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Quotes on Ethics

Without ethics, everything happens as if we were all five billion passengers
on a big machinery and nobody is driving the machinery. And it’s going
faster and faster, but we don’t know where.

—Jacques Cousteau

Because you're able to do it and because you have the right to do it
doesn’t mean it's right to do it.
—Laura Schlessinger

A man without ethics is a wild beast loosed upon this world.
—Manly Hall

The concern for man and his destiny must always be the chief interest of
all technical effort. Never forget it among your diagrams and equations.
—Albert Einstein

Cowardice asks the question, ‘Is it safe?’ Expediency asks the question,
‘Is it politic?’ Vanity asks the question, ‘Is it popular?’ But, conscience
asks the question, ‘Is it right?’ And there comes a time when one must

take a position that is neither safe, nor politic, nor popular but one must
take it because one’s conscience tells one that it is right.
—NMartin Luther King, Jr

To educate a man in mind and not in morals is to educate a menace

to society.
—Theodore Roosevelt

Politics which revolves around benefit is savagery.
—Said Nursi

The true test of civilization is, not the census, nor the size of the cities,
nor the crops, but the kind of man that the country turns out.
—~Ralph W. Emerson

The measure of a man’s character is what he would do if he knew he
never would be found out.
—Thomas B. Macaulay
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PREFACE

BACKGROUND

eat and mass transfer is a basic science that deals with the rate of
H transfer of thermal energy. It has a broad application area ranging

from biological systems to common household appliances, residential
and commercial buildings, industrial processes, electronic devices, and food
processing. Students are assumed to have an adequate background in calcu-
lus and physics. The completion of first courses in thermodynamics, fluid
mechanics, and differential equations prior to taking heat transfer is desirable.
However, relevant concepts from these topics are introduced and reviewed as
needed.

OBJECTIVES

This book is intended for undergraduate engineering students in their sopho-
more or junior year, and as a reference book for practicing engineers. The
objectives of this text are

* To cover the basic principles of heat transfer.

e To present a wealth of real-world engineering examples to give students
a feel for how heat transfer is applied in engineering practice.

* To develop an intuitive understanding of heat transfer by emphasizing
the physics and physical arguments.

It is our hope that this book, through its careful explanations of concepts and
its use of numerous practical examples and figures, helps the students develop
the necessary skills to bridge the gap between knowledge and the confidence
for proper application of that knowledge.

In engineering practice, an understanding of the mechanisms of heat transfer
is becoming increasingly important since heat transfer plays a crucial role in
the design of vehicles, power plants, refrigerators, electronic devices, build-
ings, and bridges, among other things. Even a chef needs to have an intui-
tive understanding of the heat transfer mechanism in order to cook the food
“right” by adjusting the rate of heat transfer. We may not be aware of it, but we
already use the principles of heat transfer when seeking thermal comfort. We
insulate our bodies by putting on heavy coats in winter, and we minimize heat
gain by radiation by staying in shady places in summer. We speed up the cool-
ing of hot food by blowing on it and keep warm in cold weather by cuddling
up and thus minimizing the exposed surface area. That is, we already use heat
transfer whether we realize it or not.

Xiv



GENERAL APPROACH

This text is the outcome of an attempt to have a textbook for a practically
oriented heat transfer course for engineering students. The text covers the
standard topics of heat transfer with an emphasis on physics and real-world
applications. This approach is more in line with students’ intuition, and makes
learning the subject matter enjoyable.

The philosophy that contributed to the overwhelming popularity of the
prior editions of this book has remained unchanged in this edition. Namely,
our goal has been to offer an engineering textbook that

* Communicates directly to the minds of tomorrow’s engineers in a sim-
ple yet precise manner.

e Leads students toward a clear understanding and firm grasp of the basic
principles of heat transfer.

» Encourages creative thinking and development of a deeper understand-
ing and intuitive feel for heat transfer.

 Is read by students with interest and enthusiasm rather than being used
as an aid to solve problems.

Special effort has been made to appeal to students’ natural curiosity and to
help them explore the various facets of the exciting subject area of heat trans-
fer. The enthusiastic response we received from the users of prior editions—
from small colleges to large universities all over the world—indicates that our
objectives have largely been achieved. It is our philosophy that the best way
to learn is by practice. Therefore, special effort is made throughout the book
to reinforce material that was presented earlier.

Yesterday’s engineer spent a major portion of his or her time substituting
values into the formulas and obtaining numerical results. However, now for-
mula manipulations and number crunching are being left mainly to the com-
puters. Tomorrow’s engineer will have to have a clear understanding and a
firm grasp of the basic principles so that he or she can understand even the
most complex problems, formulate them, and interpret the results. A conscious
effort is made to emphasize these basic principles while also providing students
with a perspective at how computational tools are used in engineering practice.

NEW IN THIS EDITION

Some of the primary changes in this fifth edition of the text include new and
expanded coverage of heat transfer in biological systems, a new section on the
general solutions to selected differential equations, and inclusion of example
problems and end of chapter problems which incorporate the new Prevention
through Design (PtD) concept. The concept of PtD involves proper use of
design to promote safety and reduce accidents and injuries. We also have
incorporated over 350 new problems. Each chapter, with the exception of
Chapters 5 and 6, now contains one new solved example problem based on
the concept of PtD, and a significant part of existing problems were modified.
All the popular features of the previous editions are retained. The main body
of all chapters, the organization of the text, and the tables and charts in the
appendices remain mostly unchanged.




The fifth edition also includes McGraw-Hill’s Connect® Engineering.
This online homework management tool allows assignment of algorith-
mic problems for homework, quizzes and tests. It connects students with
the tools and resources they’ll need to achieve success. To learn more, visit
www.mcgrawhillconnect.com

McGraw-Hill LearnSmart™ is also available as an integrated feature
of McGraw-Hill Connect® Engineering. It is an adaptive learning system
designed to help students learn faster, study more efficiently, and retain more
knowledge for greater success. LearnSmart assesses a student’s knowledge of
course content through a series of adaptive questions. It pinpoints concepts the
student does not understand and maps out a personalized study plan for suc-
cess. Visit the following site for a demonstration: www.mhlearnsmart.com

FUNDAMENTALS OF ENGINEERING (FE) EXAM PROBLEMS

To prepare students for the Fundamentals of Engineering Exam and to facili-
tate multiple-choice tests, over 200 multiple-choice problems are included
in the end-of-chapter problem sets of this edition also. They are placed
under the title “Fundamentals of Engineering (FE) Exam Problems” for easy
recognition. These problems are intended to check the understanding of fun-
damentals and to help readers avoid common pitfalls. The EES solutions of
these problems are available for instructors for ease of facilitation and easy
modification.

PREVENTION THROUGH DESIGN (PtD) PROBLEMS

In 2007, the National Institute for Occupational Safety and Health launched
the National Prevention through Design (PtD) initiative, with the mission to
prevent or reduce work-related injuries, illnesses, and fatalities by including
prevention considerations in all circumstances that impact individuals in the
workplace. As such, the concept of PtD involves applying the means of reduc-
ing risks and preventing hazards in the design of equipment, tools, processes,
and work facilities. The PtD concept is first introduced in Chapter 1. The
idea of having example problems and end of chapter problems throughout
the different chapters in the text is not only to simply provide discussions of
interesting real world applications, but also to introduce the concepts of PtD
to the minds of tomorrow’s engineers whereby they may influence a change
in culture toward more emphasis on safety designs.

NEW COVERAGE OF HEAT TRANSFER IN BIOLOGICAL SYSTEMS

Thermal Comfort is presented as a Topic of Special Interest in Chapter 1.
This section is expanded and the term thermoregulation is introduced in this
section. Thermoregulation means the body has mechanisms to act as a thermo-
stat, when the core body temperature deviates from the normal resting value.
Thermoregulation in the human body is achieved by keeping a tight balance
between heat gain and heat loss. The “Bioheat Transfer Equation” introduced
in Chapter 3 is used to calculate the heat transfer between a human body
and its surroundings. Thermoregulation can be adjusted by both behavioral
changes and physiological changes. Behavioral changes could be relocating
to a more desirable environment within the structure or putting on more cloth-
ing. Physiological changes include blood vessel diameter changes and the
production of sweat. However, under normal conditions, few of these changes



are needed because of the efficient organization of arteries and veins; they are
arranged as a counter-current heat exchanger. This concept is presented in
Chapter 11 as a Topic of Special Interest “The Human Cardiovascular System
as a Counter-Current Heat Exchanger”.

EXPANDED COVERAGE OF MINI AND MICRO TUBES

Owing to the rapid advancement in fabrication techniques, the use of the
miniaturized devices and components is ever increasing. Whether it is in the
application of miniature heat exchangers, fuel cells, pumps, compressors, tur-
bines, sensors, or artificial blood vessels, a sound understanding of fluid flow
in micro-scale channels and tubes is essential. Microscale Heat Transfer is
presented as a Topic of Special Interest in Chapter 6. This edition expands the
coverage of plain mini and micro tubes to spiral micro-fin tubes in Chapter 8.

THREE ONLINE APPLICATION CHAPTERS

The application chapters “Cooling of Electronic Equipment” (Chapter 15),
“Heating and Cooling of Buildings” (Chapter 16), and “Refrigeration and
Freezing of Foods” (Chapter 17) are available for download via the text
website; go to www.mhhe.com/cengel for detailed coverage of these topics.

CONTENT CHANGES AND REORGANIZATION

With the exception of the changes already mentioned, minor changes are made
in the main body of the text. Over 350 new problems are added, and a sig-
nificant number of the existing problems are revised. The noteworthy changes
in various chapters are summarized here for those who are familiar with the
previous edition.

e In Chapter 1, the concept of Prevention through Design (PtD) has been
introduced by Dr. Clement C. Tang of University of North Dakota.
In addition, the coverage of Thermal Comfort presented as a Topic
of Special Interest has been expanded by Dr. David A. Rubenstein of
Stony Brook University.

e In Chapter 2, a new section “General Solution to Selected Differential
Equations” is added.

e In Chapter 3, a new section “Bioheat Transfer Equation” is added.

e In Chapter 5, the section on “Interactive SS-T-CONDUCT Software”
which introduced the software and demonstrated its use has been deleted
and moved to text website. This information and the software are avail-
able from the online learning center (www.mhhe.com/cengel) to the
instructors and students. The software can be used to solve or to check
the solutions of many of the one- and two-dimensional heat conduction
problems with uniform energy generation in rectangular geometries.

e In Chapter 8, a new subsection “Fully Developed Transitional Flow
Heat Transfer” is added. Also, the coverage of subsections on “Pressure
Drop in the Transition Region” and “Heat Transfer in the Transition
Region” of the Topic of Special Interest on Transitional Flow in Tubes
has been expanded.

e In Chapter 10, the coverage of the Topic of Special Interest on “Non-
Boiling Two-Phase Flow Heat Transfer” has been expanded and a new
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subsection on “Application of Reynolds Analogy to Non-Boiling Two-
Phase Flow” has been added.

e In Chapter 11, the coverage of Heat Exchangers has been expanded and
this chapter now has the Topic of Special Interest “The Human Cardio-
vascular System as a Counter-Current Heat Exchanger” contributed by
Dr. David A. Rubenstein of Stony Brook University.

e In Chapter 14, the section on Water Vapor Migration in Buildings has
been expanded.

LEARNING TOOLS
EMPHASIS ON PHYSICS

The authors believe that the emphasis in undergraduate education should
remain on developing a sense of underlying physical mechanisms and a
mastery of solving practical problems that an engineer is likely to face in
the real world.

EFFECTIVE USE OF ASSOCIATION

An observant mind should have no difficulty understanding engineering
sciences. After all, the principles of engineering sciences are based on our
everyday experiences and experimental observations. The process of cook-
ing, for example, serves as an excellent vehicle to demonstrate the basic prin-
ciples of heat transfer.

SELF-INSTRUCTING

The material in the text is introduced at a level that an average student can
follow comfortably. It speaks to students, not over students. In fact, it is self-
instructive. The order of coverage is from simple to general.

EXTENSIVE USE OF ARTWORK

Art is an important learning tool that helps students “get the picture.” The
fifth edition of Heat and Mass Transfer: Fundamentals & Applications con-
tains more figures and illustrations than any other book in this category.

LEARNING OBJECTIVES AND SUMMARIES

Each chapter begins with an Overview of the material to be covered and
chapter-specific Learning Objectives. A Summary is included at the end of
each chapter, providing a quick review of basic concepts and important rela-
tions, and pointing out the relevance of the material.

NUMEROUS WORKED-OUT EXAMPLES WITH A SYSTEMATIC
SOLUTIONS PROCEDURE

Each chapter contains several worked-out examples that clarify the mate-
rial and illustrate the use of the basic principles. An intuitive and systematic
approach is used in the solution of the example problems, while maintaining
an informal conversational style. The problem is first stated, and the objec-
tives are identified. The assumptions are then stated, together with their jus-
tifications. The properties needed to solve the problem are listed separately,



if appropriate. This approach is also used consistently in the solutions pre-
sented in the instructor’s solutions manual.

A WEALTH OF REAL-WORLD END-OF-CHAPTER PROBLEMS

The end-of-chapter problems are grouped under specific topics to make prob-
lem selection easier for both instructors and students. Within each group of
problems are:

e Concept Questions, indicated by “C,” to check the students’ level of
understanding of basic concepts.

e Review Problems are more comprehensive in nature and are not directly
tied to any specific section of a chapter—in some cases they require
review of material learned in previous chapters.

e Fundamentals of Engineering (FE) Exam Problems are designed to
help students prepare for the Fundamentals of Engineering exam, as
they prepare for their Professional Engineering license.

oy These problems are “Prevention through Design” related problems.

¢ These problems are solved using EES, and complete solutions
@~ together with parametric studies are included on the textbook’s
website.

These problems are comprehensive in nature and are intended to be

== solved with a computer, possibly using the EES software.

* Design and Essay are intended to encourage students to make engineer-
ing judgments, to conduct independent exploration of topics of interest,
and to communicate their findings in a professional manner.

Several economics- and safety-related problems are incorporated throughout
to enhance cost and safety awareness among engineering students. Answers
to selected problems are listed immediately following the problem for conve-
nience to students.

A CHOICE OF SI ALONE OR SI/ENGLISH UNITS

In recognition of the fact that English units are still widely used in some
industries, both SI and English units are used in this text, with an emphasis on
SI. The material in this text can be covered using combined SI/English units
or SI units alone, depending on the preference of the instructor. The property
tables and charts in the appendices are presented in both units, except the ones
that involve dimensionless quantities. Problems, tables, and charts in English
units are designated by “E” after the number for easy recognition, and they
can be ignored by SI users.

TOPICS OF SPECIAL INTEREST

Most chapters contain a real world application, end-of-chapter optional section
called “Topic of Special Interest” where interesting applications of heat trans-
fer are discussed such as Thermal Comfort in Chapter 1, Heat Transfer through
the Walls and Roofs in Chapter 3, Microscale Heat Transfer in Chapter 6,
Transitional Flow in Tubes in Chapter 8, Heat Transfer through Windows in




Chapter 9, Non-Boiling Two-Phase Flow Heat Transfer in Chapter 10, Human
Cardiovascular System as a Counter-Current Heat Exchanger in Chapter 11,
and Heat Transfer from the Human Body in Chapter 13.

CONVERSION FACTORS

Frequently used conversion factors and physical constants are listed on the
inner cover pages of the text for easy reference.

SUPPLEMENTS

The following supplements are available to the users of the book.

ENGINEERING EQUATION SOLVER (EES)

Developed by Sanford Klein and William Beckman from the University of
Wisconsin—Madison, this software combines equation-solving capability
and engineering property data. EES can do optimization, parametric analysis,
and linear and nonlinear regression, and provides publication-quality plot-
ting capabilities. Thermodynamics and transport properties for air, water, and
many other fluids are built in, and EES allows the user to enter property data
or functional relationships.

EES is a powerful equation solver with built-in functions and property
tables for thermodynamic and transport properties as well as automatic unit
checking capability. It requires less time than a calculator for data entry and
allows more time for thinking critically about modeling and solving engineer-
ing problems. Look for the EES icons in the homework problems sections of
the text.

The Limited Academic Version of EES is available for departmental license
upon adoption of the Fifth Edition of Heat and Mass Transfer: Fundamentals
and Applications (meaning that the text is required for students in the course).
You may load this software onto your institution’s computer system, for
use by students and faculty related to the course, as long as the arrangement
between McGraw-Hill Education and F-Chart is in effect. There are mini-
mum order requirements stipulated by F-Chart to qualify.

TEXT WEBSITE
Web support is provided for the text on the text specific website at
www. mhhe.com/cengel

Visit this website for general text information, errata, and author informa-
tion. The site also includes resources for students including a list of helpful web
links. The instructor side of the site includes the solutions manual, the text’s
images in PowerPoint form, and more!

COSMOS

(Available to Instructors Only)

McGraw-Hill’s COSMOS (Complete Online Solutions Manual Organization
System) allows instructors to streamline the creation of assignments, quizzes, and
texts by using problems and solutions from the textbook, as well as their own
custom material. COSMOS is now available online at http://cosmos.mhhe.com
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INTRODUCTION AND
BASIC CONCEPTS

he science of thermodynamics deals with the amount of heat transfer as

a system undergoes a process from one equilibrium state to another, and

makes no reference to how long the process will take. But in engineer-
ing, we are often interested in the rate of heat transfer, which is the topic of
the science of heat transfer.

We start this chapter with a review of the fundamental concepts of thermody-
namics that form the framework for heat transfer. We first present the relation
of heat to other forms of energy and review the energy balance. We then
present the three basic mechanisms of heat transfer, which are conduction,
convection, and radiation, and discuss thermal conductivity. Conduction is
the transfer of energy from the more energetic particles of a substance to the
adjacent, less energetic ones as a result of interactions between the particles.
Convection is the mode of heat transfer between a solid surface and the
adjacent liquid or gas that is in motion, and it involves the combined effects
of conduction and fluid motion. Radiation is the energy emitted by matter in
the form of electromagnetic waves (or photons) as a result of the changes in
the electronic configurations of the atoms or molecules. We close this chapter
with a discussion of simultaneous heat transfer.

CHAPTER

OBJECTIVES

When you finish studying this chapter, you
should be able to:

Understand how thermodynamics
and heat transfer are related to
each other,

Distinguish thermal energy from
other forms of energy, and heat
transfer from other forms of
energy transfer,

Perform general energy balances
as well as surface energy
balances,

Understand the basic mecha-
nisms of heat transfer, which are
conduction, convection, and
radiation, and Fourier’s law of
heat conduction, Newton's law of
cooling, and the Stefan—
Boltzmann law of radiation,

Identify the mechanisms of

heat transfer that occur
simultaneously in practice,
Develop an awareness of the cost
associated with heat losses, and

Solve various heat transfer
problems encountered in
practice.
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We are normally interested in how
long it takes for the hot coffee in a
thermos bottle to cool to a certain
temperature, which cannot be
determined from a thermodynamic
analysis alone.
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FIGURE 1-2
Heat flows in the direction of
decreasing temperature.

1-1 = THERMODYNAMICS AND HEAT TRANSFER

We all know from experience that a cold canned drink left in a room warms
up and a warm canned drink left in a refrigerator cools down. This is accom-
plished by the transfer of energy from the warm medium to the cold one. The
energy transfer is always from the higher temperature medium to the lower
temperature one, and the energy transfer stops when the two mediums reach
the same temperature.

You will recall from thermodynamics that energy exists in various forms.
In this text we are primarily interested in heat, which is the form of energy
that can be transferred from one system to another as a result of temperature
difference. The science that deals with the determination of the rates of such
energy transfers is heat transfer.

You may be wondering why we need to undertake a detailed study on heat
transfer. After all, we can determine the amount of heat transfer for any sys-
tem undergoing any process using a thermodynamic analysis alone. The rea-
son is that thermodynamics is concerned with the amount of heat transfer as
a system undergoes a process from one equilibrium state to another, and it
gives no indication about how long the process will take. A thermodynamic
analysis simply tells us how much heat must be transferred to realize a speci-
fied change of state to satisfy the conservation of energy principle.

In practice we are more concerned about the rate of heat transfer (heat
transfer per unit time) than we are with the amount of it. For example, we can
determine the amount of heat transferred from a thermos bottle as the hot cof-
fee inside cools from 90°C to 80°C by a thermodynamic analysis alone. But a
typical user or designer of a thermos bottle is primarily interested in how long
it will be before the hot coffee inside cools to 80°C, and a thermodynamic
analysis cannot answer this question. Determining the rates of heat transfer to
or from a system and thus the times of heating or cooling, as well as the varia-
tion of the temperature, is the subject of heat transfer (Fig. 1-1).

Thermodynamics deals with equilibrium states and changes from one equilib-
rium state to another. Heat transfer, on the other hand, deals with systems that
lack thermal equilibrium, and thus it is a nonequilibrium phenomenon. There-
fore, the study of heat transfer cannot be based on the principles of thermody-
namics alone. However, the laws of thermodynamics lay the framework for
the science of heat transfer. The first law requires that the rate of energy trans-
fer into a system be equal to the rate of increase of the energy of that system.
The second law requires that heat be transferred in the direction of decreasing
temperature (Fig. 1-2). This is like a car parked on an inclined road must go
downhill in the direction of decreasing elevation when its brakes are released.
It is also analogous to the electric current flowing in the direction of decreasing
voltage or the fluid flowing in the direction of decreasing total pressure.

The basic requirement for heat transfer is the presence of a temperature
difference. There can be no net heat transfer between two bodies that are at
the same temperature. The temperature difference is the driving force for heat
transfer, just as the voltage difference is the driving force for electric cur-
rent flow and pressure difference is the driving force for fluid flow. The rate
of heat transfer in a certain direction depends on the magnitude of the tem-
perature gradient (the temperature difference per unit length or the rate of
change of temperature) in that direction. The larger the temperature gradient,
the higher the rate of heat transfer.



Application Areas of Heat Transfer

Heat transfer is commonly encountered in engineering systems and other
aspects of life, and one does not need to go very far to see some application
areas of heat transfer. In fact, one does not need to go anywhere. The human
body is constantly rejecting heat to its surroundings, and human comfort is
closely tied to the rate of this heat rejection. We try to control this heat trans-
fer rate by adjusting our clothing to the environmental conditions.

Many ordinary household appliances are designed, in whole or in part,
by using the principles of heat transfer. Some examples include the electric
or gas range, the heating and air-conditioning system, the refrigerator and
freezer, the water heater, the iron, and even the computer, the TV, and the
DVD player. Of course, energy-efficient homes are designed on the basis of
minimizing heat loss in winter and heat gain in summer. Heat transfer plays a
major role in the design of many other devices, such as car radiators, solar col-
lectors, various components of power plants, and even spacecraft (Fig. 1-3).
The optimal insulation thickness in the walls and roofs of the houses, on hot
water or steam pipes, or on water heaters is again determined on the basis of
a heat transfer analysis with economic consideration.

Historical Background

Heat has always been perceived to be something that produces in us a sensa-
tion of warmth, and one would think that the nature of heat is one of the first

The human body Air conditioning systems
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In the early nineteenth century, heat
was thought to be an invisible fluid
called the caloric that flowed from
warmer bodies to the cooler ones.

things understood by mankind. But it was only in the middle of the nineteenth
century that we had a true physical understanding of the nature of heat, thanks
to the development at that time of the kinetic theory, which treats molecules
as tiny balls that are in motion and thus possess kinetic energy. Heat is then
defined as the energy associated with the random motion of atoms and mol-
ecules. Although it was suggested in the eighteenth and early nineteenth cen-
turies that heat is the manifestation of motion at the molecular level (called
the live force), the prevailing view of heat until the middle of the nineteenth
century was based on the caloric theory proposed by the French chemist
Antoine Lavoisier (1743—-1794) in 1789. The caloric theory asserts that heat
is a fluid-like substance called the caloric that is a massless, colorless, odor-
less, and tasteless substance that can be poured from one body into another
(Fig. 1-4). When caloric was added to a body, its temperature increased; and
when caloric was removed from a body, its temperature decreased. When
a body could not contain any more caloric, much the same way as when a
glass of water could not dissolve any more salt or sugar, the body was said to
be saturated with caloric. This interpretation gave rise to the terms saturated
liquid and saturated vapor that are still in use today.

The caloric theory came under attack soon after its introduction. It main-
tained that heat is a substance that could not be created or destroyed. Yet it
was known that heat can be generated indefinitely by rubbing one’s hands
together or rubbing two pieces of wood together. In 1798, the American
Benjamin Thompson (Count Rumford) (1753-1814) showed in his papers
that heat can be generated continuously through friction. The validity of the
caloric theory was also challenged by several others. But it was the careful
experiments of the Englishman James P. Joule (Fig. 1-5) published in 1843
that finally convinced the skeptics that heat was not a substance after all, and
thus put the caloric theory to rest. Although the caloric theory was totally
abandoned in the middle of the nineteenth century, it contributed greatly to
the development of thermodynamics and heat transfer.

1-2 = ENGINEERING HEAT TRANSFER

Heat transfer equipment such as heat exchangers, boilers, condensers, radiators,
heaters, furnaces, refrigerators, and solar collectors are designed primarily on
the basis of heat transfer analysis. The heat transfer problems encountered in
practice can be considered in two groups: (1) rating and (2) sizing problems.
The rating problems deal with the determination of the heat transfer rate for an
existing system at a specified temperature difference. The sizing problems deal
with the determination of the size of a system in order to transfer heat at a speci-
fied rate for a specified temperature difference.

An engineering device or process can be studied either experimentally (test-
ing and taking measurements) or analytically (by analysis or calculations).
The experimental approach has the advantage that we deal with the actual
physical system, and the desired quantity is determined by measurement,
within the limits of experimental error. However, this approach is expensive,
timeconsuming, and often impractical. Besides, the system we are analyzing
may not even exist. For example, the entire heating and plumbing systems of
a building must usually be sized before the building is actually built on the
basis of the specifications given. The analytical approach (including the



numerical approach) has the advantage that it is fast and inexpensive, but the
results obtained are subject to the accuracy of the assumptions, approxima-
tions, and idealizations made in the analysis. In engineering studies, often a
good compromise is reached by reducing the choices to just a few by analysis,
and then verifying the findings experimentally.

Modeling in Engineering

The descriptions of most scientific problems involve equations that relate the
changes in some key variables to each other. Usually the smaller the incre-
ment chosen in the changing variables, the more general and accurate the
description. In the limiting case of infinitesimal or differential changes in
variables, we obtain differential equations that provide precise mathematical
formulations for the physical principles and laws by representing the rates of
change as derivatives. Therefore, differential equations are used to investigate
a wide variety of problems in sciences and engineering (Fig. 1-6). However,
many problems encountered in practice can be solved without resorting to dif-
ferential equations and the complications associated with them.

The study of physical phenomena involves two important steps. In the first
step, all the variables that affect the phenomena are identified, reasonable
assumptions and approximations are made, and the interdependence of these
variables is studied. The relevant physical laws and principles are invoked,
and the problem is formulated mathematically. The equation itself is very
instructive as it shows the degree of dependence of some variables on others,
and the relative importance of various terms. In the second step, the problem
is solved using an appropriate approach, and the results are interpreted.

Many processes that seem to occur in nature randomly and without any order
are, in fact, being governed by some visible or not-so-visible physical laws.
Whether we notice them or not, these laws are there, governing consistently
and predictably what seem to be ordinary events. Most of these laws are well
defined and well understood by scientists. This makes it possible to predict the
course of an event before it actually occurs, or to study various aspects of an
event mathematically without actually running expensive and timeconsuming
experiments. This is where the power of analysis lies. Very accurate results
to meaningful practical problems can be obtained with relatively little effort
by using a suitable and realistic mathematical model. The preparation of such
models requires an adequate knowledge of the natural phenomena involved
and the relevant laws, as well as a sound judgment. An unrealistic model will
obviously give inaccurate and thus unacceptable results.

An analyst working on an engineering problem often finds himself or
herself in a position to make a choice between a very accurate but complex
model, and a simple but not-so-accurate model. The right choice depends on
the situation at hand. The right choice is usually the simplest model that yields
adequate results. For example, the process of baking potatoes or roasting a
round chunk of beef in an oven can be studied analytically in a simple way by
modeling the potato or the roast as a spherical solid ball that has the properties
of water (Fig. 1-7). The model is quite simple, but the results obtained are
sufficiently accurate for most practical purposes. As another example, when
we analyze the heat losses from a building in order to select the right size
for a heater, we determine the heat losses under anticipated worst conditions
and select a furnace that will provide sufficient energy to make up for those
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James Prescott Joule (1818—1889)

is a British physicist born in Salford,
Lancashire, England. Joule is best
known for his work on the conversion
of electrical and mechanical energy
into heat and the first law of thermo-
dynamics. The energy unit joule (J)

is named after him. The Joule’s law

of electric heating that he formulated
states that the rate of heat production
in a conducting wire is proportional to
the product of the resistance of the wire
and the square of the electric current.
Through his experiments, Joule has
demonstrated the mechanical equi-
valence of heat, i.e., the conversion of
mechanical energy into an equivalent
amount of thermal energy, which laid
the foundation for the conservation of
energy principle. Joule, together with
William Thomson (later Lord Kelvin),
discovered the temperature drop of

a substance during free expansion,

a phenomenon known as the Joule-
Thomson effect, which forms the foun-
dation of the operation of the common
vapor-compression refrig-

eration and air conditioning systems.
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losses. Often we tend to choose a larger furnace in anticipation of some future

Physical problem expansion, or just to provide a factor of safety. A very simple analysis is
. adequate in this case.
i;?;;‘gg’n When selecting heat transfer equipment, it is important to consider the
e bles Make actual operating conditions. For example, when purchasing a heat exchanger
reasonable that will handle hard water, we must consider that some calcium deposits will
assumptionsand  form on the heat transfer surfaces over time, causing fouling and thus a grad-
Apply approximations

B ant ual decline in performance. The heat exchanger must be selected on the basis
physical laws of operation under these adverse conditions instead of under new conditions.
Preparing very accurate but complex models is usually not so difficult.
But such models are not much use to an analyst if they are very difficult
and time-consuming to solve. At the minimum, the model should reflect the
essential features of the physical problem it represents. There are many sig-

A differential equation

ap[;fi)gﬁ;]e L nificant real-world problems that can be analyzed with a simple model. But it
solution pgnyd igﬂ?alary should always be kept in mind that the results obtained from an analysis are
R ique conditions as accurate as the assumptions made in simplifying the problem. Therefore,
the solution obtained should not be applied to situations for which the original

T U assumptions do not hold.
A solution that is not quite consistent with the observed nature of the prob-
FIGURE 1-6 lem indicates that the mathematical model used is too crude. In that case, a
Mathematical modeling more realistic model should be prepared by eliminating one or more of the
of physical problems. questionable assumptions. This will result in a more complex problem that,

of course, is more difficult to solve. Thus any solution to a problem should be
interpreted within the context of its formulation.

1-3 = HEAT AND OTHER FORMS OF ENERGY

Energy can exist in numerous forms such as thermal, mechanical, kinetic,
potential, electrical, magnetic, chemical, and nuclear, and their sum consti-
tutes the total energy E (or ¢ on a unit mass basis) of a system. The forms
of energy related to the molecular structure of a system and the degree of the
175°C molecular activity are referred to as the microscopic energy. The sum of all
microscopic forms of energy is called the internal energy of a system, and is
Water ~ <— Ideal denoted by U (or u on a unit mass basis).

The international unit of energy is joule (J) or kilojoule (1 kJ = 1000 J).
In the English system, the unit of energy is the British thermal unit (Btu),
FIGURE 1-7 which is defined as the energy needed to raise the temperature of 1 Ibm of
water at 60°F by 1°F. The magnitudes of kJ and Btu are almost identical
(1 Btu = 1.055056 kJ). Another well known unit of energy is the calorie
(1 cal = 4.1868 J), which is defined as the energy needed to raise the tem-
perature of 1 gram of water at 14.5°C by 1°C.

Internal energy may be viewed as the sum of the kinetic and potential
energies of the molecules. The portion of the internal energy of a system
associated with the kinetic energy of the molecules is called sensible energy
or sensible heat. The average velocity and the degree of activity of the mol-
ecules are proportional to the temperature. Thus, at higher temperatures the
molecules possess higher kinetic energy, and as a result, the system has a
higher internal energy.

The internal energy is also associated with the intermolecular forces between
the molecules of a system. These are the forces that bind the molecules to each

Oven
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N

Modeling is a powerful engineering
tool that provides great insight and
simplicity at the expense of

some accuracy.



other, and, as one would expect, they are strongest in solids and weakest in
gases. If sufficient energy is added to the molecules of a solid or liquid, they
will overcome these molecular forces and simply break away, turning the sys-
tem to a gas. This is a phase change process and because of this added energy,
a system in the gas phase is at a higher internal energy level than it is in the
solid or the liquid phase. The internal energy associated with the phase of a
system is called latent energy or latent heat.

The changes mentioned above can occur without a change in the chemical
composition of a system. Most heat transfer problems fall into this category,
and one does not need to pay any attention to the forces binding the atoms in a
molecule together. The internal energy associated with the atomic bonds in a
molecule is called chemical (or bond) energy, whereas the internal energy
associated with the bonds within the nucleus of the atom itself is called
nuclear energy. The chemical and nuclear energies are absorbed or released
during chemical or nuclear reactions, respectively.

In the analysis of systems that involve fluid flow, we frequently encounter
the combination of properties u# and Pv. For the sake of simplicity and conve-
nience, this combination is defined as enthalpy 4. Thatis, # = u + Pv where
the term Pv represents the flow energy of the fluid (also called the flow work),
which is the energy needed to push a fluid and to maintain flow. In the energy
analysis of flowing fluids, it is convenient to treat the flow energy as part
of the energy of the fluid and to represent the microscopic energy of a fluid
stream by enthalpy % (Fig. 1-8).

Specific Heats of Gases, Liquids, and Solids

You may recall that an ideal gas is defined as a gas that obeys the relation

PV =RT or P =pRT (1-1)

where P is the absolute pressure, V is the specific volume, T is the thermody-
namic (or absolute) temperature, p is the density, and R is the gas constant.
It has been experimentally observed that the ideal gas relation given above
closely approximates the P-v-T behavior of real gases at low densities. At low
pressures and high temperatures, the density of a gas decreases and the gas
behaves like an ideal gas. In the range of practical interest, many familiar gases
such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and krypton and
even heavier gases such as carbon dioxide can be treated as ideal gases with
negligible error (often less than one percent). Dense gases such as water vapor
in steam power plants and refrigerant vapor in refrigerators, however, should
not always be treated as ideal gases since they usually exist at a state near
saturation.

You may also recall that specific heat is defined as the energy required to
raise the temperature of a unit mass of a substance by one degree (Fig. 1-9).
In general, this energy depends on how the process is executed. We are usually
interested in two kinds of specific heats: specific heat at constant volume c,
and specific heat at constant pressure c,. The specific heat at constant volume
¢, can be viewed as the energy required to raise the temperature of a unit
mass of a substance by one degree as the volume is held constant. The energy
required to do the same as the pressure is held constant is the specific heat
at constant pressure c,. The specific heat at constant pressure c, is greater
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FIGURE 1-8

The internal energy u represents the
microscopic energy of a nonflowing
fluid, whereas enthalpy h represents the
microscopic energy of a flowing fluid.

m=1kg
AT =1°C

Specific heat = 5 kl/kg-K

S5kJ

FIGURE 1-9

Specific heat is the energy required to
raise the temperature of a unit mass
of a substance by one degree in a
specified way.
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than ¢, because at constant pressure the system is allowed to expand and the
energy for this expansion work must also be supplied to the system. For ideal
gases, these two specific heats are related to each other by ¢, = ¢, + R.

A common unit for specific heats is kJ/kg-°C or kJ/kg-K. Notice that these
two units are identical since AT(°C) = AT(K), and 1°C change in temperature
A " is equivalent to a change of 1 K. Also,

m=1kg m=1kg
300 - 301 K 1000 > 1001 K L kl/kg"C=1J/g°C=1kl/kgK=1J/gK

The specific heats of a substance, in general, depend on two independent
properties such as temperature and pressure. For an ideal gas, however, they

07181 08551 depend on temperature only (Fig. 1-10). At low pressures all real gases
FIGURE 1-10 approach ideal gas behavior, and therefore their specific heats depend on tem-
The specific heat of a substance perature only.
changes with temperature. The differential changes in the internal energy u and enthalpy % of an ideal

gas can be expressed in terms of the specific heats as
du=c,dT and dh = c,dT (1-2)

The finite changes in the internal energy and enthalpy of an ideal gas during
a process can be expressed approximately by using specific heat values at the
average temperature as

Au=c, AT and Ah=c, ,,AT (/g (1-3)

P, avg

or

Iron
25°C
c=c,=c,
=0.45 kl/kg- K

AU = mc, AT and AH = mc, ,,,AT () (1-4)

where m is the mass of the system.

A substance whose specific volume (or density) does not change with tem-
perature or pressure is called an incompressible substance. The specific vol-
umes of solids and liquids essentially remain constant during a process, and
thus they can be approximated as incompressible substances without sacrific-

FIGURE 1-11 ing much in accuracy.

The ¢, and ¢, values of incompressible The constant-volume and constant-pressure specific heats are identical for
substances are identical and are incompressible substances (Fig. 1-11). Therefore, for solids and liquids the
denoted by c. subscripts on ¢, and ¢, can be dropped and both specific heats can be rep-

resented by a single symbol, c. That is, ¢, = ¢, = c. This result could also
be deduced from the physical definitions of constant-volume and constant-
pressure specific heats. Specific heats of several common gases, liquids, and
solids are given in the Appendix.

The specific heats of incompressible substances depend on temperature
only. Therefore, the change in the internal energy of solids and liquids can be
expressed as

AU= mc,, ,AT () (1-5)



where c,,, is the average specific heat evaluated at the average temperature.
Note that the internal energy change of the systems that remain in a single
phase (liquid, solid, or gas) during the process can be determined very easily
using average specific heats.

Energy Transfer

Energy can be transferred to or from a given mass by two mechanisms: heat
transfer Q and work W. An energy interaction is heat transfer if its driving
force is a temperature difference. Otherwise, it is work. A rising piston, a
rotating shaft, and an electrical wire crossing the system boundaries are all
associated with work interactions. Work done per unit time is called power,
and is denoted by W. The unit of power is W or hp (1 hp = 746 W). Car
engines and hydraulic, steam, and gas turbines produce work; compres-
sors, pumps, and mixers consume work. Notice that the energy of a system
decreases as it does work, and increases as work is done on it.

In daily life, we frequently refer to the sensible and latent forms of internal
energy as heat, and we talk about the heat content of bodies (Fig. 1-12). In
thermodynamics, however, those forms of energy are usually referred to as
thermal energy to prevent any confusion with heat transfer.

The term heat and the associated phrases such as heat flow, heat addi-
tion, heat rejection, heat absorption, heat gain, heat loss, heat storage, heat
generation, electrical heating, latent heat, body heat, and heat source are in
common use today, and the attempt to replace heat in these phrases by ther-
mal energy had only limited success. These phrases are deeply rooted in our
vocabulary and they are used by both ordinary people and scientists without
causing any misunderstanding. For example, the phrase body heat is under-
stood to mean the thermal energy content of a body. Likewise, heat flow is
understood to mean the transfer of thermal energy, not the flow of a fluid-like
substance called heat, although the latter incorrect interpretation, based on
the caloric theory, is the origin of this phrase. Also, the transfer of heat into a
system is frequently referred to as heat addition and the transfer of heat out of
a system as heat rejection.

Keeping in line with current practice, we will refer to the thermal energy as
heat and the transfer of thermal energy as heat transfer. The amount of heat
transferred during the process is denoted by Q. The amount of heat trans-
ferred per unit time is called heat transfer rate, and is denoted by Q. The
overdot stands for the time derivative, or “per unit time.” The heat transfer
rate Q has the unit J/s, which is equivalent to W.

When the rate of heat transfer Q is available, then the total amount of heat
transfer Q during a time interval Az can be determined from

At
0 =J Odr () (1-6)
0

provided that the variation of Q with time is known. For the special case of
QO = constant, the equation above reduces to

0=0At () (1-7)
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The sensible and latent forms of internal
energy can be transferred as a result of
a temperature difference, and they are
referred to as heat or thermal energy.
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Heat flux is heat transfer per unit

time and per unit area, and is equal

to ¢ = O/A when @ is uniform over the
area A.

= 1508€@
Copper ball
T, = 100°C

A=mD?

FIGURE 1-14
Schematic for Example 1-1.

The rate of heat transfer per unit area normal to the direction of heat transfer
is called heat flux, and the average heat flux is expressed as (Fig. 1-13)

0

qg=-c (W) (1-8)

where A is the heat transfer area. The unit of heat flux in English units
is Btu/h-ft>. Note that heat flux may vary with time as well as position on a
surface.

EXAMPLE 1-1 Heating of a Copper Ball

A 10-cm-diameter copper ball is to be heated from 100°C to an average tem-
perature of 150°C in 30 minutes (Fig. 1-14). Taking the average density and
specific heat of copper in this temperature range to be p = 8950 kg/m? and
¢, = 0.395 kJ/kg-°C, respectively, determine (a) the total amount of heat
transfer to the copper ball, (b) the average rate of heat transfer to the ball, and
(c) the average heat flux.

|
|
|
|
|
|
|
|
|
|
|

SOLUTION The copper ball is to be heated from 100°C to 150°C. The total

heat transfer, the average rate of heat transfer, and the average heat flux are

to be determined.

Assumptions Constant properties can be used for copper at the average

temperature.

Properties The average density and specific heat of copper are given to be

p = 8950 kg/m* and c, = 0.395 kJ/kg-°C.

Analysis (a) The amount of heat transferred to the copper ball is simply the

change in its internal energy, and is determined from

Energy transfer to the system = Energy increase of the system
Q = AU = mcavg (TZ - T])

where

m=pV= %pD3 = % (8950 kg/m?®)(0.1 m)> = 4.686 kg
Substituting,

0 = (4.686 kg)(0.395 kJ/kg-°C)(150 — 100)°C = 92.6 kJ

Therefore, 92.6 kJ of heat needs to be transferred to the copper ball to heat it
from 100°C to 150°C.

(b) The rate of heat transfer normally changes during a process with time.
However, we can determine the average rate of heat transfer by dividing the
total amount of heat transfer by the time interval. Therefore,

6. =2 _ 926K
we = A7 1800

= 0.0514kJ/s = 514 W



(c) Heat flux is defined as the heat transfer per unit time per unit area, or
the rate of heat transfer per unit area. Therefore, the average heat flux in this
case is

] OQug Qug 514W §
Qg = —— = — = ———— = 1636 W/m’
A wD*> (0.1 m)

Discussion Note that heat flux may vary with location on a surface. The value
calculated above is the average heat flux over the entire surface of the ball.

1-4 = THE FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics, also known as the conservation of en-
ergy principle, states that energy can neither be created nor destroyed dur-
ing a process; it can only change forms. Therefore, every bit of energy must
be accounted for during a process. The conservation of energy principle (or
the energy balance) for any system undergoing any process may be expressed
as follows: The net change (increase or decrease) in the total energy of the
system during a process is equal to the difference between the total energy
entering and the total energy leaving the system during that process. That is

Total energy Total energy Change in the
entering the | —| leaving the |=| total energy of (1-9)
system system the system

Noting that energy can be transferred to or from a system by heat, work, and
mass flow, and that the total energy of a simple compressible system consists
of internal, kinetic, and potential energies, the energy balance for any system
undergoing any process can be expressed as

Em - E()ul = AE\\slcm (J) (1_1 0)
—_—
Net energy transfer Change in internal, kinetic,

by heat, work, and mass potential, etc., energies

or, in the rate form, as

Ein - E()ul - dEs)slcm/d[ ( ) (1-11)
—_— N —
Rate of net energy transfer Rate of change in internal

by heat, work, and mass kinetic, potential, etc., energies

Energy is a property, and the value of a property does not change unless
the state of the system changes. Therefore, the energy change of a system is
zero (AE g = 0) if the state of the system does not change during the pro-
cess, that is, the process is steady. The energy balance in this case reduces
to (Fig. 1-15)

Steady, rate form: E., - E. (1-12)
—— ——
Rate of net energy transfer in Rate of net energy transfer out
by heat, work, and mass by heat, work, and mass

In the absence of significant electric, magnetic, motion, gravity, and surface
tension effects (i.e., for stationary simple compressible systems), the change
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In steady operation, the rate of energy
transfer to a system is equal to the rate
of energy transfer from the system.
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Q=mc (T -T,)

FIGURE 1-16

In the absence of any work
interactions, the change in the energy
content of a closed system is equal
to the net heat transfer.

in the total energy of a system during a process is simply the change in its
internal energy. That is, AE e = AUgygem-

In heat transfer analysis, we are usually interested only in the forms of
energy that can be transferred as a result of a temperature difference, that is,
heat or thermal energy. In such cases it is convenient to write a heat balance
and to treat the conversion of nuclear, chemical, mechanical, and electrical
energies into thermal energy as heat generation. The energy balance in that
case can be expressed as

Qin o Qnul + Egcn = AElhermuL system (J) (1 -1 3)
— —— —_—
Net heat Heat Change in thermal

transfer generation energy of the system

Energy Balance for Closed Systems (Fixed Mass)

A closed system consists of a fixed mass. The total energy E for most systems
encountered in practice consists of the internal energy U. This is especially
the case for stationary systems since they don’t involve any changes in their
velocity or elevation during a process. The energy balance relation in that
case reduces to

Stationary closed system: E, — Egw= AU = mc AT (J) (1-14)

where we expressed the internal energy change in terms of mass m, the
specific heat at constant volume c,, and the temperature change AT of the
system. When the system involves heat transfer only and no work inter-
actions across its boundary, the energy balance relation further reduces to
(Fig. 1-16)

Stationary closed system, no work: 0 = mc, AT J) (1-15)

where Q is the net amount of heat transfer to or from the system. This is the
form of the energy balance relation we will use most often when dealing with
a fixed mass.

Energy Balance for Steady-Flow Systems
A large number of engineering devices such as water heaters and car radia-
tors involve mass flow in and out of a system, and are modeled as control
volumes. Most control volumes are analyzed under steady operating condi-
tions. The term steady means no change with time at a specified location. The
opposite of steady is unsteady or transient. Also, the term uniform implies
no change with position throughout a surface or region at a specified time.
These meanings are consistent with their everyday usage (steady girlfriend,
uniform distribution, etc.). The total energy content of a control volume dur-
ing a steady-flow process remains constant (E-y = constant). That is, the
change in the total energy of the control volume during such a process is
zero (AE-y = 0). Thus the amount of energy entering a control volume in all
forms (heat, work, mass transfer) for a steady-flow process must be equal to
the amount of energy leaving it.

The amount of mass flowing through a cross section of a flow device per
unit time is called the mass flow rate, and is denoted by m. A fluid may
flow in and out of a control volume through pipes or ducts. The mass flow



rate of a fluid flowing in a pipe or duct is proportional to the cross-sectional
area A, of the pipe or duct, the density p, and the velocity V of the fluid.
The mass flow rate through a differential area dA, can be expressed as
om = pV, dA. where V, is the velocity component normal to dA,. The mass
flow rate through the entire cross-sectional area is obtained by integration
over A,.

The flow of a fluid through a pipe or duct can often be approximated to be
one-dimensional. That is, the properties can be assumed to vary in one direc-
tion only (the direction of flow). As a result, all properties are assumed to be
uniform at any cross section normal to the flow direction, and the properties
are assumed to have bulk average values over the entire cross section. Under
the one-dimensional flow approximation, the mass flow rate of a fluid flow-
ing in a pipe or duct can be expressed as (Fig. 1-17)

m= pVA, (kg/s) (1-16)
where p is the fluid density, V is the average fluid velocity in the flow direc-
tion, and A, is the cross-sectional area of the pipe or duct.

The volume of a fluid flowing through a pipe or duct per unit time is called
the volume flow rate V, and is expressed as

m

V=VA ="

=5 (m?3/s) a-17

Note that the mass flow rate of a fluid through a pipe or duct remains constant
during steady flow. This is not the case for the volume flow rate, however,
unless the density of the fluid remains constant.

For a steady-flow system with one inlet and one exit, the rate of mass
flow into the control volume must be equal to the rate of mass flow out
of it. That is, m;, = m,, = m. When the changes in kinetic and potential
energies are negligible, which is usually the case, and there is no work
interaction, the energy balance for such a steady-flow system reduces to
(Fig. 1-18)

Q =mAh = mc, AT (kJ/s) (1-18)
where Qis the rate of net heat transfer into or out of the control volume. This
is the form of the energy balance relation that we will use most often for
steady-flow systems.

Surface Energy Balance
As mentioned in the chapter opener, heat is transferred by the mechanisms of
conduction, convection, and radiation, and heat often changes vehicles as it
is transferred from one medium to another. For example, the heat conducted
to the outer surface of the wall of a house in winter is convected away by the
cold outdoor air while being radiated to the cold surroundings. In such cases,
it may be necessary to keep track of the energy interactions at the surface, and
this is done by applying the conservation of energy principle to the surface.
A surface contains no volume or mass, and thus no energy. Therefore, a
surface can be viewed as a fictitious system whose energy content remains
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The mass flow rate of a fluid at a cross
section is equal to the product of the
fluid density, average fluid velocity,
and the cross-sectional area.
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Under steady conditions, the net rate of
energy transfer to a fluid in a control
volume is equal to the rate of increase
in the energy of the fluid stream
flowing through the control volume.
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Schematic for Example 1-2.

constant during a process (just like a steady-state or steady-flow system).
Then the energy balance for a surface can be expressed as

Surface energy balance: Em = Emu (1-19)

This relation is valid for both steady and transient conditions, and the surface
energy balance does not involve heat generation since a surface does not have
a volume. The energy balance for the outer surface of the wall in Fig. 1-19,
for example, can be expressed as

0,=0,+ 05 (1-20)

where O, is conduction through the wall to the surface, 0, is convection from
the surface to the outdoor air, and Q; is net radiation from the surface to the
surroundings.

When the directions of interactions are not known, all energy interactions
can be assumed to be towards the surface, and the surface energy balance can
be expressed as 3, E,, = 0. Note that the interactions in opposite direction will
end up having negative values, and balance this equation.

EXAMPLE 1-2 Cooling of Stainless Steel Sheets

A heated continuous AISI 304 stainless steel sheet is being conveyed at a con-
stant speed of 1 cm/s into a chamber to be cooled (Fig. 1-20). The stainless
steel sheet is 5 mm thick and 2 m wide, and it enters and exits the chamber
at 500 K and 300 K, respectively. Determine the rate of heat loss from the
stainless steel sheet inside the chamber.

SOLUTION The rate of heat loss from a stainless steel sheet being conveyed
inside a chamber is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The stainless steel
sheet has constant properties. 3 Changes in potential and kinetic energy are
negligible.

Properties The constant pressure specific heat of AlISI 304 stainless steel at
the average temperature of (500 + 300)/2 = 400 K is 515 J/kg-K. The den-
sity of AISI 304 stainless steel is 7900 kg/m3 (Table A-3).

Analysis The mass of the stainless steel sheet being conveyed enters and
exits the chamber at a rate of

m = pVwt
= (7900 kg/m?)(0.01 m/s)(2 m)(0.005 m)
= 0.79 kg/s

The rate of heat loss from the stainless steel sheet in the chamber can be
determined as

Qloss = I’I.’le(Tin - Toul)
= (0.79 kg/s)(515 J/kg-K)(500 — 300)K = 81370 J/s
= 81.4 kW

Discussion The stainless steel sheet being conveyed in and out of the cham-
ber is treated as a control volume.



EXAMPLE 1-3 Heat Loss from Heating Ducts in a Basement

A 5-m-long section of an air heating system of a house passes through an
unheated space in the basement (Fig. 1-21). The cross section of the rectan-
gular duct of the heating system is 20 cm X 25 cm. Hot air enters the duct at
100 kPa and 60°C at an average velocity of 5 m/s. The temperature of the air
in the duct drops to 54°C as a result of heat loss to the cool space in the base-
ment. Determine the rate of heat loss from the air in the duct to the basement
under steady conditions. Also, determine the cost of this heat loss per hour if
the house is heated by a natural gas furnace that has an efficiency of 80 per-
cent, and the cost of the natural gas in that area is $1.60/therm (1 therm =
100,000 Btu = 105,500 kJ).

SOLUTION The temperature of the air in the heating duct of a house drops as
a result of heat loss to the cool space in the basement. The rate of heat loss
from the hot air and its cost are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Air can be treated as an
ideal gas with constant properties at room temperature.

Properties The constant pressure specific heat of air at the average tempera-
ture of (54 + 60)/2 = 57°C is 1.007 kJ/kg-K (Table A-15).

Analysis We take the basement section of the heating system as our system,
which is a steady-flow system. The rate of heat loss from the air in the duct
can be determined from

Q= me,AT

where m is the mass flow rate and AT is the temperature drop. The density of
air at the inlet conditions is

_ P _ 100 kPa
P=RT (0.287 kPa-m*/kg-K)(60 + 273)K

= 1.046 kg/m®

The cross-sectional area of the duct is
A. = (0.20 m)(0.25 m) = 0.05 m?

Then the mass flow rate of air through the duct and the rate of heat loss
become

m = pVA, = (1.046 kg/m?)(5 m/s)(0.05 m?) = 0.2615 kg/s

and

Qloss = n;lcp(Tin - Tout)
= (0.2615 kg/s)(1.007 kJ/kg-°C)(60 — 54)°C
= 1.58 kJ/s
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FIGURE 1-22
Schematic for Example 1-4.

or 5688 kJ/h. The cost of this heat loss to the home owner is

(Rate of heat loss)(Unit cost of energy input)

Cost of heat loss = -
Furnace efficiency

_ (5688 kJ/h)($1.60/therm) (1 therm >
N 0.80 \ 105,500 kJ

= $0.108/h

Discussion The heat loss from the heating ducts in the basement is costing the
home owner 10.8 cents per hour. Assuming the heater operates 2000 hours
during a heating season, the annual cost of this heat loss adds up to $216.
Most of this money can be saved by insulating the heating ducts in the unheated
areas.

EXAMPLE 14 Electric Heating of a House at High Elevation

Consider a house that has a floor space of 2000 ft? and an average height of
9 ft at 5000 ft elevation where the standard atmospheric pressure is 12.2 psia
(Fig. 1-22). Initially the house is at a uniform temperature of 50°F. Now
the electric heater is turned on, and the heater runs until the air tempera-
ture in the house rises to an average value of 70°F. Determine the amount
of energy transferred to the air assuming (a) the house is air-tight and thus
no air escapes during the heating process and (b) some air escapes through
the cracks as the heated air in the house expands at constant pressure. Also
determine the cost of this heat for each case if the cost of electricity in that
area is $0.075/kWh.

SOLUTION The air in the house is heated by an electric heater. The amount
and cost of the energy transferred to the air are to be determined for constant-
volume and constant-pressure cases.

Assumptions 1 Air can be treated as an ideal gas with constant properties.
2 Heat loss from the house during heating is negligible. 3 The volume occu-
pied by the furniture and other things is negligible.

Properties The specific heats of air at the average temperature of (50 + 70)/2
= 60°F are ¢, = 0.240 Btu/lbm-R and ¢, = ¢, — R = 0.171 Btu/lbm-R
(Tables A-1E and A-15E).

Analysis The volume and the mass of the air in the house are

V = (Floor area)(Height) = (2000 ft?)(9 ft) = 18,000 ft*

PV (12.2 psia)(18,000 )
"™ T RT T (0.3704 psia-f/IbmR)(50 + 460)R

= 1162 Ibm

(a) The amount of energy transferred to air at constant volume is simply the
change in its internal energy, and is determined from
AE,
1B, s = AU = me, AT
= (1162 Ibm)(0.171 Btu/Ibm-°F)(70 — 50)°F
= 3974 Btu

Ei - Eoul = system



At a unit cost of $0.075/kWh, the total cost of this energy is

Cost of energy = (Amount of energy)(Unit cost of energy)
1 kWh
= (3974 Btu)($0.075/kWh)| ————

3412 Btu

= $0.087

(b) The amount of energy transferred to air at constant pressure is the change
in its enthalpy, and is determined from

Ein, constant pressure = A}Iair = meAT

= (1162 1bm)(0.240 Btu/Ibm-°F)(70 — 50)°F
= 5578 Btu

At a unit cost of $0.075/kWh, the total cost of this energy is

Cost of energy = (Amount of energy)(Unit cost of energy)
1 kWh
= (5578 Btu)($0.075/kWh)| —————
3412 Btu
= $0.123

Discussion 1t costs about 9 cents in the first case and 12 cents in the second
case to raise the temperature of the air in this house from 50°F to 70°F. The sec-
ond answer is more realistic since every house has cracks, especially around the
doors and windows, and the pressure in the house remains essentially constant
during a heating process. Therefore, the second approach is used in practice. This
conservative approach somewhat overpredicts the amount of energy used, how-
ever, since some of the air escapes through the cracks before it is heated to 70°F.

1-5 = HEAT TRANSFER MECHANISMS

In Section 1-1, we defined heat as the form of energy that can be transferred
from one system to another as a result of temperature difference. A thermo-
dynamic analysis is concerned with the amount of heat transfer as a system
undergoes a process from one equilibrium state to another. The science that
deals with the determination of the rates of such energy transfers is the heat
transfer. The transfer of energy as heat is always from the higher-temperature
medium to the lower-temperature one, and heat transfer stops when the two
mediums reach the same temperature.

Heat can be transferred in three different modes: conduction, convection,
and radiation. All modes of heat transfer require the existence of a tempera-
ture difference, and all modes are from the high-temperature medium to a
lower-temperature one. Below we give a brief description of each mode. A
detailed study of these modes is given in later chapters of this text.

1-6 = CONDUCTION

Conduction is the transfer of energy from the more energetic particles of
a substance to the adjacent less energetic ones as a result of interactions
between the particles. Conduction can take place in solids, liquids, or gases.
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Heat conduction through a large plane
wall of thickness Ax and area A.
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(b) Silicon (k = 148 W/m-K)

FIGURE 1-24

The rate of heat conduction through
a solid is directly proportional to its
thermal conductivity.

In gases and liquids, conduction is due to the collisions and diffusion of the
molecules during their random motion. In solids, it is due to the combina-
tion of vibrations of the molecules in a lattice and the energy transport by
free electrons. A cold canned drink in a warm room, for example, eventually
warms up to the room temperature as a result of heat transfer from the room
to the drink through the aluminum can by conduction.

The rate of heat conduction through a medium depends on the geometry of
the medium, its thickness, and the material of the medium, as well as the rem-
perature difference across the medium. We know that wrapping a hot water
tank with glass wool (an insulating material) reduces the rate of heat loss from
the tank. The thicker the insulation, the smaller the heat loss. We also know
that a hot water tank loses heat at a higher rate when the temperature of the
room housing the tank is lowered. Further, the larger the tank, the larger the
surface area and thus the rate of heat loss.

Consider steady heat conduction through a large plane wall of thickness
Ax = L and area A, as shown in Fig. 1-23. The temperature difference across
the wall is AT = T, — T,. Experiments have shown that the rate of heat trans-
fer Q through the wall is doubled when the temperature difference AT across
the wall or the area A normal to the direction of heat transfer is doubled, but is
halved when the wall thickness L is doubled. Thus we conclude that the rate
of heat conduction through a plane layer is proportional to the temperature
difference across the layer and the heat transfer area, but is inversely propor-
tional to the thickness of the layer. That is,

(Area)(Temperature difference)

Rate of heat conduction o

Thickness
or,
T Y B S YA (1-21)
Ax Ax

where the constant of proportionality k is the thermal conductivity of
the material, which is a measure of the ability of a material to conduct heat
(Fig. 1-24). In the limiting case of Ax — 0, the equation above reduces to
the differential form
. ar
Oonda = —kKA— (W) (1-22)
dx

which is called Fourier’s law of heat conduction after J. Fourier (Fig. 1-25),
who expressed it first in his heat transfer text in 1822. Here d7/dx is the
temperature gradient, which is the slope of the temperature curve on a T-x
diagram (the rate of change of 7' with x), at location x. The relation above in-
dicates that the rate of heat conduction in a given direction is proportional to
the temperature gradient in that direction. Heat is conducted in the direction
of decreasing temperature, and the temperature gradient becomes negative
when temperature decreases with increasing x. The negative sign in Eq. 1-22
ensures that heat transfer in the positive x direction is a positive quantity.

The heat transfer area A is always normal to the direction of heat trans-
fer. For heat loss through a 5-m-long, 3-m-high, and 25-cm-thick wall, for
example, the heat transfer area is A = 15 m? Note that the thickness of the
wall has no effect on A (Fig. 1-26).



EXAMPLE 1-5 The Cost of Heat Loss through a Roof

The roof of an electrically heated home is 6 m long, 8 m wide, and 0.25 m
thick, and is made of a flat layer of concrete whose thermal conductivity is
k = 0.8 W/m-K (Fig. 1-27). The temperatures of the inner and the outer
surfaces of the roof one night are measured to be 15°C and 4°C, respectively,
for a period of 10 hours. Determine (a) the rate of heat loss through the roof
that night and (b) the cost of that heat loss to the home owner if the cost of
electricity is $0.08/kWh.

SOLUTION The inner and outer surfaces of the flat concrete roof of an electri-
cally heated home are maintained at specified temperatures during a night.
The heat loss through the roof and its cost that night are to be determined.
Assumptions 1 Steady operating conditions exist during the entire night since
the surface temperatures of the roof remain constant at the specified values.
2 Constant properties can be used for the roof.

Properties The thermal conductivity of the roof is given to be kK = 0.8 W/m-K.
Analysis (a) Noting that heat transfer through the roof is by conduction and
the area of the roof is A = 6 m X 8 m = 48 m?, the steady rate of heat trans-
fer through the roof is

= (15 — 4¢°C
0=kA———= (08 K)48 m?) — ——— = 1690 W = L.69 kW
. m

(b) The amount of heat lost through the roof during a 10-hour period and its
cost is

0= 0 Ar= (1.69 kW)(10 h) = 16.9 kWh
Cost = (Amount of energy)(Unit cost of energy)
= (16.9 kWh)($0.08/kWh) = $1.35

Discussion The cost to the home owner of the heat loss through the roof that
night was $1.35. The total heating bill of the house will be much larger since
the heat losses through the walls are not considered in these calculations.

Thermal Conductivity
We have seen that different materials store heat differently, and we have defined
the property specific heat ¢, as a measure of a material’s ability to store thermal
energy. For example, ¢, = 4.18 kJ/kg-°C for water and ¢, = 0.45 kJ/kg-°C for
iron at room temperature, which indicates that water can store almost 10 times
the energy that iron can per unit mass. Likewise, the thermal conductivity & is a
measure of a material’s ability to conduct heat. For example, kK = 0.607 W/m-K
for water and £ = 80.2 W/m-K for iron at room temperature, which indicates
that iron conducts heat more than 100 times faster than water can. Thus we say
that water is a poor heat conductor relative to iron, although water is an excel-
lent medium to store thermal energy.

Equation 1-21 for the rate of conduction heat transfer under steady condi-
tions can also be viewed as the defining equation for thermal conductivity.
Thus the thermal conductivity of a material can be defined as the rate of
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FIGURE 1-25

Jean Baptiste Joseph Fourier
(1768-1830) was a French mathemati-
cian and physicist born in Auxerre,
France. He is best known for his work
on the infinite series of trigonometric
functions that bear his name and for
his development of the mathematical
theory of heat conduction. Fourier
established the partial differential
equation governing heat diffusion,
and he solved it by using the Fourier
series. The Fourier transform, Fou-
rier number, and the Fourier’s law

of heat conduction are named in his
honor. Fourier is also credited with
the discovery of the phenomenon of
greenhouse effect

in 1824,
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In heat conduction analysis, A
represents the area normal to the
direction of heat transfer.



20
INTRODUCTION AND BASIC CONCEPTS

Concrete roof 0.25m

FIGURE 1-27
Schematic for Example 1-5.

TABLE 1-1

The thermal conductivities of some
materials at room temperature

Material k, W/m-K*
Diamond 2300
Silver 429
Copper 401
Gold 317
Aluminum 237

Iron 80.2
Mercury (1) 8.54
Glass 0.78
Brick 0.72
Water (1) 0.607
Human skin 0.37
Wood (oak) 0.17
Helium (g) 0.152
Soft rubber 0.13
Glass fiber 0.043
Air (g) 0.026
Urethane, rigid foam 0.026

*Multiply by 0.5778 to convert to Btu/h-ft-°F.

heat transfer through a unit thickness of the material per unit area per unit
temperature difference. The thermal conductivity of a material is a measure
of the ability of the material to conduct heat. A high value for thermal con-
ductivity indicates that the material is a good heat conductor, and a low value
indicates that the material is a poor heat conductor or insulator. The thermal
conductivities of some common materials at room temperature are given in
Table 1-1. The thermal conductivity of pure copper at room temperature is
k = 401 W/m-K, which indicates that a 1-m-thick copper wall will conduct
heat at a rate of 401 W per m? area per K temperature difference across the
wall. Note that materials such as copper and silver that are good electric
conductors are also good heat conductors, and have high values of thermal
conductivity. Materials such as rubber, wood, and Styrofoam are poor con-
ductors of heat and have low conductivity values.

A layer of material of known thickness and area can be heated from one
side by an electric resistance heater of known output. If the outer surfaces of
the heater are well insulated, all the heat generated by the resistance heater
will be transferred through the material whose conductivity is to be deter-
mined. Then measuring the two surface temperatures of the material when
steady heat transfer is reached and substituting them into Eq. 1-21 together
with other known quantities give the thermal conductivity (Fig. 1-28).

The thermal conductivities of materials vary over a wide range, as shown in
Fig. 1-29. The thermal conductivities of gases such as air vary by a factor of 10*
from those of pure metals such as copper. Note that pure crystals and metals have
the highest thermal conductivities, and gases and insulating materials the lowest.

Temperature is a measure of the kinetic energies of the particles such as
the molecules or atoms of a substance. In a liquid or gas, the kinetic energy
of the molecules is due to their random translational motion as well as their
vibrational and rotational motions. When two molecules possessing different
kinetic energies collide, part of the kinetic energy of the more energetic (higher-
temperature) molecule is transferred to the less energetic (lower-temperature)
molecule, much the same as when two elastic balls of the same mass at different
velocities collide, part of the kinetic energy of the faster ball is transferred to the
slower one. The higher the temperature, the faster the molecules move and the
higher the number of such collisions, and the better the heat transfer.

The kinetic theory of gases predicts and the experiments confirm that the
thermal conductivity of gases is proportional to the square root of the ther-
modynamic temperature T, and inversely proportional to the square root of
the molar mass M. Therefore, for a particular gas (fixed M), the thermal
conductivity increases with increasing temperature and at a fixed tempera-
ture the thermal conductivity decreases with increasing M. For example, at
a fixed temperature of 1000 K, the thermal conductivity of helium (M = 4)
is 0.343 W/m-K and that of air (M = 29) is 0.0667 W/m-K, which is much
lower than that of helium.

The thermal conductivities of gases at 1 atm pressure are listed in Table
A-16. However, they can also be used at pressures other than 1 atm, since the
thermal conductivity of gases is independent of pressure in a wide range of
pressures encountered in practice.

The mechanism of heat conduction in a liquid is complicated by the fact that
the molecules are more closely spaced, and they exert a stronger intermolecular
force field. The thermal conductivities of liquids usually lie between those of



solids and gases. The thermal conductivity of a substance is normally highest
in the solid phase and lowest in the gas phase. The thermal conductivity of lig-
uids is generally insensitive to pressure except near the thermodynamic critical
point. Unlike gases, the thermal conductivities of most liquids decrease with
increasing temperature, with water being a notable exception. Like gases, the
conductivity of liquids decreases with increasing molar mass. Liquid metals
such as mercury and sodium have high thermal conductivities and are very suit-
able for use in applications where a high heat transfer rate to a liquid is desired,
as in nuclear power plants.

In solids, heat conduction is due to two effects: the lattice vibrational waves
induced by the vibrational motions of the molecules positioned at relatively
fixed positions in a periodic manner called a lattice, and the energy trans-
ported via the free flow of electrons in the solid (Fig. 1-30). The thermal
conductivity of a solid is obtained by adding the lattice and electronic compo-
nents. The relatively high thermal conductivities of pure metals are primarily
due to the electronic component. The lattice component of thermal conduc-
tivity strongly depends on the way the molecules are arranged. For example,
diamond, which is a highly ordered crystalline solid, has the highest known
thermal conductivity at room temperature.

Unlike metals, which are good electrical and heat conductors, crystalline
solids such as diamond and semiconductors such as silicon are good heat
conductors but poor electrical conductors. As a result, such materials find
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A simple experimental setup to
determine the thermal conductivity
of a material.

FIGURE 1-29
The range of thermal conductivity of
various materials at room temperature.
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FIGURE 1-30
The mechanisms of heat conduction in
different phases of a substance.

TABLE 1-2

The thermal conductivity of an
alloy is usually much lower than
the thermal conductivity of either
metal of which it is composed

Pure metal or k, W/m-K,
alloy at 300 K
Copper 401
Nickel 91
Constantan

(55% Cu, 45% Ni) 23
Copper 401
Aluminum 237
Commercial bronze

(90% Cu, 10% Al) 52

widespread use in the electronics industry. Despite their higher price, diamond
heat sinks are used in the cooling of sensitive electronic components because
of the excellent thermal conductivity of diamond. Silicon oils and gaskets are
commonly used in the packaging of electronic components because they pro-
vide both good thermal contact and good electrical insulation.

Pure metals have high thermal conductivities, and one would think that
metal alloys should also have high conductivities. One would expect an alloy
made of two metals of thermal conductivities k; and k, to have a conductiv-
ity k between k; and k,. But this turns out not to be the case. The thermal
conductivity of an alloy of two metals is usually much lower than that of
either metal, as shown in Table 1-2. Even small amounts in a pure metal of
“foreign” molecules that are good conductors themselves seriously disrupt the
transfer of heat in that metal. For example, the thermal conductivity of steel
containing just 1 percent of chrome is 62 W/m-K, while the thermal conduc-
tivities of iron and chromium are 83 and 95 W/m-K, respectively.

The thermal conductivities of materials vary with temperature (Table 1-3).
The variation of thermal conductivity over certain temperature ranges is neg-
ligible for some materials, but significant for others, as shown in Fig. 1-31.
The thermal conductivities of certain solids exhibit dramatic increases at
temperatures near absolute zero, when these solids become superconductors.
For example, the conductivity of copper reaches a maximum value of about
20,000 W/m-K at 20 K, which is about 50 times the conductivity at room
temperature. The thermal conductivities and other thermal properties of vari-
ous materials are given in Tables A-3 to A-17.

Values of thermal conductivity given in Tables A-3 to A—17 are appro-
priate when the physical dimensions of the material under consideration
are relatively large. In some of the emerging areas of technology, such as
microelectronics, the physical dimensions are typically in the order of micro
or nano meters. For these applications the small physical dimensions most
likely will influence the value of thermal conductivity in the solid and liquid
states. In these situations, as the physical dimensions decrease, the average net
distance traveled by the energy carriers typically decreases and this reduces
the value of thermal conductivity.

The temperature dependence of thermal conductivity causes considerable
complexity in conduction analysis. Therefore, it is common practice to evalu-
ate the thermal conductivity k at the average temperature and treat it as a
constant in calculations.

In heat transfer analysis, a material is normally assumed to be isotropic,
that is, to have uniform properties in all directions. This assumption is realis-
tic for most materials, except those that exhibit different structural character-
istics in different directions, such as laminated composite materials and wood.
The thermal conductivity of wood across the grain, for example, is different
than that parallel to the grain.

Thermal Diffusivity

The product pc,, which is frequently encountered in heat transfer analysis,
is called the heat capacity of a material. Both the specific heat ¢, and the
heat capacity pc, represent the heat storage capability of a material. But ¢,
expresses it per unit mass whereas pc, expresses it per unit volume, as can be
noticed from their units J/kg-K and J/m3-K, respectively.
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Another material property that appears in the transient heat conduction
analysis is the thermal diffusivity, which represents how fast heat diffuses
through a material and is defined as

_ Heat conduction k

=—  (m?%s)
Heat storage pc,

(1-23)

Note that the thermal conductivity k represents how well a material con-
ducts heat, and the heat capacity pc, represents how much energy a material
stores per unit volume. Therefore, the thermal diffusivity of a material can
be viewed as the ratio of the heat conducted through the material to the heat
stored per unit volume. A material that has a high thermal conductivity or a
low heat capacity will obviously have a large thermal diffusivity. The larger
the thermal diffusivity, the faster the propagation of heat into the medium. A
small value of thermal diffusivity means that heat is mostly absorbed by the
material and a small amount of heat is conducted further.

The thermal diffusivities of some common materials at 20°C are given in
Table 1-4. Note that the thermal diffusivity ranges from o = 0.14 X 107% m?%s
for water to 149 X 107 m?/s for silver, which is a difference of more than a
thousand times. Also note that the thermal diffusivities of beef and water are
the same. This is not surprising, since meat as well as fresh vegetables and
fruits are mostly water, and thus they possess the thermal properties of water.
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TABLE 1-3

Thermal conductivities of materials
vary with temperature

k, W/m-K
T, K Copper Aluminum
100 482 302
200 413 237
300 401 237
400 393 240
600 379 231
800 366 218
FIGURE 1-31

The variation of the thermal conduc-
tivity of various solids, liquids, and
gases with temperature.

TABLE 1-4

The thermal diffusivities of some

materials at room temperature

Material a, mé/s*

Silver 149 x 10°©
Gold 127 X 1076
Copper 113 x 10°°
Aluminum 97.5 x 10°©
Iron 22.8 X 10°®
Mercury (1) 4.7 x 107
Marble 1.2 x 10°°
Ice 1.2 x 10°°
Concrete 0.75 x 10-°
Brick 0.52 x 1076
Heavy soil (dry) 0.52 x 10°°
Glass 0.34 x 10°®
Glass wool 0.23 x 107°
Water (1) 0.14 x 10°°
Beef 0.14 x 1076
Wood (oak) 0.13 x 10-°

*Multiply by 10.76 to convert to ft?/s.
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FIGURE 1-32

Apparatus to measure the thermal
conductivity of a material using two
identical samples and a thin resistance
heater (Example 1-6).

EXAMPLE 1-6 Measuring the Thermal Conductivity of a Material

A common way of measuring the thermal conductivity of a material is to sand-
wich an electric thermofoil heater between two identical samples of the material,
as shown in Fig. 1-32. The thickness of the resistance heater, including its
cover, which is made of thin silicon rubber, is usually less than 0.5 mm. A circu-
lating fluid such as tap water keeps the exposed ends of the samples at constant
temperature. The lateral surfaces of the samples are well insulated to ensure
that heat transfer through the samples is one-dimensional. Two thermocouples
are embedded into each sample some distance L apart, and a differential ther-
mometer reads the temperature drop AT across this distance along each sample.
When steady operating conditions are reached, the total rate of heat transfer
through both samples becomes equal to the electric power drawn by the heater.

In a certain experiment, cylindrical samples of diameter 5 cm and length
10 cm are used. The two thermocouples in each sample are placed 3 cm apart.
After initial transients, the electric heater is observed to draw 0.4 A at 110V,
and both differential thermometers read a temperature difference of 15°C.
Determine the thermal conductivity of the sample.

SOLUTION The thermal conductivity of a material is to be determined by
ensuring one-dimensional heat conduction, and by measuring temperatures
when steady operating conditions are reached.

Assumptions 1 Steady operating conditions exist since the temperature read-
ings do not change with time. 2 Heat losses through the lateral surfaces of
the apparatus are negligible since those surfaces are well insulated, and thus
the entire heat generated by the heater is conducted through the samples.
3 The apparatus possesses thermal symmetry.

Analysis The electrical power consumed by the resistance heater and con-
verted to heat is

W, = VI = (110 V)04 A) = 44 W

The rate of heat flow through each sample is
O=1iw,=ix@aw)=22wW

since only half of the heat generated flows through each sample because of
symmetry. Reading the same temperature difference across the same distance
in each sample also confirms that the apparatus possesses thermal symmetry.
The heat transfer area is the area normal to the direction of heat transfer,
which is the cross-sectional area of the cylinder in this case:

A =17D?=17(0.05m)? = 0.001963 m?

Noting that the temperature drops by 15°C within 3 cm in the direction of heat
flow, the thermal conductivity of the sample is determined to be

s AT OL  (22W)(0.03 m)
Q= AAT  (0.001963 m?)(15°C)

Discussion Perhaps you are wondering if we really need to use two samples
in the apparatus, since the measurements on the second sample do not give
any additional information. It seems like we can replace the second sample
by insulation. Indeed, we do not need the second sample; however, it enables
us to verify the temperature measurements on the first sample and provides
thermal symmetry, which reduces experimental error.

=224 W/m'K



EXAMPLE 1-7 Conversion between SI and English Units

An engineer who is working on the heat transfer analysis of a brick building in
English units needs the thermal conductivity of brick. But the only value he
can find from his handbooks is 0.72 W/m-°C, which is in S| units. To make
matters worse, the engineer does not have a direct conversion factor between
the two unit systems for thermal conductivity. Can you help him out?

SOLUTION The situation this engineer is facing is not unique, and most engi-
neers often find themselves in a similar position. A person must be very care-
ful during unit conversion not to fall into some common pitfalls and to avoid
some costly mistakes. Although unit conversion is a simple process, it requires
utmost care and careful reasoning.

The conversion factors for W and m are straightforward and are given in con-
version tables to be

1W = 341214 Btu/h

1 m = 3.2808 ft
But the conversion of °C into °F is not so simple, and it can be a source of
error if one is not careful. Perhaps the first thought that comes to mind is to
replace °C by (°F — 32)/1.8 since T(°C) = [T(°F) — 321/1.8. But this will be
wrong since the °C in the unit W/m-°C represents per °C change in tempera-

ture. Noting that 1°C change in temperature corresponds to 1.8°F, the proper
conversion factor to be used is

1°C = 1.8°F
Substituting, we get
41214 B
1 W/m-°C = %
(3.2808 ft)(1.8°F)

which is the desired conversion factor. Therefore, the thermal conductivity of
the brick in English units is

Ko, = 0.72 W/m-°C
= 0.72 X (0.5778 Btu/h-ft-°F)
= 0.42 Btu/h-ft-°F

= 0.5778 Btu/h-ft-°F

Discussion Note that the thermal conductivity value of a material in English
units is about half that in SI units (Fig. 1-33). Also note that we rounded
the result to two significant digits (the same number in the original value)
since expressing the result in more significant digits (such as 0.4160 instead
of 0.42) would falsely imply a more accurate value than the original one.

