B cos 2x) 

Putting x = 0, y = 0, gives B = 0.

.'. y = Ae~x sin 2x



and
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dy—  = —Ae x sin 2x + 2Ae x cos 2x 
dx

require is

y = e~x sin 2x

The solution is shown in Fig. 15.3. (When x is positive, the exponential factor 
will soon overwhelm sin 2x, so y quickly becomes negligible, for example when 
x = 5, y = -0.004. For negative values of x, y still oscillates, but the amplitude of 
the oscillation increases enormously, due to the exponential factor. For example, 
when x = — 5, y = 80.7; it is not possible to show this in Fig. 15.3.)

VA

V

Figure 15.3

Exercise 15a
Find the general solutions of the following differential equations.
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d2 v dv11 - 4 + 4 / + 2 0 y  = 0. 
dx dx

d^y d ^  dy

dx3 dx2 dx

d2r
12 1 0 0 -^ + r  = 0. 

di2

dvHint: put —  = v.
dx

14
d 2y dy

— 4 —  + 4y = 8. [Hint: put y = z + 2.] 

-  ... dx
15 - ^ 2  + 2 —  + 2x = 1. [Hint: put x =  u + ^.]

dx2

d2x

In Nos. 16-20, find the solutions which fit the conditions given.

d2v dv dv16 — r- - 5 - ---6y = 0. When x = 0, y = 5 and —  = 16.
J "2 dx '  dxdx2

d2«
dt2

17 -j-j + 9u = 0. When t = 0, u = 4, and, when t = n/6, u = 5.

18 —j  — 12 — + 36r = 0. When t = 0, r = 1 and when t = 1, r = 0. 
di2 dt

d2z dz
19 — + \ z  = 0. When t =  0, z = 4 and — = 0.

dt2 dt

d2u du
20 — j  = u. When 9 = 0, u = 1 and —  = 1.

d ir d 9

Qu.9 Solve Nos. 8 and 10 of Exercise 15a by integrating each term and verify 
that the same solutions are obtained by this method.

The differential equation a ^ + A ^  +  o j  =  f W

15.6 In the preceding sections we have found methods for solving any 
differential equation of the form

d2y
dx2

+ cy = 0

We must now consider the more general second order differential equation, with 
constant coefficients, in which the R.H.S. of the equation is not zero. We shall 
start by considering the reverse problem, that is, given a function of x containing 
two arbitrary constants, can we find the second order differential equation 
which this function satisfies for all values of the two arbitrary constants?

Consider the function

y = Ae2x + Be3x + 5x + 3 (1)
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The first and second derivatives of this are 

d y-4  = 2Ae2x + 3 Be3* + 5 
ax

and

d 2y 
dx2

= 4Ae2x + 9 Be3*

Eliminating B from (1) and (2) gives 

dv ,
3 y — — = Ae2x + 15x + 4 

dx

and eliminating B from (1) and (3) gives 

d2 v ,9y -  - 4  = 5Ae2x + 45x + 27 
dx

Eliminating A from these equations gives

9y -  0  ) = 3°x -  7

(2)

(3)
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and hence

d2y d y
dx2 dx

+ 6 y = 30x — 7 (4)

So (4) is the differential equation which is satisfied by the function (1) for all 
values of the arbitrary constants. We say that (1) is the general solution of the 
differential equation (4).

Qu. 10 Eliminate the constants A and B from y = A sin 4x + B cos 4x + e2* 
and verify that y satisfies the differential equation

d2y ,
- 4  + 16y = 20e2* 
dx

The form of the L.H.S. of the differential equation (4) above, is not very 
surprising, because the terms in (1) which contain the arbitrary constants A and 
B, namely Ae2x + Be3*, make up the solution of the equation

d 2y  d y
dx2 dx

+ 6y = 0 (5)

This suggests that if we wish to find the general solution of an equation like (4), 
we should first solve the equation obtained by replacing the R.H.S. by zero, i.e. 
equation (5) above, and then add to that solution some extra terms to produce 
the terms of f(x). In the example above, the extra terms needed were 5x + 3. The 
art of choosing these extra terms can be developed with practice, but a 
systematic method for producing them is beyond the scope of this book.



296 Pure Mathematics 2 15.6

The general solution of an equation such as (4), then, will consist of two parts; 
the solution of the equation formed by replacing f(x) by zero (this part of the 
general solution is called the complementary function) (and the extra terms 
required to produce f(x) (this part is called the particular integral).

In the following sections we shall consider how to find the particular integral 
when f(x) is (a) a polynomial, (b) an exponential function and (c) a trigonomet
rical function.

f(jr) is a polynomial
15.7 Consider the differential equation

d2y /| dy 
dx2 dx

+ 3y = 9x + 6 (1)

The first stage in the solution is to find the complementary function by 
considering

d2y /| dy 
dx2 dx

+ 3y = 0

The A.Q.E. is

m2 — Am+ 3 = 0 
(m — 3 )(m — 1) = 0

m = 3 or 1

and so the complementary function is

y = Ae3* + Be*

The R.H.S. of the equation we are solving is 9x -I- 6, and from our experience in 
§15.6, it would seem reasonable to assume that we shall need some extra terms of 
the form px + q. If we substitute y = px + q into equation (1) we obtain

0 — 4p + 3 (px + q) = 9x + 6

Equating the coefficients of x gives 3p = 9, and equating the constant terms gives 
3q — 4p = 6. From these equations we obtain

P = 3
and

3 q -  12 = 6 
.-. 3<y =18 
.. q = 6

Hence the particular integral is 3x + 6, and so the general solution of the 
differential equation (1) is

y = Ae3* + Be* + 3x + 6



In general, if f(x) is a polynomial of degree n, the ‘trial solution’ for the particular 
integral should also be a polynomial of degree n.

Qu. 11 Find the particular integral of the differential equation

d2y dy
-7—2 + 4 -f- + 5y = 10x2 + x dx2 dx

[Hint: try y = px2 + qx + r.]
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f(x) is an exponential function
15.8 Consider the differential equation

d2y  ̂ dy
dx2 dx

+ 3y = lOe 2x

The L.H.S. is the same as the L.H.S. of the differential equation in §15.7, so the 
complementary function is, as before,

y = Aeix + Be*

We must now consider what extra terms are necessary to produce 10e~2x on 
the R.H.S. After a little reflection, the reader will probably agree that the only 
possible contender is a term of the form pe ~ 2x. So, for the particular integral we 
shall try

y = p e 2x

and we substitute this into the L.H.S. of the differential equation. This gives

4 pe~2x + Spe~2x + 3 pe~2x = 10e_2x 
15pe~2x = 10e_2x

and hence the value of p needed is f. So the particular integral is

y = fe~ 2x

and consequently the general solution of the differential equation is

y = Ae3x + Be2x + fe “2x

Remember that if the question gives some initial conditions, these must now be 
used to find the values of A and B. (This must not be tackled before the general 
solution has been found; it must not, for instance, be attempted immediately 
after finding the complementary function.)

The procedure followed above can be summed up thus — if the R.H.S. of the 
differential equation has the form keax, then a ‘trial solution’ of the form peax 
should be considered. In most cases this will enable the particular integral to be 
found. However, if eflX happens to be a term in the complementary function, this 
method will break down, because when this is substituted into the L.H.S. of the 
differential equation it will produce zero. It is beyond the scope of this book to 
cover exceptions like this; the reader who wishes to know more should consult a 
specialised book on differential equations.
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f(:t) is a trigonometrical function
15.9 Consider the differential equation

«
d2 v d v— T — 4 ----b 3y = 10 sin 2x + 15 cos 2x
dx dx

As before, the complementary function is

y = Ae3* + Be*

Once again we must ask ourselves what sort of expression is likely to produce a 
combination of sin 2x and cos 2x on the R.H.S. In the light of our experience in 
the preceding sections, a likely expression would be another linear combination 
of sin 2x and cos 2x. So as the ‘trial solution’ we shall take

y = p sin 2x + q cos 2x

in which case

dv—  = 2p cos 2x — 2q sin 2x 
dx

d2y
dx2

4p sin 2x — 4q cos 2x

Substituting these into the differential equation gives

(— 4p sin 2x — 4q cos 2x) — 4(2p cos 2x — 2q sin 2x) + 3(p sin 2x + q cos 2x)
= 10 sin 2x + 15 cos 2x

Hence

( — 4p +  8q +  3 p) sin 2x +  ( — 4<jr — 8 p  +  3q) cos 2x =  10 sin 2x +  15 cos 2x 

Equating the coefficients of sin 2x and cos 2x gives 

— p + 8q = 10 

and

— 8 p — q = 15

Hence p = —2 and q=  1.
So the particular integral is

y = — 2 sin 2x + cos 2x

and the general solution of the differential equation is

y = Ae3x + Be* — 2 sin 2x + cos 2x

This procedure will work for most similar differential equations, that is, if the 
R.H.S. of the differential equation is a combination of sin kx and cos kx, then a 
similar combination of these terms should be used as the ‘trial solution’, but



once again there will be difficulties if these terms happen to be part of the 
complementary function. As before the reader wishing to proceed further will 
have to turn to a more specialised textbook.
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Example 5 Solve the differential equation 

d2x
+ x = 10e2t

dt2
dx

given that when t = 0, x = 5 and —  = 14.
di

The A.Q.E. is m2 + 1 = 0,

.'. m= ± i

and hence the complementary function is 

x = A cos t + B sin t

Since the R.H.S. is 10e2', we take pe2' as a ‘trial solution’. 

Let
x = pe2'

2l

and

d2x
d

Substituting these into the differential equation gives 

4pe2' + pe2' = 10e2‘

hence
5p= 10

'. p =  2

So the general solution is

x = A cos t + B sin t + 2e2'

When t = 0, x = 5,

.'. 5 = A cos 0 + B sin 0 + 2 

.'. 5 = A + 2  
A = 3

Differentiating the general solution gives

dx 
dt

A sin t + B cos t + 4e2<
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dx
and, from the initial conditions, we know that —— = 14, when f = 0, so

dt

14 = — A sin 0 + B cos 0 + 4

hence

14 = 6 + 4 
6 =  10

Hence the solution which fits the initial conditions is 

x = 3 cos t + 10 sin t + 2e2'

It is convenient, at this stage, to remind the reader about an alternative 
notation which can be very useful when dealing with differential equations. If y

d.F ■ d2y .
is a function of x, then -2- is written y,, and —2- is written y2; this can save a lot 

dx dx
of writing (see §11.7). In this notation the differential equation in §15.7 would be 
written

y 2 -  4yt + 3y = 9x + 6 

This notation is used in the next example.

Example 6 Solve the following differential equation 

>'2 — 7yx + lOy = 40x + 2 

given that when x = 0, y = 6 and y t = 13.

First, we find the complementary function by solving

y i - 7 y i  + 10y = 0

The A.Q.E. is

m2 — 1m + 10 = 0 
.'. (m — 2)(m — 5) = 0

m = 2 or 5

Hence the complementary function is

y = Ae2x + Be5*

Since the R.H.S. of the differential equation is a polynomial of degree one, we 
take a similar expression as the trial particular integral, i.e.

y = px + q

in this case, y t = p and y2 — 0. Substituting these expressions into the L.H.S. of 
the differential equation gives

y 2 — 7y1 + lOy = — Ip  + 10(px + q)
= lOpx + (10ijf — Ip)
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Equating this to the R.H.S. of the original differential equation produces 

lOpx + (10<7 — Ip) = 40x + 2
»

On equating the coefficients of x and the constant terms, we obtain

10<7-7p = 2 
10(7-28 = 2 

•'•<? = 3
So the particular integral is

>’ = 4x + 3

The general solution is the sum of the complementary function and the 
particular integral, i.e.

y = Ae2x + BeSx + 4x + 3

Finally, we must find the values of A and B which fit the given initial conditions, 
which were, when x =  0, y =  6 and yj =  13. The first derivative of the general 
solution is

yt = 2Ae,lx + 5BeSx + 4 

When x = 0, y = 6, so 6 = A + B + 3.

: .A  + B = 3 (1)

When x = 0, y x = 13, so 13 = 2A +  5B + 4.

2A + 5B = 9 (2)

Solving equations (1) and (2) gives A =  2, B =  1. Hence the solution which 
satisfies the initial conditions is

y = 2e2x + e5x + 4x + 3

lOp = 40 
P = 4

and

Exercise 15b
Find the general solutions of the following differential equations.

d2y dy
4 —--r + 6 - — h 9y = 8 sin x + 6 cos x. 

dx2 dx
d2F , .d y

5 y2 — 6y i + lOy = 10x2 + 18x — 6.

d2z
7 —-j + 25z = 10. Ar1

,  d2r dr
6 1 6 — 8 — + r = 27e. dt2 dr
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8 5
d 2u 
d t2

+ « =  16e"‘. 9
d2F dV 
dd2 +  3 d0

12 + sin 6.

10 10^4 + 13^ - 3 x  = 21e2' - 6 i  + 2. d i2 di

In Nos. 11-13, find the solutions of the differential equations, which satisfy the 
given initial conditions.

11 + 3 ^  + 2y = cos x. When x = 0, y = 0 and = 0.
dx dx dx

12 + 4 —  + 4y = 8x2. When x = 0, y = 0 and ^  = 0.
dx dx dx

13 y2 + 25y = 50e5*. When x = 0, y = 3 and = 20.

14 Show that the general solution of the equation

9 ^ + 6 ^ + * - —50si„ ,
dt2 dt

can be expressed in the form

x = (At + B)e_(1/3,< + 5 cos (t — a)

where tan a = 4/3.
15 A particle P falls vertically under gravity and the air resistance is taken to be 

proportional to its speed at any instant. After t seconds, the distance x, which 
it has fallen, is given by the differential equation

d2x
dt2 = g

where g and k are positive constants. Express x as a function of t, given that 
dx

when t = 0, x =  0 and —  = 0.
di

16 The extension x of a spring at time t seconds, is given by the differential 
equation

d2x—-  + n2x = cos cot where n and to are constants, and n #co. 
dt2

dx
Express x as a function of t, given that when t = 0, x = 0 and —  = V.

17 The current i in an electrical circuit at time t is given by the differential 
equation

d2i d; i .
L —t + R ---1—  = —nE sm nt

di2 di C

where L, R, C, E and n are constants, and R 2 < 4L/C.



Find the complementary function and show that as t-*  oo, the comple
mentary function tends to zero.

Show that the particular integral can be expressed in the form
£

i = — sin (nt + a)

where Z and a are defined by the triangle in Fig. 15.4, and Ln — 1 /(Cn) > 0.
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18 The displacement x of a particle at time t is given by the differential equation
H2 v- rly
~r-r + k —  + n2x  = P cos cot d t2 d t

where P, to, k and n are positive constants and k > 2n. Show that as t -* oo the 
motion attains a ‘steady state’ in which x is given by

n f(n2 — co2) cos ojt + cok sin cot]
* { (n2 -c o 2)2 + k2co2 J

19 A particle moves on the line Ox so that after time t its displacement from O is 
x, and

d2x
dt2 = — 9x

When t = 0, x = 4 and —  = 9. Find: 
dt

(a) the position and the velocity of the particle when t = n/6,
(b) the maximum displacement of the particle from O. (JMB)

20 A bead P moves along a straight wire under certain forces such that its
motion is given by

d2x ,  dx
- r y  + 3 —-  + 2x = 10 COS t 
dt2 dt

where x is the displacement of P at time t from a fixed point O on the wire. 
Determine x in terms of t, given that P starts from rest at O at time t = 0.

Show that for large t, the motion of P is approximately periodic and 
determine the amplitude of the motion for large t.
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21 A particle moves along the x-axis so that its displacement from O at time t 
satisfies the differential equation

d2x
dt2

+ 9 x -  18 = 0

Its speed when t = n/\2  is 21/^2 in the direction of the positive x-axis and 
its speed when t = n/6 is 15 in the opposite direction. Find x at any time t.

What is the greatest distance from O reached by the particle and what is 
its greatest speed?

If the motion starts at t = 0, find the time at which the particle first passes 
through O. (O & C)

22 Given that y is a function of x, where x > 0, show that, if the substitution 
x = J t  is made, then

d2y d2y Ay
dx ' df ’ (b) dx2 4t At2 + 2 dt '

Hence or otherwise find the general solution of the differential equation

dx dx (C)

23 Show that y = 2 — cos x is a particular integral of the differential equation

d2y 
dx2

 ̂+ 4v = 8 — 3 cos x

and obtain the general solution.
Ay

Hence find the general solution such that when x = 0, y = 1.5 and —  = 0.
dx

Show that in this case, 5/4 ^  y ^  7/2. (C)
24 Use the substitution y = xu, where u = f(x), in the differential equation

d2y dy.. — j - 2 x -— b 2(2x2 + l)y = 24x3 
dx dx

to obtain a differential equation for u in terms of x.
dv d2yHence solve this equation, given that —  = 6 and — r- =  4, when x = 0.
dx dx

(O & C)



Chapter 16

Approximations — further 
expansions in series
Approximation
16.1 To students of elementary mathematics the word approximation no doubt 
conjures up the idea of a ‘rough calculation’; but it should also be a reminder 
that answers may often be relied upon only to a certain degree of accuracy, due 
to limitations set by data and by the available means of computation.

However, there is a positive aspect of approximation which must be stressed 
at this stage. In the ever increasing field of application to engineering and 
complex organisation, mathematics often assumes a character less exact, 
possibly less aesthetically satisfying, than when it is pursued for its own sake. A 
problem may arise in which many variables or ‘parameters’ are involved; only 
when attention is confined to the more significant of these is the problem 
susceptible to known mathematical techniques, and even then the functions 
concerned are often only manageable when reduced to an approximate form. It 
must therefore be appreciated that approximation, far from always implying a 
sacrifice of accuracy, can provide the means whereby mathematics may be 
brought to bear on practical problems which would otherwise be out of reach. 
In Book 1, Chapter 24, we looked at methods for solving equations by iteration, 
and, in particular, we met the Newton-Raphson method.

The main object of this chapter is to consider new ways of re-writing functions 
in an approximate form; already we have used the binomial theorem to this end, 
and in Chapter 10 we saw how e* and In (1 + x) could be expressed as power 
series in x. We now start by establishing a basic form of approximation, and 
applying it to numerical examples.

Linear approximation
16.2 Figure 16.1 represents part of the graph of y = f(x). P is a fixed point 
(a, f(a)), PT is the tangent at P, and Q is a variable point on the curve given by 
x = a + h, where h is small. We shall establish an approximate relationship 
between f(a) and f(a + h).

305
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f(a +  h) = NQ *  NT since h is small 
NT = MP + RT = f(a) + PR tan L  RPT = f(a) + f'(a) /if 

Hence, if h is small,

f(a + A)«  f(a) + f'(fl) h
This is called a linear approximation since we consider the straight line PT in 

lieu of the curve PQ. Expressing it another way, when x x  a, the function f(x) 
may be expressed in an approximate linear form, since

f(x) % f(a) + f'(a)(x -  a)

Example 1 Find an approximate value of sin 31°.

[Here we wish to establish an approximate relationship between sin 30°, 
which we know, and sin 31°. Since we use the derivative of sin x we work in 
radians. Note that 1° =  k/ 180 radians.]

31"“ ? + iloradia,ls
Since f(a + h)xf(a ) + {'(a) h,

sin
6 180

. n re 
«  sin — + cos — x 

6 6
71

180
71

180
sin 31° ~  0.515

fThe fact that R Q « R T  = {'(a)h has been used in Book 1, §7.7; there it was stated in the form 
d y

5y&  —  Sx. 
dx



No method of approximation is of much value unless its degree of accuracy is 
known. However, for the moment we must avoid this issue; the reader should 
consider the following questions as just a first step in mastering an idea which 
will be developed more fully later in the chapter.
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Q u.l Use the method of Example 1 to find an approximate value of tan 45.6°, 
retaining five significant figures. Compare this with the value you find in four- 
figure tables or by a calculator.
Qu. 2 Assuming that cos“ 1 0.8% 36° 52' and 52'% 0.0151 radians, find an 
approximation for cos 36°.
Qu. 3 If x % ji/6, prove that cos x %t2(tc +  6v;/3 — 6x), using the second form of 
linear approximation given in §16.2.
Qu- 4 Use the method of Example 1 to obtain approximations for the 
following. Retain four decimal places and compare your answers with the values 
given by four-figure tables or by a calculator.
(a) cosec 61.5° (take ^ 3  as 1.7321),
(b) cot 28.5° (take ^ 3  as 1.7321),
(c) e108 (take e as 2.7183),
(d) In 2.001 (take In 2 as 0.6931).
Qu- 5 Use the fact that if x % a, f(x) % f(a) + f'(a)(x — a) to prove that 
(a) if x :

(c) if x % 2,

0, ex % 1 + x, (b) if X % 71, sin x % 7i — x,

1 1 , n
2, ( l + « ) > * 2 7 (7 2X)’ (d) if x % - , tan x % 1 — — 

2

7, ^(2 +  x) % ¿{x + 11), (f) if x % 1, In x % x — 1.

Quadratic approximation
16.3 In Chapter 10 it was established that

x2 x3 x4
'  - l + ) , +  2! + 3 ! + i ! + -

If x is small, an approximation for e* may be found by ignoring high powers of x. 
Thus the linear approximation obtained in Qu. 5(a) is 1 +  x, the first two terms 
of the above series. Clearly a better approximation would be obtained by taking 
more terms; let us see how this fits in with the approach being developed in this 
chapter.

y = x  + 1 is the tangent to y = ex at (0, 1). So when x = 0, the graphs of the 
function and of its linear approximation have equal ordinates and equal 
gradients. If we take a quadratic approximation, f(x), we can further stipulate 
that the rate of change of gradient of y = ex and y = f(x) are equal when x = 0. 
y = f(x) is a parabola, and this gives a better approximation to the curve y =  ex 
over a wider range of values of x.

Suppose

f(x) = C0 + CjX + c2x2
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Then for small values of x,

16.3

ex x  c0 + CjX + c2x 2 

Differentiating twice,

e x k  c x +  2c2x

and

ex*  2c2

But we have stipulated that, when x = 0, these are not approximations but 
equalities,

. . C0 =  1 Cj =  1 c 2 ~ 2

Therefore for small values of x

ex *  1 + x + —- 
2

and, as expected, we have obtained the first three terms of the series for ex.

Qu.6 Sketch with the same axes the graphs of ex, 1 + x, 1 + x +  x2/2 from 
x = 0 to x = 1 at intervals of 0.1.

Proceeding on the same lines, we now consider in Qu. 7 the function In x 
when x s ; l ,  and investigate how we can obtain an improvement on the linear 
approximation In x *  x — 1. (See Qu. 5(f).)

Qu. 7 Given that the graphs of y = In x and y = c0 + c^x — 1) + c2(x — l)2 
have the same ordinate, gradient, and rate of change of gradient when x = 1, 
prove that when x «  1,

The following table gives values of the function In x, and of the first and 
second approximations x —1 and — f  + 2x —-jx2, in the vicinity of x = l, and 
the graphs of these functions are shown in Fig. 16.2.

X 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x — 1 -0 .8 -0 .7 -0 .6 -0 .5 -0 .4 -0 .3 -0 .2 -0 .1 0

3 x2
-  -  + 2x-----

2 2
-1.12 -0 .95 -0.78 -0.63 -0.48 -0.345 -0.22 -0.105 0

In x -1.61 -1 .20 -0 .92 -0 .69 -0.51 -0.357 -0.223 -0.105
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X 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X - 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 • 0.8 0.9 1

3 „------\-2x-----
2 2

0.095 0.18 0.255 0.32 0.38 0.42 0.46 0.48 0.495 0.5

In x 0.0953 0.182 0.262 0.34 0.41 0.47 0.53 0.59 0.64 0.69

Readers who are fortunate enough to have access to a microcomputer with 
high resolution graphics should use it to plot these graphs. Notice that the 
approximation is very good for values of x  which are near x  =  1.

Qu.8 Given that the graphs of y = f(x) and y =  c0 + Cj(x — a) + c2(x — a)2 have 
the same ordinate, gradient, and rate of change of gradient when x = a, find c0, 
C j,  c 2, and hence give an approximation for f(x) when x ss a.
Qu. 9 If a is a constant and h is small, re-write the answer to Qu. 8 so as to give 
an approximation for ((a + h) in ascending powers of h as far as h2.

Taylor’s theorem
16.4 Pursuing the ideas of Qu. 7 and Qu. 8 we may reasonably suppose that if 
we add terms of successively higher powers of (x — a) to an approximation for a 
function f(x) when x « a ,  determining the coefficients so that successively higher



derivatives of the approximate function are equal to those of f(x) when x = a, 
then we shall obtain ever closer approximations to f(x).

In Chapter 10, ex and In (1 + x) are expressed as infinite series in ascending 
powers of x. We shall now assume that if f(x) is any function of x, and a is a 
constant, then provided that f(a) exists and that successive derivatives of f(x) all 
have finite values when x = a, f(x) may be expressed as an infinite series in 
ascending powers of (x — a).f In what follows, we assume that it is in order to 
differentiate an infinite series term by term.

Let
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f(x) = c0 + c f x  — a) + c2(x — a)2 + c3(x — a)3 + c4(x — a)4 +  ...

then

f'(x) =  c j +  2 c 2(x  — a) +  3 c 3(x  — a)2 + 4 c4(x — a)3 + ...
f"(x) = 2 !c 2 +  3 x 2 c 3(x  — a) + 4 x 3c4(x — a)2 +  . . .

f"'(x) = 3!c 3 + 4 x 3 x 2 c 4(x  -  a) + ...
f""(x)= 4 !c 4 + . . .

and putting x = a in each line, we find that

« . - « *  « . - f w .  c , . ™  c , . ™ .  c ^ q f t

Thus

f(jr) = f(a) + f'(fl) ( * -« )  + (x -  a)1 + f f t  +

or if x = a + h,

f(x) = {{a + h) = f(a) +  f'(fl) h + f"(a) t2 , f"'(«)
2!

-A2 +
3!

A3 +
{""(a)

4!
A4 +

This result is a form of Taylor’s theorem (1716).

Example 2 Use Taylor’s theorem to expand sin (ji/6 +  h) in ascending powers of 
h as far as the term in h4.

Let f(x) =  sin x =  sin

f'(x) = cos x

fWe proved in §10.3 that the expansion of In (1 + x) in ascending powers of x is valid only if 
— 1 < x < + 1; we may therefore expect some limitations on the value of x in certain cases of the 
general expansions we are about to discuss. Consideration of this is delayed until §16.8.
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f'.'(x) = — sin x

f"'(x) — —COS X

f""(x) = sin x 

By Taylor’s theorem,

f(a + h) = {(a) + f '(a) h +

/ 7t \ .7 1  1
f « - - Sm? = - 2

K
-COS -  = 

6
73
2

("(a) , f"'(a) , f”"(a) „
w  h2 + h3 + — p  hA +  ...

4!

sin

2! " 1 3!

2 2 2! 3! 4!

1
4 ' 12 48

Qu. 10 Using only the first three terms of the expansion obtained in 
Example 2, obtain a value for sin 31° to five significant figures, taking as 
1.7321 and 1° as 0.01745 radians. Compare your answer with that of Example 1. 
Qu. 11 Use Taylor’s theorem to express tan (ti/4 + h) as a series in ascending 
powers of h as far as the term in h3.
Qu. 12 Use Taylor’s theorem to find the first four terms in the expansion of 
cos x in ascending powers of (x — a), where a — tan “ 1 f .

Maclaurin’s theorem
16.5 Bearing in mind the relationship x = a + h, where a is a constant, and x 
and h are variable (see Fig. 16.1), we see that there is a special case given by a = 0, 
when x = h, and either form of Taylor’s theorem given in §16.4 reduces to

f(x) = f(0) + f (0) x + (0 )^ +
2!

'(0) 3 fX* + - (0)

3! 4!
x4 +

This is a form of Maclaurin’s theorem (1742).

Example 3 Use Maclaurin’s theorem to expand In (1 + x) in ascending powers of 
x as far as the term in x 5.

f(x) = In (1 + x) f(0) = 0
f'(x) = (1 + x)-1 f (0) = 1
f"(x)= -(1  + x ) “ 2 f"(0) = - 1
f"'(x) = 2(1 + x)-3 f"'(0) = 2!
f""(x) = — 3 x 2(1 + x)-4 f""(0) =  -3 !
f'""(x) = 4 x 3 x 2(1 + x)-5 f""'(0) =  4!
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By Maclaurin’s theorem

.'. In (1 + x) = 0 + 1 x x +  ̂ ^

M i + * )  = * - T  +  y - T  + T -

Qu. 13 Use Maclaurin’s theorem
(a) to expand ex in ascending powers of x as far as the x5 term,

x3 x5
(b) to show that when x is small, sin x *  x — — + —,

(c) to find the first three terms of the expansion of cos x in ascending powers

Qu. 14 Express 17° IT in radians correct to one significant figure. Use the 
approximation given in Qu. 13(b) to express sin 17° 11' to four significant 
figures. Check your answer against the value given in four-figure tables, or on a 
calculator.

Exercise 16a
1 Given that the graphs of y = In x and y = c0 + ct(x — 2) + c2(x — 2)2 have the 

same value of y, gradient and rate of change of gradient when x =  2, 
determine c0, c1; c2 and deduce an approximation for In x when x x 2 .

2 Obtain a quadratic approximation for sin x when x a  a.
3 Apply Taylor’s theorem

(a) to expand In x in ascending powers of (x — e) as far as the term in

(b) to expand cosec x in ascending powers of (x — rt/2) as far as the term in

4 Use Taylor’s theorem to expand cos (ji/3 + h) in ascending powers of h up to 
the h3 term. Taking ^ 3  as 1.7321 and 5.5° as 0.095 99 radians, find the value 
of cos 54.5° to three decimal places.

5 Given that the functions f(x) and c0 + ctx +  c2x2 + c3x3 + c4x4 + ... have 
the same value when x = 0, and equal successive derivatives when x = 0, 
deduce the first five terms of the Maclaurin expansion of f(x) in ascending 
powers of x.

6 We have used Maclaurin’s theorem to establish the following expansions, 
which should be memorised:

of x.

( x - e ) 4,

(x -  ti/2)4.
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„ x 2 x 4 x6
COS* = | - 2 ! + 4 ! - 6 ! + "

^ S 7. JC JC X

Write down the first four terms of the expansions of the following in 
ascending powers of x:

(a) e2x, (b) In (1 — x), (c) cos x2, (d) s in |.

7 By subtracting the expansion of In (1 — x) from that of In (1 + x) deduce that 

' l + x NIn
1 —x

3 5 7X X X 
: X + y  +  y  +  y  +  . . .

8 Find approximations for the following:
(a) e° 4 (correct to five significant figures),
(b) In 1.2 (correct to four significant figures),
(c) cos 0.3 (correct to three significant figures),
(d) sin 0.2 (correct to three significant figures).

9 Apply Maclaurin’s theorem directly (see Example 3) to obtain expansions for 
the following in ascending powers of x up to the given term:
(a) sin2 x, (x4), (b) (1+x)", (x3),
(c) 2X, (x3), (d) arccos x, (x3),
(e) ex sin x, (x5), (f) In {x + J ( x 2 + 1)}, (X3).

10 If f(x) = ex sin x show that fn(x) = (J2)n ex sin (x + mt/4), and use this with 
Maclaurin’s theorem to find an expansion for f(x) in ascending powers of x 
as far as the x6 term,

11 Find the expansion of In x in ascending powers of (x — 4) up to the fourth 
term
(a) by writing In x as In |4^1 + — and applying the expansion for 

In (1 + x) given in No. 6,

(b) by applying Taylor’s theorem.
Deduce an approximation for In 4.02 correct to four decimal places.

Expansion by integration
16.6 If we wish to expand f(x) in ascending powers of x, and we find that an 
expansion for f'(x) is known or is easily obtainable, then the required expansion 
may be obtained from the latter by integration. This is illustrated graphically by 
saying that if two curves approximate over a certain range of values of x, then 
the area under these curves will be approximately equal over that range. Since, 
for example,

1
—— In (1 + x) is 
dx 1 + x



314 Pure Mathematics 2 16.6

which may be expanded by the binomial theorem, this provides an alternative 
method of obtaining an expansion for In (1 + x).

t
Example 4 Expand In (1 + x) in ascending powers of x as far as the x4 term.

Qu. 15 (a) Use Maclaurin’s theorem to obtain the coefficients in the expansion 
of arctan x in ascending powers of x, up to the x4 term.
(b) Now obtain this expansion up to the x7 term by using the fact that

Miscellaneous methods
16.7 Qu. 15 brings out the value of the integration method; this is just one way 
of avoiding the laborious differentiation sometimes involved in the direct 
application of Maclaurin’s theorem. It is also useful to bear in mind the 
following possibilities:

(a) the use of a known approximation together with a known expansion (see 
Example 5),

(b) the use of the product of known, or more easily obtained, expansions (see 
Qu. 17).

Example 5 Expand sec x in ascending powers o f x as far as the x 6 term.

(1 — u + u2 — u3 + ...) du (provided — 1 < u < 1)

X

0

:. l n (1 +  x) = x —j x 2 +  -jx3 —¿x4 + ...

arctan u
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' x 2 x4 x6 
+ 1 T  “  24 + 72Ô

_ ï l  Y
24 720)  +

I x  x’
+ ^ T “ 24 + 720

, X 2 X 4  X 6 X 4  X 6 x6
+ y  “  24 +  72Ô + T  ~  24 + ■" + ~8~ +  "■ 

sec x = 1 + ±x2 + A x 4 +

Qu. 16 Use the expansions

i  . x 2 x 3 x4
'  = l + X + 2  +  3! + 4! + -

and sin x = x — — +

to express esm x in ascending powers of x as far as the x4 term.

Qu. 17 Expand
cos x

in ascending powers of x as far as the x4 term, by
V o ~ x)

considering the product of the expansions of cos x and of (1 — x)_1/2.

Validity of expansions
16.8 So far we have avoided the issue that some of the expansions obtained in 
this chapter may be valid only for certain values of x.

For example, the binomial theorem only enables us to expand (1 — x)~1 as the 
infinite series 1 +  x + x 2 + ... provided that — 1 < x <1.  As a reminder of why 
this is so we may employ an even more elementary method of expansion; by long 
division

1 . x2 , x3 , , x4
-------=  1 +  x +  --------=  1 +  x +  x +  --------=  1 +  x +  x2 +  x 3 +  --------etc.
1 —x 1 —x 1 —x 1 —x

Only if — 1 < x < If  is it true that

X 4
<

X 3
<

X 2

1 — x 1 - x 1 — x

and hence that 1 + x, 1 + x + x2, 1 + x + x2 + x3 are progressively better 
approximations to 1/(1 — x) since the error involved is progressively decreasing 
in size; taking the approximation to n terms, the error is x"/(l — x). If we let 
n -*• oo, we assume that x"->0if — 1 <  x <  1, and so the error -» 0; it follows that 
we may make the approximation

l + x  +  x2 +  . . . + x n_1

as near as we please to 1/(1 — x) by taking n sufficiently large. Expressing this in 
other words, we may say that the infinite series 1 + x +  x2 + ... converges to the 
sum 1/(1 — x) provided that — 1 < x < 1.

fThe consequences of taking values of x  outside this range are discussed in Book 1, §14.4.
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The expansion
2 1 4  5

*  *  *  xl n ( l + x ) - x - y  + T - T  + y - . . .

is valid only if — 1 < x ^  + 1. (This is proved in §10.3.) Fig. 16.3 shows the graph 
of y = In (1 + x) together with those of the successive approximate functions

(a) y =  x, (b) y = x
2 ’

x 2 x 3
(0 > - * - y  +  y .

X2 X3 X4

T  + T ~ T

x = — 1 is cut by all the latter, but is an asymptote to y =  In (1 + x), which 
illustrates the condition — 1 < x; it can be seen that the values of the successive 
approximate functions approach that of In (1 + x) for positive values of x up to 
and including + 1, but thereafter diverge rapidly from it, hence the condition 
x < 1.

(Here again, the behaviour of this function and its approximations can be 
compared very effectively on a microcomputer. Readers are strongly advised to 
do this if possible.)

An expansion obtained by the use of Maclaurin’s theorem is valid only if the
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series is convergent but general consideration of this matter must be delayed 
until a later stage. The reader should learn the following conditions for validity, 
and should always quote them, or derived conditions, whenever they apply.

Expansion 
(1 +x)" 
ln (1 + x) 
arctan x

Condition
— 1 < x < I t
— 1 < x ^  1 
- 1  î ^ x i S  1

Expansions of e*, sin x, cos x are valid for all values of x.

Qu. 18 For what ranges of values of x may the following be expanded as 
infinite series in ascending powers of x?

(a) , ,  , (b) l n ( l - x ) , (c) arctan (1 + x),

(d) e3*, (e) l n ( l +2x) , (f) In (1+ x2),

( g ) 7 ( 2 + x ) . 1 + 3x (h) In 1 — x
ln (1 + x)

(0 . ,1 + x

Qu. 19 What are the conditions that the following may be expanded as an 
infinite series in ascending powers of 1/x?

(a)
t 2

x (b) In ( 1+  -

Qu. 20 State the conditions for validity of the following expansions:
(a) In x in ascending powers of (x — 2),
(b) sin xv/( 1 + x) in ascending powers of (x — n/2).

Rate of convergence
16.9 For practical purposes we wish to know not only that a particular 
expansion is valid, but also that it converges sufficiently rapidly for the value of 
the variable we are considering; in other words, if we are to be able to obtain a 
satisfactory approximation by considering reasonably few terms, these must 
decrease rapidly in size.

Now
3 5 7X X X

arctan x = x — — + —----- — + ...
3 5 7

is valid when — 1 < x < 1, and if we put x =  1,

arctan + ...

fAlso valid for x = 1 if n > -  1, and for x = -  1 if n > 0; but these refinements are ignored elsewhere 
in this book.
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This provides a method of calculating n, but it is not a very good one since the 
series converges very slowly; a better one is given in Exercise 16b, Nos. 5 and 6. 

To take another example,

x x x
sm -

is valid for all values of x, but only converges rapidly when x  is small. If we are 
concerned with large values of x, where x x  a, it is necessary to use a Taylor 
expansion in ascending powers of (x — a).

As a third example let us consider the expansion

x 2 X3 x4
ln  (1 +  x) — x — — +  —------ — +  ...

which is valid when — 1 < x <  1. Putting x = 1, we obtain

l n 2 = l - ±  +  * - i + . . .
This is an extreme case of a fruitless application of an expansion, since 
somewhere in the order of 10000 terms are needed to produce a value of In 2 
correct to four decimal places! A rather more economical method of evaluating 
In 2 is given in Exercise 16b. Meanwhile the reader should consider two less 
contrasting methods of evaluating In 1.5, which nevertheless stress the practical 
value of rapid convergence.

Qu. 21 Obtain approximations for In 1.5 by the following methods, and 
compare them with the value given in four-figure tables or by a calculator:
(a) use the first five terms of the expansion of In (1 + x) in ascending powers of x, 

putting x =  0.5,

(b) find a value of x for which
1 + x
1 — x

1.5, and substitute this value in the first

three terms of the expansion of In
1 + x
1 — x

in ascending powers of x.

Exercise 16b
1 Use the method of integration given in Example 4 to obtain expansions of the 

following in ascending powers of x up to the given term.
(a) arcsin x (x7 term), (b) In (sec x + tan x) (x5 term),
(c) arctan (x + 1) (x5 term), (d) arccos x (x5 term).

2 Make use of known expansions to obtain expansions of the following in 
ascending powers of x up to the given term:
(a) ¿{ex + e _x) (x6 term), (b) x cosec x (x4 term),
(c) cos3 x (x4 term), (d) tan x (x5 term),

(e) In-----  (x4 term),
x

(g) In (1 + ex) (x4 term).

(f) ln (1 + sin x) (x4 term),
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3 Verify the following expansions, and state any limitations on the value of x 
required:
(a) e* cos x  = 1 +  x  — ^ x 3 — ¿ x 4 +  . . . ,

(b) 1 , 1 2 1 3
~ ~ x 7 i-------- 7 — 1 + X *  + - X 3 +  . . . ,e ( 1 — x) 2 3

. ,  cos x , 5 , „ , 85 ,
<c> 0 ^  = 1 + 2 * + 2X + 3 * + 24* + "-'

(d)
1 1  3 2 1 3 21 .