1-7 = CONVECTION

Convection is the mode of energy transfer between a solid surface and the
adjacent liquid or gas that is in motion, and it involves the combined effects
of conduction and fluid motion. The faster the fluid motion, the greater the
convection heat transfer. In the absence of any bulk fluid motion, heat trans-
fer between a solid surface and the adjacent fluid is by pure conduction. The
presence of bulk motion of the fluid enhances the heat transfer between the
solid surface and the fluid, but it also complicates the determination of heat

transfer rates.
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k =0.72 W/m-°C
= 0.42 Btu/h-ft-°F
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FIGURE 1-33

The thermal conductivity value in
English units is obtained by multiplying
the value in ST units by 0.5778.
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FIGURE 1-35
The cooling of a boiled egg by forced
and natural convection.

TABLE 1-5

Typical values of convection heat
transfer coefficient

Type of
convection h, W/m2.K*
Free convection of

gases 2-25
Free convection of

liquids 10-1000
Forced convection

of gases 25-250
Forced convection

of liquids 50-20,000
Boiling and

condensation 2500-100,000

*Multiply by 0.176 to convert to Btu/h-ft2-°F.

Consider the cooling of a hot block by blowing cool air over its top surface
(Fig. 1-34). Heat is first transferred to the air layer adjacent to the block by
conduction. This heat is then carried away from the surface by convection,
that is, by the combined effects of conduction within the air that is due to
random motion of air molecules and the bulk or macroscopic motion of the air
that removes the heated air near the surface and replaces it by the cooler air.

Convection is called forced convection if the fluid is forced to flow over
the surface by external means such as a fan, pump, or the wind. In contrast,
convection is called natural (or free) convection if the fluid motion is caused
by buoyancy forces that are induced by density differences due to the varia-
tion of temperature in the fluid (Fig. 1-35). For example, in the absence of a
fan, heat transfer from the surface of the hot block in Fig. 1-34 is by natural
convection since any motion in the air in this case is due to the rise of the
warmer (and thus lighter) air near the surface and the fall of the cooler (and
thus heavier) air to fill its place. Heat transfer between the block and the sur-
rounding air is by conduction if the temperature difference between the air
and the block is not large enough to overcome the resistance of air to move-
ment and thus to initiate natural convection currents.

Heat transfer processes that involve change of phase of a fluid are also
considered to be convection because of the fluid motion induced during the
process, such as the rise of the vapor bubbles during boiling or the fall of the
liquid droplets during condensation.

Despite the complexity of convection, the rate of convection heat transfer is
observed to be proportional to the temperature difference, and is conveniently
expressed by Newton’s law of cooling as (Fig. 1-36)

Ocony = WA, (T, — T..) (W) (1-24)
where h is the convection heat transfer coefficient in W/m?-K or Btu/h-ft>-°F,
A, is the surface area through which convection heat transfer takes place, 7 is
the surface temperature, and 7., is the temperature of the fluid sufficiently far
from the surface. Note that at the surface, the fluid temperature equals the
surface temperature of the solid.

The convection heat transfer coefficient £ is not a property of the fluid. It
is an experimentally determined parameter whose value depends on all the
variables influencing convection such as the surface geometry, the nature of
fluid motion, the properties of the fluid, and the bulk fluid velocity. Typical
values of & are given in Table 1-5.

Some people do not consider convection to be a fundamental mechanism
of heat transfer since it is essentially heat conduction in the presence of fluid
motion. But we still need to give this combined phenomenon a name, unless
we are willing to keep referring to it as “conduction with fluid motion.” Thus,
it is practical to recognize convection as a separate heat transfer mechanism
despite the valid arguments to the contrary.

EXAMPLE 1-8 Measuring Convection Heat Transfer Coefficient

A 2-m-long, 0.3-cm-diameter electrical wire extends across a room at 15°C,
as shown in Fig. 1-37. Heat is generated in the wire as a result of resistance
heating, and the surface temperature of the wire is measured to be 152°C in



steady operation. Also, the voltage drop and electric current through the wire
are measured to be 60 V and 1.5 A, respectively. Disregarding any heat trans-
fer by radiation, determine the convection heat transfer coefficient for heat
transfer between the outer surface of the wire and the air in the room.

SOLUTION The convection heat transfer coefficient for heat transfer from
an electrically heated wire to air is to be determined by measuring tempera-
tures when steady operating conditions are reached and the electric power
consumed.

Assumptions 1 Steady operating conditions exist since the temperature read-
ings do not change with time. 2 Radiation heat transfer is negligible.
Analysis  When steady operating conditions are reached, the rate of heat loss
from the wire equals the rate of heat generation in the wire as a result of resis-
tance heating. That is,

0 = Eyeneruea = VI = (60 V)(1.5 A) = 90 W
The surface area of the wire is

A, = DL = 7(0.003 m)(2 m) = 0.01885 m?
Newton’s law of cooling for convection heat transfer is expressed as

Qconv = hAs (Ts - Too)

Disregarding any heat transfer by radiation and thus assuming all the heat loss
from the wire to occur by convection, the convection heat transfer coefficient
is determined to be

. OQeone 90 W
AT, —T)  (0.01885 m3)(152 — 15)°C

= 34.9 W/m*K

Discussion Note that the simple setup described above can be used to deter-
mine the average heat transfer coefficients from a variety of surfaces in air.
Also, heat transfer by radiation can be eliminated by keeping the surrounding
surfaces at the temperature of the wire.

1-8 - RADIATION

Radiation is the energy emitted by matter in the form of electromagnetic
waves (or photons) as a result of the changes in the electronic configurations
of the atoms or molecules. Unlike conduction and convection, the transfer of
heat by radiation does not require the presence of an intervening medium. In
fact, heat transfer by radiation is fastest (at the speed of light) and it suffers no
attenuation in a vacuum. This is how the energy of the sun reaches the earth.
In heat transfer studies we are interested in thermal radiation, which is the
form of radiation emitted by bodies because of their temperature. It differs
from other forms of electromagnetic radiation such as x-rays, gamma rays,
microwaves, radio waves, and television waves that are not related to temper-
ature. All bodies at a temperature above absolute zero emit thermal radiation.
Radiation is a volumetric phenomenon, and all solids, liquids, and gases
emit, absorb, or transmit radiation to varying degrees. However, radiation is
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FIGURE 1-36

Sir Isaac Newton (1642-1727) was an
English mathematician, physicist, and
astronomer, born in Lincolnshire,
England. Newton is regarded as one

of the greatest scientists and mathe-
maticians in history. His contributions
to mathematics include the develop-
ment of the binomial theorem, the
differential calculus, and the integral
calculus. He is said to have conceived
the idea of the law of gravity upon the
observation of the fall of an apple in
1665. With the three fundamental laws
that bear his name and are described

in Philosophiae Naturalis Principia
Mathematica, Newton is known as the
father of classical mechanics. Newton
showed that each of Kepler’s three laws
on the motion of planets and stars could
be derived from the single law of grav-
ity. Newton is also credited for the dis-
covery of the composite nature of white
light and the separation of different col-
ors by a prism. The law of cooling that
governs the rate of heat transfer from a
hot surface to a cooler surrounding fluid
is also attributed to Newton.
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FIGURE 1-37

Schematic for Example 1-8.
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FIGURE 1-38

Blackbody radiation represents the
maximum amount of radiation that
can be emitted from a surface at a

specified temperature.

TABLE 1-6
Emissivities of some materials
at 300 K
Material Emissivity
Aluminum foil 0.07
Anodized aluminum 0.82
Polished copper 0.03
Polished gold 0.03
Polished silver 0.02
Polished stainless steel 0.17
Black paint 0.98
White paint 0.90
White paper 0.92-0.97
Asphalt pavement 0.85-0.93
Red brick 0.93-0.96
Human skin 0.95
Wood 0.82-0.92
Soil 0.93-0.96
Water 0.96
Vegetation 0.92-0.96
Qincidem

Qref =(l-a Qincidem

Qabs = aQincident

FIGURE 1-39
The absorption of radiation incident on
an opaque surface of absorptivity «.

usually considered to be a surface phenomenon for solids that are opaque to
thermal radiation such as metals, wood, and rocks since the radiation emitted
by the interior regions of such material can never reach the surface, and the
radiation incident on such bodies is usually absorbed within a few microns
from the surface.

The maximum rate of radiation that can be emitted from a surface at a ther-
modynamic temperature 7, (in K or R) is given by the Stefan-Boltzmann
law as

Qcmil. max U—AvTﬁ (W) (1-25)

where o = 5.670 X 107% W/m2-K* or 0.1714 X 10~ Btu/h-ft>R* is the
Stefan—Boltzmann constant. The idealized surface that emits radiation at this
maximum rate is called a blackbody, and the radiation emitted by a black-
body is called blackbody radiation (Fig. 1-38). The radiation emitted by
all real surfaces is less than the radiation emitted by a blackbody at the same
temperature, and is expressed as

Qcmil - HU—A.\T\-‘ (W) (1-26)

where € is the emissivity of the surface. The property emissivity, whose value
is in the range 0 = ¢ = 1, is a measure of how closely a surface approximates
a blackbody for which € = 1. The emissivities of some surfaces are given in
Table 1-6.

Another important radiation property of a surface is its absorptivity «,
which is the fraction of the radiation energy incident on a surface that is ab-
sorbed by the surface. Like emissivity, its value is in the range 0 = a = 1.
A blackbody absorbs the entire radiation incident on it. That is, a blackbody is
a perfect absorber (o = 1) as it is a perfect emitter.

In general, both & and « of a surface depend on the temperature and the
wavelength of the radiation. Kirchhoff’s law of radiation states that the
emissivity and the absorptivity of a surface at a given temperature and wave-
length are equal. In many practical applications, the surface temperature and
the temperature of the source of incident radiation are of the same order of
magnitude, and the average absorptivity of a surface is taken to be equal to
its average emissivity. The rate at which a surface absorbs radiation is deter-
mined from (Fig. 1-39)

Quhs(n'hcd - aQinci(lcm (W) (1-27)

where O, ien is the rate at which radiation is incident on the surface and « is
the absorptivity of the surface. For opaque (nontransparent) surfaces, the por-
tion of incident radiation not absorbed by the surface is reflected back.

The difference between the rates of radiation emitted by the surface and
the radiation absorbed is the net radiation heat transfer. If the rate of radiation
absorption is greater than the rate of radiation emission, the surface is said
to be gaining energy by radiation. Otherwise, the surface is said to be losing
energy by radiation. In general, the determination of the net rate of heat trans-
fer by radiation between two surfaces is a complicated matter since it depends
on the properties of the surfaces, their orientation relative to each other, and
the interaction of the medium between the surfaces with radiation.



When a surface of emissivity &€ and surface area A, at a thermodynamic
temperature T, is completely enclosed by a much larger (or black) surface at
thermodynamic temperature 7, separated by a gas (such as air) that does not
intervene with radiation, the net rate of radiation heat transfer between these
two surfaces is given by (Fig. 1-40)

0,1 = €0A, (T4 — T4 (W) (1-28)

rad — surr.

In this special case, the emissivity and the surface area of the surrounding
surface do not have any effect on the net radiation heat transfer.

Radiation heat transfer to or from a surface surrounded by a gas such as
air occurs parallel to conduction (or convection, if there is bulk gas motion)
between the surface and the gas. Thus the total heat transfer is determined
by adding the contributions of both heat transfer mechanisms. For simplic-
ity and convenience, this is often done by defining a combined heat transfer
coefficient /.. that includes the effects of both convection and radiation.
Then the fotal heat transfer rate to or from a surface by convection and radiation
is expressed as

Q.mml = QCUI]\ + Q.I'dd = hc(m\ A\‘ (T\ o T\lll‘l') + S(TA.\ (T;l o T4

SurT.

Ql(vlle = hu)mbinudA\' (]\ - Tw) (W) (1-29)

- — 2 2
hcmnbiucd - hcom + hl‘:ld o hcnn\ +eo (T\ + T\un’)(T.\ + T\urr)

Note that the combined heat transfer coefficient is essentially a convection
heat transfer coefficient modified to include the effects of radiation.

Radiation is usually significant relative to conduction or natural convec-
tion, but negligible relative to forced convection. Thus radiation in forced
convection applications is usually disregarded, especially when the surfaces
involved have low emissivities and low to moderate temperatures.

EXAMPLE 1-9 Radiation Effect on Thermal Comfort

It is a common experience to feel “chilly” in winter and “warm” in summer in
our homes even when the thermostat setting is kept the same. This is due to
the so called “radiation effect” resulting from radiation heat exchange between
our bodies and the surrounding surfaces of the walls and the ceiling.
Consider a person standing in a room maintained at 22°C at all times. The
inner surfaces of the walls, floors, and the ceiling of the house are observed
to be at an average temperature of 10°C in winter and 25°C in summer.
Determine the rate of radiation heat transfer between this person and the sur-
rounding surfaces if the exposed surface area and the average outer surface
temperature of the person are 1.4 m? and 30°C, respectively (Fig. 1-41).

SOLUTION The rates of radiation heat transfer between a person and the sur-
rounding surfaces at specified temperatures are to be determined in summer
and winter.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer by convec-
tion is not considered. 3 The person is completely surrounded by the interior
surfaces of the room. 4 The surrounding surfaces are at a uniform temperature.
Properties The emissivity of a person is e = 0.95 (Table 1-6).
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FIGURE 140
Radiation heat transfer between a
surface and the surfaces surrounding it.

FIGURE 1-41
Schematic for Example 1-9.



30
INTRODUCTION AND BASIC CONCEPTS

Analysis The net rates of radiation heat transfer from the body to the sur-
rounding walls, ceiling, and floor in winter and summer are

Qrad, winter SO-AS (T? - Tgurr, winter.
= (0.95)(5.67 X 1078 W/m?-K*)(1.4 m?)
X [(30 + 273)* — (10 + 273)*] K*

=152 W

and

Qrad, summer SO-As (T? - Tgurr, summer)
= (0.95)(5.67 X 1078 W/m>K*)(1.4 m?)
X [(B0 + 273)* — (25 + 273)*] K*

=409 W

Discussion Note that we must use thermodynamic (i.e., absolute) temperatures
in radiation calculations. Also note that the rate of heat loss from the person by
radiation is almost four times as large in winter than it is in summer, which explains
the “chill” we feel in winter even if the thermostat setting is kept the same.

1-9 = SIMULTANEOUS HEAT TRANSFER
MECHANISMS

We mentioned that there are three mechanisms of heat transfer, but not all

T,|  Opaque T, three can e)_(ist §imultaneously in a medium. For example, hea}t trgnsfer is only
solid by conduction in opaque solids, but by conduction and radiation in semitrans-

1 mode parent solids. Thus, a solid may involve conduction and radiation but not

Conduction convection. However, a solid may involve heat transfer by convection and/or
radiation on its surfaces exposed to a fluid or other surfaces. For example, the

outer surfaces of a cold piece of rock will warm up in a warmer environment

as a result of heat gain by convection (from the air) and radiation (from the sun

T Gas T or the warmer surrounding surfaces). But the inner parts of the rock will warm

up as this heat is transferred to the inner region of the rock by conduction.
Heat transfer is by conduction and possibly by radiation in a still fluid (no
Conduction or bulk fluid motion) and by convection and radiation in a flowing fluid. In the
e absence of radiation, heat transfer through a fluid is either by conduction or
convection, depending on the presence of any bulk fluid motion. Convection
can be viewed as combined conduction and fluid motion, and conduction in a
fluid can be viewed as a special case of convection in the absence of any fluid
T Vacuum T . .
1 2 motion (Fig. 1-42).
Thus, when we deal with heat transfer through a fluid, we have either con-
Radiation I mode duction or convection, but not both. Also, gases are practically transparent to
radiation, except that some gases are known to absorb radiation strongly at
certain wavelengths. Ozone, for example, strongly absorbs ultraviolet radia-

Radiation
2 modes

FIGURE 1-42 tion. But in most cases, a gas between two solid surfaces does not interfere
Although there are three mechanisms ~ With radiation and acts effectively as a vacuum. Liquids, on the other hand,
of heat transfer, a medium may are usually strong absorbers of radiation.

involve only two of them Finally, heat transfer through a vacuum is by radiation only since conduc-

simultaneously. tion or convection requires the presence of a material medium.



EXAMPLE 1-10 Heat Loss from a Person

Consider a person standing in a breezy room at 20°C. Determine the total rate
of heat transfer from this person if the exposed surface area and the average
outer surface temperature of the person are 1.6 m? and 29°C, respectively,
and the convection heat transfer coefficient is 6 W/m?-K (Fig. 1-43).

SOLUTION The total rate of heat transfer from a person by both convection
and radiation to the surrounding air and surfaces at specified temperatures is
to be determined.

Assumptions 1 Steady operating conditions exist. 2 The person is completely
surrounded by the interior surfaces of the room. 3 The surrounding surfaces
are at the same temperature as the air in the room. 4 Heat conduction to the
floor through the feet is negligible.

Properties The emissivity of a person is e = 0.95 (Table 1-6).

Analysis The heat transfer between the person and the air in the room is by
convection (instead of conduction) since it is conceivable that the air in the
vicinity of the skin or clothing warms up and rises as a result of heat trans-
fer from the body, initiating natural convection currents. It appears that the
experimentally determined value for the rate of convection heat transfer in
this case is 6 W per unit surface area (m?) per unit temperature difference
(in K or °C) between the person and the air away from the person. Thus, the
rate of convection heat transfer from the person to the air in the room is

Ocony = hA, (T, — T..)
= (6 W/m2-K)(1.6 mz)(29 — 20)°C
= 86.4 W

The person also loses heat by radiation to the surrounding wall surfaces.
We take the temperature of the surfaces of the walls, ceiling, and floor to be
equal to the air temperature in this case for simplicity, but we recognize that
this does not need to be the case. These surfaces may be at a higher or lower
temperature than the average temperature of the room air, depending on the
outdoor conditions and the structure of the walls. Considering that air does
not intervene with radiation and the person is completely enclosed by the sur-
rounding surfaces, the net rate of radiation heat transfer from the person to the
surrounding walls, ceiling, and floor is

Qrad = SO-A.Y (T? - Tgurr

(0.95)(5.67 X 1078 W/m2-K*)(1.6 m?)
X [(29 + 273)* — (20 + 273)*] K*
=817W

Note that we must use thermodynamic temperatures in radiation calculations.
Also note that we used the emissivity value for the skin and clothing at room
temperature since the emissivity is not expected to change significantly at a
slightly higher temperature.

Then the rate of total heat transfer from the body is determined by adding
these two quantities:

Qtotal = Qconv + Qrad = (864 + 817) W = 168 W
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FIGURE 143

Heat transfer from the person
described in Example 1-10.
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FIGURE 144
Schematic for Example 1-11.

Discussion The heat transfer would be much higher if the person were not
dressed since the exposed surface temperature would be higher. Thus, an
important function of the clothes is to serve as a barrier against heat transfer.

In these calculations, heat transfer through the feet to the floor by conduc-
tion, which is usually very small, is neglected. Heat transfer from the skin by
perspiration, which is the dominant mode of heat transfer in hot environments,
is not considered here.

Also, the units W/m2.°C and W/m2-K for heat transfer coefficient are equiva-
lent, and can be interchanged.

EXAMPLE 1-11 Heat Transfer between Two Isothermal Plates

Consider steady heat transfer between two large parallel plates at constant tem-
peratures of T, = 300 K and T, = 200 K that are L = 1 cm apart, as shown in
Fig. 1-44. Assuming the surfaces to be black (emissivity e = 1), determine the
rate of heat transfer between the plates per unit surface area assuming the gap
between the plates is (a) filled with atmospheric air, (b) evacuated, (c) filled
with urethane insulation, and (d) filled with superinsulation that has an appar-
ent thermal conductivity of 0.00002 W/m-K.

SOLUTION The total rate of heat transfer between two large parallel plates at
specified temperatures is to be determined for four different cases.
Assumptions 1 Steady operating conditions exist. 2 There are no natural con-
vection currents in the air between the plates. 3 The surfaces are black and
thus e = 1.

Properties The thermal conductivity at the average temperature of 250 K is
k= 0.0219 W/m-K for air (Table A-15), 0.026 W/m-K for urethane insulation
(Table A-6), and 0.00002 W/m-K for the superinsulation.

Analysis (a) The rates of conduction and radiation heat transfer between the
plates through the air layer are

T, — T, (300 — 200)K

= (0.0219 Wm-K)(1 m*>) ———— =219 W
0.01 m

Qcond = kA
and

Ona = e0A(T} — T%)
= (1)(5.67 X 1078 W/m2-K#)(1 m?)[(300 K)* — (200 K)*] = 369 W

Therefore,
Qtotal = Qcond + Qrad = 219 + 369 = 588 W

The heat transfer rate in reality will be higher because of the natural convec-
tion currents that are likely to occur in the air space between the plates.

(b) When the air space between the plates is evacuated, there will be no con-
duction or convection, and the only heat transfer between the plates will be by
radiation. Therefore,

Qlolal = Qrad = 369 W

(c) An opaque solid material placed between two plates blocks direct radiation
heat transfer between the plates. Also, the thermal conductivity of an insulat-
ing material accounts for the radiation heat transfer that may be occurring
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FIGURE 1-45
Different ways of reducing heat transfer between two isothermal plates, and their effectiveness.

through the voids in the insulating material. The rate of heat transfer through
the urethane insulation is

T, — T, (300 — 200)K
= (0.026 W/m-K)(1 m?) ———— = 260 W
0.01 m

Qlotal = Qcond = kA

Note that heat transfer through the urethane material is less than the heat
transfer through the air determined in (a), although the thermal conductivity of
the insulation is higher than that of air. This is because the insulation blocks
the radiation whereas air transmits it.

(d) The layers of the superinsulation prevent any direct radiation heat transfer
between the plates. However, radiation heat transfer between the sheets of
superinsulation does occur, and the apparent thermal conductivity of the
superinsulation accounts for this effect. Therefore,

(300 — 200)K

= (0.00002 W/m-K)(1 m?) ~——————— = 0.2 W
0.01 m

T, - T,

Qtotal = kA

which is 144z of the heat transfer through the vacuum. The results of this
example are summarized in Fig. 1-45 to put them into perspective.
Discussion This example demonstrates the effectiveness of superinsulations
and explains why they are the insulation of choice in critical applications
despite their high cost.

EXAMPLE 1-12 Heat Transfer in Conventional and
Microwave Ovens

The fast and efficient cooking of microwave ovens made them one of the
essential appliances in modern kitchens (Fig. 1-46). Discuss the heat transfer
mechanisms associated with the cooking of a chicken in microwave and con-
ventional ovens, and explain why cooking in a microwave oven is more efficient.

SOLUTION Food is cooked in a microwave oven by absorbing the electromag- FIGURE 1-46
netic radiation energy generated by the microwave tube, called the magnetron. A chicken being cooked in a
microwave oven (Example 1-12).



34
INTRODUCTION AND BASIC CONCEPTS

Q\\%Sw .

0
é/;{;

A

by

=

Pl

i

B

700 W/m?

25°C
a=0.6

FIGURE 147
Schematic for Example 1-13.

The radiation emitted by the magnetron is not thermal radiation, since its
emission is not due to the temperature of the magnetron; rather, it is due to
the conversion of electrical energy into electromagnetic radiation at a speci-
fied wavelength. The wavelength of the microwave radiation is such that it
is reflected by metal surfaces; transmitted by the cookware made of glass,
ceramic, or plastic; and absorbed and converted to internal energy by food
(especially the water, sugar, and fat) molecules.

In a microwave oven, the radiation that strikes the chicken is absorbed by
the skin of the chicken and the outer parts. As a result, the temperature of the
chicken at and near the skin rises. Heat is then conducted toward the inner
parts of the chicken from its outer parts. Of course, some of the heat absorbed
by the outer surface of the chicken is lost to the air in the oven by convection.

In a conventional oven, the air in the oven is first heated to the desired
temperature by the electric or gas heating element. This preheating may take
several minutes. The heat is then transferred from the air to the skin of the
chicken by natural convection in older ovens or by forced convection in the
newer convection ovens that utilize a fan. The air motion in convection ovens
increases the convection heat transfer coefficient and thus decreases the cook-
ing time. Heat is then conducted toward the inner parts of the chicken from its
outer parts as in microwave ovens.

Microwave ovens replace the slow convection heat transfer process in conven-
tional ovens by the instantaneous radiation heat transfer. As a result, microwave
ovens transfer energy to the food at full capacity the moment they are turned on,
and thus they cook faster while consuming less energy.

EXAMPLE 1-13 Heating of a Plate by Solar Energy

A thin metal plate is insulated on the back and exposed to solar radiation at
the front surface (Fig. 1-47). The exposed surface of the plate has an absorp-
tivity of 0.6 for solar radiation. If solar radiation is incident on the plate at a
rate of 700 W/m? and the surrounding air temperature is 25°C, determine the
surface temperature of the plate when the heat loss by convection and radia-
tion equals the solar energy absorbed by the plate. Assume the combined con-
vection and radiation heat transfer coefficient to be 50 W/m?-K.

SOLUTION The back side of the thin metal plate is insulated and the front
side is exposed to solar radiation. The surface temperature of the plate is to be
determined when it stabilizes.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
insulated side of the plate is negligible. 3 The heat transfer coefficient remains
constant.

Properties The solar absorptivity of the plate is given to be « = 0.6.

Analysis The absorptivity of the plate is 0.6, and thus 60 percent of the solar
radiation incident on the plate is absorbed continuously. As a result, the tem-
perature of the plate rises, and the temperature difference between the plate
and the surroundings increases. This increasing temperature difference causes
the rate of heat loss from the plate to the surroundings to increase. At some



point, the rate of heat loss from the plate equals the rate of solar energy
absorbed, and the temperature of the plate no longer changes. The tempera-
ture of the plate when steady operation is established is determined from

Egaincd = Elost or aAs qmcidcnt, solar — hcombinchs(Ts - Too)

Solving for T, and substituting, the plate surface temperature is determined
to be

é]incidem, solar 0.6 X (700 W/mz)
I,=T.,+a——=25°C + =33.4°C
50 W/m*K

combined

Discussion Note that the heat losses prevent the plate temperature from ris-
ing above 33.4°C. Also, the combined heat transfer coefficient accounts for
the effects of both convection and radiation, and thus it is very convenient
to use in heat transfer calculations when its value is known with reasonable
accuracy.

1-10 - PREVENTION THROUGH DESIGN*

The emphasis of safety is not foreign in the fields of engineering. It is without
any surprise that the first of the fundamental canons of ethics for engineers
is to “hold paramount the safety, health, and welfare of the public” when
fulfilling their professional duties (NSPE Publication 1102, 2007). In 2007,
the National Institute for Occupational Safety and Health (NIOSH) launched
the National Prevention through Design (PtD) initiative, with the mission to
prevent or reduce work-related injuries, illnesses, and fatalities by including
prevention considerations in all circumstances that impact individuals in the
work places (NIOSH Publication 2011-121, 2010). As such, the concept of
PtD involves applying the means of reducing risks and preventing hazards
in the design of equipment, tools, processes, and work facilities. The idea of
having a section on PtD throughout the different chapters in the text is not
only to simply provide discussions of interesting real world applications, but
also to introduce the concepts of PtD to the minds of tomorrow’s engineers
whereby they may influence a change in culture toward more emphasis on
safety designs.

The National PtD Initiative is largely being discussed in the context of
preventing work-related hazards to individuals in working environments.
Nevertheless, the concepts of PtD can also be rationally applied to preventing
failures and damages of devices, products, and systems. Since such failures
and damages are often led to negative impacts on the environment, profit-
ability, and ultimately the society at large. Within the context of heat and
mass transfer, the PtD concepts can be presented along with the physical
mechanisms involved and practical applications. Issues such as prevention of
thermal burn, fire hazard, and thermal failure in systems are topics that can
relate the concepts of PtD with the basic science of heat and mass transfer.
The process of solving heat and mass transfer problems, along with the

*The section is contributed by Professor Clement C. Tang, Mechanical Engineering
Department, University of North Dakota, Grand Forks, ND.
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FIGURE 1-48

Process of solving problems with

application of PtD concepts

application of PtD concepts, involves incorporating prescribed PtD criteria,
be it the prevention of burn injury, fire hazard, or system failure, to the solu-
tions (Fig. 1-48). To successfully arrive at a solution that satisfies prescribed
PtD criteria requires the understanding of how the physical mechanisms of
heat and mass transfer interrelate with the concepts of PtD.

Thermal burn occurs when skin tissues are exposed to temperatures that are
higher than its physiological temperature. Under such occurrence, the protein
and cellular structures of skin tissues are altered, as the higher temperatures
cause thermal shocks and disrupt the skin cells. The degree of injury as a
result of thermal burn is influenced by the temperature to which the skin is
exposed and the duration of exposure. The skin reaction to thermal burn is
dependent upon the heat transfer rate from the hot medium to the skin. When
exposed to temperatures above approximately 43°C, the human skin can
begin to feel discomfort and pain; and damage can occur if the exposure is
sufficiently long. Exposure to temperature about 48°C can cause human skin
to receive a first degree burn injury; and temperature above 70°C can cause
instantaneous damage to human skin (ASTM Standard C1055-03, 2009).

Injury from thermal burn can result from all three modes of heat transfer:
conduction, convection, and radiation. Thermal burn by conduction heat
transfer occurs when the skin is in contact with a hot solid surface. The ther-
mal properties, roughness, and temperature of the hot solid surface, along
with the contact duration and the nature of the skin, all influence the degree
of this thermal burn injury. Scalding of skin from hot fluid is a thermal burn
caused by convection heat transfer to the skin. Scalding on skin tissue can
occur through spilling of hot liquid or accidental immersion into hot liquid.
Thermal burn injuries from convection heat transfer of hot gas are not only
external but also can be internal, affecting the upper respiratory tract and
even the lungs. Thermal burn by radiation can be caused from laser or other
sources such as nuclear explosion. Although human skin can reflect much of
the incident energy from radiation, exposure to high energy laser beams can
cause thermal burn on skin. The severity of thermal burn from laser is influ-
enced by the range of wavelength that allows the laser beam to penetrate into
the skin tissue and the duration of exposure.

In the prevention of fire hazard, the understanding of flash point is impor-
tant. Flash point is the lowest temperature at which a liquid can vaporize and
form a mixture with air to become ignitable. When a liquid reaches its flash
point, a source of ignition (e.g., open flame, spark, static electricity, and hot
object) will cause the liquid to ignite. Therefore designs for fire hazard pre-
vention must be in place when storing, handling, or transporting a liquid above
its flash point, such that it is not exposed to an ignition source. The lower the
flash point of a liquid, the more susceptible it is to a fire hazard. Flash point
is also used for characterizing fire hazard of liquids into categories such as
combustible and flammable liquids. The National Fire Protection Association
(NFPA) has classified a liquid with a flash point of 37.8°C (100°F) or higher
as a combustible liquid. A liquid with a flash point below 37.8°C is classi-
fied as flammable liquid. Another concept important to fire hazard prevention
is the autoignition temperature (AIT), which is the minimum temperature at
which a substance will spontaneously ignite without ignition source. A sub-
stance is auto ignited when it is heated above a temperature at which the rate
of heat release from the exothermic oxidation reaction become significantly



greater than the rate of heat lost to the surroundings. Factors influencing the
autoignition temperature include atmospheric pressure, humidity, and oxygen

concentration.

The science of heat and mass transfer can be coupled with the concepts
of PtD to mitigate the risks of thermal failure in systems. Thermal stress
can compromise the integrity of parts and components in a system. Extreme
temperature can alter the physical properties of a material, which can cause
a component to lose its functionality. Cold temperature on the morning of
January 28, 1986 affected the elasticity of the O-ring on a solid rocket booster
of the space shuttle Challenger. The loss of the O-ring’s elasticity and abil-
ity to seal allowed hot combustion gas to leak through a solid rocket booster,

which led to the tragic disaster.

Pto EXAMPLE 1-14 Fire Hazard Prevention of 0il Leakage on
Hot Engine Surface

Oil leakage and spillage on hot engine surface can lead to fire hazards. Some
engine oils have an autoignition temperature of approximately above 250°C.
When oil leakage comes in contact with a hot engine surface that has a higher
temperature than its autoignition temperature, the oil can ignite spontane-
ously. Consider the outer surface of an engine situated in a place where there
is a possibility of being in contact with oil leakage. The engine surface has an
emissivity of 0.3, and when it is in operation, its inner surface is subjected
to 5 kW/m? of heat flux. The engine is in an environment where the ambient
air and surrounding temperature is 40°C, while the convection heat transfer
coefficient is 15 W/m2-K. To prevent a fire hazard in the event of oil leakage
being in contact with the engine surface, the temperature of the engine sur-
face should be kept below 200°C. Determine whether oil leakage drops on the
engine surface are at a risk of autoignition. If there is a risk of autoignition,
discuss a possible prevention measure that can be implemented.

SOLUTION In this example, the concepts of PtD are applied with the basic
understanding of simultaneous heat transfer mechanisms via convection and
radiation. The inner surface of an engine is subject to a heat flux of 5 kW/m2.
The engine surface temperature is to be determined whether it is below 200°C,
to prevent spontaneous ignition in the event of oil leakage drops on the engine
surface.

Assumptions 1 Steady operating conditions exist. 2 The surrounding surfaces
are at the same temperature as the ambient air. 3 Heat conduction through the
engine housing is one-dimensional. 4 The engine inner surface is subjected to
uniform heat flux.

Properties Emissivity of the engine surface is given as ¢ = 0.3.

Analysis  When in operation, the inner surface of the engine is subjected to
a uniform heat flux, which is equal to the sum of heat fluxes transferred by
convection and radiation on the outer surface. Therefore,

q.O = h(Ta - Too) + SO-(T;‘ - Tgurr

5000 W/m? = (15 W/m>K)[T, — (40 + 273)]K
+(0.3)(5.67 X 1078 W/m>-KH[T* — (40 + 273)]K*
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Tgur = 40°C

T, <200°C
Air, 40°C
h=15W/m>K
Engine housing
=03
rrrrrrrrrat
4o =5 kW/m?
FIGURE 1-49

Schematic for Example 1-14
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Solution

Hard way —>

FIGURE 1-50

A step-by-step approach can greatly
simplify problem solving.

The engine outer surface temperature (7,) can be solved implicitly using the
Engineering Equation Solver (EES) software that accompanies this text with
the following lines:

h=15 [W/m"2-K]

q_dot_0=5000 [W/m"2]

T_surr=313 [K]

epsilon=0.3

sigma=5.67e-8 [W/m"2-K"4]
q_dot_0=h*(T_o-T_surr)+epsilon*sigma#*(T_o0"4-T_surr’4)

The engine outer surface temperature is found to be 7, = 552 K = 279°C
Discussion The solution reveals that the engine outer surface temperature is
greater than 200°C, the temperature required to prevent the risk of autoigni-
tion in the event of oil leakage drops on the engine outer surface. To mitigate
the risk of fire hazards, the outer surface of the engine should be insulated.
In practice, the engine surface temperature is not uniform; instead, high local
surface temperatures result in hot spots on the engine surface. Engine hous-
ings generally come in irregular shapes, thus making the prediction of hot
spots on the engine surface difficult. However, using handheld infrared ther-
mometers, engine operators can quickly identify the approximate areas that
are prone to hot spots and take proper prevention measures.

1-11 = PROBLEM-SOLVING TECHNIQUE

The first step in learning any science is to grasp the fundamentals and to gain
a sound knowledge of it. The next step is to master the fundamentals by test-
ing this knowledge. This is done by solving significant real-world problems.
Solving such problems, especially complicated ones, requires a systematic
approach. By using a step-by-step approach, an engineer can reduce the solu-
tion of a complicated problem into the solution of a series of simple problems
(Fig. 1-50). When you are solving a problem, we recommend that you use the
following steps zealously as applicable. This will help you avoid some of the
common pitfalls associated with problem solving.

Step 1: Problem Statement

In your own words, briefly state the problem, the key information given, and
the quantities to be found. This is to make sure that you understand the prob-
lem and the objectives before you attempt to solve the problem.

Step 2: Schematic

Draw a realistic sketch of the physical system involved, and list the relevant
information on the figure. The sketch does not have to be something elab-
orate, but it should resemble the actual system and show the key features.
Indicate any energy and mass interactions with the surroundings. Listing the
given information on the sketch helps one to see the entire problem at once.

Step 3: Assumptions and Approximations
State any appropriate assumptions and approximations made to simplify the
problem to make it possible to obtain a solution. Justify the questionable



assumptions. Assume reasonable values for missing quantities that are neces-
sary. For example, in the absence of specific data for atmospheric pressure,
it can be taken to be 1 atm. However, it should be noted in the analysis that
the atmospheric pressure decreases with increasing elevation. For example, it
drops to 0.83 atm in Denver (elevation 1610 m) (Fig. 1-51).

Step 4: Physical Laws

Apply all the relevant basic physical laws and principles (such as the conser-
vation of energy), and reduce them to their simplest form by utilizing the as-
sumptions made. However, the region to which a physical law is applied must
be clearly identified first.

Step 5: Properties

Determine the unknown properties necessary to solve the problem from
property relations or tables. List the properties separately, and indicate their
source, if applicable.

Step 6: Calculations

Substitute the known quantities into the simplified relations and perform the
calculations to determine the unknowns. Pay particular attention to the units
and unit cancellations, and remember that a dimensional quantity without a
unit is meaningless. Also, don’t give a false implication of high precision by
copying all the digits from the calculator—round the results to an appropriate
number of significant digits (see p. 42).

Step 7: Reasoning, Verification, and Discussion

Check to make sure that the results obtained are reasonable and intuitive, and
verify the validity of the questionable assumptions. Repeat the calculations
that resulted in unreasonable values. For example, insulating a water heater
that uses $80 worth of natural gas a year cannot result in savings of $200 a
year (Fig. 1-52).

Also, point out the significance of the results, and discuss their implica-
tions. State the conclusions that can be drawn from the results, and any rec-
ommendations that can be made from them. Emphasize the limitations under
which the results are applicable, and caution against any possible misunder-
standings and using the results in situations where the underlying assumptions
do not apply. For example, if you determined that wrapping a water heater
with a $20 insulation jacket will reduce the energy cost by $30 a year, indi-
cate that the insulation will pay for itself from the energy it saves in less than
a year. However, also indicate that the analysis does not consider labor costs,
and that this will be the case if you install the insulation yourself.

Keep in mind that the solutions you present to your instructors, and any
engineering analysis presented to others, are a form of communication. There-
fore neatness, organization, completeness, and visual appearance are of utmost
importance for maximum effectiveness (Fig. 1-53). Besides, neatness also
serves as a great checking tool since it is very easy to spot errors and inconsis-
tencies in neat work. Carelessness and skipping steps to save time often end up
costing more time and unnecessary anxiety.

The approach described here is used in the solved example problems with-
out explicitly stating each step, as well as in the Solutions Manual of this text.
For some problems, some of the steps may not be applicable or necessary.
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Given: Air temperature in Denver
To be found: Density of air

Missing information: Atmospheric
pressure

Assumption #1: Take P = 1 atm
(Inappropriate. Ignores effect of
altitude. Will cause more than
15% error.)

Assumption #2: Take P = 0.83 atm
(Appropriate. Ignores only minor
effects such as weather.)

FIGURE 1-51

The assumptions made while solving
an engineering problem must be
reasonable and justifiable.

$80/yr

Energy use:

Energy saved

200/y
by insulation: $200/yr

IMPOSSIBLE!

FIGURE 1-52

The results obtained from an
engineering analysis must be
checked for reasonableness.

FIGURE 1-53

Neatness and organization are highly
valued by employers.
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FIGURE 1-54

An excellent word-processing program
does not make a person a good writer;
it simply makes a good writer a better
and more efficient writer.

© Vol. 80/PhotoDisc/Getty Images RF

However, we cannot overemphasize the importance of a logical and orderly
approach to problem solving. Most difficulties encountered while solving a
problem are not due to a lack of knowledge; rather, they are due to a lack of
organization. You are strongly encouraged to follow these steps in problem
solving until you develop your own approach that works best for you.

Engineering Software Packages

You may be wondering why we are about to undertake an in-depth study of
the fundamentals of another engineering science. After all, almost all such
problems we are likely to encounter in practice can be solved using one of
several sophisticated software packages readily available in the market today.
These software packages not only give the desired numerical results, but also
supply the outputs in colorful graphical form for impressive presentations.
It is unthinkable to practice engineering today without using some of these
packages. This tremendous computing power available to us at the touch of
a button is both a blessing and a curse. It certainly enables engineers to solve
problems easily and quickly, but it also opens the door for abuses and misin-
formation. In the hands of poorly educated people, these software packages
are as dangerous as sophisticated powerful weapons in the hands of poorly
trained soldiers.

Thinking that a person who can use the engineering software packages
without proper training on fundamentals can practice engineering is like
thinking that a person who can use a wrench can work as a car mechanic. If
it were true that the engineering students do not need all these fundamen-
tal courses they are taking because practically everything can be done by
computers quickly and easily, then it would also be true that the employers
would no longer need high-salaried engineers since any person who knows
how to use a word-processing program can also learn how to use those soft-
ware packages. However, the statistics show that the need for engineers is
on the rise, not on the decline, despite the availability of these powerful
packages.

We should always remember that all the computing power and the en-
gineering software packages available today are just tools, and tools have
meaning only in the hands of masters. Having the best word-processing pro-
gram does not make a person a good writer, but it certainly makes the job of
a good writer much easier and makes the writer more productive (Fig. 1-54).
Hand calculators did not eliminate the need to teach our children how to add
or subtract, and the sophisticated medical software packages did not take the
place of medical school training. Neither will engineering software packages
replace the traditional engineering education. They will simply cause a shift
in emphasis in the courses from mathematics to physics. That is, more time
will be spent in the classroom discussing the physical aspects of the prob-
lems in greater detail, and less time on the mechanics of solution procedures.

All these marvelous and powerful tools available today put an extra burden
on today’s engineers. They must still have a thorough understanding of the
fundamentals, develop a “feel” of the physical phenomena, be able to put
the data into proper perspective, and make sound engineering judgments,
just like their predecessors. However, they must do it much better, and much
faster, using more realistic models because of the powerful tools available



today. The engineers in the past had to rely on hand calculations, slide rules,
and later hand calculators and computers. Today they rely on software pack-
ages. The easy access to such power and the possibility of a simple misunder-
standing or misinterpretation causing great damage make it more important
today than ever to have solid training in the fundamentals of engineering.
In this text we make an extra effort to put the emphasis on developing an
intuitive and physical understanding of natural phenomena instead of on the
mathematical details of solution procedures.

Engineering Equation Solver (EES)

EES is a program that solves systems of linear or nonlinear algebraic or dif-
ferential equations numerically. It has a large library of built-in thermophysi-
cal property functions as well as mathematical functions, and allows the user
to supply additional property data. Unlike some software packages, EES
does not solve engineering problems; it only solves the equations supplied
by the user. Therefore, the user must understand the problem and formulate
it by applying any relevant physical laws and relations. EES saves the user
considerable time and effort by simply solving the resulting mathematical
equations. This makes it possible to attempt significant engineering problems
not suitable for hand calculations, and to conduct parametric studies quickly
and conveniently. EES is a very powerful yet intuitive program that is very
easy to use, as shown in Example 1-15. The use and capabilities of EES are
explained in Appendix 3 on the Online Learning Center.

= EXAMPLE 1-15 Solving a System of Equations with EES
The difference of two numbers is 4, and the sum of the squares of these two num-
bers is equal to the sum of the numbers plus 20. Determine these two numbers.

SOLUTION Relations are given for the difference and the sum of the squares
of two numbers. They are to be determined.

Analysis We start the EES program by double-clicking on its icon, open a new
file, and type the following on the blank screen that appears:

x—y=4
2 +y2=x+y+20

which is an exact mathematical expression of the problem statement with
x and y denoting the unknown numbers. The solution to this system of two
nonlinear equations with two unknowns is obtained by a single click on the
“calculator” symbol on the taskbar. It gives (Fig. 1-55)

x=5and y =1

Discussion Note that all we did is formulate the problem as we would on paper;
EES took care of all the mathematical details of solution. Also note that equa-
tions can be linear or nonlinear, and they can be entered in any order with
unknowns on either side. Friendly equation solvers such as EES allow the user to
concentrate on the physics of the problem without worrying about the mathemati-
cal complexities associated with the solution of the resulting system of equations.
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#2 Equations Window |;|E|z|

x-y=4
K2ey 2ax+y+ 20

i Solution !EE
Main |

Unit Settings: [kJJ[K)/[kPa)/[kmol}[degrees]
x=5 y=1

No unit problems were detected

Calculation time = .0 sec

FIGURE 1-55
EES screen images for Example 1-15.
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Given: Volume: V=3.75L
Density: p = 0.845 kg/L
(3 significant digits)

Also, 3.75 x 0.845 = 3.16875

Find: Mass: m = pV/=3.16875 kg

Rounding to 3 significant digits:
m=3.17kg

FIGURE 1-56

A result with more significant digits
than that of given data falsely implies
more accuracy.

A Remark on Significant Digits

In engineering calculations, the information given is not known to more than
a certain number of significant digits, usually three digits. Consequently,
the results obtained cannot possibly be accurate to more significant digits.
Reporting results in more significant digits implies greater accuracy than
exists, and it should be avoided.

For example, consider a 3.75-L container filled with gasoline whose density
is 0.845 kg/L, and try to determine its mass. Probably the first thought that
comes to your mind is to multiply the volume and density to obtain 3.16875 kg
for the mass, which falsely implies that the mass determined is accurate to
six significant digits. In reality, however, the mass cannot be more accurate
than three significant digits since both the volume and the density are accu-
rate to three significant digits only. Therefore, the result should be rounded to
three significant digits, and the mass should be reported to be 3.17 kg instead
of what appears in the screen of the calculator. The result 3.16875 kg would
be correct only if the volume and density were given to be 3.75000 L and
0.845000 kg/L, respectively. The value 3.75 L implies that we are fairly con-
fident that the volume is accurate within =0.01 L, and it cannot be 3.74 or
3.76 L. However, the volume can be 3.746, 3.750, 3.753, etc., since they all
round to 3.75 L (Fig. 1-56). It is more appropriate to retain all the digits during
intermediate calculations, and to do the rounding in the final step since this is
what a computer will normally do.

When solving problems, we will assume the given information to be
accurate to at least three significant digits. Therefore, if the length of a pipe
is given to be 40 m, we will assume it to be 40.0 m in order to justify using
three significant digits in the final results. You should also keep in mind that
all experimentally determined values are subject to measurement errors, and
such errors are reflected in the results obtained. For example, if the density of
a substance has an uncertainty of 2 percent, then the mass determined using
this density value will also have an uncertainty of 2 percent.

You should also be aware that we sometimes knowingly introduce small
errors in order to avoid the trouble of searching for more accurate data. For
example, when dealing with liquid water, we just use the value of 1000 kg/m?
for density, which is the density value of pure water at 0°C. Using this value
at 75°C will result in an error of 2.5 percent since the density at this tempera-
ture is 975 kg/m?. The minerals and impurities in the water introduce addi-
tional error. This being the case, you should have no reservation in rounding
the final results to a reasonable number of significant digits. Besides, having
a few percent uncertainty in the results of engineering analysis is usually the
norm, not the exception.

When writing intermediate results in a computation, it is advisable to keep
several “extra” digits to avoid round-off errors; however, the final result
should be written with the number of significant digits taken into consider-
ation. You must also keep in mind that a certain number of significant digits
of precision in the result does not necessarily imply the same number of dig-
its of overall accuracy. Bias error in one of the readings may, for example,
significantly reduce the overall accuracy of the result, perhaps even render-
ing the last significant digit meaningless, and reducing the overall number
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of reliable digits by one. Experimentally determined values are subject to
measurement errors, and such errors are reflected in the results obtained. For
example, if the density of a substance has an uncertainty of 2 percent, then
the mass determined using this density value will also have an uncertainty
of 2 percent.

Finally, when the number of significant digits is unknown, the accepted
engineering standard is three significant digits. Therefore, if the length of a
pipe is given to be 40 m, we will assume it to be 40.0 m in order to justify
using three significant digits in the final results.

TOPIC OF SPECIAL INTEREST*

Thermal Comfort

Unlike animals such as a fox or a bear that are born with fur, human beings
come into this world with little protection against the harsh environmental
conditions (Fig. 1-57). Therefore, we can claim that the search for thermal
comfort dates back to the beginning of human history. It is believed that
early human beings lived in caves that provided shelter as well as protec-
tion from extreme thermal conditions. Probably the first form of heating
system used was open fire, followed by fire in dwellings through the use of —
a chimney to vent out the combustion gases. The concept of central heat- —
ing dates back to the times of the Romans, who heated homes by utilizing S .
double-floor construction techniques and passing the fire’s fumes through - ‘ t\
the opening between the two floor layers. The Romans were also the first g &
to use transparent windows made of mica or glass to keep the wind and
rain out while letting the light in. Wood and coal were the primary energy
sources for heating, and oil and candles were used for lighting. The ruins
of south-facing houses indicate that the value of solar heating was recog-
nized early in the history.

The term air-conditioning is usually used in a restricted sense to imply
cooling, but in its broad sense it means fo condition the air to the desired

level by heating, cooling, humidifying, dehumidifying, cleaning, and

deodorizing. The purpose of the air-conditioning system of a building is 1.2KJ/s

to provide complete thermal comfort for its occupants. Therefore, we need

to understand the thermal aspects of the human body in order to design an

effective air-conditioning system. L kJ/s
The building blocks of living organisms are cells, which resemble miniature i

factories performing various functions necessary for the survival of organ-

isms. The human body contains about 100 trillion cells with an average
FIGURE 1-58

Two fast-dancing people supply

*This section can be skipped without a loss in continuity. more heat to a room than a
1-kW resistance heater.

FIGURE 1-57

Most animals come into this world
with fur, but human beings come
with a delicate skin.

© Creatas/PunchStock RF
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TABLE 1-7

Metabolic rates during various
activities (from ASHRAE
Handbook of Fundamentals,
Chap. 8, Table 4)

Metabolic rate*

Activity W/m?
Resting:
Sleeping 40
Reclining 45
Seated, quiet 60
Standing, relaxed 70
Walking (on the level):
2 mph (0.89 m/s) 115
3 mph (1.34 m/s) 150
4 mph (1.79 m/s) 220
Office Activities:
Reading, seated 55
Writing 60
Typing 65
Filing, seated 70
Filing, standing 80
Walking about 100
Lifting/packing 120
Driving/Flying:
Car 60-115
Aircraft, routine 70
Heavy vehicle 185
Miscellaneous Occupational
Activities:
Cooking 95-115
Cleaning house 115-140
Machine work:
Light 115-140
Heavy 235
Handling 50-kg bags 235

Pick and shovel work 235-280

Miscellaneous Leisure Activities:

Dancing, social 140-255
Calisthenics/exercise 175-235
Tennis, singles 210-270
Basketball 290-440

Wrestling, competitive 410-505

*Multiply by 1.8 m? to obtain metabolic rates for
an average man. Multiply by 0.3171 to convert
to Btu/h-ft2.

diameter of 0.01 mm. In a typical cell, thousands of chemical reactions
occur every second during which some molecules are broken down and
energy is released and some new molecules are formed. The high level of
chemical activity in all cells helps to maintain the human body tempera-
ture of 37.0°C (98.6°F) while performing the necessary bodily functions
to sustain life. Combination of these processes is called the metabolism.
In simple terms, metabolism refers to the burning of foods such as carbo-
hydrates, fat, and protein. The metabolizable energy content of foods is
usually expressed by nutritionists in terms of the capitalized Calorie. One
Calorie is equivalent to 1 Cal = 1 kcal = 4.1868 klJ.

The rate of metabolism at the resting state is called the basal metabolic
rate, which is the rate of metabolism required to keep a body performing
the necessary bodily functions such as breathing and blood circulation at
zero external activity level. The metabolic rate can also be interpreted as
the energy consumption rate for a body. For an average man (30 years
old, 70 kg, 1.73 m high, 1.8 m? surface area), the basal metabolic rate is
84 W. That is, the body converts chemical energy of the food (or of the
body fat if the person had not eaten) into heat at a rate of 84 J/s, which is
then dissipated to the surroundings. The metabolic rate increases with the
level of activity, and it may exceed 10 times the basal metabolic rate when
someone is doing strenuous exercise. That is, two people doing heavy
exercising in a room may be supplying more energy to the room than a
1-kW resistance heater (Fig. 1-58). An average man generates heat at
a rate of 108 W while reading, writing, typing, or listening to a lecture
in a classroom in a seated position. The maximum metabolic rate of an
average man is 1250 W at age 20 and 730 at age 70. The corresponding
rates for women are about 30 percent lower. Maximum metabolic rates of
trained athletes can exceed 2000 W.

Metabolic rates during various activities are given in Table 1-7 per
unit body surface area. The surface area of a nude body was given by
D. DuBois in 1916 as

A, = 0.202m045 1075 (m?) (1-30)

where m is the mass of the body in kg and 4 is the height in m. Clothing
increases the surface area of a person by up to about 50 percent and may
provide additional resistance to dissipation of heat. The metabolic rates
given in the table are sufficiently accurate for most purposes, but there is
considerable uncertainty at high activity levels. More accurate values can
be determined by measuring the rate of respiratory oxygen consumption,
which ranges from about 0.25 L/min for an average resting man to more
than 2 L/min during extremely heavy work. The entire energy released
during metabolism can be assumed to be released as heat (in sensible or
latent forms) since the external mechanical work done by the muscles is
very small. Besides, the work done during most activities such as walk-
ing or riding an exercise bicycle is eventually converted to heat through
friction.



The comfort of the human body depends primarily on three environmen-
tal factors: the temperature, relative humidity, and air motion. The tem-
perature of the environment is the single most important index of comfort.
Extensive research is done on human subjects to determine the “thermal
comfort zone” and to identify the conditions under which the body feels
comfortable in an environment. It has been observed that most normally
clothed people resting or doing light work feel comfortable in the opera-
tive temperature (roughly, the average temperature of air and surrounding
surfaces) range of 23°C to 27°C or 73°F to 80°F (Fig. 1-59). For unclothed
people, this range is 29°C to 31°C. Interestingly, the operative temperature
is higher than the average temperature of many highly populated areas in
the world, which tend to have an average yearly temperature in the range
of 15°C to 20°C or 59°F to 68°F (Table 1-8). Relative humidity also has
a considerable effect on comfort since it is a measure of air’s ability to ab-
sorb moisture and thus it affects the amount of heat a body can dissipate by
evaporation. High relative humidity slows down heat rejection by evapo-
ration, especially at high temperatures, and low relative humidity speeds
it up. The desirable level of relative humidity is the broad range of 30 to
70 percent, with 50 percent being the most desirable level. Most people at
these conditions feel neither hot nor cold, and the body does not need to
activate any of the defense mechanisms to maintain the normal body tem-
perature (Fig. 1-60).

Another factor that has a major effect on thermal comfort is excessive
air motion or draft, which causes undesired local cooling of the human
body. Draft is identified by many as a most annoying factor in work places,
automobiles, and airplanes. Experiencing discomfort by draft is most com-
mon among people wearing indoor clothing and doing light sedentary
work, and least common among people with high activity levels. The air
velocity should be kept below 9 m/min (30 ft/min) in winter and 15 m/min
(50 ft/min) in summer to minimize discomfort by draft, especially when
the air is cool. A low level of air motion is desirable as it removes the
warm, moist air that builds around the body and replaces it with fresh air.
Therefore, air motion should be strong enough to remove heat and mois-
ture from the vicinity of the body, but gentle enough to be unnoticed. High
speed air motion causes discomfort outdoors as well. For example, an en-
vironment at 10°C (50°F) with 48 km/h winds feels as cold as an environ-
ment at —7°C (20°F) with 3 km/h winds because of the chilling effect of
the air motion (the wind-chill factor).

A comfort system should provide uniform conditions throughout the
living space to avoid discomfort caused by nonuniformities such as draffts,
asymmetric thermal radiation, hot or cold floors, and vertical temperature
stratification. Asymmetric thermal radiation is caused by the cold sur-
faces of large windows, uninsulated walls, or cold products and the warm
surfaces of gas or electric radiant heating panels on the walls or ceiling,
solar-heated masonry walls or ceilings, and warm machinery. Asymmetric
radiation causes discomfort by exposing different sides of the body to
surfaces at different temperatures and thus to different heat loss or gain
by radiation. A person whose left side is exposed to a cold window, for
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TABLE 1-8

Comparison of Biologically Relevant
and Environmental Temperatures

Temperature
Location or Activity °C

Record High World
Temperature, Death Valley,

California, USA 57
Death (Due to Proteins
Denaturing) 44

Normal Core Body Temperature 37

Average Yearly Temperature in
Singapore 28

Average Yearly Temperature in
Corumba, Brazil 25

Death (Due to Hypothermia) 23
Nominal Interior Temperature 22

Average Yearly Temperature in
Los Angeles, California, USA 19

Average Yearly Temperature in

Shanghai, China 16
Average Yearly Temperature in
New York, New York, USA 13
Average Yearly Temperature in
Anchorage, Alaska, USA 2

Record Low World
Temperature, Vostok Station,
Antarctica -89
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The effect of clothing on the
environment temperature that feels
comfortable (1 clo = 0.155 m>-°C/W
= 0.880 ft>°F-h/Btu).

From ASHRAE Standard 55-1981

23°C
RH =50%

Air motion

FIGURE 1-60
A thermally comfortable environment.

example, will feel like heat is being drained from that side of his or her body
(Fig. 1-61). For thermal comfort, the radiant temperature asymmetry
should not exceed 5°C in the vertical direction and 10°C in the hori-
zontal direction. The unpleasant effect of radiation asymmetry can be
minimized by properly sizing and installing heating panels, using
double-pane windows, and providing generous insulation at the walls and
the roof.

Direct contact with cold or hot floor surfaces also causes localized
discomfort in the feet. The temperature of the floor depends on the way
it is constructed (being directly on the ground or on top of a heated room,
being made of wood or concrete, the use of insulation, etc.) as well as
the floor covering used such as pads, carpets, rugs, and linoleum. A floor
temperature of 23 to 25°C is found to be comfortable to most people.
The floor asymmetry loses its significance for people with footwear. An
effective and economical way of raising the floor temperature is to use
radiant heating panels instead of turning the thermostat up. Another non-
uniform condition that causes discomfort is temperature stratification
in a room that exposes the head and the feet to different temperatures.
For thermal comfort, the temperature difference between the head and
foot levels should not exceed 5°C. This effect can be minimized by using
destratification fans.

It should be noted that no thermal environment will please everyone.
No matter what we do, some people will express some discomfort. The
thermal comfort zone is based on a 90 percent acceptance rate. That is, an
environment is deemed comfortable if only 10 percent of the people are
dissatisfied with it. Metabolism decreases somewhat with age, but it has
no effect on the comfort zone. Research indicates that there is no appre-
ciable difference between the environments preferred by old and young
people. Experiments also show that men and women prefer almost the
same environment. The metabolism rate of women is somewhat lower,
but this is compensated by their slightly lower skin temperature, lower
surface area, and lower evaporative loss as compared with men. Also,
there is no significant variation in the comfort zone from one part of the
world to another and from winter to summer even though large environ-
mental temperature differences may exist in different parts of the world
and even within the same region during different seasons (Table 1-8).
Therefore, the same thermal comfort conditions can be used throughout
the world in any season. Also, people cannot acclimatize themselves to
prefer different comfort conditions.

In a cold environment, the rate of heat loss from the body may exceed
the rate of metabolic heat generation. Average specific heat of the hu-
man body is 3.49 kJ/kg-°C, and thus each 1°C drop in body temperature
corresponds to a deficit of 244 kJ in body heat content for an average
70-kg man. A drop of 0.5°C in mean body temperature causes noticeable
but acceptable discomfort. A drop of 2.6°C causes extreme discomfort. A
sleeping person wakes up when his or her mean body temperature drops
by 1.3°C (which normally shows up as a 0.5°C drop in the core body and



3°C in the skin area). The drop of core body temperature below 35°C may
damage the body temperature regulation mechanism, while a core below
28°C may be fatal and a drop to 23°C will be fatal (Table 1-8). Sedentary
people reported to feel comfortable at a mean skin temperature of 33.3°C,
uncomfortably cold at 31°C, shivering cold at 30°C, and extremely cold
at 29°C. People doing heavy work reported to feel comfortable at much
lower temperatures, which shows that the activity level affects human
performance and comfort. The extremities of the body such as hands and
feet are most easily affected by cold weather, and their temperature is a
better indication of comfort and performance. A hand-skin temperature of
20°C is perceived to be uncomfortably cold, 15°C to be extremely cold,
and 5°C to be painfully cold. Useful work can be performed by hands
without difficulty as long as the skin temperature of fingers remains above
16°C (ASHRAE Handbook of Fundamentals, Chapter 8).

The first line of defense of the body against excessive heat loss in a
cold environment is fo reduce the skin temperature and thus the rate of
heat loss from the skin by constricting the arteries, thus decreasing the
blood flow to the skin. This measure decreases the temperature of the
tissues subjacent to the skin, but maintains the core body temperature.
The next preventive measure is increasing the rate of metabolic heat
generation in the body by shivering, unless the person does it voluntarily
by increasing his or her level of activity or puts on additional clothing.
Shivering begins slowly in small muscle groups and may double the
rate of metabolic heat production of the body at its initial stages. In the
extreme case of total body shivering, the rate of heat production may
reach six times the resting levels (Fig. 1-62). If this measure also proves
inadequate, the core body temperature starts falling. Body parts furthest
away from the core such as the hands and feet are at greatest danger for
tissue damage.

In hot environments, the rate of heat loss from the body may drop be-
low the metabolic heat generation rate. This time the body activates the
opposite mechanisms. First the body increases the blood flow and thus heat
transport to the skin, causing the temperature of the skin and the subjacent
tissues to rise and approach the deep body temperature. Under extreme
heat conditions, the heart rate may reach 150 beats per minute in order
to maintain adequate blood supply to the brain and the skin. At higher
heart rates, the volumetric efficiency of the heart drops because of the very
short time between the beats to fill the heart with blood, and the oxygen
supply to the skin and more importantly to the brain drops. This causes
the person to faint as a result of heat exhaustion. Dehydration makes the
problem worse. A similar thing happens when a person working very hard
for a long time stops suddenly and becomes sedentary. The blood that has
flooded the skin and other tissues that were in use (e.g., muscles) has diffi-
culty returning to the heart in this case since the relaxed muscles no longer
force the blood back to the heart, and thus there is less blood available for
pumping to the brain. Therefore, a “‘cooling down” period after exercising
is just as important as a “warming up” period.
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Cold surfaces cause excessive heat loss
from the body by radiation, and thus
discomfort on that side of the body.
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The rate of metabolic heat generation
may go up by six times the resting
level during total body shivering

in cold weather.



48
INTRODUCTION AND BASIC CONCEPTS

Evaporation

FIGURE 1-63

In hot environments, a body can
dissipate a large amount of metabolic
heat by sweating since the sweat
absorbs the body heat and evaporates.

The next line of defense is releasing water from sweat glands and
resorting to evaporative cooling, unless the person removes some clothing
and reduces the activity level (Fig. 1-63). The body can maintain its core
temperature at 37°C in this evaporative cooling mode indefinitely, even
in environments at higher temperatures (as high as 200°C during military
endurance tests), if the person drinks plenty of liquids to replenish his
or her water reserves and the ambient air is sufficiently dry to allow the
sweat to evaporate instead of rolling down the skin. If this measure proves
inadequate, the body will have to start absorbing the metabolic heat and
the deep body temperature will rise. A person can tolerate a tempera-
ture rise of 1.4°C without major discomfort but may collapse when the
temperature rise reaches 2.8°C. People feel sluggish and their efficiency
drops considerably when the core body temperature rises above 39°C. A
core temperature above 41°C may damage most innate proteins, resulting
in cessation of sweating, increased heat production by shivering, and a
heat stroke with irreversible and life-threatening damage. Death can occur
above 43°C (Table 1-8).

A surface temperature of 46°C causes pain on the skin. Therefore, direct
contact with a metal block at this temperature or above is painful. How-
ever, a person can stay in a room at 100°C for up to 30 min without any
damage or pain on the skin because of the convective resistance at the skin
surface and evaporative cooling. We can even put our hands into an oven
at 200°C for a short time without getting burned.

The processes that have been described in the previous few paragraphs
fall into a category of physiology termed thermoregulation. The body has
mechanisms to act as a thermostat, when the core body temperature devi-
ates from the normal resting value. With an increase in temperature, skin
blood vessels dilate and sweat is produced, while a decrease in tempera-
ture induces skin blood vessel constriction and shivering. It is also impor-
tant to point out that not all living beings use these same mechanisms to
regulate the temperature of their bodies. A dog, which is an endotherm
similar to humans, loses heat by panting. Ectotherms, must derive heat
from their surrounding environment, such as a lizard warming up by
standing on a sun heated rock. It is also important to note that the metabo-
lisms of endotherms are not dependent on the surrounding environment,
whereas ectotherm metabolism is highly dependent on the environment.
Thermoregulation in the human body is achieved by keeping a tight bal-
ance between heat gain and heat loss. The “Bioheat Transfer Equation”
introduced in Chapter 3 is used to calculate the heat transfer between a
human body and its surroundings.

Thermoregulation can be adjusted by both behavioral changes and phys-
iological changes. We have discussed many behavioral changes, such as
relocating to a more desirable environment within the structure or putting
on more clothing. Physiological changes include blood vessel diameter
changes and the production of sweat. However, under normal conditions,
few of these changes are needed because of the efficient organization of



arteries and veins; they are arranged as a counter-current heat exchanger
(for more information refer to Chapter 11 Topic of Special Interest “The
Human Cardiovascular System as a Counter-Current Heat Exchanger”).
The primary function of this counter-current heat exchanger in the human
body is to minimize the loss of heat to the external environment. In nearly
all systems, an artery, which delivers blood to a limb, is located directly
adjacent to a vein, which returns blood to the core of the body. Recall that
the extremities may be at a very different temperature than the core and
this would be manifested directly in the blood returning from the limb.
However, since the vein runs adjacent to an artery, there is a continual
conduction of heat along the entire blood vessel length from the artery
to the vein. This acts to prevent cool blood from entering into the core of
the body.

Another factor that affects thermal comfort, health, and productivity is
ventilation. Fresh outdoor air can be provided to a building naturally by
doing nothing, or forcefully by a mechanical ventilation system. In the first
case, which is the norm in residential buildings, the necessary ventilation
is provided by infiltration through cracks and leaks in the living space
and by the opening of the windows and doors. The additional ventilation
needed in the bathrooms and kitchens is provided by air vents with damp-
ers or exhaust fans. With this kind of uncontrolled ventilation, however,
the fresh air supply will be either too high, wasting energy, or too low,
causing poor indoor air quality. But the current practice is not likely to
change for residential buildings since there is not a public outcry for en-
ergy waste or air quality, and thus it is difficult to justify the cost and com-
plexity of mechanical ventilation systems.

Mechanical ventilation systems are part of any heating and air condi-
tioning system in commercial buildings, providing the necessary amount
of fresh outdoor air and distributing it uniformly throughout the build-
ing. This is not surprising since many rooms in large commercial build-
ings have no windows and thus rely on mechanical ventilation. Even the
rooms with windows are in the same situation since the windows are
tightly sealed and cannot be opened in most buildings. It is not a good
idea to oversize the ventilation system just to be on the “safe side” since
exhausting the heated or cooled indoor air wastes energy. On the other
hand, reducing the ventilation rates below the required minimum to con-
serve energy should also be avoided so that the indoor air quality can
be maintained at the required levels. The minimum fresh air ventilation
requirements are listed in Table 1-9. The values are based on control-
ling the CO, and other contaminants with an adequate margin of safety,
which requires each person be supplied with at least 7.5 L/s (15 ft*/min)
of fresh air.

Another function of the mechanical ventilation system is to clean the air
by filtering it as it enters the building. Various types of filters are available
for this purpose, depending on the cleanliness requirements and the allow-
able pressure drop.
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TABLE 1-9

Minimum fresh air requirements
in buildings (from ASHRAE
Standard 62-1989)

Requirement
(per person)

Application L/s ft3/min

Classrooms,

libraries,

supermarkets 8 15

Dining rooms,

conference

rooms, offices 10 20

Hospital

rooms 13 25

Hotel rooms 15 30
(per room)  (per room)

Smoking

lounges 30 60

Retail stores 1.0-1.5 0.2-0.3

(per m?) (per ft?)
Residential ~ 0.35 air change per
buildings hour, but not less than

7.5 L/s (or 15 ft3/min)
per person
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SUMMARY

In this chapter, the basics of heat transfer are introduced and
discussed. The science of thermodynamics deals with the
amount of heat transfer as a system undergoes a process from
one equilibrium state to another, whereas the science of heat
transfer deals with the rate of heat transfer, which is the main
focus of interest in the design and evaluation of heat transfer
equipment. The sum of all forms of energy of a system is called
total energy, and it includes the internal, kinetic, and potential
energies. The internal energy represents the molecular energy
of a system, and it consists of sensible, latent, chemical, and
nuclear forms. The sensible and latent forms of internal energy
can be transferred from one medium to another as a result of a
temperature difference, and are referred to as heat or thermal
energy. Thus, heat transfer is the exchange of the sensible and
latent forms of internal energy between two mediums as a result
of a temperature difference. The amount of heat transferred per
unit time is called heat transfer rate and is denoted by Q. The
rate of heat transfer per unit area is called heat flux, g.

A system of fixed mass is called a closed system, and a sys-
tem that involves mass transfer across its boundaries is called
an open system or control volume. The first law of thermody-
namics or the energy balance for any system undergoing any
process can be expressed as

E.

m_E

out —

AE‘system

When a stationary closed system involves heat transfer only
and no work interactions across its boundary, the energy bal-
ance relation reduces to

0 = mc, AT

where Q is the amount of net heat transfer to or from the
system. When heat is transferred at a constant rate of Q the
amount of heat transfer during a time interval At can be deter-
mined from Q = QAr.

Under steady conditions and in the absence of any work
interactions, the conservation of energy relation for a control
volume with one inlet and one exit with negligible changes in
kinetic and potential energies can be expressed as

0= mc,AT

where = pVA, is the mass flow rate and Q is the rate of net
heat transfer into or out of the control volume.

Heat can be transferred in three different modes: conduc-
tion, convection, and radiation. Conduction is the transfer of
heat from the more energetic particles of a substance to the
adjacent less energetic ones as a result of interactions between

the particles, and is expressed by Fourier’s law of heat con-
duction as

. dr
Qcond = —kA—
X

d.
where k is the thermal conductivity of the material in W/m-K
or Btu/h-ft-R, A is the area normal to the direction of heat
transfer, and d7/dx is the temperature gradient. The magnitude
of the rate of heat conduction across a plane layer of thickness
L is given by

Q - kAﬂ
cond L

where AT is the temperature difference across the layer.

Convection is the mode of heat transfer between a solid
surface and the adjacent liquid or gas that is in motion, and
involves the combined effects of conduction and fluid motion.
The rate of convection heat transfer is expressed by Newton’s
law of cooling as

Qconveclion = hAv (Tv - Toc)

where £ is the convection heat transfer coefficient in W/m>K
or Btu/h-ft>R, A, is the surface area through which convection
heat transfer takes place, T, is the surface temperature, and T,,
is the temperature of the fluid sufficiently far from the surface.

Radiation is the energy emitted by matter in the form of
electromagnetic waves (or photons) as a result of the changes
in the electronic configurations of the atoms or molecules. The
maximum rate of radiation that can be emitted from a surface
at a thermodynamic temperature 7 is given by the Stefan—
Boltzmann law as Q'emm max = OATY where ¢ = 5.67 X
1078 W/m?K* or 0.1714 X 107® Btu/h-ft>R* is the Stefan—
Boltzmann constant.

When a surface of emissivity € and surface area A at a tem-
perature T is completely enclosed by a much larger (or black)
surface at a temperature T, separated by a gas (such as air)
that does not intervene with radiation, the net rate of radiation
heat transfer between these two surfaces is given by

Ora = 80A, (T — Thyy)

In this case, the emissivity () and the surface area of the sur-
rounding surface do not have any effect on the net radiation
heat transfer.

The rate at which a surface absorbs radiation is determined
from Qabsorbed = aQincident where Qincident is the rate at which
radiation is incident on the surface and « is the absorptivity of
the surface.
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PROBLEMS*

Thermodynamics and Heat Transfer

1-1C How does the science of heat transfer differ from the
science of thermodynamics?

1-2C What is the driving force for (a) heat transfer, (b) elec-
tric current flow, and (¢) fluid flow?

1-3C What is the caloric theory? When and why was it aban-
doned?

1-4C How do rating problems in heat transfer differ from the
sizing problems?

1-5C What is the difference between the analytical and
experimental approach to heat transfer? Discuss the advan-
tages and disadvantages of each approach.

1-6C How do the differential equations in the study of a
physical problem arise?

1-7C What is the importance of modeling in engineering? How
are the mathematical models for engineering processes prepared?

1-8C When modeling an engineering process, how is the
right choice made between a simple but crude and a complex
but accurate model? Is the complex model necessarily a better
choice since it is more accurate?

1-9C On a hot summer day, a student turns his fan on when he
leaves his room in the morning. When he returns in the evening,
will his room be warmer or cooler than the neighboring rooms?
Why? Assume all the doors and windows are kept closed.

1-10C Consider two identical rooms, one with a refrigerator
in it and the other without one. If all the doors and windows are

* Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon % are solved using EES, and complete
solutions together with parametric studies are included on the text
website. Problems with the icon & are comprehensive in nature
and are intended to be solved with an equation solver such as EES.
Problems with the icon ¥ are Prevention through Design problems.

closed, will the room that contains the refrigerator be cooler or
warmer than the other room? Why?

1-11C An ideal gas is heated from 50°C to 80°C (a) at con-
stant volume and (b) at constant pressure. For which case do
you think the energy required will be greater? Why?

1-12C How are heat, internal energy, and thermal energy
related to each other?

1-13C What is heat flux? How is it related to the heat transfer
rate?

1-14C What are the mechanisms of energy transfer to a
closed system? How is heat transfer distinguished from the
other forms of energy transfer?

1-15 Consider a 150-W incandescent lamp. The filament
of the lamp is 5-cm long and has a diameter of 0.5 mm. The
diameter of the glass bulb of the lamp is 8 cm. Determine the
heat flux, in W/m?, (a) on the surface of the filament and (b) on
the surface of the glass bulb, and (c) calculate how much it will
cost per year to keep that lamp on for eight hours a day every
day if the unit cost of electricity is $0.08/kWh.

Filament

FIGURE P1-15
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1-16E A logic chip used in a computer dissipates 3 W of
power in an environment at 120°F, and has a heat transfer sur-
face area of 0.08 in>. Assuming the heat transfer from the sur-
face to be uniform, determine (@) the amount of heat this chip
dissipates during an eight-hour work day, in kWh, and () the
heat flux on the surface of the chip, in W/in?.

1-17 A 15-cm-diameter aluminum ball is to be heated from
80°C to an average temperature of 200°C. Taking the aver-
age density and specific heat of aluminum in this temperature
range to be p = 2700 kg/m? and ¢, = 0.90 kJ/kgK, respec-
tively, determine the amount of energy that needs to be trans-
ferred to the aluminum ball. Answer: 515 kJ

1-18 A rigid closed tank is filled with 1 metric ton of liquid
ammonia and is exposed to the sun. At 6 am, the liquid ammo-
nia is at a temperature of 4°C. By 3 pm, the temperature of the
liquid ammonia has increased by 2°C. Determine the amount
of heat energy that has been added to the liquid ammonia.

1-19 In a manufacturing plant, AISI 1010 carbon steel strips
(p = 7832 kg/m?) of 2 mm thick and 3 cm wide are conveyed
into a chamber at a constant speed to be cooled from 527°C to
127°C. Determine the speed of a steel strip being conveyed
inside the chamber, if the rate of heat being removed from a
steel strip inside the chamber is 100 kW.

1-20E A 60-gallon water heater is initially filled with water at
50°F. Determine how much energy (in Btu) needs to be trans-
ferred to the water to raise its temperature to 120°F. Evaluate
the water properties at an average water temperature of 85°F.

1-21 Consider a house with a floor space of 200 m? and an
average height of 3 m at sea level, where the standard atmo-
spheric pressure is 101.3 kPa. Initially the house is at a uniform
temperature of 10°C. Now the electric heater is turned on, and
the heater runs until the air temperature in the house rises to an
average value of 22°C. Determine how much heat is absorbed
by the air assuming some air escapes through the cracks as
the heated air in the house expands at constant pressure. Also,
determine the cost of this heat if the unit cost of electricity in
that area is $0.075/kWh.

1-22 Infiltration of cold air into a warm house during winter
through the cracks around doors, windows, and other openings
is a major source of energy loss since the cold air that enters
needs to be heated to the room temperature. The infiltration is
often expressed in terms of ACH (air changes per hour). An
ACH of 2 indicates that the entire air in the house is replaced
twice every hour by the cold air outside.

Consider an electrically heated house that has a floor space
of 150 m? and an average height of 3 m at 1000 m elevation,
where the standard atmospheric pressure is 89.6 kPa. The
house is maintained at a temperature of 22°C, and the infil-
tration losses are estimated to amount to 0.7 ACH. Assuming
the pressure and the temperature in the house remain con-
stant, determine the amount of energy loss from the house
due to infiltration for a day during which the average outdoor
temperature is 5°C. Also, determine the cost of this energy

loss for that day if the unit cost of electricity in that area is
$0.082/kWh. Answers: 40.4 kWh/day, $3.31/day

1-23 Water is heated in an insulated, constant diameter tube
by a 5-kW electric resistance heater. If the water enters the
heater steadily at 15°C and leaves at 60°C, determine the mass
flow rate of water.

Water /£ ) 60°C
e I I 1110 T
Resistance ‘
heater, 5 kW

FIGURE P1-23
1-24 o Liquid ethanol is a flammable fluid and can release
vapors that form explosive mixtures at temperatures
above its flashpoint at 16.6°C. In a chemical plant, liquid etha-
nol (¢, = 2.44 kl/kg:K, p = 789 kg/m®) is being transported in a
pipe with an inside diameter of 5 cm. The pipe is located in a hot
area with the presence of ignition source, where an estimated
20 kW of heat is added to the ethanol. Your task, as an engineer,
is to design a pumping system to transport the ethanol safely and
to prevent fire hazard. If the inlet temperature of the ethanol is
10°C, determine the volume flow rate that is necessary to keep
the temperature of the ethanol in the pipe below its flashpoint.

L 0=20kw

Liquid ethanol ——> )-’ T,
T;,=10°C

FIGURE P1-24
1-25 L In many manufacturing plants, individuals are often
working around high temperature surfaces. Exposed
hot surfaces that are potential for thermal burns on human skin
tissue are considered to be hazards in the workplace. Metallic
surface of temperature above 70°C is considered extremely
high temperature in the context of thermal burn, where skin tis-
sue damage can occur instantaneously upon contact with the
hot surface. Consider an AISI 1010 carbon steel strip
(p = 7832 kg/m?) of 2 mm thick and 3 cm wide that is con-
veyed into a chamber to be cooled at a constant speed of 1 m/s.
The steel strip enters the cooling chamber at 597°C. Determine
the amount of heat rate that needed to be removed so that the
steel strip exits the chamber at 47°C to avoid instantaneous
thermal burn upon accidental contact with skin tissue. Discuss
how the conveyance speed can affect the heat rate needed to be
removed from the steel strip in the cooling chamber.

Cooling chamber
Steel stri
— /[
{—> 1 m/s
=47°C

T, =597°C[ | Hr

FIGURE P1-25



1-26 1.2 kg of liquid water initially at 15°C is to be heated
to 95°C in a teapot equipped with a 1200-W electric heating
element inside. The teapot is 0.5 kg and has an average specific
heat of 0.7 kJ/kg-K. Taking the specific heat of water to be
4.18 kJ/kg-K and disregarding any heat loss from the teapot,
determine how long it will take for the water to be heated.

Electric
heating
element

FIGURE P1-26

1-27 A room is heated by a baseboard resistance heater.
When the heat losses from the room on a winter day amount to
9000 kJ/h, it is observed that the air temperature in the room
remains constant even though the heater operates continu-
ously. Determine the power rating of the heater, in kW.

1-28 A house has an electric heating system that consists of
a 300-W fan and an electric resistance heating element placed
in a duct. Air flows steadily through the duct at a rate of
0.6 kg/s and experiences a temperature rise of 5°C. The rate
of heat loss from the air in the duct is estimated to be 250 W.
Determine the power rating of the electric resistance heating
element.

1-29 A 5-m X 6-m X 8-m room is to be heated by an elec-
trical resistance heater placed in a short duct in the room.
Initially, the room is at 15°C, and the local atmospheric pres-
sure is 98 kPa. The room is losing heat steadily to the out-
side at a rate of 200 kJ/min. A 300-W fan circulates the air
steadily through the duct and the electric heater at an average
mass flow rate of 50 kg/min. The duct can be assumed to be
adiabatic, and there is no air leaking in or out of the room. If it
takes 18 minutes for the room air to reach an average tempera-
ture of 25°C, find (a) the power rating of the electric heater
and () the temperature rise that the air experiences each time
it passes through the heater.

1-30 The ducts of an air heating system pass through an un-
heated area. As a result of heat losses, the temperature of the
air in the duct drops by 3°C. If the mass flow rate of air is
90 kg/min, determine the rate of heat loss from the air to the
cold environment.

1-31 A hair dryer is basically a duct in which a few layers
of electric resistors are placed. A small fan pulls the air in and
forces it to flow over the resistors where it is heated. Air enters
a 900-W hair dryer at 100 kPa and 25°C, and leaves at 50°C.
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The cross-sectional area of the hair dryer at the exit is 60 cm?.
Neglecting the power consumed by the fan and the heat losses
through the walls of the hair dryer, determine (@) the volume flow
rate of air at the inlet and () the velocity of the air at the exit.

T, = 50°C P, =100 kPa
A, = 60 cm? rmp]@ =25°C
We—9OOW
FIGURE P1-31

1-32E Air enters the duct of an air-conditioning system at
15 psia and 50°F at a volume flow rate of 450 ft’/min. The
diameter of the duct is 10 inches and heat is transferred to
the air in the duct from the surroundings at a rate of 2 Btu/s.
Determine (a) the velocity of the air at the duct inlet and
(b) the temperature of the air at the exit.

Answers: (a) 825 ft/min, (b) 64°F

Heat Transfer Mechanisms

1-33C Define thermal conductivity and explain its signifi-
cance in heat transfer.

1-34C Judging from its unit W/m-K, can we define thermal
conductivity of a material as the rate of heat transfer through
the material per unit thickness per unit temperature difference?
Explain.

1-35C Which is a better heat conductor, diamond or silver?

1-36C How do the thermal conductivity of gases and liquids
vary with temperature?

1-37C Why is the thermal conductivity of superinsulation
orders of magnitude lower than the thermal conductivity of
ordinary insulation?

1-38C Why do we characterize the heat conduction ability
of insulators in terms of their apparent thermal conductivity
instead of the ordinary thermal conductivity?

1-39C Consider an alloy of two metals whose thermal con-
ductivities are k; and k,. Will the thermal conductivity of the
alloy be less than k,, greater than k,, or between k; and k,?

1-40C What are the mechanisms of heat transfer? How are
they distinguished from each other?

1-41C Write down the expressions for the physical laws that
govern each mode of heat transfer, and identify the variables
involved in each relation.

1-42C How does heat conduction differ from convection?

1-43C Does any of the energy of the sun reach the earth by
conduction or convection?
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1-44C How does forced convection differ from natural
convection?

1-45C What is the physical mechanism of heat conduction in
a solid, a liquid, and a gas?

1-46C Consider heat transfer through a windowless wall of a
house on a winter day. Discuss the parameters that affect the
rate of heat conduction through the wall.

1-47C Consider heat loss through the two walls of a house on
a winter night. The walls are identical, except that one of them
has a tightly fit glass window. Through which wall will the
house lose more heat? Explain.

1-48C Consider two houses that are identical, except that
the walls are built using bricks in one house, and wood in the
other. If the walls of the brick house are twice as thick, which
house do you think will be more energy efficient?

1-49C Consider two walls of a house that are identical except
that one is made of 10-cm-thick wood, while the other is made
of 25-cm-thick brick. Through which wall will the house lose
more heat in winter?

1-50C Define emissivity and absorptivity. What is Kirchhoff’s
law of radiation?

1-51C What is a blackbody? How do real bodies differ from
blackbodies?

1-52 A wood slab with a thickness of 0.05 m is subjected to a
heat flux of 40 W/m?. The left and right surface temperatures
of the wood slab are kept at constant temperatures of 40°C and
20°C, respectively. What is the thermal conductivity of the
wood slab?

1-53 The inner and outer surfaces of a 4-m X 7-m brick
wall of thickness 30 cm and thermal conductivity
0.69 W/m-K are maintained at temperatures of 26°C and 8°C,
respectively. Determine the rate of heat transfer through the
wall, in W.

Brick
wall

€<—30 cm—>f

FIGURE P1-53

1-54 The inner and outer surfaces of a 0.5-cm thick 2-m X 2-m
window glass in winter are 10°C and 3°C, respectively. If the

thermal conductivity of the glass is 0.78 W/m-K, determine the

amount of heat loss through the glass over a period of 5 h. What

would your answer be if the glass were 1 cm thick?

Answers: 78.6 MJ, 39.3 MJ

1-55 Reconsider Prob. 1-54. Using EES (or other) soft-
<& ware, plot the amount of heat loss through the

glass as a function of the window glass thickness in the range

of 0.1 cm to 1.0 cm. Discuss the results.

1-56 An aluminum pan whose thermal conductivity is
237 W/m-K has a flat bottom with diameter 15 cm and thick-
ness 0.4 cm. Heat is transferred steadily to boiling water in the
pan through its bottom at a rate of 1400 W. If the inner surface
of the bottom of the pan is at 105°C, determine the temperature
of the outer surface of the bottom of the pan.

[105°C ¢
rrerrrreeer

1400 W

FIGURE P1-56

1-57E The north wall of an electrically heated home is 20
ft long, 10 ft high, and 1 ft thick, and is made of brick whose
thermal conductivity is k = 0.42 Btu/h-ft-°F. On a certain win-
ter night, the temperatures of the inner and the outer surfaces
of the wall are measured to be at about 62°F and 25°F, respec-
tively, for a period of 8 h. Determine (a) the rate of heat loss
through the wall that night and () the cost of that heat loss to
the home owner if the cost of electricity is $0.07/kWh.

1-58 In a certain experiment, cylindrical samples of diam-
eter 4 cm and length 7 cm are used (see Fig. 1-32). The two
thermocouples in each sample are placed 3 cm apart. After
initial transients, the electric heater is observed to draw 0.6 A
at 110 V, and both differential thermometers read a tempera-
ture difference of 8°C. Determine the thermal conductivity of
the sample. Answer: 98.5 W/m-K

1-59 One way of measuring the thermal conductivity of a
material is to sandwich an electric thermofoil heater between
two identical rectangular samples of the material and to heav-
ily insulate the four outer edges, as shown in the figure. Ther-
mocouples attached to the inner and outer surfaces of the
samples record the temperatures.

During an experiment, two 0.5-cm thick samples 10 cm X
10 cm in size are used. When steady operation is reached, the
heater is observed to draw 25 W of electric power, and the tem-
perature of each sample is observed to drop from 82°C at the



inner surface to 74°C at the outer surface. Determine the ther-
mal conductivity of the material at the average temperature.

Samples Insulation

Wattmeter\’j S

Insulation

Source / _>| |<_ 0.5 cm
Resistance
heater

FIGURE P1-59

1-60 o Silicon wafer is susceptible to warping when the

wafer is subjected to temperature difference
across its thickness. Thus, steps needed to be taken to prevent
the temperature gradient across the wafer thickness from get-
ting large. As an engineer in a semiconductor company, your
task is to determine the maximum allowable heat flux on the
bottom surface of the wafer, while maintaining the upper sur-
face temperature at 27°C. To prevent the wafer from warp-
ing, the temperature difference across its thickness of 500 pm
cannot exceed 1°C.

L =500 um

22

Silicon wafer

IREEEEEEEER

FIGURE P1-60
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1-61 A concrete wall with a surface area of 20 m? and a thick-
ness of 0.30 m separates conditioned room air from ambient
air. The temperature of the inner surface of the wall (7)) is
maintained at 25°C. (a) Determine the heat loss O (W) through
the concrete wall for three thermal conductivity values of
(0.75, 1, and 1.25 W/m-K)) and outer wall surface temperatures
of T, = —15, —10, —5, 0, 5, 10, 15, 20, 25, 30, and 38 °C
(a total of 11 data points for each thermal conductivity value).
Tabulate the results for all three cases in one table. Also pro-
vide a computer generated graph [Heat loss, O (W) vs. Outside
wall temperature, T, (°C)] for the display of your results. The
results for all three cases should be plotted on the same graph.
(b) Discuss your results for the three cases.

1-62 A hollow spherical iron container with outer diameter
20 cm and thickness 0.2 cm is filled with iced water at 0°C.
If the outer surface temperature is 5°C, determine the approx-
imate rate of heat loss from the sphere, in kW, and the rate at
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which ice melts in the container. The heat of fusion of water
is 333.7 kJ/kg.

0.2 cm

FIGURE P1-62

1-63 Reconsider Prob. 1-62. Using EES (or other)

<& software, plot the rate at which ice melts as a func-
tion of the container thickness in the range of 0.1 cm to
1.0 cm. Discuss the results.

1-64E The inner and outer glasses of a 4-ft X 4-ft double-
pane window are at 60°F and 48°F, respectively. If the 0.25-in.
space between the two glasses is filled with still air, determine
the rate of heat transfer through the window.

Answer: 131 Btu/h

1-65E An engineer who is working on the heat transfer
analysis of a house in English units needs the convection
heat transfer coefficient on the outer surface of the house.
But the only value he can find from his handbooks is
22 W/m?-K, which is in SI units. The engineer does not have
a direct conversion factor between the two unit systems for
the convection heat transfer coefficient. Using the conver-
sion factors between W and Btu/h, m and ft, and °C and °F,
express the given convection heat transfer coefficient in Btu/
h-ft2-°F. Answer: 3.87 Btu/h-ft>-°F

1-66 Air at 20°C with a convection heat transfer coefficient
of 20 W/m?K blows over a pond. The surface temperature of
the pond is at 40°C. Determine the heat flux between the sur-
face of the pond and the air.

1-67 Four power transistors, each dissipating 12 W, are
mounted on a thin vertical aluminum plate 22 cm X 22 cm in
size. The heat generated by the transistors is to be dissipated
by both surfaces of the plate to the surrounding air at 25°C,
which is blown over the plate by a fan. The entire plate can be
assumed to be nearly isothermal, and the exposed surface area
of the transistor can be taken to be equal to its base area. If the
average convection heat transfer coefficient is 25 W/m>K,
determine the temperature of the aluminum plate. Disregard
any radiation effects.

1-68 In a power plant, pipes transporting superheated vapor
are very common. Superheated vapor is flowing at a rate of
0.3 kg/s inside a pipe with 5 cm in diameter and 10 m in length.
The pipe is located in a power plant at 20°C, and has a uniform
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pipe surface temperature of 100°C. If the temperature drop be-
tween the inlet and exit of the pipe is 30°C, and the specific
heat of the vapor is 2190 J/kg-K, determine the heat transfer
coefficient as a result of convection between the pipe surface
and the surrounding.

Air, 20°C
T,=100°C
\ D=5cm

Superheated ¢

vapor A
0.3 kg/s T

L=10m
Tin - Toul =30°C

FIGURE P1-68

1-69 An electric current of 5 A passing through a resistor
has a measured voltage of 6 V across the resistor. The resistor
is cylindrical with a diameter of 2.5 cm and length of 15 cm.
The resistor has a uniform temperature of 90°C and the room
air temperature is 20°C. Assuming that heat transfer by radia-
tion is negligible, determine the heat transfer coefficient by
convection.

1-70 Hot air at 80°C is blown over a 2-m X 4-m flat surface
at 30°C. If the average convection heat transfer coefficient is
55 W/m2K, determine the rate of heat transfer from the air to
the plate, in kW. Answer: 22 kW

1-71 @ Reconsider Prob. 1-70. Using EES (or other) soft-
<& ware, plot the rate of heat transfer as a function
of the heat transfer coefficient in the range of 20 W/m*K to

100 W/m2K. Discuss the results.

1-72 A 5-cm-external-diameter, 10-m-long hot-water pipe
at 80°C is losing heat to the surrounding air at 5°C by natu-
ral convection with a heat transfer coefficient of 25 W/m?-K.
Determine the rate of heat loss from the pipe by natural con-
vection. Answer: 2945 W

1-73 An AISI 316 stainless steel spherical container is
used for storing chemicals undergoing exothermic
reaction that provides a uniform heat flux of 60 kW/m? to the
container’s inner surface. The container has an inner diameter
of 1 m and a wall thickness of 5 cm. For safety reason to pre-
vent thermal burn on individuals working around the container,
it is necessary to keep the container’s outer surface temperature
below 50°C. If the ambient temperature is 23°C, determine the
necessary convection heat transfer coefficient to keep the con-
tainer’s outer surface temperature below 50°C. Is the necessary
convection heat transfer coefficient feasible with free convec-
tion of air? If not, discuss other option to prevent the container’s
outer surface temperature from causing thermal burn.

AISI 316 spherical
container
Air, T, =23°C
t=5cm
T,<50°C
Chemical reaction
FIGURE P1-73

1-74 A transistor with a height of 0.4 cm and a diameter of
0.6 cm is mounted on a circuit board. The transistor is cooled
by air flowing over it with an average heat transfer coefficient
of 30 W/m?K. If the air temperature is 55°C and the transistor
case temperature is not to exceed 70°C, determine the amount
of power this transistor can dissipate safely. Disregard any
heat transfer from the transistor base.

Air

55°C

2222

Power
transistor
T,<70°C

eosems]

FIGURE P1-74

1-75 Reconsider Prob. 1-74. Using EES (or other) soft-
<& ware, plot the amount of power the transistor can
dissipate safely as a function of the maximum case tempera-

ture in the range of 60°C to 90°C. Discuss the results.

v

1-76E A 300-ft-long section of a steam pipe whose outer di-
ameter is 4 in passes through an open space at 50°F. The aver-
age temperature of the outer surface of the pipe is measured
to be 280°F, and the average heat transfer coefficient on that
surface is determined to be 6 Btu/h-ft>-°F. Determine (a) the
rate of heat loss from the steam pipe and (b) the annual cost of
this energy loss if steam is generated in a natural gas furnace
having an efficiency of 86 percent, and the price of natural gas
is $1.10/therm (1 therm = 100,000 Btu).

Answers: (a) 433,500 Btu/h, (b) $48,600/yr

1-77 The boiling temperature of nitrogen at atmospheric
pressure at sea level (1 atm) is —196°C. Therefore, nitrogen
is commonly used in low temperature scientific studies since



the temperature of liquid nitrogen in a tank open to the atmo-
sphere remains constant at —196°C until the liquid nitrogen in
the tank is depleted. Any heat transfer to the tank results in
the evaporation of some liquid nitrogen, which has a heat of
vaporization of 198 kJ/kg and a density of 810 kg/m? at 1 atm.

Consider a 4-m-diameter spherical tank initially filled with
liquid nitrogen at 1 atm and —196°C. The tank is exposed to
20°C ambient air with a heat transfer coefficient of 25 W/m?-K.
The temperature of the thin-shelled spherical tank is observed
to be almost the same as the temperature of the nitrogen inside.
Disregarding any radiation heat exchange, determine the rate of
evaporation of the liquid nitrogen in the tank as a result of the
heat transfer from the ambient air.

N, vapor

T, =20°C T

FIGURE P1-77

1-78 Repeat Prob. 1-77 for liquid oxygen, which has a boiling

temperature of —183°C, a heat of vaporization of 213 kJ/kg,

and a density of 1140 kg/m? at 1 atm pressure.

1-79 Reconsider Prob. 1-77. Using EES (or other) soft-
<& ware, plot the rate of evaporation of liquid nitro-

gen as a function of the ambient air temperature in the range of

0°C to 40°C. Discuss the results.

1-80 A series of experiments were conducted by passing
40°C air over a long 25 mm diameter cylinder with an em-
bedded electrical heater. The objective of these experiments
was to determine the power per unit length required (W/L) to
maintain the surface temperature of the cylinder at 300°C for
different air velocities (V). The results of these experiments
are given in the following table:

V (m/s) 1 2 4 8 12
WL (W/m) 450 658 983 1507 1963

(a) Assuming a uniform temperature over the cylinder, negli-
gible radiation between the cylinder surface and surround-
ings, and steady state conditions, determine the convection
heat transfer coefficient (#) for each velocity (V). Plot
the results in terms of & (W/m?-K) vs. V (m/s). Provide a
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computer generated graph for the display of your results
and tabulate the data used for the graph.

(b) Assume that the heat transfer coefficient and velocity
can be expressed in the form of 7 = CV". Determine the
values of the constants C and n from the results of part
(a) by plotting & vs. V on log-log coordinates and choosing
a C value that assures a match at V = 1 m/s and then vary-
ing n to get the best fit.

1-81 A 2.1-m-long, 0.2-cm-diameter electrical wire extends
across a room that is maintained at 20°C. Heat is generated in
the wire as a result of resistance heating, and the surface temper-
ature of the wire is measured to be 180°C in steady operation.
Also, the voltage drop and electric current through the wire are
measured to be 110 V and 3 A, respectively. Disregarding any
heat transfer by radiation, determine the convection heat trans-
fer coefficient for heat transfer between the outer surface of the
wire and the air in the room. Answer: 156 W/m?*-K

Room
20°C

f 180°C

Electric resistance heater

N

FIGURE P1-81

1-82 Reconsider Prob. 1-81. Using EES (or other) soft-
<& ware, plot the convection heat transfer coefficient
as a function of the wire surface temperature in the range of

100°C to 300°C. Discuss the results.

1-83E Using the conversion factors between W and Btu/h, m
and ft, and K and R, express the Stefan-Boltzmann constant
o = 5.67 X 1078 W/m?-K* in the English unit Btu/h-ft>-R*.

1-84 The outer surface of a spacecraft in space has an emis-
sivity of 0.8 and a solar absorptivity of 0.3. If solar radiation is
incident on the spacecraft at a rate of 950 W/m?, determine the
surface temperature of the spacecraft when the radiation emit-
ted equals the solar energy absorbed.

1-85 Consider a person whose exposed surface area is
1.7 m?, emissivity is 0.5, and surface temperature is 32°C.
Determine the rate of heat loss from that person by radiation
in a large room having walls at a temperature of () 300 K and
(b) 280 K. Answers: (a) 26.7 W, (b) 121 W

1-86 Consider a sealed 20-cm-high electronic box whose base
dimensions are 50 cm X 50 cm placed in a vacuum chamber.
The emissivity of the outer surface of the box is 0.95. If the elec-
tronic components in the box dissipate a total of 120 W of power
and the outer surface temperature of the box is not to exceed
55°C, determine the temperature at which the surrounding sur-
faces must be kept if this box is to be cooled by radiation alone.
Assume the heat transfer from the bottom surface of the box to
the stand to be negligible.
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50 cm

Electronic
w_ box

Stand

FIGURE P1-86

1-87 Two surfaces, one highly polished and the other heavily
oxidized, are found to be emitting the same amount of energy
per unit area. The highly polished surface has an emissivity
of 0.1 at 1070°C, while the emissivity of the heavily oxidized
surface is 0.78. Determine the temperature of the heavily oxi-
dized surface.

1-88 A spherical interplanetary probe, with a diameter of
2 m, is sent out into the solar system. The probe surface is
made of material having an emissivity of 0.9 and an absorptiv-
ity of 0.1. Signals from the sensors monitoring the probe sur-
face temperatures are indicating an average value of —40°C for
a space temperature of 0 K. If the electronics inside the probe
is generating heat at a rate of 100 W/m?, determine the incident
radiation rate on the probe surface.

1-89 An electronic package in the shape of a sphere with an
outer diameter of 100 mm is placed in a large laboratory room.
The surface emissivity of the package can assume three differ-
ent values (0.2, 0.25, and 0.3). The walls of the room are main-
tained at a constant temperature of 77 K. The electronics in
this package can only operate in the surface temperature range
of 40°C = T, = 85°C. Determine the range of power dissipa-
tion (W) for the electronic package over this temperature range
for the three surface emissivity values (g). Plot the results in
terms of W(W) vs. T,(°C) for the three different values of
emissivity over a surface temperature range of 40 to 85°C with
temperature increments of 5°C (total of 10 data points for
each e value). Provide a computer generated graph for the dis-
play of your results and tabulate the data used for the graph.
Comment on the results obtained.

Simultaneous Heat Transfer Mechanisms

1-90C Can all three modes of heat transfer occur simultane-
ously (in parallel) in a medium?

1-91C Can a medium involve (a) conduction and convection,
(b) conduction and radiation, or (c¢) convection and radiation
simultaneously? Give examples for the “yes” answers.

1-92C The deep human body temperature of a healthy per-
son remains constant at 37°C while the temperature and the

humidity of the environment change with time. Discuss the
heat transfer mechanisms between the human body and the
environment both in summer and winter, and explain how a
person can keep cooler in summer and warmer in winter.

1-93C We often turn the fan on in summer to help us cool.
Explain how a fan makes us feel cooler in the summer. Also
explain why some people use ceiling fans also in winter.

1-94 Consider a 20-cm thick granite wall with a thermal con-
ductivity of 2.79 W/m-K. The temperature of the left surface
is held constant at 50°C, whereas the right face is exposed to
a flow of 22°C air with a convection heat transfer coefficient
of 15 W/m?K. Neglecting heat transfer by radiation, find
the right wall surface temperature and the heat flux through
the wall.

. :- J.. - -
Granite - .-°

T, =22°C

T, = 50°
1=50°C h=15W/m*K

FIGURE P1-94

1-95 A solid plate, with a thickness of 15 cm and a thermal
conductivity of 80 W/m-K, is being cooled at the upper surface
by air. The air temperature is 10°C, while the temperatures
at the upper and lower surfaces of the plate are 50 and 60°C,
respectively. Determine the convection heat transfer coeffi-
cient of air at the upper surface and discuss whether the value
is reasonable or not for force convection of air.

Air, T,, =10°C
—
e

— T,,=50°C
_T_ L T,,=60°C

L=15cm

FIGURE P1-95



1-96 Air at 20°C with a convection heat transfer coeffi-
cient of 25 W/m>K blows over a horizontal steel hot plate
(k = 43 W/m-K). The surface area of the plate is 0.38 m?
with a thickness of 2 cm. The plate surface is maintained
at a constant temperature of 7, = 250°C and the plate loses
300 W from its surface by radiation. Calculate the inside plate
temperature (7).

—
: o

—> Air, 20°C Tx =250°C

\A
| Steel Plate |
/
T;=?
FIGURE P1-96

1-97 An electronic package with a surface area of 1 m?
placed in an orbiting space station is exposed to space. The
electronics in this package dissipate all 1 kW of its power to
the space through its exposed surface. The exposed surface has
an emissivity of 1.0 and an absorptivity of 0.25. Determine
the steady state exposed surface temperature of the electronic
package (a) if the surface is exposed to a solar flux of 750 W/
m?, and (b) if the surface is not exposed to the sun.

1-98 Consider steady heat transfer between two large par-
allel plates at constant temperatures of 7, = 290 K and
T, = 150 K that are L = 2 cm apart. Assuming the surfaces to
be black (emissivity ¢ = 1), determine the rate of heat trans-
fer between the plates per unit surface area assuming the gap
between the plates is (a) filled with atmospheric air, (b) evacu-
ated, (c¢) filled with fiberglass insulation, and (d) filled with
superinsulation having an apparent thermal conductivity of
0.00015 W/m-K.

1-99 Consider a person standing in a room at 18°C.
Determine the total rate of heat transfer from this person if
the exposed surface area and the skin temperature of the per-
son are 1.7 m? and 32°C, respectively, and the convection
heat transfer coefficient is 5 W/m?-K. Take the emissivity of
the skin and the clothes to be 0.9, and assume the tempera-
ture of the inner surfaces of the room to be the same as the air
temperature.

1-100 The inner and outer surfaces of a 25-cm-thick wall in
summer are at 27°C and 44°C, respectively. The outer surface
of the wall exchanges heat by radiation with surrounding sur-
faces at 40°C, and convection with ambient air also at 40°C
with a convection heat transfer coefficient of 8 W/m2-K. Solar
radiation is incident on the surface at a rate of 150 W/m?2. If
both the emissivity and the solar absorptivity of the outer sur-
face are 0.8, determine the effective thermal conductivity of
the wall.
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FIGURE P1-100

1-101E A 2-in-diameter spherical ball whose surface is main-
tained at a temperature of 170°F is suspended in the middle of
a room at 70°F. If the convection heat transfer coefficient is
15 Btu/h-ft>-°F and the emissivity of the surface is 0.8, deter-
mine the total rate of heat transfer from the ball.

1-102 f » An 800-W iron is left on the iron board with its

@ base exposed to the air at 20°C. The convection
heat transfer coefficient between the base surface and the sur-
rounding air is 35 W/m?K. If the base has an emissivity of
0.6 and a surface area of 0.02 m?, determine the temperature of
the base of the iron. Answer: 601°C

20°C

o
ﬁ T
Iron @ 3
800 W

FIGURE P1-102

1-103 A 3-m-internal-diameter spherical tank made of
1-cm-thick stainless steel is used to store iced water at 0°C.
The tank is located outdoors at 25°C. Assuming the entire
steel tank to be at 0°C and thus the thermal resistance of
the tank to be negligible, determine (a) the rate of heat trans-
fer to the iced water in the tank and (b) the amount of ice at
0°C that melts during a 24-hour period. The heat of fusion of
water at atmospheric pressure is i = 333.7 kl/kg. The emis-
sivity of the outer surface of the tank is 0.75, and the convec-
tion heat transfer coefficient on the outer surface can be taken
to be 30 W/m?-K. Assume the average surrounding surface
temperature for radiation exchange to be 15°C.

Answers: (a) 23.1 kW, (b) 5980 kg
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1-104 In the metal processing industry, heat treatment

<& of metals is commonly done using electrically
heated draw batch furnaces. Consider a furnace that is situated
in a room with surrounding air temperature of 30°C and an
average convection heat transfer coefficient of 12 W/m?K.
The furnace front is made of a steel plate with thickness of
20 mm and a thermal conductivity of 25 W/m-K. The outer
furnace front surface has an emissivity of 0.23, and the inside
surface is subjected to a heat flux of 8 kW/m?. Determine the
outside surface temperature of the furnace front.

=30°C

surr

Furnace
front

Go =8 kW/m?
— Air, 30°C
h=12W/m*K

> £=0.23
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FIGURE P1-104

1-105 Solar radiation is incident on a 5 m? solar absorber
plate surface at a rate of 800 W/m?>. Ninety-three percent of
the solar radiation is absorbed by the absorber plate, while the
remaining 7 percent is reflected away. The solar absorber plate
has a surface temperature of 40°C with an emissivity of 0.9
that experiences radiation exchange with the surrounding tem-
perature of —5°C. In addition, convective heat transfer occurs
between the absorber plate surface and the ambient air of
20°C with a convection heat transfer coefficient of 7 W/m?K.
Determine the efficiency of the solar absorber, which is
defined as the ratio of the usable heat collected by the absorber
to the incident solar radiation on the absorber.

1-106 A flat-plate solar collector is used to heat water by
having water flow through tubes attached at the back of the
thin solar absorber plate. The absorber plate has a surface area
of 2 m? with emissivity and absorptivity of 0.9. The surface
temperature of the absorber is 35°C, and solar radiation is in-
cident on the absorber at 500 W/m? with a surrounding tem-
perature of 0°C. Convection heat transfer coefficient at the
absorber surface is 5 W/m?-K, while the ambient temperature
is 25°C. Net heat rate absorbed by the solar collector heats
the water from an inlet temperature (7},) to an outlet tempera-
ture (7). If the water flow rate is 5 g/s with a specific heat of
4.2 kJ/kg-K, determine the temperature rise of the water.
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FIGURE P1-106

1-107 Heat treatment of metals is commonly done
<& using electrically heated draw batch fur-
naces. Consider a furnace that is situated in a room with sur-
rounding air temperature of 30°C and an average convection
heat transfer coefficient of 15 W/m? K. The outer furnace front
surface has an emissivity of 0.7, and the inside surface is sub-
jected to a heat flux of 5 kW/m?2. To ensure safety and avoid
thermal burn of individuals working around the furnace, the
outer front surface of the furnace should be kept below 50°C.
Based on the information given about the furnace, does the
furnace front surface require insulation to avoid thermal burn?
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1-108 Q > The roof of a house consists of a 22-cm-thick
€& concrete slab (k = 2 W/m-K) that is 15 m wide
and 20 m long. The emissivity of the outer surface of the roof
is 0.9, and the convection heat transfer coefficient on that
surface is estimated to be 15 W/m?-K. The inner surface of the
roof is maintained at 15°C. On a clear winter night, the ambi-
ent air is reported to be at 10°C while the night sky tempera-
ture for radiation heat transfer is 255 K. Considering both
radiation and convection heat transfer, determine the outer sur-
face temperature and the rate of heat transfer through the roof.
If the house is heated by a furnace burning natural gas with an
efficiency of 85 percent, and the unit cost of natural gas is $1.20/
therm (1 therm = 105,500 kJ of energy content), determine the
money lost through the roof that night during a 14-hour period.



1-109E Consider a flat-plate solar collector placed horizontally
on the flat roof of a house. The collector is 5 ft wide and 15 ft
long, and the average temperature of the exposed surface of the
collector is 100°F. The emissivity of the exposed surface of the
collector is 0.9. Determine the rate of heat loss from the collec-
tor by convection and radiation during a calm day when the am-
bient air temperature is 70°F and the effective sky temperature
for radiation exchange is 50°F. Take the convection heat transfer
coefficient on the exposed surface to be 2.5 Btu/h-ft>-°F.

T, =S50°F

70°F Solar collector

FIGURE P1-109E

1-110 An AISI 304 stainless steel sheet is going through an
annealing process inside an electrically heated oven. The am-
bient air inside the oven is 600°C, while the surrounding sur-
faces of the oven are at a uniform temperature of 750°C. If the
emissivity of the stainless steel sheet is 0.40 and the average
convection heat transfer coefficient is 10 W/m?-K, determine
the temperature of the stainless steel sheet.

1-111 Heat treatment is common in processing of semicon-
ductor material. A 200-mm-diameter silicon wafer with thick-
ness of 725 wm is being heat treated in a vacuum chamber by
infrared heater. The surrounding walls of the chamber have a
uniform temperature of 310 K. The infrared heater provides an
incident radiation flux of 200 kW/m? on the upper surface of
the wafer, and the emissivity and absorptivity of the wafer sur-
face are 0.70. Using a pyrometer, the lower surface tempera-
ture of the wafer is measured to be 1000 K. Assuming there is
no radiation exchange between the lower surface of the wafer
and the surroundings, determine the upper surface temperature
of the wafer. (Note: A pyrometer is a non-contacting device
that intercepts and measures thermal radiation. This device can
be used to determine the temperature of an object’s surface.)

CHAPTER 1

Problem Solving Technique and EES

1-112C What is the value of the engineering software pack-
ages in (a) engineering education and (b) engineering practice?

1-113 Determine a positive real root of this equation
=% using EES:

3.5x3 — 10x9% — 3x = —4

1-114 Solve this system of two equations with two un-
<& knowns using EES:

X —=y>=105
3xy +y=4.6
1-115 Solve this system of three equations with three

<& unknowns using EES:

2x—y+z=5
32 +2y=27z+2
xy+2z=28
1-116 Solve this system of three equations with three

<& unknowns using EES:

xy—z=15
x =3+ xz=-2
xX+y—z=42

1-117 ¢S] Using the parametric table and plot features of

<< EES, determine the squares of the number from
1 to 100 in increments of 10 in tabular form, and plot the
results.

Special Topic: Thermal Comfort

1-118C What is metabolism? What is the range of metabolic
rate for an average man? Why are we interested in the meta-
bolic rate of the occupants of a building when we deal with
heating and air conditioning?

1-119C Why is the metabolic rate of women, in general,
lower than that of men? What is the effect of clothing on the
environmental temperature that feels comfortable?

\
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FIGURE P1-111
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1-120C What is asymmetric thermal radiation? How does it
cause thermal discomfort in the occupants of a room?

1-121C How do (a) draft and () cold floor surfaces cause
discomfort for a room’s occupants?

1-122C What is stratification? Is it likely to occur at places
with low or high ceilings? How does it cause thermal discomfort
for a room’s occupants? How can stratification be prevented?

1-123C Why is it necessary to ventilate buildings? What is
the effect of ventilation on energy consumption for heating in
winter and for cooling in summer? Is it a good idea to keep the
bathroom fans on all the time? Explain.

1-124 Consider a house in Atlanta, Georgia, that is main-
tained at 22°C and has a total of 20 m? of window area. The
windows are double-door type with wood frames and metal
spacers and have a U-factor of 2.5 W/m?:K (see Prob. 1-125
for the definition of U-factor). The winter average temperature
of Atlanta is 11.3°C. Determine the average rate of heat loss
through the windows in winter.

1-125 The rate of heat loss through a unit surface area of a
window per unit temperature difference between the indoors
and the outdoors is called the U-factor. The value of the
U-factor ranges from about 1.25 W/m?-K (or 0.22 Btu/h-ft>-°F)
for low-e coated, argon-filled, quadruple-pane windows to
6.25 W/m?K (or 1.1 Btu/h-ft>°F) for a single-pane window
with aluminum frames. Determine the range for the rate of
heat loss through a 1.2-m X 1.8-m window of a house that is
maintained at 20°C when the outdoor air temperature is —8°C.

1.2m /
/

Outdoors
-8°C
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~

1.8 m
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FIGURE P1-125

1-126 Reconsider Prob. 1-125. Using EES (or other)
<& software, plot the rate of heat loss through

the window as a function of the U-factor. Discuss the results.

Review Problems

1-127 A 4-m X 5-m X 6-m room is to be heated by one ton
(1000 kg) of liquid water contained in a tank placed in the room.
The room is losing heat to the outside at an average rate of

10,000 kJ/h. The room is initially at 20°C and 100 kPa, and is
maintained at an average temperature of 20°C at all times. If the
hot water is to meet the heating requirements of this room for a
24-h period, determine the minimum temperature of the water
when it is first brought into the room. Assume constant specific
heats for both air and water at room temperature. Answer: 77.4°C

1-128 Engine valves (¢, = 440 J/kg:K and p = 7840 kg/m?)
are to be heated from 40°C to 800°C in 5 min in the heat treat-
ment section of a valve manufacturing facility. The valves have
a cylindrical stem with a diameter of 8 mm and a length of
10 cm. The valve head and the stem may be assumed to be of
equal surface area, with a total mass of 0.0788 kg. For a single
valve, determine (a) the amount of heat transfer, (b) the aver-
age rate of heat transfer, (c¢) the average heat flux, and (d) the
number of valves that can be heat treated per day if the heating
section can hold 25 valves and it is used 10 h per day.

1-129 A cylindrical resistor element on a circuit board dis-
sipates 1.2 W of power. The resistor is 2 cm long, and has a
diameter of 0.4 cm. Assuming heat to be transferred uniformly
from all surfaces, determine (a) the amount of heat this resistor
dissipates during a 24-hour period, (b) the heat flux, and (c) the
fraction of heat dissipated from the top and bottom surfaces.

1-130 The heat generated in the circuitry on the surface of a
silicon chip (k = 130 W/m-K) is conducted to the ceramic sub-
strate to which it is attached. The chip is 6 mm X 6 mm in size
and 0.5 mm thick and dissipates 5 W of power. Disregarding
any heat transfer through the 0.5-mm high side surfaces,
determine the temperature difference between the front and
back surfaces of the chip in steady operation.

Silicon

Ceramic
substrate

FIGURE P1-130

1-131 A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit
board houses 80 closely spaced logic chips on one side, each
dissipating 0.06 W. The board is impregnated with copper fill-
ings and has an effective thermal conductivity of 16 W/m-K.
All the heat generated in the chips is conducted across the cir-
cuit board and is dissipated from the back side of the board to
the ambient air. Determine the temperature difference between
the two sides of the circuit board. Answer: 0.042°C

1-132 A 40-cm-long, 800-W electric resistance heating ele-
ment with diameter 0.5 cm and surface temperature 120°C is
immersed in 75 kg of water initially at 20°C. Determine how
long it will take for this heater to raise the water temperature to



80°C. Also, determine the convection heat transfer coefficients
at the beginning and at the end of the heating process.

1-133 It is well known that wind makes the cold air feel
much colder as a result of the wind chill effect that is due to
the increase in the convection heat transfer coefficient with in-
creasing air velocity. The wind chill effect is usually expressed
in terms of the wind chill temperature (WCT), which is the
apparent temperature felt by exposed skin. For outdoor air
temperature of 0°C, for example, the wind chill temperature is
—5°C at 20 km/h winds and —9°C at 60 km/h winds. That is, a
person exposed to 0°C windy air at 20 km/h will feel as cold as
a person exposed to —5°C calm air (air motion under 5 km/h).
For heat transfer purposes, a standing man can be modeled
as a 30-cm-diameter, 170-cm-long vertical cylinder with
both the top and bottom surfaces insulated and with the side
surface at an average temperature of 34°C. For a convection
heat transfer coefficient of 15 W/m2K, determine the rate
of heat loss from this man by convection in still air at 20°C.
What would your answer be if the convection heat transfer
coefficient is increased to 30 W/m?-K as a result of winds?
What is the wind chill temperature in this case?
Answers: 336 W, 672 W, 6°C

1-134 An engine block with a surface area measured to be
0.95 m” generates a power output of 50 kW with a net engine
efficiency of 35%. The engine block operates inside a com-
partment at 157°C and the average convection heat transfer
coefficient is 50 W/m?K. If convection is the only heat trans-
fer mechanism occurring, determine the engine block surface
temperature. Answer: 841°C

1-135 Consider an electrical wire submerged in liquid water at
atmospheric conditions. The wire has a diameter of 1 mm and a
length of 15 cm. The current through the wire is increased until
the water reaches a temperature of 100°C. For this situation
(boiling water) use an average value of the upper and lower val-
ues of the convection heat transfer coefficients given in Table
1-5. The wire surface temperature is to be maintained at 115°C.
How much electric power is required for this case?

P=1atm
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1-136 A cylindrical fuel rod of 2 cm in diameter is encased
in a concentric tube and cooled by water. The fuel generates
heat uniformly at a rate of 150 MW/m3. The convection heat
transfer coefficient on the fuel rod is 5000 W/m?-K, and the
average temperature of the cooling water, sufficiently far from
the fuel rod, is 70°C. Determine the surface temperature of the
fuel rod and discuss whether the value of the given convection
heat transfer coefficient on the fuel rod is reasonable.

CHAPTER 1
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égen = 150 MW/m?
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Cooling water D=2cm

5000 W/m2-K, 70°C
FIGURE P1-136

1-137 The critical heat flux (CHF) is a thermal limit at
which a boiling crisis occurs whereby an abrupt
rise in temperature causes overheating on fuel rod surface that
leads to damage. A cylindrical fuel rod of 2 cm in diameter is
encased in a concentric tube and cooled by water. The fuel gen-
erates heat uniformly at a rate of 150 MW/m?3. The average
temperature of the cooling water, sufficiently far from the fuel
rod, is 80°C. The operating pressure of the cooling water is
such that the surface temperature of the fuel rod must be kept
below 300°C to avoid the cooling water from reaching the criti-
cal heat flux. Determine the necessary convection heat transfer
coefficient to avoid the critical heat flux from occurring.

T.)'
égen = 150 MW/m?
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FIGURE P1-137

1-138 Consider a person standing in a room maintained at
20°C at all times. The inner surfaces of the walls, floors, and
ceiling of the house are observed to be at an average tempera-
ture of 12°C in winter and 23°C in summer. Determine the
rates of radiation heat transfer between this person and the sur-
rounding surfaces in both summer and winter if the exposed
surface area, emissivity, and the average outer surface tem-
perature of the person are 1.6 m2, 0.95, and 32°C, respectively.

1-139 Reconsider Prob. 1-138. Using EES (or other)

<& software, plot the rate of radiation heat transfer in
winter as a function of the temperature of the inner surface of
the room in the range of §°C to 18°C. Discuss the results.

1-140 Consider a 3-m X 3-m X 3-m cubical furnace whose
top and side surfaces closely approximate black surfaces at a
temperature of 1200 K. The base surface has an emissivity of
& = 0.4, and is maintained at 800 K. Determine the net rate of
radiation heat transfer to the base surface from the top and side
surfaces. Answer: 340 kW

1-141 A soldering iron has a cylindrical tip of 2.5 mm in
diameter and 20 mm in length. With age and usage, the tip has
oxidized and has an emissivity of 0.80. Assuming that the aver-
age convection heat transfer coefficient over the soldering iron
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tip is 25 W/m?:K, and the surrounding air temperature is 20°C,
determine the power required to maintain the tip at 400°C.

Air, 20°C

T, =400°C
D =2.5mm

/
L =20 mm

FIGURE P1-141

1-142 A thin metal plate is insulated on the back and exposed
to solar radiation on the front surface. The exposed surface of the
plate has an absorptivity of 0.7 for solar radiation. If solar radiation
is incident on the plate at a rate of 550 W/m? and the surrounding
air temperature is 10°C, determine the surface temperature of the
plate when the heat loss by convection equals the solar energy ab-
sorbed by the plate. Take the convection heat transfer coefficient
to be 25 W/m?K, and disregard any heat loss by radiation.
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T, =25°C
T, = 20°C
h =10 W/m2K

1-143 Consider a flat-plate solar collector placed on the roof
of a house. The temperatures at the inner and outer surfaces
of the glass cover are measured to be 33°C and 31°C, respec-
tively. The glass cover has a surface area of 2.5 m?, a thick-
ness of 0.6 cm, and a thermal conductivity of 0.7 W/m-K. Heat
is lost from the outer surface of the cover by convection and
radiation with a convection heat transfer coefficient of 10 W/
m?-K and an ambient temperature of 15°C. Determine the frac-
tion of heat lost from the glass cover by radiation.

1-144 An electric heater with the total surface area of
0.25 m? and emissivity 0.75 is in a room where the air has
a temperature of 20°C and the walls are at 10°C. When the
heater consumes 500 W of electric power, its surface has a
steady temperature of 120°C. Determine the temperature of the
heater surface when it consumes 700 W. Solve the problem
(a) assuming negligible radiation and (b) taking radiation into
consideration. Based on your results, comment on the assump-
tion made in part ().
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FIGURE P1-144

1-145 An ice skating rink is located in a building where
the air is at T,;, = 20°C and the walls are at 7,, = 25°C. The
convection heat transfer coefficient between the ice and the
surrounding air is & = 10 W/m?K. The emissivity of ice is
& = 0.95. The latent heat of fusion of ice is i, = 333.7 kl/kg
and its density is 920 kg/m?. (a) Calculate the refrigeration
load of the system necessary to maintain the ice at 7, = 0°C
for an ice rink of 12 m by 40 m. (») How long would it take
to melt 6 = 3 mm of ice from the surface of the rink if no
cooling is supplied and the surface is considered insulated on
the back side?
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FIGURE P1-145
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Fundamentals of Engineering (FE) Exam Problems

1-146 A 2-kW electric resistance heater in a room is turned
on and kept on for 50 minutes. The amount of energy trans-
ferred to the room by the heater is
(a) 2KJ (b) 100 kJ
(d) 7200 kJ (e) 12,000 kJ

(c) 6000 kJ

1-147 A 2-kW electric resistance heater submerged in 30-kg
water is turned on and kept on for 10 min. During the process,
500 kJ of heat is lost from the water. The temperature rise of
water is
(a) 5.6°C
(d) 23.3°C

(b) 9.6°C
(e) 42.5°C

(c) 13.6°C

1-148 Eggs with a mass of 0.15 kg per egg and a specific
heat of 3.32 kJ/kg-°C are cooled from 32°C to 10°C at a rate
of 200 eggs per minute. The rate of heat removal from the

eggs is
(a) 7.3 kW (b) 53 kW (c) 17T kW
(d) 438 kW (e) 37 kW

1-149 A cold bottled drink (m = 2.5 kg, ¢, = 4200 J/kg-K) at
5°C is left on a table in a room. The average temperature of the
drink is observed to rise to 15°C in 30 minutes. The average
rate of heat transfer to the drink is
(a) 23 W ()29 W
(d) 88 W (e) 122 W

(c) 58 W

1-150 Water enters a pipe at 20°C at a rate of 0.50 kg/s and is
heated to 60°C. The rate of heat transfer to the water is

(a) 20 kW (b) 42 kW (c) 84 kW

(d) 126 kW (e) 334 kW

1-151 Air enters a 12-m-long, 7-cm-diameter pipe at 50°C
at a rate of 0.06 kg/s. The air is cooled at an average rate of
400 W per m? surface area of the pipe. The air temperature at
the exit of the pipe is
(a) 4.3°C
(d) 43.4°C

(b) 17.5°C
(e) 45.8°C

(c) 32.5°C

1-152 Heat is lost steadily through a 0.5-cm thick 2 m X 3 m
window glass whose thermal conductivity is 0.7 W/m-K. The
inner and outer surface temperatures of the glass are measured
to be 12°C to 9°C. The rate of heat loss by conduction through
the glass is
(a) 420 W
(d) 1256 W

(b) 5040 W
(e) 2520 W

(c) 17,600 W

1-153 Steady heat conduction occurs through a 0.3-m-thick

9 m X 3 m composite wall at a rate of 1.2 kW. If the inner and

outer surface temperatures of the wall are 15°C and 7°C, the

effective thermal conductivity of the wall is
(a) 0.61 W/m-K (b) 0.83 W/m-K
(d) 2.2 W/m-K (e) 5.1 W/m-K

(c) 1.7 W/mK

CHAPTER 1

1-154 Heat is lost through a brick wall (k = 0.72 W/m-K),
which is 4 m long, 3 m wide, and 25 cm thick at a rate of
500 W. If the inner surface of the wall is at 22°C, the tempera-
ture at the midplane of the wall is
(a) 0°C (b) 7.5°C
(d) 14.8°C (e) 22°C

(c) 11.0°C

1-155 A 10-cm-high and 20-cm-wide circuit board houses on
its surface 100 closely spaced chips, each generating heat at a
rate of 0.12 W and transferring it by convection and radiation
to the surrounding medium at 40°C. Heat transfer from the back
surface of the board is negligible. If the combined convection and
radiation heat transfer coefficient on the surface of the board is
22 W/m*K, the average surface temperature of the chips is

(a) 41°C (b) 54°C (c) 67°C

(d) 76°C (e) 82°C

1-156 A 40-cm-long, 0.4-cm-diameter electric resistance
wire submerged in water is used to determine the convec-
tion heat transfer coefficient in water during boiling at 1 atm
pressure. The surface temperature of the wire is measured to
be 114°C when a wattmeter indicates the electric power con-
sumption to be 7.6 kW. The heat transfer coefficient is

(a) 108 kW/m>K  (b) 13.3 kW/m*K

(¢) 68.1 kW/m>K  (d) 0.76 kW/m>K

(e) 256 kW/m>K

1-157 While driving down a highway early in the evening,
the air flow over an automobile establishes an overall heat
transfer coefficient of 18 W/m?-K. The passenger cabin of this
automobile exposes 9 m? of surface to the moving ambient air.
On a day when the ambient temperature is 33°C, how much
cooling must the air conditioning system supply to maintain a
temperature of 20°C in the passenger cabin?

(a) 670 W (b) 1284 W

(d) 2565 W (e) 3210 W

(c) 2106 W

1-158 Over 90 percent of the energy dissipated by an incan-
descent light bulb is in the form of heat, not light. What is
the temperature of a vacuum-enclosed tungsten filament with
an exposed surface area of 2.03 cm? in a 100 W incandescent
light bulb? The emissivity of tungsten at the anticipated high
temperatures is about 0.35. Note that the light bulb consumes
100 W of electrical energy, and dissipates all of it by radiation.

(a) 1870K (b) 2230 K (c) 2640 K

(d) 3120K (e) 2980 K

1-159 On a still clear night, the sky appears to be a black-
body with an equivalent temperature of 250 K. What is the air
temperature when a strawberry field cools to 0°C and freezes
if the heat transfer coefficient between the plants and air is
6 W/m>-K because of a light breeze and the plants have an
emissivity of 0.9?

(a) 14°C (b) 7°C (c)3°C (d)0°C (e) —3°C
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1-160 A 25-cm-diameter black ball at 130°C is suspended in
air, and is losing heat to the surrounding air at 25°C by con-
vection with a heat transfer coefficient of 12 W/m?K, and by
radiation to the surrounding surfaces at 15°C. The total rate of
heat transfer from the black ball is
(a) 217 W (b) 24T W
(d) 465W (e) 2365 W

(c) 251 W

1-161 A 3-m? black surface at 140°C is losing heat to the
surrounding air at 35°C by convection with a heat transfer
coefficient of 16 W/m?-K, and by radiation to the surrounding
surfaces at 15°C. The total rate of heat loss from the surface is
(a) 5105 W (b) 2940 W (c) 3779 W
(d) 8819 W (e) 5040 W

1-162 A person’s head can be approximated as a 25-cm
diameter sphere at 35°C with an emissivity of 0.95. Heat is
lost from the head to the surrounding air at 25°C by convection
with a heat transfer coefficient of 11 W/m?K, and by radiation
to the surrounding surfaces at 10°C. Disregarding the neck,
determine the total rate of heat loss from the head.

(a) 22 W (b)27TW ()49 W

(d 172 W (e) 249 W

1-163 A room is heated by a 1.2 kW electric resistance heater
whose wires have a diameter of 4 mm and a total length of
3.4 m. The air in the room is at 23°C and the interior surfaces
of the room are at 17°C. The convection heat transfer coef-
ficient on the surface of the wires is 8 W/m?-K. If the rates of
heat transfer from the wires to the room by convection and by
radiation are equal, the surface temperature of the wire is

(a) 3534°C (b) 1778°C (c) 1772°C

(d) 98°C (e) 25°C

1-164 A person standing in a room loses heat to the air in the
room by convection and to the surrounding surfaces by radia-
tion. Both the air in the room and the surrounding surfaces are
at 20°C. The exposed surface of the person is 1.5 m? and has
an average temperature of 32°C, and an emissivity of 0.90. If
the rates of heat transfer from the person by convection and by
radiation are equal, the combined heat transfer coefficient is

(a) 0.008 W/m?>K  (b) 3.0 W/m>K

(¢) 5.5 W/m>K (d) 8.3 W/m>K

(e) 10.9 W/m>K

Design and Essay Problems

1-165 Write an essay on how microwave ovens work, and
explain how they cook much faster than conventional ovens.
Discuss whether conventional electric or microwave ovens
consume more electricity for the same task.

1-166 Using information from the utility bills for the coldest
month last year, estimate the average rate of heat loss from
your house for that month. In your analysis, consider the con-
tribution of the internal heat sources such as people, lights, and
appliances. Identify the primary sources of heat loss from your
house and propose ways of improving the energy efficiency of
your house.

1-167 Conduct this experiment to determine the combined
heat transfer coefficient between an incandescent lightbulb
and the surrounding air and surfaces using a 60-W lightbulb.
You will need a thermometer, which can be purchased in a
hardware store, and a metal glue. You will also need a piece
of string and a ruler to calculate the surface area of the light-
bulb. First, measure the air temperature in the room, and then
glue the tip of the thermocouple wire of the thermometer to the
glass of the lightbulb. Turn the light on and wait until the tem-
perature reading stabilizes. The temperature reading will give
the surface temperature of the lightbulb. Assuming 10 percent
of the rated power of the bulb is converted to light and is trans-
mitted by the glass, calculate the heat transfer coefficient from
Newton’s law of cooling.

1-168 1t is well-known that at the same outdoor air tempera-
ture a person is cooled at a faster rate under windy conditions
than under calm conditions due to the higher convection heat
transfer coefficients associated with windy air. The phrase
wind chill is used to relate the rate of heat loss from people
under windy conditions to an equivalent air temperature for
calm conditions (considered to be a wind or walking speed of
3 mph or 5 km/h). The hypothetical wind chill temperature
(WCT), called the wind chill temperature index (WCTI), is an
equivalent air temperature equal to the air temperature needed
to produce the same cooling effect under calm conditions. A
2003 report on wind chill temperature by the U.S. National
Weather Service gives the WCTI in metric units as

WCTI (°C) = 13.12 + 0.6215T — 11.37V%16+ (0.3965TV 16

where T is the air temperature in °C and V the wind speed
in km/h at 10 m elevation. Show that this relation can be ex-
pressed in English units as

WCTI (°F) = 35.74 + 0.6215T — 35.75V%16+ 0.4275TV 016

where T is the air temperature in °F and V the wind speed in
mph at 33 ft elevation. Also, prepare a table for WCTI for air
temperatures ranging from 10 to —60°C and wind speeds rang-
ing from 10 to 80 km/h. Comment on the magnitude of the
cooling effect of the wind and the danger of frostbite.



HEAT CONDUCTION
EQUATION

eat transfer has direction as well as magnitude. The rate of heat con-

duction in a specified direction is proportional to the temperature

gradient, which is the rate of change in temperature with distance in
that direction. Heat conduction in a medium, in general, is three-dimensional
and time dependent, and the temperature in a medium varies with position as
well as time, that is, 7 = T(x, y, z, f). Heat conduction in a medium is said
to be steady when the temperature does not vary with time, and unsteady
or transient when it does. Heat conduction in a medium is said to be one-
dimensional when conduction is significant in one dimension only and negli-
gible in the other two primary dimensions, two-dimensional when conduction
in the third dimension is negligible, and three-dimensional when conduction
in all dimensions is significant.

We start this chapter with a description of steady, unsteady, and multi-
dimensional heat conduction. Then we derive the differential equation that
governs heat conduction in a large plane wall, a long cylinder, and a sphere,
and generalize the results to three-dimensional cases in rectangular, cylin-
drical, and spherical coordinates. Following a discussion of the boundary
conditions, we present the formulation of heat conduction problems and
their solutions. Finally, we consider heat conduction problems with variable
thermal conductivity.

This chapter deals with the theoretical and mathematical aspects of heat
conduction, and it can be covered selectively, if desired, without causing a
significant loss in continuity. The more practical aspects of heat conduction
are covered in the following two chapters.

CHAPTER

OBJECTIVES

When you finish studying this chapter,
you should be able to:

Understand multidimensionality
and time dependence of heat
transfer, and the conditions under
which a heat transfer problem
can be approximated as being
one-dimensional,

Obtain the differential equation

of heat conduction in various co-
ordinate systems, and simplify it
for steady one-dimensional case,

Identify the thermal conditions
on surfaces, and express them
mathematically as boundary
and initial conditions,

Solve one-dimensional heat
conduction problems and obtain
the temperature distributions
within a medium and the

heat flux,

Analyze one-dimensional heat
conduction in solids that involve
heat generation, and

Evaluate heat conduction in
solids with temperature-
dependent thermal conductivity.
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Magnitude of
temperature
at a point A
(no direction)

80 W/m?

Magnitude and
direction of heat
flux at the same
point

FIGURE 2-1

Heat transfer has direction as well
as magnitude, and thus it is
a vector quantity.

%Q:soow

Hot Cold
medium medium
> X
0 L
A 0=-500 W
Cold Hot
medium medium
> X
0 L
FIGURE 2-2

Indicating direction for heat transfer
(positive in the positive direction;
negative in the negative direction).

2-1 = INTRODUCTION

In Chapter 1 heat conduction was defined as the transfer of thermal energy
from the more energetic particles of a medium to the adjacent less energetic
ones. It was stated that conduction can take place in liquids and gases as well
as solids provided that there is no bulk motion involved.

Although heat transfer and temperature are closely related, they are of a dif-
ferent nature. Unlike temperature, heat transfer has direction as well as mag-
nitude, and thus it is a vector quantity (Fig. 2—1). Therefore, we must specify
both direction and magnitude in order to describe heat transfer completely
at a point. For example, saying that the temperature on the inner surface of
a wall is 18°C describes the temperature at that location fully. But saying
that the heat flux on that surface is 50 W/m? immediately prompts the ques-
tion “in what direction?” We can answer this question by saying that heat
conduction is toward the inside (indicating heat gain) or toward the outside
(indicating heat loss).

To avoid such questions, we can work with a coordinate system and indi-
cate direction with plus or minus signs. The generally accepted convention is
that heat transfer in the positive direction of a coordinate axis is positive and
in the opposite direction it is negative. Therefore, a positive quantity indicates
heat transfer in the positive direction and a negative quantity indicates heat
transfer in the negative direction (Fig. 2-2).

The driving force for any form of heat transfer is the temperature differ-
ence, and the larger the temperature difference, the larger the rate of heat
transfer. Some heat transfer problems in engineering require the determina-
tion of the temperature distribution (the variation of temperature) throughout
the medium in order to calculate some quantities of interest such as the local
heat transfer rate, thermal expansion, and thermal stress at some critical loca-
tions at specified times. The specification of the temperature at a point in a
medium first requires the specification of the location of that point. This can
be done by choosing a suitable coordinate system such as the rectangular,
cylindrical, or spherical coordinates, depending on the geometry involved, and
a convenient reference point (the origin).

The location of a point is specified as (x, y, z) in rectangular coordinates, as
(r, ¢, ) in cylindrical coordinates, and as (r, ¢, 6) in spherical coordinates,
where the distances x, y, z, and » and the angles ¢ and 6 are as shown in
Fig. 2-3. Then the temperature at a point (x, y, z) at time ¢ in rectangular coor-
dinates is expressed as T(x, y, z, t). The best coordinate system for a given
geometry is the one that describes the surfaces of the geometry best. For
example, a parallelepiped is best described in rectangular coordinates
since each surface can be described by a constant value of the x-, y-, or
z-coordinates. A cylinder is best suited for cylindrical coordinates since its
lateral surface can be described by a constant value of the radius. Similarly,
the entire outer surface of a spherical body can best be described by a con-
stant value of the radius in spherical coordinates. For an arbitrarily shaped
body, we normally use rectangular coordinates since it is easier to deal with
distances than with angles.

The notation just described is also used to identify the variables involved
in a heat transfer problem. For example, the notation 7(x, y, z, f) implies that
the temperature varies with the space variables x, y, and z as well as time.
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N
P(x, ), 2

N IW‘\ —>
Y FIGURE 2-3

The various distances

and angles involved when
describing the location of a point
(a) Rectangular coordinates (b) Cylindrical coordinates (c) Spherical coordinates in different coordinate systems.

f\

The notation 7(x), on the other hand, indicates that the temperature varies in Time = 2 PM Time = 5 PM
the x-direction only and there is no variation with the other two space coordi-
nates or time.

15°C 7°C  15°C 7°C

Steady versus Transient Heat Transfer

Heat transfer problems are often classified as being steady (also called steady-
state) or transient (also called unsteady). The term steady implies no change
with time at any point within the medium, while fransient implies variation
with time or time dependence. Therefore, the temperature or heat flux remains
unchanged with time during steady heat transfer through a medium at any
location, although both quantities may vary from one location to another
(Fig. 2—-4). For example, heat transfer through the walls of a house is steady
when the conditions inside the house and the outdoors remain constant for
several hours. But even in this case, the temperatures on the inner and outer
surfaces of the wall will be different unless the temperatures inside and out-
side the house are the same. The cooling of an apple in a refrigerator, on the (b) Transient

other hand, is a transient heat transfer process since the temperature at any FIGURE 2—4
fixed point within the apple will change with time during cooling. During
transient heat transfer, the temperature normally varies with time as well as
position. In the special case of variation with time but not with position, the
temperature of the medium changes uniformly with time. Such heat transfer
systems are called lumped systems. A small metal object such as a ther-
mocouple junction or a thin copper wire, for example, can be analyzed as a
lumped system during a heating or cooling process.

Most heat transfer problems encountered in practice are transient in nature,
but they are usually analyzed under some presumed steady conditions since
steady processes are easier to analyze, and they provide the answers to our
questions. For example, heat transfer through the walls and ceiling of a typi-
cal house is never steady since the outdoor conditions such as the temperature,
the speed and direction of the wind, the location of the sun, and so on, change
constantly. The conditions in a typical house are not so steady either. There-
fore, it is almost impossible to perform a heat transfer analysis of a house
accurately. But then, do we really need an in-depth heat transfer analysis?

0, 0,=0,
(a) Steady

15°C 7°C  12°C 5°C

o 0,0,

Transient and steady heat
conduction in a plane wall.
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80°C 9

80°C 9

80°CH

24

FIGURE 2-5
Two-dimensional heat transfer
in a long rectangular bar.

Primary
direction of
heat transfer

FIGURE 2-6

Heat transfer through the window
of a house can be taken to be
one-dimensional.

If the purpose of a heat transfer analysis of a house is to determine the proper
size of a heater, which is usually the case, we need to know the maximum rate
of heat loss from the house, which is determined by considering the heat loss
from the house under worst conditions for an extended period of time, that is,
during steady operation under worst conditions. Therefore, we can get the an-
swer to our question by doing a heat transfer analysis under steady conditions.
If the heater is large enough to keep the house warm under most demand-
ing conditions, it is large enough for all conditions. The approach described
above is a common practice in engineering.

Multidimensional Heat Transfer

Heat transfer problems are also classified as being one-dimensional, two-
dimensional, or three-dimensional, depending on the relative magnitudes of
heat transfer rates in different directions and the level of accuracy desired.
In the most general case, heat transfer through a medium is three-dimensional.
That is, the temperature varies along all three primary directions within
the medium during the heat transfer process. The temperature distribution
throughout the medium at a specified time as well as the heat transfer rate at
any location in this general case can be described by a set of three coordinates
such as the x, y, and z in the rectangular (or Cartesian) coordinate system;
the r, ¢, and z in the cylindrical coordinate system; and the 7, ¢, and 6 in the
spherical (or polar) coordinate system. The temperature distribution in this
case is expressed as T(x, y, z, t), T(r, ¢, z, t), and T(r, ¢, 0, 1) in the respective
coordinate systems.

The temperature in a medium, in some cases, varies mainly in two primary
directions, and the variation of temperature in the third direction (and thus
heat transfer in that direction) is negligible. A heat transfer problem in that
case is said to be two-dimensional. For example, the steady temperature dis-
tribution in a long bar of rectangular cross section can be expressed as 7(x, y)
if the temperature variation in the z-direction (along the bar) is negligible and
there is no change with time (Fig. 2-5).

A heat transfer problem is said to be one-dimensional if the temperature
in the medium varies in one direction only and thus heat is transferred in one
direction, and the variation of temperature and thus heat transfer in other
directions are negligible or zero. For example, heat transfer through the glass
of a window can be considered to be one-dimensional since heat transfer
through the glass occurs predominantly in one direction (the direction normal
to the surface of the glass) and heat transfer in other directions (from one side
edge to the other and from the top edge to the bottom) is negligible (Fig. 2-6).
Likewise, heat transfer through a hot water pipe can be considered to be one-
dimensional since heat transfer through the pipe occurs predominantly in the
radial direction from the hot water to the ambient, and heat transfer along the
pipe and along the circumference of a cross section (z- and ¢-directions) is
typically negligible. Heat transfer to an egg dropped into boiling water is also
nearly one-dimensional because of symmetry. Heat is transferred to the egg
in this case in the radial direction, that is, along straight lines passing through
the midpoint of the egg.

We mentioned in Chapter 1 that the rate of heat conduction through a me-
dium in a specified direction (say, in the x-direction) is proportional to the
temperature difference across the medium and the area normal to the direction



of heat transfer, but is inversely proportional to the distance in that direction.
This was expressed in the differential form by Fourier’s law of heat conduc-
tion for one-dimensional heat conduction as

. dTr
Q cond — T kA — (W) (2-1)
dx

where k is the thermal conductivity of the material, which is a measure of the
ability of a material to conduct heat, and d7/dx is the temperature gradient,
which is the slope of the temperature curve on a 7-x diagram (Fig. 2-7). The
thermal conductivity of a material, in general, varies with temperature. But
sufficiently accurate results can be obtained by using a constant value for
thermal conductivity at the average temperature.

Heat is conducted in the direction of decreasing temperature, and thus
the temperature gradient is negative when heat is conducted in the posi-
tive x-direction. The negative sign in Eq. 2—1 ensures that heat transfer in the
positive x-direction is a positive quantity.

To obtain a general relation for Fourier’s law of heat conduction, consider a
medium in which the temperature distribution is three-dimensional. Fig. 2—8
shows an isothermal surface in that medium. The heat transfer vector at a
point P on this surface must be perpendicular to the surface, and it must point
in the direction of decreasing temperature. If n is the normal of the isothermal
surface at point P, the rate of heat conduction at that point can be expressed
by Fourier’s law as

0,=—kA— (W) (2-2)

In rectangular coordinates, the heat conduction vector can be expressed in
terms of its components as

=

0,=0,i +0,j+0.k (2-3)

where z_: J—: and & are the unit vectors, and Qx, Q y» and QZ are the magnitudes
of the heat transfer rates in the x-, y-, and z-directions, which again can be
determined from Fourier’s law as

. T . oT .
Q\ = 7kA\ ) Q\' - 7kA\ Ta and Q: = 7kA:
ay

d
(2-4)
0x

ar

0z

Here A,, A, and A, are heat conduction areas normal to the x-, y-, and
z-directions, respectively (Fig. 2-8).

Most engineering materials are isotropic in nature, and thus they have the
same properties in all directions. For such materials we do not need to be con-
cerned about the variation of properties with direction. But in anisotropic ma-
terials such as the fibrous or composite materials, the properties may change
with direction. For example, some of the properties of wood along the grain
are different than those in the direction normal to the grain. In such cases the
thermal conductivity may need to be expressed as a tensor quantity to account
for the variation with direction. The treatment of such advanced topics is be-
yond the scope of this text, and we will assume the thermal conductivity of a
material to be independent of direction.
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FIGURE 2-7

The temperature gradient d7/dx is
simply the slope of the temperature
curve on a T-x diagram.
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FIGURE 2-8

The heat transfer vector is always
normal to an isothermal surface and
can be resolved into its components
like any other vector.
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]Eé/jﬁ\ Heat Generation
— | A medium through which heat is conducted may involve the conversion of
— = mechanical, electrical, nuclear, or chemical energy into heat (or thermal en-
: == ergy). In heat conduction analysis, such conversion processes are character-

ized as heat (or thermal energy) generation.

For example, the temperature of a resistance wire rises rapidly when elec-
tric current passes through it as a result of the electrical energy being con-
verted to heat at a rate of I’R, where [ is the current and R is the electrical
resistance of the wire (Fig. 2-9). The safe and effective removal of this heat
/ away from the sites of heat generation (the electronic circuits) is the subject
/ of electronics cooling, which is one of the modern application areas of heat

- transfer.

Likewise, a large amount of heat is generated in the fuel elements of nu-
clear reactors as a result of nuclear fission that serves as the heat source for

FIGURE 2-9 the nuclear power plants. The natural disintegration of radioactive elements
Heat is generated in the heating coils in nuclear waste or other radioactive material also results in the generation
of an electric range as a result of the of heat throughout the body. The heat generated in the sun as a result of the

conversion of electrical energy to heat.  fusion of hydrogen into helium makes the sun a large nuclear reactor that sup-
plies heat to the earth.

Another source of heat generation in a medium is exothermic chemical re-
actions that may occur throughout the medium. The chemical reaction in this
case serves as a heat source for the medium. In the case of endothermic reac-
tions, however, heat is absorbed instead of being released during reaction,
and thus the chemical reaction serves as a heat sink. The heat generation term

- becomes a negative quantity in this case.

Solar Often it is also convenient to model the absorption of radiation such as so-
radiation lar energy or gamma rays as heat generation when these rays penetrate deep
4y into the body while being absorbed gradually. For example, the absorption

of solar energy in large bodies of water can be treated as heat generation
throughout the water at a rate equal to the rate of absorption, which varies
with depth (Fig. 2—-10). But the absorption of solar energy by an opaque body
occurs within a few microns of the surface, and the solar energy that pen-
etrates into the medium in this case can be treated as specified heat flux on

—4

Solar energy

absorbed by
Water —— the surface.

N 4 Note that heat generation is a volumetric phenomenon. That is, it occurs
V' e = o, absorbed® throug.hout_ the body of a rpedium. Therefore, the rate of heat gel.leration in
a medium is usually specified per unit volume and is denoted by é,.,, whose

unit is W/m? or Btu/h-ft3.
FIGURE 2-10 The rate of heat generation in a medium may vary with time as well as posi-
The absorption of solar radiation tion within the medium. When the variation of heat generation with position
by water can be treated as heat is known, the fotal rate of heat generation in a medium of volume V can be

generation. determined from

Egen = f gendV (W) (2-5)
g L
In the special case of uniform heat generation, as in the case of electric re-
sistance heating throughout a homogeneous material, the relation in Eq. 2-5
reduces t0 Ey, = €,.,V, Where ¢, is the constant rate of heat generation per
unit volume.



EXAMPLE 2-1 Heat Generation in a Hair Dryer

The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter
of D= 0.3 cm (Fig. 2-11). Determine the rate of heat generation in the wire
per unit volume, in W/cm3, and the heat flux on the outer surface of the wire
as a result of this heat generation.

SOLUTION The power consumed by the resistance wire of a hair dryer is
given. The heat generation and the heat flux are to be determined.
Assumptions Heat is generated uniformly in the resistance wire.

Analysis A 1200-W hair dryer converts electrical energy into heat in the wire
at a rate of 1200 W. Therefore, the rate of heat generation in a resistance wire
is equal to the power consumption of a resistance heater. Then the rate of heat
generation in the wire per unit volume is determined by dividing the total rate
of heat generation by the volume of the wire,

Eoen Eoen 1200 W

T (@DYML  [7(0.3 cm)¥4](80 cm)

= 212 W/cm?

ége“ - Vwire
Similarly, heat flux on the outer surface of the wire as a result of this heat
generation is determined by dividing the total rate of heat generation by the
surface area of the wire,

B B 1200 W
A

T #DL (0.3 cm)(80 cm)

0,.= = 15.9 W/cm?

wire
Discussion Note that heat generation is expressed per unit volume in W/cm?

or Btu/h-ft3, whereas heat flux is expressed per unit surface area in W/cm? or
Btu/h-ft2.

2-2 = ONE-DIMENSIONAL
HEAT CONDUCTION EQUATION

Consider heat conduction through a large plane wall such as the wall of a
house, the glass of a single pane window, the metal plate at the bottom of
a pressing iron, a cast-iron steam pipe, a cylindrical nuclear fuel element,
an electrical resistance wire, the wall of a spherical container, or a spheri-
cal metal ball that is being quenched or tempered. Heat conduction in these
and many other geometries can be approximated as being one-dimensional
since heat conduction through these geometries is dominant in one
direction and negligible in other directions. Next we develop the one-
dimensional heat conduction equation in rectangular, cylindrical, and spher-
ical coordinates.

Heat Conduction Equation in a Large Plane Wall

Consider a thin element of thickness Ax in a large plane wall, as shown in
Fig. 2—-12. Assume the density of the wall is p, the specific heat is ¢, and the
area of the wall normal to the direction of heat transfer is A. An energy bal-
ance on this thin element during a small time interval A¢ can be expressed as
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Hair dryer

FIGURE 2-11
Schematic for Example 2—1.

E,e, , Volume
element

FIGURE 2-12

One-dimensional heat conduction
through a volume element in

a large plane wall.
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N
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General, one-dimensional:

No Steady-
generation state

0 0
a7k ot

ady, one-dimensional:

N

FIGURE 2-13

The simplification of the one-
dimensional heat conduction equation
in a plane wall for the case of constant
conductivity for steady conduction
with no heat generation.

d’T
LA )
dx*

Rate of heat Rate of change

Rate of heat Rate of heat

conduction |~ conduction |+ generation j_ - of the energy
atx at x + Ax inside the content of the
element element
or
AE

element

Qx - Qx + Ax + Egen, element

2-6
Ar (2-6)

But the change in the energy content of the element and the rate of heat gen-
eration within the element can be expressed as

.AEelemem =E  pn—E=mc(T,, o, —T)=pcAAX(T, , », — T) (2-7)
Egen, clement = €genVelement = €genAAX (2-8)
Substituting into Eq. 2-6, we get
0, — 0, pa+ eeenAAX = pcAAx TH+I_Tt (2-9)
Dividing by AAx gives
- ;Q}ng— O, bgen = PC LIS AA’t_ d (2-10)

Taking the limit as Ax — 0 and Az — 0 yields

19 oT aT
—— | kA— |+ ¢ L= il
Aax( 6x> Ce pe ot

since, from the definition of the derivative and Fourier’s law of heat
conduction,

(2-11)

lim Qx+Ax - Qx _ g _ i (_kAE)

= (2-12)
Ax—0 Ax ox  ox

ox

Noting that the area A is constant for a plane wall, the one-dimensional tran-
sient heat conduction equation in a plane wall becomes

d oT oT
— (k *) + Cyen = pC

Variable conductivity: (2-13)

0x 0x ot
The thermal conductivity k of a material, in general, depends on the tempera-
ture T (and therefore x), and thus it cannot be taken out of the derivative. How-
ever, the thermal conductivity in most practical applications can be assumed
to remain constant at some average value. The equation above in that case
reduces to

9*T n égcn B 1 oT

ax? k a Jt

Constant conductivity: (2-14)
where the property o = kipc is the thermal diffusivity of the material and
represents how fast heat propagates through a material. It reduces to the fol-
lowing forms under specified conditions (Fig. 2—13):



(1) Steady-state: T + Ceen _ 0 (2-15)
(a/at = 0) dx? k

(2) Transient, no heat generation: T _ 1T (2-16)
(€gen = 0) x> «a ot

(3) Steady-state, no heat generation: d’*T B
(8161 = 0 and é,, = 0) PR (2-17)

Note that we replaced the partial derivatives by ordinary derivatives in the
one-dimensional steady heat conduction case since the partial and ordinary
derivatives of a function are identical when the function depends on a single
variable only [T = T(x) in this case]. For the general solution of Eqgs. 2-15
and 2—17 refer to the TOPIC OF SPECIAL INTEREST (A Brief Review of
Differential Equations) at the end of this chapter.

Heat Conduction Equation in a Long Cylinder

Now consider a thin cylindrical shell element of thickness Ar in a long
cylinder, as shown in Fig. 2—-14. Assume the density of the cylinder is p, the
specific heat is ¢, and the length is L. The area of the cylinder normal to the
direction of heat transfer at any location is A = 2@rL where r is the value
of the radius at that location. Note that the heat transfer area A depends on r
in this case, and thus it varies with location. An energy balance on this thin
cylindrical shell element during a small time interval Az can be expressed as

conduction conduction generation | _ | of the energy

at atr+ Ar inside the content of the

Rate of heat Rate of heat Rate of heat Rate of change
- -
element element

or
AE

. . . !
Qr - Qr+ Ar + Egen, element — Zietmem (2-18)

The change in the energy content of the element and the rate of heat genera-
tion within the element can be expressed as

AEgemen = Er v ar — E, = me(T, 4 5, — T) = pcAAN(T, 4 o, — T)) (2-19)

Egen, clement égenVelemem = égenAAr (2-20)

Substituting into Eq. 2-18, we get
Tooa— T,

At
where A = 27rrL. You may be tempted to express the area at the middle of the
element using the average radius as A = 27 (r + Ar/2)L. But there is nothing
we can gain from this complication since later in the analysis we will take the
limit as Ar — 0 and thus the term Ar/2 will drop out. Now dividing the equa-
tion above by AAr gives

_lQr+Ar_Q, TI+A1_TI

+ gy = pc ————— 2-22
1 Ay €gen = PC A ( )

0, = 0, s + éuenADr = pcAAr (2-21)
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Volume element

FIGURE 2-14

One-dimensional heat conduction
through a volume element

in a long cylinder.
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(a) The form that is ready to integrate

CNREA|
dr dr

(b) The equivalent alternative form

FIGURE 2-15
Two equivalent forms of the
differential equation for the one-

dimensional steady heat conduction in

a cylinder with no heat generation.

Volume
element

FIGURE 2-16

One-dimensional heat conduction

through a volume element in a sphere.

Taking the limit as Ar — 0 and At — 0 yields

Lo (kA 6T> + ¢ or (2-23)
19 PNss =pc 8 _
A or or gen = PC

since, from the definition of the derivative and Fourier’s law of heat conduction,

li Qr+Ar_Qr_aQ_ 5‘(
m — = — = —

aT
—kA ) (2-24)
Ar—0 Ar ar  ar

ar

Noting that the heat transfer area in this case is A = 27rrL, the one-dimensional
transient heat conduction equation in a cylinder becomes

, o 19 T ) aT
Variable conductivity: —— |\ rk— | + épp = pc — (2-25)
: r or ar - Jat
For the case of constant thermal conductivity, the previous equation reduces to
o 19 [ aT\ €wn 10T
Constant conductivity: ——\r— )+ =—— (2-26)
roor ar k o Jt

where again the property o = k/pc is the thermal diffusivity of the material.
Eq. 2-26 reduces to the following forms under specified conditions (Fig. 2—15):

(1) Steady-state: 1 d dT é’gcn
9ot = ——(r=]+—=0 2-27
(0/0t = 0) rar \"ar k (2-27
(2) Transient, no heat generation: 1 9 oT 1 oT
(€gen = 0) roar\ o) T (2-28)
& a7 ar a ot
(3) Steady-state, no heat generation: d ( drT
(9/0t = 0 and ¢, = 0) o\ ) =0 (2-29)

Note that we again replaced the partial derivatives by ordinary derivatives
in the one-dimensional steady heat conduction case since the partial and or-
dinary derivatives of a function are identical when the function depends on
a single variable only [T = T(r) in this case]. For the general solution of
Eqs. 2-27 and 2-29 refer to the TOPIC OF SPECIAL INTEREST (A Brief
Review of Differential Equations) at the end of this chapter.