= -  + -x  + —x — —x — —-x  + ...,
V(4 + x2) 2 2 16 16 256

In (1 + x) 1 2 , 5 , 2
------------= 1 — x* + xx2 — —x3 + -arctan x 2 3 12 9

4 By substituting x = --------
6 2m + 1

in the expansion of In 1 + x ,
------ , show that
1 — x

. m +  1In-------
m

=  2 1 1
+ ■

1
2m + 1 3(2m + l)3 5(2m + 1)

Use four terms of this expansion to find approximate values for In 1.5, In 2, 
In 3, and compare them with those given in tables or by a calculator.

5 Show that n/4 = arctan j  + arctan 5, and use this relationship to obtain an 
approximation for n correct to four significant figures.

6 Given that tan 4 = 1/5 and tan B = 1/239, verify that tan (4A — B) = 1.
Hence show that n/4 = 4 arctan (1/5) —arctan (1/239), and hence, using 

Maclaurin’s series for arctan x, find 71 correct to four significant figures.
7 Use Taylor’s theorem to obtain an approximation for sin 131° 28' correct to 

four significant figures. (Assume 11° 28' %0.2 radian.)
8 Obtain the expansion of arcsin (j — x) in ascending powers of x as far as the x3 

term.

Exercise 16c (Miscellaneous)

1 Express 10(x+ 1) in partial fractions. Hence obtain the
(x + 3)(x2 + 1)

the given function in ascending powers of x as far as the term 
the necessary restrictions on the value of x.

2 Show that

expansion of

in x3, stating 
(O & C)

In (1 + x + x2) =
dx f  x2 dx

Ï 3 7 - 3 J i^ ? + C

where c is an arbitrary constant. By expanding the integrands as far as the 
terms in x5, find the first six terms of the series for In (1 +  x + x2) for small 
values of x. (JMB)
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3 Prove that

Ex 16c

1 + x + ^(2x +1) x
- [ l + x - V ( 2x + l ) ]

and show that, if x is small, the expression is approximately equal to 
| x ( l - x ) .  ( O& C)

4 Use Maclaurin’s theorem to show that, if x5 and higher powers of x are 
neglected,

In {x + , / ( l  + x2)} = x - £ x 3 (O & C)

5

6

State Taylor’s theorem for the expansion of f(a + h) in a series of ascending 
powers of h. Prove that the first four terms in the Taylor expansion of 
arctan (1 + h) are ^n + ^ h —\h 2+ yj/i3. (O & C)

Express E =
2x2 + 7

(x + 2)2(x — 3)
1/x5 can be neglected, prove that

in partial fractions. Hence, if x is so large that

E = (2x3 — 2x2 + 25x — 17) (O & C)

7 Write down the expansions of ex and e x. The limit of

e2x — e _2x — 4x
fW

where f(x) is a polynomial, is 8 as x->0; show that the term of lowest degree 
in the polynomial f(x) is ^x3. (O & C)

8 Expand £  = In — — j in ascending powers of x up to x3, stating the

necessary conditions for your expansion. Evaluate E when x = 5 and hence 
find In 3 to three places of decimals, given that In 2 x  0.6931. (O & C) 

9 Using Maclaurin’s theorem, expand x tan (jtt — x) in ascending powers of x 
as far as the term containing x4. (L)

10 Prove that, if x is small so that x6 and higher powers of x may be neglected, 
then

e2x — e 2x 
e2x + e _2x

= 2x — - x 3 +
64
15a

(O & C)

11 Find the coefficient of xr in the expansion of (1 + 3x)e 3x as a series of
ascending powers of x. (O & C)

f(2 — x)2]
12 Expand the function given by v = ln< —— -— > in a series of ascending

 ̂4 — 4x J
powers of x as far as x4, stating the limitations on the value of x, and giving 
the coefficient of x". Prove that, up to x4,
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13 Using the standard expansion of In (1 + x), show that

in^  = 2 Î t l + ‘('£ziy + ‘('tzlY + ..

321

p + q 3>\p + qJ 5 \p  + q

where p, q e  R + . Hence calculate In (13/12) correct to five decimal places. 
14 The domain of a function f(x) is {x:x e IR, — 1 < x < 1} and

f(x) = — In (1 + x)
x

f(x) = q 

f(x) =
X COS X

l - V ( i - x )

when — 1 < x < 0 

when x =  0 

when 0 < x < 1

Use the standard series to find the values of p and q which make f(x) a 
continuous function throughout its domain.

15 If x is small, obtain a quadratic approximation to the expression

f M H r h ’2(1 + x

Draw a rough sketch of the curve y = f(x) in the neighbourhood of the point 
(0, 1) and its tangent at this point. (O & C)

16 Expand y =
1 -  In (1 + 2x)

as a series in ascending powers of x, giving the
1 + x

first three terms.
What is the equation of the tangent to the graph at the point (0,1)?

(O & C)
17 Using Maclaurin’s method, or otherwise, find the expansion of tan x in 

ascending powers of x as far as the term in x3.
Given that tan (0.1) = 0.100334 7 and tan (1) = 1.5574077 correct to seven 

decimal places, estimate the percentage error in using the above expansion as 
an approximation in each case and comment on your results. (L)

18 (a) The functions f and g are defined by

, , x2 x4 x2"
fM - i +  2! + ^  +  -  +  (2^)!+ -

v 2  n +  1 ̂ X3 X5 .A,

gW = x + -  +  -  +  ... +  ^ T ^ + ...

Express f(x) and g(x) in terms of ex, and hence obtain the expansion of 
(f(x)}2 + (g(x)}2 in a series of powers of x, giving the coefficient of x2n.
(b) Find the first four terms in the expansion of

In
1 +2x 
1 — x

in a series of ascending powers of x, and state the set of values of x for which
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the expansion is valid. If an and an + x are the coefficients of x" and x"+1 
respectively in the expansion, show that the value of

(n + l)n„+ ! + 2na„

is independent of n.
19 Given that y = In (1 + x), prove by induction that

d"y (— I)"“ 1(re — 1)! 
dx" ~  (1 + x)"

for n ^  1

(L )

Use this result to find the expansion of In (1 + x) in ascending powers of x, as 
far as the term in x4. Using your result and the expansion

sin x = + 5

find the expansion of y l = In (1 + a sin x) and y2 = sin {In (1 + ax)}, where a 
is a constant (a /  0), for each as far as the term in x4.

Show that the expansions of y! and y2 agree as far as the terms in x2. 
For what values of a do the expansions agree as far as the terms in x3?

(O & C)

20 Given that y =  e* cos x and n p> 0, evaluate y 1 and y2 at x = 0.

Prove that, for all values of x,

.Vn + 2 = 2(y„ +1 — yn)
Hence or otherwise, obtain an expression of ex cos x as a power series as far 
as the term in x5 and use it to estimate the value of y to six decimal places, 
when x = 0.1. (L)



Chapter 17

Some numerical methods
Introduction
17.1 In Book 1, Chapter 24, we tackled the problem of finding an approximate 
solution to an equation and developed a method which could be used even when 
it was impossible to find an exact solution. In this chapter we shall be looking at 
two methods for estimating the area under a curve which can be used even when 
integration is out of the question. The first method depends on the formula for 
the area of a trapezium. For a trapezium like that in Fig. 17.1, in which the 
lengths of the parallel sides are a and b, and where the distance between them is 
d, this formula for the area A is

Figure 17.1

Consider the following problem. A cyclist travels along a straight road. He 
starts from rest and his speed in m/s measured at 2 second intervals is given by 
the table below.

time in seconds 0 2 4 6 8 10

speed in m/s 0 1.0 2.8 4.9 6.4 7.4

(This information is shown in the graph in Fig. 17.2, which is not drawn to scale.) 
Find the distance travelled by the cyclist in the 4 seconds from t = 6 to t = 10.

323
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10

8 Q

O 2 4 6 8 10

Figure 17.2

When we did problems like this before (see Book 1, §6.2), we used integration, 
but in this example we do not know the function whose graph is shown in 
Fig. 17.2. However, we can say that the distance we require is represented by the 
area bounded by the lines MN, MP, NQ and the curve PQ, and this area is 
almost the same as the area of the trapezium PQNM; in making this 
approximation, we have lost the area bounded by the curve PQ and the straight 
line PQ, but this is only a very small proportion of the total area. We can 
calculate the area of the trapezium, using the formula above, i.e.

So the distance required is approximately 24.6 m.
In the next section we shall see how this method can be applied more 

generally.

Qu. 1 Use the method above to estimate the distance travelled by the cyclist 
over the 2 second interval from t = 4 to t = 6.

Qu- 2 Estimate the distance travelled by the cyclist from t = 6 to t = 10, by 
dividing the area into two trapeziums, each two units wide. Would you expect 
this answer to be better than the one in the text? Justify your answer.

The trapezium rule
17.2 Suppose we wish to find the area under the curve shown in Fig. 17.3. We 
draw lines parallel to the y-axis at (equal) intervals of d units, and we form an 
estimate of the area required by calculating the areas of the trapeziums shown. 
In this diagram there are four trapeziums, but any convenient number may be 
used; in general the more intervals there are, the better the approximation.

= 24.6
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d d d d
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Figure 17.3

The area estimated by this method will be

= jd (y i + 2y2 + 2y3 +2yA + y5) (1)

This is the trapezium rule for five ordinates.f

Qu.3 Use the trapezium rule to estimate the area, from x = 0.2 to x = 1, under 
the curve given by

X 0.20 0.40 0.60 0.80 1.00

y 0.24 0.56 0.96 1.44 2.00

Given that the equation of the curve is y = x 2 + x, check your answer by 
integration.
Qu.4 Find expressions similar to (1) for (a) eight, (b) nine ordinates. Now 
express the trapezium rule in words.
Qu.5 Estimate the area under the curve given by the following table. Beware 
of the catch!

X 0 10 15 20 25

y 7 9 11 12 10

Another way of looking at the above expression (1) for the area is to take 
a = 4d so that a is the total interval along the x-axis. In this case the area is 
estimated to be

a
(‘

Fi + 2y2 + 2y3 + 2 yA + y5
(2 )

tOrdinate means y-coordinate, see Book 1, §1.1.



where the expression in brackets appears as the average height of the curve, with 
a total of eight ordinates (y2, y3, y4 counted twice) divided by 8.

Qu. 6 Obtain the expressions equivalent to (2) for (a)'eight ordinates, (b) n 
ordinates.

The following example has been chosen to illustrate the accuracy of the 
trapezium rule. We shall compare the answer with that obtained by another rule 
later.

Example 1 Use the trapezium rule to estimate the area under the curve y = \ /x  
from x = 1 to x = 2.

To begin with, let us take six ordinates.
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X 1.0 1.2 1.4 1.6 1.8 2.0

y 1 0.8333 0.7143 0.6250 0.5556 0.5

y1 = 1.0000 y2 = 0.8333
y6 = 0.5000 y3 = 0.7143

--------- y4 = 0.6250
1.5000 y5 = 0.5556

2.7282 
x 2

5.4564 <----------5.4564

6.9564 

jd  = 0.1

.'. estimated area = 0.696, correct to three significant figures. 

Now by integration the area is

f ' i d x .
~

In x
Ji  X

= ln 2

= 0.693, correct to three significant figures.

Qu. 7 Repeat the calculation of Example 1 but with eleven ordinates instead of 
six.
Qu. 8 Use the trapezium rule to find the distance travelled by the cyclist in 
§17.1 in the first ten seconds.

Readers who have access to a microcomputer should certainly write a 
program for evaluating definite integrals by the trapezium method. Since the
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computer will be doing the arithmetic, a large number of strips can be used and 
hence a high degree of accuracy can be achieved.

Simpson’s rule
17.3 It will have been clear from Fig. 17.3 that the trapezium rule with a small 
number of strips will not be very accurate for curves like the one illustrated. If, 
on the other hand, we were to join the tops of the ordinates by a smooth curve, 
we might expect to get a better estimate. The question then arises as to what 
curve to use — and there are a number of possibilities. But if we take three 
ordinates we can find a parabola in the form

y = ax2 + bx + c

to pass through the three corresponding points.

Given a curve with three ordinates y u y2, y3 at equal intervals of d apart, take 
the y-axis along the middle ordinate and the x-axis through its foot as in 
Fig. 17.4.

Let

y =  ax2 + bx + c

be the parabola through the points (— d, y j ,  (0, y2), (d, y3); its equation is 
therefore satisfied by their coordinates.

.'. y t = ad2 — bd + c, 
yi = c,
y3 = ad2 + bd + c.
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The area under the parabola is
'd ax3 bx2

(ax2 + bx + c) dx =
J -d

= | ad3 + 2cd

(Note that we do not need to find the equation of the parabola because we can 
express this area in terms of the data jq, y2, y3, d.)

Now

yi + y3 ~ 2 y 2 = 2ad2 
y! + 4y2 + y 3 = 2ad2 + 6c 

■ i  d(yt + 4 y2 + y 3) = § ad3 + 2 cd

So an approximation for the area under the given curve is

M j i  + 4 j 2 + y3)

This result is known as Simpson’s rule and was published by Thomas Simpson 
in 1743.

Note: it makes very little difference to the proof exactly what points 
we are given originally. If, for instance, we are told that the curve passes 
through (xj, y j ,  (x2, y 2), (x3, y3), where x2 =^X ! + x3), we can at once take 
new axes, parallel to the given ones, with the new origin at (x2, 0). Let 
d = x 3 — x 2 = x 2 — Xj; the rest of the proof is as above.

In practice we usually require the area under a curve with more than three 
ordinates and so, provided there is an odd number of ordinates, we may apply 
Simpson’s rule a number of times. Thus with seven ordinates (see Fig. 17.5) the 
area is

3d ( y i +  4 y 2 + y 3) + j d (  y3 + 4y4 + y5) + j d (  y5 + 4y6 + y7)

= j d ( y i +  4 y2 + 2y3 + 4y4 + 2y5 + 4y6 + y7)

Figure 17.5
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Qu. 9 Find similar expressions for the area with (a) five, (b) nine ordinates. 
Now express Simpson’s rule for an odd number of ordinates in words.

The next example is the same as Example 1. This is so fhat the reader may 
compare the accuracy of Simpson’s rule and the trapezium rule for this case.

Example 2 Use Simpson’s rule to find an approximation for the area under the 
curve y=  \/x  between x  = 1 and x = 2.

Five ordinates have been used.

X 1 1.25 1.5 1.75 2

y 1 0.8000 0.6667 0.5714 0.5

y t = 1.0000 y3 = 0.6667 y2 = 0.8000
y5 = 0.5000 x 2 y4 = 0.5714

1.5000 1.3334 1.3714
1.3334 x 4
5.4856 --------
--------- 5.4856
8.3190

La _  J_
3 “  — 12

.'. the area =
8.3190

12
0.693, correct to three significant figures.

This is a nearer value for In 2 than the result obtained with the trapezium rule 
using eleven ordinates (see Qu. 7).

(If the arithmetic in Example 2 is done on a calculator, it will be seen that the 
result is 0.693 253 97, correct to eight decimal places, whereas the exact answer, 
In 2, equals 0.693 147 18, correct to eight decimal places, so in this case the 
approximate method has yielded the first three significant figures correctly. The 
reader should notice that the accuracy of the result depends on the method 
selected, the number of strips used and the shape of the graph, so there is no 
virtue in presenting an answer which includes all the figures shown by the 
calculator; indeed this could give a totally false impression.)

Qu. 10 Evaluate approximately — dx using Simpson’s rule with eleven
i *

ordinates.
Qu. 11 Repeat Qu. 3, using Simpson’s rule.

Readers are advised to do some of the questions on the trapezium rule and 
Simpson’s rule from Exercise 17, before continuing with the next section.
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Numerical solution of differential equations
17.4 Although it is always pleasing to find an exact solution of a mathematical 
problem, there are many mathematical problems for which no such solution 
exists. Sometimes it is possible to turn to an approximate method, and we have 
already done this to solve certain equations (see Book 1, Chapter 24) and to 
evaluate definite integrals. We shall now look at three methods which can be 
used to find an approximate solution to a first order differential equation of the 
form

dy
dx

= F(x,y)

A differential equation like this gives the gradient of a curve, at any point P(x, y), 
as a function of x and y. (Throughout the rest of this chapter F(x, y) will be used 
to represent the general form of this function.) An exact solution will be the 
equation of the curve. If the equation cannot be found, we may either establish, 
step by step, the coordinates of a number of points which lie as close as possible 
to that part of the curve with which we are concerned (see methods 1 and 2 
below); or we may find a polynomial function whose graph approximates to that 
of the exact solution (method 3).

Normally one only turns to approximate methods when an exact solution is 
unobtainable. However, at this stage in studying the subject, it is instructive to 
use an example for which the exact solution is known, so that we can compare 
the results. We shall consider the equation in which F(x, y) = x + y, in other 
words

dy
dx

x + y

with initial conditions x = 0, y = 1.

Qu. 12 Show, by using the integrating factor method, that the exact solution of 
the differential equation above is y = 2e* — x — 1.

Method 1

The first approximate method we shall consider is called Euler’s method; it 
depends on the linear approximation

ôy x  ^  ôx 
dx

(See §16.2 and Book 1, §7.7.) Since we are considering problems for which 
dy
—  = F(x, y), this becomes 
dx

dy x, F(x, y)dx

and for the particular example we are considering this is 

dy ss (x + y)(5x

(1)
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In Fig. 17.6, the curve represents the (unknown) solution, y = f(x), of the 
differential equation, and the point P0(x0, y0) is the initial point; in our case this 
is (0, 1). We shall consider a sequence of values of x:

x l =h, x 2 = 2h, x3 = 3h, ...

making h small in order to make the approximation as good as possible. Ideally 
we would like to find the point P l5 on the curve, for which x = x u but we shall 
settle for the point Q,(xj,  y j ,  which is on the tangent to the solution curve at P0. 
Consequently, using the approximation (1), with dx = h,

y i= y 0 + h F(x0, y0)

For our example, this becomes

y  i =  y0 +  K x 0 +  y 0)
= l +h

Then, using x l5 the value of y j just calculated and the value of the gradient 
function at the point (x1; yt), we repeat the process to find y2, i.e.

y2 = y i+ h  Ffxj, y t)

We can then repeat this step as many times as we please, using

yn+i=yr, + h F(x„, yn)

In doing so we shall produce the sequence of points Q 1; Q 2, Q 3, Q4, ... at the 
vertices of the polygon shown in Fig. 17.7. Each step is likely to take the polygon 
further and further away from the curve, so we should not expect too much from 
this method. Nevertheless it will produce reasonable results if h is small.

For the example we have been considering, the successive values of y are given 
by

y n + 1 =  y n +  h(xn + yn)
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The two tables below show the results obtained for h = 0.l (Table (a)) and 
h = 0.01 (Table (b)). In each case the last column, headed f(x„), shows the results 
produced by the exact solution (see Qu. 12) for comparison. (For convenience, 
only four decimal places are shown.)

Table (a) fi = 0.1

n yn 0-1 (*„ + >'„) f(*„)
0 0 1 0.1 1
1 0.1 1.1 0.12 1.1103
2 0.2 1.22 0.142 1.2428
3 0.3 1.362 0.1662 1.3997
4 0.4 1.5282 0.1928 1.5836
5 0.5 1.7210 0.2221 1.7974

Table (b) It = 0.01

n x„ yn 0.01(x„ + yn) f(*„)
0 0 1 0.01 1
1 0.01 1.01 0.0102 1.0101
2 0.02 1.0202 0.0104 1.0204
3 0.03 1.0306 0.0106 1.0309
4 0.04 1.0412 0.0108 1.0416
5 0.05 1.0520 0.0110 1.0525

In Table (b), we can see that after five cycles the accuracy is still quite good. 
Improving the accuracy by reducing the magnitude of h by a factor of ten 

inevitably means ten times as much work. (This may not matter too much if a
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computer is used.) If we do not wish to do this then we have to look for a more 
efficient method. Many such methods can be found in books that specialise in 
numerical solution of differential equations. We shall consider now one such 
method.

Method 2

One of the reasons for Euler’s method being unsatisfactory is that it uses 
the value of the gradient at one end of each interval to estimate the value of y 
at the other end. In the method below, the value of the gradient in the middle of 
the interval is used to relate the values of y at the ends.

In Fig. 17.8, (x„,y„) is a point on the solution curve y = f(x) and the 
approximate values of y on either side of it are given, as before, by

yn + i= y n + h F(x„, yn)
and

yn- i = y n- h  F(x„, yn)
(Remember that F(x, y) gives the gradient at the point (x, y).)

Subtracting gives

yn + 1 -  yn -1 = 2h F(x„, y„)
• yn+i =yn- i  +2h F(x„, y„) (1)

This can be used to produce a sequence of values y u y2, y3, y4, ... starting from 
the given value of y0. However, there is a snag; in order to find y2, we need both 
y0 and y ,. So we shall still have to use the old method in order to get started. In 
other words, we use

ki = ko + h F(x0, y0) 
and thereafter

yn + 2 = yn + 2/1 F(X„+1, yn+l)

(This is equation (1), moved up one step.)



334 Pure Mathematics 2 17.4

[The only point which is definitely on the curve is (x0, y0); all the others are 
approximations. We assume that, provided h is small, the subsequent points are 
sufficiently close to the curve to make the polygon formed by them a reasonable 
approximation.]

Table (c) shows the results produced by this method for the differential 
equation we used before.

Table (c) h =  0.1

n yn 0.2(x„ + yn)

0 0 1
1 0.1 1 1 ' ^ 0.24
2 0.2 1.24 ^0 .288
3 0.3 1.388" 0.3376
4 0.4 1.5776 0.3955
5 0.5 1.7835

(The dotted lines indicate the connection between each new value of yn and the 
preceding lines.)

Comparing these values of yn with the values of f(x„) shown in the last column 
of Table (a), we can see that these results are better. (However we are relying on 
our intuition to claim that this method is better; we have not proved that this is 
so.)

Method 3

The third method we shall consider is fairly easy to understand, as it depends 
on a simple application of Maclaurin’s expansion (see §16.5).

f(x) = f(0) + f'(0)x + ^  + ...

Once again we shall use the differential equation

with initial conditions x =  0, y = 1, to explain the method.

The differential equation may be written 

f'(x) = x + f(x)

By repeated differentiation

f"(x) = 1 + f'(x)

and f"'(x) = f"(x), f""(x) =  f"'(x), etc.

We know that f(0) =  1, and putting x = 0 in the higher derivatives we obtain 
f'(0)= 1, f "(0) =  2, f"'(0) = 2, f""(0) =  2,...
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Substituting these values into Maclaurin’s series gives 

f ( x ) = l + x  + ^ x 2 + ^ x 3 + ^ x 4 +. . .

Thus an approximate solution of the differential equation, for small values of x, is 

y=  1 + x + x2 + -  x3 + — x4 +  ...

Table (d) shows the results given by this method.

Table (d)

yn

0 1
0.1 1.1103
0.2 1.2428
0.3 1.3997
0.4 1.5835
0.5 1.7969

The results obtained by this method can be seen to compare very favourably 
with those obtained by methods 1 and 2 and they could be improved by using 
more terms of Maclaurin’s series.

Exercise 17

1

2

3

Evaluate
tt/4

tan x dx,
Jo

(a) by integration, (b) by using the trapezium rule with four strips, 
(c) by Simpson’s rule with four strips.
Comment on the accuracy of your answers.

Repeat No. 1, parts (b) and (c), for e*2 dx.
Jo

(xi, yj), (x2, y2), (x3, y3), where x2 = | ( x 1+ x 3), are three points on the 
parabola y = ax2 + bx + c. Prove that the area under the curve between the 
lines x — Xj = 0, x — x3 = 0 is equal to ^ x 2 — xx)( y t + 4y2 + y3).

Use this formula to find the area between the parabola y = x(10 — x) and 
the x-axis. Check your answer by integration.

4 Evaluate e~*2dx by Simpson’s rule taking ten intervals.
Jo

5 Estimate the area of a quadrant of a circle of radius 8 cm by dividing it into 
eight intervals and using (a) the trapezium rule and (b) Simpson’s rule. Use 
the better of these results to find an approximate value of n.

6 The area in square centimetres of the cross-section of a model boat 28 cm
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long at intervals of 3.5 cm is as follows:

0 11.5 15.3 16.3 16.2 13.4 9.3 , 4.9 0

Find the volume of the boat.
7 A jug of circular cross-section is 16 cm high inside and its internal diameter is 

measured at equal intervals from the bottom:

height (cm) 0 4 8 12 16

diameter (cm) 10.2 13.8 15.3 9.3 9.9

What volume of liquid will the jug hold if filled to the brim?
8 Using tables, or a calculator, where necessary, calculate the value of

'0.5

e _x dx
Jo.l

(a) by direct integration,
(b) by Simpson’s rule, using five ordinates spaced at intervals of 1/10 unit.
(Give your answers to four places of decimals.) (JMB)

9 By means of Simpson’s rule and taking unit intervals of x from x = 8 to 
x = 12, find approximately the area enclosed by the curve y = log10 x, the 
lines x = 8 and x = 12, and the x-axis. Deduce the average value of log10x 
between x = 8 and x =  12. (JMB)

10 The coordinates of three points on the curve y — A + Bx + Cx2 are (x1; yx), 
(x2, y2) and (x3, y3), where x2 = i(x 3 T x ^ . Prove that the area under the 
curve between the lines x = x 1 and x = x3 is equal to

U * 3  -XiXTi + 4 y 2  +  y 3)

11

12

Deduce Simpson’s rule for five ordinates.
Using five ordinates, apply Simpson’s rule to evaluate the integral 

dx
-------t and thus to find a value for jt correct to three places of decimals.
1 + x2

(O& C)
The coordinates of three points on the curve y = ax3 + bx2 + cx + d are 
(x i> y i). (*2> yi)> (x3> J^)- Prove that, if x2 — x, = x3 — x2 = h, the area under 
the curve between the lines x = x 1; x = x3 is ^h(yx + 4y2 + y3).

Find the area between the curve y = x(x — 2)2 and the x-axis by means of 
Simpson’s rule with three ordinates. Use integration to check that your 
answer is exact.
Show that the area under the curve y = 1/x, from x = n — 1 to x = n + 1, is 
In {(n + l)/(n — 1)}, provided n > 1.

By applying Simpson’s rule to this area, deduce that, approximately,

« + 1 1/  1 4 1
° n —1 3 \ n — l + n + n + l
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and show that the error in this approximation is 4/(15n5), when higher 
powers of 1/n are neglected. (JMB)

13 Use the binomial theorem to expand (1 + x3)10 in ascending powers of x, up 
to and including the term in x9. Hence estimate /, where

1 =
' 0.2

0
(1 + X3)10 dx

to three decimal places.
Make another estimate of /, again to three places, by using Simpson’s rule 

with three ordinates, showing all your working. (L)
14 Tabulate, to three decimal places, the values of the function

fW = v/ ( 1 + *2)
for values of x from 0 to 0.8 at intervals of 0.1. Use these values to estimate 

' 0.8

f(x) dx
Jo

(a) by the trapezium rule, using all the ordinates,
(b) by Simpson’s rule, using only the ordinates at intervals of 0.2. (L)

15 By considering suitable areas, or otherwise, show that, for any n > 0,

< (1 + x n) dx sS 1

When n = 4, find a value (to three significant figures) for the integral, using 
Simpson’s rule with five ordinates. (O & C)

16 The integral
1/2

^/(l — x2) dx is denoted by I. The value of /  is estimated by

using the trapezium rule, and T,, T2 denote the estimates obtained when one 
and two strips respectively are used. Calculate Ty and T2, giving your 
answers correct to three decimal places.

Assuming the error when using the trapezium rule is proportional to h3, 
where h denotes the width of a strip, show that an improved estimate of 1 is 
given by (8T2 — Tj)/7, and evaluate this expression correct to three decimal 
places.

Given that y2 = 1 — x2 is the equation of a circle whose centre is the origin

and whose radius is 1 unit, show that /  = -----1- Hence calculate an12 8
estimate for the value of n. (C)

17 Using Euler’s method, find a numerical solution for the differential equation

d y
dx

= xy

with initial conditions x =0, y = 1, giving the values of y which correspond to 
(a) x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, (b) x =  0, 0.01, 0.02, 0.03, 0.04, 0.05.
(You are recommended to set out your results in the form of a table, as in the 
text.)
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18 Repeat No. 17 for —  = x + 2y.
dx

19 Repeat No. 17 for ^  =  x2 + y2, with initial conditions x = 0.5, y = 0, and
dx

using steps of (a) 0.1, and (b) 0.01.

20 Repeat No. 17 for ^  = e “*2.
dx

21 Use the modified version of Euler’s method, described in the text, using 
h = 0.1, to solve the differential equation in No. 17.

22 Repeat No. 21, for the differential equation in No. 18.
23 Find the first four terms of the Maclaurin’s series for the solution to the 

differential equation in No. 17. Use this to estimate y when x = 0.1 and 
x = 0.2.

dy24 Repeat No. 23 for the differential equation —  = x + 2y, with initial con-
dx

ditions x =0, y = 1.

25 Repeat No. 23 for the differential equation ^  = x2 + y2, with initial con-
dx

ditions x =0, y = 1.



Chapter 18

Hyperbolic functions
Hyperbolic cosine and sine
18.1 We shall begin by defining two new functions, the hyperbolic cosine and 
the hyperbolic sine. No attempt to explain the reason for adopting these 
definitions will be given at present, as more knowledge of complex numbers is 
needed if the reason is to be fully appreciated. (See §20.6.) The reader will, 
however, very soon find some strong similarities between the hyperbolic 
functions and the familiar trigonometrical functions which, to save confusion, 
are often referred to as the circular functions. These similarities would not, by 
themselves, justify the inclusion of a study of the hyperbolic functions in this 
book: they are being introduced because they will very quickly extend the 
reader’s powers of integration, and the reader may begin to need them in 
mechanics. But first we shall study the functions themselves. They were 
introduced by J. H. Lambert in a paper read in 1768.

Definitions

The hyperbolic cosine of x 

cosh x  = ¿{ex + e x) 

and the hyperbolic sine of x 

sinh x = (̂ex — e~x)

cosh x is pronounced as it is spelled; sinh x may be pronounced ‘sinch x’ (or 
‘shine x’).

First we sketch their graphs. Starting with the graph of ex in Fig. 18.1(i), that 
of e ' x has been shown dotted in the same figure, cosh x is half the sum of these 
two functions (see Fig. 18.1(ii)) and sinh x is half the difference (see Fig. 18.1(h)). 
The two graphs are distinct in the first quadrant but they approach so close that, 
when they are sketched to this scale, the lines run together.

In general, the properties of hyperbolic functions are easily proved and this 
will be left to the reader to do in Exercise 18a. We shall first prove one important 
identity.
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Figure 18.1

Example 1 Prove the identity cosh2 x — sinh2 x = 1.

From the definitions of cosh x and sinh x,

cosh2 x — sinh2 x = {̂ {e* + e _x)}2 — {¿{ex — e-x)}2
= Up2x + 2 + e~2x) - ^ e 2x - 2  + e “ 2x)
_ip2x j_ 1 I l„ -2x l j i  I 1 \ ~ - 2 x— 4 e ' 2 ' 4 C —4 e f 2 4 ^

.'. cosh2 x — sinh2 x = 1

Definitions

The hyperbolic tangent, cotangent, secant, cosecant are defined as follows:

tanh x = 

sech x =

sinh x 
cosh x

1
cosh x

coth x = 

cosech x =

1
tanh x 

1
sinh x

Exercise 18a
Most o f the following properties of the hyperbolic functions should be deduced from 
the definitions. Work all of Nos. 1-14.

1 From a sketch of cosh x and sinh x referred to the same axes, sketch the 
graph of tanh x.
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2 Prove that (a) cosh (— x) = cosh x, (b) sinh (— x) = — sinh x.
3 Prove that cosh x > sinh x. [Show that cosh x — sinh x > 0.] Prove also that, 

when x < 0, cosh x > |sinh x|. Deduce the values between which tanh x lies.
4 From sketches of cosh x and sinh x, sketch the graphs of sech x and cosech x.
5 Prove that cosh x 1. [See hint in No. 3.]
6 Prove that

cosh x + sinh x = ex 
cosh x — sinh x = e~x

Deduce the identity cosh2 x — sinh2 x = 1.
7 Prove that the point (a cosh f, b sinh f) lies on one branch of the hyperbola

[Hence the name hyperbolic functions. Use the result of No. 6.]
8 Prove that sinh 2x = 2 sinh x cosh x.
9 Prove that cosh 2x = cosh2 x + sinh2 x

= 2 cosh2 x — 1 
= 1 + 2  sinh2 x.

10 Use the results of Nos. 8 and 9 to show that

tanh 2x = 2 tanh x/(l + tanh2 x).

11 Prove that

sech2 x = 1 — tanh2 x 
cosech2 x = 1 — coth2 x

[Use the identity connecting cosh x and sinh x.]
12 Prove that

cosh (A + B) = cosh A cosh B + sinh + sinh B

Deduce a similar expression for cosh (+ — B).
13 Prove that

sinh (A + B) = sinh A cosh B + cosh A sinh B

Deduce a similar expression for sinh (A — B).
14 Use the results of Nos. 12 and 13 to find expressions for tanh (A + B), 

tanh (A — B) in terms of tanh +, tanh B.
15 Solve the equation 8 cosh x + 17 sinh x = 20.
16 Find the condition that the equation a  cosh x + b sinh x = c should have 

equal roots.
, a  e* + b e x

17 If a  > b > 0, prove that b < ----------=----< a.
e + e

18 If | a | < | b |, prove that the equation a  cosh x  +  b sinh x = 0 has one and only 
one root.

19 Prove that sinh 30 = 3 sinh 0 + 4 sinh3 0.
20 Prove that cosh2 x sin2 x — sinh2 x cos2 x = ^(l — cosh 2x cos 2x).
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Further properties of cosh x  and sinh x
18.2 The domain of both cosh x and sinh x is R  The range of sinh x is also 
R  but the range of cosh x is {^ y e R  y ^  1}, see Fig. 18.1 (ii) and Exercise 18a, 
No. 5. Notice also that, like the corresponding trigonometrical functions, cosh x 
is an even function and sinh x is odd; see Exercise 18a, No. 2 and Fig. 18.1(ii). 
(See Book 1, §2.14 for the definitions of odd and even functions.) Furthermore, 
sinh x is a one-to-one function (see Book 1, §2.16), but cosh x is not; this causes 
some difficulty when we come to the inverse hyperbolic functions in §18.5.

Osborn’s rule
18.3 The reader will have noticed a striking similarity between the identities 
connecting hyperbolic functions and those connecting the corresponding 
circular functions. In fact the standard identities are in the same form except that 
certain signs are changed. Osborn’s rule provides a simple way of remembering 
these changes of signs. The rule is to change the sign of any term containing the 
square of a sine (or cosecant, tangent, or cotangent, because these all include a 
sine by implication:

cosec x = 1/sin x, tan x = (sin x)/(cos x), cot x = (cos x)/(sin x).)

For instance,

sin 2x = 2 sin x cos x sinh 2x = 2 sinh x cosh x

cos 2x = cos2 x — sin2 x cosh 2x = cosh2 x + sinh2 x

tan 2x =
2 tan x 

1 — tan2 x
tanh 2x =

2 tanh x 
1+ tanh2 x

Qu. l Write down the identities connecting hyperbolic functions correspond
ing to
(a) sin A -(- sin B — 2 sin + B) cos %A — B),
(b) cos A + cos B =  2 cos ^(A +  B) cos j(A  — B),
(c) cos A — cos B = — 2 sin M.A + B) sin MA — B),
(d) sec2 9 = 1 + tan2 9,

(e) cosec2 6 = 1 + cot2 9,

(f) cos 39 =  4 cos3 9 — 3 cos 9,

(g) tan 39 = (3 tan 9 — tan3 9)/( 1 — 3 tan2 9).

Warning: Osborn’s rule holds for the standard trigonometrical identities but 
it must not be applied indiscriminately; for instance, application to

cos 2A
------------:-----= cos A — sin A
cos A + sin A

and
cos A sin A 2 cos (A + B) 
sin B cos B sin 2B



leads to incorrect results. Further it cannot be relied upon as an aid to 
remembering calculus formulae. It is to these that we now turn.
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Derivatives of hyperbolic functions
18.4 The derivatives of cosh x and sinh x are most easily obtained by starting 
from the definitions of these functions.

d d f.—  (cosh x) = —  <U(e* + e x)

= Ü e * - e *) 

d
—  (cosh x) = sinh x 
dx

Similarly, 

d
—  (sinh x) = cosh x 
dx

The derivatives of the other hyperbolic functions are easily obtained by first 
expressing them in terms of cosh x, sinh x.

Qu. 2 Remembering that ^  ^  x 4^-, write down the derivatives of
dx dt dx

(a) cosh 2x, (b) sinh jx , (c) 3 cosh ^x,
(d) j  sinh 4x, (e) sinh2 x, (f) cosh3 2x.

The inverse hyperbolic functions
18.5 The reader will remember from previous work on inverse functions 
(Book 1, §2.16 and §18.7), that only one-to-one functions can have inverses and 
that the graph of an inverse function is the reflection in the line y = x of the 
graph of the original function.

The function y = sinh x is a one-to-one function and so there is no difficulty 
over the existence of its inverse. The graphs of y = sinh x and y = sinh - 1 x are 
shown in Fig. 18.2. Values of sinh -1 x could be estimated from the graph, but 
calculating them is more difficult; we shall return to this problem in §18.7. In 
both y = sinh x and y = sinh - 1 x, the variables x and y can take any real values, 
i.e. the domain and range of both of these functions is R

Unlike sinh x, cosh x is not a one-to-one function; indeed, for any value of x, 
cosh (— x) = cosh x. This causes a slight difficulty when we define the inverse 
function. The equation cosh x =  2 has two approximate roots, x % + 1.317, but 
when we define the inverse function cosh 1 x, it is essential that there should 
be a unique answer. (The same problem arises over f(x) = x2 and its inverse
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f _1(x) = ^ /x-) However this technical difficulty can be overcome by restricting 
the domain of cosh x to non-negative real numbers. The graphs of y = cosh x 
and y = cosh - 1 x are illustrated by the unbroken curves in Fig. 18.3.

The domain of cosh 1 x is {x:xe(R, 1} and the corresponding range is
{yiyelR, y^O ).
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Exercise 18b
1 Prove the following results by first expressing the functions concerned in 

terms of cosh x and sinh x: ‘

(a) (tanh x) = sech2 x,
dx 
d

(b) —- (coth x) = 
dx

cosech2 x,

(c) —  (sech x) = — sech x tanh x, 
dx
d

(d) —  (cosech x) = — cosech x coth x. 
dx

2 Write down J cosh x dx, J sinh x dx.
3 Write down the derivatives of

(a) cosh 3x, (b) sinh 2x, (c) cosh2 x,
(d) 2 sinh3 x, (e) 3 tanh 2x, (f) \  sech2 x,
(g) sinh2 3x, (h) y j (coth x), (i) 2 tanh2 jx.
Sketch, on the same pair of axes, the graphs of y = tanh x and y = tanh “ 1 x. 
State the domain and range of the inverse function, y =  tanh_1 x. State, 
giving a reason, whether tanh x is an odd or even function.
Differentiate the following functions with respect to x, simplifying your 
answers:

ex — 1
(a) In tanh x, (b) ex sinh x, 

Find:

(a) j  sech2 2x dx,

( c ) ex+ 1

(b)
sinh x

cosh2
dx.

7 Find the minimum value of 5 cosh x + 3 sinh x.
8 Prove that

«  ¿ ( c o s h - 1 *> =  ^ r r 7 j ,  <b > ^ 0 “ h

and find an expression for —  (sinh-1 x).
dx

[Hint: see the method of §11.3.]