Heat Conduction Equation in a Sphere
Now consider a sphere with density p, specific heat ¢, and outer radius R. The
area of the sphere normal to the direction of heat transfer at any location is
A = 4772, where r is the value of the radius at that location. Note that the heat
transfer area A depends on r in this case also, and thus it varies with location.
By considering a thin spherical shell element of thickness Ar and repeating
the approach described above for the cylinder by using A = 4772 instead of
A = 2zrL, the one-dimensional transient heat conduction equation for a
sphere is determined to be (Fig. 2-16)

. . 1 o oT oT
Variable conductivity: — — — <r2 k 7) + €gen = PC (2-30)

re o1 a7 ot

which, in the case of constant thermal conductivity, reduces to

o 1 o[ 0T\ €wen 19T
Constant conductivity: o P+ ——=—— (2-31)
2

ar k a ot



where again the property a = k/pc is the thermal diffusivity of the material. It
reduces to the following forms under specified conditions:

(1) Steady-state: 1 d <r2 ‘E) + Cgen =0 (2-32)
0/t = 0) r? dr dr k

(2) Transient, . 1o ,aT 1 oT
no heat generation: S \r—)=-—= (2-33)
(... = 0) re ir ar a ot

(3) Steady-state, 2
no heat generation: 4 <r2 d—T> =0 or r d 7T +2 dar =0 (2-34)
(@0t = 0and é,,, =0)  dr\" dr e

where again we replaced the partial derivatives by ordinary derivatives in
the one-dimensional steady heat conduction case. For the general solution of
Eqgs. 2-32 and 2-34 refer to the TOPIC OF SPECIAL INTEREST (A Brief
Review of Differential Equations) at the end of this chapter.

Combined One-Dimensional Heat Conduction Equation
An examination of the one-dimensional transient heat conduction equations
for the plane wall, cylinder, and sphere reveals that all three equations can be
expressed in a compact form as

1 9 oT ) T
=Lk ) + Gy = po (2-35)

" ar ar at
where n = 0 for a plane wall, n = 1 for a cylinder, and n = 2 for a sphere.
In the case of a plane wall, it is customary to replace the variable r by x.
This equation can be simplified for steady-state or no heat generation cases as
described before.

EXAMPLE 2-2 Heat Conduction through the Bottom of a Pan

Consider a steel pan placed on top of an electric range to cook spaghetti
(Fig. 2-17). The bottom section of the pan is 0.4 cm thick and has a diameter
of 18 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 80 percent of the heat generated in the heating element
is transferred uniformly to the pan. Assuming constant thermal conductivity,
obtain the differential equation that describes the variation of the temperature
in the bottom section of the pan during steady operation.

SOLUTION A steel pan placed on top of an electric range is considered. The
differential equation for the variation of temperature in the bottom of the pan
is to be obtained.

Analysis The bottom section of the pan has a large surface area relative to its
thickness and can be approximated as a large plane wall. Heat flux is applied
to the bottom surface of the pan uniformly, and the conditions on the inner sur-
face are also uniform. Therefore, we expect the heat transfer through the bot-
tom section of the pan to be from the bottom surface toward the top, and heat
transfer in this case can reasonably be approximated as being one-dimensional.
Taking the direction normal to the bottom surface of the pan to be the x-axis,
we will have T = T(x) during steady operation since the temperature in this
case will depend on x only.

Pregpprt!

800 W
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FIGURE 2-17
Schematic for Example 2-2.
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— Resistance
heater

FIGURE 2-18
Schematic for Example 2-3.

The thermal conductivity is given to be constant, and there is no heat gen-
eration in the medium (within the bottom section of the pan). Therefore, the
differential equation governing the variation of temperature in the bottom sec-
tion of the pan in this case is simply Eq. 2-17,

4T
dx?

0

which is the steady one-dimensional heat conduction equation in rectangular
coordinates under the conditions of constant thermal conductivity and no heat
generation.

Discussion Note that the conditions at the surface of the medium have no
effect on the differential equation.

EXAMPLE 2-3 Heat Conduction in a Resistance Heater

A 2-kW resistance heater wire with thermal conductivity k = 15 W/m-K, diam-
eter D = 0.4 cm, and length L = 50 cm is used to boil water by immersing
it in water (Fig. 2-18). Assuming the variation of the thermal conductivity of
the wire with temperature to be negligible, obtain the differential equation that
describes the variation of the temperature in the wire during steady operation.

SOLUTION The resistance wire of a water heater is considered. The differential
equation for the variation of temperature in the wire is to be obtained.
Analysis  The resistance wire can be considered to be a very long cylinder since
its length is more than 100 times its diameter. Also, heat is generated uni-
formly in the wire and the conditions on the outer surface of the wire are uni-
form. Therefore, it is reasonable to expect the temperature in the wire to vary
in the radial r direction only and thus the heat transfer to be one-dimensional.
Then we have T = T(r) during steady operation since the temperature in this
case depends on ronly.

The rate of heat generation in the wire per unit volume can be determined
from

_Ep  Ep 2000 W
€ Ty @DYAL  [7(0.004 m¥/41(0.5 m)

wire

é = 0.318 X 10° W/m?
Noting that the thermal conductivity is given to be constant, the differential
equation that governs the variation of temperature in the wire is simply

Eq. 2-27,
1 d ( dT) €gen
——\r— |+ =
r dr dr k

which is the steady one-dimensional heat conduction equation in cylindrical
coordinates for the case of constant thermal conductivity.

Discussion Note again that the conditions at the surface of the wire have no
effect on the differential equation.




: EXAMPLE 2-4 Cooling of a Hot Metal Ball in Air

: A spherical metal ball of radius R is heated in an oven to a temperature of
B 600°F throughout and is then taken out of the oven and allowed to cool in
: ambient air at 7., = 75°F by convection and radiation (Fig. 2-19). The thermal
@ conductivity of the ball material is known to vary linearly with temperature.
m Assuming the ball is cooled uniformly from the entire outer surface, obtain the
= differential equation that describes the variation of the temperature in the ball
: during cooling.
|
SOLUTION A hot metal ball is allowed to cool in ambient air. The differential
equation for the variation of temperature within the ball is to be obtained.
Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Also, the temperature at any point in the ball
changes with time during cooling. Therefore, this is a one-dimensional tran-
sient heat conduction problem since the temperature within the ball changes
with the radial distance rand the time t. That is, T = T(r, ).

The thermal conductivity is given to be variable, and there is no heat genera-
tion in the ball. Therefore, the differential equation that governs the variation
of temperature in the ball in this case is obtained from Eq. 2-30 by setting the
heat generation term equal to zero. We obtain

1 o[/, orT aT
— —\rk—)=pc—
re oar ar Jat

which is the one-dimensional transient heat conduction equation in spherical
coordinates under the conditions of variable thermal conductivity and no heat
generation.

Discussion Note again that the conditions at the outer surface of the ball have
no effect on the differential equation.

2-3 = GENERAL HEAT CONDUCTION EQUATION

In the last section we considered one-dimensional heat conduction and
assumed heat conduction in other directions to be negligible. Most heat
transfer problems encountered in practice can be approximated as being one-
dimensional, and we mostly deal with such problems in this text. However,
this is not always the case, and sometimes we need to consider heat transfer
in other directions as well. In such cases heat conduction is said to be multidi-
mensional, and in this section we develop the governing differential equation
in such systems in rectangular, cylindrical, and spherical coordinate systems.

Rectangular Coordinates

Consider a small rectangular element of length Ax, width Ay, and height Az,
as shown in Fig. 2-20. Assume the density of the body is p and the specific
heat is ¢. An energy balance on this element during a small time interval At
can be expressed as

Rate of heat Rate of heat Rate of change
Rate of heat . .
conduction at | — conduction generation | _ of the energy
v and atx + Ax inside the content of the
-V < y+ Ayand z + Az element element
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75°F

Metal ball

600°F

FIGURE 2-19
Schematic for Example 2—4.

Qz +Az
Volume element \ /\T Qy +Ay
0, 7
Az
Coen AXAYAZ \/L}
. Qx +Ax
z 0y
Y \l‘l‘/
X QZ

FIGURE 2-20
Three-dimensional heat conduction
through a rectangular volume element.
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or

AE

. . . . . . . 1 ¢
Qx + Qy + Qz - Qx +Ax Qy +Ay Qz + Az + Egen, element Zetme" (2-36)

Noting that the volume of the element is V.. ene = AxAyAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as

AEgement = Er v ar = E, = me(T, o, — T) = pcAxAyAZ(T, 4 5, — T)

Egen, element — egenVelement = egenAXAyAZ

Substituting into Eq. 2-36, we get

. . . T, —T,
Qx + Qy + Qz - Qx+A)c - Qy+Ay - Q1+Az+ égenAXAyAZ = pCAxAyAZT
Dividing by AxAyAz gives
. 1 Qx+Ax B Qx _ 1 Qy+AY B Qy _ 1 Q1+Az B QZ+ A
AyAz  Ax AxAz Ay AxAy Az Ceen
T - T
c%tt (2-37)

Noting that the heat transfer areas of the element for heat conduction in the
x,y, and z directions are A, = AyAz, A, = AxAz, and A, = AxAy, respectively,
and taking the limit as Ax, Ay, Az and A7 — 0 yields

ad aT ad T d aT . aT
—\k— )+ —\k— )+ —|k— |+ €pn=pc— (2-38)
0x x ay dy az 0z - ot

since, from the definition of the derivative and Fourier’s law of heat
conduction,

- .)C Ax - .\’ a X

im L Qe = Q0 1 00, 1 i(*kAyAz£)=*i(k£>
A—0 AyAz Ax AyAz ox  AyAz ox ax ax X

1 Q=0 1 90, 1 g T o [ T
lim e S — = — <—kAxAz *) = —— (k *)
ay—0 AxAz Ay AxAz oy  AxAz ay ay gy \ dy

g 5

fim L Qe C 1 90 10 <7kAxAy ﬂ) - (k ﬂ)
Az—>0 AxAy Az AxAy 9z AxAy az 9z 9z \ 0z

Eq. 2-38 is the general heat conduction equation in rectangular coordinates.
In the case of constant thermal conductivity, it reduces to

T T 0T  Ceen 10T

axz a9y 72 kK  a ot

(2-39)

where the property @ = k/pc is again the thermal diffusivity of the material.
Eq. 2-39 is known as the Fourier-Biot equation, and it reduces to these
forms under specified conditions:



(1) Steady-state: T N T . T | Cgen 0 (2-40)
(called the Poisson equation) a0 ko -
(2) Transient, no heat generation: 0°T n 9*T n *T B l ﬂ (2-41)
(called the diffusion equation) ax?  9y? 072« ot
2 2 2
(3) Steady-state, no heat generation: r') T + d T + () Z =0 (2-42)
(called the Laplace equation) ax= ay” oz

Note that in the special case of one-dimensional heat transfer in the x-direction,
the derivatives with respect to y and z drop out and the equations above reduce
to the ones developed in the previous section for a plane wall (Fig. 2-21).

Cylindrical Coordinates

The general heat conduction equation in cylindrical coordinates can be
obtained from an energy balance on a volume element in cylindrical coor-
dinates, shown in Fig. 2-22, by following the steps just outlined. It can also
be obtained directly from Eq. 2-38 by coordinate transformation using the
following relations between the coordinates of a point in rectangular and
cylindrical coordinate systems:

x=rcos¢, y=rsin¢d, and z=¢z

After lengthy manipulations, we obtain
19 <k aT) N 1 9 (k ;)T) L9 (1\ aT) y aT (a3
U (T IR (RSN A (FAis 5 = pc— _
roor or 2o\ 9 0z \ oz e P o

Spherical Coordinates

The general heat conduction equations in spherical coordinates can be
obtained from an energy balance on a volume element in spherical coordi-
nates, shown in Fig. 2-23, by following the steps outlined above. It can also
be obtained directly from Eq. 2-38 by coordinate transformation using the
following relations between the coordinates of a point in rectangular and
spherical coordinate systems:

x=rcos¢sinh, y=rsin¢gsinh, and z=cosb
Again after lengthy manipulations, we obtain

1 9 , 0T | d aT 1 ) . oT . aT
——\krr— |+ —\k— )+ —5————|ksind— |+ é,, = pc—
re or ar r*sin® 6 d¢ ap r=sin 6 90 a0 ° at

(2-44)

Obtaining analytical solutions to these differential equations requires a
knowledge of the solution techniques of partial differential equations, which
is beyond the scope of this introductory text. Here we limit our consideration
to one-dimensional steady-state cases, since they result in ordinary differen-
tial equations.
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FIGURE 2-21

conduction

The three-dimensional heat
equations reduce to the one-

dimensional ones when the temperature
varies in one dimension only.
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FIGURE 2-22

A differential volume element in
cylindrical coordinates.
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FIGURE 2-23

A differential volume element in

spherical coordinates.
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| o EXAMPLE 2-5  Heat Conduction in a Short Cylinder
/—‘\A A short cylindrical metal billet of radius R and height h is heated in an oven to
a temperature of 600°F throughout and is then taken out of the oven and al-
. | T, = 65°F lowed to cool in ambient air at T,, = 65°F by convection and radiation. Assum-
billet 1 ing the billet is cooled uniformly from all outer surfaces and the variation of
N the thermal conductivity of the material with temperature is negligible, obtain

the differential equation that describes the variation of the temperature in the
billet during this cooling process.

SOLUTION A short cylindrical billet is cooled in ambient air. The differential
equation for the variation of temperature is to be obtained.

Analysis The billet shown in Fig. 2-24 is initially at a uniform temperature
FIGURE 2-24 and is cooled uniformly from the top and bottom surfaces in the z-direction
Schematic for Example 2-5. as well as the lateral surface in the radial r~direction. Also, the temperature at
any point in the ball changes with time during cooling. Therefore, this is a two-
dimensional transient heat conduction problem since the temperature within
the billet changes with the radial and axial distances r and z and with time t.
Thatis, T= T(r, z t).

The thermal conductivity is given to be constant, and there is no heat gen-
eration in the billet. Therefore, the differential equation that governs the varia-
tion of temperature in the billet in this case is obtained from Eq. 2-43 by
setting the heat generation term and the derivatives with respect to ¢ equal to

zero. We obtain
1 9 oT d oT oT
——\kr— |+ —k—)=pc—
r or ar az a9z at

In the case of constant thermal conductivity, it reduces to

14 ( aT) T 1T
——\r— |+ —=——
rar \ or 922 a ot

which is the desired equation.
Discussion Note that the boundary and initial conditions have no effect on
the differential equation.

2-4 = BOUNDARY AND INITIAL CONDITIONS

The heat conduction equations above were developed using an energy bal-
ance on a differential element inside the medium, and they remain the same
regardless of the thermal conditions on the surfaces of the medium. That is,
the differential equations do not incorporate any information related to the
conditions on the surfaces such as the surface temperature or a specified heat
flux. Yet we know that the heat flux and the temperature distribution in a
medium depend on the conditions at the surfaces, and the description of a
heat transfer problem in a medium is not complete without a full description
of the thermal conditions at the bounding surfaces of the medium. The math-
ematical expressions of the thermal conditions at the boundaries are called the
boundary conditions.



From a mathematical point of view, solving a differential equation is essen-
tially a process of removing derivatives, or an integration process, and thus
the solution of a differential equation typically involves arbitrary constants
(Fig. 2-25). It follows that to obtain a unique solution to a problem, we need
to specify more than just the governing differential equation. We need to
specify some conditions (such as the value of the function or its derivatives at
some value of the independent variable) so that forcing the solution to satisfy
these conditions at specified points will result in unique values for the arbi-
trary constants and thus a unique solution. But since the differential equation
has no place for the additional information or conditions, we need to supply
them separately in the form of boundary or initial conditions.

Consider the variation of temperature along the wall of a brick house in
winter. The temperature at any point in the wall depends on, among other
things, the conditions at the two surfaces of the wall such as the air tem-
perature of the house, the velocity and direction of the winds, and the solar
energy incident on the outer surface. That is, the temperature distribution in
a medium depends on the conditions at the boundaries of the medium as well
as the heat transfer mechanism inside the medium. To describe a heat trans-
fer problem completely, two boundary conditions must be given for each
direction of the coordinate system along which heat transfer is significant
(Fig. 2-26). Therefore, we need to specify two boundary conditions for one-
dimensional problems, four boundary conditions for two-dimensional prob-
lems, and six boundary conditions for three-dimensional problems. In the
case of the wall of a house, for example, we need to specify the conditions at
two locations (the inner and the outer surfaces) of the wall since heat transfer
in this case is one-dimensional. But in the case of a parallelepiped, we need
to specify six boundary conditions (one at each face) when heat transfer in all
three dimensions is significant.

The physical argument presented above is consistent with the mathematical
nature of the problem since the heat conduction equation is second order (i.e.,
involves second derivatives with respect to the space variables) in all directions
along which heat conduction is significant, and the general solution of a sec-
ond-order linear differential equation involves two arbitrary constants for each
direction. That is, the number of boundary conditions that needs to be specified
in a direction is equal to the order of the differential equation in that direction.

Reconsider the brick wall already discussed. The temperature at any point
on the wall at a specified time also depends on the condition of the wall at the
beginning of the heat conduction process. Such a condition, which is usually
specified at time ¢ = 0, is called the initial condition, which is a mathematical
expression for the temperature distribution of the medium initially. Note that
we need only one initial condition for a heat conduction problem regardless of
the dimension since the conduction equation is first order in time (it involves
the first derivative of temperature with respect to time).

In rectangular coordinates, the initial condition can be specified in the gen-
eral form as

T(x,y,2,0) = flx,y,2) (2-45)

where the function f{x, y, z) represents the temperature distribution through-
out the medium at time # = 0. When the medium is initially at a uniform
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The differential equation:
VRN
S
General solution:
Tx)=Cix+C,

Arbitrary constants

Some specific solutions:

T(x)=2x+5
Tx)=—x+12
T(x)=-3

T(x) =6.2x

_J

FIGURE 2-25

The general solution of a typical
differential equation involves
arbitrary constants, and thus an
infinite number of solutions.

"

7 Some solutions of
&7 _
dx?

50°C
\ 15°C

~—— The only solution
0 1 x thatsatisfies

the conditions
T(0) = 50°C

and 7(L) = 15°C.

FIGURE 2-26

To describe a heat transfer problem
completely, two boundary conditions
must be given for each direction along
which heat transfer is significant.
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150°C T(x, 1) 70°C

~
=V

7(0, t) = 150°C
T(L,1)=70°C

FIGURE 2-27

Specified temperature boundary
conditions on both surfaces

of a plane wall.

flux | Conduction
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d7(0, 1)
Ox
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FIGURE 2-28

Specified heat flux boundary
conditions on both surfaces
of a plane wall.

temperature of 7, the initial condition in Eq. 2—45 can be expressed as
T(x,y, z,0) = T, Note that under steady conditions, the heat conduction equa-
tion does not involve any time derivatives, and thus we do not need to specify
an initial condition.

The heat conduction equation is first order in time, and thus the initial con-
dition cannot involve any derivatives (it is limited to a specified temperature).
However, the heat conduction equation is second order in space coordinates,
and thus a boundary condition may involve first derivatives at the boundaries
as well as specified values of temperature. Boundary conditions most com-
monly encountered in practice are the specified temperature, specified heat
flux, convection, and radiation boundary conditions.

1 Specified Temperature Boundary Condition

The temperature of an exposed surface can usually be measured directly and
easily. Therefore, one of the easiest ways to specify the thermal conditions
on a surface is to specify the temperature. For one-dimensional heat transfer
through a plane wall of thickness L, for example, the specified temperature
boundary conditions can be expressed as (Fig. 2-27)

700, 1) = T,
TWw,0 =T, (2-46)

where T and T, are the specified temperatures at surfaces atx = 0 and x = L,
respectively. The specified temperatures can be constant, which is the case for
steady heat conduction, or may vary with time.

2 Specified Heat Flux Boundary Condition

When there is sufficient information about energy interactions at a surface, it
may be possible to determine the rate of heat transfer and thus the heat flux
¢ (heat transfer rate per unit surface area, W/m?) on that surface, and this in-
formation can be used as one of the boundary conditions. The heat flux in the
positive x-direction anywhere in the medium, including the boundaries, can
be expressed by Fourier’s law of heat conduction as

aT < Heat flux in the > ,
= —k = . . . (W/m?) (2-47)
positive x — direction
Then the boundary condition at a boundary is obtained by setting the speci-
fied heat flux equal to —k(97/0x) at that boundary. The sign of the specified
heat flux is determined by inspection: positive if the heat flux is in the positive
direction of the coordinate axis, and negative if it is in the opposite direction.
Note that it is extremely important to have the correct sign for the specified
heat flux since the wrong sign will invert the direction of heat transfer and
cause the heat gain to be interpreted as heat loss (Fig. 2-28).
For a plate of thickness L subjected to heat flux of 50 W/m? into the me-
dium from both sides, for example, the specified heat flux boundary condi-
tions can be expressed as

aT(0, t oT(L, t
©.9 =50 and —k CD) =
ox ox

—k —-50 (2-48)



Note that the heat flux at the surface at x = L is in the negative x-direction,
and thus it is —50 W/m?. The direction of heat flux arrows at x = L in
Fig. 2-28 in this case would be reversed.

Special Case: Insulated Boundary

Some surfaces are commonly insulated in practice in order to minimize heat
loss (or heat gain) through them. Insulation reduces heat transfer but does
not totally eliminate it unless its thickness is infinity. However, heat transfer
through a properly insulated surface can be taken to be zero since adequate
insulation reduces heat transfer through a surface to negligible levels. There-
fore, a well-insulated surface can be modeled as a surface with a specified
heat flux of zero. Then the boundary condition on a perfectly insulated sur-
face (at x = 0, for example) can be expressed as (Fig. 2-29)

0T(0, t 0T(0, t
POV S C L) N

0x 0x

(2-49)

That is, on an insulated surface, the first derivative of temperature with re-
spect to the space variable (the temperature gradient) in the direction normal
to the insulated surface is zero. This also means that the temperature function
must be perpendicular to an insulated surface since the slope of temperature
at the surface must be zero.

Another Special Case: Thermal Symmetry

Some heat transfer problems possess thermal symmetry as a result of the
symmetry in imposed thermal conditions. For example, the two surfaces
of a large hot plate of thickness L suspended vertically in air is subjected
to the same thermal conditions, and thus the temperature distribution in
one half of the plate is the same as that in the other half. That is, the heat
transfer problem in this plate possesses thermal symmetry about the center
plane at x = L/2. Also, the direction of heat flow at any point in the plate is
toward the surface closer to the point, and there is no heat flow across the
center plane. Therefore, the center plane can be viewed as an insulated sur-
face, and the thermal condition at this plane of symmetry can be expressed
as (Fig. 2-30)

oT(L/2, t
L0 _

ax

(2-50)

which resembles the insulation or zero heat flux boundary condition. This
result can also be deduced from a plot of temperature distribution with a max-
imum, and thus zero slope, at the center plane.

In the case of cylindrical (or spherical) bodies having thermal symmetry
about the center line (or midpoint), the thermal symmetry boundary condition
requires that the first derivative of temperature with respect to r (the radial
variable) be zero at the centerline (or the midpoint).
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T(L, t) = 60°C
FIGURE 2-29

A plane wall with insulation
and specified temperature
boundary conditions.
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FIGURE 2-30

Thermal symmetry boundary
condition at the center plane
of a plane wall.
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FIGURE 2-31
Schematic for Example 2—6.

EXAMPLE 2-6 Heat Flux Boundary Condition

Consider an aluminum pan used to cook beef stew on top of an electric range.
The bottom section of the pan is L = 0.3 cm thick and has a diameter of D =
20 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 90 percent of the heat generated in the heating element
is transferred to the pan. During steady operation, the temperature of the inner
surface of the pan is measured to be 110°C. Express the boundary conditions
for the bottom section of the pan during this cooking process.

SOLUTION An aluminum pan on an electric range top is considered. The
boundary conditions for the bottom of the pan are to be obtained.
Analysis The heat transfer through the bottom section of the pan is from the
bottom surface toward the top and can reasonably be approximated as being
one-dimensional. We take the direction normal to the bottom surfaces of the
pan as the x axis with the origin at the outer surface, as shown in Fig. 2-31.
Then the inner and outer surfaces of the bottom section of the pan can be
represented by x = 0 and x = L, respectively. During steady operation, the
temperature will depend on x only and thus 7 = T(x).

The boundary condition on the outer surface of the bottom of the pan at
x = 0 can be approximated as being specified heat flux since it is stated that
90 percent of the 800 W (i.e., 720 W) is transferred to the pan at that surface.
Therefore,

dT(0)
dx

= qo
where

Heat transfer rate ~ 0.720 kW
2

jo = = = 22.9 kW/m?
o Bottom surface area  77(0.1 m) o

The temperature at the inner surface of the bottom of the pan is specified to
be 110°C. Then the boundary condition on this surface can be expressed as

(L) = 110°C

where L = 0.003 m.
Discussion Note that the determination of the boundary conditions may require
some reasoning and approximations.

3 Convection Boundary Condition

Convection is probably the most common boundary condition encountered
in practice since most heat transfer surfaces are exposed to an environment
at a specified temperature. The convection boundary condition is based on a
surface energy balance expressed as

Heat conduction Heat convection
at the surfaceina | = at the surface in
selected direction the same direction



87
CHAPTER 2

For one-dimensional heat transfer in the x-direction in a plate of thickness L,

the convection boundary conditions on both surfaces can be expressed as Convection | Conduction N
* 2
a7(0, 1) o 910, 1) g
—k———=m|T.., — T(O, 1] (2-51a)  py[T,,, - T(O, t)]=_ka_’
X
and h, Conduction | Convection
T, 5
oT(L, t T(L, 1) _
—k° : ) T 1) — T (2-51h) k= = T ) - T
ox
0 >
where &, and h, are the convection heat transfer coefficients and 7., and T, Lo
are the temperatures of the surrounding mediums on the two sides of the plate, FIGURE 2—32

as shown in Fig. 2-32.

In writing Eqs. 2-51 for convection boundary conditions, we have selected
the direction of heat transfer to be the positive x-direction at both surfaces. But
those expressions are equally applicable when heat transfer is in the opposite
direction at one or both surfaces since reversing the direction of heat transfer
at a surface simply reverses the signs of both conduction and convection terms
at that surface. This is equivalent to multiplying an equation by — 1, which has
no effect on the equality (Fig. 2-33). Being able to select either direction as
the direction of heat transfer is certainly a relief since often we do not know

Convection boundary conditions on
the two surfaces of a plane wall.

the surface temperature and thus the direction of heat transfer at a surface in Convection | Conduction
advance. This argument is also valid for other boundary conditions such as the
radiation and combined boundary conditions discussed shortly. T 0 i = g 70D
Note that a surface has zero thickness and thus no mass, and it cannot store 1T ~ 700, D = Ox
any energy. Therefore, the entire net heat entering the surface from one side hy T,
must leave the surface from the other side. The convection boundary condi-
tion simply states that heat continues to flow from a body to the surrounding Convection | Conduction
medium at the same rate, and it just changes vehicles at the surface from con-
duction to convection (or vice versa in the other direction). This is analogous [T, ) = Tyl = k%
to people traveling on buses on land and transferring to the ships at the shore.
If the passengers are not allowed to wander around at the shore, then the 0 L x
rate at which the people are unloaded at the shore from the buses must equal
the rate at which they board the ships. We may call this the conservation of FIGURE 2-33
“people” principle. The assumed direction of heat transfer
Also note that the surface temperatures 7(0, 7) and 7(L, t) are not known at a boundary has no effect on the
(if they were known, we would simply use them as the specified temperature boundary condition expression.

boundary condition and not bother with convection). But a surface tempera-
ture can be determined once the solution 7(x, #) is obtained by substituting the
value of x at that surface into the solution.

EXAMPLE 2-7 Convection and Insulation Boundary Conditions

Steam flows through a pipe shown in Fig. 2-34 at an average temperature
of T, = 200°C. The inner and outer radii of the pipe are = 8 cmand r, =
8.5 cm, respectively, and the outer surface of the pipe is heavily insulated. If
the convection heat transfer coefficient on the inner surface of the pipe is h =
65 W/m?.K, express the boundary conditions on the inner and outer surfaces
of the pipe during transient periods.
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Insulation

FIGURE 2-34
Schematic for Example 2-7.

Radiation | Conduction

JdT(0, 1
10 T, 1~ 00, 0% =k L0
g &
Tsurr, 1 Tsurr, 2

Conduction | Radiation

IT(L, 1) _
g ox

&0 [T(L, Y — Th... o]

L x

FIGURE 2-35
Radiation boundary conditions on both
surfaces of a plane wall.

SOLUTION The flow of steam through an insulated pipe is considered.
The boundary conditions on the inner and outer surfaces of the pipe are to be
obtained.
Analysis During initial transient periods, heat transfer through the pipe mate-
rial predominantly is in the radial direction, and thus can be approximated as
being one-dimensional. Then the temperature within the pipe material changes
with the radial distance rand the time t. That is, T = T(r, 1).

It is stated that heat transfer between the steam and the pipe at the inner
surface is by convection. Then taking the direction of heat transfer to be the
positive r direction, the boundary condition on that surface can be expressed as

aT(ry, t)

J7

= h[T, — T(r))]

The pipe is said to be well insulated on the outside, and thus heat loss through
the outer surface of the pipe can be assumed to be negligible. Then the bound-
ary condition at the outer surface can be expressed as

oT(r,, t
0 _

ar

Discussion Note that the temperature gradient must be zero on the outer sur-
face of the pipe at all times.

4 Radiation Boundary Condition

In some cases, such as those encountered in space and cryogenic applications,
a heat transfer surface is surrounded by an evacuated space and thus there is
no convection heat transfer between a surface and the surrounding medium. In
such cases, radiation becomes the only mechanism of heat transfer between
the surface under consideration and the surroundings. Using an energy bal-
ance, the radiation boundary condition on a surface can be expressed as

Heat conduction Radiation exchange
at the surfaceina | = at the surface in
selected direction the same direction

For one-dimensional heat transfer in the x-direction in a plate of thickness L, the
radiation boundary conditions on both surfaces can be expressed as (Fig. 2-35)

970, 0

—K

- 8I()-,;Tiurr.l - T(O~ ’)4J (2-52a)

ox
and

aT(L, 1)

0x

= &,0[T(L, )* — T, 5] (2-52h)

where g, and &, are the emissivities of the boundary surfaces, & = 5.67 X
1078 W/m*K* is the Stefan—Boltzmann constant, and T, ; and Ty, , are the
average temperatures of the surfaces surrounding the two sides of the plate,
respectively. Note that the temperatures in radiation calculations must be
expressed in K or R (not in °C or °F).

The radiation boundary condition involves the fourth power of temperature,
and thus it is a nonlinear condition. As a result, the application of this boundary
condition results in powers of the unknown coefficients, which makes it difficult



89
CHAPTER 2

to determine them. Therefore, it is tempting to ignore radiation exchange at Interface
a surface during a heat transfer analysis in order to avoid the complications il i
associated with nonlinearity. This is especially the case when heat transfer at the A B

rface i min n ion, and the role of radiation is minor.
surface is dominated by convection, and the role of radiation is o Ty, ) = Tyl )

5 Interface Boundary Conditions T)x. 1) Ts(x, 1
Some bodies are made up of layers of different materials, and the solution
of a heat transfer problem in such a medium requires the solution of the heat
transfer problem in each layer. This, in turn, requires the specification of the
boundary conditions at each interface.

The boundary conditions at an interface are based on the requirements that -

Conduction | Conduction

T (xo, ,
. NE)) -, OTp(xg, 1)

oo d 0.
(1) two bodies in contact must have the same temperature at the area of con- 0 - Tx a T %
tact and (2) an interface (which is a surface) cannot store any energy, and thus 0
the heat flux on the two sides of an interface must be the same. The boundary FIGURE 2-36

conditions at the interface of two bodies A and B in perfect contact at x = x,

) Boundary conditions at the interface
can be expressed as (Fig. 2-36)

of two bodies in perfect contact.

Ty(xo, 1) = T(xp, 1) (2-53)
and
T ,(xo, 1) T 5(xy, 1)
k0 =, 0 (2-54)
ox 0x

where k, and kj are the thermal conductivities of the layers A and B, respec-
tively. The case of imperfect contact results in thermal contact resistance,
which is considered in the next chapter.

6 Generalized Boundary Conditions

So far we have considered surfaces subjected to single mode heat transfer,
such as the specified heat flux, convection, or radiation for simplicity. In gen-
eral, however, a surface may involve convection, radiation, and specified heat
flux simultaneously. The boundary condition in such cases is again obtained
from a surface energy balance, expressed as

Heat transfer Heat transfer
to the surface | = | from the surface (2-55)
in all modes in all modes

Torr =525R

surr

This is illustrated in Examples 2—8 and 2-9.

EXAMPLE 2-8 Comhined Convection and Radiation Condition

A spherical metal ball of radius r, is heated in an oven to a temperature of
600°F throughout and is then taken out of the oven and allowed to cool in
ambient air at 7., = 78°F, as shown in Fig. 2-37. The thermal conductivity
of the ball material is k = 8.3 Btu/h-ft-R, and the average convection heat
transfer coefficient on the outer surface of the ball is evaluated to be h = 4.5
Btu/h-ft2-R. The emissivity of the outer surface of the ball is e = 0.6, and the
average temperature of the surrounding surfaces is T,, = 525 R. Assuming
the ball is cooled uniformly from the entire outer surface, express the initial
and boundary conditions for the cooling process of the ball. FIGURE 2-37

Schematic for Example 2-8.
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SOLUTION The cooling of a hot spherical metal ball is considered. The initial
and boundary conditions are to be obtained.

Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Therefore, this is a one-dimensional transient
heat transfer problem since the temperature within the ball changes with
the radial distance r and the time t. That is, T = T(r, t). Taking the moment
the ball is removed from the oven to be t = O, the initial condition can be
expressed as

T(r, 0) = T, = 600°F

The problem possesses symmetry about the midpoint (r = 0) since the iso-
therms in this case are concentric spheres, and thus no heat is crossing the
midpoint of the ball. Then the boundary condition at the midpoint can be
expressed as
()T('(), N _ 0
or
The heat conducted to the outer surface of the ball is lost to the environment
by convection and radiation. Then taking the direction of heat transfer to be
the positive r direction, the boundary condition on the outer surface can be
expressed as

aT(r,, 1)
k—2= = B[T(r,) — T.] + 80[T(r)* = Ty

Discussion All the quantities in the above relations are known except the tem-
peratures and their derivatives at r = 0 and r,. Also, the radiation part of the
boundary condition is often ignored for simplicity by modifying the convection
heat transfer coefficient to account for the contribution of radiation. The convec-
tion coefficient h in that case becomes the combined heat transfer coefficient.

EXAMPLE 2-9 Comhined Convection, Radiation, and Heat Flux

Consider the south wall of a house that is L = 0.2 m thick. The outer surface
of the wall is exposed to solar radiation and has an absorptivity of « = 0.5 for
solar energy. The interior of the house is maintained at T..; = 20°C, while the
ambient air temperature outside remains at T.., = 5°C. The sky, the ground,
and the surfaces of the surrounding structures at this location can be modeled
as a surface at an effective temperature of T, = 255 K for radiation exchange
on the outer surface. The radiation exchange between the inner surface of
the wall and the surfaces of the walls, floor, and ceiling it faces is negligible.
The convection heat transfer coefficients on the inner and the outer surfaces
of the wall are h; = 6 W/m2-K and h, = 25 W/m?-K, respectively. The thermal
conductivity of the wall material is kK = 0.7 W/m-K, and the emissivity of the
outer surface is e, = 0.9. Assuming the heat transfer through the wall to be
steady and one-dimensional, express the boundary conditions on the inner and
the outer surfaces of the wall.

SOLUTION The wall of a house subjected to solar radiation is considered.
The boundary conditions on the inner and outer surfaces of the wall are to be
obtained.
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Analysis  We take the direction normal to the wall surfaces as the x-axis with

the origin at the inner surface of the wall, as shown in Fig. 2-38. The heat Tiky —
transfer through the wall is given to be steady and one-dimensional, and thus
the temperature depends on x only and not on time. That is, T = T(x).
The boundary condition on the inner surface of the wall at x = O is a typical U
convection condition since it does not involve any radiation or specified heat
flux. Taking the direction of heat transfer to be the positive x-direction, the Inner South &ro*‘OQ
boundary condition on the inner surface can be expressed as surface wall <+
dT1(0)
—k S [T, — T(0)]
dx hy Oo,,,/
The boundary condition on the outer surface at x = O is quite general as it Ty 60%0
involves conduction, convection, radiation, and specified heat flux. Again tak- B
ing the direction of heat transfer to be the positive x-direction, the boundary sz
condition on the outer surface can be expressed as . _
dT(L) ’ / Convection | Conduction L Outer

—k I = W[T(L) — Top) + g0 [T(L)* — Tfky] — Of solar —) S— surface
where G is the incident solar heat flux. ° L *
Discussion Assuming the opposite direction for heat transfer would give the
same result multiplied by —1, which is equivalent to the relation here. All the FIGURE 2-38
quantities in these relations are known except the temperatures and their de- Schematic for Example 2-9.

rivatives at the two boundaries.

Note that a heat transfer problem may involve different kinds of boundary
conditions on different surfaces. For example, a plate may be subject to heat
flux on one surface while losing or gaining heat by convection from the other
surface. Also, the two boundary conditions in a direction may be specified at
the same boundary, while no condition is imposed on the other boundary. For
example, specifying the temperature and heat flux at x = 0 of a plate of thick-
ness L will result in a unique solution for the one-dimensional steady tempera-
ture distribution in the plate, including the value of temperature at the surface
x = L. Although not necessary, there is nothing wrong with specifying more
than two boundary conditions in a specified direction, provided that there is
no contradiction. The extra conditions in this case can be used to verify the
results.

2-5 = SOLUTION OF STEADY ONE-DIMENSIONAL
HEAT CONDUCTION PROBLEMS

So far we have derived the differential equations for heat conduction in
various coordinate systems and discussed the possible boundary conditions.
A heat conduction problem can be formulated by specifying the applicable
differential equation and a set of proper boundary conditions.

In this section we will solve a wide range of heat conduction problems
in rectangular, cylindrical, and spherical geometries. We will limit our at-
tention to problems that result in ordinary differential equations such as the
steady one-dimensional heat conduction problems. We will also assume con-
stant thermal conductivity, but will consider variable conductivity later in this
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% jgx chapter. If you feel rusty on differential equations or haven’t taken differen-
tial equations yet, no need to panic. Simple integration is all you need to solve
Heat transfer problem . . .
| the steady one-dimensional heat conduction problems.
\ ) The solution procedure for solving heat conduction problems can be sum-
Mathematical formulation . .. . .
(Differential equziC IR marized as (1) formulate the problem by obtaining the applicable differen-
boundary conditions) tial equation in its simplest form and specifying the boundary conditions,
L (2) obtain the general solution of the differential equation, and (3) apply the
General solution of differential equation boundary conditions and determine the arbitrary constants in the general solu-
L tion (Fig. 2-39). This is demonstrated below with examples.

plication of boundary conditions

Solution of the problem

EXAMPLE 2-10 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k =

FIGURE 2-39 1.2 W/m-K, and surface area A = 15 m2. The two sides of the wall are main-
Basic steps involved in the solution tained at constant temperatures of T; = 120°C and T, = 50°C, respectively,
of heat transfer problems. as shown in Fig. 2-40. Determine (a) the variation of temperature within the

wall and the value of temperature at x = 0.1 m and (b) the rate of heat con-
duction through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
111;’1‘16 Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
Vg N dimensional since the wall is large relative to its thickness and the thermal
T, T, conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.
Properties The thermal conductivity is given to be kK = 1.2 W/m-K.
Analysis (a) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

T _
FIGURE 2-40 dx?
Schematic for Example 2—10. with boundary conditions

0

7(0) = T, = 120°C
T(L) = T, = 50°C

The differential equation is linear and second order, and a quick inspection of
it reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integra-
tion. Noting that an integration reduces the order of a derivative by one, the
general solution of the differential equation above can be obtained by two sim-
ple successive integrations, each of which introduces an integration constant.
Integrating the differential equation once with respect to x yields

T_c

dx 1
where C; is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, if we take the derivative of

this equation, we will obtain the original differential equation. This equation is
not the solution yet since it involves a derivative.

(e

~

=
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Integrating one more time, we obtain
Tx) = Cx + C,

which is the general solution of the differential equation (Fig. 2-41). The gen-
eral solution in this case resembles the general formula of a straight line whose
slope is C; and whose value at x = 0 is C,. This is not surprising since the
second derivative represents the change in the slope of a function, and a zero
second derivative indicates that the slope of the function remains constant.
Therefore, any straight line is a solution of this differential equation.

The general solution contains two unknown constants C; and C,, and thus
we need two equations to determine them uniquely and obtain the specific so-
|ution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of each condition yields
one equation, and thus we need to specify two conditions to determine the
constants C; and C,.

When applying a boundary condition to an equation, all occurrences of
the dependent and independent variables and any derivatives are replaced by
the specified values. Thus the only unknowns in the resulting equations are the
arbitrary constants.

The first boundary condition can be interpreted as in the general solution,

replace all the x’s by zero and T(x) by T,. That is (Fig. 2-42),
TO)=C, X0+C, — C,=T,

The second boundary condition can be interpreted as in the general solution,
replace all the x’s by L and T(x) by T,. That is,

I, - T
T(L) = ClL + Cz —> T2 = C]L + Tl —> Cl = L
Substituting the C; and C, expressions into the general solution, we obtain
T, — T,
T(x) = — x+ T, (2-56)

which is the desired solution since it satisfies not only the differential equa-
tion but also the two specified boundary conditions. That is, differentiating
Eqg. 2-56 with respect to x twice will give d?T/dx?, which is the given differential
equation, and substituting x = 0 and x = L into Eq. 2-56 gives T(0) = T; and
T(L) = T,, respectively, which are the specified conditions at the boundaries.

Substituting the given information, the value of the temperature at x =
0.1 m is determined to be

(50 — 120)°C
0.2m

(b) The rate of heat conduction anywhere in the wall is determined from
Fourier’s law to be

7(0.1 m) = (0.1 m) + 120°C = 85°C

. dr T, - T, I, - T,
= —kA— = —kAC, = —kA =kA
Qwall dx 1 L L
The numerical value of the rate of heat conduction through the wall is deter-

mined by substituting the given values to be

(2-57)

. T, — T, (120 — 50)°C
0 =kA——2=(12WmK)15m?) ————— = 6300 W

L 0.2 m

Discussion Note that under steady conditions, the rate of heat conduction
through a plane wall is constant.
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Differential equation:

Integrate:

Integrate again:
Tx)=C »1\);52

/
General
olution

Obtaining the general solution of
a simple second order differential
equation by integration.

Arbitrary
constants

FIGURE 241

Boundary condition:
T0) =T,
General solution:
Tx)=Cix+ C,
Applying the boundary condition:
Tx)=C % + G,

)
0 0
T,
Substituting:
CTI =C1x0+C, > C, =T,
I

t cannot involve x or 7(x) after the
boundary condition is applied.

_

FIGURE 2-42

When applying a boundary condition
to the general solution at a specified
point, all occurrences of the dependent
and independent variables should

be replaced by their specified

values at that point.
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EXAMPLE 2-11 A Wall with Various Sets of Boundary
Conditions

Consider steady one-dimensional heat conduction in a large plane wall of
thickness L and constant thermal conductivity k with no heat generation.
Obtain expressions for the variation of temperature within the wall for the fol-
lowing pairs of boundary conditions (Fig. 2-43):

dT1(0)
(a) —k T Go = 40 W/cm? and 70) =T, = 15°C
dT(0) dariL)
(b) —k el Go = 40 W/cm? and —k i —25 W/cm?
dT(O) ariy) .
(c) — Go = 40 W/cm? and —k——— = ¢, = Go= 40 W/cm?
dx dx

SOLUTION Steady one-dimensional heat conduction in a large plane wall is
considered. The variation of temperature is to be determined for different sets
of boundary conditions.

Analysis This is a steady one-dimensional heat conduction problem with con-
stant thermal conductivity and no heat generation in the medium, and the heat
conduction equation in this case can be expressed as (Eq. 2-17)

T _
dx?

whose general solution was determined in the previous example by direct in-
tegration to be

T(x) = Clx + C2

where C; and C, are two arbitrary integration constants. The specific solutions
corresponding to each specified pair of boundary conditions are determined
as follows.

(a) In this case, both boundary conditions are specified at the same boundary at
x = 0, and no boundary condition is specified at the other boundary at x = L.

Noting that
dr
—=C
dx !

the application of the boundary conditions gives

dT(0 ]
():q'o - —kCi =4y — Clz_@
dx k

and

T0)=T, - T,=C,X0+C, » C,=T,

Substituting, the specific solution in this case is determined to be

g
T(x) = *fx + T,
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15°C
N
—> Plane —> Plane < —> Plane >
—> wall —> wall < —> wall >
40 W/em? ~ ] 40 W/em? ~ 7] Dl 40 W/em? ~ 7] e
— T(x) — T(x) < — T(x) —
—> —> le— —> —>
— — l«— 25 W/em? — > 40 W/em?
—> —> le— —> —>
—> —> e —> >
—> —> le— —> —>
0 0 0
N L X N L N Ll | x
(@) @) (o)
FIGURE 243

Therefore, the two boundary conditions can be specified at the same boundary,
and it is not necessary to specify them at different locations. In fact, the fun-
damental theorem of linear ordinary differential equations guarantees that a
unique solution exists when both conditions are specified at the same location.
But no such guarantee exists when the two conditions are specified at different
boundaries, as you will see below.

(b) In this case different heat fluxes are specified at the two boundaries. The
application of the boundary conditions gives

dro) _ o

—k Go — —kCi=¢, —» C,=——

dx k

and
i) . q
k—==4 — —kC=d — C=--

Since ¢y # ¢, and the constant C; cannot be equal to two different things at
the same time, there is no solution in this case. This is not surprising since
this case corresponds to supplying heat to the plane wall from both sides and
expecting the temperature of the wall to remain steady (not to change with
time). This is impossible.

(c) In this case, the same values for heat flux are specified at the two boundar-
ies. The application of the boundary conditions gives

dr0) _ o
—k P M —kC,=qgy — C, = %
and
dT(L /
—kL =4 —» —kCi=4g, — C = o
dx k

Thus, both conditions result in the same value for the constant C;, but no
value for C,. Substituting, the specific solution in this case is determined to be

T(x) = *@x + G,

which is not a unique solution since C, is arbitrary.

Schematic for Example 2—11.
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Differential equation:
T1x)=0
General solution:
Tx)=Cix+ C,

(a) Unique solution:

—kT"(0) = Gy do
T(0)=T, T(x) SN Ty
(b) No solution:
—kT7(0) = g
—kT'(L) = 4, T(x) = None

(¢) Multiple solutions:
—KT"(0) = gy
—kT'(L) = g

T(x)=— %x +C,
1
Arbitrary

_

FIGURE 2-44

A boundary-value problem may have
a unique solution, infinitely many
solutions, or no solutions at all.

Resistance heater
1200 W

Insulation

Base plate

300 cm?

T,.=20°C

FIGURE 245
Schematic for Example 2—12.

Discussion The last solution represents a family of straight lines whose slope
is —qo/k. Physically, this problem corresponds to requiring the rate of heat
supplied to the wall at x = O be equal to the rate of heat removal from the
other side of the wall at x = L. But this is a consequence of the heat conduc-
tion through the wall being steady, and thus the second boundary condition
does not provide any new information. So it is not surprising that the solution
of this problem is not unique. The three cases discussed above are summarized
in Fig. 2-44.

EXAMPLE 2-12 Heat Conduction in the Base Plate of an Iron

Consider the base plate of a 1200-W household iron that has a thickness of
L = 0.5 cm, base area of A = 300 cm?, and thermal conductivity of k =
15 W/m-K. The inner surface of the base plate is subjected to uniform heat flux
generated by the resistance heaters inside, and the outer surface loses heat to
the surroundings at 7., = 20°C by convection, as shown in Fig. 2-45. Taking the
convection heat transfer coefficient to be h = 80 W/m?-K and disregarding heat
loss by radiation, obtain an expression for the variation of temperature in the
base plate, and evaluate the temperatures at the inner and the outer surfaces.

SOLUTION The base plate of an iron is considered. The variation of tempera-
ture in the plate and the surface temperatures are to be determined.
Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since the surface area of the base plate is
large relative to its thickness, and the thermal conditions on both sides are
uniform. 3 Thermal conductivity is constant. 4 There is no heat generation in
the medium. 5 Heat transfer by radiation is negligible. 6 The upper part of the
iron is well insulated so that the entire heat generated in the resistance wires
is transferred to the base plate through its inner surface.
Properties The thermal conductivity is given to be kK = 15 W/m-K.
Analysis  The inner surface of the base plate is subjected to uniform heat flux
at a rate of )
o9y 1200W
07 A 003m?

= 40,000 W/m?
base
The outer side of the plate is subjected to the convection condition. Taking the
direction normal to the surface of the wall as the x-direction with its origin on
the inner surface, the differential equation for this problem can be expressed
as (Fig. 2-46)

d’T

a0

with the boundary conditions

aroy
— k——— = g, = 40,000 W/m?
dx
dT(L)
—k——=h[T(L) — T.]
dx



The general solution of the differential equation is again obtained by two suc-
cessive integrations to be

T
dx !
and
Tx)=Cx + C, (a)

where C, and C, are arbitrary constants. Applying the first boundary condition,

dT(0 /
():‘io - —kCi =4y — Clz_@
dx k

Noting that dT/dx = C; and T(L) = C,L + C,, the application of the second
boundary condition gives

dT(L)
—kW =h[T(L) —T.] — —kC,=h[(C\L+ C,)) —T,]

Substituting C; = —¢go/k and solving for C,, we obtain

9% 9
C=T.+—+—L
2 ho ok

Now substituting C; and C, into the general solution (a) gives

L= 1
Tx) =T, + gy T+Z (b)

which is the solution for the variation of the temperature in the plate. The

temperatures at the inner and outer surfaces of the plate are determined by
substituting x = 0 and x = L, respectively, into the relation (b):

(L 1
T(0) = T, + qo(— + Z)

k
0.005 m |

= 20°C + (40,000 W/m? n = 533°

0°C + (40,000 W/m )(15 WmK 80 W/m2~K> ¢

and
1 40,000 W/m?

T(L) =T, + Go| 0 + — ) = 20°C + 2 VM _ 5500

2 q°<0 h> 0+ g Wi K <

Discussion Note that the temperature of the inner surface of the base plate
is 13°C higher than the temperature of the outer surface when steady operat-
ing conditions are reached. Also note that this heat transfer analysis enables
us to calculate the temperatures of surfaces that we cannot even reach. This
example demonstrates how the heat flux and convection boundary conditions
are applied to heat transfer problems.
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Base plate
Heat flux | Conduction
h
T.
S dT1(0)
90 = dx

Conduction | Convection

4T

- I - T

0 L ;

FIGURE 2-46

The boundary conditions on the
base plate of the iron discussed
in Example 2—12.
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(T
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h, T, /TL
Metal plate & Ty

©o_,0 O

FIGURE 247
Schematic for Example 2—13.

X

% EXAMPLE 2-13 Thermal Burn Prevention in Metal
Processing Plant

In metal processing plants, workers often operate near hot metal surfaces.
Exposed hot surfaces are hazards that can potentially cause thermal burns on
human skin tissue. Metallic surface with a temperature above 70°C is con-
sidered extremely hot. Damage to skin tissue can occur instantaneously upon
contact with metallic surface at that temperature. In a plant that processes
metal plates, a plate is conveyed through a series of fans to cool its surface
in an ambient temperature of 30°C, as shown in Figure 2-47. The plate is
25 mm thick and has a thermal conductivity of 13.5 W/m-K. Temperature at
the bottom surface of the plate is monitored by an infrared (IR) thermometer.
Obtain an expression for the variation of temperature in the metal plate. The
IR thermometer measures the bottom surface of the plate to be 60°C. Deter-
mine the minimum value of the convection heat transfer coefficient necessary
to keep the top surface below 47°C to avoid instantaneous thermal burn upon
accidental contact of hot metal surface with skin tissue.

SOLUTION In this example, the concepts of Prevention through Design (PtD)
are applied in conjunction with the solution of steady one-dimensional heat
conduction problem. The top surface of the plate is cooled by convection, and
temperature at the bottom surface is measured by an IR thermometer. The
variation of temperature in the metal plate and the convection heat transfer
coefficient necessary to keep the top surface below 47°C are to be determined.
Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal
conductivity is constant. 3 There is no heat generation in the plate. 4 The bot-
tom surface at x = O is at constant temperature while the top surface at x = L
is subjected to convection.

Properties The thermal conductivity of the metal plate is given to be k =
13.5 W/m-K.

Analysis Taking the direction normal to the surface of the wall to be the x
direction with x = O at the lower surface, the mathematical formulation can
be expressed as

d*T
— =0
dx?
with boundary conditions
70) = T,
dT(L)
—k—— = h[T(L) — T,]
dx

Integrating the differential equation twice with respect to x yields
dr _

dx
Tx) = Cx + C,

o

where C; and C, are arbitrary constants. Applying the first boundary condition
yields

T0)=C, X0+ C,=T, » C, =T,
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The application of the second boundary condition gives

dT(L)
—kW =nTlL) - T,] - —kC =hCL+C—T))

Solving for C; yields
T,

VT T k+ AL (kik)+ L

Now substituting C; and C, into the general solution, the variation of tempera-
ture becomes

-C) T,-1T,

00

T(x) = 7T‘X — T 3%
(k/h) + L

The minimum convection heat transfer coefficient necessary to maintain the
top surface below 47°C can be determined from the variation of temperature:

+ T,

Too B TO
W) =T, =

=—=_ 74T
(k/h) + L 0

Solving for h gives

h = 413 W/m>K

_kL— T, _ (13.5 W/mK 47 — 60)°C
LT T, 0.025m /(30 — 47)°C

Discussion To keep the top surface of the metal plate below 47°C, the con-
vection heat transfer coefficient should be greater than 413 W/m?2-K. A con-
vection heat transfer coefficient value of 413 W/m2-K is very high for forced
convection of gases. The typical values for forced convection of gases are
25-250 W/m?-K (see Table 1-5 in Chapter 1). To protect workers from thermal
burn, appropriate apparel should be worn when operating in an area where hot
surfaces are present.

EXAMPLE 2-14 Heat Conduction in a Solar Heated Wall

Consider a large plane wall of thickness L = 0.06 m and thermal conductivity

k= 1.2 W/m-K in space. The wall is covered with white porcelain tiles that have %%\%h ;;f%
an emissivity of ¢ = 0.85 and a solar absorptivity of @« = 0.26, as shown in §Sun ’fg:
Fig_- 2-48. The inner surface of the wall is maintai_ned at Tl_ = 3QO K at all times, r/%«%g@k\%g
while the outer surface is exposed to solar radiation that is incident at a rate of <
Gsor = 800 W/m?2. The outer surface is also losing heat by radiation to deep space Flane wall %
at O K. Determine the temperature of the outer surface of the wall and the rate Comdinsion /
of heat transfer through the wall when steady operating conditions are reached.
What would your response be if no solar radiation was incident on the surface? > ‘?O;(;é_

T, @
SOLUTION A plane wall in space is subjected to specified temperature on
one side and solar radiation on the other side. The outer surface temperature Space
and the rate of heat transfer are to be determined. 0
Assumptions 1 Heat transfer is steady since there is no change with time. L x
2 Heat transfer is one-dimensional since the wall is large relative to its
thickness, and the thermal conditions on both sides are uniform. 3 Thermal FIGURE 248
conductivity is constant. 4 There is no heat generation. Schematic for Example 2—14.
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Properties The thermal conductivity is given to be k = 1.2 W/m-K.
Analysis Taking the direction normal to the surface of the wall as the
x-direction with its origin on the inner surface, the differential equation for this

problem can be expressed as
T
dx?

with boundary conditions

T7(0) = T, = 300 K

dT(L) ;
—k W = go-[T(L)4 - T‘;pace] — Ofsolar

where Tg.ce = 0. The general solution of the differential equation is again
obtained by two successive integrations to be

Tx) =Cx + G, (a)

where C; and C, are arbitrary constants. Applying the first boundary condition
yields

T0)=C, X0+C, —» C,=T,

Noting that d7/dx = C, and T(L) = C,L + C, = C,L + T, the application of
the second boundary conditions gives
dT(L) . .
—k? =e0T(L)* — agy — —kC,=e0(CL+ T)*— agyr

Although C; is the only unknown in this equation, we cannot get an explicit
expression for it because the equation is nonlinear, and thus we cannot get a
closed-form expression for the temperature distribution. This should explain
why we do our best to avoid nonlinearities in the analysis, such as those as-
sociated with radiation.

Let us back up a little and denote the outer surface temperature by T(L) = T,
instead of T(L) = C,L + T,. The application of the second boundary condition
in this case gives

dI(L) . .
—k——= EUT(L)4 = QG golar — _kcl = 80—T2 — QG solar

dx
Solving for C; gives

C‘(QSO ar - 80T4
C = % (b

Now substituting C; and C, into the general solution (a), we obtain

Aoy — 0T}
T(x) = %x + T, (©

which is the solution for the variation of the temperature in the wall in terms of
the unknown outer surface temperature 7,. At x = L it becomes

Aoy — €0Th
iy = et 2 ()



which is an implicit relation for the outer surface temperature 7,. Substituting
the given values, we get

~0.26 X (800 W/m?) — 0.85 X (5.67 X 1078 W/m?K*) T}

- | X
i 1.2 W/m-K (0.06 m) + 300 K

which simplifies to

T, = 3104 0240975( L )4
L= ' 100

This equation can be solved by one of the several nonlinear equation solvers
available (or by the old fashioned trial-and-error method) to give (Fig. 2-49)

T, = 292.7K

Knowing the outer surface temperature and knowing that it must remain
constant under steady conditions, the temperature distribution in the wall can
be determined by substituting the T, value above into Eq. (¢):

0.26 X (800 W/m?) — 0.85 X (5.67 X 10~ ® W/m>K*)(292.7 K)*

T =
) 12 W/mK

x + 300K

which simplifies to
T(x) = (—121.5 K/m)x + 300 K

Note that the outer surface temperature turned out to be lower than the in-
ner surface temperature. Therefore, the heat transfer through the wall is to-
ward the outside despite the absorption of solar radiation by the outer surface.
Knowing both the inner and outer surface temperatures of the wall, the steady
rate of heat conduction through the wall can be determined from

=i (300 — 292.7)K
L= (12 W/mK)

= 146 W/m?
L 0.06 m

g =k

Discussion In the case of no incident solar radiation, the outer surface tem-
perature, determined from Eq. (d) by setting ¢eoar = O, is T, = 284.3 K. It is
interesting to note that the solar energy incident on the surface causes the
surface temperature to increase by about 8 K only when the inner surface
temperature of the wall is maintained at 300 K.

EXAMPLE 2-15 Heat Loss through a Steam Pipe

Consider a steam pipe of length L = 20 m, inner radius r; = 6 cm, outer radius
r, = 8 cm, and thermal conductivity kK = 20 W/m-K, as shown in Fig. 2-50.
The inner and outer surfaces of the pipe are maintained at average tempera-
tures of 7; = 150°C and T, = 60°C, respectively. Obtain a general relation
for the temperature distribution inside the pipe under steady conditions, and
determine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe is subjected to specified temperatures on its sur-
faces. The variation of temperature and the rate of heat transfer are to be
determined.
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(1) Rearrange the equation to be solved:

100
The equation is in the proper form since the
left side consists of 7; only.

(2) Guess the value of T;, say 300 K, and
substitute into the right side of the equation.
It gives

T, 4
T, =310.4 — 0.240975 (—L)

T,=2902K

(3) Now substitute this value of T; into the
right side of the equation and get

T, =293.1K

(4) Repeat step (3) until convergence to
desired accuracy is achieved. The
subsequent iterations give

T, =292.6 K

T, =2927K

T, =2927K

Therefore, the solution is 7; = 292.7 K. The
result is independent of the initial guess.

_J

FIGURE 249

A simple method of solving a
nonlinear equation is to arrange the
equation such that the unknown is

alone on the left side while everything
else is on the right side, and to iterate

after an initial guess until
convergence.

FIGURE 2-50
Schematic for Example 2—-14.
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Differential equation:
i
d ( d )= 0

Z A

Integrate:

Divide by r (r # 0):
dr _ C,
=T

Integrate again:

ich is the general solution.

Tr)=CInr+ C,

FIGURE 2-51

Basic steps involved in the solution

of the steady one-dimensional
heat conduction equation in
cylindrical coordinates.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerline and no variation in the axial direction, and thus 7 = T(r). 3 Thermal
conductivity is constant. 4 There is no heat generation.

Properties The thermal conductivity is given to be kK = 20 W/m-K.

Analysis The mathematical formulation of this problem can be expressed as

4,
dr rdr

T(r) = T, = 150°C
T(ry) = T, = 60°C

with boundary conditions

Integrating the differential equation once with respect to r gives
—=C
d dr !

where C; is an arbitrary constant. We now divide both sides of this equation by
rto bring it to a readily integrable form,

ar _ G
dr r
Again integrating with respect to r gives (Fig. 2-51)
T(ry=C,Inr + G, (a)
We now apply both boundary conditions by replacing all occurrences of r and
T(n) in Eq. (a) with the specified values at the boundaries. We get
Trp)=T, —» Cilnri+C,=T,
Try)=T, — Clnr,+Cy,=T,
which are two equations in two unknowns, C; and C,. Solving them simultane-
ously gives
T, — T, T,—-T

C, = d C,=T, - |
Gy T gy

Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

- In(r/r,)
In(ry/r,)

1(r) (Try = Ty) = Ty (2-58)

The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier’s law to be

dT

) ¢ I -1,
O viinger = —kA — = —k(Q2mrL) — = —2mkLC, = 2mkL
y dr r

In(r,/r,)

(2-59)

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

. (150 — 60)°C

= 2220 W/m-K)(20 m) —————~— = 786 kW
Q = 2m(20 Wim-K)Q0 m) /0 08/0.06)



Discussion Note that the total rate of heat transfer through a pipe is constant,
but the heat flux g = Q/(2arrL) is not since it decreases in the direction of heat
transfer with increasing radius.

EXAMPLE 2-16 Heat Conduction through a Spherical Shell

Consider a spherical container of inner radius r;, = 8 cm, outer radius r, =
10 cm, and thermal conductivity k = 45 W/m-K, as shown in Fig. 2-52. The
inner and outer surfaces of the container are maintained at constant tempera-
tures of T, = 200°C and T, = 80°C, respectively, as a result of some chemical
reactions occurring inside. Obtain a general relation for the temperature distri-
bution inside the shell under steady conditions, and determine the rate of heat
loss from the container.

SOLUTION A spherical container is subjected to specified temperatures on
its surfaces. The variation of temperature and the rate of heat transfer are to
be determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
midpoint, and thus T = T(r). 3 Thermal conductivity is constant. 4 There is no
heat generation.

Properties The thermal conductivity is given to be kK = 45 W/m-K.

Analysis The mathematical formulation of this problem can be expressed as

i(2£>_0
dr rdr

T(ry) = T, = 200°C
T(ry) = T, = 80°C

with boundary conditions

Integrating the differential equation once with respect to ryields
22— C
" dr :

where C; is an arbitrary constant. We now divide both sides of this equation by
% to bring it to a readily integrable form,

ar_¢
dr r?
Again integrating with respect to r gives

C
T(r) = — 71 + G, (a)

We now apply both boundary conditions by replacing all occurrences of r and
T(r) in the relation above by the specified values at the boundaries. We get

G
Tr) =T, > ——+G=T,
1

Cl
Try)=T7, — —7 +C, =T,
2
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FIGURE 2-52
Schematic for Example 2—16.
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g =22 LW ewrm?
A, 4w ©008 m)
.0y 27.0kW

===_Z 2" _216kW/m?
“= 4 T 42010 m)? o

FIGURE 2-53

During steady one-dimensional
heat conduction in a spherical (or
cylindrical) container, the total rate
of heat transfer remains constant,
but the heat flux decreases with
increasing radius.

Chemical
reactions

Nuclear
fuel rods

Electric
resistance
wires

FIGURE 2-54

Heat generation in solids is
commonly encountered in practice.

which are two equations in two unknowns, C; and C,. Solving them simultane-
ously gives
o nl, — T,

T, — T d G =
’"z_’"1(l 2) an 2 r—r

C]Z_

Substituting into Eqg. (a), the variation of temperature within the spherical
shell is determined to be

i, r, I, — rT;
— O -T) (2-60)

I = r(r, — ry) 7 = 7

The rate of heat loss from the container is simply the total rate of heat conduc-
tion through the container wall and is determined from Fourier’s law

. AT @ i
O phere = —kA i —k(4ar?) o= —47kC, = darkrir, (2-61)

r2 - }"1
The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

. (200 — 80)°C

i T 1 — =271 kW
0 = 47(45 W/m-K)(0.08 m)(0.10 m) (0.10 — 0.08) m

Discussion Note that the total rate of heat transfer through a spherical shell is
constant, but the heat flux ¢ = Q/4wr? is not since it decreases in the direc-
tion of heat transfer with increasing radius as shown in Fig. 2-53.

2-6 = HEAT GENERATION IN A SOLID

Many practical heat transfer applications involve the conversion of some
form of energy into thermal energy in the medium. Such mediums are said to
involve internal heat generation, which manifests itself as a rise in tempera-
ture throughout the medium. Some examples of heat generation are resistance
heating in wires, exothermic chemical reactions in a solid, and nuclear reac-
tions in nuclear fuel rods where electrical, chemical, and nuclear energies
are converted to heat, respectively (Fig. 2-54). The absorption of radiation
throughout the volume of a semitransparent medium such as water can also be
considered as heat generation within the medium, as explained earlier.

Heat generation is usually expressed per unit volume of the medium, and
is denoted by é,.,, whose unit is W/m?. For example, heat generation in an
electrical wire of outer radius r, and length L can be expressed as

. gen, electric 12 e (W/ 3) (2-62)
Coen =, m )
gen Vi wril

wire

where / is the electric current and R, is the electrical resistance of the wire.
The temperature of a medium rises during heat generation as a result of
the absorption of the generated heat by the medium during transient start-up
period. As the temperature of the medium increases, so does the heat transfer
from the medium to its surroundings. This continues until steady operating



conditions are reached and the rate of heat generation equals the rate of heat
transfer to the surroundings. Once steady operation has been established, the
temperature of the medium at any point no longer changes.

The maximum temperature T, in a solid that involves uniform heat genera-
tion occurs at a location farthest away from the outer surface when the outer
surface of the solid is maintained at a constant temperature 7. For example, the
maximum temperature occurs at the midplane in a plane wall, at the centerline
in a long cylinder, and at the midpoint in a sphere. The temperature distribution
within the solid in these cases is symmetrical about the center of symmetry.

The quantities of major interest in a medium with heat generation are the
surface temperature 7, and the maximum temperature 7, that occurs in the
medium in steady operation. Below we develop expressions for these two
quantities for common geometries for the case of uniform heat generation
(€gen = constant) within the medium.

Consider a solid medium of surface area A,, volume V, and constant ther-
mal conductivity k, where heat is generated at a constant rate of é,, per unit
volume. Heat is transferred from the solid to the surrounding medium at 7.,
with a constant heat transfer coefficient of 4. All the surfaces of the solid are
maintained at a common temperature 7,. Under steady conditions, the energy
balance for this solid can be expressed as (Fig. 2-55)

Rate of Rate of
heat transfer | = | energy generation (2-63)
from the solid within the solid
or
Q = égenv (W) (2_64)

Disregarding radiation (or incorporating it in the heat transfer coefficient /),
the heat transfer rate can also be expressed from Newton’s law of cooling as

Q=hA(T,=T) (W) (2-65)

Combining Eqs. 2-64 and 2-65 and solving for the surface temperature 7
gives

gﬂcnv
7, 4 2
} hA,
For a large plane wall of thickness 2L (A, = 2A,,,; and V = 2LA,,,;,) with both
sides of the wall maintained at the same temperature T, a long solid cylinder
of radius r, (A, = 27r,L and V = 7r2L), and a solid sphere of radius r, (A, =
4772 and V = $7r3), Eq. 2-66 reduces to

(2-66)

(I)gsnL
Ts'. plane wall = T% + (2-67)
h
(:)ﬂcﬂr()
Ts cylinder — T”/- + - (2-68)
s, cylinds 2
éﬂ(.‘ﬂr()
1 i (2-69)

s, sphere = [77 3h
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FIGURE 2-55

At steady conditions, the entire heat
generated in a solid must leave the
solid through its outer surface.
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FIGURE 2-56

Heat conducted through a cylindrical
shell of radius r is equal to the heat
generated within a shell.

|
|
|
|
\T,=T
|
|
|
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|

ATmax
.Y T,

s 5
. J/ ! \ T,

Heat generation
I

|
|
l
|
¥ Symmetry
line

FIGURE 2-57

The maximum temperature in

a symmetrical solid with uniform
heat generation occurs at its center.

Note that the rise in surface temperature 7 is due to heat generation in the
solid.

Reconsider heat transfer from a long solid cylinder with heat generation.
We mentioned above that, under steady conditions, the entire heat generated
within the medium is conducted through the outer surface of the cylinder.
Now consider an imaginary inner cylinder of radius r within the cylinder
(Fig. 2-56). Again the heat generated within this inner cylinder must be equal
to the heat conducted through its outer surface. That is, from Fourier’s law of
heat conduction,

—kA, = ¢

= G (2-70)

where A, = 27rrL and V. = 7r2L at any location r. Substituting these expres-
sions into Eq. 2-70 and separating the variables, we get

dT . égen
_k(2’7TI"L) e eo(ern(w-r2 L) — dT = ———rdr
dr © 2%
Integrating from r = 0 where 7(0) = Ty to r = r, where T(r,) = T, yields

> 1,2
€ gen' o

=T, - T = (2-71)
R

where Ty, is the centerline temperature of the cylinder, which is the maximum
temperature, and AT,,,, is the difference between the centerline and the sur-
face temperatures of the cylinder, which is the maximum temperature rise in
the cylinder above the surface temperature. Once AT, is available, the cen-
terline temperature can easily be determined from (Fig. 2-57)

AT,

max, cylinder

Iccnl'cr

= T() = 7& + A]‘mux (2-72)
The approach outlined above can also be used to determine the maximum
temperature rise in a plane wall of thickness 2L with both sides of the wall
maintained at the same temperature 7 and a solid sphere of radius r,, with
these results:

e, L7

ATmu/\. plane wall - \21\ (2—73)
(:)”Cﬂr??

ATmux. sphere - ()/( (2-74)

Again the maximum temperature at the center can be determined from
Eq. 2-72 by adding the maximum temperature rise to the surface temperature
of the solid.

EXAMPLE 2-17 Centerline Temperature of a Resistance Heater

A 2-kW resistance heater wire whose thermal conductivity is kK = 15 W/m-K
has a diameter of D = 4 mm and a length of L = 0.5 m, and is used to boil
water (Fig. 2-58). If the outer surface temperature of the resistance wire is
T, = 105°C, determine the temperature at the center of the wire.
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SOLUTION The center temperature of a resistance heater submerged in water
is to be determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerline and no change in the axial direction. 3 Thermal conductivity is con-
stant. 4 Heat generation in the heater is uniform.

Properties The thermal conductivity is given to be k = 15 W/m-K.

Analysis The 2-kW resistance heater converts electric energy into heat at a
rate of 2 kW. The heat generation per unit volume of the wire is

Epm E 2000 W
. gen gen
- e = 0.318 X 10° W/m?
Cen =y T w2l w(0.002 my(0.5 m) o FIGURE 2-58

. Schematic for Example 2—17.

Then the center temperature of the wire is determined from Eq. 2-71 to be

Coenl s (0.318 X 10° W/m?®)(0.002 m)>
= 105°C + ~ = 126°C
4k 4 X (15 W/m °C)

TOZTS+

Discussion Note that the temperature difference between the center and the
surface of the wire is 21°C. Also, the thermal conductivity units W/m-°C and
W/m-K are equivalent.

We have developed these relations using the intuitive energy balance
approach. However, we could have obtained the same relations by setting
up the appropriate differential equations and solving them, as illustrated in
Examples 2-18 and 2-19.

EXAMPLE 2-18 Variation of Temperature in a Resistance Heater

A long homogeneous resistance wire of radius r, = 0.2 in and thermal conductiv-
ity k = 7.8 Btu/h-ft-°F is being used to boil water at atmospheric pressure by the
passage of electric current, as shown in Fig. 2-59. Heat is generated in the wire
uniformly as a result of resistance heating at a rate of €., = 2400 Btu/h-in3. If
the outer surface temperature of the wire is measured to be T, = 226°F, obtain
a relation for the temperature distribution, and determine the temperature at the
centerline of the wire when steady operating conditions are reached.

SOLUTION This heat transfer problem is similar to the problem in Example 2-17,
except that we need to obtain a relation for the variation of temperature within
the wire with r. Differential equations are well suited for this purpose.
Assumptions 1 Heat transfer is steady since there is no change with time.

2 Heat transfer is one-dimensional since there is no thermal symmetry about 0+_
the centerline and no change in the axial direction. 3 Thermal conductivity is |
constant. 4 Heat generation in the wire is uniform. e
Properties The thermal conductivity is given to be k = 7.8 Btu/h-ft-°F. |
Analysis The differential equation which governs the variation of temperature i
in the wire is simply Eq. 2-27, |

1
Water 226°F
| e
1
1

Ld( dT\ 4=
rar\"ar) "k FIGURE 2-59
Schematic for Example 2—18.
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| aro) _
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FIGURE 2-60

The thermal symmetry condition
at the centerline of a wire in which
heat is generated uniformly.

This is a second-order linear ordinary differential equation, and thus its gen-
eral solution contains two arbitrary constants. The determination of these con-
stants requires the specification of two boundary conditions, which can be
taken to be

T(r,) = T, = 226°F

and

dr0)
ar 0

The first boundary condition simply states that the temperature of the outer
surface of the wire is 226°F. The second boundary condition is the symmetry
condition at the centerline, and states that the maximum temperature in the
wire occurs at the centerline, and thus the slope of the temperature at r = O
must be zero (Fig. 2-60). This completes the mathematical formulation of the
problem.

Although not immediately obvious, the differential equation is in a form that
can be solved by direct integration. Multiplying both sides of the equation by
rand rearranging, we obtain

d(dT)__égen
i\ K

Integrating with respect to r gives

—+ C, (a)

since the heat generation is constant, and the integral of a derivative of a func-
tion is the function itself. That is, integration removes a derivative. It is conve-
nient at this point to apply the second boundary condition, since it is related
to the first derivative of the temperature, by replacing all occurrences of r and
dT/drin Eq. (a) by zero. It yields

dT(0)  €gen

0 X
dr 2k

X0+C, —» C =0

Thus C; cancels from the solution. We now divide Eq. (a) by rto bring it to a
readily integrable form,

dT égen

@ _ 7
dr 2k

Again integrating with respect to r gives

e gen

4k

T(r) = — 72 4 C (b)

We now apply the first boundary condition by replacing all occurrences of r by
rp and all occurrences of T by T,. We get

egen r2
4k °

een
TS:—4g—kr§+C2 - G =T+




Substituting this C, relation into Eq. (b) and rearranging give
T(r) =T, + E % —r? (c)
N 4k o0
which is the desired solution for the temperature distribution in the wire as a

function of r. The temperature at the centerline (r = Q) is obtained by replac-
ing rin Eq. (¢) by zero and substituting the known quantities,

T0) = T, +

Cgen 2400 Btu/h-in’ (12 in

2 = 206°F + > 0.2 in)® = 263°F
4k o 4 x (7.8 BuhfeoR) \ 11 )02

Discussion The temperature of the centerline is 37°F above the temperature
of the outer surface of the wire. Note that the expression above for the center-
line temperature is identical to Eq. 2-71, which was obtained using an energy
balance on a control volume.

EXAMPLE 2-19 Heat Conduction in a Two-Layer Medium

Consider a long resistance wire of radius r; = 0.2 cm and thermal conductivity
Kyie = 15 W/m-K in which heat is generated uniformly as a result of resistance
heating at a constant rate of €., = 50 W/cm3 (Fig. 2-61). The wire is embed-
ded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is A.eramic =
1.2 W/m-K. If the outer surface temperature of the ceramic layer is measured to
be T, = 45°C, determine the temperatures at the center of the resistance wire
and the interface of the wire and the ceramic layer under steady conditions.

SOLUTION The surface and interface temperatures of a resistance wire cov-
ered with a ceramic layer are to be determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since this two-layer heat transfer problem
possesses symmetry about the centerline and involves no change in the axial
direction, and thus T = T(r). 3 Thermal conductivities are constant. 4 Heat
generation in the wire is uniform.

Properties 1t is given that k. = 15 W/m-K and k.eramic = 1.2 W/m-K.
Analysis Letting T, denote the unknown interface temperature, the heat trans-
fer problem in the wire can be formulated as

1 dTwir éen
)

rdr dr k
with
Twire(rl) = TI
dTwire(O)
—= =0
dr

This problem was solved in Example 2-18, and its solution was determined
to be

egen

4k

wire

Twire(r) = TI + (r% - r2) (a)
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Interface

Ceramic layer

FIGURE 2-61
Schematic for Example 2—-19.
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Noting that the ceramic layer does not involve any heat generation and its
outer surface temperature is specified, the heat conduction problem in that

layer can be expressed as
d cheramic
4 (Mo )~
dr dr

Tceramic (rl) = TI
Tceramic (7’2) = Ts = 4d5C

with

This problem was solved in Example 2-16, and its solution was determined
to be

In(7/r,)
T.. . =
ceramic (r) ]n(rz/rl)

(T,—T) + T, (h)

We have already utilized the first interface condition by setting the wire and
ceramic layer temperatures equal to 7, at the interface r = r;. The interface
temperature T, is determined from the second interface condition that the heat
flux in the wire and the ceramic layer at r = r; must be the same:

dTwire (rl) cheramic (rl) ég"«ﬂrl Ts - TI < 1 >
~ Rwire = ~Keeramic g = _kceramic o
dr dr 2 In(r,/r))

r

Solving for T, and substituting the given values, the interface temperature is
determined to be

5 2
€ .. 7.
gen” 1 p)
Ti=——In—+T
1 2k s

ceramic r

_ (50 X 10° Wn)(0.002 m)? 0007 m
- 2(1.2 WimK) 10.002m

+ 45°C = 149.4°C

Knowing the interface temperature, the temperature at the centerline (r = 0)
is obtained by substituting the known quantities into Eqg. (a),

Egenl T (50 X 10° W/m?)(0.002 m)?
= 149.4°C + =152.7°C
4 X (15 W/mK)

Twire (O) = Tl +

wire

Thus the temperature of the centerline is slightly above the interface
temperature.
Discussion This example demonstrates how steady one-dimensional heat
conduction problems in composite media can be solved. We could also solve
this problem by determining the heat flux at the interface by dividing the total
heat generated in the wire by the surface area of the wire, and then using this
value as the specified heat flux boundary condition for both the wire and the
ceramic layer. This way the two problems are decoupled and can be solved
separately.



EXAMPLE 2-20 Heat Conduction in a Plane Wall with Heat

Generation

A large plane wall of thickness 2L experiences a uniform heat generation
(Fig. 2—62). Determine the expression for the variation of temperature within
the wall, if (a) T, > T,and (b) T} = T>.

SOLUTION A large plane wall experiences a uniform heat generation. The
expressions for the variation of temperature within the wall for 7, > T, and
T, = T, are to be determined.

Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-dimensional.
3 Thermal conductivity is constant. 4 Heat generation is uniform.

Analysis We begin with the general heat conduction equation for rectangular

coordinates,
a( oT a( oT a( oT oT
7(](7) + 7(,67) + 7(](7) + é,,, = pc —
ox\ ox ay\ ay az\ 9z g ot

For steady one-dimensional heat conduction and constant thermal conductiv-
ity, the general heat conduction equation is simplified to

T
dx? k

=0

Integrating twice gives the general solution to this second order differential
equation as

égen 2
T(x) = —Ex + Cix + G,

(a) For the case of asymmetrical boundary conditions with 7; > T,, applying
the boundary conditions gives

éCl"l
x=-L: T-L)=T,=- ;kLZ - CL+C,
égen
x=1L: L)=T1T,=——1+CL+ C,

2k
Note that in this problem the coordinate system is placed at the middle of the
plane wall (x = 0) and x to the right of the centerline is considered positive and
to the left negative. In analyzing plane wall problems with heat generation, this
notation is usually adopted in order to better capture the effect of heat genera-
tion on the temperature profile. Solving for the constants C; and C, yields

T, - T,
2L

T, + T,
2

— ége“ 2
and C, = 2kL +

C, =

Substituting C; and C, expressions into the general solution, the variation of
temperature within the wall is determined to be

"

égeuL_ )C2 TZ - Tl X Tl aF T—,
T(x) = == & =)+ : @
2k It 2 IL 2
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FIGURE 2-62
Schematic for Example 2-20.
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Variation of the thermal conductivity

of some solids with temperature.

(b) For the case of symmetrical boundary conditions, substituting 7, = T;. into
the above equation gives

é"cn]‘z .)CZ
T(x) = — l1—-=]+T b
)=~ < L2> ! @

Discussion Equation (a) shows that the variation of temperature within the
wall for the case of asymmetrical boundary conditions with 7; > T, is not sym-
metric and the maximum temperature occurs to the left of the centerline. Note
that Eq. (a) reduces to the temperature solution of Example 2-10 (Eq. 2-56)
for heat conduction in a plane wall with no heat generation by setting ¢, = 0
and making the appropriate coordinate transformation. In the case of symmet-
rical boundary conditions (T; = T,), Eq. (b) shows that the variation of tem-
perature within the wall is symmetric and the maximum temperature occurs at
the centerline. This is comparable to the results shown in Example 2-17 for
temperature variation in a cylindrical resistance heater.

2-7 = VARIABLE THERMAL CONDUCTIVITY, A(T)

You will recall from Chapter 1 that the thermal conductivity of a material, in
general, varies with temperature (Fig. 2-63). However, this variation is mild
for many materials in the range of practical interest and can be disregarded.
In such cases, we can use an average value for the thermal conductivity and
treat it as a constant, as we have been doing so far. This is also common
practice for other temperature-dependent properties such as the density and
specific heat.

When the variation of thermal conductivity with temperature in a specified
temperature interval is large, however, it may be necessary to account for this
variation to minimize the error. Accounting for the variation of the thermal
conductivity with temperature, in general, complicates the analysis. But in the
case of simple one-dimensional cases, we can obtain heat transfer relations in
a straightforward manner.

When the variation of thermal conductivity with temperature k(7) is known,
the average value of the thermal conductivity in the temperature range be-
tween 7T, and T, can be determined from

T,
j k(T)dT
Tl

ko =—" 2-75
w= 77 (2-75)

This relation is based on the requirement that the rate of heat transfer through
a medium with constant average thermal conductivity k,,, equals the rate of
heat transfer through the same medium with variable conductivity k(7). Note
that in the case of constant thermal conductivity k(7) = k, Eq. 2-75 reduces
to k,,= k, as expected.

Then the rate of steady heat transfer through a plane wall, cylindrical layer, or
spherical layer for the case of variable thermal conductivity can be determined



by replacing the constant thermal conductivity k in Eqs. 2-57, 259, and 2-61
by the k,,, expression (or value) from Eq. 2-75:

. T,—T, A"
Qphmc wall — ku\sA = k(T)dT (2-76)
e L L,
: -7, 2mL ("
leindtr = 277]‘,11\" L = ]\(1)(]1 (2—77)
’ ° In(r/r)  In(ryfry) Jp,
. T, — T, 4arrr, h
Qsphcrc - 47T/\vu\grlrl r.— I" - r.— I: /\(T)(ZT (2-78)
2 1 2 1 )

The variation in thermal conductivity of a material with temperature in the
temperature range of interest can often be approximated as a linear function
and expressed as

k(T) = ky(1 + BT) (2-79)

where S is called the temperature coefficient of thermal conductivity. The
average value of thermal conductivity in the temperature range 7 to 75 in this
case can be determined from

T,
J ko(1 + BT)dT

T,

avg = T2 _ Tl

T, + T,

k

= ko(l + B ) = k(T,) (2-80)

Note that the average thermal conductivity in this case is equal to the ther-
mal conductivity value at the average temperature.

We have mentioned earlier that in a plane wall the temperature varies
linearly during steady one-dimensional heat conduction when the thermal
conductivity is constant. But this is no longer the case when the thermal con-
ductivity changes with temperature, even linearly, as shown in Fig. 2—64.

EXAMPLE 2-21 Variation of Temperature in a Wall with A(T)

Consider a plane wall of thickness L whose thermal conductivity varies linearly
in a specified temperature range as k(7) = ky(1 + BT) where ky and B are con-
stants. The wall surface at x = O is maintained at a constant temperature of T;
while the surface at x = L is maintained at T,, as shown in Fig. 2-65. Assuming
steady one-dimensional heat transfer, obtain a relation for (a) the heat transfer
rate through the wall and (b) the temperature distribution 7(x) in the wall.

SOLUTION A plate with variable conductivity is subjected to specified tem-
peratures on both sides. The variation of temperature and the rate of heat
transfer are to be determined.

Assumptions 1 Heat transfer is given to be steady and one-dimensional.
2 Thermal conductivity varies linearly. 3 There is no heat generation.
Properties The thermal conductivity is given to be k(T) = ky(1 + BT).
Analysis (a) The rate of heat transfer through the wall can be determined from

I, - T,
L

Q = kang
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FIGURE 2-64

The variation of temperature in a plane
wall during steady one-dimensional
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thermal conductivity.
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0 L x
FIGURE 2-65

Schematic for Example 2-21.
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where A is the heat conduction area of the wall and
Ty 4= Ty
kavg = k(Tavg) = kO L+ BT

is the average thermal conductivity (Eq. 2-80).
(b) To determine the temperature distribution in the wall, we begin with Fourier's
law of heat conduction, expressed as

) = kDAL
U= dx

where the rate of conduction heat transfer 0 and the area A are constant.
Separating variables and integrating from x = O where T(0) = T, to any x
where T(x) = T, we get

5% T

J Qdx = —AJ KT)dT

0 T,

Substituting k(T) = k(1 + BT) and performing the integrations we obtain
Ox = —Ak[(T = T)) + B(T* — T}12]

Substituting the O expression from part (a) and rearranging give

palpyBemr g gy p 2p_g

B Bko L 1 2 1 ,B 1
which is a quadratic equation in the unknown temperature T. Using the qua-
dratic formula, the temperature distribution 7(x) in the wall is determined to be

1 1 2ku\'g X o 2
Tx)= ——=* /> — —(T, - Ty + Ty + —T,
B B Bky L B

Discussion The proper sign of the square root term (+ or —) is determined
from the requirement that the temperature at any point within the medium
must remain between T; and T,. This result explains why the temperature
distribution in a plane wall is no longer a straight line when the thermal con-
ductivity varies with temperature.

KT) =ko(1 +BT) . . -
f EXAMPLE 2-22 Heat Conduction through a Wall with k(T) u
m
B;{’;:e Consider a 2-m-high and 0.7-m-wide bronze plate whose thickness is 0.1 m. =
One side of the plate is maintained at a constant temperature of 600 K while :
the other side is maintained at 400 K, as shown in Fig. 2-66. The thermal =
f’ 4\ conductivity of the bronze plate can be assumed to vary linearly in that tem- =
Ty =600K T,=400K perature range as k(T) = ky(1 + BT) where ky = 38 W/m-K and g = 9.21 X o
. 104 K~1. Disregarding the edge effects and assuming steady one-dimensional =
— 0 heat transfer, determine the rate of heat conduction through the plate. =
<L SOLUTION A plate with variable conductivity is subjected to specified tem-
peratures on both sides. The rate of heat transfer is to be determined.
FIGURE 2-66 Assumptions 1 Heat transfer is given to be steady and one-dimensional.
Schematic for Example 2-22. 2 Thermal conductivity varies linearly. 3 There is no heat generation.



Properties The thermal conductivity is given to be k(T) = k(1 + BT).
Analysis The average thermal conductivity of the medium in this case is
simply the value at the average temperature and is determined from

T, + T,
kavg = k(Tavg) = kO I+ BT

(600 + 400) K
= B8 W/mK)| 1+ (921 X 107K ———————

= 55.5 W/m-K

Then the rate of heat conduction through the plate can be determined from
Eq. 2-76 to be

_T2

. T,
Q = kang T

(600 — 400)K
= (55.5 W/m-K)(2m X 0.7 m) T olm = 155 kW
1 m

Discussion We would have obtained the same result by substituting the given
k(T) relation into the second part of Eq. 2-76 and performing the indicated
integration.

TOPIC OF SPECIAL INTEREST*
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A Brief Review of Differential Equations

As we mentioned in Chapter 1, the description of most scientific problems
involves relations that involve changes in some key variables with respect
to each other. Usually the smaller the increment chosen in the changing
variables, the more general and accurate the description. In the limiting
case of infinitesimal or differential changes in variables, we obtain dif-
ferential equations, which provide precise mathematical formulations for
the physical principles and laws by representing the rates of change as
derivatives. Therefore, differential equations are used to investigate a wide
variety of problems in sciences and engineering, including heat transfer.
Differential equations arise when relevant physical laws and principles are
applied to a problem by considering infinitesimal changes in the variables of
interest. Therefore, obtaining the governing differential equation for a spe-
cific problem requires an adequate knowledge of the nature of the problem,
the variables involved, appropriate simplifying assumptions, and the appli-
cable physical laws and principles involved, as well as a careful analysis.
An equation, in general, may involve one or more variables. As the name
implies, a variable is a quantity that may assume various values during a
study. A quantity whose value is fixed during a study is called a constant.
Constants are usually denoted by the earlier letters of the alphabet such as
a, b, ¢, and d, whereas variables are usually denoted by the later ones such

*This section can be skipped without a loss in continuity.



116
HEAT CONDUCTION EQUATION
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FIGURE 2-67

The derivative of a function at a point
represents the slope of the tangent
line of the function at that point.

X

FIGURE 2-68
Graphical representation
of partial derivative dz/dx.

as t, x,y, and z. A variable whose value can be changed arbitrarily is called
an independent variable (or argument). A variable whose value depends
on the value of other variables and thus cannot be varied independently is
called a dependent variable (or a function).

A dependent variable y that depends on a variable x is usually denoted as
y(x) for clarity. However, this notation becomes very inconvenient and cum-
bersome when y is repeated several times in an expression. In such cases it
is desirable to denote y(x) simply as y when it is clear that y is a function
of x. This shortcut in notation improves the appearance and the readability
of the equations. The value of y at a fixed number a is denoted by y(a).

The derivative of a function y(x) at a point is equivalent to the slope of
the tangent line to the graph of the function at that point and is defined as
(Fig. 2-67)

Cdyx) Ay oy + Ax) — y(x)
= = lim —= lim ———@M@M8M8™

dx Ax—0 Ax Ax—0 Ax

y'(x) (2-81)

Here Ax represents a (small) change in the independent variable x and is
called an increment of x. The corresponding change in the function y is
called an increment of y and is denoted by Ay. Therefore, the derivative of
a function can be viewed as the ratio of the increment Ay of the function to
the increment Ax of the independent variable for very small Ax. Note that
Ay and thus y’(x) are zero if the function y does not change with x.

Most problems encountered in practice involve quantities that change
with time ¢, and their first derivatives with respect to time represent the rate
of change of those quantities with time. For example, if N(¢) denotes the
population of a bacteria colony at time 7, then the first derivative N' = dN/dt
represents the rate of change of the population, which is the amount the
population increases or decreases per unit time.

The derivative of the first derivative of a function y is called the second
derivative of y, and is denoted by y” or d?y/dx?. In general, the derivative
of the (n — 1)st derivative of y is called the nth derivative of y and is de-
noted by y™ or d"y/dx". Here, n is a positive integer and is called the order
of the derivative. The order n should not be confused with the degree of a
derivative. For example, y" is the third-order derivative of y, but (y")3 is
the third degree of the first derivative of y. Note that the first derivative of
a function represents the slope or the rate of change of the function with
the independent variable, and the second derivative represents the rate of
change of the slope of the function with the independent variable.

When a function y depends on two or more independent variables such as
x and ¢, it is sometimes of interest to examine the dependence of the func-
tion on one of the variables only. This is done by taking the derivative of the
function with respect to that variable while holding the other variables con-
stant. Such derivatives are called partial derivatives. The first partial deriv-
atives of the function y(x, ) with respect to x and ¢ are defined as (Fig. 2—68)

) x + Ax, 1) — y(x, t
S ad (2-82)
ox  Ax—0 Ax




ay .yt + A — y(x, 1)
= lim

—_ = 2_
o A Ar (2-83)

Note that when finding dy/dx we treat ¢ as a constant and differentiate y
with respect to x. Likewise, when finding dy/dt we treat x as a constant and
differentiate y with respect to 7.

Integration can be viewed as the inverse process of differentiation.
Integration is commonly used in solving differential equations since solv-
ing a differential equation is essentially a process of removing the deriva-
tives from the equation. Differentiation is the process of finding y’(x) when
a function y(x) is given, whereas integration is the process of finding the
function y(x) when its derivative y’(x) is given. The integral of this deriva-
tive is expressed as

f v (x)dx = de =yx) + C (2-84)

since y'(x)dx = dy and the integral of the differential of a function is the
function itself (plus a constant, of course). In Eq. 2—84, x is the integration
variable and C is an arbitrary constant called the integration constant.

The derivative of y(x) + C is y’(x) no matter what the value of the con-
stant C is. Therefore, two functions that differ by a constant have the same
derivative, and we always add a constant C during integration to recover
this constant that is lost during differentiation. The integral in Eq. 2—84
is called an indefinite integral since the value of the arbitrary constant
C is indefinite. The described procedure can be extended to higher-order
derivatives (Fig. 2-69). For example,

Jy”(x)dx =y'@®+C (2-85)

This can be proved by defining a new variable u(x) = y’(x), differentiating
it to obtain u'(x) = y"(x), and then applying Eq. 2-84. Therefore, the order
of a derivative decreases by one each time it is integrated.

Classification of Differential Equations

A differential equation that involves only ordinary derivatives is called an
ordinary differential equation, and a differential equation that involves
partial derivatives is called a partial differential equation. Then it fol-
lows that problems that involve a single independent variable result in
ordinary differential equations, and problems that involve two or more
independent variables result in partial differential equations. A differential
equation may involve several derivatives of various orders of an unknown
function. The order of the highest derivative in a differential equation is the
order of the equation. For example, the order of y” + (y")* = 7x7 is 3 since
it contains no fourth or higher order derivatives.

You will remember from algebra that the equation 3x — 5 = 0 is much
easier to solve than the equation x* + 3x — 5 = 0 because the first equa-
tion is linear whereas the second one is nonlinear. This is also true for
differential equations. Therefore, before we start solving a differential
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Some indefinite integrals
that involve derivatives.
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A differential equation that is

(a) nonlinear and (b) linear. When
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the dependent variable only.
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(a) With constant coefficients:

Yy’ + 6y’ — 2y = xe ¥

Constant

(b) With variable coefficients:

” ’ 2 )
—6x2y - —= _y = &
y ATy - =gy = xe

\/

Variable

FIGURE 2-71

A differential equation with
(a) constant coefficients and
(b) variable coefficients.

equation, we usually check for linearity. A differential equation is said to
be linear if the dependent variable and all of its derivatives are of the first
degree and their coefficients depend on the independent variable only. In
other words, a differential equation is linear if it can be written in a form
that does not involve (1) any powers of the dependent variable or its de-
rivatives such as y* or (y’)?, (2) any products of the dependent variable or
its derivatives such as yy’ or y'y"’, and (3) any other nonlinear functions of
the dependent variable such as sin y or €. If any of these conditions apply,
it is nonlinear (Fig. 2-70).

A linear differential equation, however, may contain (1) powers or
nonlinear functions of the independent variable, such as x> and cos x
and (2) products of the dependent variable (or its derivatives) and func-
tions of the independent variable, such as x*y’, x?y, and e=>*y". A linear dif-
ferential equation of order n can be expressed in the most general form as

YO+ AT TD e+ (Y + £y = R() (2-86)
A differential equation that cannot be put into this form is nonlinear. A
linear differential equation in y is said to be homogeneous as well if
R(x) = 0. Otherwise, it is nonhomogeneous. That is, each term in a lin-
ear homogeneous equation contains the dependent variable or one of its
derivatives after the equation is cleared of any common factors. The term
R(x) is called the nonhomogeneous term.

Differential equations are also classified by the nature of the coefficients
of the dependent variable and its derivatives. A differential equation is said
to have constant coefficients if the coefficients of all the terms that involve
the dependent variable or its derivatives are constants. If, after clearing
any common factors, any of the terms with the dependent variable or its
derivatives involve the independent variable as a coefficient, that equation
is said to have variable coefficients (Fig. 2—71). Differential equations with
constant coefficients are usually much easier to solve than those with vari-
able coefficients.

Solutions of Differential Equations

Solving a differential equation can be as easy as performing one or
more integrations; but such simple differential equations are usually the
exception rather than the rule. There is no single general solution method
applicable to all differential equations. There are different solution tech-
niques, each being applicable to different classes of differential equations.
Sometimes solving a differential equation requires the use of two or more
techniques as well as ingenuity and mastery of solution methods. Some
differential equations can be solved only by using some very clever tricks.
Some cannot be solved analytically at all.

In algebra, we usually seek discrete values that satisfy an algebraic equa-
tion such as x> — 7x — 10 = 0. When dealing with differential equations,
however, we seek functions that satisfy the equation in a specified interval.
For example, the algebraic equation x> — 7x — 10 = 0 is satisfied by two



numbers only: 2 and 5. But the differential equation y’ — 7y = 0 is satis-
fied by the function ¢’ for any value of x (Fig. 2-72).

Consider the algebraic equation x> — 6x> + 11x — 6 = 0. Obviously,
x = 1 satisfies this equation, and thus it is a solution. However, it is not
the only solution of this equation. We can easily show by direct substitu-
tion that x = 2 and x = 3 also satisfy this equation, and thus they are solu-
tions as well. But there are no other solutions to this equation. Therefore,
we say that the set 1, 2, and 3 forms the complete solution to this algebraic
equation.

The same line of reasoning also applies to differential equations. Typi-
cally, differential equations have multiple solutions that contain at least
one arbitrary constant. Any function that satisfies the differential equa-
tion on an interval is called a solution of that differential equation in
that interval. A solution that involves one or more arbitrary constants
represents a family of functions that satisfy the differential equation and
is called a general solution of that equation. Not surprisingly, a dif-
ferential equation may have more than one general solution. A general
solution is usually referred to as the general solution or the complete
solution if every solution of the equation can be obtained from it as a
special case. A solution that can be obtained from a general solution by
assigning particular values to the arbitrary constants is called a specific
solution.

You will recall from algebra that a number is a solution of an algebraic
equation if it satisfies the equation. For example, 2 is a solution of the
equation x> — 8 = 0 because the substitution of 2 for x yields identically
zero. Likewise, a function is a solution of a differential equation if that
function satisfies the differential equation. In other words, a solution func-
tion yields identity when substituted into the differential equation. For
example, it can be shown by direct substitution that the function 3e > is a
solution of y" — 4y = 0 (Fig. 2-73).

General Solution to Selected Differential
Equations

This section provides general solution to the differential equations pre-
sented in Chapters 2 and 3. First the general solution to the one-dimensional
steady-state, constant properties heat conduction equations with and with-
out heat generation in three coordinate systems (rectangular, cylindrical,
and spherical) presented in Chapter 2 are listed, followed by the general
solution to the fin and the bioheat transfer equations of Chapter 3.

 1-D steady state heat conduction equation with constant heat generation—
rectangular coordinates (Eq. 2-15)

d?y
2 is=-0
dx?

. 1
Solution: y(x) = C,x + C, — Esz
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&

(a) An algebraic equation:
y2-7y-10=0
Solution: y =2 and y = 5
(b) A differential equation:

Y =Ty=0
Solution: y = e'*

FIGURE 2-72

Unlike those of algebraic equations,
the solutions of differential equations
are typically functions instead

of discrete values.

Function: f = 3¢
Differential equation: y” —4y =0

Derivatives of f:
=6
fr=12e%

Substituting into y” — 4y = 0:
f7—4F20
1267 -4 %3220
0=0

fore, the function 3¢ is a solution

ifferential equation y” — 4y = 0.

_J

FIGURE 2-73
Verifying that a given function is a
solution of a differential equation.
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e 1-D steady state heat conduction equation without heat generation—
rectangular coordinates (Eq. 2—17)
d2
7)2’ =0
dx
Solution: y(x) = Cix + C,

 1-D steady state heat conduction equation with constant heat generation—
cylindrical coordinates (Eq. 2-27)

1d{ dy
- == —+ =]
rdr<rdr> §=0

- 1
Solution: y(r) = Cjlnr + C, — Zsﬂ

e 1-D steady state heat conduction equation without heat generation—
cylindrical coordinates (Eq. 2-29)

ld( dy)
—\r— | =0
rdr\ dr

Solution: y(r) = Cilnr + C,

 1-D steady state heat conduction equation with constant heat generation—
spherical coordinates (Eq. 2-32)

d
li<21)+5:0

r* dr " dr
. C, 1
Solution: y(r) = -t C, — gS”z

e 1-D steady state heat conduction equation without heat generation—
spherical coordinates (Eq. 2-34)

d dy
el I BC
dr(r dr> 0

* 1-D steady-state fin or bioheat transfer equations for uniform cross section
with constant coefficients—rectangular coordinates (Eq. 3-56 or Eq. 3-88)
d*y

ae " =0

. G
Solution: y(r) = - + G

Solution: y(x) = Cie*™ + Cye™
* Modified Bessel equation of order zero with constant coefficients
(bioheat transfer equation)—cylindrical coordinates (Eq. 3—90)

1d dy N
rdr<r ) By =0

Solution: y(r) = C,I(Br) + C,Ky(Br)
where /; and K|, are modified, zero-order Bessel functions of the first and
second kinds, respectively. The values of /, and K, are given in Table 3—4.



CHAPTER 2

SUMMARY

In this chapter we have studied the heat conduction equation and
its solutions. Heat conduction in a medium is said to be steady
when the temperature does not vary with time and unsteady or
transient when it does. Heat conduction in a medium is said
to be one-dimensional when conduction is significant in one
dimension only and negligible in the other two dimensions. It is
said to be two-dimensional when conduction in the third dimen-
sion is negligible and three-dimensional when conduction in all
dimensions is significant. In heat transfer analysis, the conver-
sion of electrical, chemical, or nuclear energy into heat (or ther-
mal) energy is characterized as heat generation.

The heat conduction equation can be derived by performing
an energy balance on a differential volume element. The one-
dimensional heat conduction equation in rectangular, cylindri-
cal, and spherical coordinate systems for the case of constant
thermal conductivities are expressed as
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where the property o = k/pc is the thermal diffusivity of the
material.

The solution of a heat conduction problem depends on the
conditions at the surfaces, and the mathematical expressions
for the thermal conditions at the boundaries are called the
boundary conditions. The solution of transient heat conduction
problems also depends on the condition of the medium at the
beginning of the heat conduction process. Such a condition,
which is usually specified at time ¢ = 0, is called the initial
condition, which is a mathematical expression for the tem-
perature distribution of the medium initially. Complete math-
ematical description of a heat conduction problem requires
the specification of two boundary conditions for each dimen-
sion along which heat conduction is significant, and an initial
condition when the problem is transient. The most common
boundary conditions are the specified temperature, specified
heat flux, convection, and radiation boundary conditions. A
boundary surface, in general, may involve specified heat flux,
convection, and radiation at the same time.

For steady one-dimensional heat transfer through a plate of
thickness L, the various types of boundary conditions at the
surfaces at x = 0 and x = L can be expressed as

Specified temperature:

T0)=T7T, and TWL)=T,

where T, and T, are the specified temperatures at surfaces at
x=0andx = L.

Specified heat flux:
Ao AT
A qo  an de qrL

where ¢, and ¢, are the specified heat fluxes at surfaces at
x=0andx =L

Insulation or thermal symmetry:

ar0y dr(L) 0
dx an dx
Convection:
dT(0) dT(L)
—k——=n[T.,, —TO)] and —k——=h[T(L) — T.,]
dx dx

where i, and h, are the convection heat transfer coefficients
and T, and T, are the temperatures of the surrounding medi-
ums on the two sides of the plate.

Radiation:

daT(o
—k di() = 8I(T[Tiurr,l - T(0)4] and
X

dT(L
—k ( ) = 820-[T(L)4 - Tiurr 2]
dx ’

where g, and &, are the emissivities of the boundary surfaces,
o = 5.67 X 1078 W/m%K* is the Stefan—Boltzmann constant,
and Ty,  and Ty, , are the average temperatures of the sur-
faces surrounding the two sides of the plate. In radiation calcu-
lations, the temperatures must be in K or R.

Interface of two bodies A and B in perfect contact at x = X

dr, Gy _ | dT, ()

T, (xp) = Tp (xp) and —ky dx BTy

where k, and kjz are the thermal conductivities of the layers
A and B.

Heat generation is usually expressed per unit volume of the
medium and is denoted by €,.,, whose unit is W/m?®. Under
steady conditions, the surface temperature T, of a plane wall
of thickness 2L, a cylinder of outer radius r,, and a sphere
of radius r, in which heat is generated at a constant rate of
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€4en PET UNit volume in a surrounding medium at 7., can be
expressed as

egenL
Ts, plane wall — Tw
egenr o
Ts, cylinder Toc + 2%
egenr o
Ts, sphere Tw + 3h

where £ is the convection heat transfer coefficient. The maxi-
mum temperature rise between the surface and the midsection
of a medium is given by

ATmax, plane wall = 2%k

gen' o
ATmax, cylinder — 4k
2
r
gen' o
ATmax, sphere 6k

When the variation of thermal conductivity with temperature
k(T') is known, the average value of the thermal conductivity in
the temperature range between 7, and T, can be determined from

TZ
J k(TYdT
P
avg T2 _ T1

Then the rate of steady heat transfer through a plane wall, cy-
lindrical layer, or spherical layer can be expressed as

. T,—T, A"

Qplane wall = kang T = Z A k(TdT

O = 2kl 12 2L Jle(T)dT
eytinder = <M Have In(ry/r))  In(ry/r) Jp,
. - TI—T2_47Tr1r2JT‘deT
Copere = k17 oo 7, @

The variation of thermal conductivity of a material with tem-
perature can often be approximated as a linear function and
expressed as

k(T) = ko(1 + BT)

where B is called the temperature coefficient of thermal
conductivity.
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PROBLEMS*

Introduction

2—-1C How does transient heat transfer differ from steady
heat transfer? How does one-dimensional heat transfer differ
from two-dimensional heat transfer?

2-2C Ts heat transfer a scalar or vector quantity? Explain.
Answer the same question for temperature.

2-3C Does a heat flux vector at a point P on an isothermal
surface of a medium have to be perpendicular to the surface at
that point? Explain.

*Problems designated by a “C” are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon % are solved using EES, and the complete
solutions together with parametric studies are included on the text
website. Problems with the icon & are comprehensive in nature,
and are intended to be solved with an equation solver such as EES.
Problems with the icon ¥ are Prevention through Design problems.

2-4C From a heat transfer point of view, what is the differ-
ence between isotropic and anisotropic materials?

2-5C What is heat generation in a solid? Give examples.

2-6C Heat generation is also referred to as energy genera-
tion or thermal energy generation. What do you think of these
phrases?

2-7C 1In order to size the compressor of a new refrigerator,
it is desired to determine the rate of heat transfer from the
kitchen air into the refrigerated space through the walls, door,
and the top and bottom section of the refrigerator. In your
analysis, would you treat this as a transient or steady-state heat
transfer problem? Also, would you consider the heat transfer
to be one-dimensional or multidimensional? Explain.

2-8C 1In order to determine the size of the heating element
of a new oven, it is desired to determine the rate of heat loss
through the walls, door, and the top and bottom section of the
oven. In your analysis, would you consider this to be a steady



or transient heat transfer problem? Also, would you consider
the heat transfer to be one-dimensional or multidimensional?
Explain.

2-9C Consider a round potato being baked in an oven. Would
you model the heat transfer to the potato as one-, two-, or
three-dimensional? Would the heat transfer be steady or tran-
sient? Also, which coordinate system would you use to solve
this problem, and where would you place the origin? Explain.

2-10C Consider an egg being cooked in boiling water in a
pan. Would you model the heat transfer to the egg as one-, two-,
or three-dimensional? Would the heat transfer be steady or tran-
sient? Also, which coordinate system would you use to solve
this problem, and where would you place the origin? Explain.

2-11C Consider a hot dog being cooked in boiling water in a
pan. Would you model the heat transfer to the hot dog as one-,
two-, or three-dimensional? Would the heat transfer be steady or
transient? Also, which coordinate system would you use to solve
this problem, and where would you place the origin? Explain.

l _ Boiling water . |{

FIGURE P2-11C

2-12C Consider the cooking process of a roast beef in an
oven. Would you consider this to be a steady or transient heat
transfer problem? Also, would you consider this to be one-,
two-, or three-dimensional? Explain.

2-13C Consider heat loss from a 200-L cylindrical hot wa-
ter tank in a house to the surrounding medium. Would you
consider this to be a steady or transient heat transfer problem?
Also, would you consider this heat transfer problem to be one-,
two-, or three-dimensional? Explain.

2-14C Consider a cold canned drink left on a dinner table.
Would you model the heat transfer to the drink as one-, two-,
or three-dimensional? Would the heat transfer be steady or
transient? Also, which coordinate system would you use to
analyze this heat transfer problem, and where would you place
the origin? Explain.

2—15 Heat flux meters use a very sensitive device known as
a thermopile to measure the temperature difference across a
thin, heat conducting film made of kapton (k = 0.345 W/m-K).
If the thermopile can detect temperature differences of 0.1°C
or more and the film thickness is 2 mm, what is the minimum
heat flux this meter can detect? Answer: 17.3 W/m?
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2-16 Consider a large 3-cm-thick stainless steel plate in
which heat is generated uniformly at a rate of 5 X 105 W/m?.
Assuming the plate is losing heat from both sides, deter-
mine the heat flux on the surface of the plate during steady
operation. Answer: 75 kW/m?

2-17 1In a nuclear reactor, heat is generated uniformly in the
5-cm-diameter cylindrical uranium rods at arate of 2 X 108 W/m?.
If the length of the rods is 1 m, determine the rate of heat gen-
eration in each rod. Answer: 393 kW

2-18 1In a solar pond, the absorption of solar energy can
be modeled as heat generation and can be approximated by
€gen = €9 €™, where € is the rate of heat absorption at the top
surface per unit volume and b is a constant. Obtain a relation
for the total rate of heat generation in a water layer of surface
area A and thickness L at the top of the pond.

Radiation
beam being
absorbed

FIGURE P2-18

2—-19E The resistance wire of an 800-W iron is 15 in long and
has a diameter of D = 0.08 in. Determine the rate of heat gen-
eration in the wire per unit volume, in Btu/h-ft®, and the heat
flux on the outer surface of the wire, in Btu/h-ft?, as a result of
this heat generation.
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FIGURE P2-19E

Heat Conduction Equation

2-20C Write down the one-dimensional transient heat con-
duction equation for a plane wall with constant thermal con-
ductivity and heat generation in its simplest form, and indicate
what each variable represents.

2-21C Write down the one-dimensional transient heat con-
duction equation for a long cylinder with constant thermal con-
ductivity and heat generation, and indicate what each variable
represents.

2-22 Starting with an energy balance on a rectangular volume
element, derive the one-dimensional transient heat conduction
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equation for a plane wall with constant thermal conductivity
and no heat generation.

2-23 Starting with an energy balance on a cylindrical shell
volume element, derive the steady one-dimensional heat con-
duction equation for a long cylinder with constant thermal con-
ductivity in which heat is generated at a rate of €.

]
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FIGURE P2-23

2-24 Starting with an energy balance on a spherical shell
volume element, derive the one-dimensional transient heat
conduction equation for a sphere with constant thermal con-
ductivity and no heat generation.

FIGURE P2-24

2-25 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as
T 1T
x> a ot
(a) Is heat transfer steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the thermal conductivity of the medium constant or
variable?

2-26 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

ST PT_ 14T
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(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

2-27 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

Va(
rdr \” Cgen =

(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) TIs the thermal conductivity of the medium constant or
variable?

2-28 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

190 oT d oT .
—\kr— )+ k)t €en=0
r or ar 0z a9z

(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

2-29 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

2-30 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

19 ( 5 6T> 1T
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(a) Is heat transfer steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

2-31 Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

Lo ([, 0T 1 9T 19T
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(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c¢) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

2-32 Starting with an energy balance on a volume element,
derive the two-dimensional transient heat conduction equation
in rectangular coordinates for 7(x, y, t) for the case of constant
thermal conductivity and no heat generation.

2-33 Starting with an energy balance on a ring-shaped vol-
ume element, derive the two-dimensional steady heat conduc-
tion equation in cylindrical coordinates for 7(r, z) for the case
of constant thermal conductivity and no heat generation.

Al
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FIGURE P2-33

2-34 Starting with an energy balance on a disk volume el-
ement, derive the one-dimensional transient heat conduction
equation for 7(z, #) in a cylinder of diameter D with an insu-
lated side surface for the case of constant thermal conductivity
with heat generation.

Disk

Insulation

FIGURE P2-34

Boundary and Initial Conditions;
Formulation of Heat Conduction Problems

2-35C What is a boundary condition? How many boundary
conditions do we need to specify for a two-dimensional heat
conduction problem?

2-36C What is an initial condition? How many initial con-
ditions do we need to specify for a two-dimensional heat
conduction problem?

2-37C What is a thermal symmetry boundary condition?
How is it expressed mathematically?

2-38C How is the boundary condition on an insulated sur-
face expressed mathematically?

CHAPTER 2

2-39C Ttis claimed that the temperature profile in a medium
must be perpendicular to an insulated surface. Is this a valid
claim? Explain.

2-40C Why do we try to avoid the radiation boundary condi-
tions in heat transfer analysis?

2-41 Consider an aluminum pan used to cook stew on top of
an electric range. The bottom section of the pan is L = 0.25 cm
thick and has a diameter of D = 18 cm. The electric heating unit
on the range top consumes 900 W of power during cooking, and
90 percent of the heat generated in the heating element is trans-
ferred to the pan. During steady operation, the temperature of the
inner surface of the pan is measured to be 108°C. Assuming tem-
perature-dependent thermal conductivity and one-dimensional
heat transfer, express the mathematical formulation (the differ-
ential equation and the boundary conditions) of this heat conduc-
tion problem during steady operation. Do not solve.

2—-42 Consider a steel pan used to boil water on top of an
electric range. The bottom section of the pan is L = 0.3 cm
thick and has a diameter of D = 20 cm. The electric heating
unit on the range top consumes 1250 W of power during cook-
ing, and 85 percent of the heat generated in the heating element
is transferred uniformly to the pan. Heat transfer from the top
surface of the bottom section to the water is by convection with
a heat transfer coefficient of 4. Assuming constant thermal
conductivity and one-dimensional heat transfer, express the
mathematical formulation (the differential equation and the
boundary conditions) of this heat conduction problem during
steady operation. Do not solve.

Steel pan

Water
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FIGURE P2-42

2-43 Consider the East wall of a house that has a thickness
of L. The outer surface of the wall exchanges heat by both
convection and radiation. The interior of the house is main-
tained at 7,;, while the ambient air temperature outside
remains at T.,. The sky, the ground, and the surfaces of the
surrounding structures at this location can be modeled as a sur-
face at an effective temperature of Ty, for radiation exchange
on the outer surface. The radiation exchange between the inner
surface of the wall and the surfaces of the walls, floor, and ceil-
ing it faces is negligible. The convection heat transfer coeffi-
cients on the inner and outer surfaces of the wall are &, and h,,
respectively. The thermal conductivity of the wall material is k
and the emissivity of the outer surface is €,. Assuming the heat



126
HEAT CONDUCTION EQUATION

transfer through the wall to be steady and one-dimensional,
express the mathematical formulation (the differential equa-
tion and the boundary and initial conditions) of this heat con-
duction problem. Do not solve.

Tsky
Wall
h] hZ
Tool TOCZ
0 7 ;
FIGURE P2-43

2-44 Heat is generated in a long wire of radius r, at a constant
rate of é,., per unit volume. The wire is covered with a plastic
insulation layer. Express the heat flux boundary condition at
the interface in terms of the heat generated.

2-45 Consider a long pipe of inner radius r,, outer radius r,,
and thermal conductivity k. The outer surface of the pipe is
subjected to convection to a medium at 7, with a heat transfer
coefficient of %, but the direction of heat transfer is not known.
Express the convection boundary condition on the outer sur-
face of the pipe.

2-46E A 2-kW resistance heater wire whose thermal conduc-
tivity is k = 10.4 Btu/h-ft-R has a radius of r, = 0.06 in and
a length of L = 15 in, and is used for space heating. Assum-
ing constant thermal conductivity and one-dimensional heat
transfer, express the mathematical formulation (the differential
equation and the boundary conditions) of this heat conduction
problem during steady operation. Do not solve.

2-47 Water flows through a pipe at an average temperature
of T, = 90°C. The inner and outer radii of the pipe are r; =
6 cm and r, = 6.5 cm, respectively. The outer surface of the
pipe is wrapped with a thin electric heater that consumes
400 W per m length of the pipe. The exposed surface of the
heater is heavily insulated so that the entire heat generated in
the heater is transferred to the pipe. Heat is transferred from
the inner surface of the pipe to the water by convection with
a heat transfer coefficient of 7 = 85 W/m?-K. Assuming con-
stant thermal conductivity and one-dimensional heat transfer,
express the mathematical formulation (the differential equation
and the boundary conditions) of the heat conduction in the pipe
during steady operation. Do not solve.

Insulation

>
Electric heater

FIGURE P2-47

2-48 Consider a spherical container of inner radius r,, outer
radius r,, and thermal conductivity k. Express the boundary
condition on the inner surface of the container for steady one-
dimensional conduction for the following cases: (a) specified
temperature of 50°C, (b) specified heat flux of 45 W/m? to-
ward the center, (¢) convection to a medium at 7., with a heat
transfer coefficient of /.

Spherical container

FIGURE P2-48

2-49 Consider a spherical shell of inner radius ry, outer
radius r,, thermal conductivity k, and emissivity &. The outer
surface of the shell is subjected to radiation to surrounding sur-
faces at T,,, but the direction of heat transfer is not known.
Express the radiation boundary condition on the outer surface
of the shell.

2-50 A container consists of two spherical layers, A and B,
that are in perfect contact. If the radius of the interface is r,,
express the boundary conditions at the interface.

2-51 A spherical metal ball of radius r, is heated in an oven
to a temperature of 7; throughout and is then taken out of the
oven and dropped into a large body of water at 7., where it is
cooled by convection with an average convection heat trans-
fer coefficient of h. Assuming constant thermal conductivity
and transient one-dimensional heat transfer, express the math-
ematical formulation (the differential equation and the bound-
ary and initial conditions) of this heat conduction problem.
Do not solve.

2-52 A spherical metal ball of radius r, is heated in an oven
to a temperature of 7; throughout and is then taken out of the



oven and allowed to cool in ambient air at 7., by convection
and radiation. The emissivity of the outer surface of the cyl-
inder is &, and the temperature of the surrounding surfaces
is Ty The average convection heat transfer coefficient is
estimated to be h. Assuming variable thermal conductivity
and transient one-dimensional heat transfer, express the math-
ematical formulation (the differential equation and the bound-
ary and initial conditions) of this heat conduction problem.

Do not solve.

Radiation

Convection

FIGURE P2-52

Solution of Steady One-Dimensional
Heat Conduction Problems

2-53C Tt is stated that the temperature in a plane wall with
constant thermal conductivity and no heat generation varies
linearly during steady one-dimensional heat conduction. Will
this still be the case when the wall loses heat by radiation from
its surfaces?

2-54C Consider one-dimensional heat conduction through
a large plane wall with no heat generation that is perfectly
insulated on one side and is subjected to convection and radia-
tion on the other side. It is claimed that under steady condi-
tions, the temperature in a plane wall must be uniform (the
same everywhere). Do you agree with this claim? Why?

2-55C Consider a solid cylindrical rod whose side surface
is maintained at a constant temperature while the end sur-
faces are perfectly insulated. The thermal conductivity of the
rod material is constant and there is no heat generation. It is
claimed that the temperature in the radial direction within the
rod will not vary during steady heat conduction. Do you agree
with this claim? Why?

2-56C Consider a solid cylindrical rod whose ends are main-
tained at constant but different temperatures while the side sur-
face is perfectly insulated. There is no heat generation. It is
claimed that the temperature along the axis of the rod varies
linearly during steady heat conduction. Do you agree with this
claim? Why?
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2-57 Consider a large plane wall of thickness L = 0.3 m,
thermal conductivity k = 2.5 W/m-K, and surface area A =
12 m?. The left side of the wall at x = 0 is subjected to a net
heat flux of ¢, = 700 W/m? while the temperature at that sur-
face is measured to be 7, = 80°C. Assuming constant thermal
conductivity and no heat generation in the wall, (a) express the
differential equation and the boundary conditions for steady
one-dimensional heat conduction through the wall, (b) obtain a
relation for the variation of temperature in the wall by solving
the differential equation, and (c) evaluate the temperature of the
right surface of the wall at x = L. Answer: (c) —4°C

FIGURE P2-57

2-58 Consider the base plate of an 800-W household iron
with a thickness of L = 0.6 cm, base area of A = 160 cm?,
and thermal conductivity of kK = 60 W/m-K. The inner surface
of the base plate is subjected to uniform heat flux generated
by the resistance heaters inside. When steady operating condi-
tions are reached, the outer surface temperature of the plate is
measured to be 112°C. Disregarding any heat loss through
the upper part of the iron, (a) express the differential equa-
tion and the boundary conditions for steady one-dimensional
heat conduction through the plate, (b) obtain a relation for
the variation of temperature in the base plate by solving
the differential equation, and (c) evaluate the inner surface
temperature. Answer: (c) 117°C

— | Base 112°C
—»| plate /

FIGURE P2-58

2-59 Consider a large plane wall of thickness L = 0.4 m,
thermal conductivity k = 1.8 W/m-K, and surface area A =
30 m2. The left side of the wall is maintained at a constant tem-
perature of 7, = 90°C while the right side loses heat by con-
vection to the surrounding air at 7,, = 25°C with a heat transfer
coefficient of & = 24 W/m?K. Assuming constant thermal
conductivity and no heat generation in the wall, (a) express the
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differential equation and the boundary conditions for steady
one-dimensional heat conduction through the wall, (b) obtain
a relation for the variation of temperature in the wall by solv-
ing the differential equation, and (c) evaluate the rate of heat
transfer through the wall. Answer: (c) 7389 W

2-60 Consider a 20-cm-thick large concrete plane wall
(k = 0.77 W/m-K) subjected to convection on both sides with
T,, = 27°C and h;, = 5 W/m?>K on the inside, and T.,, = 8°C
and h, =12 W/m?K on the outside. Assuming constant thermal
conductivity with no heat generation and negligible radiation,
(a) express the differential equation and the boundary condi-
tions for steady one-dimensional heat conduction through the
wall, (b) obtain a relation for the variation of temperature in
the wall by solving the differential equation, and (c) evaluate
the temperatures at the inner and outer surfaces of the wall.

2—61 [ The outer surface of an engine is situated in a

place where oil leakage can occur. Some oils have
autoignition temperatures of approximately above 250°C.
When oil comes in contact with a hot engine surface that has a
higher temperature than its autoignition temperature, the oil
can ignite spontaneously. Treating the engine housing as a
plane wall, the inner surface (x = 0) is subjected to 6 kW/m? of
heat. The engine housing (k = 13.5 W/m-K) has a thickness of
1 cm, and the outer surface (x = L) is exposed to an environ-
ment where the ambient air is 35°C with a convection heat
transfer coefficient of 20 W/m? K. To prevent fire hazard in
the event the leaked oil comes in contact with the hot engine
surface, the temperature of the engine surface should be kept
below 200°C. Determine the variation of temperature in the
engine housing and the temperatures of the inner and outer sur-
faces. Is the outer surface temperature of the engine below the
safe temperature?

T(L) <200°C
X
I
Engine housing
k=13.5 W/m-K
0
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Go =6 kW/m?
FIGURE P2-61

2-62 A large plane wall has a thickness L = 50 cm and ther-
mal conductivity k = 25 W/m-K. On the left surface (x = 0),
it is subjected to a uniform heat flux ¢, while the surface tem-
perature T, is constant. On the right surface, it experiences
convection and radiation heat transfer while the surface temper-
ature is 7; = 225°C and the surrounding temperature is 25°C.

The emissivity and the convection heat transfer coefficient on
the right surface are 0.7 and 15 W/m?K, respectively. Show
that the variation of temperature in the wall can be expressed
as T(x) = (gy/k)(L — x) + T,, where g, = 5130 W/m?, and
determine the temperature of the left surface of the wall at x = 0.
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2-63 A flat-plate solar collector is used to heat water by hav-
ing water flow through tubes attached at the back of the thin
solar absorber plate. The absorber plate has an emissivity and
an absorptivity of 0.9. The top surface (x = 0) temperature
of the absorber is 7, = 35°C, and solar radiation is incident
on the absorber at 500 W/m? with a surrounding temperature
of 0°C. Convection heat transfer coefficient at the absorber
surface is 5 W/m?>-K, while the ambient temperature is 25°C.
Show that the variation of temperature in the absorber plate
can be expressed as T(x) = —(gy/k)x + T,, and determine net
heat flux ¢, absorbed by the solar collector.
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FIGURE P2-63

2-64 Electrically heated draw batch furnaces are commonly
used in the heat treatment industry. Consider a draw batch
furnace front made of a 20-mm thick steel plate with a ther-
mal conductivity of 25 W/m-K. The furnace is situated in a
room with surrounding air temperature of 20°C and an aver-
age convection heat transfer coefficient of 10 W/m?-K. If the
inside surface of the furnace front is subjected to uniform
heat flux of 5 kW/m? and the outer surface has an emissiv-
ity of 0.30, determine the inside surface temperature of the
furnace front.
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2—65E A large steel plate having a thickness of L = 4 in,
thermal conductivity of k = 7.2 Btu/h-ft-°F, and an emissivity
of ¢ = 0.7 is lying on the ground. The exposed surface of
the plate at x = L is known to exchange heat by convection
with the ambient air at 7., = 90°F with an average heat trans-
fer coefficient of 7 = 12 Btu/h-ft>°F as well as by radiation
with the open sky with an equivalent sky temperature of
Ty, = 480 R. Also, the temperature of the upper surface of
the plate is measured to be 80°F. Assuming steady one-
dimensional heat transfer, (a) express the differential equation
and the boundary conditions for heat conduction through the
plate, (b) obtain a relation for the variation of temperature in
the plate by solving the differential equation, and (c¢) determine
the value of the lower surface temperature of the plate at x = 0.

\/\/\/\/\N\/\ik\y/\/\mf\

Radiation

h, T,

80°F \v t Convection
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| Plate
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Ground
FIGURE P2-65E

2-66 Consider a solid cylindrical rod of length 0.15 m and
diameter 0.05 m. The top and bottom surfaces of the rod are
maintained at constant temperatures of 20°C and 95°C, respec-
tively, while the side surface is perfectly insulated. Determine
the rate of heat transfer through the rod if it is made of (a) cop-
per, k = 380 W/m-K, (b) steel, k = 18 W/m-K, and (c) granite,
k=12W/mK.

2—67 Consider a chilled-water pipe of length L, inner radius
r;, outer radius r,, and thermal conductivity k. Water flows in
the pipe at a temperature 7y and the heat transfer coefficient at
the inner surface is /. If the pipe is well-insulated on the outer
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surface, (a) express the differential equation and the bound-
ary conditions for steady one-dimensional heat conduction
through the pipe and (b) obtain a relation for the variation of
temperature in the pipe by solving the differential equation.

2—68E Consider a steam pipe of length L = 30 ft, inner ra-
dius r; = 2 in, outer radius r, = 2.4 in, and thermal conductiv-
ity k = 7.2 Btu/h-ft-°F. Steam is flowing through the pipe at
an average temperature of 300°F, and the average convection
heat transfer coefficient on the inner surface is given to be
h = 12.5 Btu/h-ft>-°F. If the average temperature on the outer
surfaces of the pipe is 7, = 175°F, (a) express the differential
equation and the boundary conditions for steady one-dimen-
sional heat conduction through the pipe, (b) obtain a relation
for the variation of temperature in the pipe by solving the dif-
ferential equation, and (c) evaluate the rate of heat loss from
the steam through the pipe. Answer: (c) 46,630 Btu/h

FIGURE P2-68E

2—69 A pipe in a manufacturing plant is transporting super-
heated vapor at a mass flow rate of 0.3 kg/s. The pipe is 10 m
long, has an inner diameter of 5 cm and pipe wall thickness of
6 mm. The pipe has a thermal conductivity of 17 W/m-K, and
the inner pipe surface is at a uniform temperature of 120°C. The
temperature drop between the inlet and exit of the pipe is 7°C,
and the constant pressure specific heat of vapor is 2190 J/kg-°C.
If the air temperature in the manufacturing plant is 25°C, deter-
mine the heat transfer coefficient as a result of convection be-
tween the outer pipe surface and the surrounding air.

Air, 25°C
T(ry) = 120°C
Superheated '
vapor [ = =
0.3 kg/s
l< |
! L=10m l
Ty~ Tou=7°C

FIGURE P2-69
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2-70 In subsea oil and natural gas production, hydrocarbon flu-
ids may leave the reservoir with a temperature of 70°C and flow
in subsea surrounding of 5°C. As a result of the temperature
difference between the reservoir and the subsea surrounding,
the knowledge of heat transfer is critical to prevent gas hydrate
and wax deposition blockages. Consider a subsea pipeline with
inner diameter of 0.5 m and wall thickness of 8 mm is used for
transporting liquid hydrocarbon at an average temperature of
70°C, and the average convection heat transfer coefficient on
the inner pipeline surface is estimated to be 250 W/m> K. The
subsea surrounding has a temperature of 5°C and the average
convection heat transfer coefficient on the outer pipeline sur-
face is estimated to be 150 W/m?K. If the pipeline is made of
material with thermal conductivity of 60 W/m-K, by using the
heat conduction equation (a) obtain the temperature variation in
the pipeline wall, (b) determine the inner surface temperature
of the pipeline, (c) obtain the mathematical expression for the
rate of heat loss from the liquid hydrocarbon in the pipeline, and
(d) determine the heat flux through the outer pipeline surface.

Subsea, 5°C hy = 150 W/m*K

hy =250 W/m>K

Liquid '
hydrocarbon sy
70°C

k=60 WmK

FIGURE P2-70
2-71 4. Liquid ethanol is a flammable fluid that has a flash-
point at 16.6°C. At temperatures above the flashpoint,
ethanol can release vapors that form explosive mixtures, which
could ignite when source of ignition is present. In a chemical
plant, liquid ethanol is being transported in a pipe (k = 15 W/m-K)
with an inside diameter of 3 cm and a wall thickness of 3 mm. The
pipe passes through areas where occasional presence of ignition
source can occur, and the pipe’s outer surface is subjected to a heat
flux of 1 kW/m?. The ethanol flowing in the pipe has an average
temperature of 10°C with an average convection heat transfer co-
efficient of 50 W/m?K. Your task as an engineer is to ensure that
the ethanol is transported safely and prevent fire hazard. Deter-
mine the variation of temperature in the pipe wall and the tempera-
tures of the inner and outer surfaces of the pipe. Are both surface
temperatures safely below the flashpoint of liquid ethanol?

g, =1kW/m?

SO
Liquid ethanol

e @ )

r

FIGURE P2-71

2-72 A spherical container, with an inner radius r; = 1 m
and an outer radius r, = 1.05 m, has its inner surface subjected
to a uniform heat flux of ¢; = 7 kW/m?. The outer surface of
the container has a temperature 7, = 25°C, and the container
wall thermal conductivity is k = 1.5 W/m-K. Show that the
variation of temperature in the container wall can be expressed
as T(r) = (q;r#/k)(1/r — 1/r,) + T, and determine the tempera-
ture of the inner surface of the container at r = r;.

Spherical
container
rf [, 1
T, q1
FIGURE P2-72

2-73 A spherical shell, with thermal conductivity k, has inner and
outer radii of r; and r,, respectively. The inner surface of the shell
is subjected to a uniform heat flux of ¢,, while the outer surface of
the shell is exposed to convection heat transfer with a coefficient /2
and an ambient temperature 7. Determine the variation of temper-
ature in the shell wall and show that the outer surface temperature
of the shell can be expressed as T(r,) = (¢,/h)(r,/r,)* + T..

Spherical
container

h, T,

r r r

FIGURE P2-73

2-74 A spherical container of inner radius r; = 2 m, outer radius
r, = 2.1 m, and thermal conductivity k = 30 W/m-K is filled with
iced water at 0°C. The container is gaining heat by convection
from the surrounding air at 7,, = 25°C with a heat transfer coeffi-
cient of & = 18 W/m?-K. Assuming the inner surface temperature
of the container to be 0°C, (a) express the differential equation
and the boundary conditions for steady one-dimensional heat con-
duction through the container, () obtain a relation for the varia-
tion of temperature in the container by solving the differential
equation, and (c) evaluate the rate of heat gain to the iced water.

2-75 A stainless steel spherical container, with k =
15 W/m:-K is used for storing chemicals undergo-

ing exothermic reaction. The reaction provides a uniform heat

PtD



flux of 60 kW/m? to the container’s inner surface. The con-
tainer has an inner radius of 50 cm and a wall thickness of
5 cm and is situated in a surrounding with an ambient tempera-
ture of 23°C. The container’s outer surface is subjected to con-
vection heat transfer with a coefficient of 1000 W/m?>K. For
safety reasons to prevent thermal burn to individuals working
around the container, it is necessary to keep the container’s
outer surface temperature below 50°C. Determine the variation
of temperature in the container wall and the temperatures of
the inner and outer surfaces of the container. s the outer sur-
face temperature of the container safe to prevent thermal burn?

Spherical
container

Exothermic
reaction

T(ry)

FIGURE P2-75

2-76 1In a food processing facility, a spherical container of
inner radius r; = 40 cm, outer radius r, = 41 cm, and ther-
mal conductivity k = 1.5 W/m-K is used to store hot water and
to keep it at 100°C at all times. To accomplish this, the outer
surface of the container is wrapped with a 800-W electric strip
heater and then insulated. The temperature of the inner surface
of the container is observed to be nearly 120°C at all times. As-
suming 10 percent of the heat generated in the heater is lost
through the insulation, (a) express the differential equation
and the boundary conditions for steady one-dimensional heat
conduction through the container, (») obtain a relation for the
variation of temperature in the container material by solving the
differential equation, and (c) evaluate the outer surface tempera-
ture of the container. Also determine how much water at 100°C
this tank can supply steadily if the cold water enters at 20°C.

Insulation

Spherical
container

FIGURE P2-76
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2-77 Reconsider Prob. 2-76. Using the relation obtained

<& for the variation of temperature in the container
material, plot the temperature as a function of the radius r in the
range of r = r, to r = r,, and discuss the results. Use the EES
(or other) software.

Heat Generation in a Solid
2-78C What is heat generation? Give some examples.

2-79C Does heat generation in a solid violate the first law of
thermodynamics, which states that energy cannot be created or
destroyed? Explain.

2—-80C Consider uniform heat generation in a cylinder and a
sphere of equal radius made of the same material in the same
environment. Which geometry will have a higher temperature
at its center? Why?

2—-81C An iron is left unattended and its base temperature
rises as a result of resistance heating inside. When will the rate
of heat generation inside the iron be equal to the rate of heat
loss from the iron?

2—-82C Consider the uniform heating of a plate in an environ-
ment at a constant temperature. Is it possible for part of the
heat generated in the left half of the plate to leave the plate
through the right surface? Explain.

2-83 Consider a large 5-cm-thick brass plate (k =
111 W/m-K) in which heat is generated uniformly at a rate
of 2 X 10° W/m3. One side of the plate is insulated while the
other side is exposed to an environment at 25°C with a heat
transfer coefficient of 44 W/m?K. Explain where in the plate
the highest and the lowest temperatures will occur, and deter-
mine their values.

Brass
plate
égen
L h
a4k
Insulated
L X

FIGURE P2-83

2-84 @ Reconsider Prob. 2-83. Using EES (or other) soft-

=S ware, investigate the effect of the heat transfer co-
efficient on the highest and lowest temperatures in the plate.
Let the heat transfer coefficient vary from 20 W/m?K to
100 W/m?-K. Plot the highest and lowest temperatures as a
function of the heat transfer coefficient, and discuss the results.

2-85 Consider a large 3-cm-thick stainless steel plate (k =
15.1 W/m-K) in which heat is generated uniformly at a rate of
5 X 10° W/m?. Both sides of the plate are exposed to an envi-
ronment at 30°C with a heat transfer coefficient of 60 W/m>K.
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Explain where in the plate the highest and the lowest tempera-
tures will occur, and determine their values.

2—-86 Consider a large plate of thickness L and thermal
conductivity k in which heat is generated uniformly at a rate
of é,,. One side of the plate is insulated while the other side is
exposed to an environment at 7,, with a heat transfer coeffi-
cient of &. (a) Express the differential equation and the bound-
ary conditions for steady one-dimensional heat conduction
through the plate, (b) determine the variation of temperature
in the plate, and (c) obtain relations for the temperatures on
both surfaces and the maximum temperature rise in the plate in
terms of given parameters.

4 k TOC
K égen h
Insulated
0 7 >
FIGURE P2-86

2-87E Consider a large plane wall of thickness L and con-
stant thermal conductivity k. The left side of the wall (x = 0) is
maintained at a constant temperature 7;, while the right surface
at x = L is insulated. Heat is generated in the wall at the rate
of é,., = ax* Btu/h-ft*. Assuming steady one-dimensional heat
transfer, (a) express the differential equation and the boundary
conditions for heat conduction through the wall, (b) by solving
the differential equation, obtain a relation for the variation of
temperature in the wall 7(x) in terms of x, L, k, a, and T,, and
(c) what is the highest temperature (°C) in the plane wall when:
L = 1ft, k = 5 Btw/h-ft-°F, a = 1200 Btw/h-ft>, and T,, = 700°F.

N

T, k Insulated

gen

L X

FIGURE P2-87E

2-88 Consider a large plane wall of thickness L = 0.05 m.
The wall surface at x = O is insulated, while the surface at
x = L is maintained at a temperature of 30°C. The thermal
conductivity of the wall is k = 30 W/m-K, and heat is gen-
erated in the wall at a rate of é,, = épe” ">~ W/m? where
€y = 8 X 10° W/m?3. Assuming steady one-dimensional heat
transfer, (a) express the differential equation and the boundary

conditions for heat conduction through the wall, (b) obtain a
relation for the variation of temperature in the wall by solving
the differential equation, and (¢) determine the temperature of
the insulated surface of the wall. Answer: (¢) 314°C

2-89 Reconsider Prob. 2-88. Using the relation given for

< the heat generation in the wall, plot the heat genera-
tion as a function of the distance x in the range of x = O tox = L,
and discuss the results. Use the EES (or other) software.

2-90 In a nuclear reactor, 1-cm-diameter cylindrical uranium
rods cooled by water from outside serve as the fuel. Heat is
generated uniformly in the rods (k = 29.5 W/m-K) at a rate
of 4 X 107 W/m>. If the outer surface temperature of rods is
220°C, determine the temperature at their center.

220°C
(

() €gen  Uranium rod )

FIGURE P2-90

2-91E Heat is generated uniformly at a rate of 3 kW per ft
length in a 0.08-in-diameter electric resistance wire made of
nickel steel (k = 5.8 Btu/h-ft-°F). Determine the temperature
difference between the centerline and the surface of the wire.

2-92 A 2-kW resistance heater wire with thermal conductiv-
ity of k = 20 W/m-K, a diameter of D = 4 mm, and a length
of L = 0.9 m is used to boil water. If the outer surface tem-
perature of the resistance wire is 7, = 230°C, determine the
temperature at the center of the wire.

Mo
e 230°C

| — Resistance
heater

1 ¥
FIGURE P2-92
2-93 Consider a long solid cylinder of radius r, = 4 cm and
thermal conductivity k = 25 W/m-K. Heat is generated in the
cylinder uniformly at a rate of €., = 35 W/cm®. The side sur-

face of the cylinder is maintained at a constant temperature of
T, = 80°C. The variation of temperature in the cylinder is

given by
Cgenls \2
T(r)=7{1 - [1 - (—)}JrTS
k r,



Based on this relation, determine (a) if the heat conduction is
steady or transient, () if it is one-, two-, or three-dimensional,
and (c) the value of heat flux on the side surface of the cylinder
atr =r,.

2-94 Reconsider Prob. 2-93. Using the relation ob-

<& tained for the variation of temperature in the cyl-
inder, plot the temperature as a function of the radius r in the
range of r = 0 to r = r,, and discuss the results. Use the EES
(or other) software.

2-95 A cylindrical nuclear fuel rod of 1 cm in diameter is en-
cased in a concentric tube of 2 cm in diameter, where cooling
water flows through the annular region between the fuel rod
(k = 30 W/m-K) and the concentric tube. Heat is generated
uniformly in the rod at a rate of 50 MW/m?. The convection
heat transfer coefficient for the concentric tube surface is
2000 W/m?-K. If the surface temperature of the concentric tube
is 40°C, determine the average temperature of the cooling water.
Can one use the given information to determine the surface
temperature of the fuel rod? Explain. Answer: 71.3°C

hy = 2000 W/m*K

hy, T roa —\ T, ube = 40°C Dy=2r,=2cm
| L¢

= \

Cgen = 50 MW/m?
/

= L1
i —T_D1=2rl=lcm

Cooling water Fuel rod
k=30 W/m-K

FIGURE P2-95

2-96 Consider a solid stainless steel wire with a thermal
conductivity of 14 W/m-K. The wire has a diameter of 1 mm,
a resistivity of 45 X 107% )-m, and carries a current of 120 A.
(a) Determine the rate of heat generated within the wire (W/m?)
and (b) calculate the maximum temperature rise in the wire.

FIGURE P2-96

2-97 A long homogeneous resistance wire of radius r, =
0.6 cm and thermal conductivity £ = 15.2 W/m-K is being
used to boil water at atmospheric pressure by the passage of
electric current. Heat is generated in the wire uniformly as a
result of resistance heating at a rate of 16.4 W/cm?3. The heat
generated is transferred to water at 100°C by convection with

CHAPTER 2

an average heat transfer coefficient of & = 3200 W/m>K.
Assuming steady one-dimensional heat transfer, (a) express
the differential equation and the boundary conditions for
heat conduction through the wire, (b) obtain a relation for
the variation of temperature in the wire by solving the dif-
ferential equation, and (c) determine the temperature at the
centerline of the wire. Answer: (¢) 125°C

~ Resistance
heater

FIGURE P2-97

2-98 A 6-m-long 3-kW electrical resistance wire is made
of 0.2-cm-diameter stainless steel (k = 15.1 W/m-K). The
resistance wire operates in an environment at 20°C with a heat
transfer coefficient of 175 W/m2-K at the outer surface. De-
termine the surface temperature of the wire (a) by using the
applicable relation and (b) by setting up the proper differential
equation and solving it. Answers: (a) 475°C, (b) 475°C

2-99 A long homogeneous resistance wire of radius r, =
5 mm is being used to heat the air in a room by the passage
of electric current. Heat is generated in the wire uniformly at
arate of 5 X 107 W/m? as a result of resistance heating. If the
temperature of the outer surface of the wire remains at 180°C,
determine the temperature at » = 3.5 mm after steady opera-
tion conditions are reached. Take the thermal conductivity of
the wire to be k = 6 W/m-K. Answer: 207°C

—————— :

2-100 [ A cylindrical fuel rod (k = 30 W/m-K) of 2 cm in
PtD . . . .

diameter is encased in a concentric tube and
cooled by water. The fuel rod generates heat uniformly at a rate
of 100 MW/m?, and the average temperature of the cooling
water is 75°C with a convection heat transfer coefficient of
2500 W/m?-K. The operating pressure of the cooling water is
such that the surface temperature of the fuel rod must be kept
below 200°C to avoid the cooling water from reaching the criti-
cal heat flux (CHF). The critical heat flux is a thermal limit at
which a boiling crisis can occur that cause overheating on the
fuel rod surface and lead to damage. Determine the variation of

FIGURE P2-99
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temperature in the fuel rod and the temperature of the fuel rod
surface. Is the surface of the fuel rod adequately cooled?

I(r,)

— |
égen = 100 MW/m?
/
— / T
Fuel rod —/

Cooling water D=2cm

2500 W/m2K, 75°C

FIGURE P2-100

2-101 Consider a homogeneous spherical piece of radioac-
tive material of radius , = 0.04 m that is generating heat at
a constant rate of €., = 5 X 107 W/m®. The heat generated
is dissipated to the environment steadily. The outer surface of
the sphere is maintained at a uniform temperature of 110°C
and the thermal conductivity of the sphere is k = 15 W/m-K.
Assuming steady one-dimensional heat transfer, (a) express
the differential equation and the boundary conditions for heat
conduction through the sphere, (b) obtain a relation for the
variation of temperature in the sphere by solving the differen-
tial equation, and (c) determine the temperature at the center
of the sphere.

FIGURE P2-101

2-102 Reconsider Prob. 2-101. Using the relation

<& obtained for the variation of temperature in the
sphere, plot the temperature as a function of the radius r in the
range of r = 0 to r = r,. Also, plot the center temperature of
the sphere as a function of the thermal conductivity in the
range of 10 W/m-K to 400 W/m-K. Discuss the results. Use the
EES (or other) software.

2-103 A spherical communication satellite with a diameter
of 2.5 m is orbiting around the earth. The outer surface of the
satellite in space has an emissivity of 0.75 and a solar absorp-
tivity of 0.10, while solar radiation is incident on the spacecraft
at a rate of 1000 W/m?. If the satellite is made of material with
an average thermal conductivity of 5 W/m-K and the midpoint
temperature is 0°C, determine the heat generation rate and the
surface temperature of the satellite.

o, =0.10
/ qabs

Satellite
k=5W/m-K

Ty=0°C

€gen

\\ £=075
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FIGURE P2-103

Variable Thermal Conductivity

2—-104C TIs the thermal conductivity of a medium, in general,
constant or does it vary with temperature?

2-105C When the thermal conductivity of a medium varies lin-
early with temperature, is the average thermal conductivity always
equivalent to the conductivity value at the average temperature?

2-106C The temperature of a plane wall during steady one-
dimensional heat conduction varies linearly when the thermal
conductivity is constant. Is this still the case when the thermal
conductivity varies linearly with temperature?

2-107C Consider steady one-dimensional heat conduction in
a plane wall in which the thermal conductivity varies linearly.
The error involved in heat transfer calculations by assuming
constant thermal conductivity at the average temperature is
(a) none, (b) small, or (¢) significant.

2-108C Consider steady one-dimensional heat conduction in
a plane wall, long cylinder, and sphere with constant thermal
conductivity and no heat generation. Will the temperature in
any of these mediums vary linearly? Explain.

2-109 A silicon wafer with thickness of 925 um is being
heated with a uniform heat flux at the lower surface. The sili-
con wafer has a thermal conductivity that varies with tempera-
ture and can be expressed as k(T) = (a + bT + cT*) W/m-:K,
where a = 437, b = —1.29, and ¢ = 0.00111. To avoid warp-
ing, the temperature difference across the wafer thickness can-
not exceed 2°C. If the upper surface of the silicon wafer is
at a uniform temperature of 600 K, determine the maximum
allowable heat flux.

T
L 7

Silicon wafer

KTY 56 % bT4+C¢T?
NIRRT

FIGURE P2-109
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2-110 Consider a 1.5-m-high and 0.6-m-wide plate whose
thickness is 0.15 m. One side of the plate is maintained at a
constant temperature of 500 K while the other side is main-
tained at 350 K. The thermal conductivity of the plate can be
assumed to vary linearly in that temperature range as k(T) =
ko(1 + BT) where ky = 18 W/m-K and 8 = 8.7 X 1074 K.
Disregarding the edge effects and assuming steady one-
dimensional heat transfer, determine the rate of heat conduc-
tion through the plate. Answer: 22.2 kW

2—111 On the left side, a steel plate is subjected to a uniform
heat flux of 50 kW/m? and maintained at a constant tempera-
ture of 800 K. On the right side, the temperature is maintained
at 600 K. The steel plate has a variable thermal conductiv-
ity given as k(T) = ko (1 + BT), where k, = 9.14 W/m-K,
B =0.0023 K7, and T is in K. Determine the thickness of the
steel plate (in m).

2-112 Consider a plane wall of thickness L whose thermal
conductivity varies in a specified temperature range as k(T) =
ko(1 + BT?) where k, and B are two specified constants. The
wall surface at x = 0 is maintained at a constant temperature
of T, while the surface at x = L is maintained at 7,. Assuming
steady one-dimensional heat transfer, obtain a relation for the
heat transfer rate through the wall.

2—113 The thermal conductivity of stainless steel has been
characterized experimentally to vary with temperature as
k(T) = 9.14 + 0.021T for 273 < T < 1500 K, where k is in
W/mK and T is in K. Determine the average thermal conduc-
tivity between 300 and 1200 K, and express k(7) in the form
of k(T) = ky(1 + BT), where k, is in W/m-K and B is in K.

2-114 A circular metal pipe has a wall thickness of 10 mm
and an inner diameter of 10 cm. The pipe’s outer surface is
subjected to a uniform heat flux of 5 kW/m? and has a tem-
perature of 500°C. The metal pipe has a variable thermal con-
ductivity given as k(T') = ko (1 + BT), where k, = 7.5 W/m-K,
B = 0.0012 K~', and T is in K. Determine the inner surface
temperature of the pipe.

Pipe wall
k(T)=ky(1+BT)

AN N

FIGURE P2-114
2-115 &9 Y] A pipe is used for transporting boiling water
<& in which the inner surface is at 100°C. The

pipe is situated in surroundings where the ambient temperature
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is 10°C and the convection heat transfer coefficient is 70 W/m?K.
The wall thickness of the pipe is 3 mm and its inner diameter is
30 mm. The pipe wall has a variable thermal conductivity given
as k(T) = k(1 + BT), where k, = 1.23 W/m-K, 8 = 0.002 K,
and T 'is in K. For safety reasons and to prevent thermal burn to
workers, the outer surface temperature of the pipe should be
kept below 50°C. Determine whether the outer surface
temperature of the pipe is at a safe temperature so as to avoid
thermal burn.

2-116 ) A pipe is used for transporting hot fluid in which
<& the inner surface is at 150°C. The pipe has a wall
thickness of 5 mm and an inner diameter of 15 cm. The pipe
wall has a variable thermal conductivity given as
k(T) = ko (1 + BT), where k, = 8.5 W/m'K, B8 = 0.001 K-,
and 7T is in K. The pipe is situated in surroundings of freezing
air at 0°C with a convection heat transfer coefficient of 60 W/
m?K on the pipe’s outer surface. Solar radiation is incident on
the pipe’s outer surface at a rate of 100 W/m?, and both the
emissivity and solar absorptivity of the outer surface are 0.9.
Determine the outer surface temperature of the pipe.

Pipe wall
K(T) = k(1 + BT)

Gsolar
)
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FIGURE P2-116

2—117 A spherical container, with an inner radius of 1 m and a
wall thickness of 5 mm, has its inner surface subjected to a uni-
form heat flux of 7 kW/m?. The outer surface of the container
is maintained at 20°C. The container wall is made of a material
with a thermal conductivity given as k(T') = ky(1 + BT), where
ko = 1.33 W/m'K, B8 = 0.0023 K!, and T is in K. Determine
the temperature drop across the container wall thickness.

Spherical container
K(T) = ko(1 + BT)

5

FIGURE P2-117
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2-118 Consider a spherical shell of inner radius r, and outer ra-
dius r, whose thermal conductivity varies linearly in a specified
temperature range as k(7) = ko(1 + BT) where k, and 3 are two
specified constants. The inner surface of the shell is maintained
at a constant temperature of 7 while the outer surface is main-
tained at T,. Assuming steady one-dimensional heat transfer,
obtain a relation for (a) the heat transfer rate through the shell
and (b) the temperature distribution 7(r) in the shell.

2-119 Uiy A spherical vessel is filled with chemicals undergo-
ing an exothermic reaction. The reaction provides a
uniform heat flux on the inner surface of the vessel. The inner di-
ameter of the vessel is 5 m and its inner surface temperature is at
120°C. The wall of the vessel has a variable thermal conductivity
given as k(T) = ko (1 + BT), where k, = 1.01 W/mK,
B = 0.0018 K™!, and T is in K. The vessel is situated in a sur-
rounding with an ambient temperature of 15°C, the vessel’s outer
surface experiences convection heat transfer with a coefficient of
80 W/m>K. To prevent thermal burn on skin tissues, the outer
surface temperature of the vessel should be kept below 50°C.
Determine the minimum wall thickness of the vessel so that the
outer surface temperature is 50°C or lower.
2-120 @ A spherical tank is filled with ice slurry, where
<& its inner surface is at 0°C. The tank has an inner
diameter of 9 m and its wall thickness is 20 mm. The tank wall
is made of a material with a thermal conductivity given as
k(T) = ko (1 + BT), where k, = 0.33 W/mK, 8 = 0.0025 K™,
and T is in K. The tank is in a surrounding temperature of 35°C
and a convection heat transfer coefficient of 70 W/m?-K. Solar
radiation is incident on the tank’s outer surface at a rate of
150 W/m?, where the emissivity and solar absorptivity of the
outer surface are 0.75. Determine the outer surface tempera-
ture of the tank.

Special Topic: Review of Differential Equations

2-121C Why do we often utilize simplifying assumptions
when we derive differential equations?

2-122C What is a variable? How do you distinguish a depen-
dent variable from an independent one in a problem?

2-123C Can a differential equation involve more than one
independent variable? Can it involve more than one dependent
variable? Give examples.

2-124C What is the geometrical interpretation of a deriva-
tive? What is the difference between partial derivatives and
ordinary derivatives?

2—-125C What is the difference between the degree and the
order of a derivative?

2-126C Consider a function f{x, y) and its partial derivative
dffox. Under what conditions will this partial derivative be
equal to the ordinary derivative df/dx?

2-127C Consider a function f(x) and its derivative df/dx.
Does this derivative have to be a function of x?

2-128C How is integration related to derivation?

2—-129C What is the difference between an algebraic equa-
tion and a differential equation?

2-130C What is the difference between an ordinary differen-
tial equation and a partial differential equation?

2-131C How is the order of a differential equation determined?

2-132C How do you distinguish a linear differential equa-
tion from a nonlinear one?

2-133C How do you recognize a linear homogeneous differ-
ential equation? Give an example and explain why it is linear
and homogeneous.

2-134C How do differential equations with constant coef-
ficients differ from those with variable coefficients? Give an
example for each type.

2—-135C What kind of differential equations can be solved by
direct integration?

2-136C Consider a third order linear and homogeneous
differential equation. How many arbitrary constants will its
general solution involve?

Review Problems

2—-137 A large plane wall, with a thickness L and a thermal
conductivity k, has its left surface (x = 0) exposed to a uni-
form heat flux g,. On the right surface (x = L), convection
and radiation heat transfer occur in a surrounding temperature
of T,,. The emissivity and the convection heat transfer coeffi-
cient on the right surface are € and h, respectively. Express the
boundary conditions and the differential equation of this heat
conduction problem during steady operation.

2-138 Consider a long rectangular bar of length a in the x-
direction and width b in the y-direction that is initially at a
uniform temperature of 7;. The surfaces of the bar at x = 0 and
y = 0 are insulated, while heat is lost from the other two
surfaces by convection to the surrounding medium at tem-
perature 7., with a heat transfer coefficient of 4. Assuming
constant thermal conductivity and transient two-dimensional
heat transfer with no heat generation, express the mathemati-
cal formulation (the differential equation and the boundary
and initial conditions) of this heat conduction problem. Do not
solve.

FIGURE P2-138



2-139E Consider a large plane wall of thickness L = 0.8 ft
and thermal conductivity k = 1.2 Btu/h-ft-°F. The wall is
covered with a material that has an emissivity of ¢ = 0.80
and a solar absorptivity of @« = 0.60. The inner surface of
the wall is maintained at 7, = 520 R at all times, while the
outer surface is exposed to solar radiation that is incident at a
rate of G, = 300 Btu/h-ft>. The outer surface is also losing
heat by radiation to deep space at 0 K. Determine the tem-
perature of the outer surface of the wall and the rate of heat
transfer through the wall when steady operating conditions
are reached. Answers: 554 R, 50.9 Btu/h-ft?
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FIGURE P2-139E

2-140 A spherical vessel has an inner radius r, and an outer
radius r,. The inner surface (r = r;) of the vessel is subjected
to a uniform heat flux ¢,. The outer surface (r = r,) is exposed
to convection and radiation heat transfer in a surrounding tem-
perature of T.,. The emissivity and the convection heat trans-
fer coefficient on the outer surface are € and h, respectively.
Express the boundary conditions and the differential equation
of this heat conduction problem during steady operation.

2-141 Consider a short cylinder of radius r, and height H in
which heat is generated at a constant rate of é,,,. Heat is lost
from the cylindrical surface at » = r, by convection to the
surrounding medium at temperature 7, with a heat transfer
coefficient of 4. The bottom surface of the cylinder at z = 0
is insulated, while the top surface at z = H is subjected to
uniform heat flux ¢;. Assuming constant thermal conduc-
tivity and steady two-dimensional heat transfer, express the
mathematical formulation (the differential equation and the
boundary conditions) of this heat conduction problem. Do not
solve.