9 Prove that {tan“ 1 (ex)} = j  sech x.

x )  =

1
T ^ 2’

10 Find [ln {x + y/( 1 + x2)} — sinh 1 x],

11 Find: (a) j  cosh 2x sinh 3x dx, (b) J cosh x cosh 3x dx.
12 Find the distance from the y-axis of the centroid of the area formed 

by y = sinh x, x — 1 = 0 and the x-axis.
13 Find the equations of the tangent and normal to the hyperbola

b2x 2 — a2y2 -  a2b2
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at the point (a cosh 9, b sinh 0). If the tangent meets the y-axis at T and the 
normal meets the x-axis at N, find the locus of the mid-point of NT.

d2 v dv14 If y = A cosh 2x + B sinh 3x, find an equation connecting — j , y which
dx2 dx

*15
does not contain A, B. 
Prove that

x2 x4 x2
cosh x = 1 + — + — + . . .+

2! 4! + . . .(2n)\

x 3 x s x2n + 1
+ . . .

and obtain the first three non-zero terms of the expansion, in ascending 
powers of x, of tanh x.

16 Expand tanh 1 x as a series of ascending powers of x. Express the sum of this 
series as a logarithm.

17 If tanh-1 x = y, show that x = (e2* — l)/(e2y + 1). Hence express y as a 
logarithm.

18 Investigate the stationary values of cosh 3x — 12 cosh x.

Integration
18.6 As was mentioned at the beginning of this chapter, the chief purpose in 
including hyperbolic functions in this book is to extend the reader’s powers of 
integration. So far, we have integrated functions in the forms

1 ,  1 
V(a2 - x 2) x 2 + a2

but not those in the forms

1 , 1
J (x 2 -  a2) an J ( x 2 + a2)

We have seen (§1.8) that the identity 

cos2 9 +  sin2 9 = 1

helps us to eliminate the square root sign in 1 !^/{a2 — x2) and we may expect 
the identity

cosh2 9 — sinh2 9 = 1

to assist us with corresponding integrals.

Qu. 3 What substitution using hyperbolic functions would eliminate the 
square root sign in the following?

(a) yj(x2 -  a2)
dx, (b)

y/(x2 + a2)
dx.
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*Qu. 4 Show that

(a)
1

J (a 2- x 2)
dx = sin

x
— He,a s!(az + x 2)

dx =  sinh,
x
— +  c, 
a

(b) 7 (x 2 -  a2)
dx = cosh' + c.

There is little difficulty in remembering these results and confusion between 
them is easily avoided by thinking, ‘What substitution would eliminate the 
square root.’ In fact, by taking this thought and doing some side-work, the 
reader can dispense with memorising these as formulae. Those who do memorise 
them should note that the results in Qu. 6 are slightly and inconveniently 
different.

Qu. 5 What substitution would enable us to write the denominator of the 
following integrands as a square?

(a) f 1
a2 + x2

dx, (b) dx.

*Qu. 6  Show that

(a)
1 , 1 . xdx = -  tan — l- c,

a aa2 + x2
(b) - j -----^dx =  -tanh  1

a — x a
x
-  +c. 
a

The last two questions between them raise a number of points of interest:

(1) Those who like to memorise formulae should note that these results 
contain a factor 1/a in front of the tan-1 (x/a) and tanh-1 (x/a). See also 
Qu. 7.
f 1 1

(2) ^ ----- 5-dx is usually found by first expressing -=----- j  in partial
J a  — x a —x
fractions. See Qu. 8.

(3) x = a tan 8, x = a tanh 8 are not the only possible substitutions by which 
to express a2 + x2, a2 — x 2 respectively as squares, but if the reader 
wonders why these particular substitutions have been favoured, try the 
others!

Qu. 7 If x, a have dimensions of length L, write down the dimensions of both 
sides of the formulae below. [Since j  y dx is the limit of £  ydx as <5x -* 0, we take 
dx to have the same dimensions as dx, i.e. L.]

(a)
V V  -  x2)

dx = sin +  c, (b)
1 , 1 xdx = -  tan -  + c.

a aa2 + x 2

Qu. 8 Use partial fractions to show that

1 , 1 . a + x
—5------=-dx = — I n ---------1- k.
a —x 2 a a — x

What conclusion can be drawn from a comparison of this result and the second 
result in Qu. 6?
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*Qu. 9 (A repeat of Exercise 18b, No. 17.) If tanh 1 x = y, show that 
x = (c2y — 1 )/(e2y + 1). Hence prove that

tanh' 1.  1 + x
2 1 —;

The inverse hyperbolic functions expressed in terms of 
logarithms
18.7 The result of Qu. 9 suggests that it may be possible to express cosh-1 x, 
sinh-1 x in terms of logarithms.

Let y = sinh - 1 x, then

sinh y = x  (1)

Also cosh2 y = 1 + sinh2 y
.'. cosh y = ^/(l + x2) (2)

[cosh y > 0, so the negative square root does not give a real value of y.]
Now cosh y + sinh y = ^ e 1’ + e -3') + ey — e y)

= ey

But from (1), (2),

cosh y + sinh y = x +  ^ /(l +  x2)
.’. ey = x + ^ /(l +  x2) 

y = In {x + J ( \  T x2)}

That is,

sinh - 1 x = In {x + ^(1 + x2)}

An expression for cosh 1 x may be obtained in a similar manner.
Remember that x ^  1 and cosh-1x 3= 0.
Let y = cosh - 1 x, then

cosh y = x

Now, sinh2 y = cosh2 y — 1 
= x2 — 1

.'. sinh y =  ^/(x2 — 1)

(The positive square root is used because we know that y, and hence sinh y, is 
positive.)
Now

Qy = cosh y + sinh y 
= x + x/(x2 -  1) 

y = ln {x + ^ /(x 2 -  1)}

That is

cosh - 1 x = ln {x + yj{x2 — 1)}



Qu. 10 Use the formulae in §18.7 to find the values of (a) sinh 1 1, 
(b) cosh " 1 2, (c) s i n h 1 0.58, giving your answers correct to four decimal places.

Once the reader has grasped the forms which require tjie substitution of a 
hyperbolic function, the integrations in Exercise 18c should present no new 
difficulty. Only in exceptional cases as, for instance, in Example 5, is the 
treatment of hyperbolic functions completely different from the treatment of 
circular functions. If the reader is unable to integrate any particular function in 
Exercise 18c, he or she should refer back to Chapters 1 and 13 for help. The 
following examples illustrate how a knowledge of integrating with circular 
functions helps with the present work.
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Example 2 Find
V(x2 + 2x + 10)

dx.

First complete the square: 

x2 + 2x + 10 = (x + l)2 + 9

[The substitution x + 1 = 3 sinh 0 makes (x + l)2 + 9 = 9 cosh2 0.]
1

y/(x2 + 2x + 10)
dx

! dx
{(x + l)2 + 9} d0 

1

dd

3 cosh 8 dd

*J(x2 + 2x + 10)

Example 3 Evaluate

3 cosh 8 

I d 8 = 8 +c

, . x + 1dx = sinh —----- 1- c

cosh 1 x dx.

Let x + 1 = 3 sinh 8.

dx , „
.'. —  = 3 cosh 8. 

dd

[j cos 1 x dx we integrate by parts as J 1 x cos 1 x dx.]

11 x cosh 1 x dx = x cosh
V (* 2-  !)

dx

= 3 cosh 1 3 — 2 cosh 1 2 s / ( x 2 ~  1)

= 3 In (3 + ^ 8 )  -  2 In (2 + ^ 3 )  -  (^ 8  -  ^ 3 )  

= 1.56, correct to three significant figures

Example 4 Find J sinh3 8 d0.

J sinh3 ddd = |  (cosh2 0 —1) sinh 0 d0 

= j  cosh3 0 — cosh 0 + c
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Qu. 11 Find J sinh3 9 d9 by means of the identity analogous to 

sin 3A = 3 sin A — 4 sin3 A

Example 5 Integrate sech x with respect to x.

[The method of §13.3 cannot be used here because cosh x is not sinh (x + jn). 
We might guess an integral but we can go back to the definition of cosh x.]

sech x dx =
2

dxJ e* + e - * Let ex = tan 6.
’ 2e*

ex—  = sec2 9. 
d 9

J e2x + 1
’2 sec2 9

dd e2x + 1 = tan2 9 + 1
J sec2 6

2 9 + c = sec2 9.

.'. jsech x dx = 2 tan 1 (ex) + c

Exercise 18c
Integrate with respect to x:

1 s/(x2 + 9) ' 

4 — i ___
V(4 x + x 2)'

1 7(4x2 +x)'  

Evaluate:

9
1

V i 1 - ( x - 2 ) 2}' V(4x2 - 1 ) '

1 „ 1
x2 + x +  1 yj(x2 — 6x + 10)

1
V (3 x -4 x 2)'

11

o \!(x2 + 4)
f2 !

dx.

J yj(x2 + 4x + 5)

10

dx. 12

iW(4*2~9)
V 3  J 

0 V(2x2 + 3)

dx.

dx.

Integrate with respect to x:

13 cosh2 x. 14 cosh3 x. 15 sinh4 x. 16 tanh2 x.
17 tanh x. 18 coth3 x. 19 tanh4 x. 20 cosech x.
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Exercise 18d (Miscellaneous)
1 Define the functions cosh x and sinh x. From your definitions prove that

(a) sinh (x + y) = sinh x cosh y + cosh x sinh y,
(b) cosh 2x = 2 cosh2 x — 1.

2 Solve the equations:
(a) 2 cosh x + sinh x =  2,
(b) 2 sinh2 x + 8 = 7 cosh x.

3 The position of a particle at time t is given by x = a cosh t ,y  = b sinh t. Show 
that the acceleration is proportional to the distance of the particle from a 
fixed point and is in the direction of the line from the fixed point to the 
particle. Find also the least speed of the particle.

4 If y  = A cosh px + B sinh qx, where A, B, p, q are constants, find the simplest 
differential equation satisfied by y which does not contain A and B. [Hint: 
differentiate four times.]

5 (a) Differentiate with respect to x:

(i) tanh 1 (2x), (ii) cosh 1 y/(x2 + 1).

d2y
(b) If x = a cosh 6, y = b tanh 0, find T in terms of a, b, 6.

dx2
6 Find the area between the rectangular hyperbola x2 — y2 =  a2 and the latus 

rectum x = yj2a.
7 Through the point (a cosh 0, b sinh 0) on the hyperbola

■ a2y2 = a2b2

a chord is drawn parallel to the minor axis. Find the area of the segment so 
formed and the position of its centroid.

8 A tangent is drawn from the origin to touch the curve y = cosh x in the first 
quadrant. Find the coordinates of the point of contact correct to three 
significant figures.

9 An arc AB of the hyperbola b2x 2 — a2y2 = a2b2 is cut off by x =  2a. 
Perpendiculars from A, B meet the y-axis at D, C. The area bounded by the 
arc AB and the lines BC, CD, DA is rotated once about the y-axis. Find the 
volume of the solid generated.

10 (a) Expand in a series of ascending powers of x and give the term in xr:

(i) sinh 2x, (ii) sinh2 x.

(b) Write down the series for cosh x in ascending powers of x and deduce the 
series for sech x as far as the term in x4.

11 Find the sum to infinity of the series:

, , x xJ
(a) 3! + 5!

_  4  16
(b) 2! + 4!

x2" - 1
+ " ' + (2n+l)!

64
+ — + . . . .

+ ...,



12 Show that y = A cosh nx + B sinh nx is a solution of the differential equation
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d2y
dx

2 — n2y = 0, for all values of A and B.

dy
Find the solution when n = 2, given that when x = 0, y = 5 and -— = 8.

dx
13 Find the possible values of sinh x if

=  2
cosh x — sinh x 
sinh x cosh x (L)

14 (a) Show that when x is small, In (cosh x) % x2/2 — x4/12, and that when x is
large, In (cosh x )«  x — In 2.

Sketch the graph of In (cosh x).
(b) Find the condition that must be satisfied by the constant k if 

(cosh x + k sinh x) is to have a minimum value. Find the minimum value 
of 3 cosh x + 2 sinh x. (L)

d Q
15 If sec 6 = cosh u, with u > 0 and 0 <8 < jn , express (a) tan 6, (b) —  in terms

du

of u. Hence, or otherwise, evaluate
1

o cosh u
du. (O&C: SMP)

16 Prove that sinh 1 x = In {x + ^/(x2 + 1)}.
d  _ .  1

Show that —  (sinh x) = —r—,— —.
dx ^ (x 2 + 1)
' 8 1

Evaluate 

logarithm. 

Show that

V(*2 -  2x + 2) 

8 1

dx, expressing your answer as a natural 

3
-dx

yj(x2 — 2x + 2) J j ,J(x2 — 2x + 2)
-dx. (JMB)

17 Prove that (cosh x 4- sinh x)" = cosh nx + sinh nx, for all positive integral 
values of n.

01 , 1 + tanh x , „ . , „
Show that  ------- ;—  = cosh 2x + sinh 2x.

18 (a) Find

1 — tanh x 

1

(JMB)

-dx.
J ( x 2 + 4x — 5)

(b) The parametric equations of a curve are x = a cosh t, y = a sinh t, where 
a is a positive constant. Prove that the area of the region in the first 
quadrant bounded by the curve, the x-axis between x =  a and x = 2a, and 
the line x =  2a, may be expressed as

ja 2 J (cosh2 i— 1) dt

where cosh k = 2, and hence show that this area is approximately 1.07a2.
(C)
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19 Prove that cosh 1 x = In {x + ^/(x2 — 1)} and that tanh 1 x = ^ In

Prove that the equation in x, a cosh x + b sinh x = l^has no real solution 
if a2 > b2 + 1. If however, 0 < b < a <  ^ /(l + b2), prove that the equation has 
two distinct real solutions. Obtain all the real solutions (if any) when a = 1/5 
and b = 1.

The parametric coordinates of a point on a curve are given by 

x = a cosh t, y = b sinh t (a> b>  0)

Obtain the condition for the line lx + my = n to touch this curve. (O & C)
20 Define sinh x, cosh x and prove from these definitions that

tanh (x + y) =
tanh x +  tanh y 

1 + tanh x tanh y

(a) If tanh 1 u + tanh 1 v = j  In 5, prove that v = {2 — 3u)/(3 — 2u).
(b) Prove that cosh x > sinh x > x, for all x > 0 and deduce that, for all x > 0,

1 + sinh x > cosh x > 1 + ^x2

and

sinh x — x > cosh x — 1 — j x 2 > f t  x4. (O & C)



Chapter 19

Some geometrical applications of 
calculus1
Area of a sector
19.1 A good slogan for a reader who finds the formulae in this chapter difficult 
to remember, or prefers to work them out when needed, is, ‘When in doubt, 
differentiate’. By differentiation we mean, in this instance, take a small increment 
— which is the fundamental step in differentiating a new function. With this 
approach we now work out an expression for areas of sectors and closed curves 
in polar coordinates.

Figure 19.1

In Fig. 19.1, the radius vectors OP, OQ are r, r + 5r; the angles between them 
and the fixed line OX are 0, 0 + 80. If 80 is small, the area of sector OPQ is 
approximately equal to the area of triangle OPQ.

.'. sector OPQ «  \r{r + 8r) sin 80

fThe reader should work all the questions in the text.

354
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but

and 6r sin 50 is small compared with 50 so, correct to the term in 60, 

sector OPQ = \ r 2 66

(Here it is assumed that the difference between the sector OPQ and triangle 
OPQ is small compared to 80.)

Summing for all the elements in the sector concerned and proceeding to the 
limit,

where a, /? are the values of 0 corresponding to the bounding radius vectors of 
the sector.

(V
Qu.l Sketch the curve given by r = a. What does the integral j r 2 d0

represent in this case?
Qu.2 Sketch the cardioid r = a(l + cos 0) and find the area enclosed by it. 
Qu.3 Find the area swept out by the radius vector of the equiangular spiral 
r = aeke as 0 increases from — n to n. Show this area on a sketch.
Qu.4 Sketch the trefoil r = a sin 30 and find the area of one of its loops.
Qu. 5 Regarding the limaçon r =  1 + 2 cos 0 as having a small loop contained 
within a larger one, find the area of the larger loop.

*Qu. 6  If x and y are functions of a parameter t, show that

*Qu. 7 The vertices of a triangle are 0(0,0), P(x, y), Q(x + 8x, y + 8y). Show 
that the area of the triangle is |(x  8 y — y 5x). Hence show that the area of a 
sector may be found from the expression

where t l, t 2 are the values of t corresponding to the bounding radius vectors of 
the sector.
Qu- 8 Find the area enclosed by the ellipse x =  a cos 0, y = b sin 0.
Qu. 9 Find the area enclosed by the loop of the curve given by x = t 2 — 4,
y = t3 — 4t.
Qu. 10 Find the area of one loop of the curve given by x = sin 0, y =  sin 20. 
Why does the formula of Qu. 7 give a negative answer?
Qu. 11 Find the area between the cycloid x = a(0 — sin 0), y = a( 1 — cos 0) and 
the portion of the x-axis between the points determined by 0 =  0 and 0 =  2n.

area of sector =
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Length of a curve
19.2 Readers may be aware of a gap in their knowledge about curves: that they 
do not even know how to find the length of an arc of a eurve given by such a 
simple equation as y = x 2. An approximation could be found by marking a 
number of points on the arc and finding the sum of the lengths of the chords. We 
should expect this sum to approach the length of the curve as we increased the 
number of chords and decreased their lengths.

At this stage it is advisable to pause to remark that we have only an intuitive 
idea of the length of a curve, based on our experience of string, measuring tapes 
and other flexible material which can be measured or graduated when it is 
placed against a ruler. Another thing to note is that we have no proof that the 
limit of the sum of the lengths of the chords would be the same if the points were 
marked off on the arc in different ways. The reader may find such questions 
discussed if he or she goes on to study higher mathematics.

Our object is to find expressions for s, the arc length of a curve, in terms of the 
coordinates in which the equations of curves are commonly written. The most 
important of these, for our present purposes, are the Cartesian coordinates x, y.

Figure 19.2

Suppose an arc of a curve is divided into n parts by points P0, P 1;..., P„ (see 
Fig. 19.2). We shall assume that the

sum of the lengths of chords -* length of arc

as the lengths of the chords -*■ 0. If fix, 5y are the increments in x, y from Pr _ j to
Pr,

Pr_ 1Pr2 = (5x)2 +  (5y)2 (1)

For an equation in the form y = f(x), it will be convenient to work in terms of x. 
We therefore rewrite (1) as
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Summing for all the chords and proceeding to the limit,
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length of arc s : . +i£ Y U
where a, b are the values of x corresponding to the ends of the arc. From this it 
follows that the arc length to a variable point on the curve is given by

a result that will be used later in this chapter.
The reader is not recommended to memorise the formulae in this chapter but, 

rather, to remember how they were obtained and to work them out as and when 
they are wanted. In this respect, it is easier to treat Pr - iP r as if it were 8s, the 
increment in arc length. The triangle in Fig. 19.3 helps us to remember the

dy
expression for arc length and to work out relationships such as —  = sin ip,

as
where ip is the angle the tangent to the curve makes with the x-axis. Some 
convention is needed to specify the direction in which s is measured. We take the 
integrand of (2) to be positive; this fits in with the convention that the square 
root sign denotes the positive square root.

Qu. 12 (a) Express tan i/f as a derivative.
(b) Express sec i p  as a derivative.
(c) Use the identity sec2 i p  — 1 + tan2 ip  to express the derivative in (b) in terms 
of the derivative in (a).
(d) Draw diagrams to show both ip and the direction in which s is measured

dv
when —1-  is (i) positive, (ii) negative, and s is given by (2), above, 

dx
Qu. 13 Find the length of the arc in the first quadrant of y = 2x3'2 from x = 0 
to x = i
Qu. 14 Find the length of the arc of y = In sec x from x = — to x = \ k. 
Qu. 15 Find the length of the arc of the parabola y = x 2 bounded by the line
y -  2 = 0.
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Arc length: parametric equations
19.3 Now suppose that we were given a curve in the form x =  f(t), y = g(i) as, 
for example, x = at2, y = 2at. It would then be more convenient in finding the 
length of an arc to have an integral with respect to t.

From (1) (p. 356),

where t u t2 are the values of t corresponding to the ends of the arc. Care should 
be taken to ensure that the integrand is positive throughout the range of 
integration. This applies particularly to Qu. 18.

Qu. 16 Find the length of the arc from 8 ~  0 to 8 = a. of the curve given by 
x = a cos 6, y = a sin 8. What is this curve?
Qu. 17 Find an expression for the distance measured along the curve from the 
origin to any point on the locus x =  at2, y = at3.
Qu. 18 Sketch the astroid given by x = a cos3 t ,y  = a sin3 1 and find the length 
of its circumference.
Qu. 19 Sketch the arc of the cycloid x = a(8 — sin 0), y = a{ \ — cos 0) from 
6 = 0 to 8 = 2n. Find its length.

Arc length: polar equations
19.4 In Qu. 20 the formula for arc length in polar coordinates is introduced.

Hence

O X

Figure 19.4
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*Qu. 20 In Fig. 19.4, Pr_ jN is the perpendicular from Pr_ t on to a neighbour
ing radius OPr of a curve given in polar coordinates.
(a) Find approximations for NPr, NPr _ t in terms of r, 6.
(b) Obtain the expression for arc length

where a, ft are the values of 6 corresponding to the ends of the arc.
Qu. 21 Find the length of the equiangular spiral r = aeke from 6 = 0 to 6 = 2n. 
Qu. 22 Find the length of the spiral of Archimedes r = ad from 6 = 0 to 6 = n. 
Qu. 23 What is the length of the circumference of the cardioid r = a(l + cos 0)? 
[Make sure the integrand is positive.]

Area of surface of revolution
19.5 In considering areas of surfaces, we come up against a difficulty straight 
away. How can we measure the area of a curved surface? With a cylinder or 
cone, the surface can be ‘developed’, i.e. laid out on a plane surface, but with 
other figures, such as a sphere, this cannot be done. It is beyond the scope of this 
book to define, in mathematical terms, what is meant by the area of a curved 
surface and we shall assume that the following method of finding an expression 
for the area of a surface of revolution is valid.

First let us consider a fairly simple problem, namely to find the area of the 
curved surface of the frustum of a cone bounded by circles of radius r and R\ see
Fig. 19.5.

Figure 19.5

From elementary work, we know that the area of the curved surface of a cone 
is nrl, where r is the base radius and / the slant height; if we work in terms of the 
semi-vertical angle a, this becomes nl2 sin a. In the notation of Fig. 19.5, the area
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we require is

kL2 sin a — nl2 sin a =  n(L2 — l2) sin a
= n(L — l) (L + l) sin a 
= 7i (L - l ) ( R  + r)
= ns(R + r) where s = L — l. (1)

Now let us consider the problem of finding the surface area when the curve 
y = f(x) is rotated through 360° about the x-axis.

Divide the surface with (n+ 1) planes p0, p,,..., p„ perpendicular to the axis of 
revolution, here the x-axis (see Fig. 19.6). We shall find an approximation for the 
area between planes pr _ pr. If the distance between the planes is small, the area 
of the surface between the planes is approximately a frustum of a cone with radii 
of the ends y, y + 8y and with slant height 8s. From (1) its area is given by

7i{ y  + ( y  + $y)} 5s = n(2y  + 5y) Ss
Summing and proceeding to the limit,

area of surface of revolution = j  2ny ds

The limits of the integral will depend on the substitution used. See Qu. 24-29.

Qu. 24 Find the curved surface area of the frustum formed by rotating
the segment of the line y = 2x + 3 between x = 1 and x = 3 about the x-axis.

ds / f 3 ds
First show that —  = ^ 5  and evaluate 27iy—-dx.

QX 1 j QX

Qu. 25 Show that for the circle y2 = a2 — x2

ds a
dx y/(a2 — x 2)

Hence obtain the surface area of (a) a sphere, (b) a section of a sphere bounded 
by two parallel planes at a distance h apart.



Some geometrical applications o f calculus 361

Qu. 26 The parabola x = at2, y = 2at is cut by the latus rectum and the arc so 
formed is rotated through two right angles about the axis of the parabola. Show

¿S
that — = 2alt2 + 1)1/2 and find the area of the surface of revolution, di
Qu. 27 The astroid x = a cos3 1, y = a sin3 1 is rotated through two right angles 
about the x-axis. Find the area of the surface of revolution.
Qu. 28 The part of the rectangular hyperbola x2 — y2 = a2 which lies between 
y = b and y = — b is rotated through two right angles about the y-axis. Find the 
area of the hyperboloid of one sheet so formed.
Qu. 29 The cardioid r =  a (l+ c o s$ ) is rotated through two right angles 
about its axis of symmetry. Use the expression

2”y f e de

to find the surface of revolution.
ds

First show that —  = 2a cos w. 
d6

Pappus’ theorems
19.6 The following two theorems are due to Pappus, who lived at Alexandria 
about the end of the third century a.d .; they both involve the distance moved by 
a centroid. [Note that for an object of uniform density, the centroid is the centre 
of mass.]

First consider the solid generated when an area is rotated about the x-axis. 
We consider only areas which do not cut the x-axis, although the axis may form 
part of the boundary.

Figure 19.7

Think of a lamina of area A and of uniform density p per unit area. Take 
an element of area, as shown in Fig. 19.7. Its mass is then approximately 
P ( y z ~ y i) §* and >ts centroid at {x, y2 + yi)}- Therefore the moment about
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the x-axis is

19.6

P{y2 -  J>i) Sx x ^ y 2 + y x) = ±p(y22 -  y t 2) 5x
s

If y is the centre of mass of the lamina, taking moments about the x-axis,

p A x y  = \p {y22 - V ) d x
J a

where a, b are the extreme values of x.

If we multiply each side by 2n/p, we obtain

A x 2 n y =  n(y22 — y 12)dx ( 1)
a

where the R.H.S. is the volume of the solid generated when the lamina is rotated 
through 2tc radians about the x-axis. Hence we may write

Note that, although we have considered the special case where the area is 
rotated through an angle 2tc, we might have written (1) as

for a general rotation a, so that (2) remains valid.

Example 1 Use Pappus ’ theorem to obtain the volume of a right circular cylinder, 
base radius r, height h.

Rotate a rectangle of height h, base r about one of the sides of length h 
through four right angles. This generates the cylinder. The area of the rectangle 
is rh. The centre of mass of the rectangle moves a distance 2n x j r  = nr. So, by 
Pappus’ theorem, the volume of the cylinder is rh x n r  = nr2h.

Example 2 Find the centre of mass of a semicircular lamina of radius a.

Rotate the semicircle through one revolution about its diameter. The area of 
the semicircle is ^na2. The volume swept out is 4na3/3. Let y be the distance of 
the centre of mass from the diameter then, by Pappus’ theorem,

jna2 x 2ny= jna3

4 a

Therefore the centre of mass of the semicircular lamina is 4a/(3n) from the 
bounding diameter.

Now consider the area of the surface of revolution swept out when an arc is 
rotated about the x-axis. We consider only arcs which do not cut the axis 
(Fig. 19.8).

area x distance moved by centroid = volume of revolution (2)
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Figure 19.8

Think of the arc as having a density a per unit length. An element of length of 
arc has a mass er8s with moment y x ods about the x-axis. If the total length of 
the arc is s and if its centre of mass is at a distance y from the x-axis, taking 
moments about the x-axis,

os x y = J yo ds

the integral being evaluated between the appropriate limits.

.'. s x 2ny = J 2ny ds

But this integral represents the area of the surface of revolution so that we may 
write

length o f arc x distance moved by centre of mass
= area of surface of revolution

If the reader can remember that both of Pappus’ theorems involve the distance 
moved by a centre of mass, the idea of dimensions will help in working out what 
the formulae must be, e.g. to find a volume [L3], the distance [L] moved by the 
centre of mass must be multiplied by an area [L2].

Example 3 An inflated inner tube o f a bicycle tyre has a section ( through a plane 
of symmetry) as shown in Fig. 19.9. Find the surface area of the tube.

3.5 cm

0 o
65 cm

Figure 19.9 (Not to scale)
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The surface area may be obtained by rotating a circle of diameter 3.5 cm 
about an axis at distance 30.75 cm from its centre.

circumference of circle = 3.5tc cm

distance moved by centroid = 2n x 30.75 = 61.571 cm

.'. surface area = 3.5ti x 61.5tt cm2

= 215.25n2 cm2 (% 2120 cm2)

Qu. 30 A reel of tape is in the form of a hollow cylinder, external diameter
8.5 cm, internal diameter 6.5 cm, height 2 cm. Use Pappus’ theorem to find the 
volume of tape and check your answer by an elementary method.
Qu. 31 A triangle has a right angle included by sides whose lengths are r and fi; 
the hypotenuse is of length /. By considering the cone formed by rotating the 
triangle about the side h, obtain the formulae for the volume and curved surface 
area of a cone.
Qu. 32 The lengths of three sides of a rectangle are r, h and r. By considering 
the total surface area of the cylinder obtained by rotating these lines about the 
fourth side of the rectangle, find the distance of their centre of mass from the 
fourth side.
Qu. 33 Find the centre of mass of a semi-circle of uniform wire.
Qu. 34 An anchor ring is formed by rotating a circle of radius a about an axis 
in the plane of the circle at distance b from the centre. Find (a) the volume, (b) the 
surface area of the ring.

*Qu. 35 Using the notation of §19.1, and applying Pappus’ theorem to the small 
sector OPQ in Fig. 19.1, show that the volume formed by rotating the region 
bounded by the radius vectors 6 = a and 9 = fi through 360°, about the fixed 
line, can be expressed in the form

Qu. 36 Verify that the formula in Qu. 35 produces the correct answer for the 
sphere of radius a which is formed by rotating the curve r = 2a cos 9.

Curvature
19.7 Any user of the roads, especially in Great Britain, will be familiar with 
their bends and corners. Cyclists and drivers have a particular interest in the 
sharpness of the turns because they can easily lead to skids under bad road 
conditions or excessive speed; but how many could say how sharp a particular 
bend was?

There are two ways in which such a question might be answered. One way is 
to compare a bend with that of a circular arc of some radius; another is to state 
the rate of turning, and we shall start with this.

How, then, can a rate of turning be measured? The word ‘turning’ suggests an 
angle but Fig. 19.10 shows that an angle by itself is not enough: between two

2n C»
1 a

r3 sin 9 d9
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P

P
(i) (¡1)

Figure 19.10

points P and Q on two curves the tangent rotates through the same angle but 
one is clearly more bent than the other. This suggests that we might take into 
account the distance moved along the curve. For a constant rate of turning we 
shall take

angle turned through 
distance along curve

as a measure of the curvature. For a variable rate of turning, the average
5ip

curvature in a small displacement along the curve would be —  and in the limit
os

we should obtain as a measure of curvature

There should be no difficulty in remembering which way up this derivative is 
written because p is a length and so has ds in the numerator.

Qu. 37 Show that, for a circle, p is equal to the radius of the circle.
Qu. 38 Find the curvature of the cycloid s = 4a sin ip at the points where ip = 0.

Curvature: Cartesian coordinates
19.8 Our next aim is to find an expression for curvature in terms of Cartesian 
coordinates x, y. We therefore shall try to work with x as the independent 
variable:

dtp dip I ds 
ds dx / dx

But from §19.2,

dip

The radius of curvature p of a curve is defined by p =  1 / k. Thus

1 ds

(1)
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di/f
So it only remains to find —  in terms of x, y. The gradient of a curve is

dx

dv
tan i// = —  dx

Differentiating with respect to x,

But sec2 \j/ — 1 + tan2 ip,

So from (1),

Qu. 39 Find the curvature of the parabola y = x2 (a) at (1, 1), (b) at the origin. 
*Qu. 40 If the coordinates x, y of a point on a curve are given in terms of a

Qu. 41 Find the curvature of the parabola y2 = 4ax at (at2, 2at), (a) by treating 
y as a function of x, (b) by the formula of Qu. 40.
Qu. 42 Find the least curvature of the cycloid

x = a(9 — sin 0), y =  a(l — cos 0)

Qu. 43 If tangents to a curve make angles i// and \j/ + b\j/ with the x-axis (see 
Fig. 19.11), find the angle between the corresponding normals. Let the normals 
intersect at C. Find the limiting distance of C from the curve (measured along 
one normal) as 8ij/ -* 0. Take s as the arc length.

The point C is called the centre of curvature. Note that: (a) it is on a normal at 
a distance p from the curve on the concave side, (b) it is the limiting position of 
the point of intersection of neighbouring normals. The circle with centre C and 
radius p is called the circle of curvature.

Qu. 44 Find the equation of the circle of curvature at the point (c, c) on the 
rectangular hyperbola xy = c2.
Qu. 45 The equation of the normal at (at2, 2at) to the parabola y2 = 4ax is

xi + y — at3 — 2 at = 0

parameter t ,  use the equation k  = to show that

(:dx d2y dy d2x
di d t2 dt di2 m
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Treating this as a cubic in t, show that the condition that it should have two 
equal roots is

27 ay2 = 4(x — 2a)3 

What is this the locus of?
*Qu. 46 A curve touches the x-axis at the origin. Write down the first non-zero 

term in the expansion of y in ascending powers of x. Show that the radius of 
curvature at the origin is the limiting value of x2/2y as x, y -* 0. This is known as 
Newton’s formula.
Qu. 47 Use Newton’s formula to find the radius of curvature at the origin for 
(a) y = x2, (b) y = x2/(l — x2),
(c) x = 2_y2/(l -l- y2) (which touches the y-axis),
(d) x = a sin t, y = b tan2 t.

Exercise 19
1 Sketch the limaçon r = 2 + cos 0 and find its area.
2 Express the equation (x2 + y2)2 = a2(x2 — y2) (Bernoulli’s lemniscate) in 

polar coordinates and find the sum of the areas enclosed by the loops.
3 P, Q are the points (ca, c/a), (c/a, ca) on the rectangular hyperbola x>> = c2. 

Find the area bounded by OP, OQ and the arc PQ.
4 An arc AB of a circle, radius a, subtends an angle 2a at the centre O. The 

sector OAB is rotated through four right angles about the diameter parallel 
to AB. Write down the area of the surface of revolution generated by the 
perimeter of the sector and hence find the distance from O of the centroid of 
the perimeter.

5 P(at2, 2at) is a point on the parabola y2 = 4ax and S is the focus. Show that 
the area bounded by the parabola, its axis and the line PS is ya2(3t + i3).

6 Find the area enclosed by the astroid x =  a cos3 t, y = a sin3 t.
7 A cylindrical hole of radius r is made in a sphere of radius a so that the axis of
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the cylinder coincides with a diameter of the sphere. Find the volume that 
remains. [Hint: with the diameter as y-axis, take an element of area 2y 8x 
and use Pappus’ theorem.]
Find the centre of curvature C of the ellipse b2x 2 + a2y2 = a2b2 at (a, 0).

Show that the circle with centre C which passes through (a, 0) has no other 
point of intersection, real or imaginary, with the ellipse.
Find the length of the arc of the catenary y = c cosh (x/c) from the vertex 
(0, c) to any point on the curve.

Find also the area generated when this arc is rotated through four right 
angles about the y-axis.
Sketch the curve x = e' cos t, y = e' sin t from t = — n to t = + n. Find the 
area enclosed by this arc and the segment of the straight line joining its end 
points.
Sketch the curve y2 = (x — 1)2(2 — x). If the area enclosed by the loop is 
rotated through four right angles about the y-axis, find the volume of the 
solid generated.
For the cardioid r = a( 1 +  cos 6) find, in any order, (a) its area, (b) the 
distance from the x-axis of the centroid of the half of the cardioid above the 
axis, (c) the volume of the solid generated when this area is rotated through 
one revolution about the x-axis.
A circle of radius a rolls touching externally a fixed circle of radius 2a. Show 
that the locus of a point on the smaller circle (a two-cusped epicycloid) may 
be written

x = 3a cos 6 — a cos 36, y = 3a sin 6 — a sin 36

Find the length of this curve and also the area enclosed.
14 A three-cusped hypocycloid is traced out by a point of a circle of radius a 

which rolls touching internally a fixed circle of radius 3a. Show that the locus 
may be written

x = 2a cos 6 + a cos 26, y = 2a sin 6 — a sin 26

(a) Find the curvature at (—a, 0).
(b) Find the length of the curve.
(c) Find the area generated when the arc from 6 = 0 to 6 = 2n/3 is rotated 

through four right angles about the x-axis.

15 Show that x

Hence, or otherwise, find the area of the loop of the curve 

x = 3f/(l + f3), y = 3i2/(l + i 3)

What is the Cartesian equation of this locus?
16 A flanged wheel of radius b rolls along a straight rail with its centre a 

distance a vertically above the rails. Show that the locus of a point on the 
circumference of the wheel may be written

x = ad — b sin 6, y = a — b cos 6

dL _ v d±  = x A
d t  d t  d i  \ x /

8

9

10

11

12

13



(a subtrochoid) and find the area of a loop correct to three significant figures 
when a = 1, b = 2.

17 A circle of radius a rolls on a fixed straight line. Show.that the locus of a 
point P on the circumference of the circle may be written in the form:

x = a{8 — sin 8), y = a( 1 — cos 8) (a cycloid).

Show that, in general, if C is the centre of curvature corresponding to P, 
then the mid-point of PC is the point of contact of the line and the circle.

18 Express the equation of the normal at P(ct, c/t) to the rectangular hyperbola 
xy = c2 as a quartic in t.

If this equation has a repeated root, derive from it another (cubic) 
equation which is satisfied by the same root. Hence find the coordinates of 
C, the centre of curvature at (ct, c/t).

Verify that PC is equal in length to the radius of curvature at P.
19 Find the length of arc from the point (1,0) to any point on the curve y = In x.

If the arc is rotated through four right angles about the y-axis, find the 
area of the surface of revolution generated.

20 The arc of the rectangular hyperbola x 2 — y2 = a2 bounded by the chord 
x = a cosh 8 is rotated through two right angles about the x-axis. Find the 
area of the surface generated.
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Chapter 20

Further complex numbers
Revision
20.1 In Book 1, Chapter 10, the reader was introduced to the complex 
numbers, i.e. the set of numbers

C = {x + iy:x,y  e R} where i2 =  — 1
and the rules for adding, subtracting, multiplying and dividing complex 
numbers were explained. These were as follows: if z 1= x l + iy1 and 
z 2 ~ x 2 + iy2 i then

Zi + z2 = (x, + x2) + i( y 2 + y 2) 

z i  - z 2 =  (*i - x 2) +  i(y, - y 2) 

z i x z2 = (xix2 -  yx y2) + i(xj y2 + x 2 yx) 

zi _  Xj +  iy, 
z2 x2 + iy2

These four rules can be summarised by saying that complex numbers obey the 
same rules as real numbers, but wherever i2 appears, it is replaced by — 1. There 
is absolutely no need to commit these rules to memory.

The reader will also remember (or should see Book 1, §10.9 to revise it) that 
there is a very useful method for illustrating complex numbers, namely the 
Argand diagram (see Fig. 20.1) in which the vector OP represents the complex 
number z = x + iy. (Sometimes it is convenient to say the point P represents z.) 
The modulus of z, written |z|, and the argument, written arg(z), are given by

2 X 2  2 X2 z2*) the complex conjugate of z2)

(XjX2 + yt y 2) + i(x2yt -  x t y2) 
x22 + y 22

|z| = O P =  V (x2 + y2)

arg(z) = 0 = arctan

370
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(In this chapter, arg(z) will normally be expressed in radians.)
This gave us some useful alternatives to the rules above for multiplying and 

dividing; if we write \z\ = r and arg(z) = 9, then

\ziZ2\ = r1r2 = \z1\x \z2\
and

argizjZj) = 0j + 62 = arg (zt) + arg(z2)

Similarly,

£ 1  _  r l =  |Zll 
z2 r2 |z2|

a r g ^ j  = (h ~  02 = arg(zj) -  arg(z2)

The following special cases are important:

(a) | z21 = | z |2 and arg(z2) = 2 arg(z)

= and a r g ^  = -  arg(z)

The reader’s attention is drawn to the very close analogy between adding 
vectors and adding complex numbers. This analogy is very useful when 
interpreting complex numbers geometrically. In particular, diagrams like that in 
Fig. 20.2 are very common. We could regard this diagram either as an Argand 
diagram illustrating the complex numbers z, a, and z — a, or as a vector triangle 
representing vectors z, a, and z —a. Consequently, a statement in complex 
numbers, such as

\ z - a \  = r

in which z represents a (variable) complex number x + iy, a is a (constant) 
complex number and r is a given real constant, tells us that the length AP is 
equal to r; in other words the variable point P lies on a circle, centre A, radius r.
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Figure 20.2

Similarly the equation

\ z - a \  = \z — b\

where a and b are complex numbers represented by fixed points A and B, tells us 
that the variable point P which represents z, is equidistant from A and B.