2-142 Consider a small hot metal object of mass m and spe-
cific heat ¢ that is initially at a temperature of 7,. Now the
object is allowed to cool in an environment at 7, by convec-
tion with a heat transfer coefficient of 4. The temperature of
the metal object is observed to vary uniformly with time dur-
ing cooling. Writing an energy balance on the entire metal
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object, derive the differential equation that describes the varia-
tion of temperature of the ball with time, 7(f). Assume constant
thermal conductivity and no heat generation in the object. Do
not solve.

FIGURE P2-142

2-143 A 1200-W iron is left on the iron board with its base
exposed to ambient air at 26°C. The base plate of the iron
has a thickness of L = 0.5 cm, base area of A = 150 cm?,
and thermal conductivity of k = 18 W/m-K. The inner surface
of the base plate is subjected to uniform heat flux generated
by the resistance heaters inside. The outer surface of the base
plate whose emissivity is € = 0.7, loses heat by convection to
ambient air with an average heat transfer coefficient of 7 =
30 W/m2K as well as by radiation to the surrounding surfaces
at an average temperature of T, = 295 K. Disregarding any
heat loss through the upper part of the iron, (a) express the
differential equation and the boundary conditions for steady
one-dimensional heat conduction through the plate, (») obtain
a relation for the temperature of the outer surface of the plate
by solving the differential equation, and (c) evaluate the outer
surface temperature.

.| Iron
TSU]T
»| base

_,| plate

~
=V

FIGURE P2-143

2-144 Consider a 20-cm-thick large concrete plane wall
(k = 0.77 W/m-K) subjected to convection on both sides with
T,, = 22°C and h; = 8 W/m?K on the inside, and 7., = 8°C
and h, = 12 W/m?*K on the outside. Assuming constant
thermal conductivity with no heat generation and negli-
gible radiation, (a) express the differential equations and the
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boundary conditions for steady one-dimensional heat conduc-
tion through the wall, (b) obtain a relation for the variation of
temperature in the wall by solving the differential equation,
and (c) evaluate the temperatures at the inner and outer sur-
faces of the wall.

2-145 Consider a steam pipe of length L, inner radius ry,
outer radius r,, and constant thermal conductivity k. Steam
flows inside the pipe at an average temperature of 7; with a
convection heat transfer coefficient of 4, The outer surface
of the pipe is exposed to convection to the surrounding air
at a temperature of T, with a heat transfer coefficient of #,,.
Assuming steady one-dimensional heat conduction through
the pipe, (a) express the differential equation and the bound-
ary conditions for heat conduction through the pipe mate-
rial, (b) obtain a relation for the variation of temperature in
the pipe material by solving the differential equation, and
(c) obtain a relation for the temperature of the outer surface
of the pipe.

FIGURE P2-145

2-146 Exhaust gases from a manufacturing plant are being
discharged through a 10-m tall exhaust stack with outer diam-
eter of 1 m, wall thickness of 10 cm, and thermal conductivity
of 40 W/m-K. The exhaust gases are discharged at a rate of
1.2 kg/s, while temperature drop between inlet and exit of
the exhaust stack is 30°C, and the constant pressure specific
heat of the exhaust gasses is 1600 J/kg-K. On a particular
day, the outer surface of the exhaust stack experiences radia-
tion with the surrounding at 27°C, and convection with the
ambient air at 27°C also, with an average convection heat
transfer coefficient of 8 W/m?-K. Solar radiation is incident
on the exhaust stack outer surface at a rate of 150 W/m?2, and
both the emissivity and solar absorptivity of the outer sur-
face are 0.9. Assuming steady one-dimensional heat transfer,
(a) obtain the variation of temperature in the exhaust stack wall and
(b) determine the inner surface temperature of the exhaust
stack.

Exhaust
gases

a,==0.9

Air, 27°C

Exhaust Exhaust h=8 W/m*K
stack wall stack
k=40 W/m.K
Tin - Tou( =30°C

Manufacturing

FIGURE P2-146

2-147E Consider a steam pipe of length L = 35 ft, inner
radius r; = 2 in, outer radius r, = 2.4 in, and thermal conduc-
tivity k = 8 Btu/h-ft-°F. Steam is flowing through the pipe at
an average temperature of 250°F, and the average convection
heat transfer coefficient on the inner surface is given to be h =
15 Btu/h-ft2-°F. If the average temperature on the outer sur-
faces of the pipe is T, = 160°F, (a) express the differential
equation and the boundary conditions for steady one-dimen-
sional heat conduction through the pipe, (b) obtain a relation
for the variation of temperature in the pipe by solving the dif-
ferential equation, and (c) evaluate the rate of heat loss from
the steam through the pipe.

FIGURE P2-147E

2-148 When a long section of a compressed air line passes
through the outdoors, it is observed that the moisture in the
compressed air freezes in cold weather, disrupting and even
completely blocking the air flow in the pipe. To avoid this
problem, the outer surface of the pipe is wrapped with elec-
tric strip heaters and then insulated. Consider a compressed
air pipe of length L = 6 m, inner radius r; = 3.7 cm, outer
radius r, = 4.0 cm, and thermal conductivity k = 14 W/m-K
equipped with a 300-W strip heater. Air is flowing through
the pipe at an average temperature of —10°C, and the aver-
age convection heat transfer coefficient on the inner surface is
h = 30 W/m*K. Assuming 15 percent of the heat generated



in the strip heater is lost through the insulation, (a) express the
differential equation and the boundary conditions for steady
one-dimensional heat conduction through the pipe, (b) obtain a
relation for the variation of temperature in the pipe material by
solving the differential equation, and (c) evaluate the inner and
outer surface temperatures of the pipe.

Electric heater

x Insulation
FIGURE P2-148

2-149 In a manufacturing plant, a quench hardening pro-
cess is used to treat steel ball bearings (¢ = 500 J/kgK, k =
60 W/m-K, p = 7900 kg/m?) of 25 mm in diameter. After be-
ing heated to a prescribed temperature, the steel ball bearings
are quenched. Determine the rate of heat loss if the rate of
temperature decrease in the ball bearing at a given instant dur-
ing the quenching process is 50 K/s. Answer: 1.62 kW

2-150 Consider a water pipe of length L = 17 m, inner
radius r; = 15 cm, outer radius r, = 20 cm, and thermal con-
ductivity k = 14 W/m-K. Heat is generated in the pipe material
uniformly by a 25-kW electric resistance heater. The inner and
outer surfaces of the pipe are at 7, = 60°C and T, = 80°C, re-
spectively. Obtain a general relation for temperature distribu-
tion inside the pipe under steady conditions and determine the
temperature at the center plane of the pipe.

2-151 Heat is generated uniformly at a rate of 4.2 X 10° W/m?
in a spherical ball (k = 45 W/m-K) of diameter 24 cm. The ball
is exposed to iced-water at 0°C with a heat transfer coefficient
of 1200 W/m?-K. Determine the temperatures at the center and
the surface of the ball.

2-152 Consider a spherical reactor of 5-cm diameter operat-
ing at steady condition has a temperature variation that can be
expressed in the form of T(r) = a — br?, where a = 850°C and
b = 5 X 10° K/m2. The reactor is made of material with ¢ =
200 J/kg-°C, k = 40 W/m-K, p = 9000 kg/m>. If the heat gen-
eration of reactor is suddenly set to 9 MW/m?, determine the
time rate of temperature change in the reactor. Is the heat gen-
eration of reactor suddenly increased or decreased to 9 MW/m?
from its steady operating condition?

2-153 Consider a cylindrical shell of length L, inner radius
ry, and outer radius r, whose thermal conductivity varies in
a specified temperature range as k(T) = k(1 + BT?) where
ko and B are two specified constants. The inner surface of the
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shell is maintained at a constant temperature of 7; while the
outer surface is maintained at 7,. Assuming steady one-dimen-
sional heat transfer, obtain a relation for the heat transfer rate
through the shell.
2-154 Y] A pipe is used for transporting boiling water in
<& which the inner surface is at 100°C. The pipe is
situated in a surrounding where the ambient temperature is
20°C and the convection heat transfer coefficient is 50 W/m?-K.
The pipe has a wall thickness of 3 mm and an inner diameter of
25 mm, and it has a variable thermal conductivity given as
k(T) = ky(1 + BT), where k, = 1.5 W/m-K, B = 0.003 K,
and T is in K. Determine the outer surface temperature of
the pipe.
2-155 ) A metal spherical tank is filled with chemicals
=& undergoing an exothermic reaction. The reaction
provides a uniform heat flux on the inner surface of the tank.
The tank has an inner diameter of 5 m and its wall thickness is
10 mm. The tank wall has a variable thermal conductivity
given as k(T) = ky (1 + BT), where k, = 9.1 W/m-K,
B = 0.0018 K~!, and T is in K. The tank is situated in a sur-
rounding with an ambient temperature of 15°C, the tank’s
outer surface experiences convection heat transfer with a coef-
ficient of 80 W/m2-K. Determine the heat flux on the tank’s
inner surface if the inner surface temperature is 120°C.

Fundamentals of Engineering (FE) Exam Problems

2-156 The heat conduction equation in a medium is given in
its simplest form as

1d dT .
k=) e, =
rdr (rk dr> Caen = 0

Select the wrong statement below.
(a) The medium is of cylindrical shape.
(b) The thermal conductivity of the medium is constant.
(c) Heat transfer through the medium is steady.
(d) There is heat generation within the medium.
(e) Heat conduction through the medium is one-dimensional.

2-157 Consider a medium in which the heat conduction equa-
tion is given in its simplest forms as

1o ([ ,0T 19T
o\ T
re or ar o ot
(a) Is heat transfer steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
d) Is the thermal conductivity of the medium constant or
variable?
(e) Is the medium a plane wall, a cylinder, or a sphere?
(f) Is this differential equation for heat conduction linear or
nonlinear?
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2-158 Consider a large plane wall of thickness L, thermal
conductivity k, and surface area A. The left surface of the wall
is exposed to the ambient air at 7, with a heat transfer coeffi-
cient of 4 while the right surface is insulated. The variation of
temperature in the wall for steady one-dimensional heat con-
duction with no heat generation is

L=

h
(a) T(x) = T T.

k
(b) T(x) = W + 05L0) T.

T(x) = (1 - ﬂ) T
(o) T(x) = ) -
d) Tx)=(L—x) T,

(e) T(x) =T

2-159 A solar heat flux g; is incident on a sidewalk whose ther-
mal conductivity is k, solar absorptivity is «,, and convective
heat transfer coefficient is 4. Taking the positive x direction to
be towards the sky and disregarding radiation exchange with the
surroundings surfaces, the correct boundary condition for this
sidewalk surface is

@ kT & L yr—1)
G TR T K dx -

dr
() *kd* =WT—-T.,) —a,q, (d) KT —T,) = aq;
X
(e¢) None of them

2-160 A plane wall of thickness L is subjected to convection
at both surfaces with ambient temperature 7.,; and heat transfer
coefficient &, at inner surface, and corresponding 7., and h,
values at the outer surface. Taking the positive direction of x
to be from the inner surface to the outer surface, the correct
expression for the convection boundary condition is

dT(0)
(@) kT = m[T0) = T..)]
/X
dT(L)
) k T h[T(L) — T.,)]
/x
dT(0)
(©) _kT = W[T. — T.,)]
X
dT(L)
d) —k d = |T.; — T.,p)]
/X

(¢) None of them

2-161 Consider steady one-dimensional heat conduction
through a plane wall, a cylindrical shell, and a spherical shell
of uniform thickness with constant thermophysical properties
and no thermal energy generation. The geometry in which the
variation of temperature in the direction of heat transfer will
be linear is

(a) plane wall

(d) all of them

(b) cylindrical shell
(e) none of them

(c) spherical shell

2-162 The conduction equation boundary condition for
an adiabatic surface with direction n being normal to the
surface is
(@T=0
(d) d*Tldn® = 0

(b) dT/dn = 0
(¢) —kdTldn = 1

(¢) d*Tldn*> = 0

2-163 The variation of temperature in a plane wall is deter-
mined to be T(x) = 52x + 25 where x is in m and 7'is in °C. If the
temperature at one surface is 38°C, the thickness of the wall is
(@0.10m  (b)0.20m  (¢)0.25m
d)040m  (e)0.50 m

2-164 The variation of temperature in a plane wall is deter-
mined to be T(x) = 110—60x where x is in m and T is in °C. If
the thickness of the wall is 0.75 m, the temperature difference
between the inner and outer surfaces of the wall is

(a)30°C  (b)45°C  (c)60°C (d)75°C (e) 84°C

2-165 The temperatures at the inner and outer surfaces of a
15-cm-thick plane wall are measured to be 40°C and 28°C, re-
spectively. The expression for steady, one-dimensional varia-
tion of temperature in the wall is

(a) T(x) =28x + 40  (b) T(x) = —40x + 28

(¢) T(x) = 40x + 28  (d) T(x) = —80x + 40

(e) T(x) = 40x — 80

2-166 The thermal conductivity of a solid depends upon the
solid’s temperature as k = aT + b where a and b are constants.
The temperature in a planar layer of this solid as it conducts
heat is given by

(@) aT+b=x+C,

(¢) aT>+ bT=Cix + C,

(e) None of them

B)aT + b= C2 + G,
(d)aT? + bT = C\x> + C,

2-167 Hot water flows through a PVC (k = 0.092 W/m-K)
pipe whose inner diameter is 2 cm and outer diameter is
2.5 cm. The temperature of the interior surface of this pipe is
50°C and the temperature of the exterior surface is 20°C. The
rate of heat transfer per unit of pipe length is
(@77.7Wm  (b)89.5W/m (c)98.0 W/m
(d)112W/m  (e) 168 W/m

2-168 Heat is generated in a long 0.3-cm-diameter cylindri-
cal electric heater at a rate of 180 W/cm?. The heat flux at the
surface of the heater in steady operation is

(a) 12,7 W/cm?>  (b) 13.5 W/cm?>  (c) 64.7 W/cm?

(d) 180 W/cm?>  (e) 191 W/cm?

2-169 Heat is generated uniformly in a 4-cm-diameter,
12-cm-long solid bar (k = 2.4 W/m-K). The temperatures at
the center and at the surface of the bar are measured to be
210°C and 45°C, respectively. The rate of heat generation
within the bar is
(@)597TW (b)) 760 W
d)928W  (e) 1020 W

2-170 Heat is generated in a 10-cm-diameter spherical
radioactive material whose thermal conductivity is 25 W/m-K

(c) 826 W



uniformly at a rate of 15 W/cm?. If the surface temperature of
the material is measured to be 120°C, the center temperature of
the material during steady operation is

(a) 160°C  (b)205°C  (c)280°C

(d) 370°C  (e)495°C

2-171 Heat is generated in a 3-cm-diameter spherical radio-
active material uniformly at a rate of 15 W/cm?. Heat is dis-
sipated to the surrounding medium at 25°C with a heat transfer
coefficient of 120 W/m?K. The surface temperature of the
material in steady operation is

(a) 56°C (b) 84°C (c) 494°C

(d) 650°C  (e) 108°C

Design and Essay Problems

2-172 Write an essay on heat generation in nuclear fuel
rods. Obtain information on the ranges of heat generation, the
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variation of heat generation with position in the rods, and the
absorption of emitted radiation by the cooling medium.

2-173  Ip. Write an interactive computer program to calculate

€ the heat transfer rate and the value of temperature
anywhere in the medium for steady one-dimensional heat con-
duction in a long cylindrical shell for any combination of speci-
fied temperature, specified heat flux, and convection boundary
conditions. Run the program for five different sets of specified
boundary conditions.

2-174 Write an interactive computer program to calculate
the heat transfer rate and the value of temperature anywhere
in the medium for steady one-dimensional heat conduction in
a spherical shell for any combination of specified tempera-
ture, specified heat flux, and convection boundary conditions.
Run the program for five different sets of specified boundary
conditions.



CHAPTER

OBJECTIVES
When you finish studying this chapter,
you should be able to:

Understand the concept of
thermal resistance and its
limitations, and develop thermal
resistance networks for practical
heat conduction problems,

Solve steady conduction
problems that involve multilayer
rectangular, cylindrical, or
spherical geometries,

Develop an intuitive understand-
ing of thermal contact resistance,
and circumstances under which it
may be significant,

Identify applications in which
insulation may actually increase
heat transfer,

Analyze finned surfaces, and
assess how efficiently and
effectively fins enhance heat
transfer, and

Solve multidimensional practical
heat conduction problems using
conduction shape factors.

STEADY HEAT CONDUCTION

n heat transfer analysis, we are often interested in the rate of heat transfer

through a medium under steady conditions and surface temperatures. Such

problems can be solved easily without involving any differential equations
by the introduction of the thermal resistance concept in an analogous manner
to electrical circuit problems. In this case, the thermal resistance corresponds
to electrical resistance, temperature difference corresponds to voltage, and the
heat transfer rate corresponds to electric current.

We start this chapter with one-dimensional steady heat conduction in a
plane wall, a cylinder, and a sphere, and develop relations for thermal resis-
tances in these geometries. We also develop thermal resistance relations for
convection and radiation conditions at the boundaries. We apply this con-
cept to heat conduction problems in multilayer plane walls, cylinders, and
spheres and generalize it to systems that involve heat transfer in two or three
dimensions. We also discuss the thermal contact resistance and the over-
all heat transfer coefficient and develop relations for the critical radius of
insulation for a cylinder and a sphere. Finally, we discuss steady heat transfer
from finned surfaces and some complex geometrics commonly encountered
in practice through the use of conduction shape factors.



3-1 = STEADY HEAT CONDUCTION IN PLANE WALLS

Consider steady heat conduction through the walls of a house during a winter
day. We know that heat is continuously lost to the outdoors through the wall.
We intuitively feel that heat transfer through the wall is in the normal direc-
tion to the wall surface, and no significant heat transfer takes place in the wall
in other directions (Fig. 3—-1).

Recall that heat transfer in a certain direction is driven by the remperature
gradient in that direction. There is no heat transfer in a direction in which
there is no change in temperature. Temperature measurements at several
locations on the inner or outer wall surface will confirm that a wall surface is
nearly isothermal. That is, the temperatures at the top and bottom of a wall
surface as well as at the right and left ends are almost the same. Therefore,
there is no heat transfer through the wall from the top to the bottom, or from
left to right, but there is considerable temperature difference between the
inner and the outer surfaces of the wall, and thus significant heat transfer in
the direction from the inner surface to the outer one.

The small thickness of the wall causes the temperature gradient in that direc-
tion to be large. Further, if the air temperatures in and outside the house remain
constant, then heat transfer through the wall of a house can be modeled as
steady and one-dimensional. The temperature of the wall in this case depends
on one direction only (say the x-direction) and can be expressed as 7(x).

Noting that heat transfer is the only energy interaction involved in this
case and there is no heat generation, the energy balance for the wall can be
expressed as

Rate of Rate of Rate of change
heat transfer | — | heat transfer | = | of the energy
into the wall out of the wall of the wall
or
; ; dszlll (3-1)
Qin Qout - dt -

But dE,,,/dt = 0 for steady operation, since there is no change in the tempera-
ture of the wall with time at any point. Therefore, the rate of heat transfer into
the wall must be equal to the rate of heat transfer out of it. In other words, the
rate of heat transfer through the wall must be constant, Q o4, way = constant.
Consider a plane wall of thickness L and average thermal conductivity k.
The two surfaces of the wall are maintained at constant temperatures of 7} and
T,. For one-dimensional steady heat conduction through the wall, we have
T(x). Then Fourier’s law of heat conduction for the wall can be expressed as

- dTr
=—kA— (W 3-2
Qcond, wall dX ( ) ( )

where the rate of conduction heat transfer Qcond, wall and the wall areca A are
constant. Thus dT/dx = constant, which means that the temperature through
the wall varies linearly with x. That is, the temperature distribution in the wall
under steady conditions is a straight line (Fig. 3-2).
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FIGURE 3-1

Heat transfer through a wall is one-
dimensional when the temperature of
the wall varies in one direction only.

Qcond

FIGURE 3-2

Under steady conditions,

the temperature distribution in
a plane wall is a straight line.
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FIGURE 3-3
Analogy between thermal and
electrical resistance concepts.

Separating the variables in the preceding equation and integrating from
x = 0, where T(0) = T, to x = L, where T(L) = T,, we get

L . T2
J Qcond, wall dx = _J
k=0 =1,

Performing the integrations and rearranging gives
I - T,
L

kA dT

OQcond. v = kA (W) (3-3)
which is identical to Eq. 1-21. Again, the rate of heat conduction through
a plane wall is proportional to the average thermal conductivity, the wall
area, and the temperature difference, but is inversely proportional to the
wall thickness. Also, once the rate of heat conduction is available, the tem-
perature 7T(x) at any location x can be determined by replacing 7, in Eq. 3-3
by 7, and L by x.

Thermal Resistance Concept

Equation 3-3 for heat conduction through a plane wall can be rearranged as

: I, — T,
annd. wall — — 5 (W) (3-4)
R\\ull
where
Ry = L (K/W) (3-5)
wall kA -

is the thermal resistance of the wall against heat conduction or simply the
conduction resistance of the wall. Note that the thermal resistance of a
medium depends on the geometry and the thermal properties of the medium.
Note that thermal resistance can also be expressed as Ry = AT/Qcong, wan»
which is the ratio of the driving potential AT to the corresponding transfer
rate Qcond, wall

This equation for heat transfer is analogous to the relation for electric
current flow I, expressed as

= ——F— (3-6)

where R, = L/o, A is the electric resistance and V| — V, is the voltage differ-
ence across the resistance (o, is the electrical conductivity). Thus, the rate of
heat transfer through a layer corresponds to the electric current, the thermal
resistance corresponds to electrical resistance, and the temperature differ-
ence corresponds to voltage difference across the layer (Fig. 3-3).

Consider convection heat transfer from a solid surface of area A; and tem-
perature 7 to a fluid whose temperature sufficiently far from the surface is
T.., with a convection heat transfer coefficient 2. Newton’s law of cooling for
convection heat transfer rate Q.,,, = hA(T, — T, can be rearranged as

s T\ - Tx;
Qo =" (W) (3-7)

conv



where

-
Rc(m\ - /7/\\ (K/W) (3-8)

is the thermal resistance of the surface against heat convection, or simply the
convection resistance of the surface (Fig. 3—4). Note that when the convec-
tion heat transfer coefficient is very large (h — %), the convection resistance
becomes zero and T, =T.,,. That is, the surface offers no resistance to convec-
tion, and thus it does not slow down the heat transfer process. This situation
is approached in practice at surfaces where boiling and condensation occur.
Also note that the surface does not have to be a plane surface. Equation 3-8
for convection resistance is valid for surfaces of any shape, provided that the
assumption of 4 = constant and uniform is reasonable.

When the wall is surrounded by a gas, the radiation effects, which we have
ignored so far, can be significant and may need to be considered. The rate of
radiation heat transfer between a surface of emissivity € and area A, at tem-
perature 7 and the surrounding surfaces at some average temperature 7, can
be expressed as

T — T,
Qm(l = SU—A\(T\'-1 o T-l ) - hmdA\(T\ - Txurr) = -

. w (3-9)
surr R ( )

rad

where

R (K/W) (3-10)

rad — ho A

rad ‘s

is the thermal resistance of a surface against radiation, or the radiation
resistance, and

— Qrad
rad A(T -T )

s s SurT-

h =eo(T2+ T2 )T, + Toy) (WM2K)  (3-11)

SurT

is the radiation heat transfer coefficient. Note that both 7, and T, must
be in K in the evaluation of h,4. The definition of the radiation heat trans-
fer coefficient enables us to express radiation conveniently in an analogous
manner to convection in terms of a temperature difference. But 4,4 depends
strongly on temperature while A, usually does not.

A surface exposed to the surrounding air involves convection and radiation
simultaneously, and the total heat transfer at the surface is determined by
adding (or subtracting, if in the opposite direction) the radiation and convec-
tion components. The convection and radiation resistances are parallel to each
other, as shown in Fig. 3-5, and may cause some complication in the ther-
mal resistance network. When T, =T, the radiation effect can properly be
accounted for by replacing £ in the convection resistance relation (Eq. 3-8) by

h heony + Mg (W/m?K) (3-12)

combined

where /.opined 1S the combined heat transfer coefficient discussed in
Chapter 1. This way all complications associated with radiation are avoided.
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Solid h *

Reony = ]’l_AS
FIGURE 34

Schematic for convection resistance
at a surface.

surr

Q = Qconv + Qrad

FIGURE 3-5
Schematic for convection and
radiation resistances at a surface.
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T,
I Wall
T
)
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) T T
Q. _ T —Tyy T, Q Reonv,1 1 Ryan 2 Reony2 r Thermal
Rconv,l + Rwall + Rconv,Z network
1 R R, R
I= L Ve > ol @2 @3 v, Electrical
Roi+Rp+R.3 ] analogy
FIGURE 3-6

The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides,
and the electrical analogy.

Thermal Resistance Network
Now consider steady one-dimensional heat transfer through a plane wall of
thickness L, area A, and thermal conductivity k that is exposed to convection
on both sides to fluids at temperatures 7., and T.., with heat transfer coeffi-
cients h; and h,, respectively, as shown in Fig. 3-6. Assuming 7., < T, the
variation of temperature will be as shown in the figure. Note that the tempera-
ture varies linearly in the wall, and asymptotically approaches 7., and 7., in
the fluids as we move away from the wall.
Under steady conditions we have

Rate of Rate of Rate of
heat convection | = | heat conduction | = | heat convection
into the wall through the wall from the wall
or
. T, - T,

Q = hl A(T:c] - Tl) = kA = hz A(Tz - Twz) (3—13)

L

which can be rearranged as

T.,-T, T,-T, T,—T

Q _ ool _ _ a2
1/h,A L/kA 1/h, A
T, — T I, - T, T, - T,
=R =R = (3-14)
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Once the rate of heat transfer is calculated, Eq. 3—14 can also be used to

determine the intermediate temperatures 7 or 7. Adding the numerators and
denominators yields (Fig. 3-7)

(W) (3-15)

total
where
1 L 1

Rl = R, + Ryt T Reony 2o =7+ 7+
total conv, 1 wall conv, 2 /ZI A kA /IZA

(K/W) (3-16) For example,

% = % — 25—0 =025
Note that the heat transfer area A is constant for a plane wall, and the rate of
heat transfer through a wall separating two media is equal to the overall tem-
perature difference (7., — T.,,) divided by the total thermal resistance between 14245 _ 395
the media. Also note that the thermal resistances are in series, and the A 2l
equivalent thermal resistance is determined by simply adding the individual
resistances, just like the electrical resistances connected in series. Thus, the FIGURE 3-7
electrical analogy still applies. We summarize this as the rate of steady heat
transfer between two surfaces is equal to the temperature difference divided
by the total thermal resistance between those two surfaces.

Another observation that can be made from Eq. 3—15 is that the ratio of the
temperature drop to the thermal resistance across any layer is constant, and
thus the temperature drop across any layer is proportional to the thermal resis-
tance of the layer. The larger the resistance, the larger the temperature drop.
In fact, the equation Q = AT/R can be rearranged as

A useful mathematical identity.

AT = OR (°C) (3-17)

which indicates that the temperature drop across any layer is equal to the rate
of heat transfer times the thermal resistance across that layer (Fig. 3-8). You
may recall that this is also true for voltage drop across an electrical resistance
when the electric current is constant.

It is sometimes convenient to express heat transfer through a medium in an
analogous manner to Newton’s law of cooling as

AQ:IOW

Q0 =UAAT (W) (3-18)
o]
. o . N 20°C
where U is the overall heat transfer coefficient with the unit W/m?K. The T,
overall heat transfer coefficient is usually used in heat transfer calculations 150°C
associated with heat exchangers (Chapter 11). It is also used in heat transfer I, v
calculations through windows (Chapter 9), commonly referred to as U-factor. \,30°C
. ——e T,
A comparison of Egs. 3—15 and 3—18 reveals that
1 R R R
UA — W/K 3-19 conv,1 T wall T, “tconv,2
Ryt e B AW AW AN Tz
2oc/w | oasecw 1o3eciw

Therefore, for a unit area, the overall heat transfer coefficient is equal to the
inverse of the total thermal resistance.

Note that we do not need to know the surface temperatures of the wall in FIGURE 3-8
order to evaluate the rate of steady heat transfer through it. All we need to  The temperature drop across a layer is
know is the convection heat transfer coefficients and the fluid temperatures proportional to its thermal resistance.

AT=OR
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FIGURE 3-9
The thermal resistance network for
heat transfer through a two-layer

plane wall subjected to convection on
both sides.

on both sides of the wall. The surface temperature of the wall can be deter-
mined as described above using the thermal resistance concept, but by taking
the surface at which the temperature is to be determined as one of the terminal
surfaces. For example, once Q is evaluated, the surface temperature 7, can be
determined from

(3-20)

Multilayer Plane Walls
In practice we often encounter plane walls that consist of several layers of
different materials. The thermal resistance concept can still be used to deter-
mine the rate of steady heat transfer through such composite walls. As you
may have already guessed, this is done by simply noting that the conduction
resistance of each wall is L/kA connected in series, and using the electrical
analogy. That is, by dividing the temperature difference between two surfaces
at known temperatures by the total thermal resistance between them.
Consider a plane wall that consists of two layers (such as a brick wall with
a layer of insulation). The rate of steady heat transfer through this two-layer
composite wall can be expressed as (Fig. 3-9)

- T,

. ool 002
Q=" (3-21)
leul
where R, is the total thermal resistance, expressed as
Rlulul =R 1 + R\xull.l +R 1,2 +R
1 L L
hA kA kA hA

conv, wal conv, 2

(3-22)

r Wall 1 Wall 2
o]
N
A’_\\ T, hy
hy
k k
1 2 T3
T,
l«—— L) ——>l«—— L, ——>
T, T T
Toot e— AN 1 2 > AN T,y
L L
Roony.1 = —1— =~ =2 =_1
conv, 1 hlA Rwall,l klA wall,2 sz Rconv,2 th



The subscripts 1 and 2 in the R, relations above indicate the first and the
second layers, respectively. We could also obtain this result by following
the approach already used for the single-layer case by noting that the rate of
steady heat transfer Q through a multilayer medium is constant, and thus it
must be the same through each layer. Note from the thermal resistance net-
work that the resistances are in series, and thus the roral thermal resistance is
simply the arithmetic sum of the individual thermal resistances in the path of
heat transfer.

This result for the rwo-layer case is analogous to the single-layer case,
except that an additional resistance is added for the additional layer. This
result can be extended to plane walls that consist of three or more layers by
adding an additional resistance for each additional layer.

Once Q is known, an unknown surface temperature 7; at any surface or
interface j can be determined from

i J

0= (3-23)

total, i —j

where T; is a known temperature at location i and Ry, ; - ; is the total thermal
resistance between locations i and j. For example, when the fluid tempera-
tures 7., and T, for the two-layer case shown in Fig. 3-9 are available and
Q is calculated from Eq. 3-21, the interface temperature 7, between the two

walls can be determined from (Fig. 3—10)

Q I, — T, T, — T, (3-24)
Rconv,l + Rwall,l 1 + i
A" kA

The temperature drop across a layer is easily determined from Eq. 3-17 by
multiplying Q by the thermal resistance of that layer.

The thermal resistance concept is widely used in practice because it is in-
tuitively easy to understand and it has proven to be a powerful tool in the
solution of a wide range of heat transfer problems. But its use is limited to
systems through which the rate of heat transfer Q remains constant; that is,
to systems involving steady heat transfer with no heat generation (such as
resistance heating or chemical reactions) within the medium.

EXAMPLE 3-1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal conduc-
tivity is k = 0.9 W/m-K (Fig. 3-11). On a certain day, the temperatures of the
inner and the outer surfaces of the wall are measured to be 16°C and 2°C,
respectively. Determine the rate of heat loss through the wall on that day.
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T Y
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. T, -T,
Tofind7y: Q=
conv,1
To find T: O T —Th
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2 Rconv,l +Rwall,l
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Tofind75: Q= 3=
conv,2
FIGURE 3-10

The evaluation of the surface and
interface temperatures when 7., and
T.., are given and Q is calculated.

o \
2°C

|

L=03m

FIGURE 3-11
Schematic for Example 3—1.
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SOLUTION The two surfaces of a wall are maintained at specified tempera-
tures. The rate of heat loss through the wall is to be determined.

Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer is one-
dimensional since any significant temperature gradients exist in the direction
from the indoors to the outdoors. 3 Thermal conductivity is constant.
Properties The thermal conductivity is given to be k = 0.9 W/m-K.

Analysis Noting that heat transfer through the wall is by conduction and the
area of the wall is A =3 m X 5 m = 15 m?, the steady rate of heat transfer
through the wall can be determined from Eq. 3-3 to be

I, — T, (16 — 2)°C
— = (09 Win 0)(I15 m?) ~———— = 630 W
Jm

0 =kA
We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from

AT,

_ wall
Rwall
where
IL 0.3 m

Ry =— =
vl kA (0.9 Wm°C)(15 m?)

= 0.02222°C/W

Substituting, we get
(16 — 2)°C

= 0.002ecw 0w

Discussion This is the same result obtained earlier. Note that heat conduction
through a plane wall with specified surface temperatures can be determined
directly and easily without utilizing the thermal resistance concept. However,
the thermal resistance concept serves as a valuable tool in more complex heat
transfer problems, as you will see in the following examples. Also, the units
W/m-°C and W/m-K for thermal conductivity are equivalent, and thus inter-
changeable. This is also the case for °C and K for temperature differences.

EXAMPLE 3-2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of kK = 0.78 W/m-K. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is —10°C. Take the heat transfer coefficients on the inner
and outer surfaces of the window to be h; = 10 W/m?-K and h, = 40 W/m?-K,
which includes the effects of radiation.

SOLUTION Heat loss through a window glass is considered. The rate of heat
transfer through the window and the inner surface temperature are to be
determined.



Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients exist
in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.

Properties The thermal conductivity is given to be k = 0.78 W/m-K.

Analysis  This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 3-12. Noting that the area of the window is A = 0.8 m X 1.5 m =
1.2 m?, the individual resistances are evaluated from their definitions to be

1 1
R=Rp =7 = = 0.08333°C/W
P T LR AT (10 WmK)(1.2 m?)
L 0.008 m
Ry =— = = 0.00855°C/ W

s T pA (078 W/m-K)(1.2 m?)

1 1
R,=R = 0.02083°C/ W

0

o2 T AT (40 WmK)(1.2 md)
Noting that all three resistances are in series, the total resistance is

Riat = Reomv. 1 + Rytass + Reony.2 = 0.08333 + 0.00855 + 0.02083
=0.1127°C/W

Then the steady rate of heat transfer through the window becomes

T, — T, [20 — (—10)]°C
R ~0.1127°C/W

Q= =266 W

total

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

o Tool - Tl .
Q — Ri _— Tl = Too] - QRconv,l
conv, 1 = 20°C — (266 W)(0.08333°C/W)
= =2.2°C

Discussion Note that the inner surface temperature of the window glass is
—2.2°C even though the temperature of the air in the room is maintained at
20°C. Such low surface temperatures are highly undesirable since they cause
the formation of fog or even frost on the inner surfaces of the glass when the
humidity in the room is high.

EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
4-mm-thick layers of glass (k = 0.78 W/m-K) separated by a 10-mm-wide
stagnant air space (k = 0.026 W/m-K). Determine the steady rate of heat
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Schematic for Example 3-2.
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Glass Glass

{ |

Air
20°C
73412
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FIGURE 3-13
Schematic for Example 3-3.

transfer through this double-pane window and the temperature of its inner sur-
face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is —10°C. Take the convection heat transfer coefficients
on the inner and outer surfaces of the window to be h; = 10 W/m?2-K and
h, = 40 W/m?2.K, which includes the effects of radiation.

|
|
|
|
|
|
|
SOLUTION A double-pane window is considered. The rate of heat transfer
through the window and the inner surface temperature are to be determined.
Analysis This example problem is identical to the previous one except that

the single 8-mm-thick window glass is replaced by two 4-mm-thick glasses
that enclose a 10-mm-wide stagnant air space. Therefore, the thermal resis-
tance network of this problem involves two additional conduction resistances
corresponding to the two additional layers, as shown in Fig. 3-13. Noting that
the area of the window is again A = 0.8 m X 1.5 m = 1.2 m?, the individual
resistances are evaluated from their definitions to be

1 1
Ri= Ry 1 = —

i conv, |

= 0.08333°C/W

mA (10 Wm2K)(1.2 m2)

— = = 0.00427°C/W
kA (0.78 W/m-K)(1.2 m?)

Rl = R3 = Rglass =

L2 0.01 m
RZ = Rair = = 2
k,A  (0.026 W/m-K)(1.2 m°)

= 0.3205°C/W

1 1
=R ===
o2 A (40 WimPK)(1.2 m?)

R = 0.02083°C/W

0

Noting that all three resistances are in series, the total resistance is

Rlolal = Rconv,l + Rglass,l + Rair + Rglass, 2 + Rconv,2
= 0.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083
= 0.4332°C/W

Then the steady rate of heat transfer through the window becomes

T — T [20 = (=10)]°C
- =

=692 W

0.4332°C/W

total

which is about one-fourth of the result obtained in the previous example. This
explains the popularity of the double- and even triple-pane windows in cold
climates. The drastic reduction in the heat transfer rate in this case is due to
the large thermal resistance of the air layer between the glasses.

The inner surface temperature of the window in this case will be

T, = T.; — QR 1 = 20°C — (69.2 W)(0.08333°C/ W) = 14.2°C

which is considerably higher than the —2.2°C obtained in the previous
example. Therefore, a double-pane window will rarely get fogged. A double-
pane window will also reduce the heat gain in summer, and thus reduce the air-
conditioning costs.
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3-2 = THERMAL CONTACT RESISTANCE

In the analysis of heat conduction through multilayer solids, we assumed
“perfect contact” at the interface of two layers, and thus no temperature
drop at the interface. This would be the case when the surfaces are perfectly
smooth and they produce a perfect contact at each point. In reality, however,
even flat surfaces that appear smooth to the eye turn out to be rather rough
when examined under a microscope, as shown in Fig. 3—14, with numerous
peaks and valleys. That is, a surface is microscopically rough no matter how
smooth it appears to be.

When two such surfaces are pressed against each other, the peaks form
good material contact but the valleys form voids filled with air in most cases.
As a result, an interface contains numerous air gaps of varying sizes that
act as insulation because of the low thermal conductivity of air. Thus, an
interface offers some resistance to heat transfer, and this resistance for a unit
interface area is called the thermal contact resistance, R.. The value of R, is
determined experimentally using a setup like the one shown in Fig. 3-15, and
as expected, there is considerable scatter of data because of the difficulty in
characterizing the surfaces.

Consider heat transfer through two metal rods of cross-sectional area A that
are pressed against each other. Heat transfer through the interface of these two
rods is the sum of the heat transfers through the solid contact spots (solid-to-
solid conduction) and the gaps (conduction and/or radiation across the gaps)
in the noncontact areas (which is a major contributor to heat transfer) and can
be expressed as

Q = Qcomacl + anp (3_25)
It can also be expressed in an analogous manner to Newton’s law of cooling as

Q = hLA ATimerface (3-26)
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FIGURE 3-14

Temperature distribution and heat
flow lines along two solid plates
pressed against each other for the case
of perfect and imperfect contact.
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FIGURE 3-15

A typical experimental setup for the
determination of thermal contact
resistance.

From Song et al., 1993.
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where A is the apparent interface area (which is the same as the cross-sectional
area of the rods) and AT}, ... 1S the effective temperature difference at the
interface. The quantity 4., which corresponds to the convection heat transfer
coefficient, is called the thermal contact conductance and is expressed as
/A :
he=qm—— (Wim*K) (3-27)

interface
It is related to thermal contact resistance by

1 AT

R, = — = —elee (2 K/W) (3-28)
h, 0/A

That is, thermal contact resistance is the inverse of thermal contact conduc-
tance. Usually, thermal contact conductance is reported in the literature,
but the concept of thermal contact resistance serves as a better vehicle for
explaining the effect of interface on heat transfer. Note that R, represents ther-
mal contact resistance for a unit area. The thermal resistance for the entire
interface is obtained by dividing R, by the apparent interface area A.

The thermal contact resistance can be determined from Eq. 3-28 by mea-
suring the temperature drop at the interface and dividing it by the heat flux
under steady conditions. The value of thermal contact resistance depends on
the surface roughness and the material properties as well as the temperature
and pressure at the interface and the type of fluid trapped at the interface. The
situation becomes more complex when plates are fastened by bolts, screws, or
rivets since the interface pressure in this case is nonuniform. The thermal con-
tact resistance in that case also depends on the plate thickness, the bolt radius,
and the size of the contact zone. Thermal contact resistance is observed to
decrease with decreasing surface roughness and increasing interface pres-
sure, as expected. Most experimentally determined values of the thermal con-
tact resistance fall between 0.000005 and 0.0005 m?-K/W (the corresponding
range of thermal contact conductance is 2000 to 200,000 W/m?K).

When we analyze heat transfer in a medium consisting of two or more lay-
ers, the first thing we need to know is whether the thermal contact resistance
is significant or not. We can answer this question by comparing the magni-
tudes of the thermal resistances of the layers with typical values of thermal
contact resistance. For example, the thermal resistance of a 1-cm-thick layer
of an insulating material for a unit surface area is

X _L__00lm ol
¢, insulation k 004 W/mK . m
whereas for a 1-cm-thick layer of copper, it is
L 0.01
R coper = = = —o—— = 0000026 m*K/W

e.copper — 3 386 W/m.K

Comparing the values above with typical values of thermal contact resistance,
we conclude that thermal contact resistance is significant and can even domi-
nate the heat transfer for good heat conductors such as metals, but can be



disregarded for poor heat conductors such as insulations. This is not surpris-
ing since insulating materials consist mostly of air space just like the inter-
face itself.

The thermal contact resistance can be minimized by applying a thermally
conducting liquid called a thermal grease such as silicon oil on the surfaces
before they are pressed against each other. This is commonly done when
attaching electronic components such as power transistors to heat sinks. The
thermal contact resistance can also be reduced by replacing the air at the
interface by a better conducting gas such as helium or hydrogen, as shown
in Table 3-1.

Another way to minimize the contact resistance is to insert a soft metallic
foil such as tin, silver, copper, nickel, or aluminum between the two sur-
faces. Experimental studies show that the thermal contact resistance can be
reduced by a factor of up to 7 by a metallic foil at the interface. For maximum
effectiveness, the foils must be very thin. The effect of metallic coatings on
thermal contact conductance is shown in Fig. 3—16 for various metal surfaces.

There is considerable uncertainty in the contact conductance data reported
in the literature, and care should be exercised when using them. In Table 3-2
some experimental results are given for the contact conductance between sim-
ilar and dissimilar metal surfaces for use in preliminary design calculations.
Note that the thermal contact conductance is highest (and thus the contact
resistance is lowest) for soft metals with smooth surfaces at high pressure.

EXAMPLE 3-4 Equivalent Thickness for Contact Resistance

The thermal contact conductance at the interface of two 1-cm-thick aluminum
plates is measured to be 11,000 W/m?-K. Determine the thickness of the alu-
minum plate whose thermal resistance is equal to the thermal resistance of the
interface between the plates (Fig. 3-17).

SOLUTION The thickness of the aluminum plate whose thermal resistance is
equal to the thermal contact resistance is to be determined.

Properties The thermal conductivity of aluminum at room temperature is k =
237 W/m-K (Table A-3).

Analysis Noting that thermal contact resistance is the inverse of thermal con-
tact conductance, the thermal contact resistance is

1 1
R=—=————=0909 X 104 m>K/W
“"h, 11,000 Wim>K m

For a unit surface area, the thermal resistance of a flat plate is defined as

where L is the thickness of the plate and k is the thermal conductivity.
Setting R = R,, the equivalent thickness is determined from the relation
above to be

L = kR, = (237 W/m-K)(0.909 X 10~* m>K/W) = 0.0215 m = 2.15 cm

. ____________________________________________B EEEENENNI
=
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TABLE 3-1

Thermal contact conductance

for aluminum plates with different
fluids at the interface for a surface
roughness of 10 wm and interface
pressure of 1 atm (from Fried, 1969).

Contact
Fluid at the conductance, h,,
interface W/m2.K
Air 3640
Helium 9520
Hydrogen 13,900
Silicone oil 19,000
Glycerin 37,700

Contact pressure (psi)

107 10°
105:| IIIIIIII T IIIIIIII
E Coated with 10—
- tin/nickel alloy E
- 1 Sl
3 Ele
r Coated witli] :
104 Bronze nickel alloy |

Nickel

103

Coated with
aluminum
alloy

\ 10?
Stainless
Steel

Thermal contact conductance (W/m?2-K)

Thermal contact conductance (

L1 11 il
10 103 10*
Contact pressure (KN/m?)

Uncoated
—— Coated

FIGURE 3-16

Effect of metallic coatings on
thermal contact conductance.
From Peterson, 1987.
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TABLE 3-2

Thermal contact conductance of some metal surfaces in air (from various sources)

Surface Pressure, h.,*
Material condition Roughness, pm Temperature, °C MPa W/m?2.K
Identical Metal Pairs
416 Stainless steel Ground 2.54 90-200 0.17-2.5 3800
304 Stainless steel Ground 1.14 20 4-7 1900
Aluminum Ground 2.54 150 1.2-2.5 11,400
Copper Ground 1.27 20 1.2-20 143,000
Copper Milled 3.81 20 1-5 55,500
Copper (vacuum) Milled 0.25 30 0.17-7 11,400
Dissimilar Metal Pairs
Stainless steel— 10 2900
Aluminum 20-30 20 20 3600
Stainless steel- 10 16,400
Aluminum 1.0-2.0 20 20 20,800
Steel Ct-30- 10 50,000
Aluminum Ground 1.4-2.0 20 15-35 59,000
Steel Ct-30- 10 4800
Aluminum Milled 4.5-7.2 20 30 8300
5 42,000
Aluminum-Copper Ground 1.17-1.4 20 15 56,000
10 12,000
Aluminum-Copper Milled 4.4-4.5 20 20-35 22,000

*Divide the given values by 5.678 to convert to Btu/h-ft2-°F.

Plate ( Plate Discussion Note that the interface between the two plates offers as much
! 2 | Interface resistance to heat transfer as a 2.15-cm-thick aluminum plate. It is interesting
that the thermal contact resistance in this case is greater than the sum of the

T 1 cm thermal resistances of both plates.

T T
Flate e EXAMPLE 3-5  Contact Resistance of Transistors
| aluminum | 2
i layer i Four identical power transistors with aluminum casing are attached on one
B 25cm !icem side of a 1-cm-thick 20-cm X 20-cm square copper plate (k = 386 W/m-K) by
> >—> screws that exert an average pressure of 6 MPa (Fig. 3-18). The base area of
1 : each transistor is 8 cm?, and each transistor is placed at the center of a 10-cm
X 10-cm quarter section of the plate. The interface roughness is estimated to
FIGURE 3-17 be about 1.5 wm. All transistors are covered by a thick Plexiglas layer, which is
Schematic for Example 3—4. a poor conductor of heat, and thus all the heat generated at the junction of the

transistor must be dissipated to the ambient at 20°C through the back surface
of the copper plate. The combined convection/radiation heat transfer coefficient
at the back surface can be taken to be 25 W/m2-K. If the case temperature



of the transistor is not to exceed 70°C, determine the maximum power each
transistor can dissipate safely, and the temperature jump at the case-plate
interface.

SOLUTION Four identical power transistors are attached on a copper plate.
For a maximum case temperature of 70°C, the maximum power dissipation
and the temperature jump at the interface are to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer can be
approximated as being one-dimensional, although it is recognized that heat
conduction in some parts of the plate will be two-dimensional since the plate
area is much larger than the base area of the transistor. But the large ther-
mal conductivity of copper will minimize this effect. 3 All the heat generated
at the junction is dissipated through the back surface of the plate since the
transistors are covered by a thick Plexiglas layer. 4 Thermal conductivities are
constant.

Properties The thermal conductivity of copper is given to be k = 386 W/m-K.
The contact conductance is obtained from Table 3-2 to be h, = 42,000 W/m?-K,
which corresponds to copper-aluminum interface for the case of 1.17-1.4 um
roughness and 5 MPa pressure, which is sufficiently close to what we have.
Analysis The contact area between the case and the plate is given to be
8 cm?, and the plate area for each transistor is 100 cm?. The thermal resis-
tance network of this problem consists of three resistances in series (interface,
plate, and convection), which are determined to be

1 1
R _ _ = 0.030°C/W
interface hcAc (42,000 W/mzK)(S X 1074 mZ)
L 0.01 m
R = = = 0.0026°C/W
P RA (386 W/mK)(0.01 m?)
1 1
Rconv = —= = 40°C/W

h,A (25 W/m?K)(0.01 m?)
The total thermal resistance is then
Rigal = Rinertace T Rptate T Rambiens = 0.030 + 0.0026 + 4.0 = 4.0326°C/ W

Note that the thermal resistance of a copper plate is very small and can be
ignored altogether. Then the rate of heat transfer is determined to be

AT (70 — 20)°C
R ..  4.0326°C/W

Q= =124W

total
Therefore, the power transistor should not be operated at power levels greater

than 12.4 W if the case temperature is not to exceed 70°C.
The temperature jump at the interface is determined from

ATimerfacc-: = QR interface — (124 W)(OO?’OOC/W) = 0'37OC
which is not very large. Therefore, even if we eliminate the thermal contact

resistance at the interface completely, we lower the operating temperature of
the transistor in this case by less than 0.4°C.
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20°C

—
Copper
plate Plexiglas cover
70°C
FIGURE 3-18

Schematic for Example 3-5.
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FIGURE 3-19
Thermal resistance
network for two parallel layers.
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FIGURE 3-20

Thermal resistance network for
combined series-parallel arrangement.

3-3 = GENERALIZED THERMAL RESISTANCE
NETWORKS

The thermal resistance concept or the electrical analogy can also be used to
solve steady heat transfer problems that involve parallel layers or combined
series-parallel arrangements. Although such problems are often two- or even
three-dimensional, approximate solutions can be obtained by assuming one-
dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3—-19, which consists of two
parallel layers. The thermal resistance network, which consists of two parallel
resistances, can be represented as shown in the figure. Noting that the total
heat transfer is the sum of the heat transfers through each layer, we have

I —T, " T, -
R, R,

L _ (T, — T)(L + i) (3-29)
1 2 R1 R2

Q: Ql+ sz

Utilizing electrical analogy, we get

T, — T,
: (3-30)
R

Q —
total
where

1 1

_ = — 4
R R,

R\R,

leu] = R, + R
1 2

1
— (3-31)

total R2
since the resistances are in parallel.
Now consider the combined series-parallel arrangement shown in Fig. 3-20.
The total rate of heat transfer through this composite system can again be

expressed as

. T, - T,
=— (3-32)
Rlolal
where
R1R2
Rtotal = R12 + R3 + Rconv = R] + R2 + R3 + Rconv (3-33)
and
Jr— R—LZR—L3R _ L (3-34)
VURA T kA, T kA, N KA,

Once the individual thermal resistances are evaluated, the total resistance
and the total rate of heat transfer can easily be determined from the relations
above.

The result obtained is somewhat approximate, since the surfaces of the third
layer are probably not isothermal, and heat transfer between the first two lay-
ers is likely to occur.

Two assumptions commonly used in solving complex multidimensional
heat transfer problems by treating them as one-dimensional (say, in the
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x-direction) using the thermal resistance network are (1) any plane wall nor-
mal to the x-axis is isothermal (i.e., to assume the temperature to vary in the
x-direction only) and (2) any plane parallel to the x-axis is adiabatic (i.e., to
assume heat transfer to occur in the x-direction only). These two assumptions
result in different resistance networks, and thus different (but usually close)
values for the total thermal resistance and thus heat transfer. The actual result
lies between these two values. In geometries in which heat transfer occurs
predominantly in one direction, either approach gives satisfactory results.

EXAMPLE 3-6 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm X 22-cm cross section

horizontal bricks (k = 0.72 W/m-K) separated by 3-cm-thick plaster layers Foam Plaster

(k = 0.22 W/m-K). There are also 2-cm-thick plaster layers on each side of /$/7ZM\(

the brick and a 3-cm-thick rigid foam (k = 0.026 W/m-K) on the inner side of T,

the wall, as shown in Fig. 3-21. The indoor and the outdoor temperatures are

20°C and —10°C, respectively, and the convection heat transfer coefficients

on the inner and the outer sides are h; = 10 W/m2-K and h, = 25 W/m2-K, L.5cm

respectively. Assuming one-dimensional heat transfer and disregarding radia- Brick

tion, determine the rate of heat transfer through the wall. Iy
T, 22 cm

SOLUTION The composition of a composite wall is given. The rate of heat
transfer through the wall is to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of change 1.5 cm
with time. 2 Heat transfer can be approximated as being one-dimensional since
it is predominantly in the x-direction. 3 Thermal conductivities are constant.
4 Heat transfer by radiation is negligible.
Properties The thermal conductivities are given to be kK = 0.72 W/m-K for
bricks, k = 0.22 W/m-K for plaster layers, and k = 0.026 W/m-K for the rigid
foam.
Analysis There is a pattern in the construction of this wall that repeats itself
every 25-cm distance in the vertical direction. There is no variation in the hori-
zontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion
of the wall, since it is representative of the entire wall.

Assuming any cross section of the wall normal to the x-direction to be
isothermal, the thermal resistance network for the representative section of

the wall becomes as shown in Fig. 3-21. The individual resistances are evalu- FIGURE 3-21
ated as: Schematic for Example 3-6.
1 1
R, =R, =—= = 0.40°C/W
P T A (10 W/m2K)(0.25 X 1 m2)
L 0.03 m
R, =Ripyn = — = = 4.62°C/W
Pooeam A (0.026 W/m-K)(0.25 X 1 m?)
L 0.02 m

Ry = R = Ryjageer,sice = 77 =
D) 6 plaster, side kA (022 W/mK)(025 X 1 m2)

= 0.36°C/W
L 0.16 m

kA N (0.22 W/m-K)(0.015 X 1 m?)

R3 = RS = Rplaster, center

= 48.48°C/W
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Adiabatic
lines

i
Too ) o—W——W—W—AW—WW——\WV—e T,y

FIGURE 3-22

Alternative thermal resistance
network for Example 36 for the
case of surfaces parallel to the
primary direction of heat
transfer being adiabatic.

L 0.16 m
R4 = Rbrick = = ) = I.OIOC/W
kA (0.72 W/m-K)(0.22 X 1 m*)
1 1
R, =R — = 0.16°C/W

conv,2 — th = (25 W/mzK)(OZS X 1 m2)

The three resistances R;, R,, and Rs in the middle are parallel, and their equiv-
alent resistance is determined from

1 1 1 1 1 1 1
—=—4+—4+—=——+— 4 ——=103W/C
R. R, R, R, 4848 1.01 4848
which gives

Ryia = 0.97°C/W
Now all the resistances are in series, and the total resistance is
Roa =R+ R + Ry + Ryyyg + Rg + R,
=040 +4.62 + 036 + 0.97 + 0.36 + 0.16

= 6.87°C/W

Then the steady rate of heat transfer through the wall becomes

s b Sl | RUSEIONC . oo 0.25 m? surf.
0= I BT (per 0.25 m* surface area)

total

or 4.37/0.25 = 17.5 W per m? area. The total area of the wall is A = 3 m X
5 m = 15 m2. Then the rate of heat transfer through the entire wall becomes

Ot = (17.5 W/m2)(15 m?) = 263 W

Of course, this result is approximate, since we assumed the temperature within
the wall to vary in one direction only and ignored any temperature change (and
thus heat transfer) in the other two directions.

Discussion In the above solution, we assumed the temperature at any cross
section of the wall normal to the x-direction to be isothermal. We could also
solve this problem by going to the other extreme and assuming the surfaces par-
allel to the x-direction to be adiabatic. The thermal resistance network in this
case will be as shown in Fig. 3-22. By following the approach outlined above,
the total thermal resistance in this case is determined to be Ry, = 6.97°C/W,
which is very close to the value 6.85°C/W obtained before. Thus either
approach gives roughly the same result in this case. This example demon-
strates that either approach can be used in practice to obtain satisfactory
results.



3-4 - HEAT CONDUCTION IN CYLINDERS
AND SPHERES

Consider steady heat conduction through a hot-water pipe. Heat is continu-
ously lost to the outdoors through the wall of the pipe, and we intuitively feel
that heat transfer through the pipe is in the normal direction to the pipe sur-
face and no significant heat transfer takes place in the pipe in other directions
(Fig. 3-23). The wall of the pipe, whose thickness is rather small, separates
two fluids at different temperatures, and thus the temperature gradient in the
radial direction is relatively large. Further, if the fluid temperatures inside
and outside the pipe remain constant, then heat transfer through the pipe is
steady. Thus heat transfer through the pipe can be modeled as steady and one-
dimensional. The temperature of the pipe in this case depends on one direction
only (the radial r-direction) and can be expressed as 7' = T(r). The temperature
is independent of the azimuthal angle or the axial distance. This situation is
approximated in practice in long cylindrical pipes and spherical containers.

In steady operation, there is no change in the temperature of the pipe with
time at any point. Therefore, the rate of heat transfer into the pipe must be
equal to the rate of heat transfer out of it. In other words, heat transfer through
the pipe must be constant, Qg cy1 = constant.

Consider a long cylindrical layer (such as a circular pipe) of inner radius r;,
outer radius r,, length L, and average thermal conductivity k (Fig. 3-24). The
two surfaces of the cylindrical layer are maintained at constant temperatures
T, and T,. There is no heat generation in the layer and the thermal conductivity is
constant. For one-dimensional heat conduction through the cylindrical layer,
we have T(r). Then Fourier’s law of heat conduction for heat transfer through
the cylindrical layer can be expressed as

. dT
Qcond, cyl = —kA — (W) (3-35)
dr

where A = 27rrL is the heat transfer area at location r. Note that A depends on
r, and thus it varies in the direction of heat transfer. Separating the variables
in the above equation and integrating from r = r|, where T(r)) = T\, tor = r,,
where 7(r,) = T,, gives

"2 Q cond, cyl L
——dr=— kdT (3-36)
= A T=T,

r=r

Substituting A = 27rrL and performing the integrations give

I, - T,
In(r, /1))

Qcond, cyl = 27TLk (W) (3—37)

since Qo oyt = constant. This equation can be rearranged as
I —T,
R

chnd. cyl - (W) (3-38)

cyl

where

In(ry/r) In(Outer radius/Inner radius)
2wlk 2w X Length X Thermal conductivity

(3-39)

cyl —
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FIGURE 3-23

Heat is lost from a hot-water pipe to
the air outside in the radial direction,
and thus heat transfer from a long
pipe is one-dimensional.

RE 3-24

A long cylindrical pipe (or spherical
shell) with specified inner and outer
surface temperatures 7, and 7,.
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Rtotal =R

conv,1 + Rcyl + Rconv,2

FIGURE 3-25

The thermal resistance network
for a cylindrical (or spherical)
shell subjected to convection from
both the inner and the outer sides.

is the thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer. Note that Eq. 3-37 is
identical to Eq. 2-59 which was obtained by using the “standard” approach by
first solving the heat conduction equation in cylindrical coordinates, Eq. 2-29,
to obtain the temperature distribution, Eq. 2-58, and then using the Fourier’s
law to obtain the heat transfer rate. The method used in obtaining Eq. 3-37
can be considered an “alternative” approach. However, it is restricted to one-
dimensional steady heat conduction with no heat generation.

We can repeat the analysis for a spherical layer by taking A = 47 r? and
performing the integrations in Eq. 3-36. The result can be expressed as

. T, — T,
Qc(md..\ph = Rl\ph (3—40)
where
L= Outer radius — Inner radius (3.41)
sph darrryk - 4a(Outer radius)(Inner radius)(Thermal conductivity)

is the thermal resistance of the spherical layer against heat conduction, or sim-
ply the conduction resistance of the spherical layer. Note also that Eq. 3—40
is identical to Eq. 2—-61 which was obtained by solving the heat conduction
equation in spherical coordinates.

Now consider steady one-dimensional heat transfer through a cylindrical or
spherical layer that is exposed to convection on both sides to fluids at tem-
peratures 7., and T, with heat transfer coefficients /; and h,, respectively,
as shown in Fig. 3-25. The thermal resistance network in this case consists
of one conduction and two convection resistances in series, just like the one
for the plane wall, and the rate of heat transfer under steady conditions can be
expressed as

Q' T\ol B Tﬁo’
= — (3-42)
Rmml
where
Rmml = Rcom\l + Rcy] + Rcom\Z
1 In(r, /1)) 1
= +——+ (3-43)
(27rr,L)h, 2mwLk (2mr,L)h,
for a cylindrical layer, and
Rmml - chn\. 1 + Rs])h + chm. 2
1 r, — n 1
(3-44)

a (dardh,  Aarrk o (dardh,
for a spherical layer. Note that A in the convection resistance relation
R.ony = 1/hA is the surface area at which convection occurs. It is equal to
A = 2mrL for a cylindrical surface and A = 442 for a spherical surface of
radius r. Also note that the thermal resistances are in series, and thus the total
thermal resistance is determined by simply adding the individual resistances,

just like the electrical resistances connected in series.



Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can
be handled just like multilayered plane walls discussed earlier by simply add-
ing an additional resistance in series for each additional layer. For example,
the steady heat transfer rate through the three-layered composite cylinder of
length L shown in Fig. 3-26 with convection on both sides can be expressed
as

total

where R, is the fotal thermal resistance, expressed as

R

total —

Rcon\AI + RC)LI + RcyLZ + Rc)l.3 + Rc(myl

1 In(r,/r)) In(ry/r,) In(r,/ry) 1
= 2 =+ (3-46)
h A, 2Lk, 2Lk, 2Lk, h,A,

where A, = 27r,L and A, = 27r,L. Equation 3—46 can also be used for a
three-layered spherical shell by replacing the thermal resistances of cylindri-
cal layers by the corresponding spherical ones. Again, note from the thermal
resistance network that the resistances are in series, and thus the total thermal
resistance is simply the arithmetic sum of the individual thermal resistances
in the path of heat flow.

Once Q is known, we can determine any intermediate temperature T;
by applying the relation Q = (T; — T)/Rya, ; - ; across any layer or layers
such that 7, is a known temperature at locat10n i and Ry, ; - ; is the total ther-
mal resistance between locations i and j (Fig. 3-27). For example, once O has
been calculated, the interface temperature 7, between the first and second
cylindrical layers can be determined from

FIGURE 3-26
The thermal resistance network for heat transfer through a three-layered
composite cylinder subjected to convection on both sides.
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FIGURE 3-27

The ratio AT/R across any layer is
equal to O, which remains constant in
one-dimensional steady conduction.

Rrad
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FIGURE 3-28

Schematic for Example 3-7.

S T, —T, _ T, — T, 347
Q - Rconv,l + Rcyl,l - 1 1n(r2/r1) ( )
h,2mrr,L) 2wLk,
We could also calculate 7, from
. T,-T T, - T
Q _ 2 002 _ 2 002 (3-48)
R, + Ry + Ry, In(r3/ry)  In(ry/rs) 1
2wlLk, 2mLk, h,(2mr,L)

Although both relations give the same result, we prefer the first one since it
involves fewer terms and thus less work.

The thermal resistance concept can also be used for other geometries, pro-
vided that the proper conduction resistances and the proper surface areas in
convection resistances are used.

EXAMPLE 3-7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k= 15 W/m-K) is used to store iced water at T,,; = 0°C. The tank is located
in a room whose temperature is T.,, = 22°C. The walls of the room are also at
22°C. The outer surface of the tank is black and heat transfer between the outer
surface of the tank and the surroundings is by natural convection and radiation.
The convection heat transfer coefficients at the inner and the outer surfaces
of the tank are h; = 80 W/m2-K and h, = 10 W/m?-K, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of
ice at 0°C that melts during a 24-h period.

SOLUTION A spherical container filled with iced water is subjected to con-
vection and radiation heat transfer at its outer surface. The rate of heat trans-
fer and the amount of ice that melts per day are to be determined.
Assumptions 1 Heat transfer is steady since the specified thermal conditions
at the boundaries do not change with time. 2 Heat transfer is one-dimensional
since there is thermal symmetry about the midpoint. 3 Thermal conductivity
is constant.

Properties The thermal conductivity of steel is given to be k = 15 W/m-K. The
heat of fusion of water at atmospheric pressure is h;; = 333.7 kJ/kg. The outer
surface of the tank is black and thus its emissivity is e = 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 3-28. Noting that the inner diameter of the tank is D; = 3 m and the outer
diameter is D, = 3.04 m, the inner and the outer surface areas of the tank are

A, = 7D} = 7(3 m)’> = 28.3 m?
A, = D% = m(3.04 m)> = 29.0 m?
Also, the radiation heat transfer coefficient is given by
hrad = 80—(7% + T2 2)(T2 + TocZ)

Q.

But we do not know the outer surface temperature T, of the tank, and thus we
cannot calculate h4. Therefore, we need to assume a T, value now and check
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the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for 7.

We note that T, must be between 0°C and 22°C, but it must be closer to
0°C, since the heat transfer coefficient inside the tank is much larger. Taking
T, = 5°C = 278 K, the radiation heat transfer coefficient is determined to be

hg = (1)(5.67 X 1078 W/m>KH[(295 K)? + (278 K)?][(295 + 278) K]
= 5.34 W/m>K = 5.34 W/m?-°C

Then the individual thermal resistances become

1 1
P _ = 0.000442°C/ W
P AL (80 W/m™K)(28.3 m?)
B (152 — 1.50) m
1 = fsphere — 4’7Tkl"1r2 - 47 (15 W/mK)(152 Hl)(lSO l'Il)
= 0.000047°C/ W
1 1
P _ = 0.00345°C/ W
o7 e 2T A, (10 W/mK)(29.0 m?)
PO ! = 0.00646°C/ W
W A, (534 WmEK)(29.0 m?)

The two parallel resistances R, and R4 can be replaced by an equivalent
resistance Req,;, determined from

1 1 1 1 1
- ==y — = + = 4447 W/°C
Rgi R, R, 000345  0.00646
which gives
Requiv = 0.00225°C/W

equiv
Now all the resistances are in series, and the total resistance is

R = R + Ry + Reguiy = 0.000442 + 0.000047 + 0.00225 = 0.00274°C/W
Then the steady rate of heat transfer to the iced water becomes

0= Tep = T _ 22 -0C 8029 W (or O = 8.029 kl/s)
R 0.00274°C/'W or ' *

total

To check the validity of our original assumption, we now determine the outer
surface temperature from
. T,-T, .
0= R —> I, =T, — OR quiv
S = 22°C — (8029 W)(0.00225°C/W) = 4°C
which is sufficiently close to the 5°C assumed in the determination of the

radiation heat transfer coefficient. Therefore, there is no need to repeat the
calculations using 4°C for T,.
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(b) The total amount of heat transfer during a 24-h period is

0= O Ar=(8.029kl/s)(24 X 3600 s) = 693,700 kJ

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

693,700 kJ
m :g—7=2079kg

" hy  333.7kl/kg

Therefore, about 2 metric tons of ice will melt in the tank every day.

Discussion An easier way to deal with combined convection and radiation
at a surface when the surrounding medium and surfaces are at the same
temperature is to add the radiation and convection heat transfer coefficients
and to treat the result as the convection heat transfer coefficient. That is, to
take h = 10 + 5.34 = 15.34 W/m2-K in this case. This way, we can ignore
radiation since its contribution is accounted for in the convection heat transfer
coefficient. The convection resistance of the outer surface in this case would be

1 1
combined — = 2 2
h A,  (15.34 W/m~K)(29.0 m°)

combined

R = 0.00225°C/W

which is identical to the value obtained for equivalent resistance for the paral-
lel convection and the radiation resistances.

EXAMPLE 3-8 Heat Loss through an Insulated Steam Pipe

Steam at T.; = 320°C flows in a cast iron pipe (k = 80 W/m-K) whose inner
and outer diameters are D, = 5 cm and D, = 5.5 cm, respectively. The pipe
is covered with 3-cm-thick glass wool insulation with k = 0.05 W/m-K. Heat
is lost to the surroundings at T., = 5°C by natural convection and radiation,
with a combined heat transfer coefficient of h, = 18 W/m2-K. Taking the heat
transfer coefficient inside the pipe to be h; = 60 W/m?2-K, determine the rate
of heat loss from the steam per unit length of the pipe. Also determine the
temperature drops across the pipe shell and the insulation.

SOLUTION A steam pipe covered with glass wool insulation is subjected to
convection on its surfaces. The rate of heat transfer per unit length and the
temperature drops across the pipe and the insulation are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Ther-
mal conductivities are constant. 4 The thermal contact resistance at the inter-
face is negligible.

Properties The thermal conductivities are given to be k = 80 W/m-K for cast
iron and k = 0.05 W/m-K for glass wool insulation.



Analysis The thermal resistance network for this problem involves four resis-
tances in series and is given in Fig. 3-29. Taking L = 1 m, the areas of the
surfaces exposed to convection are determined to be

A, = 27r,L = 2m(0.025 m)(1 m) = 0.157 m?
Ay = 27r,L = 2(0.0575 m)(1 m) = 0.361 m?

Then the individual thermal resistances become

1 1
Ri= Ry 1 = - = 0.106°C/W
P Tem T AL (60 W/mK)(0.157 m?)
Ry =Ry = ) QTS pecyyy
TR omk L 2780 W/mK)(1m)
) In(5.75/2.75)
R, =R —— = =235°C/W
2 insulation 27k, L 27r(0.05 W/m:-K)(1 m)
1 1
R =R = 0.154°C/W

o2 T A, (18 Wim2K)(0.361 m?)
Noting that all resistances are in series, the total resistance is determined to be
Row = R+ R, + R, + R, = 0.106 + 0.0002 + 2.35 + 0.154 = 2.61°C/W

Then the steady rate of heat loss from the steam becomes

T, — T, (320 - 5°C
R,,  261°C/W

= =121 W (per m pipe length)
The heat loss for a given pipe length can be determined by multiplying the
above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined
from Eq. 3-17 to be

ATy = OR yipe = (121 W)(0.0002°C/ W) = 0.02°C
ATinsulalion = QR insulation — (121 W)(2350C/W) = 284°C

That is, the temperatures between the inner and the outer surfaces of the pipe
differ by 0.02°C, whereas the temperatures between the inner and the outer
surfaces of the insulation differ by 284°C.

Discussion Note that the thermal resistance of the pipe is too small relative
to the other resistances and can be neglected without causing any significant
error. Also note that the temperature drop across the pipe is practically zero,
and thus the pipe can be assumed to be isothermal. The resistance to heat
flow in insulated pipes is primarily due to insulation.

3-5 = CRITICAL RADIUS OF INSULATION

We know that adding more insulation to a wall or to the attic always de-
creases heat transfer. The thicker the insulation, the lower the heat transfer
rate. This is expected, since the heat transfer area A is constant, and adding
insulation always increases the thermal resistance of the wall without increas-
ing the convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a
different matter. The additional insulation increases the conduction resistance
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FIGURE 3-29

Schematic for Example 3-8.
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Insulation

FIGURE 3-30

An insulated cylindrical pipe
exposed to convection from the outer
surface and the thermal resistance
network associated with it.
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FIGURE 3-31

The variation of heat transfer rate
with the outer radius of the
insulation r, when r; < r,.

of the insulation layer but decreases the convection resistance of the surface
because of the increase in the outer surface area for convection. The heat
transfer from the pipe may increase or decrease, depending on which effect
dominates.

Consider a cylindrical pipe of outer radius r; whose outer surface tempera-
ture 7' is maintained constant (Fig. 3-30). The pipe is now insulated with a
material whose thermal conductivity is k& and outer radius is r,. Heat is lost
from the pipe to the surrounding medium at temperature 7.,, with a convec-
tion heat transfer coefficient 4. The rate of heat transfer from the insulated
pipe to the surrounding air can be expressed as (Fig. 3-31)

cit 1 e (3-49)
- Rins + Rconv - ln(rZ/rl) 1
2Lk h(Q2mr,L)

The variation of Q with the outer radius of the insulation r, is plotted in
Fig. 3-31. The value of r, at which Q reaches a maximum is determined from
the requirement that dQ/dr, = 0 (zero slope). Performing the differentiation
and solving for r, yields the critical radius of insulation for a cylindrical
body to be

T, (3-50)

(m)

cr, cylinder —

Note that the critical radius of insulation depends on the thermal conductivity
of the insulation k and the external convection heat transfer coefficient 4. The
rate of heat transfer from the cylinder increases with the addition of insula-
tion for r, < r,, reaches a maximum when r, = r,, and starts to decrease for
r, > 1. Thus, insulating the pipe may actually increase the rate of heat trans-
fer from the pipe instead of decreasing it when r, < r,.

The important question to answer at this point is whether we need to be
concerned about the critical radius of insulation when insulating hot-water
pipes or even hot-water tanks. Should we always check and make sure that
the outer radius of insulation sufficiently exceeds the critical radius before we
install any insulation? Probably not, as explained here.

The value of the critical radius r, is the largest when k is large and 4 is
small. Noting that the lowest value of /& encountered in practice is about
5 W/m?K for the case of natural convection of gases, and that the thermal
conductivity of common insulating materials is about 0.05 W/m-K, the largest
value of the critical radius we are likely to encounter is

kmzlx. insulation 0.05 W/m-K
T = =

cr, max =0.0lm=1cm
hlmn 5 W/IHZ‘K

This value would be even smaller when the radiation effects are considered.
The critical radius would be much less in forced convection, often less than
1 mm, because of much larger & values associated with forced convection.
Therefore, we can insulate hot-water or steam pipes freely without worrying
about the possibility of increasing the heat transfer by insulating the pipes.

The radius of electric wires may be smaller than the critical radius. There-
fore, the plastic electrical insulation may actually enhance the heat transfer



from electric wires and thus keep their steady operating temperatures at lower
and thus safer levels.
The discussions above can be repeated for a sphere, and it can be shown in
a similar manner that the critical radius of insulation for a spherical shell is
2k
ﬁ(’l' sphere - (3_51)
Fer,sp h
where k is the thermal conductivity of the insulation and # is the convection
heat transfer coefficient on the outer surface.

EXAMPLE 3-9 Heat Loss from an Insulated Electric Wire

A 3-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is kK = 0.15 W/m-K. Electrical
measurements indicate that a current of 10 A passes through the wire and
there is a voltage drop of 8 V along the wire. If the insulated wire is exposed
to a medium at 7. = 30°C with a heat transfer coefficient of h = 12 W/m2-K,
determine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.

||

||

||

||

||

||

||

||

||

||

||

||

||

|

SOLUTION An electric wire is tightly wrapped with a plastic cover. The inter-

face temperature and the effect of doubling the thickness of the plastic cover

on the interface temperature are to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of any

change with time. 2 Heat transfer is one-dimensional since there is thermal

symmetry about the centerline and no variation in the axial direction. 3 Ther-

mal conductivities are constant. 4 The thermal contact resistance at the inter-

face is negligible. 5 Heat transfer coefficient incorporates the radiation effects,

if any.
Properties The thermal conductivity of plastic is given to be k =
0.15 W/m-K.
Analysis Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heat is generated uniformly throughout the wire
and is transferred to the surrounding medium in the radial direction. In steady
operation, the rate of heat transfer becomes equal to the heat generated within
the wire, which is determined to be

O=W,=VI=@8V)I0A) =80 W

The thermal resistance network for this problem involves a conduction resis-
tance for the plastic cover and a convection resistance for the outer surface in
series, as shown in Fig. 3-32. The values of these two resistances are

A, = 2mry)L = 27r(0.0035 m)(5 m) = 0.110 m?

1 1
R =

— = = 0.76°C/W
M hA, (12 W/m2K)(0.110 m?)

LGyl InGB.S/LS)
plastic — 2kl - 27r(0.15 W/m-K)(5 m)

= 0.18°C/W
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Schematic for Example 3-9.
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FIGURE 3-33

Presumed cooling fins on dinosaur
stegosaurus.

© Alamy RF

and therefore
Rtotal = Rplastic + Rconv = 076 + 018 = 0940C/W

Then the interface temperature can be determined from
. I, - T, .
Q = R Tl = TOC + QR total

total

= 30°C + (80 W)(0.94°C/W) = 105°C

Note that we did not involve the electrical wire directly in the thermal resis-
tance network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical
radius of insulation of the plastic cover. It is determined from Eq. 3-50 to be

Kk 0.15W/mK
= o S W 00125 m = 12,5
o =% T T2wWwmK m mm

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer ra-
dius of the cover reaches 12.5 mm. As a result, the rate of heat transfer Q
will increase when the interface temperature T; is held constant, or T; will
decrease when Q is held constant, which is the case here.

Discussion 1t can be shown by repeating the calculations above for a 4-mm-
thick plastic cover that the interface temperature drops to 90.6°C when the
thickness of the plastic cover is doubled. It can also be shown in a similar
manner that the interface reaches a minimum temperature of 83°C when the
outer radius of the plastic cover equals the critical radius.

3-6 = HEAT TRANSFER FROM FINNED SURFACES

The rate of heat transfer from a surface at a temperature 7 to the surrounding
medium at 7, is given by Newton’s law of cooling as

Ocony = hA(T, — T..)

where A, is the heat transfer surface area and # is the convection heat transfer
coefficient. When the temperatures 7 and 7., are fixed by design consider-
ations, as is often the case, there are two ways to increase the rate of heat
transfer: to increase the convection heat transfer coefficient h or to increase
the surface area A,. Increasing h may require the installation of a pump or
fan, or replacing the existing one with a larger one, but this approach may or
may not be practical. Besides, it may not be adequate. The alternative is to
increase the surface area by attaching to the surface extended surfaces called
fins made of highly conductive materials such as aluminum. Finned surfaces
are manufactured by extruding, welding, or wrapping a thin metal sheet on a
surface. Fins enhance heat transfer from a surface by exposing a larger sur-
face area to convection and radiation.

An interesting application of fins from about 150 million years ago, the
Jurassic era, is shown in Fig. 3-33. The dinosaur stegosaurus lived during
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this era and it had two rows of big (and bizarre) bony plates down its back.
For a long time, scientists thought that the plates were some kind of armor
to protect the vegetarian from predators. We now know that a lot of blood
flowed through the plates, and they may have acted like a car radiator. The
heart pumped blood through the plates, and the plates acted like cooling fins
to cool the blood down.

Finned surfaces are commonly used in practice to enhance heat transfer, and
they often increase the rate of heat transfer from a surface severalfold. The
car radiator shown in Fig. 3-34 is an example of a finned surface. The closely
packed thin metal sheets attached to the hot-water tubes increase the surface
area for convection and thus the rate of convection heat transfer from the tubes
to the air many times. There are a variety of innovative fin designs available in
the market, and they seem to be limited only by imagination (Fig. 3-35).

In the analysis of fins, we consider steady operation with no heat genera-
tion in the fin, and we assume the thermal conductivity k of the material to
remain constant. We also assume the convection heat transfer coefficient A
to be constant and uniform over the entire surface of the fin for convenience
in the analysis. We recognize that the convection heat transfer coefficient 4,
in general, varies along the fin as well as its circumference, and its value at
a point is a strong function of the fluid motion at that point. The value of & is
usually much lower at the fin base than it is at the fin tip because the fluid is
surrounded by solid surfaces near the base, which seriously disrupt its motion
to the point of “suffocating” it, while the fluid near the fin tip has little con-
tact with a solid surface and thus encounters little resistance to flow. There-
fore, adding too many fins on a surface may actually decrease the overall heat
transfer when the decrease in 4 offsets any gain resulting from the increase in
the surface area.

Fin Equation

Consider a volume element of a fin at location x having a length of Ax, cross-
sectional area of A, and a perimeter of p, as shown in Fig. 3-36. Under steady
conditions, the energy balance on this volume element can be expressed as

Rate of heat
convection from
the element

Rate of heat
conduction from the | +
element at x + Ax

Rate of heat
conduction into | =
the element at x
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FIGURE 3-34

The thin plate fins of a car radiator
greatly increase the rate of heat
transfer to the air.

Left: © Yunus A. Cengel, photo by James Kleiser,
right:© McGraw-Hill Education / Christopher
Kerrigan

FIGURE 3-35
Some innovative fin designs.

Volume
element

S
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FIGURE 3-36

Volume element of a fin at location x
having a length of Ax, cross-sectional
area of A, and perimeter of p.
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or
Ocont,x = Qeond x4 ax + Qeony
where
Ocony = h(p AX)(T = T..)
Substituting and dividing by Ax, we obtain

Qcond, x+Ax Qcond, x

+hp(T—T,) =0 (3-52)
Ax
Taking the limit as Ax — 0 gives
i
Wema (T —T,)=0 (3-53)
dx

From Fourier’s law of heat conduction we have

. dTr
Qcond = _kAc a (3-54)
where A, is the cross-sectional area of the fin at location x. Substitution of this

relation into Eq. 3-53 gives the differential equation governing heat transfer in fins,

d dT B
. <I<A E) —hp(T—T,) =0 (3-55)
In general, the cross-sectional area A, and the perimeter p of a fin vary with
x, which makes this differential equation difficult to solve. In the special case
of constant cross section and constant thermal conductivity, the differential
equation Eq. 3-55 reduces to

d’*T hp d?0
- —T—-T,)=0 or
kA,

—m20 =0 (3-56)

%)

dx?
where
_ hp

2

m* (3-57)

and § = T — T, is the temperature excess. At the fin base we have 0, =
T, — T..

Equation 3-56 is a linear, homogeneous, second-order differential equa-
tion with constant coefficients. A fundamental theory of differential equations
states that such an equation has two linearly independent solution functions,
and its general solution is the linear combination of those two solution func-
tions. A careful examination of the differential equation reveals that subtract-
ing a constant multiple of the solution function 6 from its second derivative
yields zero. Thus we conclude that the function 6 and its second derivative
must be constant multiples of each other. The only functions whose deriva-
tives are constant multiples of the functions themselves are the exponential
functions (or a linear combination of exponential functions such as sine and
cosine hyperbolic functions). Therefore, the solution functions of the differ-
ential equation above are the exponential functions e "™ or ¢”™ or constant
multiples of them. This can be verified by direct substitution. For example,
the second derivative of e " is m?e~"™, and its substitution into Eq. 3-56



yields zero. Therefore, the general solution of the differential equation
Eq. 3-56is

0(x) = Cie™ + Cre™™ (3-58)

where C, and C, are arbitrary constants whose values are to be determined
from the boundary conditions at the base and at the tip of the fin. Note that we
need only two conditions to determine C, and C, uniquely.

The temperature of the plate to which the fins are attached is normally
known in advance. Therefore, at the fin base we have a specified temperature
boundary condition, expressed as

Boundary condition at fin base: 00)=0,=T,— T, (3-59)

At the fin tip we have several possibilities, including infinitely long fins,
negligible heat loss (idealized as an adiabatic tip), specified temperature, and
convection (Fig. 3—37). Next, we consider each case separately.

1 Infinitely Long Fin (T, g, = T..)

For a sufficiently long fin of uniform cross section (A, = constant), the tem-
perature of the fin at the fin tip approaches the environment temperature 7.,
and thus 6 approaches zero. That is,

Boundary condition at fin tip: OL)=TL)—T,=0 as L — o

This condition is satisfied by the function e~ but not by the other prospec-
tive solution function ™ since it tends to infinity as x gets larger. Therefore,
the general solution in this case will consist of a constant multiple of e~"*. The
value of the constant multiple is determined from the requirement that at the
fin base where x = 0 the value of 6 is 6,. Noting that e " = ¢° = 1, the proper
value of the constant is 6,, and the solution function we are looking for is
0(x) = 0, This function satisfies the differential equation as well as the
requirements that the solution reduce to 6, at the fin base and approach zero at

the fin tip for large x. Noting that 6 = T'— T, and m = 'V hp/kA_ the variation
of temperature along the fin in this case can be expressed as

TG — T, I
VC’I"V\,' /0”&")([.”.' ﬁ = M = (.’7"\/ hplkA., (3_60)
b

Note that the temperature along the fin in this case decreases exponentially
from 7), to T, as shown in Fig. 3-38. The steady rate of heat transfer from the
entire fin can be determined from Fourier’s law of heat conduction

. dr
Very long fin: Oione in = —kA. — =V hpkA, (T, — T.) (3-61)
N x=0

dx

where p is the perimeter, A, is the cross-sectional area of the fin, and x is the
distance from the fin base. Alternatively, the rate of heat transfer from the
fin could also be determined by considering heat transfer from a differential
volume element of the fin and integrating it over the entire surface of the fin:

inn = J
A

AT(x) — T.] dAg, = f hO(x) dAg, (3-62)

fin Aﬂn
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2. Negligible heat loss (adiabatic tip)
3. Specified temperature

4. Convection

FIGURE 3-37
Boundary conditions at the fin base
and the fin tip.
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(p=7mD,A.=7D 2/4 for a cylindrical fin)

FIGURE 3-38

A long circular fin of uniform
cross section and the variation of
temperature along it.
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Qﬁn
Qbase -

Obase = Cfin

FIGURE 3-39

Under steady conditions, heat transfer
from the exposed surfaces of the fin is
equal to heat conduction to the fin at
the base.

The two approaches described are equivalent and give the same result since,
under steady conditions, the heat transfer from the exposed surfaces of the fin
is equal to the heat transfer to the fin at the base (Fig. 3-39).

2 Negligible Heat Loss from the Fin Tip
(Adiabatic fin tip, Oy, = 0)

Fins are not likely to be so long that their temperature approaches the sur-
rounding temperature at the tip. A more realistic situation is for heat transfer
from the fin tip to be negligible since the heat transfer from the fin is pro-
portional to its surface area, and the surface area of the fin tip is usually a
negligible fraction of the total fin area. Then the fin tip can be assumed to be
adiabatic, and the condition at the fin tip can be expressed as

do
Boundary condition at fin tip: i =0 (3-63)
X |x=1L

The condition at the fin base remains the same as expressed in Eq. 3-59. The
application of the boundary conditions given by Eqs. 3-59 and 3-63 on the
general solution (Eq. 3-58) requires that 6(0) = 0, = C,+C, and mC,e"* —
mCye~""L = 0, respectively. Solving these two equations simultaneously for
C, and G, yields C, = 0,/(1+¢*"t) and C, = 0,/(1+e~"L). Substituting the
relations for C, and C, into Eq. 3-58 and using the definition of the hyper-
bolic cosine function cosh x = (e* + ¢ *)/2 gives the desired relation for the
temperature distribution:
Tx) — T, coshm(L — x)

Adiabatic fin tip: = (3-64)
T, —T. cosh mL

00

The rate of heat transfer from the fin can be determined again from Fourier’s
law of heat conduction:

. dar
Adiabatic fin tip: Qugiabatic ip = kA, o = \/h/)kA(, (T, — T.,) tanh mL (3-65)
X [x=0

where the equation for the hyperbolic tangent function is
tanh x = sinh x/cosh x = (¢* — e ™)/(e* + 7).

Note that the heat transfer relations for the very long fin and the fin with neg-
ligible heat loss at the tip differ by the factor tanh mL, which approaches 1 as
L becomes very large.

3 Specified Temperature (T, 4, = T))

In this case the temperature at the end of the fin (the fin tip) is fixed at a speci-
fied temperature 7;. This case could be considered as a generalization of the
case of Infinitely Long Fin where the fin tip temperature was fixed at 7__. The
condition at the fin tip for this case is

Boundary condition at fin tip: oL)y=6,=1, — T (3-66)

o]

The fin base boundary condition remains the same as given in Eq. 3-59.
Applying the boundary conditions given by Eqs. 3-59 and 3—-66 on the general
solution (Eq. 3-58) gives, after some lengthy algebra and using the definition



of the hyperbolic sine function, sinh x = (e¢*—e™*)/2, the desired temperature
distribution:
Specified fin tip temperature:
Tx) — T, [T, — THIT, — T,)]sinh mx + sinh m(L — x)
T,— T, N sinh mL
Using the Fourier’s law of heat conduction, the rate of heat transfer from the fin is

(3-67)

Specified fin tip temperature:

dT
= —kA —

“dxl,_
coshmL — [(T, — T.)(T, — T, )]

= VhpkA (T, —
kAT, sinh mL

Note that Eqs. 3-67 and 3-68 reduce to Eqgs. 3—60 and 3-61 for the case of
infinitely long fin (L — ).

Qspccificd temp.
(3-68)

-

4 Convection from Fin Tip

The fin tips, in practice, are exposed to the surroundings, and thus the proper
boundary condition for the fin tip is convection that may also include the
effects of radiation. Consider the case of convection only at the tip. The con-
dition at the fin tip can be obtained from an energy balance at the fin tip

(Qcond = Qconv) That is,

dr
— kA

. 3-69
¢ dx x=L ( )

Boundary condition at fin tip: = hA[T(L) — T]
The boundary condition at the fin base is Eq. 3-59, which is the same as
the three previous cases. Substituting the two boundary conditions given by
Eqgs. 3-59 and 3-69 in the general solution (Eq. 3-58), it may be shown, after

some lengthy manipulation that the temperature distribution is
T(x) — T,,  coshm(L—x) + (h/mk) sinh m(L— x)

Convection from fin tip: = .
T, —T cosh mL + (h/mk) sinh mL

(3-70)

The rate of heat transfer from the fin can be found by substituting the temper-
ature gradient at the base of the fin, obtained from Eq. 3-70, into the Fourier’s
law of heat conduction. The result is

Convection from fin tip:

= —kA —

Qcon\cction C
ax|, _
x=0

sinh mL + (h/mk) cosh mL
\VhpkA (T, — T.) :
cosh mL + (h/mk) sinh mL

(3-71)

The solution to the general fin equation for the case of convection from
fin tip is rather complex. An approximate, yet practical and accurate, way of
accounting for the loss from the fin tip is to replace the fin length L in the rela-
tion for the insulated tip case by a corrected fin length defined as (Fig. 3-40)

A,
L =L+~
P

Corrected fin length: (3-72)
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(b) Equivalent fin with insulated tip

FIGURE 3-40

Corrected fin length L, is defined such
that heat transfer from a fin of length
L. with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.
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Ay=wxt

(a) Surface without fins

(b) Surface with a fin

Agn=2xwxL+wxt
=2XxXwxL

FIGURE 341
Fins enhance heat transfer from
a surface by enhancing surface area.
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FIGURE 342

Ideal and actual temperature
distribution along a fin.

where A, is the cross-sectional area and p is the perimeter of the fin at the tip.
Multiplying the relation above by the perimeter gives A qiected = Afin tatera) T
Ayip» Which indicates that the fin area determined using the corrected length is
equivalent to the sum of the lateral fin area plus the fin tip area.

The corrected length approximation gives very good results when the varia-
tion of temperature near the fin tip is small (which is the case when mL = 1)
and the heat transfer coefficient at the fin tip is about the same as that at the
lateral surface of the fin. Therefore, fins subjected to convection at their tips
can be treated as fins with insulated tips by replacing the actual fin length by
the corrected length in Eqs. 3—64 and 3—65.

Using the proper relations for A, and p, the corrected lengths for rectangular
and cylindrical fins are easily determined to be

L(. rectangular fin =L+ and L(: cylindrical fin

D
=L+~
4

N |~

where ¢ is the thickness of the rectangular fins and D is the diameter of the
cylindrical fins.

Fin Efficiency
Consider the surface of a plane wall at temperature T}, exposed to a medium
at temperature 7... Heat is lost from the surface to the surrounding medium
by convection with a heat transfer coefficient of 4. Disregarding radiation or
accounting for its contribution in the convection coefficient &, heat transfer
from a surface area A, is expressed as O = hA (T, — T.,).

Now let us consider a fin of constant cross-sectional area A, = A, and length
L that is attached to the surface with a perfect contact (Fig. 3—41). This time
heat is transferred from the surface to the fin by conduction and from the fin
to the surrounding medium by convection with the same heat transfer coeffi-
cient h. The temperature of the fin is 7, at the fin base and gradually decreases
toward the fin tip. Convection from the fin surface causes the temperature
at any cross section to drop somewhat from the midsection toward the outer
surfaces. However, the cross-sectional area of the fins is usually very small,
and thus the temperature at any cross section can be considered to be uniform.
Also, the fin tip can be assumed for convenience and simplicity to be adia-
batic by using the corrected length for the fin instead of the actual length.

In the limiting case of zero thermal resistance or infinite thermal conductiv-
ity (k — =), the temperature of the fin is uniform at the base value of 7;. The
heat transfer from the fin is maximum in this case and can be expressed as

Ql'ill. max hAi'in (7/) - 7/) (3-73)

In reality, however, the temperature of the fin drops along the fin, and thus
the heat transfer from the fin is less because of the decreasing temperature
difference T(x) — T.. toward the fin tip, as shown in Fig. 3—42. To account
for the effect of this decrease in temperature on heat transfer, we define a fin
efficiency as

O Actual heat transfer rate from the fin

Mein = - - . N - (3-74)
Oin o Ideal heat transfer rate from the fin

if the entire fin were at base temperature
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Efficiency and surface areas of common fin configurations

Straight rectangular fins

m = N 2hlkt
L.=L+1tR2
Agn = 2wWL,

Straight triangular fins
m = '\ 2hlkt
Ay = 2wVI2 + (112)?

Straight parabolic fins

m = "\ 2hlkt

Ag, = WL[C, + (LIHIn(t/L + C))]

C, = V1 + (L)

Circular fins of rectangular profile

m = N 2hlkt
Toe =1y + 12

Ag, = 2m(r3, — 1)

Pin fins of rectangular profile

m = \/4h/kD
L. =L+ D/4
Agy = wDL,

Pin fins of triangular profile

m = \V4h/kD
wD
Agy = 7 \/I? + (D/2)?

Pin fins of parabolic profile

m = \4h/kD
wl? L
Aﬁn = E[CECA‘ - 51[}(2DC4/L + C})]

C;=1+2D/LY
c, = V1 + (DL

Pin fins of parabolic profile
(blunt tip)

m = \V4h/kD
4

D
= 16(L/D)* + 112 — 1
fin 96L2{[ 6(L/D) ] }

Nfin =

Nfin

Nfin

Nfin =

, =

Nfin =

Nfin =

tanhmL,
mL

c

1 1,2mL)
mL I,(2mL)

2

1+ VQ2mL? + 1

K,(mr)I,(mry,) — I,(mr))K,(mr,.)

2IO(mrl)Kl(mrz‘,) + Ky(mr)I,(mr,,)
2r,/m

2 _ 2
e = 17

tanhmL,
mL

c

i I,(2mL)
mL I,(2mL)

L (x) = I, (x) — (2/x)I, (x) where x = 2mL

2

Nfin =
1+ VQ2mL3)? + 1

Nfin =

3 L(4mLi3)
2mL I(4mL/3)
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TABLE 3-4

Modified Bessel functions of the first
and second kinds*

x e lhx) e h(x) eKyx) eKi(x)

0.0 1.0000 0.0000 ®© ©

0.2 0.8269 0.0823 2.1408 5.8334
0.4 0.6974 0.1368 1.6627 3.2587
0.6 0.5993 0.1722 1.4167 2.3739
0.8 0.5241 0.1945 1.2582 1.9179
1.0 0.4658 0.2079 1.1445 1.6362
1.2 0.4198 0.2153 1.0575 1.4429
1.4 0.3831 0.2185 0.9881 1.3011
1.6 0.3533 0.2190 0.9309 1.1919
1.8 0.3289 0.2177 0.8828 1.1048
2.0 0.3085 0.2153 0.8416 1.0335
2.2 0.2913 0.2121 0.8057 0.9738
2.4 0.2766 0.2085 0.7740 0.9229
2.6 0.2639 0.2047 0.7459 0.8790
2.8 0.2528 0.2007 0.7206 0.8405
3.0 0.2430 0.1968 0.6978 0.8066
3.2 0.2343 0.1930 0.6770 0.7763
3.4 0.2264 0.1892 0.6580 0.7491
3.6 0.2193 0.1856 0.6405 0.7245
3.8 0.2129 0.1821 0.6243 0.7021
4.0 0.2070 0.1788 0.6093 0.6816
4.2 0.2016 0.1755 0.5953 0.6627
4.4 0.1966 0.1725 0.5823 0.6454
4.6 0.1919 0.1695 0.5701 0.6292
4.8 0.1876 0.1667 0.5586 0.6143
5.0 0.1835 0.1640 0.5478 0.6003
5.2 0.1797 0.1614 0.5376 0.5872
54 0.1762 0.1589 0.5280 0.5749
5.6 0.1728 0.1565 0.5188 0.5634
5.8 0.1697 0.1542 0.5101 0.5525
6.0 0.1667 0.1521 0.5019 0.5422
6.5 0.1598 0.1469 0.4828 0.5187
7.0 0.1537 0.1423 0.4658 0.4981
7.5 0.1483 0.1380 0.4505 0.4797
8.0 0.1434 0.1341 0.4366 0.4631
8.5 0.1390 0.1305 0.4239 0.4482
9.0 0.1350 0.1272 0.4123 0.4346
9.5 0.1313 0.1241 0.4016 0.4222
10.0 0.1278 0.1213 0.3916 0.4108

*Evaluated from EES using the mathematical
functions Bessel_I(x) and Bessel_K(x)

or

Qi'ixl = Tfin Q‘i'm. max — Tlfin hAl'in (Th - YA) (3-75)
where Ay, is the total surface area of the fin. This relation enables us to deter-
mine the heat transfer from a fin when its efficiency is known. For the cases
of constant cross section of very long fins and fins with adiabatic tips, the
fin efficiency can be expressed as

Oun  VIpkA(T, —T,) 1 [kA 1

¢

ong fin — - - - (3-76)
Mong fin O hA;, (T, — T.) LN hp mL
and
Q['in VhpkA, (T, — T,)) tanhmL  tanh mL
Madiabatic tip - - - (3-77)

Ql'ill. max h'Al‘in (Th o ’[‘)Q) mL

since Ag,, = pL for fins with constant cross section. Equation 3—77 can also be
used for fins subjected to convection provided that the fin length L is replaced
by the corrected length L..

Table 3-3 provides fin efficiency relations for fins with uniform and non-
uniform cross section. For fins with non-uniform profile, Eq. 3-56 is no longer
valid and the general form of the differential equation governing heat transfer
in fins of arbitrary shape, Eq. 3-55, must be used. For these cases the solu-
tion is no longer in the form of simple exponential or hyperbolic functions.
The mathematical functions / and K that appear in some of these relations
are the modified Bessel functions, and their values are given in Table 3—4.
Efficiencies are plotted in Fig. 3—-43 for fins on a plain surface and in
Fig. 3-44 for circular fins of constant thickness. For most fins of constant
thickness encountered in practice, the fin thickness # is too small relative to
the fin length L, and thus the fin tip area is negligible.

Note that fins with triangular and parabolic profiles contain less mate-
rial and are more efficient than the ones with rectangular profiles, and thus
are more suitable for applications requiring minimum weight such as space
applications.

An important consideration in the design of finned surfaces is the selection
of the proper fin length L. Normally the longer the fin, the larger the heat
transfer area and thus the higher the rate of heat transfer from the fin. But
also the larger the fin, the bigger the mass, the higher the price, and the larger
the fluid friction. Therefore, increasing the length of the fin beyond a certain
value cannot be justified unless the added benefits outweigh the added cost.
Also, the fin efficiency decreases with increasing fin length because of
the decrease in fin temperature with length. Fin lengths that cause the fin
efficiency to drop below 60 percent usually cannot be justified economically
and should be avoided. The efficiency of most fins used in practice is above
90 percent.

Fin Effectiveness

Fins are used to enhance heat transfer, and the use of fins on a surface cannot
be recommended unless the enhancement in heat transfer justifies the added
cost and complexity associated with the fins. In fact, there is no assurance that
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Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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FIGURE 3-44
Efficiency of annular fins of constant thickness 7.

adding fins on a surface will enhance heat transfer. The performance of the
fins is judged on the basis of the enhancement in heat transfer relative to the
no-fin case. The performance of fins is expressed in terms of the fin effective-
ness &g, defined as (Fig. 3-45)
. . Heat transfer rate from
Osin Osin the fin of base area A,

O . hA,(T,— T,) Heattransfer rate from
no fin b\"b 00
the surface of area A,

Efin = (3-78)
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Qno fin
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P Qﬁn
" Qno fin
FIGURE 3-45

The effectiveness of a fin.

Hence, A, is the cross-sectional area of the fin at the base and Qno fin TEpresents
the rate of heat transfer from this area if no fins are attached to the surface.
An effectiveness of &5, = 1 indicates that the addition of fins to the surface
does not affect heat transfer at all. That is, heat conducted to the fin through
the base area A, is equal to the heat transferred from the same area A, to the
surrounding medium. An effectiveness of 5, < 1 indicates that the fin actu-
ally acts as insulation, slowing down the heat transfer from the surface. This
situation can occur when fins made of low thermal conductivity materials
are used. An effectiveness of &5, > 1 indicates that fins are enhancing heat
transfer from the surface, as they should. However, the use of fins cannot be
justified unless &g, is sufficiently larger than 1. Finned surfaces are designed
on the basis of maximizing effectiveness for a specified cost or minimizing
cost for a desired effectiveness.

Note that both the fin efficiency and fin effectiveness are related to the
performance of the fin, but they are different quantities. However, they are
related to each other by

Ql'in o Ql'in o Tfin hAﬁn(TI? o Tx) o Al'in

Q.no fin - hA/: (]/) - IL) hAh (Th — [x) A/ Mfin

h

Efin = (3-79)
Therefore, the fin effectiveness can be determined easily when the fin effi-
ciency is known, or vice versa.

The rate of heat transfer from a sufficiently long fin of uniform cross sec-
tion under steady conditions is given by Eq. 3—61. Substituting this relation
into Eq. 378, the effectiveness of such a long fin is determined to be

O _ VIpkA (T, — T _ [Ip
Elong fin — - - - m (3-80)
g A,

Qm) fin hAb (Tb - T\;‘,)

since A, = A, in this case. We can draw several important conclusions from
the fin effectiveness relation above for consideration in the design and selec-
tion of the fins:

* The thermal conductivity k of the fin material should be as high as
possible. Thus it is no coincidence that fins are made from metals, with
copper, aluminum, and iron being the most common ones. Perhaps the
most widely used fins are made of aluminum because of its low cost and
weight and its resistance to corrosion.

* The ratio of the perimeter to the cross-sectional area of the fin p/A,
should be as high as possible. This criterion is satisfied by thin plate fins
and slender pin fins.

* The use of fins is most effective in applications involving a low convec-
tion heat transfer coefficient. Thus, the use of fins is more easily justified
when the medium is a gas instead of a liquid and the heat transfer is by
natural convection instead of by forced convection. Therefore, it is no
coincidence that in liquid-to-gas heat exchangers such as the car radiator,
fins are placed on the gas side.

When determining the rate of heat transfer from a finned surface, we must
consider the unfinned portion of the surface as well as the fins. Therefore, the
rate of heat transfer for a surface containing n fins can be expressed as



Qtotal, fin — Qunfin + inn
= hAuwgin (Tp — T20) + Mo hAg, (T, — 1)

= h(Aunﬁn + nfinAfin)(Tb - Toc) (3-81)

We can also define an overall effectiveness for a finned surface as the ratio
of the total heat transfer from the finned surface to the heat transfer from the
same surface if there were no fins,

Qlﬂliﬂ- fin o /I(Aunl‘in + nl‘inAl'm)('T/) - Tx) o Aunl‘in + nl"inAﬁn (3 82)
Ql(?111|. no fin /IAIIO fin (T/) - T\) A

Efin, overall —

no fin

where A, g, 1s the area of the surface when there are no fins, Ag, is the total
surface area of all the fins on the surface, and A5, is the area of the unfinned
portion of the surface (Fig. 3—46). Note that the overall fin effectiveness
depends on the fin density (number of fins per unit length) as well as the
effectiveness of the individual fins. The overall effectiveness is a better mea-
sure of the performance of a finned surface than the effectiveness of the indi-
vidual fins.

Proper Length of a Fin
An important step in the design of a fin is the determination of the appropriate
length of the fin once the fin material and the fin cross section are specified.
You may be tempted to think that the longer the fin, the larger the surface area
and thus the higher the rate of heat transfer. Therefore, for maximum heat
transfer, the fin should be infinitely long. However, the temperature drops
along the fin exponentially and reaches the environment temperature at some
length. The part of the fin beyond this length does not contribute to heat trans-
fer since it is at the temperature of the environment, as shown in Fig. 3—47.
Therefore, designing such an “extra long” fin is out of the question since
it results in material waste, excessive weight, and increased size and thus
increased cost with no benefit in return (in fact, such a long fin will hurt
performance since it will suppress fluid motion and thus reduce the convec-
tion heat transfer coefficient). Fins that are so long that the temperature ap-
proaches the environment temperature cannot be recommended either since
the little increase in heat transfer at the tip region cannot justify the dispro-
portionate increase in the weight and cost.

To get a sense of the proper length of a fin, we compare heat transfer from
a fin of finite length to heat transfer from an infinitely long fin under the same
conditions. The ratio of these two heat transfers is

Q1‘in B \/m (T, — T,) tanh mL
Q.Iong fin /l[)kA((Tb - Tx)

Using a hand calculator, the values of tanh mL are evaluated for some values
of mL and the results are given in Table 3-5. We observe from the table that
heat transfer from a fin increases with mL almost linearly at first, but the
curve reaches a plateau later and reaches a value for the infinitely long fin at
about mL = 5. Therefore, a fin whose length is L = 5/m can be considered to
be an infinitely long fin. We also observe that reducing the fin length by half
in that case (from mL = 5 to mL = 2.5) causes a drop of just 1 percent in

Heat transfer

= tanh mL (3-83)

ratio:
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Various surface areas associated with
a rectangular surface with three fins.
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Because of the gradual temperature
drop along the fin, the region near the
fin tip makes little or no contribution
to heat transfer.
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TABLE 3-5 heat transfer. We certainly would not hesitate sacrificing 1 percent in heat
transfer performance in return for 50 percent reduction in the size and pos-
sibly the cost of the fin. In practice, a fin length that corresponds to about mL = 1
will transfer 76.2 percent of the heat that can be transferred by an infinitely
long fin, and thus it should offer a good compromise between heat transfer

The variation of heat transfer
from a fin relative to that from an
infinitely long fin

mL Qin = tanh mL performance and the fin size.

Qiong fin A common approximation used in the analysis of fins is to assume the
0.1 0.100 fin temperature to vary in one direction only (along the fin length) and the
0.2 0.197 temperature variation along other directions is negligible. Perhaps you are
0.5 0.462 wondering if this one-dimensional approximation is a reasonable one. This is
1.0 0.762 certainly the case for fins made of thin metal sheets such as the fins on a car
1.5 0.905 radiator, but we wouldn’t be so sure for fins made of thick materials. Studies
2.0 0.964 have shown that the error involved in one-dimensional fin analysis is negli-
2.5 0.987 gible (less than about 1 percent) when
3.0 0.995
4.0 0.999 hé
5.0 1.000 & <02

where & is the characteristic thickness of the fin, which is taken to be the plate
thickness ¢ for rectangular fins and the diameter D for cylindrical ones.

Specially designed finned surfaces called heat sinks, which are commonly
used in the cooling of electronic equipment, involve one-of-a-kind complex
geometries, as shown in Table 3—-6. The heat transfer performance of heat
sinks is usually expressed in terms of their thermal resistances R in °C/W,
which is defined as

. T,-T,
Qi‘in - /T - hAﬁn Mfin (T/) - T/) (3-84)

A small value of thermal resistance indicates a small temperature drop across
the heat sink, and thus a high fin efficiency.

EXAMPLE 3-10 Maximum Power Dissipation of a Transistor

Power transistors that are commonly used in electronic devices consume large
amounts of electric power. The failure rate of electronic components increases
almost exponentially with operating temperature. As a rule of thumb, the fail-
ure rate of electronic components is halved for each 10°C reduction in the
junction operating temperature. Therefore, the operating temperature of elec-
tronic components is kept below a safe level to minimize the risk of failure.

The sensitive electronic circuitry of a power transistor at the junction is
protected by its case, which is a rigid metal enclosure. Heat transfer character-
istics of a power transistor are usually specified by the manufacturer in terms
of the case-to-ambient thermal resistance, which accounts for both the natural
convection and radiation heat transfers.

The case-to-ambient thermal resistance of a power transistor that has a max-
imum power rating of 10 W is given to be 20°C/W. If the case temperature of

(Continued on page 184) :
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Combined natural convection and radiation thermal resistance of various

heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fins are made of aluminum 6063T-5, are black anodized,
and are 76 mm (3 in) long.

HS 5030

R = 0.9°C/W (vertical)
R = 1.2°C/W (horizontal)

Dimensions: 76 mm X 105 mm X 44 mm
Surface area: 677 cm?

HS 6065 R = 5°C/W

Dimensions: 76 mm X 38 mm X 24 mm
Surface area: 387 cm?

HS 6071

R = 1.4°C/W (vertical)
R = 1.8°C/W (horizontal)

Dimensions: 76 mm X 92 mm X 26 mm
Surface area: 968 cm?

HS 6105

R = 1.8°C/W (vertical)
R = 2.1°C/W (horizontal)

Dimensions: 76 mm X 127 mm X 91 mm
Surface area: 677 cm?

HS 6115

R = 1.1°C/W (vertical)
R = 1.3°C/W (horizontal)

Dimensions: 76 mm X 102 mm X 25 mm
Surface area: 929 cm?

HS 7030

R = 2.9°C/W (vertical)
R = 3.1°C/W (horizontal)

Dimensions: 76 mm X 97 mm X 19 mm
Surface area: 290 cm?
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FIGURE 3-48
Schematic for Example 3—10.

the transistor is not to exceed 85°C, determine the power at which this transis-
tor can be operated safely in an environment at 25°C.

SOLUTION The maximum power rating of a transistor whose case tempera-
ture is not to exceed 85°C is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The transistor case is iso-
thermal at 85°C.

Properties The case-to-ambient thermal resistance is given to be 20°C/W.
Analysis The power transistor and the thermal resistance network associated
with it are shown in Fig. 3-48. We notice from the thermal resistance network
that there is a single resistance of 20°C/W between the case at 7, = 85°C and
the ambient at 7., = 25°C, and thus the rate of heat transfer is

Q'_<£) _ LT, _@5-25°C_,
R case-ambient R ZOOC/W

case-ambient

Therefore, this power transistor should not be operated at power levels above
3 W if its case temperature is not to exceed 85°C.

Discussion This transistor can be used at higher power levels by attaching
it to a heat sink (which lowers the thermal resistance by increasing the heat
transfer surface area, as discussed in the next example) or by using a fan
(which lowers the thermal resistance by increasing the convection heat transfer
coefficient).

EXAMPLE 3-11 Selecting a Heat Sink for a Transistor

A 60-W power transistor is to be cooled by attaching it to one of the com-
mercially available heat sinks shown in Table 3-6. Select a heat sink that will
allow the case temperature of the transistor not to exceed 90°C in the ambient
air at 30°C.

SOLUTION A commercially available heat sink from Table 3-6 is to be
selected to keep the case temperature of a transistor below 90°C.
Assumptions 1 Steady operating conditions exist. 2 The transistor case is iso-
thermal at 90°C. 3 The contact resistance between the transistor and the heat
sink is negligible.

Analysis The rate of heat transfer from a 60-W transistor at full power is
O = 60 W. The thermal resistance between the transistor attached to the heat
sink and the ambient air for the specified temperature difference is deter-
mined to be

- AT AT (90 — 30)°C .
Q=——">R=—=——"—"—"—=10C/W

R 0 60 W
Therefore, the thermal resistance of the heat sink should be below 1.0°C/W.
An examination of Table 3-6 reveals that the HS 5030, whose thermal resis-
tance is 0.9°C/W in the vertical position, is the only heat sink that will meet
this requirement.
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EXAMPLE 3—-12 Heat Transfer from Fins of Variable Cross Section

Aluminum pin fins of parabolic profile with blunt tips are attached on a plane

wall with surface temperature of 200°C (Fig. 3-49). Each fin has a length of

20 mm and a base diameter of 5 mm. The fins are exposed to an ambient air

condition of 25°C and the convection heat transfer coefficient is 50 W/m?2-K. If

the thermal conductivity of the fins is 240 W/m?-K, determine the efficiency, D=5mm
heat transfer rate, and effectiveness of each fin.

Air, 25°C

T, =200°C ,
h=50 W/m>K

| |

||

||

||

| |

| |

||

| |

| |

| |

| |

|
SOLUTION The efficiency, heat transfer rate, and effectiveness of a pin fin of ﬁ L=20mm
parabolic profile with blunt tips are to be determined.

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal FIGURE 3-49
properties are constant. 3 Heat transfer by radiation is negligible. .

Properties The thermal conductivity of the fin is given as 240 W/mZ2-K. Schematic for Example 3-12.
Analysis From Table 3-3, for pin fins of parabolic profile (blunt tip), we have

L—q/ﬁL—\/ SOOWIMAK) 0 050 my = 02582
"N T N 40W/mK)0.005m) o T

7D* L\ " } (0.005 m)* f { <0.020m>2 T/Z }
A= 7 (16| =) +1| —1p= 16 +1) -1
s 96L2{{ (D) } 96(0.020m)* L[ \0.005 m

= 2.106 X 10~ *m?

3 L@mLi3) 3 [[4(02582)/3] 1,[0.3443]
2mL I(4mL/3)  2(0.2582) I,[4(0.2582)/3]  ~ 1,[0.3443]

Nfin =

The values of the Bessel functions corresponding to x = 0.3443 are deter-
mined from Table 3-4 to be [y = 1.0350 and /; = 0.1716. Substituting, the
fin efficiency is determined to be

0.1716
1.0350

Mg = 5.8095 = 0.9632

The heat transfer rate for a single fin is

Qﬁn = N hAg, (T, — T,)
= (0.9632)(50W/m>K)(2.106 X 10~*m?)(200 — 25)°C = 1.77 W

The fin effectiveness is

Qﬁn _ Qﬁn
hA,T, — T.)  h(wD*4)(T, — T,)

Efin =

B 1.77W
(50W/m2-K) [7(0.005 m)*/4] (200 — 25)°C

=10.3

That is, over a 10-fold increase in heat transfer is achieved by using a pin fin
in this case.
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Discussion The fin efficiency can be determined more accurately by avoiding
the interpolation error by using an equation solver with built-in mathematical
functions such as EES. Copying the line

eta_fin = 3/(2*0.2582)*Bessel_| 1(4*0.2582/3)/Bessel_|0(4*0.2582/3)
on a blank EES screen and hitting the ‘solve’ button gives the fin efficiency

to be ng, = 0.9855, which is about 2 percent higher than the result obtained
above using the tables.

—  4cm A EXAMPLE 3-13 Preventing Circuit Board Surface from
2 mmx2 mm Overheating
A 15-cm X 20-cm integrated circuit board is to be cooled by attaching 4-cm-
—— > 7,=85°C long aluminum (k = 237 W/m-K) fins on one side of it (Fig. 3-50). Each fin
:l has a 2-mm X 2-mm square cross section. The surrounding ambient tempera-
:l ture is 25°C and the convection heat transfer coefficient on each fin surface is
20 W/m?-K. To prevent the circuit board from overheating, the upper surface
:l T, = 25°C of the circuit board needs to be at 85°C or cooler. Design a finned surface hav-
ing the appropriate number of fins, with an overall effectiveness of 3 that can
:| keep the circuit board surface from overheating.
] SOLUTION In this example, the concepts of Prevention through Design (PtD)
:l are applied in conjunction with the fin analysis. An integrated circuit board is
to be cooled by attaching aluminum fins of square cross section on one side.
:l The number of fins needed to keep the circuit board surface cooler than 85°C,
L | while having an overall effectiveness of 3, is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat conduction is one-
FIGURE ?’_50 dimensional. 3 Heat transfer from the fin tips is negligible. 4 Fins are very
Schematic for Example 3-13. long. 5 The heat transfer coefficient is constant and uniform over the entire fin
surface. 6 The thermal properties of the fins are constant.

Properties The thermal conductivity of the aluminum fins is given to be k =
237 W/m-K.

Analysis  Noting that the cross-sectional areas of the fins are constant, the
efficiency of the square cross-section fins that are assumed to be very long
with adiabatic tips can be determined to be

hp 4ha 4(20 W/m?-K)(0.02 m) .
m=l—=1l—7= =12.99m"!
KA, ka? (237 W/m-K)(0.02 m)?

where a is the length of each side of the square fin.

_tanhmL _ tanh(12.99 m~' X 0.04 m)

o =091
Ttin D 1299 m-! X 0.04m 0-919

The finned and unfinned surface areas, and heat transfer rates from these
areas are



Ag, = ng, X 4 X (0.002 m)(0.04 m) = 0.00032n;, m?

= (0.15 m)(0.20 m) — ng,(0.002 m)(0.002 m)

= 0.03 — 0.000004n;, m?

Qﬁnned = nfianin,max = NuhAgo(T, — T,)

= 0.919(20 W/m?*-K)(0.00032n,,, m?)(85 — 25)°C
= 0.3529n;, W

Qunmmed = hA imed(Ty — T.) = (20 W/m?-K)(0.03 — 0.0000047,,, m?)(85 — 25)°C
= 36 — 0.0048ng5, W

fin

A

unfinned

Then the total heat transfer from the finned surface (circuit board) becomes
Qtotal,fin = innned + Qunfinned = 0.3529n;;, + 36 — 0.0048n;, W

The rate of heat transfer if there were no fins attached to the plate would be

Anofin = (015 m)(020 m) = 003 m2

Ovoin = hA (T, — T.) = (20 W/m>K)(0.03 m?)(85 — 25)°C = 36 W

The number of fins can be determined from the overall fin effectiveness equation

n _ inn
o Qno fin
5 0:3529n5, + 36 — 0.0048n,,
- 36
ng, = 207

Discussion To keep the circuit board surface from heating above 85°C, the
finned surface having an overall effectiveness of 3 needs to have at least
207 fins. Number of fins on the circuit board may be reduced by using
different fin material and geometry.

3-7 = BIOHEAT TRANSFER EQUATION

The study of heat transfer in biological systems is referred to as bioheat
transfer. It is the study of heat transfer within the human body or external
to the body. Bioheat transfer can be considered as a subfield of biomedical
engineering with its foundation in the heat transfer engineering. Heat transfer
within the human body, in particular in adverse environments, is an active
area of research for the development of new medical treatments or devices to
minimize the effects of the adverse conditions.

The transport of thermal energy in living tissues is a very complex process.
It involves a multiple of mechanisms such as conduction, convection, radia-
tion, evaporation, phase change, metabolic heat generation (heat generated
by the body through the digestion of food, work and exercise), and perfusion
(exchange of thermal energy between flowing blood and the surrounding tissue).

A simple yet fairly accurate bioheat transfer equation or model was pro-
posed by Harry Pennes in 1948 and published in Volume 1 of the Journal
of Applied Physiology. For the development of his model, Pennes measured
temperature distributions as a function of radial position in the forearms of
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nine human subjects. His data showed a temperature differential of 3 to 4°C
between the skin and the interior of the arm. Pennes attributed this tempera-
ture difference to the effects of metabolic heat generation and perfusion in
the arm. Based on his experimental results, Pennes proposed a model, now
known as Pennes’ bioheat transfer equation, to describe the effects of metabo-
lism and blood perfusion on the energy balance within living tissue. Pennes’
model was considered a major introductory effort in quantifying the heat
transfer contribution of perfusion in tissue. His model is a modified version of
the heat conduction equation introduced in Chapter 2 which accounts for the
effects of metabolic heat generation and perfusion.

During the past decade, Pennes’ bioheat transfer model has been widely
used but also criticized for various reasons. To gain a better understanding of
one of the most influential articles ever published in the Journal of Applied
Physiology, Pennes’ 1948 paper was republished for the 50th anniversary
of the journal and was revisited in great depth by Wissler. Wissler reevalu-
ated Pennes’ work by revisiting his original experimental data and analysis.
Wissler in his concluding remarks states that “much of the criticism directed
toward Pennes’ model is not justified and those who base their theoretical
model calculations on the Pennes’ model can be somewhat more confident
that their starting equations are valid.”

In this section a simplified version of the bioheat transfer equation for the
case of steady-state, constant properties, one-dimensional heat transfer in
rectangular coordinates is introduced. Following Pennes’ model, modifying
Eq. 2-15 to account for the effects of metabolic heat generation and perfusion
heat sources results in

—+——=0 (3-85)

where ¢,, and e, are the metabolic and perfusion heat source terms (W/m?).

A simple expression for the perfusion term was proposed by Pennes. Pennes
suggested that the rate of heat transfer from blood to tissue per unit volume of
tissue (e, ) is proportional to the perfusion rate p (volumetric blood flow rate
per unit volume of tissue or 1/s) and the difference between the blood tem-
perature entering small capillaries (on the order of 8 m) at an arterial inlet
temperature of 7, and a perfusate of blood (consisting of mostly water and
ions) exiting through the capillary wall at the local tissue temperature of 7. It is
important to note that blood can only leave the capillary through the venous
end, but some perfusate of blood leaves through the wall. The expression pro-
posed by Pennes for the exchange of thermal energy between flowing blood
and the surrounding tissue (perfusion) is as follows

e, =ppycy (T, —T)  (W/m’) (3-86)

where p, (kg/m?) is the density of blood and ¢, (J/kg-K) is the specific heat of
blood.

Substituting the Pennes’ perfusion heat source term expression, Eq. 3-86,
into Eq. 3-85, results in

ﬂ + ém + ppbch(Ta - T)

=0 3-87
dx? k ¢ )



Following the procedure that lead to Eq. 3-56 for extended surfaces and
assuming constant é,,,p, p,,c,and T,, the differential Eq. 3-87 reduces to

d’0

dx?

- B0 =0 (3-88)

where B> = pp,c,/k has units of (I/m)and 0 = T — T, — ¢,/p p, ¢, is the
temperature excess. Equation 3-88 is in form identical to Eq. 3-56 and the
solutions presented in the text for the different boundary conditions could be
used.

One of the applications of Eq. 3-88 is in a process called thermoregula-
tion. Thermoregulation is the ability of an organism to regulate its body tem-
perature within certain boundaries, even when the surrounding temperature is
very different. Thermoregulation in the human body is achieved by keeping
a tight balance between heat gain and heat loss. Humans’ temperature regula-
tion system is similar to the operation of a home furnace. The human body
regulates heat generation and preservation to maintain the internal body tem-
perature or core temperature. Normal core temperature at rest varies between
36.5 and 37.5°C (97.7 to 99.5°F). However, the temperature at the extremities
is not regulated as tightly as the core temperature, and can vary significantly
from the core temperature (imagine having a snowball fight without wearing
gloves) and under normal external operating temperatures is in the range of
33-34°C. A more realistic approach to the study of heat transfer within the
human body is to solve the bioheat transfer equation in cylindrical coordi-
nates as shown in the following equations.

The steady-state bioheat transfer differential equation in cylindrical coordi-
nates with constant properties is

Ldfdry &6 (3-89)
rar\ dr K ]

Following the same procedure that lead to the development of Eq. 3-88, the
bioheat transfer equation in cylindrical coordinates in terms of excess tem-
perature 6 is

1 d do R
—\r— ) — B0=0 (3-90)

rdr dr

Equation 3-90 is a modified Bessel equation of order zero, and its general
solution is of the form

0(r) = C1, (Br) + C,K, (Br) (3-91)

where [, and K, are modified, zero-order Bessel functions of the first and
second kinds, respectively. The values of I, and K|, are given in Table 3—4.

One of the applications of Eq. 3-90 would be, for example, in the analysis
of the steady-state heat transfer from a human forearm subjected to certain
environmental conditions. One of the end-of-chapter problems will be on this
subject. The following example demonstrates the use of Eq. 3—-88 in calculat-
ing heat transfer between a human body and its surroundings.
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FIGURE 3-51
Schematic for Example 3—14.

k, - Ej
e

EXAMPLE 3-14 Application of Bioheat Transfer Equation

We are interested in heat transfer analysis from a human body subjected to certain
environmental conditions. For this purpose consider a region of muscle with a skin/
fat layer over it under steady state conditions as shown in Fig. 3-51. For simplicity
approximate this region as a one-dimensional plane wall with surface area A. The
muscle thickness is L, covered by a layer of skin/fat with a thickness L. The met-
abolic heat generation rate (&,,) and perfusion rate (p) are both constant throughout
the muscle. The blood density and specific heat are p, and c,, respectively. The
core body temperate (7,.) and the arterial blood temperature (T,) are both assumed
to be the same and constant. The muscle and the skin/fat layer thermal conduc-
tivities are k,, and ks, respectively. The skin has an emissivity of € and the body is
subjected to an air environment with a temperature of T., a convection heat trans-
fer coefficient of A, and a radiation heat transfer coefficient of h,,4. Assuming
blood properties and thermal conductivities are all constant, (a) develop an expres-
sion for the interface temperature (7)) between the muscle and the outer skin/fat
layer, and (b) determine the temperature T, and the rate of heat loss from the body
(@y), and the skin temperature (T) for the following conditions:

A=18m2 L, =003m,L,=0.003m,é,= 700 W, p = 0.0005 1/s,
T,=T,=37°C, T, = Ty, = 24°C, & = 0.95, p, = 1000 kg/m’, ¢, = 3600 J/kg'K,
k,, = 0.5 Wim-K, k= 0.3 Wim-K, heon, = 2 Wim?K, hyyg = 5.9 Wim>K

SOLUTION A region of muscle with a skin/fat layer over it for a human body is
subjected to certain environmental conditions. An expression for the interface
temperature, the value of the interface temperature, the rate of heat loss from
the body, and the skin temperature for a set of conditions are to be determined.
Assumptions 1 Muscle and skin/fat layer considered as a 1-D plain wall.
2 Steady state conditions. 3 Blood properties, thermal conductivities, arterial
temperature, core body temperature, metabolic heat generation rate, and per-
fusion rate are all constant. 4 Radiation exchange between the skin surface
and the surroundings is between a small surface and a large enclosure at the
air temperature. 5 Solar radiation is negligible.
Properties Muscle thermal conductivity k, = 0.5 W/m-K, skin/fat layer
thermal conductivity k; = 0.3 W/m-K, blood density p, = 1000 kg/m3 and
blood specific heat ¢, = 3600 J/kg-K.
Analysis (a) Solve the bioheat transfer differential equation, Eq. 3-88, along
with the appropriate boundary conditions to develop an expression for the
interface temperature (T) between the muscle and the outer skin/fat layer. The
bioheat differential equation is
2
% - B0 =0

Muscle Skin/Fat

]
Tsurr

T.

conv

«——L,—><«—L,;,—> hra

—> X




where B? = pp,c,/k has units of (1/m) and 6 = T — T, — &,./pp,c,. The
boundary conditions for the problem in terms of temperature excess 6 are:
00)=T.—T,— enlpp,c, = 0. and 6(L,) =T, —T,— ¢,/pp,c,=0;
The solution to Eq. 3-88 with the two specified temperature boundary condi-
tions 6, and 6, is given by Eq. 3-67 developed for fins (case 3 — specified
temperature). For our case Eq. 3-67 becomes
6  (6,/6)sinhBx + sinhB(L, — x)
0, sinhBL,,

G

(3-92)

Note that T; that appears in 6, in Eq. 3-92 is unknown. In order to find T;, use
Eq. 3-92 to calculate the rate at which heat leaves the muscle and enters the
skin/fat layer at x = L,, and equate it with the rate at which heat is transferred
through the skin/fat layer and into the environment.

Using the Fourier’s law of heat conduction, the rate of heat transfer that
leaves the muscle at x = L,, and enters the skin/fat layer is

dT dé (0,/0,)coshBL,, — 1
= —k,AB6

= = —k A—
dxl,._ " dx " ¢ sinhBL,,

The rate at which heat is transferred through the skin/fat layer and into the
environment is obtained by using the thermal resistance network concept (see
section 3-1). In this case the thermal resistance is a combined series-parallel
arrangement. Heat is transferred through the skin/fat layer by conduction in
series and is in parallel with heat transfer by convection and radiation. The
total rate of heat transfer through the skin/fat layer and into the environment
(the rate of heat loss from the body) is

Qspeciﬁed temp. = _kmA

x=L,

Q Ti B Too
, = —=
Rtotal
2 2 _ _ Rcoanrad
where the total resistance is Ry = Ry + Repyy—rua = Ry + 5—
Rconv + Rrad
o . Ly 1 1
and the individual resistances are R ; = s Ry = and R, =
' ksz hconv hradA

Equating the rate of heat transfer that leaves the muscle at x = L,, and
enters the skin/fat layer with the rate at which heat is transferred through the
skin/fat layer and into the environment yields

(0,/6.)coshBL,, — 1 T, =T,

— k,ABO, - =
sinhBL,, R

total

The above equation can be solved for T}, the final expression is

ém
TXSinhBLm + kmABRloml |:H( + <Tu + o > COShBLm:|
;o PPiCy

' sinhBL,, + k,ABR,,, coshBL,,

(b) Using the data given in the problem statement and the expression for the
interface temperature (7)) between the muscle and the outer skin/fat layer, the
interface temperature between the muscle and the outer skin/fat layer is

T, = 34.8°C

Using the calculated value of T;and the equation for the total rate of heat transfer
through the skin/fat layer and into the environment, the heat loss from the body is

0, =142 W
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The skin temperature (7;) can be calculated by applying the Fourier's law of
heat conduction to the skin/fat layer

i s

1L,

0, = sz
sf

Solving the above equation for the T,

QbLsf

kyA

Discussion The skin temperature of 34°C is comfortable. However, if the
environmental conditions change, our bodies will adjust to it. For example, if
the air and the surroundings temperatures were lowered considerably, we will
shiver. Shivering can increase the metabolic heat generation rate by up to six
times the resting metabolic rate. If the air and the surroundings temperatures
were increased considerably, we will sweat. Sweating will cause an increase in
the perfusion rate near the skin surface which causes an increase in the heat
loss to the surroundings via evaporation.

T, =T, —

s 1

~ 34°C

3-8 = HEAT TRANSFER IN COMMON
CONFIGURATIONS

So far, we have considered heat transfer in simple geometries such as large
plane walls, long cylinders, and spheres. This is because heat transfer in such
geometries can be approximated as one-dimensional, and simple analytical
solutions can be obtained easily. But many problems encountered in practice
are two- or three-dimensional and involve rather complicated geometries for
which no simple solutions are available.

An important class of heat transfer problems for which simple solutions are
obtained encompasses those involving two surfaces maintained at constant
temperatures 7, and 7T,. The steady rate of heat transfer between these two
surfaces is expressed as

0 = SK(T, — T,) (3-93)
where § is the conduction shape factor, which has the dimension of length,
and k is the thermal conductivity of the medium between the surfaces. The
conduction shape factor depends on the geometry of the system only.

Conduction shape factors have been determined for a number of configura-
tions encountered in practice and are given in Table 3—7 for some common
cases. More comprehensive tables are available in the literature. Once the
value of the shape factor is known for a specific geometry, the total steady
heat transfer rate can be determined from the equation above using the speci-
fied two constant temperatures of the two surfaces and the thermal conduc-
tivity of the medium between them. Note that conduction shape factors are
applicable only when heat transfer between the two surfaces is by conduction.
Therefore, they cannot be used when the medium between the surfaces is a
liquid or gas, which involves natural or forced convection currents.

A comparison of Eqgs. 3—4 and 3-93 reveals that the conduction shape fac-
tor § is related to the thermal resistance R by R = 1/kS or S = 1/kR. Thus,
these two quantities are the inverse of each other when the thermal conductiv-
ity of the medium is unity. The use of the conduction shape factors is illus-
trated with Examples 3—15 and 3-16.
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TABLE 3-7

Conduction shape factors S for several configurations for use in Q = kS( T, — T,) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures 7, and T,

(1) Isothermal cylinder of length L (2) Vertical isothermal cylinder of length L
buried in a semi-infinite medium buried in a semi-infinite medium T
(L>> D and z> 1.5D) (L>>D) S L2
__2wL __2mL
In (4z/D) In(4L/D)
(3) Two parallel isothermal cylinders E (4) A row of equally spaced parallel isothermal
placed in an infinite medium AN cylinders buried in a semi-infinite medium
(L>>Dy, D, 2) (L>>D,z, and w > 1.5D)
§= 2wL S= 27L
422 - D3 - D? 2w .. 277
cosh! (7) In D sth
2D\D, B4 /oS .
R e (per cylinder)
(5) Circular isothermal cylinder of length L (6) Circular isothermal cylinder of length L
in the midplane of an infinite wall at the center of a square solid bar of the
(z>0.5D) same length
S= 2wL _ 2L
In(8z/7r D) In(1.08wD) | 2 T
— A/
(7) Eccentric circular isothermal cylinder (8) Large plane wall
of length L in a cylinder of the same 2
length (L > D,)
Tl’\ r—T2
S= 2L S= A
1(D%+D§—4z2) L
cosh 2D,D, L
\/ A




194
STEADY HEAT CONDUCTION

TABLE 3-7 (Continued)

(9) A long cylindrical layer

(10) A square flow passage

(S=2D whenz=0)

(a) Foralb > 1.4, ) [ |
(I |
(I |
S= L 2oL | |
In (Dy/D)) §=—=T= I I
0.93 In (0.948a/b) Pl -
(b)Foralb< 1.4,
§= 2L
0.785 In (a/b)
(11) A spherical layer (12) Disk buried parallel to
the surface in a semi-infinite
medium (z >> D)
g 27DiD; Vot
" D,- D ‘[
S=4D
T, <

(13) The edge of two adjoining
walls of equal thickness

§S=0.54w

(14) Corner of three walls
of equal thickness

S=0.15L

(15) Isothermal sphere buried in a
semi-infinite medium

S= 27D
1-0.25D/z7 L

Ty

(16) Isothermal sphere buried
in a semi-infinite medium at 7,
whose surface is insulated

§= 27D
1+0.25D/7

Insulated




EXAMPLE 3-15 Heat Loss from Buried Steam Pipes

A 30-m-long, 10-cm-diameter hot-water pipe of a district heating system is
buried in the soil 50 cm below the ground surface, as shown in Fig. 3-52. The
outer surface temperature of the pipe is 80°C. Taking the surface temperature
of the earth to be 10°C and the thermal conductivity of the soil at that location
to be 0.9 W/m-K, determine the rate of heat loss from the pipe.

SOLUTION The hot-water pipe of a district heating system is buried in the
soil. The rate of heat loss from the pipe is to be determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-
dimensional (no change in the axial direction). 3 Thermal conductivity of the
soil is constant.

Properties The thermal conductivity of the soil is given to be k = 0.9 W/m-K.
Analysis The shape factor for this configuration is given in Table 3-7 to be

5= 2aL
In(4z/D)

since z > 1.5D, where z is the distance of the pipe from the ground surface,
and D is the diameter of the pipe. Substituting,

27 X (30m)

=22 _ 69
In(4 X 0.5/0.1) o

Then the steady rate of heat transfer from the pipe becomes

0= Sk(T, — T,) = (62.9 m)(0.9 W/m-K)(80 — 10)°C = 3963 W

Discussion Note that this heat is conducted from the pipe surface to the sur-
face of the earth through the soil and then transferred to the atmosphere by
convection and radiation.

EXAMPLE 3-16 Heat Transfer hetween Hot- and Cold-Water Pipes

A 5-m-long section of hot- and cold-water pipes run parallel to each other in a
thick concrete layer, as shown in Fig. 3-53. The diameters of both pipes are
5 c¢m, and the distance between the centerline of the pipes is 30 cm. The sur-
face temperatures of the hot and cold pipes are 70°C and 15°C, respectively.
Taking the thermal conductivity of the concrete to be kK = 0.75 W/m-K, deter-
mine the rate of heat transfer between the pipes.

SOLUTION Hot- and cold-water pipes run parallel to each other in a thick
concrete layer. The rate of heat transfer between the pipes is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer is two-
dimensional (no change in the axial direction). 3 Thermal conductivity of the
concrete is constant.

Properties The thermal conductivity of concrete is given to be k =
0.75 W/m-K.
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FIGURE 3-52
Schematic for Example 3-15.

T=30em

FIGURE 3-53
Schematic for Example 3-16.
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Analysis The shape factor for this configuration is given in Table 3-7 to be

2L

422 _ D2 _ DZ
cogn | —=1L__—2
2D,D,

S =

where z is the distance between the centerlines of the pipes and L is their
length. Substituting,

27 X (5m)
S = =6.34m
(4 X 0.3%2 — 0.05%> — 0.05>
cosh

2 X 0.05 X 0.05

Then the steady rate of heat transfer between the pipes becomes
0= SK(T, — T,) = (6.34 m)(0.75 W/m-K)(70 — 15°)C = 262 W

Discussion We can reduce this heat loss by placing the hot- and cold-water
pipes farther away from each other.

It is well known that insulation reduces heat transfer and saves energy and

EXAMPLE 3-17 Cost of Heat Loss through Walls in Winter

Consider an electrically heated house whose walls are 9 ft high and have an
R-value of insulation of 13 (i.e., a thickness-to-thermal conductivity ratio of
L/k = 13 h-ft2.°F/Btu). Two of the walls of the house are 40 ft long and the
others are 30 ft long. The house is maintained at 75°F at all times, while
the temperature of the outdoors varies. Determine the amount of heat lost
through the walls of the house on a certain day during which the average tem-
perature of the outdoors is 45°F. Also, determine the cost of this heat loss to
the home owner if the unit cost of electricity is $0.075/kWh. For combined
convection and radiation heat transfer coefficients, use the ASHRAE (American
Society of Heating, Refrigeration, and Air Conditioning Engineers) recom-
mended values of h; = 1.46 Btu/h-ft2-°F for the inner surface of the walls and
h, = 6.0 Btu/h-ft?.°F for the outer surface of the walls under 15 mph wind
conditions in winter.

SOLUTION An electrically heated house with R-13 insulation is considered.
The amount of heat lost through the walls and its cost are to be determined.
Assumptions 1 The indoor and outdoor air temperatures have remained at the
given values for the entire day so that heat transfer through the walls is steady.
2 Heat transfer through the walls is one-dimensional since any significant
temperature gradients in this case exist in the direction from the indoors
to the outdoors. 3 The radiation effects are accounted for in the heat transfer
coefficients.

money. Decisions on the right amount of insulation are based on a heat trans-
fer analysis, followed by an economic analysis to determine the “monetary
value” of energy loss. This is illustrated with Example 3-17.



Analysis This problem involves conduction through the wall and convection at
its surfaces and can best be handled by making use of the thermal resistance
concept and drawing the thermal resistance network, as shown in Fig. 3-54.
The heat transfer area of the walls is

A = Circumference X Height = (2 X 30 ft + 2 X 40 ft)(9 ft) = 1260 ft

Then the individual resistances are evaluated from their definitions to be

1 1
R=R .. =— = = 0.00054 h-°F/Bt
P e i T A (1.46 Btu/h-f°F)(1260 ft2) !

L  Rvalue 13 hft>°F/Btu
Ry = — = = = 0.01032 h-°F/Bt
Wl =A T A 1260 .

1 1
=R, = —— = = 0.00013 h-"F/Bt
conv, 0 hoA (60 Btu/hft2°F)(1260 ftz) !

R

0

Noting that all three resistances are in series, the total resistance is
Rw = R + Ry + R, = 0.00054 + 0.01032 + 0.00013 = 0.01099 h-°F/Btu
Then the steady rate of heat transfer through the walls of the house becomes

T~ T, (75— 45°F
R ~0.01099 h-°F/Btu

Q= = 2730 Btu/h

total

Finally, the total amount of heat lost through the walls during a 24-h period
and its cost to the home owner are

0 = 0 At = (2730 Btu/h)(24-h/day) = 65,514 Btu/day = 19.2 kWh/day

since 1 kWh = 3412 Btu, and

Heating cost = (Energy lost)(Cost of energy) = (19.2 kWh/day)($0.075/kWh)
= $1.44/day
Discussion The heat losses through the walls of the house that day cost the

home owner $1.44 worth of electricity. Most of this loss can be saved by
insulation.
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Schematic for Example 3—-17.

TOPIC OF SPECIAL INTEREST*

Heat Transfer through Walls and Roofs

Under steady conditions, the rate of heat transfer through any section of a
building wall or roof can be determined from

AT, —T,)
==

where 7; and T, are the indoor and outdoor air temperatures, A is the heat
transfer area, U is the overall heat transfer coefficient (the U-factor), and

Q = UAT, - T,) (3-94)

* This section can be skipped without a loss of continuity.
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R = 1/U is the overall unit thermal resistance (the R-value). Walls and roofs of
buildings consist of various layers of materials, and the structure and operating
conditions of the walls and the roofs may differ significantly from one build-
ing to another. Therefore, it is not practical to list the R-values (or U-factors)
of different kinds of walls or roofs under different conditions. Instead, the
overall R-value is determined from the thermal resistances of the individual
components using the thermal resistance network. The overall thermal resis-
tance of a structure can be determined most accurately in a lab by actually
assembling the unit and testing it as a whole, but this approach is usually very
time consuming and expensive. The analytical approach described here is fast
and straightforward, and the results are usually in good agreement with the
experimental values.

The unit thermal resistance of a plane layer of thickness L and thermal
conductivity k can be determined from R = L/k. The thermal conductivity and
other properties of common building materials are given in the appendix. The
unit thermal resistances of various components used in building structures are
listed in Table 3-8 for convenience.

Heat transfer through a wall or roof section is also affected by the con-
vection and radiation heat transfer coefficients at the exposed surfaces. The
effects of convection and radiation on the inner and outer surfaces of walls
and roofs are usually combined into the combined convection and radia-
tion heat transfer coefficients (also called surface conductances) h; and h,,

TABLE 3-8
Unit thermal resistance (the R-value) of common components used in buildings
R-value R-value
Component m2-°C/W ft2-h-°F/Btu Component m2-°C/W ft2-h-°F/Btu
Outside surface (winter) 0.030 0.17 Wood stud, nominal 2 in X 6 in
Outside surface (summer) 0.044 0.25 (5.5 in or 140 mm wide) 0.98 5.56
Inside surface, still air 0.12 0.68 Clay tile, 100 mm (4 in) 0.18 1.01
Plane air space, vertical, ordinary surfaces (eo = 0.82): Acoustic tile 0.32 1.79
13 mm (}in) 0.16 0.90 Asphalt shingle roofing 0.077 0.44
20 mm (¢ in) 0.17 0.94 Building paper 0.011 0.06
40 mm (1.5 in) 0.16 0.90 Concrete block, 100 mm (4 in):
90 mm (3.5 in) 0.16 0.91 Lightweight 0.27 1.51
Insulation, 25 mm (1 in): Heavyweight 0.13 0.71
Glass fiber 0.70 4.00 Plaster or gypsum board,
Mineral fiber batt 0.66 3.73 13 mm (3 in) 0.079 0.45
Urethane rigid foam 0.98 5.56 Wood fiberboard, 13 mm (5 in)  0.23 1.31
Stucco, 25 mm (1 in) 0.037 0.21 Plywood, 13 mm (5 in) 0.11 0.62
Face brick, 100 mm (4 in) 0.075 0.43 Concrete, 200 mm (8 in):
Common brick, 100 mm (4 in)  0.12 0.79 Lightweight 1.17 6.67
Steel siding 0.00 0.00 Heavyweight 0.12 0.67
Slag, 13 mm ( in) 0.067 0.38 Cement mortar, 13 mm (} in) 0.018 0.10
Wood, 25 mm (1 in) 0.22 1.25 Wood bevel lapped siding,
Wood stud, nominal 2 in X 4 in 13 mm X 200 mm
(3.5 in or 90 mm wide) 0.63 3.58 (in x 8in) 0.14 0.81




respectively, whose values are given in Table 3-9 for ordinary surfaces
(e = 0.9) and reflective surfaces (¢ = 0.2 or 0.05). Note that surfaces having
a low emittance also have a low surface conductance due to the reduction in
radiation heat transfer. The values in the table are based on a surface tempera-
ture of 21°C (72°F) and a surface—air temperature difference of 5.5°C (10°F).
Also, the equivalent surface temperature of the environment is assumed to be
equal to the ambient air temperature. Despite the convenience it offers, this
assumption is not quite accurate because of the additional radiation heat loss
from the surface to the clear sky. The effect of sky radiation can be accounted
for approximately by taking the outside temperature to be the average of the
outdoor air and sky temperatures.

The inner surface heat transfer coefficient /; remains fairly constant through-
out the year, but the value of &, varies considerably because of its dependence
on the orientation and wind speed, which can vary from less than 1 km/h in
calm weather to over 40 km/h during storms. The commonly used values of 4;
and £, for peak load calculations are

h; = 8.29 W/m?>K = 1.46 Btu/h-ft>°F

_ {34.0 W/m?K = 6.0 Btwh-f-°F
22.7 W/im>K = 4.0 Btw/h-f>°F

(winter and summer)

(winter)
(summer)

0

which correspond to design wind conditions of 24 km/h (15 mph) for winter
and 12 km/h (7.5 mph) for summer. The corresponding surface thermal resis-
tances (R-values) are determined from R; = 1/h; and R, = 1/h,. The surface
conductance values under still air conditions can be used for interior surfaces
as well as exterior surfaces in calm weather.

Building components often involve trapped air spaces between various
layers. Thermal resistances of such air spaces depend on the thickness of the
layer, the temperature difference across the layer, the mean air temperature,
the emissivity of each surface, the orientation of the air layer, and the direction
of heat transfer. The emissivities of surfaces commonly encountered in build-
ings are given in Table 3-10. The effective emissivity of a plane-parallel air
space is given by

1 1 1

=—+ ——1
g &

(3-95)

Eeffective

where &, and &, are the emissivities of the surfaces of the air space.
Table 3—10 also lists the effective emissivities of air spaces for the cases
where (1) the emissivity of one surface of the air space is & while the emis-
sivity of the other surface is 0.9 (a building material) and (2) the emissiv-
ity of both surfaces is €. Note that the effective emissivity of an air space
between building materials is 0.82/0.03 = 27 times that of an air space
between surfaces covered with aluminum foil. For specified surface tempera-
tures, radiation heat transfer through an air space is proportional to effective
emissivity, and thus the rate of radiation heat transfer in the ordinary surface
case is 27 times that of the reflective surface case.

Table 3—11 lists the thermal resistances of 20-mm-, 40-mm-, and 90-mm-
(0.75-in, 1.5-in, and 3.5-in) thick air spaces under various conditions. The
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TABLE 3-9

Combined convection and radiation
heat transfer coefficients at window,
wall, or roof surfaces (from ASHRAE
Handbook of Fundamentals, Chap. 22,
Table 1).

h, W/m2.K*
Direc- Surface
_ tion of Emittance, ¢
Posi- Heat
tion Flow 0.90 0.20 0.05
Still air (both indoors and outdoors)
Horiz. UpT 9.26 5.17 4.32
Horiz. Down{ 6.13 2.10 1.25
45°slope UpT  9.09 5.00 4.15

45° slope Down{ 7.50 3.41 2.56
Vertical  Horiz. —+8.29 4.20 3.35

Moving air (any position, any direction)

Winter condition
(winds at 15 mph
or 24 km/h)

Summer condition
(winds at 7.5 mph
or 12 km/h)

340 — —

227 — —

*Multiply by 0.176 to convert to Btu/h-ft?-°F.
Surface resistance can be obtained from R = 1/h.



200
STEADY HEAT CONDUCTION

TABLE 3-10

Emissivities ¢ of various surfaces
and the effective emissivity of air
spaces (from ASHRAE Handbook
of Fundamentals, Chap. 22,

Table 3).
Effective
Emissivity of
Air Space
g =¢€ g =¢€

Surface e =09 g=c¢
Aluminum foil,

bright 0.05* 0.05 0.03
Aluminum

sheet 0.12 0.12 0.06
Aluminum-coated

paper,

polished 0.20 0.20 0.11
Steel, galvanized,

bright 0.25 0.24 0.15
Aluminum

paint 0.50 0.47 0.35
Building materials:

Wood, paper,

masonry, nonmetallic

paints 0.90 0.82 0.82
Ordinary glass 0.84 0.77 0.72

*Surface emissivity of aluminum foil
increases to 0.30 with barely visible
condensation, and to 0.70 with clearly
visible condensation.

\\% ffﬁ;ﬁ
,ig Air

3in 7 Radlant

}F‘i

Air Air
intake intake
FIGURE 3-55

Ventilation paths for a naturally
ventilated attic and the appropriate
size of the flow areas around the
radiant barrier for proper air
circulation.

From DOE/CE-0335P, U.S. Dept. of Energy.

thermal resistance values in the table are applicable to air spaces of uniform
thickness bounded by plane, smooth, parallel surfaces with no air leakage.
Thermal resistances for other temperatures, emissivities, and air spaces can be
obtained by interpolation and moderate extrapolation. Note that the presence
of a low-emissivity surface reduces radiation heat transfer across an air space
and thus significantly increases the thermal resistance. The thermal effective-
ness of a low-emissivity surface will decline, however, if the condition of the
surface changes as a result of some effects such as condensation, surface oxi-
dation, and dust accumulation.

The R-value of a wall or roof structure that involves layers of uniform thick-
ness is determined easily by simply adding up the unit thermal resistances of
the layers that are in series. But when a structure involves components such as
wood studs and metal connectors, then the thermal resistance network involves
parallel connections and possible two-dimensional effects. The overall R-value
in this case can be determined by assuming (1) parallel heat flow paths through
areas of different construction or (2) isothermal planes normal to the direction
of heat transfer. The first approach usually overpredicts the overall thermal
resistance, whereas the second approach usually underpredicts it. The paral-
lel heat flow path approach is more suitable for wood frame walls and roofs,
whereas the isothermal planes approach is more suitable for masonry or metal
frame walls.

The thermal contact resistance between different components of building
structures ranges between 0.01 and 0.1 m?-°C/W, which is negligible in most
cases. However, it may be significant for metal building components such as
steel framing members.

The construction of wood frame flat ceilings typically involve 2-in X
6-in joists on 400-mm (16-in) or 600-mm (24-in) centers. The fraction of
framing is usually taken to be 0.10 for joists on 400-mm centers and 0.07 for
joists on 600-mm centers.

Most buildings have a combination of a ceiling and a roof with an attic
space in between, and the determination of the R-value of the roof—attic—ceiling
combination depends on whether the attic is vented or not. For adequately
ventilated attics, the attic air temperature is practically the same as the out-
door air temperature, and thus heat transfer through the roof is governed by
the R-value of the ceiling only. However, heat is also transferred between the
roof and the ceiling by radiation, and it needs to be considered (Fig. 3-55).
The major function of the roof in this case is to serve as a radiation shield
by blocking off solar radiation. Effectively ventilating the attic in summer
should not lead one to believe that heat gain to the building through the attic
is greatly reduced. This is because most of the heat transfer through the attic
is by radiation.

Radiation heat transfer between the ceiling and the roof can be mini-
mized by covering at least one side of the attic (the roof or the ceiling side)
by a reflective material, called radiant barrier, such as aluminum foil or
aluminum-coated paper. Tests on houses with R-19 attic floor insulation
have shown that radiant barriers can reduce summer ceiling heat gains by
16 to 42 percent compared to an attic with the same insulation level and
no radiant barrier. Considering that the ceiling heat gain represents



TABLE 3-11

Unit thermal resistances (R-values) of well-sealed plane air spaces (from ASHRAE Handbook of Fundamentals, Chap. 22, Table 2)

(a) Sl units (in m2-°C/W)

20-mm Air Space

40-mm Air Space

90-mm Air Space

Positi Directi M T Effective Effective Effective
osition irection ean emp. S S L
of Air of Heat Temp.,  Diff., Emissivity, eq Emissivity, eq Emissivity, &g
Space Flow °C °C 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82
32.2 56 0.41 0.39 0.18 0.13 0.45 0.42 0.19 0.14 0.50 0.47 0.20 0.14
10.0 16.7 0.30 0.29 0.17 0.14 0.33 0.32 0.18 0.14 0.27 0.35 0.19 0.15
Horizontal Up T 10.0 5.6 0.40 0.39 0.20 0.15 0.44 0.42 0.21 0.16 0.49 0.47 0.23 0.16
-17.8 11.1 0.32 0.32 0.20 0.16 0.35 0.34 0.22 0.17 0.40 0.38 0.23 0.18
32.2 5.6 0.52 0.49 0.20 0.14 0.51 0.48 0.20 0.14 0.56 0.52 0.21 0.14
10.0 16.7 0.35 0.34 0.19 0.14 0.38 0.36 0.20 0.15 0.40 0.38 0.20 0.15
45° slope Up T 10.0 5.6 0.51 0.48 0.23 0.17 0.51 0.48 0.23 0.17 0.55 0.52 0.24 0.17
-17.8 11.1 0.37 0.36 0.23 0.18 0.40 0.39 0.24 0.18 0.43 0.41 0.24 0.19
32.2 5.6 0.62 0.57 0.21 0.15 0.70 0.64 0.22 0.15 0.65 0.60 0.22 0.15
10.0 16.7 0.51 0.49 0.23 0.17 0.45 0.43 0.22 0.16 0.47 0.45 0.22 0.16
Vertical  Horizontal — 10.0 5.6 0.65 0.61 0.25 0.18 0.67 0.62 0.26 0.18 0.64 0.60 0.25 0.18
-17.8 11.1 0.55 0.53 0.28 0.21 0.49 0.47 0.26 0.20 0.51 0.49 0.27 0.20
32.2 5.6 0.62 0.58 0.21 0.15 0.89 0.80 0.24 0.16 0.85 0.76 0.24 0.16
10.0 16.7 0.60 0.57 0.24 0.17 0.63 0.59 0.25 0.18 0.62 0.58 0.25 0.18
45° slope Down { 10.0 5.6 0.67 0.63 0.26 0.18 0.90 0.82 0.28 0.19 0.83 0.77 0.28 0.19
—-17.8 11.1 0.66 0.63 0.30 0.22 0.68 0.64 0.31 0.22 0.67 0.64 0.31 0.22
32.2 5.6 0.62 0.58 0.21 0.15 1.07 0.94 0.25 0.17 1.77 1.44 0.28 0.18
10.0 16.7 0.66 0.62 0.25 0.18 1.10 0.99 0.30 0.20 1.69 1.44 0.33 0.21
Horizontal Down { 10.0 5.6 0.68 0.63 0.26 0.18 1.16 1.04 0.30 0.20 1.96 1.63 0.34 0.22
-17.8 11.1 0.74 0.70 0.32 0.23 1.24 1.13 0.39 0.26 1.92 1.68 0.43 0.29
(b) English units (in h-ft?.°F/Btu)
0.75-in Air Space 1.5-in Air Space 3.5-in Air Space
" . . Effective Effective Effective
Position  Direction  Mean — Temp. Emissivity, & Emissivity, & Emissivity, &
of Air of Heat Temp., Diff., ) et ) et 1 et
Space Flow °F °F 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82 0.03 0.05 0.5 0.82
90 10 2.34 2.22 1.04 0.75 2.55 2.41 1.08 0.77 2.84 2.66 1.13 0.80
50 30 1.71 1.66 0.99 0.77 1.87 1.81 1.04 0.80 2.09 2.01 1.10 0.84
Horizontal Up T 50 10 2.30 2.21 1.16 0.87 2.50 2.40 1.21 0.89 2.80 2.66 1.28 0.93
0 20 1.83 1.79 1.16 0.93 2.01 1.95 1.23 0.97 2.25 2.18 1.32 1.03
90 10 2.96 2.78 1.15 0.81 292 2.73 1.14 0.80 3.18 2.96 1.18 0.82
50 30 1.99 192 1.08 0.82 2.14 2.06 1.12 0.84 2.26 2.17 1.15 0.86
45° slope Up { 50 10 2.90 2.75 1.29 0.94 2.88 2.74 1.29 0.94 3.12 2.95 1.34 0.96
0 20 2.13 2.07 1.28 1.00 2.30 2.23 1.34 1.04 2.42 2.35 1.38 1.06
90 10 3.50 3.24 1.22 0.84 3.99 3.66 1.27 0.87 3.69 3.40 1.24 0.85
50 30 291 2.77 1.30 0.94 258 2.46 1.23 0.90 2.67 2.55 1.25 0.91
Vertical Horizontal -» 50 10 3.70 3.46 1.43 1.01 3.79 3.55 1.45 1.02 3.63 3.40 1.42 1.01
0 20 3.14 3.02 158 1.18 2.76 2.66 1.48 1.12 2.88 2.78 1.51 1.14
90 10 3.63 3.27 1.22 0.84 5.07 455 1.36 0.91 4.81 4.33 1.34 0.90
50 30 3.43 3.23 1.39 0.99 3.58 3.36 1.42 1.00 3.51 3.30 1.40 1.00
45° slope Down { 50 10 3.81 3.57 1.45 1.02 5.10 466 1.60 1.09 4.74 4.36 1.57 1.08
0 20 3.75 3,57 1.72 1.26 3.85 3.66 1.74 1.27 3.81 3.63 1.74 1.27
90 10 3.55 3.29 1.22 0.85 6.09 5.35 1.43 0.94 10.07 8.19 1.57 1.00
50 30 3.77 3.52 1.44 1.02 6.27 563 1.70 1.14 9.60 8.17 1.88 1.22
Horizontal Down { 50 10 3.84 359 1.45 1.02 6.61 590 1.73 1.15 11.15 9.27 1.93 1.24
0 20 4,18 396 1.81 1.30 7.03 6.43 2.19 1.49 10.90 9.52 2.47 1.62
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f Roof decking
. Rafter
Radiant
barrier
A
Joist Insulation
(a) Under the roof deck

FIGURE 3-56

Air space f Roof decking f Roof decking

Radiant
barrier\
N/ Y
i v /
Y Y v
/7 /7 Y
Y Y Y

Joist Insulation

Radiant
barrier

Joist Insulation

(b) At the bottom of rafters (c) On top of attic floor insulation

Three possible locations for an attic radiant barrier.

From DOE/CE-0335P, U.S. Dept. of Energy.