It is essential that the reader should be thoroughly conversant with these 
elementary concepts. The purpose of Exercise 20a is to revise this work before 
we proceed further.

Exercise 20a
1 Given that Zj = 3 +  4i and z2 =  1 + i, find

(a) Zj + z2, (b) zj -  z2, (c) ZjZ2, (d) z j z 2,
(e) Zl2, (f) z t3, (g) 1/zj, (h) l/z2.

2 Write down the modulus and argument of zt and z2 in No. 1. Find also the 
modulus and argument of the complex number in each part of No. 1. (Leave 
surds in the moduli; express the arguments in radians, correct to three 
decimal places.)

3 Solve the equation z2 — 4z + 53 = 0, expressing the roots in the form a + ib, 
where a, b e  R  Verify that the sum of the roots is 4 and their product is 53.

4 Draw Argand diagrams to illustrate the loci:
(a) | z — 101 = 5, (b) arg(z) =  7t/6,
(c) |z — 11 = |z — i|, (d) arg(z — a) = rt/4, where a = 1 + i.

5 Writing z = x + iy, find the equations of the following loci in terms of x 
and y:
(a) |z — 101 = 5, (b) | z - l |  = | z - i | .

6 Draw Argand diagrams to illustrate the regions
(a) Re(z) > 0, (b)lm (z)> 0, ( c ) |z |< 3 ,  (d) 3 < |z| < 5,
(e) |z — 3| > |z — 5|, (f) 0 < arg(z) < n/4,
(g) 0 < arg(z — a) < tt/2, where a = 1 +  i,
(h) 4 < | z + a | < 5, where a = 1 +  i.
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7 Given that z = r and arg(z) = 9, show that z can be expressed in the form 

r(cos 6 + i sin 9)

Verify that

z2 = r2(cos 29 + i sin 29) and that z3 = r3(cos 39 + i sin 30)

*8 Given that z = cos 9 + i sin 9, prove by induction that 

z" = cos n9 + i sin n9 

where n is a positive integer.
9 The points A, B and C represent the complex numbers z 1, z2 and z3, 

respectively, and ABC is an isosceles triangle, with a right angle at A. Prove 
that

2zi2 + z22 + z32 = 2(z3zt + z3z2)

10 The coordinates of the points A and B are (x3, jq) and (x2, y2), respectively, 
and O is the origin. Given that OAB is an equilateral triangle, prove that

Hence, or otherwise, show that it is not possible to draw an equilateral 
triangle with its three vertices at lattice points. (A lattice point is a point 
whose coordinates are integers.)

Functions of a complex variable
20.2 In real numbers we have already studied many functions, e.g.

and we have either plotted or sketched their graphs (y = x 2 in this case). We 
shall now consider the corresponding problem in complex numbers; in order to 
keep the discussion fairly simple, we shall take the function

zi—>z2

as an illustration. For convenience, in this book, we shall use z = x +  \y as a 
typical member of the domain (i.e. the set of complex numbers to which the rule 
is applied) and we shall use w = u + iv as the corresponding point in the co
domain. We shall illustrate the effect of the function by drawing a pair of Argand 
diagrams, the left-hand one will always be the z-plane, i.e. the domain, and the 
right-hand one the w-plane, i.e. the co-domain. First let us consider the effect of 
the function zi-*z2 o n a  particular point, say z = 2 + i, then

X I—► X.2

w = (2 + i)2 
= 3 + 4 i

Figure 20.3 shows P(2, 1) and its image P'(3, 4).
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Figure 20.3

More generally if |z| = r and arg(z) = 8 then, under this function, | w| = r2 and 
arg(w) = 29.

Qu. 1 Verify that this last statement is true for the points P and P' above.

We shall now consider the effect of this function on a particular set of points in 
the z-plane: let us take, for example, the circle, centre O, radius 2 units, in which 
case, |z| = 2, and let arg(z) =  6. Then |w| =  4 and arg(w) =  28 (see Fig. 20.4).

Figure 20.4

The image, in the w-plane, is also a circle, centre O, but its radius is 4 units and 
OP' is inclined at an angle 28 to the u-axis. If we imagine the radius OP rotating 
anti-clockwise at a constant speed, then OP' would be rotating anti-clockwise at 
twice the speed; when P has completed one full circle P' will have been around its 
path twice.

Example 1 In the z-plane, the point P(x, y) moves around the semi-circle |z| = 2, 
0 ^  arg(z) ^  7i. Describe the locus o f its image P'(u, v) in the w-plane, where 
w = 1/z.



Further complex numbers 375

Under the function w = 1/z,

I w| = --- and arg(w) = -  arg(z)
|z|

so P' lies on the semi-circle, centre O, radius j. As P moves anti-clockwise, from 
6 = 0 to 9 = 7t, the point P' moves clockwise from 0 = 0 to 8= —n (see Fig. 20.5).

Figure 20.5

Example 2 Given that w =  1 /z,find the image of the straight line x  = 1. Find the 
images of( 1, — 1), (1,0) and (1, 1). Describe the locus of P', the image of P(l, y) as y 
increases from — oo to +oo.

In this example |z| is not constant and so the modulus-argument method of 
Example 1 is not the best approach; instead we tackle the problem algebraically. 

The image P'(u, v) of the point P( 1, y) is given by

1
u + w =   —

1 +  îy

1 1 - i v= -----— x -------
1 +  î y  1 — îy

1 - i  y
1 + y 2

Hence, equating the real and imaginary parts,

u
I

1 + y2
and v — - y  

l + y 2
From these equations we can see that the images of (1, — 1), (1, 0), and (1, 1) are 
(i, i), (1,0) and (f, — j) respectively. The equations for u and v, in terms of y, can 
be regarded as parametric equations, with y as the parameter. To find the 
equation relating u and v we must eliminate y. Dividing v by u, we obtain

v
u =  - y



376 Pure Mathematics 2 

and using this to eliminate y, gives

20.2

1
1 + ( -v /u )1 2

u2 + v2

.'. u(u2 + v2) = u2

Dividing by u (which is never zero), 

u2 + v2 = u

This is the equation of a circle in the w-plane; we can find its centre and radius 
by completing the square,

(u-± )2 + i>2 = i

From this we see that the locus is a circle, centre (j, 0), radius j  but excluding the 
point (0, 0), since u > 0. (See Fig. 20.6; note in particular that as y increases, P' 
moves clockwise.)

V A

c-f (1. 1)

x = 1 

(1.0)
o

A - • (1. - I )

the z-plane

Figure 20.6

Qu.2 Find the image of y = 1 when w = 1/z.

Exercise 20b
In Nos. 1 and 2, a, b e R and c =  a + ib. (If you find this difficult, try a = 3 and 
6 = 4, and then return to the general case.)

1 Find the image of the unit square OIRJ, whose vertices are (0,0), (1,0), (1,1) 
and (0, 1) respectively, under each of the following transformations:
(a) w = az, (b) w = a + z, (c) w = c + z, (d) w =  cz, (e) w = z*. 
Describe each of these transformations in words.
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2 Show that the matrix transformation

has the same effect as the complex number transformation z > cz.

In Nos. 3-6, draw Argand diagrams to show the effect of the given function 
on the region indicated.

3  w  =  z  +  1 +  i; 0  ^  a r g ( z )  ^  ti/4 .

4 w  = (cos 7t/4 + i sin ti/4)z; 0  ^  arg(z) ^  7t/4.
5  w  =  z 2; 1 <  | z |  ^  2.

6  w =  z 2; 0  ^  a r g ( z )  <  ti/4 .

7 Find the range of the function w = z2, given that the domain is

{ z : | z |  =  5, 0  ^  a r g ( z )  ^  tt/6 }

8 Given that w = z2, find the images of
(a) the hyperbola xy=  10, (b) the line y  = x, (c) the line y = — x.

9 Find the image of the region 1 under the transformation zi—► 1/z.
10 Given that w  = z2, find the images of the lines x = k and y = k, where fee!R.

de Moivre’s theorem
20.3 In Exercise 20a, No. 8, the reader was introduced to what is known as de 
Moivre’s theorem. This theorem was published by de Moivre in 1730, but the 
substance of it had appeared in the posthumous publication of Cotes in 1722. 
The theorem states that, for any rational value of n, one value of (cos 9 + i sin 9)n 
is given by

(cos 6 + i sin 0)n =  cos nO +  i sin n6

The reason for saying one value of (cos 6 + i sin 9 f  is that there is more than one 
value for expressions such as (cos 9 + i sin 0)3/2: we return to this in §20.4. A 
proof of the theorem may proceed as follows:

Stage 1. Prove that

(cos 9 + i sin 0)(cos </> + i sin <p) = cos (6 + <p) + i sin (9 + <t>).

[Expand the left-hand side.]

Stage 2. Use induction to prove the theorem for positive integral values of n. 

Stage 3. Use the identity (cos 9 + i sin 0)(cos 9 — i sin 9) = 1 to show that

(a) (cos 9 + i sin 9)~1 = cos 9 — i sin 9 = cos (— 9) + i sin (—0),
(b) if n = — m, where m is a positive integer,

(cos 9 + i sin 0)" = cos n9 + i sin n9
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In accordance with the usual laws of algebra we take 

(cos 9 + i sin 9)° = 1

Stage 4. If n=  1 /q, where q is an integer (positive or negative, but not zero),

show that one value of (cos 9 + i sin 9)" is cos -  9 + i sin -  9 by finding the value of
9 9

( cos- 9  + i s in -0  
V 9 9

Stage 5. If n is a rational number say - ,  where p, q are integers, we have by
9

Stage 4 one value of

(cos 9 + i sin 9)llq = cos — 9 +  i sin -  9 
9 9

(cos 9 +  i sin 9)plq = ( cos - 9  + i sin- 9 | 
V 9 9 J

= cos -  9 + i sin -  9

Qu. 3 Express in the form x  + iy:
(a) (cos 9 + i sin 9)5, (b) l/(cos 9 + i sin 9)2,
(c) (cos 9 — i sin 9) ~3, (d) (cos 9 + i sin 0)2(cos 9 + i sin 0)3,

(e)
cos 9 + i sin 9 
cos (j) + i sin </>’ (f )

cos 9 + i sin 9 
cos <f> — i sin <j)'

Qu. 4 Find one value of:
(a) Vicos 29 + i sin 29), (b) V (cos + * s'n 2n),
(c) ^/(cos 9 + i sin 0)3.

Complex roots of unity
20.4 In Book 1, §10.6, we referred to the theorem that an equation of the nth 
degree has n roots. This means that the equation

z3 -  1 = 0

has three roots: one of them is 1 but what are the others? Qu. 5 gives one method 
of finding out.

Qu. 5 Use the identity z3 — 1 = (z — l)(z2 +  z + 1) to find the three cube roots 
of unity.

Still, the method of Qu. 5 would not work for, say, the roots of z7 — 1 = 0, and 
the reader may well have been wondering what this has got to do with de 
Moivre’s theorem. Now, we can express 1 as a complex number in infinitely 
many ways:



... cos (— 2n) + i sin (— 2n), cos 0 + i sin 0,
cos 2n + i sin 2n, cos 4n + i sin An,.

or, in general, .

cos 2kn + i sin 2kn where k is an integer

By de Moivre’s theorem, one value of

^(cos 0 + i sin 0) = (cos 0 + i sin 0)1/3 = cos j9  + i sin j9

Therefore values of ,y i are given by

2 n \ . . f  2n \  0 . . 0
... cos l — — | + t sin I ----— 1, cos -  + i sin - ,
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cos

3 3’
2n . . 2n 47t . .  An
—  + 1 sin — , cos —  + 1 sin —

or, in general, 

2kn 2kn
cos —— hi sin 

3 3
(see Fig. 20.7)

Qu. 6  Show that the expression cos ftot +  i sin f/crc represents the same 
complex number when k is replaced by (a) k + 3, (b) k + 3m, (k, m e Z).
Qu. 7 By writing — 1 = cos 7t + i sin tt, and in two other ways, find the cube 
roots of — 1.
Qu. 8 Writing a> = cos |n  +  i sin j n ,  show that the cube roots of 1 are 1, to, a t2. 
Prove that 1 + a> + to 2 = 0 in two different ways. [For a hint, see Qu. 5.] Show 
also that to is the square of co2.
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Real and imaginary parts
20.5 One advantage of using complex numbers is that sometimes it is possible 
to do two pieces of working simultaneously! The possibility rests on the 
following result: if a + ib — c +  id, where a, b, c, d are real, then a = c and b = d. 
[This is referred to as ‘equating real and imaginary parts’. See Book 1, §10.6.]

„  , „ , 3 tan 9 — tan3 9
Example 3 Prove that tan 39 = -------------- =——.

1 - 3  tan2 9

By de Moivre’s theorem,

cos 39 + i sin 39 = (cos 9 + i sin 9)3

The R.H.S. may be written

cos3 9 + 3i cos2 9 sin 9 — 3 cos 9 sin2 9 — i sin3 9

cos 39 + i sin 39 = cos3 9 — 3 cos 9 sin2 9 + i(3 cos2 9 sin 9 — sin3 9)

Equating real and imaginary parts,

cos 39 = cos3 9 — 3 cos 9 sin2 9 
sin 39 = 3 cos2 9 sin 9 — sin3 9

By division,

sin 39 3 cos2 9 sin 9 — sin3 9
cos 39 cos3 9 — 3 cos 9 sin2 9

Dividing numerator and denominator of the R.H.S. by cos3 9,

tan 39 =
sin 39 
cos 39

3 tan 9 — tan3 9 
1 -  3 tan2 9

Qu. 9 Show that tan 49 = (4 tan 9 — 4 tan3 9)/( 1 — 6 tan2 9 + tan4 9).

Exercise 20c

Simplify Nos. 1-8:

1 (cos 9 + i sin 0)3(cos 29 + i sin 29).
2 (cos 9 + i sin 0)2(cos 9 — i sin 9)~2.

cos 49 + i sin 49 (cos 29 + i sin 20)33  --------------------  ̂ 4 ________________
(cos 9 + i sin 9)3 ' (cos 9 + i sin 9)5

^ cos 59 + i sin 50 cos 9 + i sin 9
(cos 9 — i sin 0)3 cos 29 — i sin 29'

7 (cos 4> + i sin <j>)2(cos 9 + i sin 9)3.
8 (cos 29 + i sin 20)3(cos 30 — i sin 30)2.
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9 By writing 1 in the form cos 8 + i sin 0, where 8 = — 2n, 0, 271, 4n, find the 
fourth roots of unity.

What are the fourth roots of — 1?
*10 By writing 1 in the form cos 2kn +  i sin 2kn (k=  — 2, —*1, 0, 1, 2), find the 

fifth roots of unity.
Show that, if z, z* are conjugate complex numbers, the expansion of 

(x — z* )(x — z) is a quadratic in x with real coefficients. Hence write x5 — 1 
in the form (x — l)q1q2, where qt, q2 are quadratic expressions with real 
coefficients.

11 Find the sixth roots of 1 and show the corresponding vectors on the Argand 
diagram. Deduce the real quadratic factors of x4 + x2 + 1.

12 Show that the nth roots of — 1, together with the nth roots of 1, form a 
complete set of 2nth roots of 1. How can the 2nth roots of — 1 be deduced 
from these? Illustrate your answer by showing the corresponding vectors on 
the Argand diagram for the case n = 5.

13 If a is a seventh root of unity, other than 1, show that the other roots are 
a2, a3, a4, a5, a6, 1. Show further that

1 + a + a2 + a3 + a4 + a5 + a6 = 0

Do analogous properties hold for all other nth roots of unity?
14 Find the real factors of

(a) x7 —1, (b) x5 + l, (c) x2" —1.
*15 If z = cos 6 + i sin 8, show that

-  = cos 8 — i sin 8, z3 =  cos 38 + i sin 38, = cos 38 — i sin 38
z z

Show further that (z + 1/z)3 = 8 cos3 8, and, by expanding (z + 1/z)3, prove 
that

2 cos 30 + 6 cos 0 = 8 cos3 0

Hence express cos 30 in terms of powers of cos 0.
16 With the notation of No. 15, show that (z — 1/z)3 = — 8i sin3 0 and hence 

express sin 30 in terms of sin 0.
17 Use the method of No. 15 to prove that

cos4 0 =  £(cos 40 + 4 cos 20 + 3)

and express cos 40 in terms of cos 0. [Expand (z + 1/z)4.]
18 Prove that sin5 0 =  y^(sin 50 — 5 sin 30 + 10 sin 0).
19 Prove that cos6 0 = jj(cos 60 +  6 cos 40+15 cos 20 + 10).

5 tan 0 —10 tan3 0 + tan5 0
20 Show that tan 50 =  —-— —----- —  -------- -¡-z—.

1 -  10 tan2 0 + 5  tan4 0
[Use the method of Example 3.]

21 Find expressions in terms of tan 0 for
(a) tan 60, (b) tan 2nd, (c) tan (2n + 1)0.
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41 — 4t3
22 Show that tan 40 = --------=-----where t = tan 0.

1 - 612 + i4
Hence find the roots of the equation t4 + 4t3 — 6t2 — 4i + 1 = 0 correct to 
three significant figures.

23 Solve the equation t5 — 10r4— 10r3 + 20t2 + 5t — 2 = 0 correct to three 
significant figures.

24 If w = u + if, z = x + iy, and w = z3, express u, v in terms of x, y.
25 Find (a + ib) (c + id) by equating real and imaginary parts in the equation 

(c + id)(p + iq) = a + i b.
26 (a) Find the square roots of — 5 + 12i by equating real and imaginary parts 

of (a + ib)2 = — 5 + 12i.
(b) Find the square roots of i

(i) by the method above
(ii) by using de Moivre’s theorem.

*27 Let C = 1 + cos 9 +  cos 29 + ... + cos(n — 1)0 
S = sin 0 + sin 20 + ... + sin (n — 1)0

Z  = C + iS, z = cos 0 + i sin 0

(a) Show that Z = (1 — z")/( 1 — z).
(b) Express Z with a real denominator.
(c) Deduce expressions for C and S by equating real and imaginary parts. 

28 Sum the series

C = 1 + a cos 9 + a2 cos 20 + ... + a" cos n9 
S = a sin 0 + a2 sin 20 + ... + a" sin n0

29 Examine the answers to Nos. 27 (c), and 28. Show how the series in these two 
questions could be summed by multiplying both sides of the equations by 
some expression.

30 Find the sum to infinity of the series

cos 0 cos 0 + cos2 0 cos 20 + cos3 0 cos 30 + ...

ez, cos z, sin z, where je C
20.6 In this section it is intended to give the reader a glimpse of the way in 
which it is possible to extend the above functions to cover complex variables.

First consider the function e*, where x is real. We have to find some property 
of the function which we can use to define what we mean by ez where z is 
complex. The most obvious way to start is to go back to our definition of e* but 
unfortunately this does not lend itself to an extension to complex numbers; so we 
have to find some other property of ex. Now, e* can be expanded as a power 
series:

x"
, 1 + I  +  _  +  . . ,  +  _ + ...
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and we can readily give ez a meaning by defining it by the series

e2= \ + z  + ^- + ... + Z— + ...
2! nl .

We know that the series for ex is convergent for all real values of x, and we shall 
assume that the series for ez is convergent for complex values of z, but the reader 
should be aware that this does not follow automatically.

The definition of ez by a series poses another problem: will the usual laws of 
indices still hold? In particular, we must satisfy ourselves that

e, x e z =  e,  + !

This is something which has to be deduced from our definition of ez: that is, it is 
necessary to show that

1 + w +
w2 w n \ f  z2 z".. +  — +  ... 1 + z + — +  ..' • - 72! nl A  2! n\

, , , (w + z)2 (w + z f
= 1 + (w + z) -f- ^  ----- T— h2! n!

The conditions under which infinite series may be multiplied are outside the 
scope of this book and so a proof will not be given here, but the reader should 
work Qu. 10.

Qu. 10 Show that term-by-term multiplication of the first few terms of the 
series for ew and ez gives the first few terms of the series for eM, + z.

Also find the terms of degree n in the product and show that they reduce to
(w + z)"/n\

Now let us see what happens if we write z = x  +  iy in the expression ez.

ez = e* + '̂  = e* x eiy

ex is real (and familiar), so we shall examine the function eiy.

i2y2 ¡ v . i4y4 , ,n n
— —-1—“ —-{--- —--- f- .... + -J-—2!

y2

3! 4!

+ ^ -

nl

2!

y3
3!

4!

But

y y yJ
1 -  — + - - . . . =  cosy and y -  — + — sin y

so that

e1* = cos y + i sin y
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A result equivalent to this, discovered by Cotes, was published in 1722, after his 
death.

Qu. 11 Use the results

(cos 9 + i sin 0)(cos 9 — i sin 0) =  1 and e” x e ' =  e"’+z 

to show that

e~'e = cos 6 — i sin 9

Note. In most texts the reader will find the series 

z2 z"
1+ Z  +  -  +  . .. +  -  +  ...

2! n\

denoted by exp z.

We are now in a position to turn to the problem of assigning meanings to the 
functions sin z, cos z, where z is complex.

From above, e,fl = cos 9 +  i sin 9, and from Qu. 11, e _,fl = cos 9 — i sin 9. 
Hence

cos 9 =
eie + e ie

sin 9 = ■
2i

Since e2 has been defined for complex z, we may use these last two equations to 
define cos z and sin z:

IZ I —  IZ

COS z =
e + e

( 1)

sin z =
2i (2)

These results were given by Euler in 1748, twenty years before Lambert 
introduced the hyperbolic functions.

The hyperbolic functions cosh x, sinh x were defined for real values of x in 
Chapter 18:

cosh x = ^(ex + e _x), sinh x =  ^(ex — e_x)

These definitions can be used to define the functions cosh z, sinh z of a complex 
variable z:

cosh z = i(ez + e_z), sinh z =  i(ez — e -2)

Replacing z by iz,

cosh iz = j(e12 + e “ ,z), sinh iz =  ^(e12 — e ~,z) (3)

and so from (1), (2), (3) above we obtain the following relations connecting
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circular and hyperbolic functions:

cosh iz = cos z sinh iz = i sin z

Qu. 12 Confirm these last relationships for real x by rfeplacing z by x in 
equations (3) and expressing e1*, e -1* in terms of cos x, sin x.

Qu. 13 Express cosh z, sinh z in terms of the corresponding circular functions.
w2 wn

Qu. 14 Use the series eM’ = l + w + —  + ...H------ 1-...to show that
2! n\

cosz = l - z-  + z- - . . .

z 3 Z 5

sin z = z —
3! + 5!

Much of the earlier part of this book was concerned with identities connecting 
sines and cosines: will they still hold for cos z and sin z when z is complex?

Qu. 15 Deduce from equations (1) and (2) above that 
(a) cos2 z + sin2 z = 1, (b) cos ( — z) = cos z,
(c) sin (— z) = — sin z, (d) cos (w + z) = cos w cos z — sin w sin z,
(e) sin (w + z) = sin w cos z + cos w sin z.

The other trigonometrical identities follow from these (if you cannot satisfy 
yourself about this, turn to Book 1, chapter 17, where they were proved for real 
numbers); and so trigonometrical functions of a complex variable may be 
manipulated by the same identities as those for a real variable.

Qu. 16 A function of a complex variable is said to be periodic with period p if 
f(z + p) = f(z) for all z. Show that cos z, sin z have period 27t.

Exercise 20d (Miscellaneous)
1 Express in the form a +  ib:

(a) (x + iy)6, (b)
1

3 cos 9 + 2i sin 6 — T

(d) --+ |  where z = x + iy. 
z — 1

(c)
cos 6 + i sin 9 

cos 29 — i sin 29 ’

2 Express in the form a + ib:

(cos 9 + i sin 9)3 (cos 29 +  i sin 29)2
(cos 29 + i sin 29)2 ’ (cos 9 — i sin 0)4

(c) 1 — cis 9 Tcis 29 — ... T ( — l)n—1 cis (n — 1)0, 
where cis r9 = cos r9 +  i sin r9.

3 P 1; P2 are points on the Argand diagram corresponding to the complex 
numbers zx, z2. Show that the mid-point of P 2P2 corresponds to £(z1 + z2);



hence proves that the mid-points of the sides of a plane quadrilateral are the 
vertices of a parallelogram.

4 What is the locus given by zz* + 2(z + z*) = 0, where z = x + iy and z* is its 
conjugate?

Express as an equation connecting z, z* the condition that (x, y) should lie 
on the circle centre (2, — 1) radius 3.

5 (a) Prove that cos5 0 = yg(cos 50 + 5 cos 30 + 10 cos 0), and find an ex
pression for sin4 0 in terms of cos 20, cos 40.

(b) Express tan (0, + 02 + 03 + 04) in terms of tan 01; tan 02, tan 03, tan 04.
6 (a) Express — 1 in the form cos 0 + i sin 0. Hence obtain the three linear

factors of z3 + 1.
(b) Find the real factors of x5 — a5.

7 Show that, if a quadratic equation is satisfied by a complex number, then the 
conjugate complex number is also a root of the equation.

Hence find the quadratic equation satisfied by the complex number 2 — 3i. 
Find the four roots of the equation z4 — 3z3 + 4z2 — 3z + 1 = 0.

8 (a) Solve the equation z4 — 6z2 + 25 = 0.
(b) Given that one root of the equation z4 — 6z3 + 23z2 — 34z + 26 = 0 is 

1 + i, find the others.

9 If z + -  = — 1, prove that z5 + ~  = — 1 and find the value of z11 + -j-r.
z z3 , z

10 Prove that, if a + ib =  c + id where a, b, c, d are real, then a = c, b = d.
Find the sum to infinity of 1 — j  cos 0 + £ cos 20 — ^ cos 30 + ....

11 Find the sum of the series 1 + 2 cos 20 + 4 cos 40 + ... +2" cos 2nd.
12 Prove by induction that, for positive integral values of n,

(cos 0 + i sin 0)" = cos nd + i sin nd

Hence show that the identity also holds for negative integral values of n. 
Find the sum to infinity of the series

sin 0 sin 0 + sin2 0 sin 20 + sin3 0 sin 30 + ...

In Nos. 13-15 x, y, u, v are real numbers, z, w are the complex numbers x + iy, 
u + it;.

13 If w, z are connected by the equation w = z + 1, find the locus of (u, t;) when
( a ) x + l = 0 ,  (b )x  + y —1=0,  ( c ) | z + l |  =  l, (d) | z —3|=2.

14 If w = 3z, find the locus of (u, v) when
(a) x — 2y = 0, ( b ) y - l = 0 ,  (c) |z| = 1, ( d ) | z - 2 |  = 2.

15 The point (x, y) moves once round each of the circles (a) |z| = 1, (b) |z| = 2 in 
a counter-clockwise sense. Describe the corresponding motions of (u, v) if 
w = z2.

16 The point P(x, >j represents a complex number z = x + iy. Given that 
| z + 11 = 21 z — 11, find, in terms of x and y, the equation of the locus of P and 
describe the locus in words.

17 Repeat No. 16 for |z — i| = 31z + i|.

386 Pure Mathematics 2 Ex 20d
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18 (a) Given that (2 +  3i)z =  4 — i, find the complex number z, giving your 
answer in the form a + ib, where a,b eR .

(b) Find the modulus and argument of the complex number 5 — 3i.
The complex number w is represented in an Argand diagram by the point W. 
Describe geometrically the locus of W in each of the following cases:
(i) |vv| = 15 — 3i|, (ii) arg(w — 5 + 3i) =  arg(5 -  3i) + ^n. (C)

19 Express zu where z { = 10 — i 2^/3 
1 - i  3^/3’

in the form p + iq, where p and q are real.

Given that z l =r(cos 0 + i sin 0), where r>  0 and — n < 0 ^ n ,  obtain 
values for r and 0. Hence determine z 19.

Sketch on an Argand diagram the locus of the points representing the 
complex number z such that |z — z l \ = 3. (L)

20 The point P represents the complex number z = x +  iy on an Argand 
diagram. Describe the locus of P if

(a) |2z + 1 — 2i| =  3, (b) a rg |j-İ- jj  =  £ti, (c) | z - i |  + | z + i |  = 4.

If | z [ = 1, find the locus of the point representing the complex number z +
z

(L )
21 (a) Find the modulus and argument of each of the following complex 

numbers:

... 5 + i (5 + i)4 (cos 7t/6 — i sin ti/6 )4

2 + 3i ’ (2 + 3i)4 ’ 111 (sin ti/6  + i cos 7t/6)3 '

(b) Find, in the form reie, all the complex numbers z, such that

(C)

22 The transformation w = (z +  l)2 +  3 maps the complex number z = x + iy
to the complex number w = u + iv. Show that as z moves along the y-axis 
from the origin to the point (0, 2) in the z-plane, w moves from the point (4,0) 
to the point (0, 4) along a curve in the w-plane. Write down the equation of 
this curve. (JMB)

23 (a) Given that the real part of (z — 2i)/(z + 4) is zero, prove that, in the
Argand diagram, the locus of z is a circle. Find the centre of the circle and 
show that the radius is ^5.

(b) Find the image of the circle |z| = 1 under each of the transformations 
given in (i) and (ii) below. If the image is a circle, give its centre and radius. 
If the image is a straight line, give its equation (in any form).

(i) w =
2

i + 2z’ (ii) w =
2 + z 
i — z (C)

24 Two complex numbers w and z are connected by the relation

'1 + zN
w = 2

1 - .
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Prove that, as the point P representing z in the Argand diagram follows the 
locus iX with X decreasing from oo to 0, the locus of Q, representing w is a 
semi-circle C and determine the centre and radius of this semi-circle.

Determine the locus C' of the point Q' corresponding to the point P', as P' 
describes the real axis in the positive direction from the origin.

Indicate on a diagram the loci C and C' and the directions in which the 
loci are described. (O & C)

25 The point P represents the complex number z and the point Q represents 
the complex number w, where w = l / ( z —1). Prove that if |z| =  l, then 
|w| =  |w +  11.

The point P moves anti-clockwise once round the circle C with centre the 
origin and radius 1,
(a) describe the locus of Q;
(b) given that P starts from z = 1, describe carefully the locus of a point R

which represents the complex number i/(z + i). (O & C)
26 Express cos z and sin z in terms of the hyperbolic cosine and sine, and deduce 

the following identities:
(a) sinh 2z = 2 sinh z cosh z, (b) cosh 2z = cosh2 z + sinh2 z,
(c) cosh(w — z) =  cosh w cosh z — sinh w sinh z,
(d) cosh w + cosh z = 2 cosh + z) cosh — z).

27 Define cosh z, sinh z when z is complex. Deduce from your definitions the 
identities:
(a) cosh2 z — sinh2 z = 1,
(b) sinh (w + z) = sinh w cosh z + cosh w sinh z.

Express cosh z, sinh z in terms of the circular cosine and sine, and deduce 
identities corresponding to the two above.

28 (a) Write down the values of | z | and arg(z), where z = x + iy. Illustrate by
means of an Argand diagram.

The numbers c and p are given, c being real and p being complex, with 
p = a + ib; z* and p* denote the conjugates of z and p respectively. Prove 
that, if

zz* — p*z — pz* + c =  0

then the point on the Argand diagram which represents z lies on a certain 
circle whose centre and radius should be determined.

(b) Prove that, if

1

then the points on the Argand diagram defined by making X constant lie 
on a circle, and the points defined by making p a constant also lie on a 
circle.

Prove also that, whatever be the values of the constants, the centres of 
the two systems of circles obtained lie on two fixed perpendicular lines.

(O & C)



29 The coordinates (x, y) of a point P are expressible in terms of real variables u 
and v by the formula

x + i y = (u + ir)2

Prove that the locus of P is a parabola (a) when u varies and v is constant, 
and also (b) when v varies and u is constant. Prove also that all the parabolas 
have a common focus and a common axis.

Prove that through a given point (x0, y0) there pass two parabolas, one of 
each system u = constant, v =  constant, which cut at right angles. (O & C)

30 (a) Complex numbers z y and z 2 are given by the formulae

z 1 = R 1 +itoL  z 2 =  R 2 -------—
(oC

and z is given by the formula 

1 _  i 1
Z Zj z 2

Find the value of to for which z is a real number.
(b) Use de Moivre’s theorem to prove that, if

2 cos 8 = x  + — 
x

then 2 cos n8 = x" + — 
x"

Hence, or otherwise, solve the equation

5x4 — l l x 3 + 16x2 — 1 lx + 5 = 0 (O & C)

Further complex numbers 389



Chapter 21

Further vector methods
Some further examples on scalar products and planes
21.1 In the previous chapter on vectors (see Book 1, §15.13), we found the 
equation of the plane through three given points. Another way of describing a 
plane is to specify a vector which is perpendicular to the plane, and give a point 
through which the plane passes.

Figure 21.1

Suppose the plane is perpendicular to a given vector n, where n =
a

; that
\ c  /

is, every line in the plane is perpendicular to n. Let the given point through 
which the plane passes be A(x1; y u zt) and let P(x, y, z) be any point in the plane 
(Fig. 21.1), then AP is perpendicular to n. This fact can be expressed in terms of a 
scalar product, namely

390
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y-yi 1= 0

X  —  X x

z — z )
Hence a(x — x t) + b(y — y,) + c(z — zf) = 0. 

ax + by + cz = d

where d = axl + byt + czv Notice that the coefficients a, b, c of x, y and z form 
the vector n; consequently if we are given the equation of a plane, we can 
immediately write down the vector which is perpendicular to it.

Example 1 Write down the unit vector which is perpendicular to the plane 
2x + 3y + 6z = 10.

Example 2 Find the equation of the plane through the point (1, 2, 3) and 
perpendicular to the vector 4i + 5j +  6k.

Any plane which is perpendicular to the given vector will have an equation of 
the form

4x + 5y + 6z = d

where d is a constant. To find the equation of the plane which passes through 
(1, 2, 3), we must choose the value of d, so that the equation is satisfied when 
x = 1, y = 2 and z = 3, i.e.

4 x 1 + 5  x 2 +  6 x 3 =  d

i.e. d = 32

Hence the equation we require is 4x + 5y +- 6z = 32.

Example 3 Find the angle between the planes 4x +- 3y 4- 12z = 10 and 
8x — 6y = 14.

The angle required is the angle between the normal vectors and these are 
m = 4i +- 3j +- 12k and n = 8i — 6j. We shall find the angle between m and n by 
finding the scalar product m,n in two forms and equating them. Firstly,

The vector normal to the plane and the magnitude of this is

yj(4 + 9 + 36) = yj49 = 7, so the unit vector required is 7

m.n = (4i +- 3j +- 12k).(8i — 6j) 
= 3 2 - 1 8  
= 14



Alternatively, using m.n = mn cos 0, where m and n are the magnitudes of the 
vectors m and n, and 0 is the angle between them, we obtain

m.n = ^(16 + 9 +  144) x ^(64 +  36) x cos 0 
= J l6 9  x ^/lOO x cos 0 
= 130 cos 0

Equating these two expressions for m.n gives 

130 cos 0 = 14
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.'. 0 = 83.8°

The angle between the planes is 83.8°, correct to one decimal place.

Example 4 Find the distance of the point A(25, 5, 7) from the plane 
\2x + 4y + 3z =  3.

Let P be the point in the plane such that AP is perpendicular to the plane. 
Then the distance required is the length of the vector AP.
__We know that 12i + 4j + 3k is perpendicular to the plane, so let
AP = i(12i + 4j + 3k). Then, since OP = OA + AP,

OP = (25i + 5j + 7k) + r(12i + 4j + 3k)
= (25 + 12f)i +  (5 + 4i)j + (7 +  3f)k

Hence P is the point (25 + 12r, 5 + 4r, 7 + 3t) and, since this point lies in the 
plane, its coordinates satisfy the equation of the plane; consequently,

12(25 + 12i) + 4(5 + 4i) + 3(7 + 3t) = 3 
.'. 169t +  341 = 3

. ' .  t= - 2

Hence AP = — 2(12i + 4j + 3k) = — 24i — 8j — 6k, and so

AP2 = 242 + 82 + 62 
= 576 + 64 + 36 
= 676 

.-. AP = 26

The distance from the point A to the plane is 26 units.

Exercise 21a
1 Find a.b, a.c and a.(b + c), given that 

(a) a = 2i + 2j + k, (b) a = 3i + 7j — 5k, 
b = 3i + 4j +  5k, b = 2i + 6j +  3k,
c = 4i + j — 8k, c = 4i — 8j — 2k.
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2 Find the angle between the vectors a = 2i + k and b =  3i + 4] + 5k.
3 Find the coordinates of the point N, where the perpendicular from (37, 9, 10) 

meets the plane 12x + 4y + 3z = 3.
4 Find the reflection of the point (5, 7, 11) in the plane 2x + 3y + 5z = 10.
5 Given that the vectors a and b have equal magnitudes, prove that 

(a + b).(a — b) =  0 and interpret this result in terms of the parallelogram 
which has a and b as a pair of adjacent sides.

*6 In Fig. 21.2, OA = a, OB = b and the angle AOB is 0.

B

Figure 21.2

By considering the scalar product AB.AB, prove that 

AB2 = OA2 +  OB2 — 2 x OA x OB x cos 6 

7 The points A(x1; y u z t) and B(x2, y2, z2) lie in the plane

ax + by + cz = d

Show that a(x2 — x,) + b(y2 — vx) +  c(z2 — z t) = 0. Hence prove that the 
vector AB is perpendicular to the vector ai + bj +  ck.

*8 The point O is the centre of the circumcircle of triangle ABC (the 
circumcircle is the circle which passes through the vertices of a triangle) and 
G is its centroid. H is a point on OG such that OH = 30G. Prove that AH is 
perpendicular to BC. Prove also that BH is perpendicular to AC and 
CH is perpendicular to AB. (The point H is called the orthocentre of the 
triangle.)

9 In the triangle OPQ the angle POQ is a right angle. The point R lies on PQ 
and PR:RQ =1:3.  Express the position vector of R in terms of p and q, the 
position vectors of P and Q. Given that OR is perpendicular to PQ, prove 
that O P :O Q =  1:^/3.

*10 In Fig. 21.3, OA and OB are unit vectors making angles a and ft respectively 
with the x-axis. Express in terms of a and /?:
(a) OA, (b) OB, (c) the angle AOB.__  ̂ ^

Write down the scalar product OA.OB in two ways. Hence prove that

cos (a — P) = cos a cos P + sin a sin p
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The vector product
21.2 The scalar product, which we met in Book 1, Chapter 15, combines two 
vectors to produce a scalar result. The vector product, which we shall now 
examine, combines two vectors and produces a vector result, i.e. vector 
multiplication is closed (see Book 1, §25.8). The vector product is a useful 
concept in mechanics, where it is used, amongst other things, when finding the 
moment of a force about a point (for further applications the reader should 
consult a suitable book on mechanics).

Definition

The vector product of two vectors a and b, which is written a a b, is given by 
a a b = ab sin 9 n

where a and b are the magnitudes of the vectors a and b,
6 is the angle between a and b,

and n is the unit vector, perpendicular to both a and b, and such that a, b and 
n, taken in that order, form a right-handed set (see Fig. 21.4).

The notation a x b is frequently used instead of a a b, and when this is done it 
is usual to call it ‘the cross product’ of a and b. (a a  b is usually read as ‘a vec b\)

Figure 21.4
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Several features of the vector product a a b should be noted immediately:

(a) b a a = — a a b. This follows from the fact that reversing tjie order of a and b 
in the right-handed set will have the effect of reversing the direction of the 
unit vector. (We say that vector multiplication is not commutative. See 
Book 1, §25.8.)

(b) Given that i, j and k represent the usual base vectors,

j a k = i, k a i= j ,  i a j =  k, 

but

k a j = — i, i a k = — j, j a i = — k.

(c) For any vector a, a a a = 0 (and thus i A i = j A j  = k A k  = 0).

These features of the vector product should be contrasted with those of the 
scalar product a.b = b.a = afr cos 6, set out in Book 1, §15.15.

Qu. 1 Given that a = 5i and b = ^31 -I- j, verify that b = 2 and that the angle 
between a and b is rc/6. Hence, from the definition above, show that a a b = 5k. 
Verify that the same result is obtained by assuming that vector multi
plication obeys the distributive law (i.e. that for any vectors p, q, r, 
pA(q + r) = p Aq  + pAr ;  this will be proved in §21.4.)

The scalar triple product
21.3 For scalar multiplication, the triple product a.(b.c) is meaningless, 
because b.c is not a vector. However, because b a c is a vector, the triple product 
a.(b a c) can be found. We shall show that it is equal to the volume of the 
parallelepiped, whose six faces are the parallelograms formed by taking the 
vectors a, b and c, two at a time (see Fig. 21.5).

First notice that b a c is equal in magnitude to the area of the parallelogram 
formed by b and c. It will be convenient to call this area S. The direction of b a c 
is perpendicular to the plane of b and c; see the unit vector n in Fig. 21.5. 

When we tackle a.(b a c), we obtain a scalar whose magnitude is

Sa cos a
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where a is the angle between n and a (see Fig. 21.5). However, notice that a cos a 
is h, the perpendicular height of the point A above the plane of b and c. Thus we 
can write t

a.(b a c) = Sh

but the product of the area of the base and the perpendicular height of the 
parallelepiped is equal to its volume. So we have shown that

a.(b a c) = the volume of the parallelepiped

Notice that a.(b a c) = b.(c a a) = c.(a a b), because they all represent the 
volume of the same parallelepiped.

Qu. 2 Verify that the result in the preceding section is true for the cuboid 
formed by the vectors

a = 4i, b = 3j, c = 2k

Qu. 3 Describe the circumstances under which a.(b a c) will be (a) zero, 
(b) negative.

The distributive law
21.4 Before we can go far in our study of vector products, we shall need the 
distributive law. This is the law which enables us to remove brackets to obtain 
results such as

aA( b +  c) = a A b  + a A c

Working in the reverse direction enables us to factorise the R.H.S. of such an 
expression. The distributive law will also enable us to expand products of 
vectors expressed in terms of the base vectors i, j, k.

We shall prove the distributive law by considering the vector

v = aA( b + c) — a A b  — a A c

and showing that it is zero.
Scalar multiplying both sides by v gives

v.v = v.a a (b +  c) — v.a a b — v.a a c

(we can do this because we know that scalar multiplication does obey the 
distributive law; see Book 1, §15.16.)

From the last section we know that we can permute the factors in a scalar 
triple product, so this expression can be written

v.v = (b + c).v a a — b.v a a — c.v a a

Now we use the distributive law for scalar multiplication to factorise the R.H.S.

v.v = [(b + c) — b — c] .(v a a)
= [b +  c — b — c] .(v a a)
= 0
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Hence

v2 = 0 
. . v = 0

Thus we have shown that

»A(b + c ) - a A b - a A c  =  0 

a a (b + c) = a a b + a a c 

which completes the proof of the distributive law.

Exercise 21b
1 Find p a q, when

(a) P = » + j, q = k, (b) p =  i + i, q = » - j ,
(c) P = — 2i F 3j + k, q = 5i, (d) p = i + 2j + 3k, q =

2 Find p. (q a i), when
(a) P = », q = i+ j ,  r = k,
(b) P = »+ j, q = i +  2j + 3k, r = 5j -  k,
(c) P = i + j  + k, q = 2i +  3j, r =  4i + 5j + 2k,
(d) P = •+ j, q = - i + j ,  r = - k .

3 Using the vectors in No. 2, find (p a q).r in each part.
*4 Show that if a = + a j  + a3k and b = b î + frj + b3k, then

a a b =
» j k
a i q,2

bi b2 b3

Comment on the properties of the determinant and their relationship to the 
geometrical properties of a and b, when a a b = 0.

5 Use the determinant form of a a b in No. 4 to find a a b, when
(a) a =  2i + 3j + k, b =  5i +  4j — k,
(b) a = 7i + 4j — k, b =  2i — j + k.
(Many people find this a very convenient method for evaluating vector 
products.)

6 Using the vectors in No. 2, find p a (q a r) and in each part show that 
p a (q a r) = (p.r)q — (p.q)r.

7 Using notation similar to that in No. 4, show that

a.(b a c) =
Û1 a2 «3

bi b2 b3
c. C2 C3

Comment on the case a.(b a c) = 0.
(This form of the triple product can be used to prove that

a.(b a c) =  b.(c a a) =  c.(a a b))
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8 Find a unit vector which is perpendicular to the vectors

i + j + k and i + 2j + 3k

9 Prove that if p + q + r = 0, then p / \ q = q A r  = rAp.  *
10 If a, b, c and d are four given vectors and /a  + /rb + vc = d, where A, n, v e IR, 

prove that

d.(b a c)
/  = -----------

a.(b a c)

Using this, and corresponding expressions for ¡x and v, solve the equations

/  + 4/r + 2v = 0 
2a — h + v = 0 
8/ -f- 5/x -f- 6v = 6

The vector triple product
21.5 As b a c is a vector, the possibility of forming a triple product a a (b a c) is 
a viable proposition. (The reader should now do Qu. 4, below.)

Qu.4 Given that a = i, b = j and c = 3i + 4j, show that

a a (b a c) = 3j 
(a a b) a c = 3j — 4i

This brings us face to face with a rather disturbing fact: the triple products 
a a (b a c) and (a a b) a c are not the same. (We say that vector multiplication is 
not associative. See Book 1, §25.8.) However this is not so surprising if we 
consider the direction of the vector a a (b a c). We know that b a c is per
pendicular to the plane containing b and c, and that a a (b a c) is perpendicular 
to the plane containing a and b a c. Consequently a a (b a c) is parallel to the 
plane of b and c. By similar reasoning (a a b) a c is parallel to the plane of a and 
b. Consequently we should expect a a (b a c) and (a a b) a c, in general, to be 
different.

From the last paragraph we can deduce that a a (b a c) is a linear combina
tion of b and c. In other words we can write

a a (b a c) = /b + /rc

where /  and fx are scalars.
Clearly the scalars a and /r will depend on the vectors a, b and c. We shall now 

show that /  = a.c and ¡x = —a.b, i.e. that

a a (b a c) = (a.c)b — (a.b)c (1)

There is no loss of generality if we fix the axes to suit our own convenience 
(provided they form a right-handed set of mutually perpendicular lines). We 
shall choose the direction of c as one of the axes, and it will be especially 
convenient to make this the z-axis. Nor is there any loss of generality if we 
choose the scale to suit ourselves, so we shall choose a scale such that c is a unit
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vector. In other words we choose

c = k (2)
«

We are still free to choose one of the other axes (the remaining axis must 
complete the right-handed set). We shall choose for the >’-axis a line per
pendicular to the axis which we have already fixed, and in the plane containing b 
and c. This enables us to write b as a linear combination of j and k. We shall 
write

b = Pi + yk (3)

We cannot have any choice over how we write a and so this will have to be 
expressed in terms of all three base vectors, i.e.

a = cqi + a j  + a3k (4)

Now we are ready to start! First we shall find b a c:

b a c = (P\ + yk) a k
= P i

Now consider a a (b a c):

a a (b a c) = (cqi + a j  + a3k) a pi 
= ~Pa2k +Pad

This is a simple looking result, but we have to transform it into a linear 
combination of b and c. This can be done by writing

~Pa2k + fiatf = a3(Pj + yk) + {~Pa2 -  ya3)k 
=  a3b — (Pa2 + ya3)c

We have now arrived at the required form Ab + /re, but we still have to express A 
and n in terms of scalar products, as in (1).
From (2) and (4)

a.c = (aji + a J  + a3k).k =  a3 = A

From (3) and (4)

a.b = (ati + a J  +  a3k).()Sj + yk) = Pa2 + ya3 = - / r  
.'. a a (b a c) = (a.c)b — (a.b)c

Qu.5 Given that

a = i + j  + k 
b = i — j — k
c = i + 2j + 3k

find a a (b a c) and verify that it is equal to (a.c)b — (a.b)c.

There is no need for a separate proof of the formula for the triple product 
(a a b) a c; it can be deduced from the one above, as follows:

(a a b) a c = — c a (a a b)



and now we only have to permute the letters in the formula we have already 
proved, i.e.

(a a b) a c = — [(c.b)a — (c.a)b]
= (c.a)b — (c.b)a

Qu.6 Prove that (a a b) a (c a d) =  b(a.c Ad) — a(b.c a d).
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The perpendicular distance of a point from a line
21,6 In Fig. 21.6 suppose that we are given the coordinates of the point P and 
the equation of the line /.

P

Figure 21.6

In order to calculate the distance of P from l, we shall need to calculate the 
length of PM, where M is the foot of the perpendicular from P to l.

Now

PM = AP^sin Q 
= | AP a u

where u is a unit vector along the line /. So the perpendicular distance of P from / 
is given by

l(P — a) a u| (1)

When we are given the equation of a line, it is always possible to find a point A 
on it, and a unit vector parallel to it; the next example illustrates how to use 
formula (1).

Example 5 Find the perpendicular distance of the point P(0, 14, 10) from the line 
whose equation is r = (i 4- 2j 4- 3k) 4- l(3i 4- 4k).

By putting X = 0, we can see that the point (1, 2, 3) lies on the line, so this will 
be the point A in (1) above. Also we know that the line is parallel to (3i 4- 4k), but 
this is not a unit vector, so we must divide by its magnitude, i.e. 5, thus taking u to 
be 4{3i 4- 4k). Using (1), the perpendicular distance required is the magnitude of
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(p — a) a u. In this example,

(p — a) = (14j + 10k) — (i + 2j + 3k) = — i + 12j + 7k 

(p -  a) a u = — i + 12j + 7k) a (3i + 4k)

i
~  5

i j k
— 1 12 7

3 0 4
(See Exercise 21(b), No. 4)

= $(48i + 25j -  36k)

The magnitude of this (and hence the required perpendicular distance of P from 
the line) is equal to

|  x 7(482 + 252 + 362)
= |x 6 5  
= 13

(For another method, see Exercise 21c, Nos. 12 and 13.)

Qu.7 Find the perpendicular distance of the point P(2, 3, 4) from the line 

r = (i + 15j + Ilk) + 2(4i -  12j -  3k)

Exercise 21c (Miscellaneous)
1 Given that a = 2i — 3j + k, b = i — 2j + k, c =  3i + 2j — k, find:

(a) a.(b a c), (b) a a (b a c), (c) (a a b) a c.
2 Find a vector which is perpendicular to both p and q, where

p = i + 3j + 5k and q = 4i — j + 2k

Hence write down the equation of the plane through the origin, parallel to p 
and q.

3 Prove that
(a) p a (q a r) + q a (r a p) + r a (p a q) = 0 .

(b) (p a q).(r a s) =
p.r
q.r

p. s
q. s

4 Prove that if the points A, B, C, whose position vectors are a, b, c, 
respectively, are coplanar, then a.(b a c) = 0. Hence or otherwise, find the 
equation of the plane through the points (6,3,0), (2,2,2) and (3,3,1). [Hint: if 
P(x, y, 2) is a general point in the plane, then the vectors AP, AB and AC are 
coplanar.]

5 Let a be the unit vector along a line /, and let m = r a a, where r is the 
position vector of any point P on / with respect to a fixed origin O. Show that 
m is independent of the choice of P.

If another line /' has corresponding vectors a' and m', prove that, if l and /' 
intersect, then a.m ' + a'.m = 0. (O)

6 The non-collinear points A, B and C have position vectors a, b and c 
respectively with respect to an origin O, and bA c = p, c A a  =  q, a A b  = r.
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Show, from the definitions of the scalar and vector products, that
(a) a.q = a.r = 0,
(b) the normal to the plane ABC is parallel to p + q + r.

Given that A, B and C lie on a sphere of unit radius with centre O, and that 
the normal through O to the plane ABC meets the sphere at a point D, whose 
position vector with respect to O is d, show that

(a.p)d = (p + q + r)cos 9
where 6  is the angle AOD. (JMB)

7 The points A and B have coordinates (2, 1, 1) and (0, 5, 3) respectively. 
Find the equation of the line AB in terms of a parameter. If C is the point 
(5, —4, 2) find the coordinates of the point D on AB such that CD is 
perpendicular to AB.

Find the equation of the plane containing AB and perpendicular to the 
line CD. (O & C: MEI)

8 The parametric equations of two planes are

and

'"CiMiMD
(a) Find the cosine of the acute angle between the planes.
(b) The line of intersection is /. Find, in the form r = a + Ab, the equation of /.
(c) Show that the length of the perpendicular from the point (1, 5, 1) to the

line l is yj2. (C)
9 Show that if it is possible to find a vector r such that r a a = b, where a and b 

are given vectors, then a.b = 0.
Find the set of vectors r which satisfy r a a = b in the following cases:

10 (a) Find the image of the origin by reflection in the plane

x + 2y + 3z = 14

(b) Find the coordinates of the foot of the perpendicular from the origin to 
the line

x —1 y —1 z — 1 
1 = 2 =  3

(c) Find the equations of the spheres which touch the plane containing the 
y- and z-axes at O and also touch the plane x +  2y + 2z =  1. (O & C)
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*11 Prove that the line through the point (xl5 y u z t) perpendicular to the
plane ax + by + cz = d meets the plane at a point whose coordinates are
, , x , d — (a*! +byx + czy) TT , ,(xl +ta, y 1 +tb, Zy+tc),  where t = ------5— -=---- =------ *. Hence show that

a + b + c
the perpendicular distance from the point to the plane is

d — (axj 4- byy + czy) 
y/(a2 + b2 + c2)

12

13

Given that a = and p = and that R is a point on

the line r = a + tn, express PR2 in terms of t. Show that, as t varies, the least 
value of PR2 is 37 and verify that, in this case, PR is perpendicular to the 
line.
Given that a is a constant vector which is perpendicular to a unit vector u, 
and that R is any point on the line r =  a + tu, show that the distance to R 
from a fixed point P, whose position vector is p, is given by

PR2 = (a -  p).(a -  p) -  2r(u.p) + t2

Hence show that the least value of PR2, as f varies, is (a — p).(a — p) — (u.p)2. 
Prove that PR is then perpendicular to the given line.

14 Use the formula of §21.6 to show that the least value of PR in No. 12 is J37.
15 Use the formula in §21.6 to show that the perpendicular distance of the 

point P from the line in No. 13 is

^ { ( a - p M a - p J - iu .p ) 2}



Answers

Although either sin “ 1 x, etc. or arcsin x, etc. can be used for the inverse 
trigonometrical functions, for convenience, the former notation is used through
out the answers.

Chapter 1

Qu. 1 (a) 16x(2x2 + 3)3, (b) ■ 2* ~ l , (c) -4(2x  -  l)” 3,-  2x + 1)
(d) 4 cos (4x — 7), (e) 3 tan2 x sec2 x, (f) — 6 cos 3x sin 3x.

Qu. 2 (a) ¿(x2 + l)3 + c, (b) jo(2x + l)5 + c, (c) j x 1 + fx 5 -I- x3 +  x + c,
(d) -  £ cos 3x + c, (e) |(x 3 + 1)3/2 + c, (f) j  tan2 x + c,

Qu. 3 (a) j  cos3 x — cos x + c, (b) sin x — § sin3 x + } sin5 x + c.
Qu. 4 (a) ^ sin3 x — ^ sin5 x + c, (b) y cos5 x — -j cos3 x + c.
Qu. 5 |  sec3 x — sec x -l- c.
Qu. 6 Y2 sin3 4x + c.
Qu. 7 — cos x + 1 cos3 x — 3 cos5 x + c.
Qu. 8 (a) ^ (2x  + l)3/2(3x -  1) + c, (b) ^(2*  + l)3/2(3x -  1) + c,

(c) 5^i(3x — 2)7(21x + 2) + c.
Qu. 9 (a) 45°, 7t/4 rad, (b) 30°, j i/6  rad, (c) 45°, n/4 rad, (d) 60°, n/3 rad,

(e) 30°, n/ 6  rad, (f) 0°, 0 rad, (g) 60°, n/3 rad, (h) 30°, n/ 6  rad,
(i) 30°, n/ 6  rad, (j) 60°, ti/3 rad, (k) 90°, n/2 rad.

Qu. 10 (a) ti/9, (b) 7tc/18, (c) 5n/6, (d) 5tt/3, (e) 9n/4.
Qu. 11 (a) 57.3°, (b) 1.7°, (c) 71.6°, (d) 41.0°, (e) 36°.
Qu. 12 (a) 1.29, (b) 0.927, (c) 0.784.

x _ . _. 3x
Qu. 13 (a) 3 cos u, sin (b) cos u, sin 5x, (c) 2 cos u, sin — ,

Qu. 14

(d) cos u, sin 1 

(a) sin - 1 ^  + c, (b)

X

V7
1

V3

, (e) cos u, sin 1 y/3x, (f) yj3 cos u, sin

• /„ . , 1 . 3xsin ^3x  -I- c, (c) -  sin +

- 1y/?X.

404
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Qu. 16 tan 1 x + c.
Qu. 17 (a) 9 sec2 u, tan “ 1 —, (b) sec2 u, tan " 1 2x, (c) 25 sec2 u, tan “ 1

Qu. 18

Qu. 19 
Qu. 20

(d) 3 sec2 u, tan 1 —p~, (e) sec2 u, tan 1 ^5x, (f) 7 sec2 u, tan 1 y/jx. 
v  3

1 , 2x
(a) j  tan 1 -  + c, (b) f  tan 1 4x + c, (c) tan~

(a) 0.866, (b) 0.479, (c) 2.57, (d) -0.990, (e) 1.04. 
(a) jn, (b) -  in, (c) in, (d) 1.11.

V3
+  c.

E x e r c is e  l a ,  page 3
2 _ Q Y

1 (a) 30x(5x2 -  l)2, (b) — ^ , (c) fx(x2 + 4)~2/3, (d) -  5 cosec2 5x, 
(2x — x +  3)

2

3

4

5
6
7
8 
9

10
11

(e) -  5 sin (5x -  1), (f) f  sin fx, (g)
1

2 yjx
sec2 yjx, (h) 4 sec2 2x tan 2x,

(i) — f  cot x^cosec x.
(a) iV(x2 — 3)6 +  c, (b) — l)6 +  c, (c) fx 4 +  fx 3 +  2x2 +  c,
(d) - f ( x 2 + 1)~1 + c, (e) - f(x2 + 2x -  5)-2 + c, (f)f(x2 -  3x +  7)3 + c,
(g) -  i(4x2 -  7)“ 1 +  c, (h) |(3x2 -  5)3/2 +  c, (i) fx 7 + fx 4 + x  + c,
(j) f ^ x 3 — 3x) +  c, (k) -  f(2x2 -  4x + 1)71/2 +  c, (1) fx 7 -  ^ x 5 + 2x3 -  x +  c. 
(a) sin 3x + c, (b) — f  cos (2x + 3) + c, (c) f  sin2 x + c, (d) f  sin 2x + c,
(e) — i  cos3 3x + c, (f) 5 tan3 x + c, (g) f  sec5 x + c, (h) § sin3/2 x + c,
(i) — \  cot x2 + c, (j) 2 sin y/x +  c, (k) — f  cosec3 x + c.
(a) sin x — j  sin3 x + c, (b) 2 sin f  x — § sin3 f  x + f  sin5 f  x + c,
(c) i  cos3 2 x ~ \  cos 2x + c, (d) f  sin (2x + 1) — £ sin3 (2x + 1) +  c,
(e) — f  cos3 x + 1 cos5 x — y cos7 x  + c, (f) £ sin4 x — £ sin6 x + c,
(g) tan x + y tan3 x + c, (h) cosec x — f  cosec3 x + c,
(i) sec x — |  sec3 x + £ sec5 x + c.
(a) i  sec4 x + c, (b) j  tan2 x + i  tan4 x + k.
A + \  sin2 x, B — j  cos2 x, C — i  cos 2x.
(a) f(l — cos x), (b) f(l + cos 6x).
(a) f  x + i  sin 2x + c, (b) f  x — f  sin x + c, (c) f  x + yy sin 6x + c. 
i  — j  cos 2x + i  cos2 2x, £{1 +  cos 4x). 
f  x + i  sin 2x + sin 4x + c.
(a) fx — i  sin 2x + c, (b) fx  + £  sin fx  + c, (c) fx — £ sin 4x + sin 8x + c,
(d) fx +  f  sin x +  sin 2x +  c.

13 (a) 2^/2 sin — + c, (b) — cosec x +  c, (c) f  sin4 x +  c, (d) — -  cos3 — + c.

14 (a) 2 sin 2x cos x, (b) sin 5x +  sin x, (c) — x g  cos 5x — f  cos x + c.
15 (a) i  cos 2x — f  cos 4x + c, (b) f  sin 2x + sin x + c,

(c) £ sin 3x — yg sin 5x + c.

E x e r c is e  l b ,  page 6

1 (a) ^ (4 x  -  1)3/2(6x + 1) + c, (b) i f i ^ x  +  2)3/2(15x -  4) + c, 
(c) jU 2 x -  l)7(14x + 1) + c, (d) f(x + 4)v /fx -  2) + c,
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Page 1

(e) jq(x — 1 )5(5x +  13) + c, (f) ygg(x — 2)6(21 x 2 + 156x + 304) + c, 
x 2 — 4x 4- 8

(g) — —  ------h c, (h) i(x -  6)7(2x + 3) + c.

3 (a) i55(3x -  4)3/2(9x 4- 8) + c, ^{3x2 -  4)3/2 + c,
(b) y^x2 + 5)7 + c, 3̂ (x + 5)7(7x -  5) + c,
(c) f(x + 2 )y/(x -  1) + c, yj(x2 -  1) 4- c.

4 (a) g(2x2 + 1)3/2 + c, (b) - y (x 3 -  x + 4)-2 + c, (c)y^(2x -  l)3/2(3x + 1) + c,
(d) j  sin 2x — g sin3 2x + c, (e) — |(cos x)3/2 + c, (f) — y cot3 x + c,
(g) yV(4x2 -  l)4 + c, (h) y ( 2 x 2 -  5)+ c, (i) -  2(8 + x)7(4 -  x) + c,
(j) -  2 cos yjx  4- c.

Exercise lc, page 8

1 (a) if» 05) 37), (c) >/3 — (d) —-¿j , (e)
2 (a )& ,(b )* ,(c )* (4 -V 2 ) .
3 (a) 1 -  y 3, (b) (c) -  (d) f, (e) yoMoo, (0 24.3, (g) f , (h) (i) f.
4 2^2 -V 3 .
5 f
6 i n 2.
7 in.

Exercise Id, page 12

1 (a) 45°, jt/4 rad, (b) 45°, n/4 rad, (c) 17.3°, «73/18 rad, (d) 60°, «/3 rad, 
(e) 52.0°, y 3 / 6  rad, (f) 15°, «/12 rad, (g) 67^°, 3n/8 rad, (h) 15°, n/12 rad.

2 (a) 0.559, (b) 1.05, (c) 0.0992, (d) 4.11.
3 (a) 114.6°, (b) 4.6°, (c) 78.0°, (d) 30°.
4 (a) 0.927, (b) 0.588, (c) 1.12.

x
5 (a) 4 cos u, sin “ 1 —, (b) cos u, sin “ 1 3x, (c) 3 cos u, sin “ 1 fx,

X
(d) 7 l0  cos u, s in "1 (e) cos u> sin- 1 yj6 x, (f) y/5 cos u, sin - 1 7f*-

x 1 3x x
6 (a) sin- 1 -  4- c, (b) j  sin- 1 2x + c, (c) -  sin- 1 —  + c, (d) sin- 1 - j j  4- c,

1 1 _ h
(e) - ^ s in  1 7  7x + c, (f) — sin 1 ^ /-x  + c.

x /3
7 (a) 16 sec2 u, tan - 1 —, (b) sec2 u, tan - 1 3x, (c) 4 sec2 u, tan - 1 x,

(d) 2 sec2 u, tan 1 - j - ,  (e) sec2 u, tan 1 yj3x, (f) 5 sec2 u, tan 1 yj\x.
V 2

8 (a) ^ tan -1 j  4- c, (b) g tan -1 6x + c, (c)^-y^tan-1 ^ x  + c,

7 5 ,an"' 7 5 + (e) 7 6 ,an" +«■ ® 7 5 5 * + °
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Page 13

9 ^ 3 ^ tan 1 ~ T X + C’ (b) ^ sin 1 4 “x + c’ (c)^2 s.in _ 1  J '^X + C’
(d)- tan -  x + c.

V 15 '""  >/3'
10 (a) i n ,  (b) i n ,  (c) tt, (d) ^ ti, (e) ^ r t , (f) i n .

X  X  X  TT X
11 (a) (i) sin ” 1 — + c, (ii) — cos “ 1 — + c = — cos _1y  + - +  /c = sin_1-  + /c.

(b) (i) 7̂t, (ii) 7̂1.
x “h 1 x — 3

12 (a) sin ” 1 —----- h c, (b) 3 tan “ 1 —----- 1- c.

13 (a) ^ tan

2
_ 1 x + 3

+ c, (b) sin 1
x — 1

+  C, (c) L tan- ,!£ z 2 jV 3
\ PV 15 + c->

. . .  1 . X +  1
(d) ^ 3  sm —j j -  + c.

14 (a) (i) (x -  3)2 + 7, (ii) 3(x -  2)2 + 2, (iii) 2(x -  l )2 + 3.

(b) (i)^ tan  1 ~ 2 ~  + c> (ii) tan _1

(iii) ^ tan“ 1 ^ - 3  + c, (iv) tan” 1 2̂ 3 ^  + c.

15 (a) (i) 4 -  (x + l)2, (ii) 9 -  (2 -  x)2, (iii) -  2(x -  j)2.
x —|— 1 2

(b) (i) sin“ 1 —----- 1- c, (ii) \  sin“ 1 - ^-  (x — 1) + c, (iii) sin"

, 1 ■ - i (x — 3)^2 ,
(iv) ^  sm ----- -------- c’

16 (a) ¿it, (b) £71.
17 (a) 3 sin“ 1 x + ^/(l — x2) + c, (b) 3 sin 1 — — 2^/(4 — x2) + c.

x — 2
+ c,

18 (a) j  sin 1 x — ¿x^/(l — x2) + c, (b) — tan 1 — + •3 18(9+ x2) + c,

(c)^sin 1y + c .

19 (a) /a X a A + c> (b) ~  ~  VC1 ~  x2) + c> (c) sec 1 x + c.V(1 ~ 9 x 2) x v

Exercise le, page 16

1 (a) 0.966, (b) 0.997, (c) 0.0808, (d) 1.05
3 (a) 1.25, (b) (^3/3)7:, (c) n/6 , (d) 1.96, (e) 1.25.

4 (a) x = (b) x = W 3>' +  iV (1 ~>'2)-
5 (a) ti/6, (b) 0.325.
6 (a) ti/4, (b) 0.322.
7 (a) 10, 0, — 10, 0, 10 m, (b) After n/3 s, (c) After §71 s.
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Page 17
8 (a) 0, 5, 0, —5, 0 m, (b) 2 sin-1 f  «  1.29 s.
9 (a) 0.464, (b) 0.927, (c) 0.0183, (d) 0.0947, (e) 0.168, (f) 0.300.

Exercise If, page 17

1 $(x3 — 1)3/2 + c. 2 — ¿(x2 —1 )“2 +c . 3 —¿cos3 2x + c.
4 2^/tan x + c. 5 3 sin 4x — yj sin3 4x + c. 6 j x  — f  sin f  x + c.

7 |x  + ^ sin 4x + sin 8x + c. 8 — 2^/2 cos — + c.

X
9 — 3 cos4 — + c. 10 yjj sin 5x + j  sin x + c.

6
11 27o(15x + 7)(3x — 7)5 + c. 12 f(x -  10)7(5 + x) + c.

21 (a) - 7 (1 - * 2) + c, (b) 2 tan 1 x + c, (c) -¿ (1  -  x2)3/2 + c, 
(d) 2 sin“ 1 x + c, (e) 2 sin" 1 x +  7(1 — x2) + c.

32 j x  — |  sin f  x +  c. 33 §72 sin f  x + c.
34 2 sin“ 1 ¿ x + ^x 7 (4  — x2) +  c. 3 5 y se c 5x + c. 36 ^ sin“ 1 fx 3 + c.

22 ^ ( 3 x  + 2 0 ) 7 ( 3 x  -  1) + c. 23 ¿ ( x 2 +  2 )3/2 + c. 2 4 -  ^ — —  + c.
X

25 -  cos5 ^  — -  cos3 ^  + c. 26 — ¿7(4 — x 2) + c- 27 3 sin“ 1 ^  + c. 

28 j^g(x + 3)6(21x2 — 66x + 61) + c. 29 2 sin“ 1 ^  —-x7 (4  — x2) + c.

30 2 sin 12 sin 1 y  -  7(9 -  x2) + c. 31 y J-3 tan 1 (* -  2) + c.

48 4 7i. 49 73/4.
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Chapter 2
Qu. 1 The larger a, the larger the gradient.
Qu. 2 The reflection of y = 2* in the y-axis.
Qu. 3 (a) 0.7 x 2*. 1.1 x 3*. (b) 1.4, 1.9.
Qu. 4 0.7 x 2*.
Qu. 5 1.08.
Qu. 6 (a) 30x2(2x3 + l)4, (b) 6x2 cos (2x3), (c) 6x2 e2*3, (d) 2y ey2

Qu. 7 

Qu. 8

(e) — 2x e *2, (f) sec2 x x etan *, (g)
1 dy

e^*, (h) cos y x esin y — . 
2 yjx dx

(a) - i ( x 2 + 1) 1 + c, (b) - j  cos x2 +  c, (c) \  e* +  c, (d) - e cosx + c, 
(e) 6 e*/3 + c, (f) |  e2x +  c, (g) j j e 3*2 +  c, (h) -  j  ecot 2x +  c.

(a) log10(100a2f> 1/3), (b) log
B( 1 + x) 

1 — x
Qu. 9 (a) logc 2 + log, a, (b) 2 log, a, (c) -  log, a, (d) log, 2 -  log, a,

(e) |  log, a, (f) log, a -  log, 2, (g) -  2 log, a, (h) -  log, 2 -  log, a. 
Qu. 10 (a) x = f , (b) x =  6.02.
Qu. 11 (b) 4.61.
Qu. 12 0.693.
Qu. 13 (a) In (xy/e), (b) 2.
Qu. 14 (a) x2, (b) 1/x, (c) y/x, (d) sin x, (e) ix 2, (f) {x.

2.x
Qu. 15 (a) 10x(x2 -  2)4, (b) — 2x cosec x2 cot x2, (c) 2x ex2, (d) 2—

(e) 2 cot x, (f) 2x cot x2.

Qu. 16
3x + 2

2x(x + 1)

Qu. 17 (a) (b) (c) r> (g) 3
x — 1 ’ h t dx’

x
(i) cot x, (j) — 3 tan 3x, (k) — 3 tan x, (1) 6 cot 3x, (m)

(n )
1 + x 

x(l — x)
Qu. 18 4* In 4, 16 In 4.
Qu. 19 (a) 0.6931, (b) 1.0986.
Qu. 20 (a) 10* In 10, (b) 23x In 64.

5*
Qu. 21 5* In 5, -—-  + c.

Qu. 22 x 2* In 4, —— + c. 
In 4

2'anX
Qu. 23 (a) —  + c, (b) i  ex3 + c, (c) +  c.

Qu. 24 (a) 2 In x + c, (b) ^ In x + c, (c) |  In (3x — 2) + c, (d) ^ In (x — 2) + c. 

Qu. 25 (a) j  In (2x + 3) + c, (b) In -— -  + c.
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Qu. 26 In 8.
Qu. 27 (a) c = In A, (b) c = In ( k j 2).

Qu- 28 (a) + c, (b) ^ sin x3 + c, (c) ^ ex3 + c, (d).ln {fc^(x3 -  2)},

(e) In {k^Jix2 -  2x)}, (f) In (g) In (k sin x).

Qu. 29 x + ln (x —l) + c.
Qu. 30 (a) In f , (b) — In 2.
Qu. 31 - In  2.
Qu. 32 No.

Qu. 34 (a) In (b) —In 5. 
Qu. 35 — In 3.

Exercise 2a, page 24

2 Yes. (a) Neither, (b) even.
3 Even. 0 < y ^  1.
4 1.1 x 3*. .
5 (a) 4 ex, (b) 3 e3x, (c) 2 e2x + 1, (d) 4x e2x2, (e) — 2 e _2x, (f) 3 e3y — ,

ax
(g) 2x e*2 + 3, (h) -  2x ̂ 3 ex‘ 2, (i) -  5x “ 2 e5/x, (j) ^x “ 2/3 ex'/3, (k) lax  eax2 + b,

(1) pVi df
2 yjt dx’

6 (a) — ecosx sin x, (b) esecx sec x tan x, (c) e3tan)’ 3 sec2 y
dy
dx’

(d) 2 esin2x cos 2x, (e) e cotx cosec2 x, (f) — 2 e
, , sin x 
(g) ------ e

c o s e c ^ x cosec x cot x, 
dt

„ , v''cosx, (h) ab eosini,x cos bx, (i) 3 esin 3‘ cos 31 — , 
2^/cos x dx

(j) 2x etanx2 sec2 x2.

7 (a) j) e</ixl + (b) eU *2)" \  (c)4esin24xsin 8x,

(d) 2x elan(x2 + sec2 (x2 + 1), (e) 6 esec23x sec2 3x tan 3x,
(f) e~cosccx cosec x cot x, (g) 2x_ 3 e x”2, (h) (sin x + x cos x) exsinx,

(i) e*y ( y +  x ^~)> (j) e* + e"
8 (a) ex(x2 + 2x), (b) (x — 1) ex/x2, (c) j  esinx (1 + x cos x),

(d) ex cosec x (2x — cot x), (e) ex cosec x (1 — cot x),
(f) — e _x x~2(x sin x + x cos x + cos x), (g) (1 + x) ex+xc*,
(h) eox sec bx(a + b tan bx), (i) eax cosec bx(a — b cot bx),
(j) n ex tan”' 1 ex x sec2 ex, (k) 2 ex cos x.

9 (a) 6 ex/2 + c, (b) —e x + c, (c) 3 ex/3 + c, (d) § e3x_ 1 + c, (e) \  ex2 + c, 
(f) - i e - x3 + c, (g) — ecosx + c, (h)e,anx + c, (i) -  eco,x +  c, (j) - e 1/x + c.

10 y = ea(x — a+  1), y — e2x + e2 = 0.
11 -j7t(e2 — 1).
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Page 24
12 e*(l + x), e*(x — 1) + c.

13 Minimum — -  when x = — 1, e2y + x + 4 = 0. •
e

18 25 e4x cos (3x + 2a), 125 e4x cos (3x +  3a).
19 13" e5x sin (12x + nfi).

Exercise 2b, page 28

1 (a) log10 (b) loge (c) log, (d) log, { k j ( l  -  y2)}.

2 (a) log, a + log, 3, (b) 3 log, a, (c) log, a -  log, 3, (d) -  3 log, a,
(e) log, 3 -  log, a, (f) - lo g , 3 -  log, a, (g) £ log, a.

3 (a) log, cos x — log, sin x, (b) 2 log, sin x — 2 log, cos x,
(c) log, (x -  2) + log, (x +  2), (d) \  log, (x + 1) -  \  log, (x -  1),
(e) log, 3 + 2 log, sin x.

4 ,(a) a = 100, (b) y = 100 or y =
5 (a) x = §, (b) x = 1.26.
6 1. 10.

7 x = 1 or x = — 2.
8 a = 10 or a = 100.
9 x = + §.

10 x =  1, y = 10 or x = 10, y = 1.

Exercise 2c, page 32

(j) “ ' 3d£ -  1

1 (a) —, (b) —, (c);
X X

■ *TT' M i  %  w -  j - ,m) ; • <n) ,o) -  ? (p) -  ? ,q) -  ?
1 3 dt 1

x In 10’ S t dx’ 1 3x"(r)

(a) — tan x, (b) 2 cot x, (c) 6 cosec 6x, (d) — 6 tan 2x, (e) — 4 cosec 2x, 
(f) — 4 tan 2x, (g) cosec x, (h) tan x, (i) sec x, (j) — 2x cot x2, (k) 2 sec 2x.

3 (a)
2x2 — 1

, (b) (c)
3x — 5

'»(d)
1

2(x2 - l ) ’ v V(x2- 1 ) 'x^ — 1 ' ' x(x2 — 1)’

(a) -  (b) 1 + In x, (c) x + 2x In x, (d) -i- (1 — In x), (e) In y + — -A
t dx x  V ax

(0 -  + ^  In x, (g) -  — 3 x dx x
2 In x In x — 1 2

(a) 5X In 5, (b) x 2X2 In 4, (c) f  32* In 3, (d) 1.

1
x In x

y

, (k) cos x.

3X 2 * 2
(a) 3X In 3, ~  + c, (b) x 2*2 In 4, —  + c.

, y3x 3x2 2cosx

7 (a)i n o  10' + c ' (b )t a 8 + c - ,c )5 r 9 + c ' (d )- - i i y + c.
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Page 33
8 1 +  In x, x(ln x — 1) +  c.

x 2* 2*
9  2 x ( 1 + * l n 2 ) ’

10 (a) l/(x — 2), (b) l/(x — 2). 
1 2  (a){j>:j^O },(b)R

+ c.

Exercise 2d, page 39

1 (a) In (fcx1/4), (b) In (kx5), (c) In {/cv/(2x -  3)}, (d) In {k j(x  + 4)},
(e) In {fc(3 -  2x)-1/2}, (f) In {fc(l - x 2)“ 1/2}, (g) In {k(x2 -  1)3/2},
(h) In {k(x2 + x — 2)}, (i) In {k$(3x 2 — 9x + 4)}, (j) x — In {k(x + 2)2},
(k) j x  — In {fc(2x + 3)9/4}, (1) — 2x — In {/c(3 — x)6}, (m) — x — In {k(2 — x)},

(n) — 2x — In {k(x — 4)5}, (o) In (k sec x), (p) In ^k  sin2

(q) In {kyjsin (2x +  1)}, (r) In  ̂k cos3 (s) In {k(x — sin2 x)},

(t) In {/c(sin x + cos x)}, (u) In {k(x + tan x)}.

2 (b) ¿ T  ¡ ¿ T <c* i ln 3> ~ i ln 5-
3 (a) In (b) In 2.

4 (a) —^ ( b) _ ln  15> ln L5-
5 (a) ln 2, (b) i  ln 2, (c) - l n  2, (d) j  ln 5 -  ln 3, (e) ± ln 3, (f) - ±  ln 2,

(g) ln 7, (h) 2 +  ln 4, (i) 2 +  ln 4, (j) -  \  -  ln f , (k) i  ln f , (1) j  ln 2, (m) \  ln 3.

Exercise 2e, page 40

1 x = 4 or x = yj2.
2 x =0.178.
3 x = 3 or x =  1.
4 (a) x = 7.13, (b) x =  0.304, (c) x =  0.1.
5 y = 100x_2/3.
6 - 1.20.

7 (3, 9), (9, 3).
8 (a) R, [y.y  e R, y ^  1}, R +, (b) g!g2(x) = ln (2 + 2x + x2), neither; 

g2giW  = 1 + In (1 + x2), even.
9 (a) x =  1.7, (b) 2.0.

10 (a) a =  0.693, b = 0.366, (b) x = 2.32.
11 a = 2.4, b=  1.6, n=  -0.631.
14 a = 3, b =  4. (a) tt — tan -1 f  a  2.21, (b) tan-1 f  «  0.93.
15 Minimum 1 when x = 0, maximum 2/^/e when x = ±  1/^/2.
16 fn, Jjt,
1? , , _______~  7 sin x______

3 (3 + 4 cos x)(4 +  3 cos x)’
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18 {y:y e (R, 0 < y < 1}, IR+ , {y:y e IR, y>  1}; f _1:xH+ln(1/x), ( 0 < x < 1);

x
g 1:xi—► 1 — 1 /x, (x > 0); (g°f) .xi—>ln x — 1

I, (x >•!).

19 In (2 + ^ 5 )«  1.44.
20 Minimum 0, maximum 4e “ 2, e y  = x.
21 0.53.
22 (a) In, (b) even, (d) no inverse, (e) D = {x: 0 <  x <  n}.

Chapter 3
^  „ / 3 -  x (x +  2Xx — 1) 3x2 — x + 4
Qu. 1 (a) T — i , (b) v , (c);

1 — x2 ’ (x2 + l)(x +  1) ’ (x — 1) (x +  1)

Qu. 2 (a)-
1 1

» ’ ( b )  ~ATi--------- 7  +  ,----- T> (c )  2 — 3 )  ( d )  -  — '' x — 2 x + 2 ’ 2(1 — x) ' 2 ( l+ x ) ’ v~/ '£ J’ '  n n + 1  
Qu. 3 (a) \2A -  3B + AC =  17, 6 A -  4B + 3C = 5, 10X -  15B + 6C =  -  1,

(b) v4 =  2, B =  1, C = — 1.
Qu. 4 (a) A = 1, B = -  3, C = 4, (b) A = 2, B = 1, C = -  3,

(c) A = 5, B = - 1 .
Qu. 5 A = 3, B =  - 2 ,  C =  - 1 .
Qu. 6 ( a M = - £ f l  = & C  = l,(b )N o .

Qu. 7 - ^ ( c ) ;  1 2

( d ) :

x — 3 x + 3’ v z(2 — x) 2(2+ x)’ w x - 2  3 x - 5 ’ 
1 1 1 . 2  1

+ ;,(e)-2(x + 1) x + 2 2(x — 3) 1 + 2x 2 -  x

Qu. 8 (a) (b) — „ 2* (c):
1 — x + 4 + x2 

*

x + 1  2x2 +  x + 3’ x +  1 x —2 x + 2’

2 — x ’ 3 + x2 ’ 
1 2

(b)Q u.9  (a)x + 3 (jt + 3ji 2 * - l  ( x - l ) ! '
Qu. 10 /) =  3, B =  - 2 ,  C - l ,  D =  5.

Qu- "  (alX + <x-XIXx + 3 y ( b , 3  + (x-2X x, + iy  

Qu.12 + +

Qu. 14 (a) 5 In (x — 3) — \  In (x + 3) +  c, (b) \  In (2x — 3) — f  (2x — 3) 1 + c.
1 1  k

Qu. 15 - - I n  (2 — x) — -  In (2 + x) +  c =  ln ^ _ ~ 2y

Qu. 16 No.
Qu. 17 (a) In f§, (b) In 3.
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Exercise 3a, page 47

_ x — 12 7 —3x —5x2 2 —4x — 3x2
1 (a) — i -,u..— 37>(b) /.. — ït»(c)

( d )

2 (a)

(x + 3)(x — 2) ’ (x + 2)2(3x — 1)’ w  (2 + 3x2Xl — *x)’
— x3 + 6x2 — 7x + 6 

(x2 + l)(x -  l)2 •

3 — x ~  J T x ’ (b) 2(a - b )  + 2(a + b)’ (c) (d)T ^ 7  + p'
3 (a) A = 3, B = 7, (b) A =  1, B = - 1, C = 2, (c) A = 2, B = - 1 ,  C = -  3,

(d) A = 1, B = — 2, C =  3.
4 (a) A = 1, B = — 1, (b) A = 2, B =  1, (c) A = 2, B = — 1, C =  3,

(d) A = 1, B = — 2, C = 3.
5 (a)/l =  3 , B = - i C = - i ( b )  No, (cM  = 2, B = 3, C = 1, (d) No,

(e) + = 1, B = 3, C = 2, D=  —1.
6 A = 1, B =  1, C =  1. (a) (x + IX*2 — x + 1), (b) (x — 2Xx2 +  2x + 4),

(c) (x + 3Xx2 — 3x + 9), (d) (2x — 3X4x2 + 6x + 9),
(e) (3x + 5)(9x2 -  15x +  25).

7 x(x — lXx — 2) + 3x(x — 1) + x + 1.
8 a = 60, b = 25.
9 a + /? = — b/a, a /? =  c/a.

10 a + P + y = — q/p, fiy + ytx +  a/J =  r/p, oifiy =  — s/p.

Exercise 3b, page 52

1 (a) 1 r,(b): 1 1 , v 4 2(C) — T + ■x + 3 x —4’ 2(5 —x) 2(5+ x)’ x + 1  x —2 x —3’
_ 3 ____l_ J 2 _  _ 1 _  2 2
x —1 x + x + l ’ e x + 2~*~2x+l 3x + 2’

1 3(f) 2x — 1 +
x + 3 x — 2

2 ( a ) r ^  + ^ 4 . ( b )  2
1

r> (c)
1

+ -
2x

( d )

3 (a)

x — 3 ’ x2 + 4 ’ x + 1 x2 + 2 ’ x — 1 x2 + 5 ’
3 1 -  3x 3 2

+ x - , . . , (e)2x — 3 ’ 2x2 + 1 ’ x — 3 x + 3 x + 5 
1 3 „ ,  1 1 2

2 ’ v _  1 v. , T + , 2 ,

1 ,(f)2  + - ^  + - xx — 3 x2 + 1

x — 2 (x — 2)2 x — 1 x + 2 (x + 2)2 
, , 23 1 7 1 2 1
(C) A / 1 . .  . 1\ ~  A / ' . .  , 1\ ~  , , \ 2 ’ (d) X H---- —-  3--------7  +4(3x + 1) 4(x +  1) 2(x +  l)2 x + 2 x — 1 (x — l)2

1 2
4 (a)-----7 +

3 1
+

(b)

x — 2 ' x + 1  (x + 1 )2 ' (x +  l)3’
_ 3 _______ 1 _  3 2
x — 1 (x — l)2 x + 1  (x + 1 )2

5 (a) x + 2 +
1

x — 3 x + 3
2 2 

, ( b ) 3 -
x — 1 x + 2

1 6 12
, (c) 2 x -------- - +

x — 2 x2 +  3 ’
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Page 52
6 2

(d) x — 2 -------- r +

1
x + 1 ' (x + l )2 

_  1_ 10 
6(x + 2) 2x 3(x — 1)

„ ,  „ 1 5x + 61
8 2x + 4 —

3— . x
3

+ ■

10

12

14

16

1
3(x — 2) 3(x2 + 5)

x 2

2x2 4x 4(x +  2)
„ 5 2
9 7----- +

x — i x2 + x + r  
13 5

11

3 + x 4 — x 4 + x 
5 3

+

29(2x -  5) 29(3x + 7)
2 lOx + 1

(2x + l )2 2x + 1 x — 3 

13 3 3 2 '
x — 1 x x 

2
5(5x — 2) 5(25x2 + lOx + 4)

1 1 V 3

15

2 (x — l)2
2x 2 — 5x

+

x2 + 2 x2 + 3
17

x x2 + 3 (x2 + 3)2'
_________ Vi5______ L _
36(x -  ^3) 36(x + 73) 6(x2 + 3) ‘

Exercise 3c, page 56 

1 1
n n + 2  

2 3
-  -  +  ■

1
n — 1 n n + 1 

n + 4
3 (a)

4 2.

5 ( a ) ^ -

,(b)
« + 3

«(«+ !)(«+ 2) 2 (n + l)(n + 2) , (c) I f

3n2 + 12« +11 n x «
+ O’ ) , 1 \ i (c)18 3(« + l)(n +  2)(« + 3)’ v ’ 4(« + 1)’ w  9(n + 1)’

(d )  

(0 

6 (a)

2«+ 3 1 1
+ ■

1
+ ■

1
16 8(n + l)(n + 2) ’ w  96 8(n + 1) 8(n + 2) 8(n +  3) 8(n + 4)’
1 n + 2
6 (n + 3)(n + 4) ’

2 n ... 1
-, (b) T+ ~

1
( c )  -

4« + 5
2 n + l w 12 4(2« + l)(2n + 3) 24 8(2« + 1)(2« +  3)

,  M l ,  k ( x - 2) 1 , fe(5x — 2) , „  fcx 2 k
7 (a -  In --------- , (b — In ----- —r—, (c) In - -  - ,  (d) In - j — -----

2 x 17 x + 3 3 x + l x  7 0 ® - x )
1 k(x — 51

(e) -  In ■- , (f) In {k(x2 -  4x -  5)1/2}, (g) In {k(x + 2)7(x2 + 3)},
0 X "t 1

(h) In ^  , (i) 2 In {k(2x + 1)} — j  In {(x — 3)(x +  3)3},

-¿ Z ?  (k)ln {k(2x +  1)1/2} - ^ t a n  1 y ,

(4 -  x)3
, . , 1 . k(x — 2)
(J) x In — ——3 x + 1

1 k(x — 512
(1) In {/c(3x + 2)1/3) — \  In (9x2 — 6x + 4), (m) - x 2 + 3x + In ^

(n) 5 In {k{x — 3)} — ^ In (1 + 4x2) — |  tan-1 2x.
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8 (a) tan - 1 x + c, (b) In {/c(l +  x2)1/2}, (c) tan -1 x + In {fc(l +  x2)1/2},

(d) In (e) In ^  x 2y  c “  \AJ "" *2)> ( i )  sin" 1 x + c,

(h) sin" 1 x -  ^ ( l  ~ x 2) + c, (i) - I n  {fe(l -x )} , (j) - I n  { k (x -  1)},

(k) x -  In (1 + x) + c, (1) —-------- ---------- 1- c, (m) —--------- ---------- 1- In (1 — x) + c.
1 — x 1 — x

9 (a) In f  % 0.288, (b) \  In 2 +  ¿n »  1.13, (c) In f j  »  -  0.352,
(d) —3 In 2 — ̂  In 3 «  — 2.63.

10 n/2 , (2 + 2 In 2, 0).

Chapter 4
Qu. 1

Qu. 2 

Qu. 3 

Qu. 4

(a) ( -  l)r(r + l)xr, (b) 3V , (c) (i)r+1(r + l)(r + 2)x',
(d) ¿(— l)r(r + l)(r + 2\r  + 3)xr.

20!(21 — 2r) r 101(33 -  5r)(- 1)V  
’ (21 — r)!r! * ’ ( ’ (11 — r)! r!

(a) (— l y - x(3r + l ^ .
i i i ( - i y +1

(a) ----- j  3— 3 — ••• 3------- r------!■ •••. M  > 1-X X X X
/U3 1 4 , 12 , ( r - i x - i r ^ - 2 , ,(b) —j ---- j  H— 4 — H------------ ------------1- ..., x > 2,x xJ x x

(C» 9 ? '
2 1 

+27x3 27x — -------zrr-;------ h ..., |x| > - ,

3 9 21 3(2r" 1
(d) —2 H---3 +  —4 + • • • H--------- -xz XJ x* xr

3rxr
1) + ..., |x| > 2,

Qu. 5 
Qu. 6

(e)x x3 + x5 ••• + x2'-+i + - , |x |> 1 -
792 x 47 x 35.
(a) " + 2Cr+1 = c r+1 +2  cr + cr_1, (1 < r < n  -  1);
(b) n + 2 Cr + 2 = cr + 2 +  2cr + 1  +  c„ (0 sS r < n -  2).

Exercise 4a, page 64

1 (a) 1 — 3x + 9x2 — ..
(b) 1 + 2x +  4x2 + ..
(c) 1 — 2x + 3x2 — ..

(d) 1 + x + ^ x 2 + ...
4

(e) 1 — 3x + 6x2 — .. 
(0 i - i *  + i* 2 -
(g) 5 + rfX + 27X2 +
(h) 5 + 1%x + ^kx2 +

. + ( - l ) r3rxr +  ..., | x | < i  

. + 2 rxr + . . . ,  | x | < j.

. + ( - l ) r(r+  l)xr + ..., |x ( <  1.

+ ^ W . . , | x | < 2 .

. + K r + l X r  +  2 ) ( - l ) V + . . . , | x | < l .
+ ( - l ) rx72r+1 + . . . , |x |< 2 .

... +  (r + l)xr/3r+2 + ..., |x| < 3. 

. . .+ ( r + l ) ( r  +  2)3'x72' +4 + ix i <1-
1 4- + i - l ) ‘r_j 1 x 3 ...(2 r-3 )2
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2 (a) ~  + — V ,  3 - 3 x  +  9x2 + ... +  { l - ( - 2 r i K + . . . ,  |jc| <  ^ 
1 — x 1 + 2 x  1

(b)

( c )

1
1 - 4 - 7 *  + 3 * 2 +  '-- + ( - 1),( 1- ( i ) r+1K  + •••’ 1*1 < i-1 + x 2 + x 2 4 8

1
x + 1 (x + 1)

r, - l  + 3 x - 5 x 2 + . . . + ( - l ) r+1( 2 r + l ) x ' + . . . , | x | < l .

(d) — 5 + 5x + 35x2 + ... +  {3- + ■1 + ( -  l f 2 '+i}x' +  ..., |x| < 
1 — 3x 1 + 2x

(e) ---------- ----------  + ------ ---------- rrj, -  +  x +  — x2 + ••• + (5r + 3)xr/2r+2 + |x| < 2.
x —2 (x — 2) 4 16

(0/
1

, — 2 — x — 2x2 + ... — {3 + (— l)r}xr/2 +  ..., |x | <  1.
2(x — 1) 2(x + 1)

3 (a) 1 — x2 + x4 — — l)rx2r +  ..., | x | < 1.
(b) x + x3 + x 5 + ... + x2r+1 + ..., |x | <  1.
(c) 1 — 2x + 2x2 — ... +  2(— l)rxr + ..., |x| < 1.
(d ) 1 - 9,  + 3 5 ^ - . . .  +  H n ^ x, + | a l l x

(11 — r)\r\

(e) ^_ T X + | x2_- +(_1)r2( 1_3^T) Xr + - ’ |x|<L
(f) - | - ^ x - J# x 2 - . . . - ( 6 -  13 x 273r+1)xr + . . . ,  | x | < 1.
(g) -  i  + -  ^ x 2 + ... -  {(|)'+1 + (2r + 3 )(- l)'}x' +  ..., |x| < 1.

1 2 4 i — lY~ 12r ~ 14 + + -------+  ..., |x| > 2.
X X

(b)
1 9 54 1 3r_3
•a —7 4 - T 3 - - - i ( ' - 2X ' - l ) —  + .... |x |> 3 .X X X

1 1 3

(d) 1 H--------- j  + • • • +X X X

r -  1
T x ‘

( - 1  )r+1
(c)4 ?  + 4 ^  +  l 6 ^  + -  +  ^ r  + - ’ | x |> i

+ ..., |x| > 1.

(e) ------ 3  + -3  — ••• +  ( — l)r_1(3r — i ) —7-  + ..., |x| >  2.
x x2 x3 xr
1 5 19 3r- 1- 2 r" 1 . . ,

( f )  ?  +  ?  +  ^  +  - +  ?  +  ..., |x) >  3.
/ 2 6 12 3{1 + (  —l)r~13r_2} ,
t o -  + - 3 - - *  +  -  + - --------^ --------- L + ->  1*1 > 3x x x 2x

f2 2 2 2 ]
(h) —  < --- 1--- 3  H--- 5 +  ... +  2 r+l +  ••• 1*1 >  1-(x X X X J

1 1 1 1 1 1 , ,
W  v 3 _  „7 „ 8  ••• v 4r — 1 Ar +  • • • ; I *  I >  1-

1/2 _  „ - 1/2 . i x " 3/2; 1.4142. 6 1.25992. 7 2.00993.5 x
8  3.014963. 9 0.009920. 10 0.2425. l l l + 2 x  + fx 2.

12 1 — x — x2 + 3x3. 13 1 — 4x +  6x2 + 4x3. 14 1 + 2x — ̂ x2.
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15 1 — fx + ^ x 2 — ^ x 3. 16 — 1 —fx  + fx 2. 17 x — x 2 — fx 3.

18 ±5% . 19 o^ l ° 0 -s, 17 s. 20 21.6 s. 21.2x + y - z .
86400 — x

22 i ( p - q - r ) .  23 l  24 l/V (l+ 2x), | x |< i
25 1/(1 - 2 x ) 2, |x| < f . 26 27 ^ | .  28 1/(1 + 2x)3, |x| < f .
29 (1 — 2x)1/2, |x| < f. 3 0 ^ 4 .

Exercise 4b, page 70

1 (a) 15360, (b) 20412, (c) 792 x 47 x 35 = 217 x 37 x 11,
(d) 15504 x 2s x 515 or 38760 x 26 x 514 = 29 x 3 x 515 x 17 x 19,
(e) 330 x 24/34 = 25 x 5 x 11/33, (f) 126 x 35 x 24 = 25 x 37 x 7,
(g) 11 n /1212, (h) 3 x 5s/77.

2 (a) 66 x 22 x 910 = 23 x 321 x 11, (b) 210(f)4(f)6 = ff§ ,
(c) 5 6(f)3 (f)5 = 24 x 55 x 7/33, (d) 318 x 2” 8 x 5“ 10.

Exercise 4c, page 70 

3 2
, 1 + 3x + 5x2 + 3x3l — x 1 + x2 

A = l , B = - l , C  
(a) 323, (b) 1 — x — x2 — fx 3; 1.71.

1, 2x + 2x2 + 2x5; |x| < 1.

1 1
X X2 +  X3

5 (a)

1
x + 2’

7 — 14y — 29_y2; \y\ < 1.

1 1
3x — 1 x + 1 (x + l)2 

(b) 1 - 3 ^ 0 - i x l O “6, 3.332222. 
1 + |x  -  fx 2, 1 -  |x  + fx 2. 
0.000103 2.
(a) 2p + 4q — r,

, n( — 1)" — 3tt + 1.

1
(b) (i) 1 + 4x +  9x2 + 16x3, |x| < 1; (ii)

x‘ x ' x’ x
10 (a) 10201810000, (b) 1 + 2x + 3x2 + ... + (n + l)x" + ...
11 1 - i > '  + f ^ 2 - i% y 3, cx =cos 6 , c2 = \  (3 cos2 9 -  1), 

c3 = j  cos 8  (5 cos2 6  — 3).
12 (b) 1 + fx -  fx 2 + ygx3, (c) 8n, -  (8n + 4).
13 1 + fx -  fx 2 + ^¿x3 -  jfgx4.

4 2 1

16
|x| > 1.

15
9(2x+ l) 9(x + 2) 3(x +  2)2’
1 3  27 2 7 , 4 3n + 7
-  -  -x  + —x2 -  - x \  -  ( -  2)"
4 4 16 2 9 36

16 1 — x — fx 2 — ... — 1 x 3 x 5...(2n — 3)x"/nl — ..., 3.31666.. 
places of decimals.

18 (a) U, (b) 1 + x -  x2 + fx 3, 1.009 90.
19 A =4, B=  1, C = 2; 5 + 9x + ^ x 2 + ^ x 3.

correct to 4
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Page 73
22 Tenth.
23 (a) r>$(n+  1), (b) 1.221 3.
24 55/53.
25 (a) q = |p (p  -  1), p = -  3, q = 6, a6 = 16.

Chapter 5
Qu. 3 (a) 46.4°, (b) 87.3°.
Qu. 4 44.9°.
Qu. 7 67.4°.

Exercise 5a, page 80

1 (a) 50.1°, (b) 51.5°, (c) 36.9°. 2 (a) 67.4°, (b) 71.6°, (c) 28.1°.
3 (a) 22.0 cm, (b) 65.2°. 4 29.4°. 5 97.9°. 6 54.7°.
7 (a) 1/73, (b) 1/75. 8 6.53 cm, 54.7°, 70.5°.

10 22.2°. 11 75.2°. 12 7 f .  13 28.1°.
273

15 tan . j c7(a2 + b2)

9 tan“ 1 (1/72). 
14 80.4°.

ah
16

7133-

Exercise 5b, page 84

12 S c o s 1 ( |  tan a) E or W.

Chapter 6
Qu. 1 (a) Yes, (b) No.
Qu. 2 (a) No, (b) Yes.
Qu. 3 No.
Qu. 4 Not necessarily.
Qu. 6 (a) i, ii, iii, (b) ii, (c) iii, (d) iii, (e) i, ii, iii, (f) iii, (g) i, ii, iii, (h) iii.
Qu. 7 (a) x — y = 0, (b) x + y = 0.

dy
Qu. 9 (a) As x -* 0, 2, 4, - f - -* oo,

dx

(b) When x = 0, ^  = ± J2;  a sx -»  — 2, -*■ oo.
dx dx

Exercise 6a, page 90

1 (a) x < i  x > 2, (b) i  < x < 2.
2 (a) x < —2, x > — -j, (b) —2 < x <  —j.
3 —2 < x < 3. 4 x > 2^, x < — 2j. 5 — 3 < x < 2j.
6  x < —2, x >2j. 7 x <  -  l j ,  x >  1. 8 f  < x < 7.
9 1 < x < 2, 3£ < x < 3|. 10 x < — 1, 1 < x < 2, x > 3.

11 i  12 -1 . 13 l  14
15 x <0, x >  1; | y| > | .  16 |x| > 2, | y \ > J3.
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Page 91
17 x < — 1, 0 <  x  < 1. 18 Discontinuities when x =  2, 3.
19 y<  - h  y>4$. 2 0 x ^ 0 .  21 xs£0. 22 |x [^V 2 .
25 (2x — 3y ) 2 + (x — 2)2 > 0, unless x =  2, y =  1 .̂

Exercise 6b, page 96

In Nos. 10-15, y cannot lie in the following intervals:
10 — 4 < y < 0.
1 1  i < y < l i
12 y < 0, y > 1.
13 y < - i , y >  4\.
14 y > 1.
15 K l - V l 0 ) < j ;< K l  +  v/10).
16 (2, 4) min.
17 ( -  6 -  2710, (11 + 27l0)/18) min., ( -  6 + 2^10, (11 -  2Vl0)/18) max.
18 ((-1  -  V7)/2, ( -  23 -  8V7)/9) max., ( ( -  1 + Jl)/2 , ( -  23 + SjT)/9) min.
19 ( - i , 4 ^ )  max.

Exercise 6d, page 103

1 (a) x < 1 or x >  3, (b) x < 1 or x > 3, (c) 1 < x < 2 or x > 3.
2 p — l ^ x ^ p + 1 .
3 b2 ^  4ac, a, —b,c  all of the same sign.
4 2 < 2 < 2f.
5 —2 < /c < 6 , 0 < /c < 6 .
6 (a + b + c) 2 = 4(be + ca + ab).
7 ti/ 12 < a <  7ti/12, 13ti/ 12 ^  a ^  19ti/12.
9 k = 3, a = — 2, h = — 2; fc =  — 7, a = 8, b = \.

12 (a) (x + l)(y +  1) > 0, (b) — 1 a ^  If.
13 (a) (i) \  < x <  lj, (ii) x < — 1, 1 < x <  2.
14 -1.22.
16 x = 0, x = — 1; x >  0, x < — 1.
17 (a) x > 2, — 3 < x < — 1, (b) |x| > 2.
18 (a) x ^  4, x <  1, (b) x >  4, 2 < x < 3, x <  1.
19 — f < x < 3 .
20 x < — 1, 0 < x < 1.
21 y ^ - ^ ,  y s $ - 1.
22 x = 1, y = x +  1, ( — 1, -2 ), (3, 6).
23 (0,0), ( - 2 ,  -4 ).
25 (0, 0), y = 1, x = 1, x = — 1.

Chapter 7
Qu. 7 (a) 3, (b) 2, (d) - 2 ,  (f) 4.
Qu. 8 (a) a3 +  b3 + c3, (b) a(b + c) + b(c +  a) +  c(a +  b),

(c) 1/a +  l/b + l/c, (d) ab2 c2 +  be2 a2 + ca2 b2.
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Qu. 12 (a) i  i  (b) 0, 0, 1, (c) 0, f, f, (d) - 2 , - 1 ,  3, (e) 5, 0, - 2 ,
(f) - U ,  - 1 .

Qu. 13 (a) x3 -  6x2 + 1 lx  -  6 =  0, (b) x3 -  13x + 12 = 0, .
(c) x3 -  14x2 + 288 = 0.

Qu. 14 (a) x = y/y, (b) x =  y + 2, (c) x = ^ y  -  1), (d) x = -  7y/3.
Qu. 17 3ac = b2, 27a2d = b3. (Other relations are possible. Those given 

determine the ratios c:a, d:a in terms of b:a.)

Exercise 7a, page 110

1 -2 , - 1 ,3 ,  4. 2 - 7 ,  - 1 , - 1 ,  5. 3 ± ln  2. 4 0,2.
5 ±1, ±3. 6 1,8. 7 3. 8 9. 9 4, not 1. 10 5,1

115. 12 5, not 22%. 13 14, not 6. 14 (4, 1), ( - 2 ,  -2 ).
15 (4, 5), ( -  3, 4). 16 (3, 1), ( -  5, -  5). 17 (0, 0), (8, -  6).
18 ( - 3 ,  4), ( - 6 ,  3). 19 ± (^5 ,1 ^5 ), ±(2^5, IV 5)- 20 2(a + b)/b-
21 (a) - ( c  + d)/c, (b) -  (a + b)/(a -  b).
22 t2x — y — ct3 + c/t = 0 -, ( — c/t3, —ct3).
23 ( a ( l -p ) 2, 2a(l — p)).
24 ( — c/t2, —ct2).
25 (a(a4 -  b4 )/(a4  + b4), - 2 a2 b3/(a4  + b4)).
26 (3 -  a)2 = (6 -  abXb -  2).

28 x =  ^ y  = BC bC ; (aC -  cA) 2 = (bC -  cB)(aB -  bA).
Ab — aB Ab — aB

29 i  2, 3.
30 - i  -4 .

Exercise 7b, page 114

1
2 a —c 
2 b - d '

1 7  1  1  11 • 2 ’ 4> 1

t 3a — 4c 
2 3 b - 4 d '

18 - 3 ,  2, - 1 .

2a + 3c 
3 2 b + 3d'

4
IQ IIS J_ 2 0  ly  J 71* 7 1 ’ 71-

3a —c 
3 b - d '

16 1, 3, 2.

20 f , 8 i  0 .

Exercise 7c, page 119

1 3:2, -4 :3 . 2 -5 :2 , 6:1. 3 -  1:1, 2:1, 2:1.
4 1:1, -2 :3 , -3 :2 . 5 ±3:1, ±1:2. 6  10: —11: —13.
7 1:14:11. 8 —c:c:a — b. 9 a: — (a2 ± l):a.

10 (sin 9 — cos 0):(sin 9 ±  cos 0):1.
11 x4 +  / ± z 4.
12 l/(yz)+\/(zx)+l/(xy).
13 x2( y + z) + y \ z  ±  x) + z2(x + y).
14 x2y ± y2z + z2x.
15 xy2 + yz2 ± zx2.
18 (1 -  iXl ± t + t2).
19 (4x ± y)(16x2 — 4xy ±  y2).
20 (2 + 3z)(4 — 6z ± 9z2).
21 (5y -  z2)(25y2 + 5yz2 ±  z4).

vO|<̂
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Page 119
22 (a — b)(a + b)(a2 + ab + b2)(a2 — ab + b2).
24 (x" -  an)/(x -  a).

Exercise 7d, page 124

1 (a) f, - i  - i  (b) 0, i  (c) - 5 ,  4, - 4 ,  (d) ~ l
2 (a) x3 — 2x2 + 5 = 0 , (b) x3 + 3x2 + 2x — 6 =  0, (c) x3 — x — 5 = 0.
3 (a) 2y3 -  3 /  -  13^ + 7 = 0, (b) 7 /  + 1 3 /  - 3 y - 2  = 0,

(c) 2 /  + I5y2 + 23y -  5 = 0, (d) 4 /  + 26y2 -  21y -  49 = 0.
4 (a) /  + 3 /  -  2\y  + 17 = 0, (b) /  + 3y2 -  21 y -  63 = 0,

(c) 1 0 0 / + 3 0 /  -  3y -  1 = 0.
5 (a) /  + 6hy2 + 9h2y -  g2 = 0, (b) g 2y 3 -  9h2y2 -  6 hy -  1 = 0,

(c) /  + 3gy2 + 3(g2 + 9h3)y + g 3 = 0.
6 (a) a2y 3 + (2ac — b2 ) y 2 + (c2 — 2 bd)y — d2= 0,

(b) d2y 3 + (2bd — c2) /  + (b2 — 2 ac)y — a2 = 0,
(c) a3/  + (3a2d + b3 — 3abc)y2 + (3ad2 — 3bed + c3)y + d3 = 0.

7 (a) —6 h, (b) 9h2, (c) ISh2.
8 —6 h, - 3 g, 18/i2.
9 (a) 9a2 — 6 b, (b) —27a3 + 21ab — 3c, (c) 81a4 — 108a26 + 12ac + 18b2.

10 (a) 2 b3 -  9abc + 27a2d = 0,
(b) b3d — ac3 = 0, dy3 + c /  +  by + a = 0, 2c3 — 9bed + 2 1 ad2 = 0.

11 b3 — 4 abc + 8 a2d = 0. n i l «
2> 3> 9- 

1 - 1 3  5 7
4> 4? 4-

1 4  1  5 _ 2
1 4  2> 2-> 3*
1 «  2  2 _ 5
1 3  3 ’ 3 ’ 2*

1  3  4
1 0  25 25 3*

17 g2 = 4h3, g = h = 0.
18 ( it2, - i t 3).
19 tx + y — at3 — 2at =  0; 2 7 a /  = 4(x — 2a)3.
20 2x + t 3y — 3t = 0; -1 :4 , 2:1.
21 —1, 2, —3 and permutations.
22 2, —3, 5 and permutations.
23 1, 4, —5 and permutations.
24 1, 3, —2 and permutations.
25 — b/a, c/a, — d/a, e/a; eyA + dy3 + c /  + by + a = 0,

a2/  + (2ac — b2) /  +  (c2 +  2 ae — 2  bd)y2 + (2ce — d2)y + e2 = 0.
26 -0.81,0.39,6.4.
27 -0.9397, 0.1736, 0.7660.
28 -1.83,0.226,1.61.
29 Between — 4 and — 3; — 3.
30 /  = b — a2, g = 2a3 — 3ab + c. Reduce equation to the form

x3 + 3 /x  + g = 0 and draw across y = x 3 the line y + 3/x + g — 0.

Exercise 7e, page 126 

1 (a) ±1/27, ± 8 , ( b ) ( - l , 2 ) , ( - i  l|).
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Page 126
2 (a) k, - 3  - k ,  (b) 4.
3 (a) - 2 ,  0, (b) ( - 3 ,  2), (3, -2 ), ( - 4 ,  1±), (4, - 1±).
4 (a) A=  - 1 ,  B=  -2 .
5 (b)i(3±V5).
6 (b) t1 2 + qt — p3 = 0, 21/3 — 22/3.
7 (b — c)(c — a)(a — b)(bc + ca + ab).
8 -32 ,48 .
9 18.

10 (a) j, j, f; — 1̂ , —3, — 4-j; (b) a =  3, b = 2, x2 + 2x + 3, x2 — 2x + 3.
11 (a) - 2 ,  1, (b) 3, - 1 ,2 .
12 (b1c2 - b 2 cl):(cia2 - c 2al):(a1b2 - a 2 b1),{a)4,2, - 6 ,

(b) (Ci<j2 -  c2ai ) 2 = (btc2 -  b2c1)(aib2 -  a A ) .
13 (a) -2 ,i< 3± V 5),(b ) 1 - V 7 .
14 (a) 3, (b) -&  - 2  + V6.
15 (a) 3, - i  - i
16 (b) x3 - 2 x 2 + 5 x - 11 =0.
17 - i
18 (a) (x — 2)(x2 + 4x + 9), (b) 3, (c) k = — 8, Z = 4.
19 ± V3, ( - 1  ± V 3i)/2, ± V3i, (1 ±  V5)/2.

Chapter 8
Qu. 1 6.

Qu. 4 -20 ,

( 4
Qu. 7 - 8

\  4
/ - i

Qu. 8 ( —2
V 2

+ 1 - 3  - 5
- 5  - 5  +5
- 3  + 9  - 5

Exercise 8a, page 132

1 (a) 14, (b) — 9, (c) 0, (d) 0.
2 (a) x2 + y2, (b) 0, (c) 1, (d) x2.
4 (a) 0, 5/3, (b) 1, 4.
7 (a) 21, (b) 24, (c) 0, (d) 0.
8 2, - 3  ± ^ 6 .

/10  - 4  2 \
10 A B = I  3 3 0 I, det(AB)= 198.

\ l l  - 5  7 /
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Exercise 8b, page 136

1 (a) 7, (b) 3.
2 (a) 0, (b) 1.
3 (a) 0, (b) 1/480.
5 1,2, - 3 .
6 (p + q + r)(p1 2 3 4 + q 2 + r2 - q r - r p -  pq).
7 - ( x - y ) ( y - z ) ( z - x ) ( y z  + zx + xy).
8 (x — l)2(x2 + X + l)2.

Exercise 8c, page 142

1 (1, 2, 3). 2 (1, - 1 ,  2). 3 (1, - 3 ,  -5 ). 4 (7, 5, 0).
5 (-0 .1 , -0 .1 , +0.1). 6 a = — 1, fe #  5. 7 (b), (i, 3i/7, - llt/2 8 ).
8 (a), (0, 0, 0). 9 (b), (r, (t + 26)/7, - (8  +  3t)/7). 10 (c).

Exercise 8e, page 147

1 (a) 121, (b) 35, (c) -1 4 .
2 (a) 0, (b) 1, (c) - 2  x 7 x 7 x 7 x 13 x 17= -151606.
3 (a) 1, (b) 1.
4 (a) ( y -  z)(z -  x)(x -  y), (b) x ( y -  x)(z -  y).
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Page 147

5 1,

12

cos a cos p — sin p 
cos a sin p cos p

sin a cos P 
sin a sin P 
cos a

13
14

0 1 O'
1 0 0 

^0 0 1,
(1) is (2) rotated through 45°.
(1) is (2) rotated through —60° and enlarged x 2.

or any

or any

( -  a + 9b -  3c)/5, ( - 2 a  + 3 b -  c)/5, (2a -  13b + 6c)/5.

19 M =

21

22 A- 1 =

3 2 r 0
2 1 ° ) , M 1 == 0 1 - 2
1 0 o 7 Vi - 2 1

1 0 ° \
/ I - 4 14

1 1 ° )

0II1PQ 1 - 3
5 - 2 \ o 0 1

(AB)- , x =  5, y =  - 1 ,  z =  0.

23
24
25

(a) 3, - 2 ,  4, (b) t, (9 — 5i)/3, ( l i t  — 21)/3.
(a) 3/2, —4/3, (b) 0, 1, \j, a = 3/2, possible, a = — 4/3, not possible.
— (a + b + c){(a — b) 2 +(b — c) 2 + (c — a)2}.

Chapter 9
Qu. 1 (a) y2 = — 4ax, (b) x2 = 4by,
Qu. 4 yjX +  lay — yP xx + 2a) = 0.
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Qu. 5 x — ty + at2 = 0.
Qu. 6 (|, 3), y — ^  = 0.
Qu. 7 7.2 cm, 12 cm. ,
Qu. 9 4, 3.
Qu. 10 | .
Qu. 11 (±373/2 ,0).

Exercise 9a, page 156

1 (atitj, a ( t i+ t2)).
2  r 1 r 2  =  —  1 .

4 (0, | ) .

5 (x — 2)2 = 4(y + 1).
6 (x + y)2 + 4(x — y + 1) = 0.
7 - 1, 2/(£ + f,), (a(f +  2/i)2, -  2a(i + 2/i)).
9 (a) ( i  —2), (b) (8, 8).

11 (a(ii2 + t1r2 ± i22 + 2), - a t 1 t2(t1 + t2)).
14 4a.
15 x — y + a = 0, x — I6 y + 256a = 0.

Exercise 9b, page 161

1 y + l = 0 .  2 ( l , i ) , i  3 ( - i  - 6). 5 a2 = bc.
6 y = 4 — x2, 2x + y — 5 = 0. 8 y = 2a/k. 9 x  = a.

10 y 2 — 4ax = 5/c2. 11 y2 =  2a(x — a). 12 x(x — a)2 = ay2.
/  b b2 — 4 ac 1 \  b2 — 4 ac 1
\  2a’ 4a 4 a /’ ^ 4a 4a

14 yy 1 =2a(x + x l).
15 (3a, ± 2 7 3 a).
16 2a.
18 2x(0 — x — 2a) + ky = 0.
19 3y2 = 16ax.
20 y2 — 2ax — 2ay + 2a2 = 0.

Exercise 9c, page 167

(a) (± 7 5 , 0), x = ±  975/5; (b) (±5715/4, 0), x = ±  V 15/3. 
(a) 2x cos 0 ± 3y sin 0 — 6 = 0, (b) 9x + 16y — 25 =  0.
(a) 16x — 9y — 7 = 0, (b) 4x +  y — 2 = 0.

1
2
3

10

COS 5 ( 0  — (f))
COS ^{0 +  (f>)

COS ^(0 +  <j))

4 3x -  2y -  5 = 0.

=  + e . 8 ex + y — a = 0.

--- ■ -r, Jin j(0 + </>) \
cos 2(0 — 0) ’ cos ^(0 — $ ) / ’

1 2  <-2 x - . ae)\ 4£  = i.
a

13 -T ± 7T = cos2 \k. 14 4a2x2 + 4b2y2 = (a2 — b2)2a2 b2

15 a2y2 + b2 x 2 = 4x2y2. 16 b2x 2 + a2y2 = 2a2 b2.



Answers 427

Exercise 9d, page 170

1 (a) 2x — y ±  5 = 0, (b) x + y ± 2 = 0, (c) x — 2y ±  10 = 0.
2 (a)(&  — ^ ) , ( b ) ( - i | ) , ( c ) ( l l ,  -6 ).
4 3x + 2y± 2^10 = 0.
5 ±5 , (16/5, -9/5), (-16 /5 , 9/5).
6 c2 < a2 m2 + b2.
8 (x2 + y2)2 = a2 x 2 + b2y2.
9 a2y,x — b2 x^ y — x^ y,(a2 — b2) = 0.

f 2 am2-a2mc
^  \ a 2 m2 + b2’ a2m2 + b2 

11 8x — 2 1  y = 0

I, (b)
-nl

12 mx — y — mae = 0,
a3em2

l2

ab2em
b2 + a 2 m2' b2 + a2m2

13 a2y 2 + b2 x(x — a) = 0.
14 (a2 + b2 — x2 — y2)2 = 4(b2x2 + a2y 2 — a262'
15 b2hx + a2ky — (b2 h2 + a2/c2) =  0.
16 (a2 y2 + b2x 2 ) 2 = a2(a4y2 + b*x2).
17 (y2 — 2ax)2 = 4a4 + b2y2.
18 a4y2 + bAx 2 = 4x2y2.

2 am
~ r

„2 „ 2, a2 y 2 + b2 x 2 — ab2ex = 0.

Exercise 9e, page 179

2 9b2x 2 — 9a2 y2 — 12ab2x  + 12a2by — a2 b2 =  0.
4 (a2 + b2 ) 2 = 4(a2x2 — b2 y2).
5 ( - c / t 3, - c t 3).
6 xy = c2.
7 2xyc2 = c4 — y4.
8 yxx + x, y — 2xx y 1 = 0.

10 (ct, —ct3).
11 (x2 + y2)2 = 4c2xy.
12 n2 =4lmc2.
14 x 2 + y 2 = a2 — b2.
15 (x2 + y2)2 = a2x 2 — b2y2.
18 bx cos 2 ( 6  — (¡)) — ay sin ^ { 6  + </>) — ab cos + <t>) = 0.

Exercise 9f, page 180

1 x2/36 + y2/20 = 1.
2 x2/36 +  4y2/119 = 1.
4 3x ±  2y = 0; 3x ± 2y +  1 = 0.
5 25x + 20y + 64 =  0, 4/5.
6 x ± y ±  = °-
9 (4, -3 ).

10 (0,3), 3^2.
11 y + 1 = 0.
n  1, ( i  2); 2x — 2y + 1 = 0, 2x + 2y — 3 = 0.
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Page 181
17 (a) x = —4a, (b) (4a, 0).
18 jab cosec 26.*• j

19 h=  , k = , (b) xv = 2c2, least distance = 2c.
p + q p + q

20 (V2 sin 2ct/(2g), -  V2 cos 2a/(2g)), >' = V2/(2g).

Chapter 10

Q u .l (a) l - x  + ^ - ^  + . . . + ( - l ) " ^  + ...,
2! 3! nl
x4 X6 v2 n

(b)l + x2 +
2! + 3 ! + -  + nl- + • • • 9

9x2 9x3 3"x"
(c) 1 + i x  +

T -  + “T  +  - + nl + ...

(d)l +
1 1 1 1

------1_ .
X 2jF  + 3IX3 + " + nix" + ...

(e) 1 -
1 1 1 ( - i r

2 x* "" 3ix* + "
. + nix.2 n 1

Qu.3 ( a ) J x - ^ x 2 + - ^ x 3 - . . .  +  ( - i r 17z: + ...,

Qu. 4

(b) |n 3 -  1 x -  ^  x2 -

2
(c) — 2x — x2 — -  x3 — .. 

- 1  + x - | x 2.

4"n 
x"

— 3 < x < 3, 
3 n

2 x "
--------- — 1 < x < 1.n

Exercise 10a, page 187

1 (a) 1.1052, (b) 0.3679, (c) 1.6487.
2 1 + x 3 + j x 6 + j x 9 + ... + x 3n/nl + ...
3 1 + ^x + Ygx2 + li^ x 3 + ... + x n/(nl 3") + ....
4 l - 2 x  + 2x2 - j x 3 + . . . + ( - l)n2"x"/n! + ....
5 e2{l + x +  j x 2 + j x 3 + ... + x"/nl + ...}.
6  1 — j x  + j x 2 —Jgx3 + ... + (— l)"x"(n!2 ") + ....
7 1 + 2x + |x 2 + f x 3 + ... +(n + l)x"/n! + ....
8 1 — 2x2 + fx 3 — 2x4 + ... +  ( — l)"_1(n — l)2"x7 «! + ....
9 l + 4 x  + 8x2 + ^ x 3 + ...+4"x7n! + ....

10 2 + 3x + fx 2 + fx 3 + ... +(1 +2")x7«! +  ....
11 1079!, 10lo/10!
12 1+2x  + 3x2 + J£x3.
13 e(l — 3x + -y-x2 —-*̂ x3).
14 1 + j x 2 —j x 3.
15 1 — x + 5X2 —¿x3.
16 (a) i  (b) 2§, (c) 1.

4 < x < 4,
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Page 187
17 (1 + x)ex.
18 (e3x — l)/(3x).
19 ¿(ex + e_x).
20 Kex- e _x).

Exercise 10b, page 193

1 1 1 1  vn
( b) - 2 X- 8 *  ~ 2 4 X M X -
, , ,  ,  S 25 , 125 ,(c) In 2 -  -  x -  — x -  —  x

2" x n 
5nxn 

2" x n

( d )
1 _  1 6 .
2 3

1
x ... — - 1

+ ..., — 3 < x  s$ 3.

-2 ^  x < 2.

2 2
-  -  ^ x  < - .

;<  1.

, , 2 2 3 2 
(e )3 X + 8 l X + 1215

x3 + ... +
2x2

(2n -  1) 32n
3x 9 243ff) x 3 _

U  2 32 2560'
2 x

ry  +  ••., — 3 < x < 3.

4^2n—1^ 2n- 1

(2 n -  \)42n~
4

3 < X < r

ln ~3
1

72'
1_
2"

1 \ x'
y)~ n

— — ------..., — 2 < x < 2.

3
4
5

6

7

8

9
10
11

-  In 3 + fx + ^ x 2 + ... + 2"{ 1 + ( -  in i r ix y n  + ..., - ± < x < ± .
— 6x2 + 28x3 — 1 l lx 4 + ... +  ( —1)',~1(4"_1 — 3n_1)12x"/n +  ..., - ¿ < x < i  
3 In 2 + |x  — ^ x 2 + ... +  (—l)n-1{l + (i)"}x"/(2n) +  ..., - l < x s i l .

1 2x + -  x XJ + ...
2
3n

^3n+2
• — x3" + - +  ■

J X + W
3 3 n 3n + 1  3n + 2

... + (— l)"x"/(n +  1) +  ..., — 1 < x <  1.

■ 1 <  x < 1.

- x + ix 2+ f x 3 + - ( - 1 > 3n 2 x 3 n

3 n + ( - l ) 3 3n +  1
„3n + 2

+

+ ( - l ) 3 3n + 2 + . 1 < x ^  1.

x + j x 2 + f x 3, |x| < 1. 
x + ^x2 + fx;3, -  : 
l + j x  + A x2, - :

12 x2 + x3 + 12-" 1 < x <  1.
13 0.693 1, 1.099.
14 2.302 6,0.434 3.
15 1.945 9.
16 1.0414.
17 (a) — 1, (b) 1, (c) — (d) 0.
18 Inf.
19 In 2.
20 |  I n f
21 f  I n f
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22 In 3.
25 s„ tends to a limit between 0 and 1.
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Exercise 10c, page 195

1 For standard logarithmic series, see pages 188, 191.
jm  — n l /m  — n\ 3 1 fm  — n \ 5 1 fm  — n \ 2n
\m + n 3 \m  + n j  5 \m  + n j  2n— l \ m  + nJ

2.07944.
2 1/(1 - x 2).
4 ey = 1 + y + j y 2 + ...; i(ln a) 2 — 1/a.

in — 113"
5 (a) 2.3979, (b) ( —1)" ------- — .

n\
6  a(l -r")/(l - r ) ,  0.095 310.
7 (b) — 2/(3n), 1/(3« + 1), l/(3n +  2), (c) - f x 3 + ix 4.
8 (c) 2e — 5.

9 (a) 2x — ^x3 + fx 5 — j x 6, | x | < l ,  (b)e;c= l + x  +  ^ -  + ^-  + ... + i 7 +
2! 3! n!

X2 X3 x"
e - ' “ * + 2 i ~ 3 ! + " + - 1  r - r  + -n\

10 P = <? = i; a =
11 a = i b = i

13
, ,  3 3 , 3 , x" r  ( 1
ln 2  + - x  + - x 2 + - x 3 + 1 -  -

2 8 8 n .  V 2

“ H
l + x \  N  
l - x / 2  N + l'

+ ...

.. , n(n— 1) , n(n— l)(n — 2) ,
16 (1 + x)" = 1 + wx + 2\ X + ~ ----- 3/ ------ ~x +
17 (b) 10e -  4.
18 (a) e*(l + x), (b) 1 +  (1/x -  1) In (1 -  x), (c) 9^3.

— 1 ^  x < 1.

; In 2.

Chapter 11
Qu. 1

Qu. 2 
Qu. 3

(a) 2 In a + In b, (b) 3 In a — 3 In b, (c) j  In a + j  In b + \  In c, 
(d) In a + j  In b — 3 In c, (e) — 4 In c, (f) b In a.
(a) 3, (b) - 2 ,  (c) 4, (d) 2, (e) 2x, (f) 3x2.
(a) 1/x, (b) 2/(1 +  2x), (c) —1/(1 — x), (d) 3/x, (e) cot x,
(f) sec x cosec x =  2cosec 2x.

(a) 6}' (b) 3y 2
dy
dx’

(c) -  sin y (d) y  (e) 2 0 y 3
dy
dx’

( 0 - - -  [ ) V3 dx’ (g)
1 dy

2 J  y dx
(h)sec2 y

dy
dx

Qu. 4
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Q u.5 (a) — §(x + l)~2/3(x — 1)~4/3, ( b)—

(c)
x e*(x2 — 2x — 2)

2x2 + x + 4 
(2x - 1 ) V ( x2 + 1)’

Qu. 6 

Qu. 7 

Qu. 8 

Qu. 9

Qu. 10

Qu. 11

Qu. 12 
Qu. 13 
Qu. 15

(x — l)4
10*

+ c.
10*

In T o ’ In 10
(a) 2* In 2, (b) 3* In 3, (c) -(!)*  In 2, (d) 5(ln 10)105*, (e) 2x 10*2 In 10. 

2* . 3* , . (i)* . „ 105*
(a)i ^ 2 +C' (b)i i T +C- ,C)- i i 2 +C' <,J)5l „  10

+ C.

(a) |(3x + 1)3/2 + c, (b) — ^ cos6 x + c, (c) ¿(1 + cos x) 2 + c,
(d) 5*/ln 5 + c, (e) 22*/(2 In 2) + c, (f) x In x -  x + c.
(a) tan y = x, (b) x = sec y, (c) p =  cos q.

dy dy , dy dy
(a) 2y — , (b) cos y — , (c) sec2 y— , (d) sec y tan y— . 

dx dx dx dx
(a) -1 /7 (1  -  x 2), (b) -1 /(1  + x2), (c) l/^/(— x -  x2).
Maximum at (1, 1/e).
(3, 8).

Exercise 11a, page 205

1 (a) 3 In a + 4 In b, (b) In a — In b, (c) f  In a — j  In b, 
(d) 2 In a + In b — j  In c, (e) |  In a + -j In b — j  In c, 
(f) - ± l n a - ± l n b - ± l n  c.

2 (a) 5, (b) 3, (c) 4, (d) (e) x3, (f) -2 x .

3 2(3 -  2x) I 2x + 3
„ x / 2

' (1 — 2x)3

4 — r (x sin x — 8 sin x + 2x cos x). 
2x

x — 5x3 x tan x — x — 1
x2 e* cos x3V(x2 + l)37 (x 2- l ) 4 '

8 103* 3 In 10. 9 - j  10”*/2 In 10. 10

7 7* In 7. 

In 10

12 In 8 + C’

16 r ^  + C.In a
1

13

17

In 3 
1

1 + x2 ' 

21

+ c. 14 

18

2 In 3 
1

+ c.

10*

15 a* In a 

1

n h T 5 + c -

2x
V (x 2 — !)'

22

19

10
y / ( - x 2 - 2 x ) '

20 -

7 ( x  — x 2) x 4 + l  7 ( 1 — 2 5 x 2

23 (a) 0, (b) 0. The angles are complementary.

^ 7 o  - 4*2) ’ ^ 7 ( ! _ x 4 ) ’ ^  7 ( ! _ x 2 )
25 ¿ ( 4 x  +  3 ) 3/2 +  c.

26 ^ x 2 +  l ) 4 + c.

27 x  In x  — x  + c.
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Page 206 
28 x sin-
29 — (l+ ln x )x ~

■ + V(1 - - l + c.

30 | cos x In x H—  sin x | xa
x

Exercise lib , page 211

1 (1,4) max., (3, 0) min.
2 (2, 3) min.
3 (2 ,-1 )  max., (4, 3) min.
4 (1, 1) min.
5 (±3, -405).
6 None.
8 (in, m ax> (rc, 0) infl., (§7i, —1^3) min.
9 (■jK, max.

10 (0, — 1) max., (2k, — 1) max.
11 (0, f )  min., (¿71, §72) max., (§rc, -  §72) min., (n, - § )  max., 

(fit, — jy/2) min., (¿71, f v;2) max., ( 2 k , | )  min.
12 (1, 1/e) max.
13 (2, 10 tan- 1 2 — 2) max.

15 ^2wt + -  k , e2"" + */4^ max., ^2nK + ^ tt, — e2""+ 5"/4

16 7 2 :1 .
18 7 2 :1 .
2 0  1 :2 .

E x e r c is e  11c, page 216 

1 0 0 /. 2X.2'2 : (b)
- 1

, (c) e2x (2 cos 3x — 3 sin 3x).
(1 - x 2)2’ v“/ x7(x2 -  1) 

x  — 3
2 (a) — — ^37j, (b) 3 sin2 x cos3 x — 2 sin4 x cos x, (c) In x.

2(x — 1)3/2’
12x — 1

3  (a) -  (2x +  l)3(3x —2)2’ (b) " :2 Sin 2* e (°»2  cot 2*-

4 (a)7(2x + i)v' ( 2 * - i ) J’ (b)T+2? ’ (c) - 4 e  ‘
5 (a) x(x2 + l)(x3 +  l)2(13x3 + 9x +  4),

sec2 x „ x / 1 -  2 In x
(b) -  V ( l - „ n » x )  = “  SCC ^ ,SCC 2x)' ,c) 

sin3 x(4 +  sin2 x) 1
6 (a) -----------e----------> (b) , , 2~cos x 1 + x
7 (a) 2x2 + 1x In 2, (b) 2(ln x + l)x2x.

10 (a) —b/(a2 sin3 6 ) .

3 1 1
11 (a) — + -3 , (b) § sec4 t cosec t, (c) — — cosec4 §0 .41 4 a

min.



Answers 433

Page 217
14 2 V ( l - x 2H x V (l -x 2) + i2 sin 1 x  + c.
15
16
17
18 
20

23

tan 1 x, x tan 1 x — i  ln (1 +  x2) + c. 
1 max., — 1 min.
(21/3, 22/3) max., (0, 0) min.
Point of inflexion at (0, 0).
COS (x +  jrc), COS (X +  j M l ) .

-1 6  4 32
+

32
21(4x — l)3

24

25
26 
30

mm.

21(x + 5)2 "  21(4x -  l)2’ 21(x + 5)3
(1, £) max, ( - i ,  Ä) min, (2, infl.

n 2^2  - l \ _  ( 5n 2 ^ 2 + T
- ,  H  j  max, —

4a (75 -  1).
5c.
(a) ex(x3 + 9x2 + 18x + 6), (b) x cos x + 4 sin x,
(c) 2"-2 e2x{4x2 + 4nx +  n(n -  1)}, (d) (1 -  x 2)y„ -  2nxy„_ j -  n{n -  \)y„

Chapter 12
Qu. 1 (a) nn, (b) (2n +  l)jt, (c) nn + in , (d) 2nn + jn, (e) nn + jn,

(f) nn + (— l)nn/6, (g) nn — ¿n, (h) nn + (— l)"in, (i) 2nn ±  |n .
Qu. 2 (a) -  n/4, (b) -  n/6, (c) n, (d) n/3, (e) n/2, (f) 0.
Qu. 3 (a) 0.322, (b) 1.824, (c) 0.010, (d) -0.201, (e) -1.249, (f) 0.927.
Qu. 4 nn, (2n +  l)n/4.
Qu. 5 (4n + l)n/18, (4n — l)n/2.

Exercise 12a, page 223

1 nn + ¿n. 2 180n°-32.7°. 3 360n° ± 47.6°. 4 nn, 2nn±n/3.
5 in  + 2nn/3. 6  (2n + 1)ti/2, nn + ( -  l)"n/6. 7 180n° + ( -  l)n17.6°.
8  nn. 9 nn/2. 10 nn/2. 11 nn/3. 12 nn/2, nn — ( — l)"n/6.

13 nn/3. 14 in  + 2nn/3. 15 2nn — in , nn + (— l)"n/6.
16 (4n + l)n/8, i.e. 180n° +  22.5°, 180n° -  67.5°. 17 nn, nn + ( — l)"n/6.
18 2nn, 2nn ±  n/3. 19 nn + ( — l)"n/6. 20 (2n + l)n/2, (2n + l)n/4.
21 180n° + 8.1°, 180n° -  12.5°. 22 nn -  ( -  l)"n/6. 23 2nn, 2nn + 2n/3.
24 360n° -  53.1°, 360n° + 36.9°. 25 360n° + 163.7°.

Exercise 12b, page 225

1 (a) n/3, (b) n/4, (c) n/6, (d) n/2, (e) —n/3, (f) —n/2.
2 (a) 1.107, (b) 0.643, (c) 1.159, (d) -0.340, (e) -0.464, (f) 1.318.
3 nn, 2nn + cos ~1
4 (2n + l)n, 2nn + cos- 1 §.
5 nn, nn + sin “ 1 f .
6 nn, nn ± tan ' 1 (j^/2).
7 2nn + n/4.
8 2nn, 2nn — 2n/3.
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Page 225
9 nn + tan ” 1 (3 tan a).

10 nn + a — tan ” 1 f.̂ »
11 2mt ±  a, (2n + l)rc + cos"1 cos a).
12 (2n + l)n — tan” 1 §, (2n + 1)ti — tan” 1
13 (4n + 1)ti/2, (2n + l)n — tan“ 1 §j.
14 M7i/2.
15 2rm, (2n + l)n/5.
16 7171/3.
17 (477 + 1)71/10.
18 (477 + l)7r/14.
19 777l/6.
20 (4t7 -  1)71/10, (4t7 + 1)71/2.
21 2777t/5; 4 cos3 6 — 2 cos2 6 — 3 cos 0 + 1 = 0 ;  — i( l  +  ̂ 5).

Exercise 12c, page 225

1 (a) 217°, 323°, (b) 60°, 90°, 270°, 300°, (c) 76.7°, 209.6°.
2 (a) 0°, 45°, 135°, 180°, (b) 35.3°, 144.7°, (c) 90°.
3 (a) 18°, 72°, (b) 0°, 30°, 90°, 150°, 180°, 210°, 270°, 330°, 360°.
4 (a) (2t7 + 1)ti/4, 2t7ti +  T̂t, (b) 360t7° + 29.6°, 360t7° + 256.7°.
5 (a) (2k — i )tt/5, (2k +  i)7t/3, (b) (2k ±  j)rt, (c) kn/6.
6 (a) 777t + (— l)"7t/6, 777i —(—1)" sin“ 1 I, (b) (4t7— l)n/2, (4t? + 1 )tc/  10.
7 (a) 16c5 -  20c3 + 5c, y (10 -  2^/5), (b) kn/3.
8 2x2 — x — 1 =  0; 1, —j , 6  = 0,(j> = 2n/3\ 6 = 2tu/3, 0  = 0.
9 (a) 120°, 240°, 300°.

10 nn/5.
11 (a) 45°, 105°, 165°, 225°, 285°, 345°, (b) 210°, 330°.
12 26.6°, 90°, 206.6°, 270°.

13 (a) 7t/2, ll7r/6; (b) 5ti/4, 3tc/2; -— ^  k <

14 (a) a +  n/6 + 2nn or tc/2 — a +  2nn, (b) 1 Iti/ 12 or 5ti/4.

16 (a) No, (b) 51°, 111°, 171°, 231°, 291°, 351°.
17 (a) a = 2, b =  1, (b) 2/cos 2x.
18 0 < 6 < ti/ 3; cos 30 = 1 -  l/(2p2); 0.37.

19 tan 3A = 3 tan A ~  A ; 0°, 40.2°, 139.8°, 180°.
1 — 3 tanz A

20 (a) -  ̂ 3 /2  < x < 1 /2; x > J3/2,  (b) -  ti/3 +  2nn < x < n / 6  +  2nn\ 
5ti/6 + 27771 < x <  4n/3 +  2tîti; ti/3 + 2nn < x < 2ti/3 + 2mt, (c) R.

Chapter 13
Qu. 3 (a) sin x — x cos x +  c, (b) ^x sin 2x + j  cos 2x + c,

(c) j x 2 In x — \ x 2 + c, (d) xe* — ex + c.
Qu. 4 2xe*2, -¡ex2 (x2 — 1) + c.
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Qu. 5 
Qu. 6  

Qu. 8  

Qu. 9

Qu. 10

Qu. 11 
Qu. 12 
Qu. 14 
Qu. 15

Qu. 16 

Qu. 17

Qu. 18 
Qu. 19 
Qu. 20 
Qu. 21 
Qu. 22 
Qu. 24 
Qu. 25 
Qu. 26 
Qu. 29

x In x — x + c.
(a) (1 — x2)“ 1/2, (b) x sin-1 x + ^/(l — x 2) + c.
(a) (x2 — 2) sin x + 2x cos x + c, (b) ex(x2 — 2x + 2\ + c.
(a) 3(1 -  9x2)“ 1/2, (b) 2(1 + 4x2)“ \  (c) (9 -  x2)“ 1/2,
(d) -  2(1 -  4x2)“ 1/2, (e) Kl + 9x2)“ \  (f) 6(4 + x2)“ l,
(g) ¿(2x —x2)“ 1/2, (h) 4(5 + 2x + x2)-1 .

(a) tan“ 1 ^  + c, (b) § tan“ 1 2x + c, (c) 4 sin“ 1 ^  + c, (d)-j sin“ 1 3x + c,

(e)
1 . _, 5x ... . _. 2x . . 1 . x — 1

x n  V 2 + c ’ (f)“ ”  x + c A i ) x  x *
+  C,

,,, ,  . X  + 2 (h) 5 sin 1 —----- 1- c.

In tan j x  + c.
— 2 In cos + c.
(a) (1 + t2)“ 1, (b) (4 +  4t2)“ 1, (c) 2(3 + 3t2)“ \
(a) j  In tan x +  c, (b) -  f  (1 + tan jd )~1 + c, (c) In {x + J ( x 2 — 1)} + c. 

(a) ~  tan“ 1 tan x ĵ + c, (b) —In (1 — tan2 x) +  c.

x \
(a) In (x2 + 2x + 10) + 5  tan“ 1 —----- V c,

x 2.
(b) 5 sin “ 1 —----- b 2^(5 — 4x — x2) +  c, (c) j x  — \  In (sin x +  cos x) + c,

(d) fx — f  In (3 cos x + sin x) + c.
(a) 1, (b) \n.
(b) ^n, (e) 1, (f) ji/3.

2x(2 sin 3x — 3 cos 3x) + c.
(a) and (b) 3Cx(cos 2x + 2 sin 2x) + c, no.
|  sin x cos3 x + 1 sin x cos x +  fx  + c.
(a) f  sin x cos2 x +  § sin x +  c, (b) sin x — f  sin3 x + c.
_8_15-
(a) 35n/256, (b) 128/315, (c) 63n/512.
(a) 7, (b) 2/ti, (c) 4/3, (d) 1/2.

Exercise 13a, page 230

1 (a) 2 sin x — 2x cos x + c, (b) f(x — l)ex +  c, (c) f  sin 2x — |x  cos 2x + c,
(d) fx 3(3 In x — 1) + c, (e) x sin (x + 2) +  cos (x + 2) + c,
(0 +  x)8(8x -  1) + c, (g) jxe2x -  fe2x + c, (h) |e x2 + c,

(i) — — (In x + 1) + c, (j) x tan x +  In cos x + c,

(k) (n + l)“ 2x"+ *{(n + 1) In x -  1)} + c, (1) (In 3)“ 2 x 3x(x In 3 -  1) + c.
2 (a) x In 2x — x + c, (b) x sin“ 1 3x + ^ / ( l  — 9x2) +  c, (c) 2y(ln y — 1) + c,

Q
(d) 6 tan“ 1 -  — In (4 + 62) + c, (e) t cos“ 1 t — <J(l — t2) + c,

(f) 2e'/x(v/x -  1) + c.
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Page 230
3 (a) ¿e*3(x3 — 1) + c, (b) — ¿e“*2 + c, (c) — ¿e“*2(l + x2) +  c,

(d) j x 2 sin x2 + j  cos x2 + c, (e) \ x 2 tan x2 + \  In cos x2 + c.
4 (a) ¿x2 sin 3x + %x cos hx — ^i sin 3x + c, (b) e*(x3 — 3x2 + 6x — 6) +  c,

(c) ^ cos 2x(l — 2x2) + ¿x sin 2x + c, (d) — e~*(x2 + 2x + 2) + c,
(e) ¿x3 + ¿{2x2 — 1) sin 2x +  ¿x cos 2x + c, (f) ¿x2{ 1 — 2 In x + 2(ln x)2} + c.

5 (a) £ sin 2x — ¿x cos 2x + c, (b) — e “x(l + x) + c, (c)7gg(l + 2x)6(12x — 1) + c,
(d) ^(ln y)2 + c , (e)Kl + u2) tan -1 u — ju + c, (f) — ¿e“x2 + c,
(g) — e “x(x3 + 3x2 + 6x + 6) + c, (h) — ̂ {1 — x2)7 +  c,
(i) ¿f2 — ¿t sin 2i — j  cos 21 + c, (j) ¿e3"(3u — 1) + c.

6 (a) x tan x + In cos x — ¿x2 + c.
7 (a) jn  -  1 % 0.571, (b) e -  2 «  0.718, (c) e2 + 1 «  8.39, (d) -  1 »  0.571,

(e) ti2/4 *  2.47, (f) 50 -  99/(4 In 10) »  39.2.

Exercise 13b, page 238

1 (a) 2(1 -  4x2)“ 1/2, (b) 3(2 + 6x + 9x2)“ \  (c) -  §(1 -  4x2)“ 1/2,
(d) 2(8 + 2x -  x2)“ 1'2, (e) (x2 + 4)- \  (f) 2(4 -  9x2)“ 1/2, (g) —(1 + x2)“ 1,

(h) — t—L— —, (i) 2x3(l + x4)“ 1 + 2x tan-1 x2, (j) 0.
X,/(X‘ -  1) 

X
2 (a) i  tan 1 j  + c, (b) 3 sin 1 ^ + c, (c) f  tan 1 3u + c, (d) j  sin 1 4x + c,

, , 1 _. 21 2x . , 1 _, J 3 y
, e ) 7 3 , a n  7 3 + c - ( f ) 5 s , n ~  ~ 7 ï + c '

(h) 3 ^  si" - 1 7 2  * +  c, (i) ^  ta„ - ‘ + c,

, ,  2 . _ j (x — l),/3 ,
(j)-7Tsln ----- +V3

3 (a) 2 In tan — + c, (b) j  In (sec 2d + tan 20) + c, (c) j  In tan fx + c,

(d) 5 In (sec 4<j> + tan 4<f>) + c, (e) In tan x + c, (f) tan j y  + c,
(g) —(1 + tan x)“ 1 + c, (h) In (1 — cos 0) + c,
(i) 3 In (3 + tan ¿x) — ^ In (3 — tan jx) + c, (j) tan “ 1(j tan ¿0) + c.

4 (a) -7- tan-1 (^3 tan x) + c, (b) £ In (1 + 2 tan x) — 5 In (1 — 2 tan x) +  c, 
v 2

(c) y/2 tan“ 1 tan x^ — x + c, (d)^ In (1 + 3 tan x) — ̂  In (1 — 3 tan x) + c.

5 (a) j  In (x2 + 3) + tan 1 + c, (b) In (y + 3) - (y + 3) l +c,

(c) f  In (u2 +  2u +  5) +1 tan“ 1 U ^  * +  c, (d) 7-v/(4x — x2) — 11 sin“ 1 ^ ---- 1- c,2 ^ 7 2
(e) j6  + j  In (sin 0 + cos 0) + c, (f) ¿x + f  In (sin x + cos x) + c.

6 (a) 1, (b) 71/6.
7 (b) 2, (e) i  (f) 1, (g) - 1 (In 2 + 1) «  -  0.847, (h) - 1 ,

(i) ¿71 ■ sin ; 0.4205, (j)A*.
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Page 239
8 (a) tends to it, (b) tends to infinity.
9 15ti.

10 256/3.

Exercise 13c, page 241

1 (a) T^e3x(3 cos 2x + 2 sin 2x) + c, (b) X5e4x(4 sin 3x — 3 cos 3x) + c,
(c) fe "'(sin j t  — 2 cos jt) + c, (d) fex{sin(2x + 1) — 2 cos (2x +  1)} + c,
(e) ^e20 (2 + cos 29 + sin 20) +  c.

2 f  tan x sec x +  \  In (sec x + tan x) + c.
3 (a) -¡^x4 (4 In x — 1) + c, (b) y tan - 1 2y — f  In (1 + 4y2) + c, (c) — fe - *2 + c,

(d) i(sin 3x — 3x cos 3x) + c, (e) £ cos 2x(l — 2x2) + j x  sin 2x + c,
(f) r je 3* (3 sin 2x — 2 cos 2x) +  c, (g) %eul(u2 — 1) + c,
(h)ilb {2 x - l)6 (12x + 1) + c, (i)f(x2 -  l)ln  (x -  1) - £ x 2 - ^ x  + c,
(j) x (In 3x — 1) + c, (k) ^e2x(2x2 — 2x + 1) + c,
(O fe'^sin j y  — 2cos-jy) + c, (m) — f x - 2 (l +21nx) + c,

(n) t sin - 11 + -J{9 — î2) +  c, (o) 3x(ln x — 1) + c,

(P) 6 >'3 + i  (2y2 -  1) sin 2y + {y cos 2y + c, (q) \  sin x2 + c,
(r) j x 2 (In x2 — 1) + c, (s) f  sin 02 — ̂ 02 cos 02 + c,
(t) ?(2x3 — 3x) sin 2x + f(2x2 — 1) cos 2x + c.

eax , eax
4 C = —5— -r- (a cos bx + b sin bx), S = (a sin bx — b cos bx).

a2 + b2 a2 + b2 ’
ft
7 ( i7 l-l,|7 l) .
8 (71/4-1/71, 0).

10 A a + e 3*).

Exercise 13d, page 245

7
8
9

10

I  cos x sin x + |x  + c, 3ti/16.
fs cos x + c, fs-

— f  cos x sin3x
— 5 cos x sin4 x ~ ts cos x sin2 x 
(a) i  (b) 5k/32, (c) iff , (d) 3k/ 16, (e) 63k/ 512, (Off- 
(a) &  (b) f, (c) 5k/96.
(a) ff, (b) 3k/8, (c) 5k/16, (d) 0, (e) 0, (f) fff, (g) 63k/256, (h) 35k/128. 

< *> /.-,„=■  m - 3  '  '  -  ,m -1X m - 3)m + n — 2 
(n

I m —

lXn-3Xn
I m n  (771+  n )(m  +  n - 2) í m - 4 •',,

■5)
( ) m A'n (m +. n — 4Xm + n — 6)(tm + n — 8) 
(d) 0) T ib, (ü) 5k/4096, (iii) b b ,  (iv) ttô- 
(a) j f a ,  (b) 7k/2048.
(a) I„ = (n/a) /„_ !,(b)

I n  ~  ~  _  j ~  I n -  2> (a) A  — 2 ln 2

(b) 1328^/3/2835.

^ m - 4 , / i - 6 »  (p )  693:

0.070, (b) 0.062.
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Exercise 13e, page 248

1

2

3

(a) i ,/(x 2 + l)3 + c, (b) f -^ x 3 + 3x — 4) + c, (c) sin u — f  sin3 u + j  sin5 u + c,
(d) tan 9 + §  tan3 6 + j  tan5 9 + c, (e) ^ sec5 x — f  sec3 'x + sec x +  c,
(f) -  j  cos x2 + c, (g) 2 tan N/x  + c, (h) { In (2x2 + 3) + c, (i) -  -je“*2 + c,

Q
(j) In sec2 -  + c.

(a) j(x  + l)V(2x -  3)3 + c, (b) 3 ^ 2 4 x + 1) (3x -  l)8 + c,

(c) y + 16( y -  4) 1 +  c, (d) sin 1

(0 1
2V2

tan" ■3 , , , 1 . _ !(x - 1)V2 _
v r + c - ( g ) 7 2 sm

+ c, (e) tan 1 J3u  + c,

(h) j  y - J  (4 — y 2 )  + 2  sin 1 |  +  c, (i)sec 1 3x +  c, (j) f  tan ^ t a n ^  +  c.

(a ) |e 3x + c, (b) (In 10)~MtF + c, (c) - ^ e “x3 + c, (d) yin x + c,
(e) ^ In (3x + 4) + c, (f) — j  In (2x — 3) + c, (g) ^ ln (x + 3) + c,

(h) j  In | + X + c, (i) x(ln x — 1) + c, (j) 2e'/x(x/x -  1) + c.

(a) I  In + c, (b) i  In -3 — x
- 3  1 x - 1
----+ c, (c) -  + In--------- b c,
y x x

4x + 5
(d) 4(4 -  x)~1 + In (4 -  x) + c, (e) -  2 -  ln (x +  1) +  c,

2(x + l)2
1 (x + !)3 ,

(f) ln ~i-------TT + c-
(a) 2x sin j x  + 4 cos j x  + c, (b) jex{x — 1) + c, (c) ln sin y — y cot y + c,
(d) - ( 2 1  y + 1X1 -  3y)7 + c, (e) (ln 3)“ 2 3x(x ln 3 -  1) + c,
(f) ?x2(2 ln 2x — 1) + c, (g) i(ln t — 1) +  c, (h) x tan 1 3x — j  ln (1 + 9x2) + c,
(i) 4x(ln 4) “ 1 + c, (j) x(6 — x2) cos x + 3(x2 — 2) sin x + c.

6 (a) j  ln (4x2 + 3) -  tan
. 2x
7 3 + c ’

(b) 4^/(1 + 2y -  y2) -  3 sin >’ — 1 
7 2

+ c, (c) j9  — "5 In (2 cos 9 — sin 9) +  c,

(d) I  ln (4 sin x + 3 cos x) — j x  + c.

1 (a) ti/9, (b) 27/2 tan * 18 3 i° ^ 2, ^  2’ ^  ^  231^/2048, (f ) 5n/128,
(g) 35n/128, (h) 0, (i) 128/230 945, (j) j  ln j.

8 (a) — j  cos 5x + c, (b) 3 sin ^x + c, (c) j  ln sec 5x + c, (d) 2 ln sin jx  + c,
(e) ln tan j x  + c, (f) ln (sec x + tan x) + c or ln tan (|x  + jn) + c.

9 (a) 3 tan jx  + c, (b) — j  cot 4x + c, (c) j x  — 5 sin 2x + c,
(d) jx  + 5 sin 2x + c, (e) tan x — x + c, (f) — cot x — x + c.

10 (a) ^ cos 3x — cos x + c, (b) sin x — 5 sin 3x + c, (c) j  tan2 x + ln cos x + c,
(d) — j  cot2 x — ln sin x + c, (e) j  tan x sec x + ln sec x + tan x) + c,
(f) j  ln tan j x  — j  cot x cosec x + c.

11 (a) yj(12x — 8 sin 2x + sin 4x) +  c, (b) yj(12x + 8 sin 2x + sin 4x) + c,
(c) x — tan x + j  tan3 x +  c, (d) — -j cot 3x — cot x + c,
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Page 250
(e) |  tan 3x + tan x + c, (f) x + cot x — 3 cot3 x + c.

12 (a) x sin“ 1 x + 7(1 — x2) + c, (b) x cos“ 1 x — 7(1 — x 2) + c,
(c) x tan“ 1 x — |  In (1 + x2) + c, (d) x cot“ 1 x + j  In (1 +  x2) + c,
(e) x sec“ 1 x — In {x + y/(x2 — 1)} + c, (f) x cosec” 1 x + In {x + ^/(x2 — 1)} + c.

13 (a)

14

1 2x
2^/3 tan “ 1 -j j  + c, (b) | 7 ( 5 + 8x2) + c> t(c) In {x + 7(1 + x2)} + c, 

(d) i  In (2 + 3x2) + c, (e) i 7 ( 3 + *2)3 +  c>

(f) g In (3 + 2x2) + - ^ t a n ” 1 + c, (g) \  In (x2 -  4x + 7) + c,

(h) jx^Jix2 + 2) + In {x + 7 (x 2 + 2)} + c,
(i) |  In (x2 — 4x + 5) — 5 tan “ 1 (x — 2) + c, (j) y fj^ x  — 4)7(2 + 3x)3 + c.

(a) sin“ 1 + c, (b) - 7K3* + 2)7(1 -  3x) + c, (c)$ In + c,

(d) 3(16 — x)“ 1 +c,  (e) — i 7 ( 6 — x2)3 +  c’ (f) - | 1  n ( 4 - x 2) +  c,

(g) i* 7 (4 -  x 2) + 2 sin “ 1 ^  + c, (h) - 1 7 (7  -  2x2) + c,

(i) - W ( 3 -  4x2) -  sin 1 + c, f(j) In {x + 7 (* 2 -  9)} + c.

180 , ,
15 (a) —  sin x° + c, (b) j j  sin 4x — |x  cos 4x + c, (c) 2 In tan + c,

»

(d) — 7 cos7 x + 1 cos9 x — -pf cos11 x +  c, (e) y tan y + In cos y + c,
(f) sin x — x cos x + c, (g) — 7 cos x2 + c, (h) (u2 — 2) sin u + 2u cos u + c,
(i) i  y — J2 sin 4y + c, (j) — ¿ (3  cos 7x + 7 cos 3x) + c.

, ,  . , , „ „ ,  , . 1 +  2 tan 616 (a) tan w  + c, (b) g In -—  ------ - +  c, (c) tan x — sec x +  c,
1 — 2 tan 6

(d) In (cos 0 + 3 sin 9) — 6 + c, (e) — 2 cot gx + c, (f) f  tan “ 1 (3 tan x) + c,

(g) g In (sec 4y + tan 4y) +  c, (h) tan x +  sec x + c, (i) 7 In * + tan.I^  + c>
3 — tan 2v

(j) j x  + 7 In (cos x + sin x) + c.
17 (a) — e“*(x3 + 3x2 +  6x + 6) + c, (b) (x +  2) In (x + 2) — x + c, (c) 2e'Jy + c,

(d) 27ln t + c, (e) gg(l + 9x2) tan“ 1 3x — ¿x + c, (f)i(sin“ 1 x)2 + c,
(g)(In 4)“ 1 4* + c, (h)x(ln 10)“ 110*- ( In  10)“ 2 10*+ c,
(i) gx4 In 2x -  i^x4 + c, (j) -7e*(x2 — 1) + c.

Exercise 13f, page 252

1 (a) | x 5 — 2x2 — 4x” 1 + c, (b) yg{4 cos 2x — cos 8x) +  c, 
(c) 2 In x — In (1 + x2) +  c; 7

2 (a) 3(1 + x2)5/2 +  c, (b) 5 In (1 + 2x) — In (1 — 2x) + c,
(c) ix 3 In x -  ̂ x3 + c, -^K2 -  3*5.

1 1 1
3 4 ( l + x ) + 4 ( l - x )  +  2 ( l + x 2)'

tSee also pp. 346, 348.
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Page 252
x — 2

4 (a) In ----- - + c, (b) j x 2 tan _ 1 x — j x + j  tan “ 1 x + c,
X  1 j

(c) x — In (x2 + 2x + 2) + c.
5 (a) 2 In (x + 2) — In (x + 4) +  c, (b) j x 2 In x — \ x 2 + c, 

(c) x sin-1 x +  y/(l -  x2) + c; 2 + J2.
6 In § —
8 (a) — j  cosec2 x + c, (b) — ^/(7 — 6x — x2) + c.

9 (a) sin-1 —j — + c, (b) - ^e~x2(x2 + 1) +  c.

10 in  + j.
11 W 1 9 -2 .
12 (a) x + In (x — 2) — In (x + 2) + c, (b) 

X — 2 tly/6
(c) sin + c; ■

12

— e *2/2(x2 + 2) + c,

13 A (3 -2 e ’[).
14 (a) — (2x — 3) 1/2 + c, (b) sin x — x cos x + c, (c) ^ (3 x  + 8)(x — 4)3/2 + c; n.
15 (a) Positive, (b) zero, (c) negative.
16 (a) Positive, (b) zero, (c) positive.
18 (a) in  -  i  In 2, (b) i  + &n.

Chapter 14
Qu. 1 
Qu. 2 
Qu. 3 
Qu. 4

Qu. 5

Qu. 7

Qu. 8  

Qu. 9

Qu. 10

y = Ax + B, y = 3x — 5. 
y = x 3 + A. 
x 2 + y2 = A.
s = ja t2 + At + B; s = ut + ja t2.

. i  . «d 2y
( a ) ^  = 0, ( b ) /  dx dx x = (e)x

(0 x ^  = y  In y, (g) y

(i) (1 + x 2) ~r~ tan dx

5̂  = (ai) • (h> ̂  ̂  l- * = >".d y

1 x = y.

(a) x2 — y2 + A = 0, (b) y = Ax, (c) x = Aeyl12, (d) x = A sin y,

(e) In J y ^  | = ex + A, (f) y2 = 2v/(x2 + 1) + A.

V2 = u2 + 2 as.
(a) x2_y = x + A, (b) t2 In x =  3 sin t + A, (c) x2 sin u = In (kx),
(d) xe* = 2x + A. j
(a) x,x2y = ie*2 + A, (b) x, x 2ey = j x 3 + A, (c) —, xy2 = In (kx),

x
(d) r, r2 tan 6 = 26 + A.

Qu. 11 y = j  + Ae~*2; y = j  — e~*2.
Qu. 12 x2.
Qu. 13 (a) y = 1 + x tan x + A sec x, (b) y = x  — 4 + Ae~x.

y>
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Qu. 14 (a) ^  , (b) + xy, (c) x^J(x2 + y2).

Qu. 15 (a), (b), (d), (e).
Qu. 16 (a) xexly = A, (b) x 2 — 2xy = A, (c) x — 2y + Axy  = 0.
Qu. 17 y = x In (Ax1).
Qu. 19 (a) y = 2x In x  +  Ax  + B, (b) y = 2 sin x — x  cos x + Ax + B,

(c) y = x3 +  A In x + B, (d) y2 = Ax + B — 2 cos x.
Qu. 20 (a) y = AeBx or y = C, (b) y = — 3x2 +  3x + 2.
Qu. 21 y = ln x 2 + A x~ 2 + B.
Qu. 22 (a) x = a cos (2r +  e), (b) y = a cos (3x + a), (c) y = — §x3 + Ax  + B.

Qu. 23 2 i i .
dr ¿Y (Jy

Qu. 24 x = 2 cos (ft), (a) —  = f  ̂ (4  -  x2), (b) —  = -  3 sin (ft).

Qu. 25 (a) x = a cos nt, (b) x =  a sin nt.
Qu. 26 (a) x = a cos nt, (b) x = a sin nt.
Qu. 27 ±  ti/3.
Qu. 28 (a) y =  a cos (2x + e) — 1, (b) 8 =  a cos (J2t + e) + 3,

(c) x = A + Bt — f t 2 — f t 3.

Exercise 14a, page 261

dy 3 /ux dy y + i1
dy
dx

(a) ^  = f , (b) ^  (c) ^  ( d ) ^  = -  - ,  ( e ) ^  =
Xdx ’ dx

< f ) £ — 4 .dx x — 4
, , d2y _  Q ,, , d 2y ,d y  d2y

d r  9 j , ,b l d[' 3  d l' d i 2

' T
x
y &

y
X

d2v dy
(e)d ^ - 8 d i  + 16^ ° -

3
4
5
6 
7

3 x -  lOy- 
.2

35 = 0.
y =  x* — 3x + 1.
s = A — 3t2, s = 12 — 3t2.
(a) y = ex — 3x cos x + 3 sin x — 1, (b) y =  ex — 3x cos x +  3 sin x — en/2.
(a) y = Aex, (b) y = ^ (x  -  lX3x +  2)J(x -  1) + A, (c) y =  A(x + 2),
(d) x = j  y + f  sin 2y + A, (e) v — 1 =  Ave", (f) y = x In x — x + A,
(g) sin y = Aex, (h) x =  y tan“ 1 y — In ^/(l +  y2) +  A, (i) y2 = x2 — 2x +  A,

' 1 /  &
(k) r = In ((j)y = A (k) r =  In ^A  tan -J ,  (1) y + 3 =  Ae 1/x, (m) y = Axex,

(n) cos 8 sin <p = A, (o )r = 6 tan 8 + In (A cos 8), (p) 2y2 = x2(ln x2 — 1) + A,
(q) r = — 8 — In (cos 8 — sin 8) + A, (r) 2y +  3 = A(x — 2)2,
(s) x = A — fe~'(cos t + sin t), (t) y =  2 tan (2e_x + A).

7x + 1
8 (a) y = tan 8, (b) (y — 2)2 =  9ex\  (c) y = —------, (d) y =  sin (x — ¿tt).
9 83.4 minutes.

10 9.05 kg, 34.7 minutes.

7 — x
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Exercise 14b, page 269

A 1 1
1 (a) y2 = --------(b) y2 = —=■ (tan 2x + A), (c) x In y = sec x + A,

x x x  ’
(d) (1 — 2x)ey = tan x + A, (e) t2es = t sin t + A, (f) r2eu = cot u + A.

2 (a) x2 sin y = 3x2 + A, (b) xy = e* + A, (c) x tan y = e*2 + A,
(d) ye* = In (Ay).

3 (a) y = e “ 2*(sin x + A), (b) s = ^ + 4 e “'2, (c)y =  e “*2(l + 4 e “*),
(d) r = (6 + A) cosec2 9, (e) r = (6 + A) cos 9, (f) y = x “2(sin x + A),

__ j j  jç

(g) y = x In---- -— -, (h) y =  y  + 3 + A x ~1/2, (i) y = (x — sin x + A) cot jx,

(j) y = (x — 2)~1 + A(x — 2) “ 3.
4 (a) x3 = Aey/X, (b) x2(x2 — 2y2) =  A, (c) tan“ 1 -  = In (4.x), (d) 3x — y + Axy =  0,

x

(e) y = 4e*2/<2,'2,, (f) 2x =  (2x — y) In {4(2x — y)}, (g) sin“ 1 — = In (Ax),

(h) y = x(4x -  1), (i) (x +  y)(2x -  y)2 = A, ( j ) t a n ' 1

5 x2 — y2 — 2xy + 4x =  A.
6 (a) y -  2 = 4e<* “ 3,/(y~2), (b) (x -  y -  3)2(x + 2y -  3) = A.
7 x2 + y2 — 2xy — 4x — 8y + A = 0.
8 (a) x — y + A = In (2x + y), (b) x + y — 1 = 4e*“3’.
9 (a) y = (x + 4Xx -I- 3)2, (b) x =  (x — y) In (Ax), (c) ( y + 3) sin x = 4  — |e  “ 2*,

(d) sin y =  (e) tan~1 ^ - 2 ^  =  + _  4x _  + 8))’
(f) y + 2 = xe2* + 4e*, (g) y*2 = 4  sin x, (h) (2r + 3) tan 9 = 36 + A, (i) xy = Aeylx,
(j) x2 + y2 — 2xy + 2x — 6y + 4  =  0.

10 (a) y = (x + l)4, (b) u = sin 9 + 2 cosec 9, (c) x2 — 2xy — y2 = 17,

(d) 4y2 -  x2 = 2y2 In (e) e'(x -  1) = 1 -  1/t.

0 ^ ) =ln(/bc)-

Exercise 14c, page 278

1 (a) y = x In x + Ax + B, (b) y =  In sec 9 + A In (sec 6 + tan 9) + B,
(c) y = 2e“* -I- Ax + B, (d) y = A In {£(2x + 1)}, (e) y = e*(x — 1) + A x2 + B.

2 (a) 4  + Bx = e~2y, (b)6x = y3 + Ay +  B or y = C,
(c) y = 4 tan~1 x + B.

3 s = ln {A(t + B)10}.
4 (a) y = In cosec x + 4  In tan — + B, (b) 5X3 + ¿x2 — fx + 4  In (x + 2) + Æ,

(c) 36y = 6x2 In x — 5x2 + 4x  “ 1 + B.
5 y + 7t/4 = |  sin“ 1 x + ^ x ^ l  — x2).
6 (a) s = a cos (51 + e), (b) y = a cos (fx + e), (c) s = 4  + B9 — j j9 3,

7 s = 4 cos —.
4
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Page 279

8
9

10
11
12
13

14

d2x
-  —9x, x = 2 cos 

d r
At O; 12 s.
0, 6 s.
x = *J2 cos (2r — tt/4), ^ 2 m, — tc/4 s, n s. 
5 m, 0.927 s, 4n s.
(a) ji/2, (b) rt/12, (c) Jt/2, (d) n, (e) 7n/12.

(a) y = a cos (2x + e) — 3, (b) 9 = a cos
V 2 i + £

(c) s = A + Bt + ¿t2 — f t 3, (d) x  = *J2 cos ^2t + — 2.

15 (a) y = A + Be2x — x, (b) y = A + Bex or y = C, (c) x — a cos (t + e),
(d) y = A In (Bx) or y = C, (e) (3y — l)2/3 = Ax + B or y = C.

Exercise I4d, page 280

l x = A(sec t + tan t). 2 y = x 2 In x — x2 + Ax.
0

3 v = jex sin x + Ax + B. 4 r = 2 tan -  — 6 + A.
2

Ax ( 2
5 ( y + l ) x = —— • 6 y = a cos ( ^ / j x  + e

7 y = (2x—l) 2 + A(2x—l) 4. 8 y + — In (Ay — l) = 3x + B or y = C.
A

9 v = ^{ln m)2 + A. 10 x = 4 cos (ft + n/3).
II y = fco s3 x . 12 s =  2 cos (3t — n/3) + l. 13 x2y = (x — l)ex + l. 
14 In y = j x 2 In x — ix 2 +£. IS y2 = 4j — xe~2x— je ~ 2x.

d2v
16 (a) y = Ae~2x + j e 2x, y = ?(e2x + e _2x), (b) ~ m 2y — 0.
17 y = e~x2.
18 y sin x = ( — 2 cos 4x + 4 cos 2x + 5)/l6.
19 y=  36e"'/6 + 27; l İmin; 27°.
20 k = 20, x = 4 sin 2r + 3 cos 21 + 5, max. speed = 10;

(a) \(n/2 -  tan - 1 0.75)(b) n -  tan ~1 0.75 % 2.50.
22 x = ae~2'; y = 4a(e~‘12 — e _2')/3.

Chapter 15
Qu. 1 (a) y = Aex + Be~x, (b) y = Ae2x + Bel0x, (c) y = Ae~x/2 + Be3x,

(d) y = Aex/3 + Bex/5.
Qu. 2 (a) z = Ae5' + Be-5', (b) z =  Ae'12 + Be-,/3.
Qu. 3 (a) z = e5' -  e - 5', (b) z = 12(e'/2 - e -,/3).
Qu. 4 f(x) = 2e5x -  ex.
Qu. 5 (a) V = (At + B)e~3‘, (b) r = (Ai + B)e3,/1°.
Qu. 6 y = xex.
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Qu. 7

Qu. 8 

Qu. 11

(a) y = cx(A cos 7x + B sin lx), (b) V = e “ 3,(A cos 5t + B sin 5i),
t t

(c) r = A cos -  + B sin - .
D O  t

(a) y = 5ex sin lx,  (b) V = e " 3((cos 5t + 2 sin 5i), (c) r = 2 sin - .
6

y = 2x2 — 3x + 1.6.

Pure Mathematics 2

Exercise 15a, page 293

1 y = Ae2x + Be5x. 2 y = Ae3x + Be ~2x.
3 y = c2x(A cos 5x + B sin 5x). 4 y = Aex<s + Be~x'5.
5 x = (At + B)e5'. 6 x =  (At + B)e,/4. 7 u = Ae,/2 + Be‘13.
8 y = A + Be~Sx. 9 x = Ae3'12 + Bc~‘. 10 r = A + Bee.

11 y = e “ 2x(A cos 4x + B sin 4x). 12 r = A cos y ji + B sin ^ i .
13 y = Ae~x + Be~2x + C. 14 y = (Ax + B)e2x + 2.
15 x = e~\A  cos t + B sin t) + j .  16 y = 3e6x + 2e“x.
17 u = 5 sin 3t + 4 cos 31. 18 r = (1 — i)e6(. 19 z =  4 cos ji.
20 u = e9.

Exercise 15b, page 301

1 y = Ae3x + Be4x +
2 y = Ae5x + Be~x — 3x — 1.
3 y = A cos 3x + B sin 3x + 2ex.
4 y = (Ax + B)e ~3x + sin x.
5 y = e3x(A cos x + B sin x) + x2 + 3x + 1.
6 r = (At + B)e,/4 + 3e'.
7 z — A cos 5r + B sin 5r + 0.4.
8 u = e~t/5(A cos f i +  B sin ft) + 4e_(.
9 V = A + Be~3e + 46 — (3 cos 8 + sin 0)/lO.

10 x = Ac‘15 + Be_3,/2 + -je2' + I t  + 8.
11 y = f e ” 2x — |e ~ x + (3 sin x + cos x)/10.
12 y = 2x2 — 4x +  3 — (2x + 3)e-2x.
13 y = 2 cos 5x +  3 sin 5x + e5x.
15 x= g(c -k,- l ) / k 2 +gt/k.
16 x =  (cos iot — cos nt)/(n2 — co2) +  (Vjn) sin nt.
19 (a) 3, 9, (b) 5.
20 x = — 5e_( + 4e-2' + cos t + 3 sin t; ^/10.
21 x = 12 sin 3t +  5 cos 31 + 2; 15, 39; 0.967.
22 y = A sin 3x2 +  B cos 3x2 — f.
23 y = A sin 2x + B cos 2x + 2 — cos x; y —2 — cos x + \  cos 2x. 

d2u
24 — + 4u =  24; y = x(sin 2x + 6). 

dx

Chapter 16
Qu. 1 1.0209
Qu. 2 0.809.
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Qu. 8

Qu. 9

Qu. 11 
Qu. 12

Qu. 13

Qu. 15 
Qu. 16 
Qu. 17 
Qu. 18

Qu. 19 
Qu. 20

f(x) x  f(a) + f'(a) (x — a) H— —  (x — a)2-

f(a + h )x  f(a) +  f'(a)h + h2.

1 + 2h + 2h2 +%h3.
|  -  Kx -  a) -  ^{x -  a)2 +  t^(x -  a)3.
. , , x2 x3 x4 x5 , x , x2 x4
(a) l + x  +  - +  -  +  -  +  (c) 1 - - + - .

(a) 0, 1,0, — 0, (b) x — ¿x3 + ¿x5 — 7X7.
1 + x + j x 2 — ¿x4.
1 +  J x  ~  S * 2 +  i ^ X 3 +  3 $ f X 4 .

(a) — 2 < x <  2, (b) — 1 <  x <  1, (c) — 2 ^  x ^  0, (d) all values of x, 
(e) -  2  < x < ^ ,  (f) —1 s$x«S 1, (g) - i < x < i  (h) - 1  < x <  1,
(i) — 1 < x < 1.
(a) x < — 2 or x >  2, (b) x < — 1 or x ^  1.
(a) 0 < x ^  4, (b) — 1 < x < 1 + 7r.

Exercise 16a, page 312

1 In 2 — |  + x — j x 2.

2 sin a + (cos a)(x — a)
sin a

(x -  a)2.

(a) l + i ( x - e ) - ^ ( x - e ) 2 + ^ 3 ( x - e ) 3 - ^ ( x - e ) 4.

(b) l + ! ( x - 7 t / 2 ) 2 + A ( x - 7 r / 2 ) 4
0.581.

f""(0)
f(0) +  f'(0)x +  ^ x 2 +  ^ x 3 + 

(a) l + 2x + 2x2 + fx 3 + ...,(b)

4!
Lx4 + ....

X
T

X’
T

X4  Xs X12 X X3 x5
c _  2i + 4i _ ^6T+ ' ’ d̂ )2 _ 48 +  3840 

8 (a) 1.4918, (b) 0.1823, (c) 0.955, (d) 0.199.
645 120 + . .

9 (a) x2 — ¿x4, (b) 1 + nx + x2 +

. , (x In 2)2(c) 1 + x In 2 + -— —----- 1-

n(n — 1) 2 i n(n — l)(n — 2) 
~ ~ 2  ’
(x In 2)3

, (d) rc/2 — x + x3/6,
2! 3!

(e) x + x2 + ¿x3 -  ^ x 5, (f) x -  ¿x3.
10 x + x2 + j x 3 — ^ x 5 — ^qX6.
11 In 4 +  ̂ ( x - 4 ) - ^ ( x - 4 ) 2 + i i2 ( ^ - 4 ) 3; 1.3913.

Exercise 16b, page 318

1 (a)x + £x3+ ^ x 5 + if2X7, (b) x + ¿x3 + £ x 5,
(c) ¿71 + |x  -  ¿X2 + TJX3 -  ^ X 5, (d) ¿7t -  X -  ¿X3 -  ¿ X 5.
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2 l x 4
(a)1 + ÿ  + ¥  + ¥ ’(b)1 + T  + i ô ’(c)1- ix2 + ̂
(d) x + ^x3 + fÿx5, (e) - ¿ x 2 -
(g) In 2 + yx + ix 2 -  j ^ x 4.

3 (a) None, (b) — 1 < x <  1, (c)
5 3.142.
6 3.142.
7 0.7494.
a n 2 2 8 3
8 6 - 7 3 * + V 3 *  - V 3 *

jh>X4, ( Î ) X - W + U 3 - T 2 * \

-1  < x < 1, (d) — 2 < x < 2, (e) — 1 < x <  1.

• i  < x < f.

Exercise 16c, page 319 

1 — 2 2x + 4____ M —— Z  ! 0 j _ 2 0 v  1 1 0  . . 2
I 9 . - > 3 ' 9  •* 27x + 3

i
x2 + 1

160, .3 
81 x  > 1 < x < 1.

2 x + ix 2 - 2 y 3 i „ 4  1 i v 5 1 „ 6
3 X T  A x  t 5 X — 3X .

1
+

1
x + 2 (x + 2)2 ' x — 3 ’

8 In 2 + j x  + |x 2 + ¿ x 3,
9 x — 2x2 + 2x3 — fx4.

( r -  1)11 ( - l p 1 L _ i 3r.
r\

12 ¿x2 + ¿x3 + j^x4;
13 0.08004.
14 p = q — 2.
15 1 + x2.
16 1 — 3x + 5x2; y = 1

1; 2 In I, 1.098.

2”-
n2"

3x.
17 x + x3/3; 0.0014%, 14.4%.
18 (a) j(ex + e “ *), j(ex — e “x); x(e2* + e 2x),

- ¿ x 2 + 3x3- ^ x 4,
(2«)!

(b) 3x 2

19 y l =ax — a2x2/2 +  (a3/3 — a/6)x3 + (a2/6 — a4/4)x4, 
y 2 = ax — a2x2/2 + a3x3/6; a =  + 1.

20 1, 0; 1 + x -  x3/3 -  x4/6 -  x5/30; 1.099650.

Chapter 17
Qu. 1 7.7 m.
Qu. 2 25.1 m.
Qu. 3 0.816, 304/375 «  0.811.
Qu. 4 (a) ^  +  2y2 + 2y3 + 2y4 + 2y5 + 2y6 + 2y7 + y8),

(b) \d( y 3 +  2 y2 +  2 y 3 + 2 y4 +  2ys + 2 y6 + 2 y 7 + 2 y8 + y9).
Qu. 5 240, to nearest 10. (First two ordinates are further apart than the

others.)
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Qu. 6 (a) a( y t + 2y 2 + 2y3 + 2y4 + 2ys +  2y6 + 2y7 + y8)/14,
(b) a(y1+ 2yz + .. .+2y„_1+ y„)/(2n -  2).

Qu. 7 0.694.
Qu. 8 37.6 m.
Qu. 9 (a)id(y1+4y2 + 2y3+ 4y4 + y5),

(b) jd(y  i + 4y2 + 2y3 + 4 y4 + 2y5 + 4 y6 + 2 yn + 4 y8 + y9). 
Qu. 10 0.6931.
Qu. 11 304/375.

Exercise 17, page 335

1 (a) 0.347, (b) 0.350, (c) 0.347.
2 (b) 1.49, (c) 1.46.
3 166$.
4 0.7468.
5 (a) 49.4 cm2, (b) 49.9 cm2; 3.12.
6 310 cm3.
7 1.86 litres.
8 (a) 0.2983, (b) 0.2983.
9 3.988,0.997.

10 3.142.
11 l i
13 1 + 10x3 + 45x6 + 120x9; 0.204; 0.204.
14 (a) 0.879, (b) 0.879.
15 0.867.
16 0.467, 0.475; 71^3.12.

X y (b) x y
0 1 0 1
0.1 1 0.01 1
0.2 1.01 0.02 1 .0 0 0 1

0.3 1.0302 0.03 1.0003
0.4 1.0611 0.04 1.0006
0.5 1.1036 0.05 1.0010
X y (b) x y
0 1 0 1
0 .1 1.2 0.01 1.02
0.2 1.45 0.02 1.0405
0.3 1.76 0.03 1.0615
0.4 2.142 0.04 1.0830
0.5 2.6104 0.05 1.1051
X y (b) x y
0.5 0 0.5 0
0.6 0.025 0.51 0.0025
0.7 0.0611 0.52 0.0051
0.8 0.1104 0.53 0.0078
0.9 0.1757 0.54 0.0106
1 .0 0.2597 0.55 0.0135
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20 (a) x y (b) x y

0 1 0 1
0.1 1.1 0.01 1.01
0.2 1.1990 0.02 1.0200
0.3 1.2951 0.03 1.0300
0.4 1.3865 0.04 1.0400
0.5 1.4717 0.05 1.0500

21 X y 22 x y
0 1 0 1
0.1 1 0.1 1.2
0.2 1.02 0.2 1.5
0.3 1.0408 0.3 1.84
0.4 1.0824 0.4 2.296
0.5 1.1274 0.5 2.8384

23 y == 1 + x2/2 (the coefficients of x-and x3 are zero); 1..005,
24 y == 1 + 2x + \  x 2: +  § x3; 1.227, 1.513.
25 y == 1 + x + x2 + § x3; 1.111, 1.251.

Chapter 18
Qu. 1 (a) sinh A + sinh B = 2 sinh y(A + B) cosh j(A  —B),

(b) cosh A + cosh B =  2! cosh j(A + B) cosh j(A --B),
(c) cosh A —cosh B = 2 sinh j(A + B) sinh j(A  —B),
(d) sech2 0 = 1 — tanh2 0, (e) cosech2 0 =  coth2 0 - 1 ,
(f) cosh 30 = 4 cosh3 0 -- 3 cosh 0,
(g) tanh 30 = (3 tanh 0 + tanh3 0)/(l + 3 tanh2 0).

Qu. 2 (a) 2 sinh 2x, (b) I  cosh jx, (c) sinh ^x, (d) 2 cosh 4x,
(e) 2 sinh x cosh x =  sinh 2x, (f) 6 cosh2 2x sinh 2x.

Qu. 3 (a) x = a cosh 0, (b) x =: a sinh 0.
Qu. 5 (a) x = a tan 0 (or x = a sinh 0),

(b) x = a tanh 0 (or x = a sin 0 or x = a cos 9).
Qu.7 (a JL M b JL -1.
Qu.8 The two expressions differ by a constant (possibly zero). 
Qu. 10 (a) 0.8813, (b) 1.3169, (c) 0.5515.
Qu. 11 yj cosh 30 — |  cosh 0 +  c.

Exercise 18a, page 340

— 1 < tanh x < 1.
tanh A + tanh B tanh A — tanh B 

1 + tanh A tanh B ' 1 — tanh A tanh B '
In 1.8.
a2 = b2 + c2.

3

14

15
16

Exercise 18b, page 345 

2 sinh x + c, cosh x +  c.
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3 (a) 3 sinh 3x, (b) 2 cosh 2x, (c) sinh 2x, (d) 6 sinh2 x cosh x, (e) 6 sech2 2x,

(f) —sech2 x tanh x, (g) 3 sinh 6x, (h) cosech2 x,/(tanh x),
(i) 2 tanh yx sech2 yx.

4 Domain = {x:x e IR, — 1 <  x <  + 1}, range = R; tanh x is odd.
5 (a) 2 cosech 2x, (b) e 2x, (c) y sech2 yx.
6 (a) y tanh 2x + c, (b) — sech x + c.
7 4.
8 l /V ( l+ x 2).

10 0.
11 (a) cosh 5x + y cosh x + c, (b) ^ sinh 4x + j  sinh 2x + c.
12 2/(e — l)2.
13 bx cosh 6 — ay sinh 6 — ab = 0,

ax sinh 6 + by cosh 9 — (a2 + b2) sinh 6 cosh 0 = 0,
4a2x2 b2 

(a2 + b2)2 ~~ 4 /  = '

14 — 4y j (3 coth 3x coth 2x — 2) = 5 fcoth 2x ^  — 2yJ.

15
x

X “ T  +
2x5
I s '

_  X3 X5 x2" + 1
16 x + y  + y  + -  + 2 ^ n  + - ’ ln

1 + x
1 — x

17 ln y T ^ x '
18 ( + sinh 1 -j, — 5^5) min., (0, —11) max.

Exercise 18c, page 350

1
2
3

4

5

6
7

8

9
10
11
12
13
14

sinh“ 1 yx + c.
3 sin - 1 (x — 2) + c.
cosh “ 1 (2x) + c.

• x + 2 cosh 1 —----- b c.

2 H „ -1 2x + 1j  y/ 3 tan + c-

sinh “ 1 (x — 3) + c. 
j  cosh - 1 (8x + 1) + c.

y sin 1 8x — 3
+ c.

sinh-1 |«0 .481 .
1 1*0.795, 

sinh - 1 4 — sinh - 1 3
cosh

0.2763. 
jyJ2 sinh-1 ^2*0 .810 . 
yx + 5 sinh 2x + c.
y sinh3 x + sinh x + c = yy sinh 3x + f  sinh x + c.
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15 (12x — 8 sinh 2x + sinh 4x)/32 + c.
16 x — tanh x +  c.
17 ln cosh x + c.
18 ln sinh x — j  cosech2 x + c.
19 x — tanh x — ^ tanh3 x + c.
20 ln {(e* — l)/(e* + 1)} + c = ln tanh \ x  + c.

Exercise 18d, page 351

2 (a) 0, -  ln 3, (b) ln (2 + *3), ln (3/2 + 75/2).
3 b.

d*y (P2 + q2) P i + P 2q2y = 0.dx4

5 (a)(i)

dx2

( ü )  -

1
(b)

— 6(3 sinh2 0 + 1 ) 
a2 sinh3 0 cosh3 0 ’1 -  4x2 ’ 7(1 +  x2)

6 a2{V2- ln( l+V2)} .

8 (1.20, 1.81).
9 4yj3na2b.
_ / w .,„  8x3 (2x)2"-1 2x2 8x4

10 (a) (i) 2x + —  + ... + jjj +  - .  (» )^T  + +
. 2 <-4

+ ..., 1
. .. , X2 X4 x2"
( b ) 1 + 2! + 4! + -  + (2 )̂!

11 (a) (sinh x — x)/x2, (b) cosh 2 — 1

x‘ 5x
y  + ^4

13 +

12 y = 5 cosh 2x + 4 sinh 2x. 
1

V 2‘
14 (b)/c2 < 1; 75.
15 (a) sinh u, (b) sech n; j7i.
16 ln (7+  572).

18 (a) cosh“ 1 + c.

19 ln 2; l 2a2 = n2 + m2b2.

+ ■
(2 m)!

+

Chapter 19
Qu. 2 frca2. 

a2
Qu. 3 — sinh 2kn.

2k
Qu. 4 -faita2.
Qu. 5 2n + f73. 
Qu. 8 nab.
Qu. 9 17*.
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Qu. 10 
Qu. 11

Qu. 12

Qu. 13 
Qu. 14 
Qu. 15 
Qu. 16

Qu. 17

Qu. 18 
Qu. 19 
Qu. 20 
Qu. 21 
Qu. 22 
Qu. 23 
Qu. 24 
Qu. 25

Qu. 26

Qu. 27 
Qu. 28 
Qu. 29 
Qu. 30 
Qu. 31 
Qu. 32 
Qu. 33 
Qu. 34 
Qu. 38 
Qu. 39 
Qu. 41 
Qu. 42

Qu. 43

Qu. 44 
Qu. 45 
Qu. 46 
Qu. 47

{(9i2 + 4)3/2 — 8}.

L .
, v dy ds ds 
(a) -7-, (b) -7-, (c) —  = ax ax ax
14
21 '

In 3.
\  sinh - 1 {2yj2) + 3^/2. 
aa. 
a

27 
6 a.
8a.
(a) 8r, rd6.
a j ( \  + k2)(e2k* -  l)/k.
■ja{sinh~1 jr + + tt2)}.
8a.
28^571.
(a) 4na2, (b) 2nah.

12 2 ^ n a  .
2nbyJ{2b2 + a2) + ■s/2na2 sinh-1 Q2b/a). 
t fn a 2.
1571 cm3.
\n r2h, nrl. 
r(r + h)/(2r + h).
(2/ti) x (radius) from centre along axis of symmetry, 
(a) 2ti2a2b, (b) 4n2ab.
1/(4 a).
(a) 2V5/25, (b) 2.
— l/{2a(f2 + 1)3/2}.
-  l/(4a).
x; ds

x 2 + y2 — 4cx — 4 cy + 6 c2 = 0.
The centre of curvature. 
kx2.
(a) i  (b) i  (c) i  (d) ja 2/b.

Exercise 19, page 367

1
2
3
4 
6

9k/2.
a2.
2c2 In a.
27ta2(cos a + 2 sin a), |a(cos a + 2 sin a)/(l +  a). 
|7ta2.
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7  4 W/12 _  „2^3/2

X  (  X  X  \
9 c sinh —, 2nc x  sinh----c cosh — + Inc2.

c c c
10 \  sinh In.
11 XZfi.w1 1  105K •

12 (a) fna2, (b) 16a/(9ji), (c) fria3.
13 24a, 127ia2.
14 (a) l/(8a), (b) 16a, (c) 2 l6 j3 n a 2/35.
15 \j, x3 + y3 — 3xy = 0.

Ttfsinh” 1 x + x 7 (l + x 2) —In (1 + 72) — ^2}.
20 j^Jlna1^ !  cosh 0^/(2 cosh2 0 — 1) — cosh“ 1 (J2  cosh 0) — ^ 2  +

+ cosh“ 1 ̂ 2}.

Chapter 20
Qu. 2 u2 +(v — j)2 = g\
Qu. 3 (a) cos 50 + i sin 50, (b) cos 20 — i sin 20, (c) cos 30 + i sin 30,

(d) cos 50 + i sin 50, (e) cos (0 — </>) + i sin (0 — </>),
(f) cos (0 + 4>) + i sin (0 + (/>).

Qu. 4 (a) cos 0 + i sin 0, (b) cos fit + i sin f  n = — \  + ¿ 7  3 i,
(c) cos f  0 + i sin §0.

Qu. 5 1, - | ± i V 3 i -
Qu. 7 - 1 ,  i ± i V 3 i -

n XA,rTn~r

Qu. 13 cosh z =  cos iz, sinh z = — i sin iz.

Exercise 20a, page 372

1 (a) 4 + 5i, (b) 2 + 3i, (c) -  1 + 7i, (d) 3± + &  (e) -  7 +  24i, (f) -1 1 7  + 44i,
(g) (3 — 4i)/25, (h) (1 — i)/2.

2 5, 0.927; 72, 0.785. (a) 741, 0.896; (b) 713,0.983; (c) 750, 1.713;
(d) 712.5,0.142; (e) 25, 1.855; (f) 125, 2.782; (g) 0.2, -0.927;
(h) 1/72, -0.785.

3 2 ± 7i.
5 (a) (x -  10)2 + y2 =  25, (b) x = y.

Exercise 20b, page 376

1 (a) enlargement x a, (b) translation , (c) translation ,

16 2.58.

2 —iln (3  —2V2),
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(d) rotation through arctan (b/a) and enlargement x |c|,
(e) reflection in real axis.

5 l< |w |< 4 .
6 0 < arg(w) ^  n/2.
7 {w:|w| = 25, 0 < arg(w)< n/3}.
8 (a) v = 20, (b) the positive ¡¡-axis, (c) the negative ¡/-axis.
9 The region between the circles (u — j)2 + v2 = j  and (u — ¿)2 + ¡¡2 =  jg.

10 x = fci-> the parabola v2 = 4k2(k2 — u).
y = lo—> the parabola v2 = 4k2(k2 +  u).

Exercise 20c, page 380

1 cos 56 + i sin 56.
2 cos 46 + i sin 46.
3 cos 6 + i sin 6.
4 cos 6 + i sin 6.
5 cos 80 + i sin 80.
6 cos 30 + i sin 30.
7 cos (2<j> + 30) + i sin (2(/> + 30).
8 cos (60 — 6</>) -I- i sin (60 — 6</>).
9 1, — 1, i, - i ; y 2 ( l ± i ) , y 2 ( - l ± i ) .

10 1, cos fit ± i sin fn, cos fit ±  i sin fn;
(x5 — 1) = (x — l)(x2 — 2x cos f  ji +  l)(x2 — 2x cos frt -I-1).

11 1, — 1, |(1 + ^/3 i), 5(— 1 + j 3 i); (x2 + x + l)(x2 — x -I-1).
12 Rotate the radius vectors through an angle of n/2n.
13 When n is a prime number. If n is odd but not prime, the first property 

will hold for some roots but not for others. The second holds for all n.
14 (a) (x — 1) (x2 — 2x cos fn  +  l)(x2 — 2x cos jn  + l)(x2 — 2x cos jn  + 1), 

(b) (x + l)(x2 — 2x cos j7t +  1) (x2 — 2x cos j n  + 1),

(c) (x — l)(x + 1) ( x2 — 2x cos — + 1 x2 — 2x cos —— —  — 1 ).
n n

15 cos 30 = 4 cos3 0 — 3 cos 0.
16 sin 30 = 3 sin 0 — 4 sin3 0.
17 cos 40 = 8 cos4 0 — 8 cos2 0+ 1 .

2n
2 n -  1

tan (2n + 1)0 =

where t = tan 0.
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22 -5.03,-0.668,0.199,1.50.
23 -  1.69, -0.431, 0.225, 1.14, 10.8.
24 u = x3 — 3xy2, v =  3x2y — y3. 

ac + bd + i {be — ad)
25

c2 + d2
1

26 (a) ±(2 + 3i),(b) ± - ^ ( l + i ) .

, ,  7  0  -  Z"X! -  z*) , , ^  sin $n9 cos j(n -  1)927 (b) Z = — — . j ~~j—— , (c) C = -

S =

4 sin2 
sin ^«0 sin — 1)0 

sin \9

sin |0

28 C =

S =

1 — a cos 0 — a"+1 cos (n + 1)0 + a" + 2 cos n6 
1 — 2a cos 0 + a2

a sin 0 — a"+1 sin (n + 1)0 + an + 2 sin n0
1 — 2a cos 0 + a2

29 Multiply by sin ¿9 and 1 — 2a cos 0 + a 2 respectively.
30 0.

Exercise 20d, page 385

1 (a) x 6 — 15x 4y2 + 15x2y4 — y6 + i(6x5y — 20x3y3 + 6xy5), 

(b)-
3 cos 0 — 1 — 2 sin 0

5 cos2 0 — 6 cos 0 +  5 5 cos2 0 — 6 cos 0 + 5 ’
x2 + y2 — 1 . — 2y(c) cos f  0 + i sin f  0, (d) -

■ 2x +  1 + y2 x2 — 2x +  1 + y2
2 (a) cos 0 — i sin 0, (b) cos 80 + i sin 80, 

cis ( - j 0 )  +  ( - l ) " ~ 1 cis (n — j)9 
2 cos j9

4 The circle x 2 + y2 +4x = 0; zz* — 2(z + z*) — i(z — z*) — 4 = 0.
5 (a) sin4 0 = ^(cos 40 — 4 cos 20 + 3),

(b) tan (0j + 02 +  03 + 04)
£  tan 0i — £  tan 0X tan 02 tan 03

10

11

12

1 —^  (tan 0t tan 02) +  tan 0t tan 02 tan 03 tan 04’
6 (a) cos rc + i sin n; (z + l)(z -  7 -  ^ /3  i)(z -  7 + ^ /3  i),

(b) (x — a)(x2 — 2ax cos fre + a2)(x2 — 2ax cos fn: + a2).
7 z2 — 4z + 13 = 0; 1, 1, i( l  ± V 3 i)-
8 (a) —2 + i, 2 ± i,  (b) 1 — i, 2 ±  3i.
9 -1 .

4 + 2 cos 0
5 + 4 cos 0’
1 — 2 cos 20 — 2n+1 cos 2(n + l)0 +  2" + 2 cos 2n9

5 — 4 cos 20
sin2 0

1 + sin2 0 — sin 20
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13 (a) u = 0, (b) u + v -  2 = 0, (c) | w| = 1, (d) |w — 4| = 2.
14 (a) u -  2v = 0, (b) v -  3 = 0, (c) | w| = 3, (d) | w — 61 = 6.
15 (a) (u, t>) moves round |w| = 1 twice in a counter-clockwise sense,

(b) (u, v) moves round |w| = 4 twice in a counter-clockwise sense.
16 Circle, centre (5/3, 0), radius 4/3.
17 Circle, centre (0, —5/4), radius 3/4.
18 (a) (5 — 14i)/13, (b) ^34, —0.54, (i) circle, centre O, radius ,/34;

(ii) 3v = 5u — 34 (half-line, from (5, —3) with gradient 5/3).
19 1 + V3i; 2, ir/3; -512.
20 (a) Circle, centre ( — j, 1), radius 3/2; (b) circle, centre (1, 0), radius x/2;

(c) 4x2 + 3y2 = 12; y = 0.
21 (a) (i) j l ,  — tc/4, (ii) 4, ti, (iii) 1, ti/3, (b) 21/6 cis (2w t/3- ti/12), m = 0, 1, 2.
22 v2 =  4(4 - u ).

23 (a) ( — 2, 1), (b) (i) circle, centre (0, 2/3), radius 4/3, (ii) line 4v — 2u + 3 =  0.
24 Centre (0, 0), radius 2; v = 0.
25 (a) u = — j, v increasing; (b) u = j , v  decreasing.
26 cos z = cosh iz, sin z = — i sinh iz.
27 cosh z = (ez + e ” z)/2, sinh z =  (ez — e “ z)/2, 

cosh z = cos iz, sinh z = — i sin iz,
cos2 z + sin2 z = 1, sin (w + z) = sin w cos z + cos w sin z.

28 yj(x2 + y2), tan“ 1 (y/x) if z lies in 1st or 4th quadrants, tan“ 1 (y/x) + n if 
z lies in 2nd quadrant, tan ' 1 (y/x) — ti if z lies in 3rd quadrant;
(a, b), J (a2 + b2 -  c).

30 ±  ̂r^w)’<b> i<3 ±4iX i0 ±iV3)'

Chapter 21
Qu. 3 (a) O, A, B, C coplanar, (b) when a, b, c form a left-handed set.
Qu. 5 7i — 4j — 3k.
Qu. 7 5.

Exercise 21a, page 392

1 (a) 19, 2, 21, (b) 33, -3 4 , -1 .
2 45.9°. 3 (1, - 3 ,  1). 4 ( -3 ,  - 5 ,  -9).
5 The diagonals of a rhombus are perpendicular.
9 r = ip + fq.

10 (a) cos a i + sin a j, (b) cos /? i + sin ¡3 j, (c) a — /J.

Exercise 21b, page 397

1 (a) i -  j, (b) -  2k, (c) 5j -  15k, (d) 17i +  5j -  9k.
2 (a) 1, (b) — 16, (c) 0, (d) —2.
3 (a) 1, (b) —16, (c) 0, (d) —2.
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Page 397
5 (a) -  7i + 7j -  7k, (b) 3i — 9j — 15k.
6 (a) - k ,  (b) 5i — 5j + 18k, (c) 2i + 8j -  10k, (d) 0.

8 - L ( i - 2 j  + k).

10 4, 2, - 6 .

Exercise 21c, page 401

1 (a) - 4 ,  (b) — 28i -  16j + 8k, (c) 3i -  4j + k.
2 1 li + 18j — 13k; 1 lx + 18^ — 13z = 0.
4 x + 2y + 3z =  12.

10 (a) (2, 4, 6), (b) (4/7, 1/7, -2 /7), (c) x 2 + y2 + z2 = *x, 
12 25i2 — 30r + 46.
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Simpson’s rule 327 
Sine rule 83,113 
Singular matrix 144 
sinh x 339
Spiral of Archimedes 359 
Stationary point of inflexion 206 
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