Shingles A

roof

A

ceiling

R

ceiling

Ceiling joist %

:

FIGURE 3-57

Thermal resistance network for a
pitched roof-attic—ceiling combination
for the case of an unvented attic.

about 15 to 25 percent of the total cooling load of a house, radiant barriers
will reduce the air conditioning costs by 2 to 10 percent. Radiant barriers also
reduce the heat loss in winter through the ceiling, but tests have shown that the
percentage reduction in heat losses is less. As a result, the percentage
reduction in heating costs will be less than the reduction in the air-
conditioning costs. Also, the values given are for new and undusted radiant
barrier installations, and percentages will be lower for aged or dusty radiant
barriers.

Some possible locations for attic radiant barriers are given in Figure 3-56. In
whole house tests on houses with R-19 attic floor insulation, radiant barriers
have reduced the ceiling heat gain by an average of 35 percent when the radi-
ant barrier is installed on the attic floor, and by 24 percent when it is attached
to the bottom of roof rafters. Test cell tests also demonstrated that the best
location for radiant barriers is the attic floor, provided that the attic is not used
as a storage area and is kept clean.

For unvented attics, any heat transfer must occur through (1) the ceiling,
(2) the attic space, and (3) the roof (Fig. 3-57). Therefore, the overall
R-value of the roof—ceiling combination with an unvented attic depends on
the combined effects of the R-value of the ceiling and the R-value of the
roof as well as the thermal resistance of the attic space. The attic space
can be treated as an air layer in the analysis. But a more practical way of
accounting for its effect is to consider surface resistances on the roof and
ceiling surfaces facing each other. In this case, the R-values of the ceiling
and the roof are first determined separately (by using convection resistances
for the still-air case for the attic surfaces). Then it can be shown that the
overall R-value of the ceiling—roof combination per unit area of the ceiling
can be expressed as

Acei]ing
R= Rcciling + Rroof (3-96)

roof



where A giing and A, are the ceiling and roof areas, respectively. The area
ratio is equal to 1 for flat roofs and is less than 1 for pitched roofs. For a 45°
pitched roof, the area ratio is Acgjing/Aroor = 1/\V/2 = 0.707. Note that the
pitched roof has a greater area for heat transfer than the flat ceiling, and the area
ratio accounts for the reduction in the unit R-value of the roof when expressed
per unit area of the ceiling. Also, the direction of heat flow is up in winter (heat
loss through the roof) and down in summer (heat gain through the roof).

The R-value of a structure determined by analysis assumes that the
materials used and the quality of workmanship meet the standards. Poor
workmanship and substandard materials used during construction may
result in R-values that deviate from predicted values. Therefore, some
engineers use a safety factor in their designs based on experience in critical
applications.

EXAMPLE 3-18 The R-Value of a Wood Frame Wall

Determine the overall unit thermal resistance (the R-value) and the overall
heat transfer coefficient (the U-factor) of a wood frame wall that is built around
38-mm X 90-mm (2 X 4 nominal) wood studs with a center-to-center dis-
tance of 400 mm. The 90-mm-wide cavity between the studs is filled with
glass fiber insulation. The inside is finished with 13-mm gypsum wallboard
and the outside with 13-mm wood fiberboard and 13-mm X 200-mm wood
bevel lapped siding. The insulated cavity constitutes 75 percent of the heat
transmission area while the studs, plates, and sills constitute 21 percent. The
headers constitute 4 percent of the area, and they can be treated as studs.

Also, determine the rate of heat loss through the walls of a house whose
perimeter is 50 m and wall height is 2.5 m in Las Vegas, Nevada, whose winter
design temperature is —2°C. Take the indoor design temperature to be 22°C
and assume 20 percent of the wall area is occupied by glazing.

SOLUTION The R-value and the U-factor of a wood frame wall as well as the
rate of heat loss through such a wall in Las Vegas are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
wall is one-dimensional. 3 Thermal properties of the wall and the heat transfer
coefficients are constant.

Properties The R-values of different materials are given in Table 3-8.
Analysis The schematic of the wall as well as the different elements used
in its construction are shown here. Heat transfer through the insulation and
through the studs meets different resistances, and thus we need to analyze the
thermal resistance for each path separately. Once the unit thermal resistances
and the U-factors for the insulation and stud sections are available, the overall
average thermal resistance for the entire wall can be determined from

Roverall =1 Uoverall

where

Uoverall = (U X f;lrea)insulation + (U X f;u'ea)stud
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and the value of the area fraction f,., is 0.75 for the insulation section and
0.25 for the stud section since the headers that constitute a small part of the
wall are to be treated as studs. Using the available R-values from Table 3-8
and calculating others, the total R-values for each section can be determined
in a systematic manner in the table below.

Schematic R-value, m?-°C/W
Between At
4b Construction Studs Studs
1. Outside surface,
24 km/h wind 0.030 0.030
2. Wood bevel lapped
siding 0.14 0.14
3. Wood fiberboard
sheeting, 13 mm 0.23 0.23
4a. Glass fiber
A insulation, 90 mm 2.45 —
E ) 64b. Wood stud,
\3 iy - 38 mm X 90 mm - 0.63
5. Gypsum wallboard,
Sy 13 mm 0.079  0.079
6. Inside surface, still air  0.12 0.12
Total unit thermal resistance of each section, R
(in m2.°C/W) 3.05 1.23
The U-factor of each section, U = 1/R, in W/m2.K 0.328 0.813
Area fraction of each section, f., 0.75 0.25
Overall U-factor: U = 2f,, ; U; = 0.75 X 0.328 + 0.25 X 0.813
= 0.449 W/m2K
Overall unit thermal resistance: R=1/U = 2.23 m°C/W

We conclude that the overall unit thermal resistance of the wall is
2.23 m2-°C/W, and this value accounts for the effects of the studs and head-
ers. It corresponds to an R-value of 2.23 X 5.68 = 12.7 (or nearly R-13) in
English units. Note that if there were no wood studs and headers in the wall,
the overall thermal resistance would be 3.05 m2.°C/W, which is 37 percent
greater than 2.23 m2.°C/W. Therefore, the wood studs and headers in this case
serve as thermal bridges in wood frame walls, and their effect must be consid-
ered in the thermal analysis of buildings.

The perimeter of the building is 50 m and the height of the walls is 2.5 m.
Noting that glazing constitutes 20 percent of the walls, the total wall area is

Ay = 0.80(Perimeter)(Height) = 0.80(50 m)(2.5 m) = 100 m?
Then the rate of heat loss through the walls under design conditions becomes

Owar = (UA)yan (T; — T,)
= (0.449 W/m?K)(100 m?)[22 — (—2)°C]
= 1078 W
Discussion Note that a 1-kW resistance heater in this house will make up

almost all the heat lost through the walls, except through the doors and
windows, when the outdoor air temperature drops to —2°C.



EXAMPLE 3-19 The R-Value of a Wall with Rigid Foam

The 13-mm-thick wood fiberboard sheathing of the wood stud wall discussed
in the previous example is replaced by a 25-mm-thick rigid foam insulation.
Determine the percent increase in the R-value of the wall as a result.

SOLUTION The overall R-value of the existing wall was determined in Exam-
ple 3-18 to be 2.23 m?2.°C/W. Noting that the R-values of the fiberboard and
the foam insulation are 0.23 m2.°C/W and 0.98 m2.°C/W, respectively, and
the added and removed thermal resistances are in series, the overall R-value
of the wall after modification becomes

Rnew = Rold - Rremoved + Radded

=223 -023+0.98
= 2.98 m>-°C/W

This represents an increase of (2.98 — 2.23)/2.23 = 0.34 or 34 percent in
the R-value of the wall. This example demonstrated how to evaluate the new
R-value of a structure when some structural members are added or removed.

EXAMPLE 3-20 The R-Value of a Masonry Wall

Determine the overall unit thermal resistance (the R-value) and the overall heat
transfer coefficient (the U-factor) of a masonry cavity wall that is built around
6-in-thick concrete blocks made of lightweight aggregate with 3 cores filled
with perlite (R = 4.2 h-ft2.°F/Btu). The outside is finished with 4-in face brick
with 1-in cement mortar between the bricks and concrete blocks. The inside
finish consists of 3-in gypsum wallboard separated from the concrete block by
2-in-thick (1-in X 3-in nominal) vertical furring (R = 4.2 h-ft2.°F/Btu) whose
center-to-center distance is 16 in. Both sides of the -in-thick air space between
the concrete block and the gypsum board are coated with reflective aluminum
foil (¢ = 0.05) so that the effective emissivity of the air space is 0.03. For a
mean temperature of 50°F and a temperature difference of 30°F, the R-value
of the air space is 2.91 h-ft2.°F/Btu. The reflective air space constitutes
80 percent of the heat transmission area, while the vertical furring constitutes
20 percent.

SOLUTION The R-value and the U-factor of a masonry cavity wall are to be
determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
wall is one-dimensional. 3 Thermal properties of the wall and the heat transfer
coefficients are constant.

Properties The R-values of different materials are given in Table 3-8.
Analysis The schematic of the wall as well as the different elements used in
its construction are shown below. Following the approach described here and
using the available R-values from Table 3-8, the overall R-value of the wall is
determined in the following table.

205
CHAPTER 3



206
STEADY HEAT CONDUCTION

Schematic R-value,
h-ft2.°F/Btu

Between At
Construction Furring Furring

1. Outside surface,
15 mph wind 0.17 0.17
Face brick, 4 in 0.43 0.43
Cement mortar,

0.5 in 0.10 0.10

Concrete block,

6in 4.20 4.20
. Reflective air

space, 3 in 2.91 —

. Nominal 1 X 3

vertical furring — 0.94
Gypsum wallboard,
p 0.5 in 0.45 0.45
\1 7. Inside surface,
still air 0.68 0.68
Total unit thermal resistance of each section, R 8.94 6.97
The U-factor of each section, U = 1/R, in Btu/h-ft2.°F 0.112 0.143
Area fraction of each section, f,., 0.80 0.20

Overall U-factor: U = 2f,, ;U;= 0.80 X 0.112 + 0.20 X 0.143
= 0.118 Btwh-ft2°F
Overall unit thermal resistance: R = 1/U = 8.46 h-ft2-°F/Btu

Therefore, the overall unit thermal resistance of the wall is 8.46 h-ft2-°F/Btu
and the overall U-factor is 0.118 Btu/h-ft2-°F. These values account for the
effects of the vertical furring.

EXAMPLE 3-21 The R-Value of a Pitched Roof

Determine the overall unit thermal resistance (the R-value) and the overall heat
transfer coefficient (the U-factor) of a 45° pitched roof built around nominal
2-in X 4-in wood studs with a center-to-center distance of 16 in. The 3.5-in-
wide air space between the studs does not have any reflective surface and thus
its effective emissivity is 0.84. For a mean temperature of 90°F and a tem-
perature difference of 30°F, the R-value of the air space is 0.86 h-ft>.°F/Btu.
The lower part of the roof is finished with 3-in gypsum wallboard and the upper
part with 3-in plywood, building paper, and asphalt shingle roofing. The air
space constitutes 75 percent of the heat transmission area, while the studs
and headers constitute 25 percent.

SOLUTION The R-value and the U-factor of a 45° pitched roof are to be
determined.

Assumptions 1 Steady operating conditions exist. 2 Heat transfer through the
roof is one-dimensional. 3 Thermal properties of the roof and the heat transfer
coefficients are constant.



Properties The R-values of different materials are given in Table 3-8.
Analysis The schematic of the pitched roof as well as the different elements
used in its construction are shown below. Following the approach described
above and using the available R-values from Table 3-8, the overall R-value of
the roof can be determined in the table here.

Schematic R-value,

h-ft2.°F/Btu
Between At

Construction Studs Studs
1. Outside surface,
15 mph wind 0.17 0.17
2. Asphalt shingle
roofing 0.44 0.44
45° 3. Building paper 0.06 0.06
4. Plywood deck, 3 in 0.78 0.78
- 5a. Nonreflective air
1 2 3 45506 7 space, 3.51n 0.86 —
5b. Wood stud, 2 in X 4 in — 3.58
6. Gypsum wallboard, 0.5 in 0.45 0.45
7. Inside surface,
45° slope, still air 0.63 0.63
Total unit thermal resistance of each section, R 3.39 6.11
The U-factor of each section, U = 1/R, in Btu/h-ft2.°F 0.292 0.163
Area fraction of each section, f,., 0.75 0.25

Overall U-factor: U= Zf,, ;U; = 0.75 X 0.292 + 0.25 X 0.163
= 0.260 Btwh-ft2-°F

Overall unit thermal resistance: R = 1/U = 3.85 h-ft2-°F/Btu

Therefore, the overall unit thermal resistance of this pitched roof is
3.85 h-ft2.°F/Btu and the overall U-factor is 0.260 Btu/h-ft2-°F. Note that the
wood studs offer much larger thermal resistance to heat flow than the air space
between the studs.
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SUMMARY

One-dimensional heat transfer through a simple or composite
body exposed to convection from both sides to mediums at

additional layer. The elementary thermal resistance relations
can be expressed as follows:

L
temperatures 7., and 7., can be expressed as Conduction resistance (plane wall): Ry = o
_ T — Ty ] ) ) In(r,/r,)
R Conduction resistance (cylinder): Ry = Lk
ota ar.
where R, is the total thermal resistance between the two Conduction resistance (sphere): Ry, = nTh
. . : s
mediums. For a plane wall exposed to convection on both P Amrnk
sides, the total resistance is expressed as . . . _
Convection resistance: Reony = A
Rt = Reomy1 + Rut + Regny2 = —— + = 4+ — R
total conv, 1 wall conv, 2 hlA kA th Interface resistance: — XL

This relation can be extended to plane walls that consist of
two or more layers by adding an additional resistance for each

Radiation resistance:

Rimerface = hA
1

Rrad =
ad

h A

T
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where £, is the thermal contact conductance, R, is the thermal
contact resistance, and the radiation heat transfer coefficient
is defined as

hrad = SO-(TE + T2 )(Ts + Tsurr)

SurT

Once the rate of heat transfer is available, the temperature
drop across any layer can be determined from

AT = OR
The thermal resistance concept can also be used to solve steady
heat transfer problems involving parallel layers or combined
series-parallel arrangements.
Adding insulation to a cylindrical pipe or a spherical shell

increases the rate of heat transfer if the outer radius of the insu-
lation is less than the critical radius of insulation, defined as

_ kins

rcr, cylinder — h
_ 2kins

T cr, sphere h

The effectiveness of an insulation is often given in terms
of its R-value, the thermal resistance of the material for a unit
surface area, expressed as

L . .
R-value = T (flat insulation)
where L is the thickness and k is the thermal conductivity of
the material.

Finned surfaces are commonly used in practice to enhance

heat transfer. Fins enhance heat transfer from a surface by

exposing a larger surface area to convection. The temperature
distribution along the fin are given by

Tx) — T,
Very long fin: T T exViplka,
T, — T,
. T(x) — T,, coshm(L — x)
Adiabatic fin tip: =
T,-T, cosh mL

Specified temperature at fin tip:
Ty —-T, T, - T )/I(T, — T,)]sinh mx + sinh m(L — x)
T,-T, sinhmL

Convection from fin tip:
__coshm(L — x) + (h/mk) sinhm(L — x)

Tx) — T,
T, — T, B coshmL + (h/mk) sinh mL

where m = V hp/kA_, p is the perimeter, and A, is the cross-
sectional area of the fin. The rates of heat transfer for these
cases are given to be

Very long fin:

: dr
Qlong fin — 7kAC E = hpkAL (Tb - Too)
0

x=

Adiabatic fin tip:

dar
dxl,—o
Specified temperature at fin tip:

coshmL — [(T, — T)/(T, — T )]

sinhmL

Qadiabatic ip = KA. = VhpkA, (T, — T, ) tanh mL

Qspecified temp. =V hp kAL (Tb - Toc)

Convection from the fin tip:

sinhmL + (h/mk)coshmL
= VhpkA . (T,—T,) -

coshmlL + (h/mk) sinhmlL
Fins exposed to convection at their tips can be treated as fins
with adiabatic tips by using the corrected length L. = L + A Jp
instead of the actual fin length.

The temperature of a fin drops along the fin, and thus the heat
transfer from the fin is less because of the decreasing tempera-
ture difference toward the fin tip. To account for the effect of this
decrease in temperature on heat transfer, we define fin efficiency as

Qconvection

_ O _ _Actual heat transfer rate from the fin
Mtin Qf- ' Ideal heat transfer rate from the fin if
"™ the entire fin were at base temperature

When the fin efficiency is available, the rate of heat transfer
from a fin can be determined from

Ofin = Mfin Ctin, max = Min/Asin (T, — T20)

The performance of the fins is judged on the basis of the
enhancement in heat transfer relative to the no-fin case and is
expressed in terms of the fin effectiveness eg,, defined as
) ) Heat transfer rate from
Osn Osn the fin of base area A,
0., T A L, (T, — T.) " Heat transfer rate from

n

o the surface of area A,

Efin =

Here, A, is the cross-sectional area of the fin at the base and
O, 1in Tepresents the rate of heat transfer from this area if no
fins are attached to the surface. The overall effectiveness for
a finned surface is defined as the ratio of the total heat transfer
from the finned surface to the heat transfer from the same sur-
face if there were no fins,

_ Oiotal, fin A ytin T Min A (T, — T)
Sfin, overall Q.mtal’ . - hAno i (Tb _ TOO)
Fin efficiency and fin effectiveness are related to each other by
Agin
Efin = Ai Mfin

b
Certain multidimensional heat transfer problems involve two

surfaces maintained at constant temperatures 7; and 7. The steady

rate of heat transfer between these two surfaces is expressed as

Q =SkT, — Ty)

where S is the conduction shape factor that has the dimension
of length and k is the thermal conductivity of the medium
between the surfaces.
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PROBLEMS*

Steady Heat Conduction in Plane Walls

3-1C Consider heat conduction through a wall of thickness L
and area A. Under what conditions will the temperature distri-
butions in the wall be a straight line?

3-2C Consider heat conduction through a plane wall. Does
the energy content of the wall change during steady heat con-
duction? How about during transient conduction? Explain.

3-3C What does the thermal resistance of a medium represent?

3-4C Can we define the convection resistance for a unit
surface area as the inverse of the convection heat transfer coef-
ficient?

*Problems designated by a “C” are concept questions, and stu-
dents are encouraged to answer them all. Problems designated

by an “E” are in English units, and the SI users can ignore them.
Problems with the icon % are solved using EES, and complete
solutions together with parametric studies are included on the text
website. Problems with the icon & are comprehensive in nature,
and are intended to be solved with an equation solver such as EES.
Problems with the icon ¥ are Prevention through Design problems.

3-5C Consider steady heat transfer through the wall of a room
in winter. The convection heat transfer coefficient at the outer sur-
face of the wall is three times that of the inner surface as a result of
the winds. On which surface of the wall do you think the tempera-
ture will be closer to the surrounding air temperature? Explain.

3-6C How is the combined heat transfer coefficient defined?
‘What convenience does it offer in heat transfer calculations?

3-7C Why are the convection and the radiation resistances at
a surface in parallel instead of being in series?

3-8C Consider steady one-dimensional heat transfer through
a plane wall exposed to convection from both sides to envi-
ronments at known temperatures 7.,; and 7., with known heat
transfer coefficients /; and h,. Once the rate of heat transfer
0 has been evaluated, explain how you would determine the
temperature of each surface.

3-9C Someone comments that a microwave oven can be
viewed as a conventional oven with zero convection resistance
at the surface of the food. Is this an accurate statement?

3-10C Consider two cold canned drinks, one wrapped in
a blanket and the other placed on a table in the same room.
Which drink will warm up faster?
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3-11C The bottom of a pan is made of a 4-mm-thick alumi-
num layer. In order to increase the rate of heat transfer through
the bottom of the pan, someone proposes a design for the
bottom that consists of a 3-mm-thick copper layer sandwiched
between two 2-mm-thick aluminum layers. Will the new
design conduct heat better? Explain. Assume perfect contact
between the layers.

4

2 mm
3 mm

2 mm
T

Aluminum  Copper

FIGURE P3-11C

3-12C Consider a surface of area A at which the convection
and radiation heat transfer coefficients are h.,, and h,,,,
respectively. Explain how you would determine (a) the sin-
gle equivalent heat transfer coefficient, and (b) the equivalent
thermal resistance. Assume the medium and the surrounding
surfaces are at the same temperature.

3-13C How does the thermal resistance network associated
with a single-layer plane wall differ from the one associated
with a five-layer composite wall?

3-14C Consider steady one-dimensional heat transfer through
a multilayer medium. If the rate of heat transfer Q is known,
explain how you would determine the temperature drop across
each layer.

3-15C Consider a window glass consisting of two 4-mm-
thick glass sheets pressed tightly against each other. Compare
the heat transfer rate through this window with that of one
consisting of a single 8-mm-thick glass sheet under identical
conditions.

3-16 Consider a 3-m-high, 6-m-wide, and 0.3-m-thick brick
wall whose thermal conductivity is k = 0.8 W/m-K. On a cer-
tain day, the temperatures of the inner and the outer surfaces
of the wall are measured to be 14°C and 2°C, respectively.
Determine the rate of heat loss through the wall on that day.

3-17 Consider a person standing in a room at 20°C with an
exposed surface area of 1.7 m”. The deep body temperature
of the human body is 37°C, and the thermal conductivity of
the human tissue near the skin is about 0.3 W/m-K. The body

is losing heat at a rate of 150 W by natural convection and
radiation to the surroundings. Taking the body temperature
0.5 cm beneath the skin to be 37°C, determine the skin tem-
perature of the person. Answer: 35.5°C

3-18E Consider an electrically heated brick house (k =
0.40 Btu/h-ft-°F) whose walls are 9 ft high and 1 ft thick. Two
of the walls of the house are 50 ft long and the others are 35 ft
long. The house is maintained at 70°F at all times while the
temperature of the outdoors varies. On a certain day, the tem-
perature of the inner surface of the walls is measured to be
at 55°F while the average temperature of the outer surface is
observed to remain at 45°F during the day for 10 h and at 35°F
at night for 14 h. Determine the amount of heat lost from the
house that day. Also determine the cost of that heat loss to the
home owner for an electricity price of $0.09/kWh.

T, =70°F

50 ft

35 ft

FIGURE P3-18E

3-19 A 12-cm X 18-cm circuit board houses on its surface
100 closely spaced logic chips, each dissipating 0.06 W in
an environment at 40°C. The heat transfer from the back sur-
face of the board is negligible. If the heat transfer coefficient
on the surface of the board is 10 W/m?-K, determine (a) the
heat flux on the surface of the circuit board, in W/m?; (b) the
surface temperature of the chips; and (c) the thermal resis-
tance between the surface of the circuit board and the cooling
medium, in °C/W.

3-20 Water is boiling in a 25-cm-diameter aluminum pan
(k = 237 W/m:-K) at 95°C. Heat is transferred steadily to the
boiling water in the pan through its 0.5-cm-thick flat bottom
at a rate of 800 W. If the inner surface temperature of the bot-
tom of the pan is 108°C, determine () the boiling heat transfer
coefficient on the inner surface of the pan and (b) the outer
surface temperature of the bottom of the pan.

3-21 A cylindrical resistor element on a circuit board dissi-
pates 0.15 W of power in an environment at 40°C. The resistor
is 1.2 cm long, and has a diameter of 0.3 cm. Assuming heat
to be transferred uniformly from all surfaces, determine (@) the
amount of heat this resistor dissipates during a 24-h period,;
(b) the heat flux on the surface of the resistor, in W/m?; and
(c) the surface temperature of the resistor for a combined con-
vection and radiation heat transfer coefficient of 9 W/m?-K.



3-22 Consider a power transistor that dissipates 0.2 W of
power in an environment at 30°C. The transistor is 0.4 cm
long and has a diameter of 0.5 cm. Assuming heat to be
transferred uniformly from all surfaces, determine (a) the
amount of heat this resistor dissipates during a 24-h period,
in kWh; (b) the heat flux on the surface of the transistor, in
W/m?; and (c) the surface temperature of the resistor for a
combined convection and radiation heat transfer coefficient
of 18 W/m>K.

30°C

Power
transistor
02W

| —osen ]

FIGURE P3-22

3-23 A 1.0 m X 1.5 m double-pane window consists of
two 4-mm-thick layers of glass (k = 0.78 W/m-K) that are
separated by a 5-mm air gap (k,;,, = 0.025 W/m-K). The heat
flow through the air gap is assumed to be by conduction.
The inside and outside air temperatures are 20°C and
—20°C, respectively, and the inside and outside heat trans-
fer coefficients are 40 and 20 W/m?2-K. Determine (a) the
daily rate of heat loss through the window in steady opera-
tion and (b) the temperature difference across the largest
thermal resistence.

3-24 Consider a 1.2-m-high and 2-m-wide glass window whose
thickness is 6 mm and thermal conductivity is k = 0.78 W/m-K.
Determine the steady rate of heat transfer through this glass win-
dow and the temperature of its inner surface for a day during
which the room is maintained at 24°C while the temperature of
the outdoors is —5°C. Take the convection heat transfer coef-
ficients on the inner and outer surfaces of the window to be i, =
10 W/m?K and h, = 25 W/m?>K, and disregard any heat trans-
fer by radiation.

3-25 Consider a 1.2-m-high and 2-m-wide double-pane
window consisting of two 3-mm-thick layers of glass (k =
0.78 W/m:-K) separated by a 12-mm-wide stagnant air space
(k = 0.026 W/m:-K). Determine the steady rate of heat transfer
through this double-pane window and the temperature of its
inner surface for a day during which the room is maintained
at 24°C while the temperature of the outdoors is —5°C. Take
the convection heat transfer coefficients on the inner and
outer surfaces of the window to be #; = 10 W/m>K and h, =
25 W/m?>K, and disregard any heat transfer by radiation.
Answers: 114 W, 19.2°C
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Glass

FIGURE P3-25

3-26 Repeat Prob. 3-25, assuming the space between the two
glass layers is evacuated.

3-27 Reconsider Prob. 3-25. Using EES (or other) soft-

<& ware, plot the rate of heat transfer through the win-
dow as a function of the width of air space in the range of
2 mm to 20 mm, assuming pure conduction through the air.
Discuss the results.

3-28E A wall is constructed of two layers of 0.7-in-thick
sheetrock (k = 0.10 Btu/h-ft-°F), which is a plasterboard made
of two layers of heavy paper separated by a layer of gypsum,
placed 7 in apart. The space between the sheetrocks is filled
with fiberglass insulation (k = 0.020 Btu/h-ft-°F). Determine
(a) the thermal resistance of the wall and (b) its R-value of
insulation in English units.

Fiberglass
insulation
Sheetrock f
— —

0.7in—>| |<—7in —»I |<—0.7in

FIGURE P3-28E

3-29 To defog the rear window of an automobile, a very thin
transparent heating element is attached to the inner surface of
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the window. A uniform heat flux of 1300 W/m? is provided to
the heating element for defogging a rear window with thick-
ness of 5 mm. The interior temperature of the automobile is
22°C and the convection heat transfer coefficient is 15 W/m?-K.
The outside ambient temperature is —5°C and the convection
heat transfer coefficient is 100 W/m?K. If the thermal conduc-
tivity of the window is 1.2 W/m-K, determine the inner surface
temperature of the window.

Heating element
G, = 1300 W/m?

Outside air, —5°C
h, =100 W/m>K

Rear window
k=12 W/m-K

Inside air, 22°C
h; =15 W/m*K

T |<—>|
L=5mm

FIGURE P3-29

3-30 A transparent film is to be bonded onto the top sur-
face of a solid plate inside a heated chamber. For the bond to
cure properly, a temperature of 70°C is to be maintained at
the bond, between the film and the solid plate. The transparent
film has a thickness of 1 mm and thermal conductivity of
0.05 W/m-K, while the solid plate is 13 mm thick and has a
thermal conductivity of 1.2 W/m-K. Inside the heated cham-
ber, the convection heat transfer coefficient is 70 W/m?-K. If
the bottom surface of the solid plate is maintained at 52°C,
determine the temperature inside the heated chamber and the
surface temperature of the transparent film. Assume thermal
contact resistance is negligible.

T ) ) Transparent film
Air, h =70 W/m=K /kf.= 0.05 W/m-K
Ly =1 mm /
T, =70°C
_ Solid plate
L=13mm k= 1.2 W/im-K
T, =52°C
FIGURE P3-30

3-31 To defrost ice accumulated on the outer surface of
an automobile windshield, warm air is blown over the inner
surface of the windshield. Consider an automobile wind-
shield with thickness of 5 mm and thermal conductivity of

1.4 W/m-K. The outside ambient temperature is —10°C
and the convection heat transfer coefficient is 200 W/m?2K,
while the ambient temperature inside the automobile is
25°C. Determine the value of the convection heat transfer
coefficient for the warm air blowing over the inner surface
of the windshield necessary to cause the accumulated ice to
begin melting.

lL=Smm
Outside air, —-10°C
h =200 W/m2-K Windshield
0
k=14 WmK

Inside air, 25°C

il il

FIGURE P3-31

3-32 An aluminum plate of 25 mm thick (kK = 235 W/m-K)
is attached on a copper plate with thickness of 10 mm. The
copper plate is heated electrically to dissipate a uniform heat
flux of 5300 W/m?. The upper surface of the aluminum plate
is exposed to convection heat transfer in a condition such that
the convection heat transfer coefficient is 67 W/m?-K and the
surrounding room temperature is 20°C. Other surfaces of the
two attached plates are insulated such that heat only dissi-
pates through the upper surface of the aluminum plate. If the
surface of the copper plate that is attached to the aluminum
plate has a temperature of 100°C, determine the thermal con-
tact conductance of the aluminum/copper interface.

Air, 20°C
h=67 W/m*K

Aluminum plate
k=235 W/m-K

Gelee = 5300 Wim? \L
T, =100°C

L=25mm

FIGURE P3-32

3-33 The roof of a house consists of a 15-cm-thick concrete
slab (k = 2 W/m-K) that is 15 m wide and 20 m long. The con-
vection heat transfer coefficients on the inner and outer sur-
faces of the roof are 5 and 12 W/m?K, respectively. On a clear
winter night, the ambient air is reported to be at 10°C, while
the night sky temperature is 100 K. The house and the interior
surfaces of the wall are maintained at a constant temperature
of 20°C. The emissivity of both surfaces of the concrete roof



is 0.9. Considering both radiation and convection heat trans-
fers, determine the rate of heat transfer through the roof, and
the inner surface temperature of the roof.

If the house is heated by a furnace burning natural gas with
an efficiency of 80 percent, and the price of natural gas is
$1.20/therm (1 therm = 105,500 kJ of energy content), deter-
mine the money lost through the roof that night during a 14-h
period.

v\/\/\
Tgy=100K
T, =10°C
Concrete
roof 15 cm
/ 20 m _L
15m v

T, =20°C

FIGURE P3-33

3-34 A 2-m X 1.5-m section of wall of an industrial furnace
burning natural gas is not insulated, and the temperature at
the outer surface of this section is measured to be 80°C. The
temperature of the furnace room is 30°C, and the combined
convection and radiation heat transfer coefficient at the surface
of the outer furnace is 10 W/m?-K. It is proposed to insulate
this section of the furnace wall with glass wool insulation (k =
0.038 W/m-K) in order to reduce the heat loss by 90 percent.
Assuming the outer surface temperature of the metal section
still remains at about 110°C, determine the thickness of the
insulation that needs to be used.

The furnace operates continuously and has an efficiency of
78 percent. The price of the natural gas is $1.10/therm (1 therm =
105,500 kJ of energy content). If the installation of the insulation
will cost $250 for materials and labor, determine how long
it will take for the insulation to pay for itself from the energy it
saves.

3-35 The wall of a refrigerator is constructed of fiberglass
insulation (k = 0.035 W/m-K) sandwiched between two layers
of 1-mm-thick sheet metal (k = 15.1 W/m-K). The refriger-
ated space is maintained at 3°C, and the average heat trans-
fer coefficients at the inner and outer surfaces of the wall are
4 W/m?K and 9 W/m?K, respectively. The kitchen tem-
perature averages 25°C. It is observed that condensation
occurs on the outer surfaces of the refrigerator when the
temperature of the outer surface drops to 20°C. Determine
the minimum thickness of fiberglass insulation that needs
to be used in the wall in order to avoid condensation on the
outer surfaces.
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Sheet metal

Kitchen Refrigerated
air 25°C space
3°C

Insulation

lﬂn>| L I(lﬂm
FIGURE P3-35

3-36 @ Reconsider Prob. 3-35. Using EES (or other) soft-

<& ware, investigate the effects of the thermal con-
ductivities of the insulation material and the sheet metal on the
thickness of the insulation. Let the thermal conductivity vary
from 0.02 W/m-K to 0.08 W/m-K for insulation and 10 W/m-K
to 400 W/m-K for sheet metal. Plot the thickness of the insula-
tion as the functions of the thermal conductivities of the insula-
tion and the sheet metal, and discuss the results.

3-37 Heat is to be conducted along a circuit board that has a
copper layer on one side. The circuit board is 15 cm long and
15 cm wide, and the thicknesses of the copper and epoxy layers are
0.1 mm and 1.2 mm, respectively. Disregarding heat transfer from
side surfaces, determine the percentages of heat conduction along
the copper (k = 386 W/m-K) and epoxy (k = 0.26 W/m-K) layers.
Also determine the effective thermal conductivity of the board.
Answers: 0.8 percent, 99.2 percent, and 29.9 W/m-K

3-38E A 0.03-in-thick copper plate (k = 223 Btu/h-ft-°F)
is sandwiched between two 0.15-in-thick epoxy boards (k =
0.15 Btu/h-ft-°F) that are 7 in X 9 in in size. Determine the
effective thermal conductivity of the board along its 9-in-long
side. What fraction of the heat conducted along that side is
conducted through copper?

9in
Epoxy |

boards

Copper ~
plate

< 003in

FIGURE P3-38E
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3-39 Consider a house that has a 10-m X 20-m base and
a 4-m-high wall. All four walls of the house have an R-value of
2.31 m2°C/W. The two 10-m X 4-m walls have no windows.
The third wall has five windows made of 0.5-cm-thick glass
(k= 0.78 W/m-K), 1.2 m X 1.8 m in size. The fourth wall has
the same size and number of windows, but they are double-
paned with a 1.5-cm-thick stagnant air space (k = 0.026 W/m-K)
enclosed between two 0.5-cm-thick glass layers. The thermo-
stat in the house is set at 24°C and the average temperature
outside at that location is 8°C during the seven-month-long
heating season. Disregarding any direct radiation gain or
loss through the windows and taking the heat transfer coef-
ficients at the inner and outer surfaces of the house to be 7 and
18 W/m?>K, respectively, determine the average rate of heat
transfer through each wall.

If the house is electrically heated and the price of electricity
is $0.08/kWh, determine the amount of money this household
will save per heating season by converting the single-pane
windows to double-pane windows.

3-40E Consider a house whose walls are 12 ft high and
40 ft long. Two of the walls of the house have no windows,
while each of the other two walls has four windows made
of 0.25-in-thick glass (k = 0.45 Btu/h-ft-°F), 3 ft X 5 ft in
size. The walls are certified to have an R-value of 19 (i.e., an
L/k value of 19 h-ft>°F/Btu). Disregarding any direct radiation
gain or loss through the windows and taking the heat transfer
coefficients at the inner and outer surfaces of the house to be
2 and 4 Btu/h-ft>-°F, respectively, determine the ratio of the
heat transfer through the walls with and without windows.

Attic
space

12 ft

40 ft

40 ft
Windows

FIGURE P3-40E
3-41 The outer surface of an engine is situated in a place
where oil leakage can occur. When leaked oil
comes in contact with a hot surface that has a temperature
above its autoignition temperature, the oil can ignite spontane-
ously. Consider an engine cover that is made of a stainless
steel plate with a thickness of 1 cm and a thermal conductivity
of 14 W/m-K. The inner surface of the engine cover is exposed
to hot air with a convection heat transfer coefficient of 7 W/m?-K
at 333°C. The outer surface is exposed to an environment
where the ambient air is 69°C with a convection heat transfer
coefficient of 7 W/m?-K. To prevent fire hazard in the event of
oil leak on the engine cover, a layer of thermal barrier coating
(TBC) with a thermal conductivity of 1.1 W/m-K is applied on

the engine cover outer surface. Would a TBC layer of 4 mm in
thickness be sufficient to keep the engine cover surface below
autoignition temperature of 200°C to prevent fire hazard?

/7 TBC

7

Engine cover
k=14 W/m-K

FIGURE P3-41

3-42 B - Heat dissipated from a machine in operation can

cause hot spots on its surface. Exposed hot spots
can cause thermal burns when in contact with human skin tis-
sue and are considered to be hazards at the workplace.
Consider a machine surface that is made of a 5-mm thick alu-
minum with a thermal conductivity of 237 W/m-K. During
operation the machine dissipates about 300 W/m? of heat to the
surroundings, and the inner aluminum surface is at 150°C. To
prevent machine operators from thermal burns, the machine
surface can be covered with insulation. The aluminum/
insulation interface has a thermal contact conductance of
3000 W/m?-K. What is the thickness required for the insulation
layer with a thermal conductivity of 0.06 W/m-K in order to
maintain the surface temperature at 45°C or lower?

/7 Insulation

7

Aluminum machine surface
k=237 W/m-K

\\ 150°C

FIGURE P3-42

Thermal Contact Resistance

3-43C What is thermal contact resistance? How is it related
to thermal contact conductance?

3-44C Will the thermal contact resistance be greater for
smooth or rough plain surfaces?



3-45C Explain how the thermal contact resistance can be
minimized.

3-46C A wall consists of two layers of insulation pressed
against each other. Do we need to be concerned about the ther-
mal contact resistance at the interface in a heat transfer analy-
sis or can we just ignore it?

3-47C A plate consists of two thin metal layers pressed
against each other. Do we need to be concerned about the ther-
mal contact resistance at the interface in a heat transfer analy-
sis or can we just ignore it?

3-48C Consider two surfaces pressed against each other.
Now the air at the interface is evacuated. Will the thermal con-
tact resistance at the interface increase or decrease as a result?

3-49 The thermal contact conductance at the interface of two
1-cm-thick copper plates is measured to be 18,000 W/m?-K.
Determine the thickness of the copper plate whose thermal
resistance is equal to the thermal resistance of the interface
between the plates.

3-50 Two 5-cm-diameter, 15-cm-long aluminum bars (k =
176 W/m-K) with ground surfaces are pressed against each
other with a pressure of 20 atm. The bars are enclosed in an
insulation sleeve and, thus, heat transfer from the lateral sur-
faces is negligible. If the top and bottom surfaces of the two-
bar system are maintained at temperatures of 150°C and 20°C,
respectively, determine (a) the rate of heat transfer along the
cylinders under steady conditions and (b) the temperature drop
at the interface. Answers: (a) 142.4 W, (b) 6.4°C

3-51 A 1-mm-thick copper plate (k = 386 W/m-K) is sand-
wiched between two 5-mm-thick epoxy boards (k = 0.26 W/m-K)
that are 15 cm X 20 cm in size. If the thermal contact conductance
on both sides of the copper plate is estimated to be 6000 W/m-K,
determine the error involved in the total thermal resistance of the
plate if the thermal contact conductances are ignored.

Copper

FIGURE P3-51

3-52 Two identical aluminum plates with thickness of 30 cm
are pressed against each other at an average pressure of 1 atm.
The interface, sandwiched between the two plates, is filled
with glycerin. On the left outer surface, it is subjected to a
uniform heat flux of 7800 W/m? at a constant temperature of
50°C. On the right outer surface, the temperature is maintained
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constant at 30°C. Determine the thermal contact conductance
of the glycerin at the interface, if the thermal conductivity of
the aluminum plates is 237 W/m-K. Discuss whether the value
of the thermal contact conductance is reasonable or not.

3-53 A two-layer wall is made of two metal plates, with surface
roughness of about 25 pm, pressed together at an average pres-
sure of 10 MPa. The first layer is a stainless steel plate with a
thickness of 5 mm and a thermal conductivity of 14 W/m-K. The
second layer is an aluminum plate with a thickness of 15 mm
and a thermal conductivity of 237 W/m-K. On the stainless
steel side of the wall, the surface is subjected to a heat flux of
800 W/m?. On the aluminum side of the wall, the surface expe-
riences convection heat transfer at an ambient temperature of
20°C, where the convection coefficient is 12 W/m2K. Deter-
mine the surface temperature of the stainless steel plate.

3-54 An aluminum plate and a stainless steel plate are pressed
against each other at an average pressure of 20 MPa. Both
plates have a surface roughness of 2 pm. Determine the impact
on the temperature drop at the interface if the surface rough-
ness of the plates is increased by tenfold.

3-55 A thin electronic component with a surface area of
950 cm? is cooled by having a heat sink attached on its top sur-
face. The thermal contact conductance of the interface between
the electronic component and the heat sink is 25,000 W/m?-K.
According to the manufacturer, the heat sink has combined
convection and radiation thermal resistance of 1.3 K/W. If the
electronic component dissipates 45 W of heat through the heat
sink in a surrounding temperature of 30°C, determine the tem-
perature of the electronic component. Does the contact resis-
tance at the interface of the electronic component and the heat
sink play a significant role in the heat dissipation?

3-56 Consider an engine cover that is made with two layers of
metal plates. The inner layer is stainless steel (k; = 14 W/m-K)
with a thickness of 10 mm, and the outer layer is aluminum (k, =
237 W/m-K) with a thickness of 5 mm. Both metal plates have a
surface roughness of about 23 pm. The aluminum plate is attached
on the stainless steel plate by screws that exert an average pressure
of 20 MPa at the interface. The inside stainless steel surface of the
cover is exposed to heat from the engine with a convection heat
transfer coefficient of 10 W/m>K at an ambient temperature of
150°C. The outside aluminum surface is exposed to a convection
heat transfer coefficient of 25 W/m?K at an ambient temperature
of 40°C. Determine the heat flux through the engine cover.

3-57 Inconel® refers to a class of nickel-chromium-based
superalloys that are used in high-temperature applications, such
as gas turbine blades. For further improvement in the perfor-
mance of gas turbine engine, the outer blade surface is coated
with ceramic-based thermal barrier coating (TBC). Consider a
flat Inconel® plate, with a thickness of 12 mm, is coated with a
layer of TBC, with a thickness of 300 pm, on its surface. At the
interface between the Inconel® and the TBC, the thermal con-
tact conductance is 10,500 W/m?2-K. The thermal conductivities
of the Inconel® and the TBC are 25 W/m-K and 1.5 W/m-K,
respectively. The plate is in a surrounding of hot combustion
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gasses at 1500°C, and the convection heat transfer coefficient
is 750 W/m2K. Determine the temperature at the mid-plane of
the Inconel® plate, if the outer surface temperature is 1200°C.

Generalized Thermal Resistance Networks

3-58C What are the two approaches used in the development of
the thermal resistance network for two-dimensional problems?

3-59C The thermal resistance networks can also be used
approximately for multidimensional problems. For what kind
of multidimensional problems will the thermal resistance
approach give adequate results?

3-60C When plotting the thermal resistance network asso-
ciated with a heat transfer problem, explain when two resis-
tances are in series and when they are in parallel.

3-61 A 10-cm-thick wall is to be constructed with 2.5-m-long
wood studs (k = 0.11 W/m-K) that have a cross section of
10 cm X 10 cm. At some point the builder ran out of those studs
and started using pairs of 2.5-m-long wood studs that have a cross
section of 5 cm X 10 cm nailed to eachother instead. The man-
ganese steel nails (k = 50 W/m-K) are 10 cm long and have a
diameter of 0.4 cm. A total of 50 nails are used to connect the
two studs, which are mounted to the wall such that the nails cross
the wall. The temperature difference between the inner and outer
surfaces of the wall is 8°C. Assuming the thermal contact resis-
tance between the two layers to be negligible, determine the rate
of heat transfer (a) through a solid stud and (b) through a stud pair
of equal length and width nailed to each other. (c¢) Also determine
the effective conductivity of the nailed stud pair.

3-62E Consider a 6-in X 8-in epoxy glass laminate (k =
0.10 Btu/h-ft-°F) whose thickness is 0.05 in. In order to reduce
the thermal resistance across its thickness, cylindrical cop-
per fillings (k = 223 Btu/h-ft-°F) of 0.02 in diameter are to be
planted throughout the board, with a center-to-center distance of
0.06 in. Determine the new value of the thermal resistance of
the epoxy board for heat conduction across its thickness as a
result of this modification. Answer: 0.00064 h-°F/Btu
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3-63 Clothing made of several thin layers of fabric with
trapped air in between, often called ski clothing, is commonly
used in cold climates because it is light, fashionable, and a very
effective thermal insulator. So it is no surprise that such cloth-
ing has largely replaced thick and heavy old-fashioned coats.

Consider a jacket made of five layers of 0.1-mm-thick syn-
thetic fabric (k = 0.13 W/m-K) with 1.5-mm-thick air space
(k = 0.026 W/m-K) between the layers. Assuming the inner
surface temperature of the jacket to be 28°C and the surface
area to be 1.25 m?, determine the rate of heat loss through the
jacket when the temperature of the outdoors is 0°C and the
heat transfer coefficient at the outer surface is 25 W/m?K.

What would your response be if the jacket is made of a
single layer of 0.5-mm-thick synthetic fabric? What should be
the thickness of a wool fabric (k = 0.035 W/m-K) if the person
is to achieve the same level of thermal comfort wearing a thick
wool coat instead of a five-layer ski jacket?

3-64 A 5-m-wide, 4-m-high, and 40-m-long kiln used to cure
concrete pipes is made of 20-cm-thick concrete walls and
ceiling (k = 0.9 W/m-K). The kiln is maintained at 40°C by
injecting hot steam into it. The two ends of the kiln, 4 m X 5 m
in size, are made of a 3-mm-thick sheet metal covered with
2-cm-thick Styrofoam (k = 0.033 W/m-K). The convection

T,

[

u =—4°C

40 m

20 cm
<_

5m

FIGURE P3-64

heat transfer coefficients on the inner and the outer surfaces
of the kiln are 3000 W/m>K and 25 W/m?>K, respectively.
Disregarding any heat loss through the floor, determine the
rate of heat loss from the kiln when the ambient air is at —4°C.
3-65 @ Reconsider Prob. 3-64. Using EES (or other)

<& software, investigate the effects of the thickness of
the wall and the convection heat transfer coefficient on the
outer surface of the rate of heat loss from the kiln. Let the
thickness vary from 10 cm to 30 cm and the convection heat
transfer coefficient from 5 W/m?K to 50 W/m? K. Plot the rate
of heat transfer as functions of wall thickness and the convec-
tion heat transfer coefficient, and discuss the results.

3-66 A typical section of a building wall is shown in
Fig. P3-66. This section extends in and out of the page and is
repeated in the vertical direction. The wall support members



are made of steel (k = 50 W/m-K). The support members are
8 cm () X 0.5 cm (L). The remainder of the inner wall space
is filled with insulation (k = 0.03 W/m-K) and measures 8 cm
(t53) X 60 cm (Lg). The inner wall is made of gypsum board
(k= 0.5 W/m:K) that is 1 cm thick (¢,,) and the outer wall is made of
brick (k = 1.0 W/m-K) that is 10 cm thick (z,). What is the average
heat flux through this wall when 7} = 20°C and T, = 35°C?
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FIGURE P3-66

3-67 A 4-m-high and 6-m-wide wall consists of a long 18-cm X
30-cm cross section of horizontal bricks (k = 0.72 W/m-K) sepa-
rated by 3-cm-thick plaster layers (k = 0.22 W/m-K). There are
also 2-cm-thick plaster layers on each side of the wall, and a 2-cm-
thick rigid foam (k = 0.026 W/m-K) on the inner side of the wall.
The indoor and the outdoor temperatures are 22°C and —4°C, and
the convection heat transfer coefficients on the inner and the outer
sides are h; = 10 W/m>K and h, = 20 W/m?K, respectively.
Assuming one-dimensional heat transfer and disregarding radia-
tion, determine the rate of heat transfer through the wall.
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T
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FIGURE P3-67
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3-68 @ Reconsider Prob. 3-67. Using EES (or other)
<& software, plot the rate of heat transfer through the
wall as a function of the thickness of the rigid foam in the

range of 1 cm to 10 cm. Discuss the results.

3-69 A 12-m-long and 5-m-high wall is constructed of two
layers of 1-cm-thick sheetrock (k = 0.17 W/m-K) spaced
16 cm by wood studs (k = 0.11 W/m-K) whose cross section
is 16 cm X 5 cm. The studs are placed vertically 60 cm apart,
and the space between them is filled with fiberglass insula-
tion (k = 0.034 W/m-K). The house is maintained at 20°C
and the ambient temperature outside is —9°C. Taking the
heat transfer coefficients at the inner and outer surfaces of the
house to be 8.3 and 34 W/m?>K, respectively, determine () the
thermal resistance of the wall considering a representative sec-
tion of it and () the rate of heat transfer through the wall.

3-70E A 10-in-thick, 30-ft-long, and 10-ft-high wall is to be
constructed using 9-in-long solid bricks (k = 0.40 Btu/h-ft-°F)
of cross section 7 in X 7 in, or identical size bricks with nine
square air holes (k = 0.015 Btu/h-ft-°F) that are 9 in long and
have a cross section of 1.5 in X 1.5 in. There is a 0.5-in-thick
plaster layer (k = 0.10 Btu/h-ft-°F) between two adjacent bricks
on all four sides and on both sides of the wall. The house is
maintained at 80°F and the ambient temperature outside is
30°F. Taking the heat transfer coefficients at the inner and outer
surfaces of the wall to be 1.5 and 4 Btu/h-ft>-°F, respectively,
determine the rate of heat transfer through the wall constructed
of (a) solid bricks and (b) bricks with air holes.
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3-71 Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall
whose representative cross section is as given in the figure. The
thermal conductivities of various materials used, in W/m-K, are
ky = kp = 2, kg = 8, k¢ = 20, kp = 15, and k; = 35. The
left and right surfaces of the wall are maintained at uniform
temperatures of 300°C and 100°C, respectively. Assuming heat
transfer through the wall to be one-dimensional, determine
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(a) the rate of heat transfer through the wall; (b) the temper-
ature at the point where the sections B, D, and E meet; and
(c) the temperature drop across the section F. Disregard any
contact resistances at the interfaces.

100°C

300°C
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FIGURE P3-71

3-72 In an experiment to measure convection heat trans-
fer coefficients, a very thin metal foil of very low emissivity
(e.g., highly polished copper) is attached on the surface of a
slab of material with very low thermal conductivity. The other
surface of the metal foil is exposed to convection heat transfer
by flowing fluid over the foil surface. This setup diminishes
heat conduction through the slab and radiation on the metal foil
surface, while heat convection plays the prominent role. The
slab on which the metal foil is attached to has a thickness of
25 mm and a thermal conductivity of 0.023 W/m-K. In a con-
dition where the surrounding room temperature is 20°C, the
metal foil is heated electrically with a uniform heat flux of
5000 W/m?. If the bottom surface of the slab is 20°C and the
metal foil has an emissivity of 0.02, determine (a) the convec-
tion heat transfer coefficient if air is flowing over the metal foil
and the surface temperature of the foil is 150°C; and (b) the
convection heat transfer coefficient if water is flowing over
the metal foil and the surface temperature of the foil is 30°C.

Metal foil
£=0.02
— T, = 20°C
——3 Fluid, T,, = 20°C s
e
. — Getec = 5000 W/m?
_ Slab Ty
[=25mm k =0.023 W/m-K
T~ 1,=20°C
FIGURE P3-72

Heat Conduction in Cylinders and Spheres

3-73C What is an infinitely long cylinder? When is it proper to
treat an actual cylinder as being infinitely long, and when is it not?

3-74C Can the thermal resistance concept be used for a solid
cylinder or sphere in steady operation? Explain.

3-75C Consider a short cylinder whose top and bottom sur-
faces are insulated. The cylinder is initially at a uniform tem-
perature 7; and is subjected to convection from its side surface
to a medium at temperature 7., with a heat transfer coefficient
of h. Is the heat transfer in this short cylinder one- or two-
dimensional? Explain.

3-76 Steam at 320°C flows in a stainless steel pipe (k =
15 W/m-K) whose inner and outer diameters are 5 cm and
5.5 cm, respectively. The pipe is covered with 3-cm-thick
glass wool insulation (k = 0.038 W/m-K). Heat is lost to the
surroundings at 5°C by natural convection and radiation, with
a combined natural convection and radiation heat transfer
coefficient of 15 W/m?-K. Taking the heat transfer coefficient
inside the pipe to be 80 W/m?K, determine the rate of heat loss
from the steam per unit length of the pipe. Also determine the
temperature drops across the pipe shell and the insulation.

3-77 @ Reconsider Prob. 3-76. Using EES (or other) soft-
<& ware, investigate the effect of the thickness of the in-
sulation on the rate of heat loss from the steam and the temperature
drop across the insulation layer. Let the insulation thickness vary
from 1 cm to 10 cm. Plot the rate of heat loss and the temperature
drop as a function of insulation thickness, and discuss the results.

3-78 1. A 50-m-long section of a steam pipe whose outer

<€ diameter is 10 cm passes through an open space at
15°C. The average temperature of the outer surface of the pipe
is measured to be 150°C. If the combined heat transfer coeffi-
cient on the outer surface of the pipe is 20 W/m?-K, determine
(a) the rate of heat loss from the steam pipe; (b) the annual cost
of this energy lost if steam is generated in a natural gas furnace
that has an efficiency of 75 percent and the price of natural gas
is $0.52/therm (1 therm = 105,500 kJ); and (c) the thickness of
fiberglass insulation (k = 0.035 W/m-K) needed in order to
save 90 percent of the heat lost. Assume the pipe temperature
to remain constant at 150°C.

T, =15°C

150°C

Fiberglass
insulation

FIGURE P3-78



3-79 Superheated steam at an average temperature 200°C is
transported through a steel pipe (k = 50 W/m-K, D, = 8.0 cm,
D; = 6.0 cm, and L = 20.0 m). The pipe is insulated with a
4-cm thick layer of gypsum plaster (k = 0.5 W/m-K). The
insulated pipe is placed horizontally inside a warehouse where
the average air temperature is 10°C. The steam and the air heat
transfer coefficients are estimated to be 800 and 200 W/m2K,
respectively. Calculate (a) the daily rate of heat transfer from
the superheated steam, and () the temperature on the outside
surface of the gypsum plaster insulation.

3-80E Steam exiting the turbine of a steam power plant at
100°F is to be condensed in a large condenser by cooling
water flowing through copper pipes (k = 223 Btu/h-ft-°F) of
inner diameter 0.4 in and outer diameter 0.6 in at an average
temperature of 70°F. The heat of vaporization of water at 100°F is
1037 Btu/lbm. The heat transfer coefficients are 1500 Btu/h-ft>-°F
on the steam side and 35 Btu/h-ft>°F on the water side. Deter-
mine the length of the tube required to condense steam at a rate
of 120 Ibm/h. Answer: 1150 ft

Steam, 100°F

120 Ibm/h
3 —>
Cooling
water
3 «——
Liquid water

FIGURE P3-80E

3-81E Repeat Prob. 3—-80E, assuming that a 0.01-in-thick
layer of mineral deposit (k = 0.5 Btu/h-ft-°F) has formed on
the inner surface of the pipe.
3-82 Reconsider Prob. 3—80E. Using EES (or other)
<& software, investigate the effects of the thermal
conductivity of the pipe material and the outer diameter of the
pipe on the length of the tube required. Let the thermal con-
ductivity vary from 10 Btu/h-ft-°F to 400 Btu/h-ft-°F and the
outer diameter from 0.5 in to 1.0 in. Plot the length of the tube
as functions of pipe conductivity and the outer pipe diameter,
and discuss the results.

3-83 A 2.2-mm-diameter and 10-m-long electric wire is
tightly wrapped with a 1-mm-thick plastic cover whose ther-
mal conductivity is k = 0.15 W/m-K. Electrical measurements
indicate that a current of 13 A passes through the wire and
there is a voltage drop of 8 V along the wire. If the insulated
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wire is exposed to a medium at 7,, = 30°C with a heat transfer
coefficient of & = 24 W/m?-K, determine the temperature at the
interface of the wire and the plastic cover in steady operation.
Also determine if doubling the thickness of the plastic cover
will increase or decrease this interface temperature.

Electrical
wire

| 10 m |
FIGURE P3-83

3-84 Consider a 2-m-high electric hot-water heater that has
a diameter of 40 cm and maintains the hot water at 55°C. The
tank is located in a small room whose average temperature is
27°C, and the heat transfer coefficients on the inner and outer
surfaces of the heater are 50 and 12 W/m?K, respectively. The
tank is placed in another 46-cm-diameter sheet metal tank of
negligible thickness, and the space between the two tanks is
filled with foam insulation (k = 0.03 W/m-K). The thermal
resistances of the water tank and the outer thin sheet metal shell

27°C

/-l

Foam
insulation

FIGURE P3-84

are very small and can be neglected. The price of electricity is
$0.08/kWh, and the home owner pays $280 a year for water
heating. Determine the fraction of the hot-water energy cost of
this household that is due to the heat loss from the tank.

Hot-water tank insulation kits consisting of 3-cm-thick
fiberglass insulation (k = 0.035 W/m-K) large enough to wrap
the entire tank are available in the market for about $30. If
such an insulation is installed on this water tank by the home
owner himself, how long will it take for this additional insula-
tion to pay for itself? Answers: 17.2 percent, 19 months
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3-85 Chilled water enters a thin-shelled 5-cm-diameter, 150-m-
long pipe at 7°C at a rate of 0.98 kg/s and leaves at 8°C. The
pipe is exposed to ambient air at 30°C with a heat transfer
coefficient of 9 W/m?K. If the pipe is to be insulated with
glass wool insulation (k = 0.05 W/m:-K) in order to decrease
the temperature rise of water to 0.25°C, determine the required
thickness of the insulation.

3-86E Steam at 450°F is flowing through a steel pipe
(k = 8.7 Btu/h-ft-°F) whose inner and outer diameters are
3.5 in and 4.0 in, respectively, in an environment at 55°F. The
pipe is insulated with 2-in-thick fiberglass insulation (k =
0.020 Btu/h-ft-°F). If the heat transfer coefficients on the
inside and the outside of the pipe are 30 and 5 Btu/h-ft>-°F,
respectively, determine the rate of heat loss from the steam per
foot length of the pipe. What is the error involved in neglect-
ing the thermal resistance of the steel pipe in calculations?

3-87 Hot water at an average temperature of 70°C is flowing
through a 15-m section of a cast iron pipe (k = 52 W/m-K)
whose inner and outer diameters are 4 cm and 4.6 cm, respec-
tively. The outer surface of the pipe, whose emissivity is 0.7,
is exposed to the cold air at 10°C in the basement, with a heat
transfer coefficient of 15 W/m?-K. The heat transfer coeffi-
cient at the inner surface of the pipe is 120 W/m? K. Taking
the walls of the basement to be at 10°C also, determine the rate
of heat loss from the hot water. Also, determine the average
velocity of the water in the pipe if the temperature of the water
drops by 3°C as it passes through the basement.

3-88 In a pharmaceutical plant, a copper pipe (k. =
400 W/m-K) with inner diameter of 20 mm and wall thickness
of 2.5 mm is used for carrying liquid oxygen to a storage tank.
The liquid oxygen flowing in the pipe has an average tempera-
ture of —200°C and a convection heat transfer coefficient of
120 W/m?K. The condition surrounding the pipe has an ambi-
ent air temperature of 20°C and a combined heat transfer coef-
ficient of 20 W/m?2-K. If the dew point is 10°C, determine the
thickness of the insulation (k; = 0.05 W/m-K) around the cop-
per pipe to avoid condensation on the outer surface. Assume
thermal contact resistance is negligible.
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FIGURE P3-88

3-89 €€\ Liquid hydrogen is flowing through an insulated

<& pipe (k = 23 W/m-K, D, = 3 cm, D, = 4 cm, and
L = 20 m). The pipe is situated in a chemical plant, where the
average air temperature is 40°C. The convection heat transfer
coefficients of the liquid hydrogen and the ambient air are
200 W/m?K and 50 W/m?-K, respectively. If the outer surface
temperature of the insulated pipe is 5°C, determine the thick-
ness of the pipe insulation (k = 0.6 W/m:-K) in order to keep
the liquid hydrogen flowing at an average temperature of
—300°C.

3-90 Exposure to high concentration of gaseous

e ammonia can cause lung damage. To prevent
gaseous ammonia from leaking out, ammonia is transported in
its liquid state through a pipe (k = 25 W/m-K, D; = 2.5 cm,
D, =4cm,and L = 10 m). Since liquid ammonia has a normal
boiling point of —33.3°C, the pipe needs to be properly insu-
lated to prevent the surrounding heat from causing the ammo-
nia to boil. The pipe is situated in a laboratory, where the
average ambient air temperature is 20°C. The convection heat
transfer coefficients of the liquid hydrogen and the ambient air
are 100 W/m?-K and 20 W/m?-K, respectively. Determine the
insulation thickness for the pipe using a material with k =
0.75 W/m-K to keep the liquid ammonia flowing at an average
temperature of —35°C, while maintaining the insulated pipe
outer surface temperature at 10°C.

3-91 m @ A mixture of chemicals is flowing in a pipe

TPk = 14WmK D, = 25cm, D, = 3 cm,
and L = 10 m). During the transport, the mixture undergoes an
exothermic reaction having an average temperature of 135°C
and a convection heat transfer coefficient of 150 W/m?-K. To
prevent any incident of thermal burn, the pipe needs to be
insulated. However, due to the vicinity of the pipe, there is
only enough room to fit a 2.5-cm-thick layer of insulation over
the pipe. The pipe is situated in a plant, where the average
ambient air temperature is 20°C and the convection heat transfer
coefficient is 25 W/m?K. Determine the insulation for the pipe
such that the thermal conductivity of the insulation is sufficient
to maintain the outside surface temperature at 45°C or lower.

3-92 = @ Ice slurry is being transported in a pipe (k =

"I 15WmK, D, =25cm, D, =3cm,and L =
5 m) with an inner surface temperature of 0°C. The ambient
condition surrounding the pipe has a temperature of 20°C, a
convection heat transfer coefficient of 10 W/m?-K, and a dew
point of 10°C. If the outer surface temperature of the pipe
drops below the dew point, condensation can occur on the
surface. Since this pipe is located in a vicinity of high voltage
devices, water droplets from the condensation can cause elec-
trical hazard. To prevent such incident, the pipe surface needs
to be insulated. Determine the insulation thickness for the pipe
using a material with k = 0.95 W/m-K to prevent the outer

surface temperature from dropping below the dew point.

3-93 An 8-m-internal-diameter spherical tank made of
1.5-cm-thick stainless steel (k = 15 W/m-K) is used to store



iced water at 0°C. The tank is located in a room whose tem-
perature is 25°C. The walls of the room are also at 25°C.
The outer surface of the tank is black (emissivity € = 1), and
heat transfer between the outer surface of the tank and the
surroundings is by natural convection and radiation. The con-
vection heat transfer coefficients at the inner and the outer
surfaces of the tank are 80 W/m?-K and 10 W/m?K, respec-
tively. Determine (a) the rate of heat transfer to the iced water
in the tank and (b) the amount of ice at 0°C that melts during
a 24-h period. The heat of fusion of water at atmospheric pres-
sure is hy = 333.7 kl/kg.
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3-94 The boiling temperature of nitrogen at atmospheric
pressure at sea level (1 atm pressure) is —196°C. Therefore,
nitrogen is commonly used in low-temperature scientific stud-
ies since the temperature of liquid nitrogen in a tank open to the
atmosphere will remain constant at —196°C until it is depleted.
Any heat transfer to the tank will result in the evaporation
of some liquid nitrogen, which has a heat of vaporization of
198 kJ/kg and a density of 810 kg/m?3 at 1 atm.

Consider a 3-m-diameter spherical tank that is initially filled
with liquid nitrogen at 1 atm and —196°C. The tank is exposed
to ambient air at 15°C, with a combined convection and radiation
heat transfer coefficient of 35 W/m?> K. The temperature of the

N, vapor
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Liquid N,
-196°C

Insulation

FIGURE P3-94
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thin-shelled spherical tank is observed to be almost the same as the
temperature of the nitrogen inside. Determine the rate of evapora-
tion of the liquid nitrogen in the tank as a result of the heat transfer
from the ambient air if the tank is (a) not insulated, (b) insulated
with 5-cm-thick fiberglass insulation (k = 0.035 W/m-K), and
(c) insulated with 2-cm-thick superinsulation which has an effec-
tive thermal conductivity of 0.00005 W/m-K.

3-95 Repeat Prob. 3-94 for liquid oxygen, which has a
boiling temperature of —183°C, a heat of vaporization of
213 kJ/kg, and a density of 1140 kg/m? at 1 atm pressure.

Critical Radius of Insulation

3-96C What is the critical radius of insulation? How is it
defined for a cylindrical layer?

3-97C Consider an insulated pipe exposed to the atmosphere.
Will the critical radius of insulation be greater on calm days or
on windy days? Why?

3-98C A pipe is insulated to reduce the heat loss from it.
However, measurements indicate that the rate of heat loss has
increased instead of decreasing. Can the measurements be right?

3-99C Consider a pipe at a constant temperature whose
radius is greater than the critical radius of insulation. Someone
claims that the rate of heat loss from the pipe has increased
when some insulation is added to the pipe. Is this claim valid?

3-100C A pipe is insulated such that the outer radius of the
insulation is less than the critical radius. Now the insulation is
taken off. Will the rate of heat transfer from the pipe increase
or decrease for the same pipe surface temperature?

3-101E A 0.083-in-diameter electrical wire at 90°F is covered
by 0.02-in-thick plastic insulation (k = 0.075 Btu/h-ft-°F). The
wire is exposed to a medium at 50°F, with a combined convec-
tion and radiation heat transfer coefficient of 2.5 Btu/h-ft2-°F.
Determine if the plastic insulation on the wire will increase or
decrease heat transfer from the wire. Answer: It helps

3-102E Repeat Prob. 3—101E, assuming a thermal contact
resistance of 0.001 h-ft2-°F/Btu at the interface of the wire and
the insulation.

3-103 A 5-mm-diameter spherical ball at 50°C is covered by
a 1-mm-thick plastic insulation (k = 0.13 W/m-K). The ball is
exposed to a medium at 15°C, with a combined convection and
radiation heat transfer coefficient of 20 W/m?2-K. Determine if
the plastic insulation on the ball will help or hurt heat transfer
from the ball.

Plastic
insulation

FIGURE P3-103
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3-104 Reconsider Prob. 3-103. Using EES (or other)
<& software, plot the rate of heat transfer from the
ball as a function of the plastic insulation thickness in the

range of 0.5 mm to 20 mm. Discuss the results.

Heat Transfer from Finned Surfaces

3-105C Hot air is to be cooled as it is forced to flow through
the tubes exposed to atmospheric air. Fins are to be added in
order to enhance heat transfer. Would you recommend attaching
the fins inside or outside the tubes? Why? When would you rec-
ommend attaching fins both inside and outside the tubes?

3-106C What is the reason for the widespread use of fins on
surfaces?

3-107C What is the difference between the fin effectiveness
and the fin efficiency?

3-108C The fins attached to a surface are determined to have
an effectiveness of 0.9. Do you think the rate of heat transfer
from the surface has increased or decreased as a result of the
addition of these fins?

3-109C Explain how the fins enhance heat transfer from a
surface. Also, explain how the addition of fins may actually
decrease heat transfer from a surface.

3-110C How does the overall effectiveness of a finned sur-
face differ from the effectiveness of a single fin?

3-111C Hot water is to be cooled as it flows through the tubes
exposed to atmospheric air. Fins are to be attached in order to
enhance heat transfer. Would you recommend attaching the
fins inside or outside the tubes? Why?

3-112C Consider two finned surfaces that are identical except
that the fins on the first surface are formed by casting or extru-
sion, whereas they are attached to the second surface afterwards
by welding or tight fitting. For which case do you think the fins
will provide greater enhancement in heat transfer? Explain.

3-113C The heat transfer surface area of a fin is equal to
the sum of all surfaces of the fin exposed to the surrounding
medium, including the surface area of the fin tip. Under what
conditions can we neglect heat transfer from the fin tip?

3-114C Does the (a) efficiency and (b) effectiveness of a fin
increase or decrease as the fin length is increased?

3-115C Two pin fins are identical, except that the diameter of
one of them is twice the diameter of the other. For which fin is
the (a) fin effectiveness and (b) fin efficiency higher? Explain.

3-116C Two plate fins of constant rectangular cross section
are identical, except that the thickness of one of them is twice
the thickness of the other. For which fin is the (a) fin effective-
ness and (b) fin efficiency higher? Explain.

3-117C Two finned surfaces are identical, except that the
convection heat transfer coefficient of one of them is twice that
of the other. For which finned surface is the (a) fin effective-
ness and (b) fin efficiency higher? Explain.

3-118 Obtain a relation for the fin efficiency for a fin of
constant cross-sectional area A, perimeter p, length L, and
thermal conductivity k exposed to convection to a medium at
T.. with a heat transfer coefficient . Assume the fins are suf-
ficiently long so that the temperature of the fin at the tip is
nearly 7. Take the temperature of the fin at the base to be
T, and neglect heat transfer from the fin tips. Simplify the
relation for (a) a circular fin of diameter D and (b) rectangular
fins of thickness .

3-119 A 4-mm-diameter and 10-cm-long aluminum fin
(k = 237 W/m-K) is attached to a surface. If the heat transfer
coefficient is 12 W/m?K, determine the percent error in the
rate of heat transfer from the fin when the infinitely long fin
assumption is used instead of the adiabatic fin tip assumption.

h, T,
Tb( k ID=4mm )
L=10cm

FIGURE P3-119

3-120 Consider a very long rectangular fin attached to a
flat surface such that the temperature at the end of the fin
is essentially that of the surrounding air, i.e. 20°C. Its width
is 5.0 cm; thickness is 1.0 mm; thermal conductivity is
200 W/m-K; and base temperature is 40°C. The heat transfer coef-
ficient is 20 W/m>K. Estimate the fin temperature at a distance of
5.0 cm from the base and the rate of heat loss from the entire fin.

3-121 A turbine blade made of a metal alloy (k =
17 W/m-K) has a length of 5.3 cm, a perimeter of 11 cm, and a
cross-sectional area of 5.13 cm?. The turbine blade is exposed
to hot gas from the combustion chamber at 973°C with a con-
vection heat transfer coefficient of 538 W/m?K. The base of
the turbine blade maintains a constant temperature of 450°C
and the tip is adiabatic. Determine the heat transfer rate to the
turbine blade and temperature at the tip.

=

3

Hot gas, 973°C > >
_ 2 —>
h =538 W/m~-K > >

N\— Turbine blade
k=17 Wm-K
p=1lcm,L=53cm
A.=5.13 cm?

T, = 450°C

FIGURE P3-121



3-122E Consider a stainless steel spoon (k = 8.7 Btu/h-ft-°F)
partially immersed in boiling water at 200°F in a kitchen at
75°F. The handle of the spoon has a cross section of 0.08 in X
0.5 in, and extends 7 in in the air from the free surface of the
water. If the heat transfer coefficient at the exposed surfaces of
the spoon handle is 3 Btu/h-ft>-°F, determine the temperature
difference across the exposed surface of the spoon handle. State
your assumptions. Answer: 124.6°F

Spoon

Boiling
water
200°F

FIGURE P3-122E

3-123E @ Reconsider Prob. 3—122E. Using EES (or other)

<& software, investigate the effects of the thermal
conductivity of the spoon material and the length of its exten-
sion in the air on the temperature difference across the exposed
surface of the spoon handle. Let the thermal conductivity vary
from 5 Btu/h-ft-°F to 225 Btu/h-ft-°F and the length from 5 in to
12 in. Plot the temperature difference as the functions of thermal
conductivity and length, and discuss the results.

3-124 A DC motor delivers mechanical power to a rotating
stainless steel shaft (k = 15.1 W/m-K) with a length of 25 cm
and a diameter of 25 mm. In a surrounding with ambient air
temperature of 20°C and convection heat transfer coefficient of
25 W/m?-K, the surface area of the motor housing that is exposed
to the ambient air is 0.075 m2. The motor uses 300 W of electri-
cal power and delivers 55% of it as mechanical power to rotate
the stainless steel shaft. If the tip of the stainless steel shaft has
a temperature of 22°C, determine the surface temperature of the
motor housing. Assume the base temperature of the shaft is equal
to the surface temperature of the motor housing.

, 7, Air, 20°C

h=25W/m*K

. T, =22°C
0, L
p /
- (

Stainless steel shaft
k=15.1 Wm-K
D =25mm, L=25cm

On

A, =0.075 m?

DC motor

W,

elec

FIGURE P3-124
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3-125 A plane wall with surface temperature of 350°C is
attached with straight rectangular fins (k = 235 W/m-K). The
fins are exposed to an ambient air condition of 25°C and the
convection heat transfer coefficient is 154 W/m?2 K. Each fin
has a length of 50 mm, a base of 5 mm thick and a width of
100 mm. Determine the efficiency, heat transfer rate, and effec-
tiveness of each fin, using (a) Table 3-3 and (b) Figure 3-43.

m

>
T~

Air, 25°C
h =154 W/m>K

k=235 W/m-K

«——1=50 mm—>\4/
<1

X

FIGURE P3-125

3-126 Two 3-m-long and 0.4-cm-thick cast iron (k =
52 W/m-K) steam pipes of outer diameter 10 cm are connected
to each other through two 1-cm-thick flanges of outer diameter
20 cm. The steam flows inside the pipe at an average tempera-
ture of 200°C with a heat transfer coefficient of 180 W/m?-K.
The outer surface of the pipe is exposed to an ambient at 12°C,
with a heat transfer coefficient of 25 W/m?-K. (a) Disregarding
the flanges, determine the average outer surface temperature of
the pipe. (b) Using this temperature for the base of the flange and
treating the flanges as the fins, determine the fin efficiency and
the rate of heat transfer from the flanges. (¢) What length of pipe
is the flange section equivalent to for heat transfer purposes?

10 cm

-

S~ s

‘ B ‘

| 20 cm |

Steam
200°C

FIGURE P3-126

3-127 Pipes with inner and outer diameters of 50 mm and
60 mm, respectively, are used for transporting superheated vapor
in a manufacturing plant. The pipes with thermal conductivity
of 16 W/m-K are connected together by flanges with combined
thickness of 20 mm and outer diameter of 90 mm. Air condition
surrounding the pipes has a temperature of 25°C and a convection
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heat transfer coefficient of 10 W/m?K. If the inner surface tem-
perature of the pipe is maintained at a constant temperature of
150°C, determine the temperature at the base of the flange and
the rate of heat loss through the flange.

Air, 25°C
h =10 W/m%K

Dy =90 mm | D; =

FIGURE P3-127

3-128 Steam in a heating system flows through tubes whose
outer diameter is 5 cm and whose walls are maintained at a
temperature of 180°C. Circular aluminum alloy 2024-T6 fins
(k = 186 W/m-K) of outer diameter 6 cm and constant thick-
ness 1 mm are attached to the tube. The space between the fins
is 3 mm, and thus there are 250 fins per meter length of the
tube. Heat is transferred to the surrounding air at 7., = 25°C,
with a heat transfer coefficient of 40 W/m? K. Determine the
increase in heat transfer from the tube per meter of its length as
a result of adding fins. Answer: 2636 W

2.5cm
3cm

a >

T,.=25°C

180°C
1 mm

3 mm

ke |

FIGURE P3-128

3-129 A 0.3-cm-thick, 12-cm-high, and 18-cm-long circuit
board houses 80 closely spaced logic chips on one side, each
dissipating 0.04 W. The board is impregnated with copper fill-
ings and has an effective thermal conductivity of 30 W/m-K.
All the heat generated in the chips is conducted across the cir-
cuit board and is dissipated from the back side of the board to a
medium at 40°C, with a heat transfer coefficient of 40 W/m?2-K.
(a) Determine the temperatures on the two sides of the cir-
cuit board. (b) Now a 0.2-cm-thick, 12-cm-high, and 18-cm-
long aluminum plate (k = 237 W/m-K) with 864 2-cm-long
aluminum pin fins of diameter 0.25 cm is attached to the back
side of the circuit board with a 0.02-cm-thick epoxy adhesive

(k = 1.8 W/m:-K). Determine the new temperatures on the two
sides of the circuit board.

3-130 A hot surface at 100°C is to be cooled by attaching
3-cm-long, 0.25-cm-diameter aluminum pin fins (kK =
237 W/m-K) to it, with a center-to-center distance of 0.6 cm. The
temperature of the surrounding medium is 30°C, and the heat
transfer coefficient on the surfaces is 35 W/m?K. Determine the
rate of heat transfer from the surface for a 1-m X 1-m section
of the plate. Also determine the overall effectiveness of the fins.

FIGURE P3-130

3-131 Reconsider Prob. 3—130. Using EES (or other)
<& software, investigate the effect of the center-to-
center distance of the fins on the rate of heat transfer from the
surface and the overall effectiveness of the fins. Let the center-
to-center distance vary from 0.4 cm to 2.0 cm. Plot the rate of
heat transfer and the overall effectiveness as a function of the
center-to-center distance, and discuss the results.

3-132 Circular cooling fins of diameter D = 1 mm and length
L = 25.4 mm, made of copper (k = 400 W/m-K), are used
to enhance heat transfer from a surface that is maintained at
temperature 7,; = 132°C. Each rod has one end attached to
this surface (x = 0), while the opposite end (x = L) is joined
to a second surface, which is maintained at 7, = 0°C. The air
flowing between the surfaces and the rods is also at 7., = 0°C,
and the convection coefficient is 7 = 100 W/m?-K.

(a) Express the function 6(x) = T(x) — T, along a fin, and

calculate the temperature at x = L/2.

FIGURE P3-132



(b) Determine the rate of heat transferred from the hot sur-
face through each fin and the fin effectiveness. Is the
use of fins justified? Why?

(¢) What is the total rate of heat transfer from a 10-cm by
10-cm section of the wall, which has 625 uniformly dis-
tributed fins? Assume the same convection coefficient
for the fin and for the unfinned wall surface.

3-133 A 40-W power transistor is to be cooled by attaching
it to one of the commercially available heat sinks shown in
Table 3-6. Select a heat sink that will allow the case temperature
of the transistor not to exceed 90°C in the ambient air at 20°C.

T, = 20°C

90°C

I |

FIGURE P3-133

3-134 A 25-W power transistor is to be cooled by attaching
it to one of the commercially available heat sinks shown in
Table 3—6. Select a heat sink that will allow the case temperature
of the transistor not to exceed 55°C in the ambient air at 18°C.

Bioheat Transfer Equation

3-135 The human body is adaptable to the extreme climatic
conditions and keep the body core and skin temperature within
the comfort zone by regulating the metabolic heat generation
rate. For example, in extreme cold conditions, human body
will maintain the body temperature by increasing metabolic
heat generation rate while in very hot environment, human
body will sweat and release heat generated within the body. To
understand this effect of ambient conditions on human body
repeat Example 3—14 in the text and consider a case, where
climatic conditions change from —20°C and 20°C. For this
change in ambient air temperature calculate the metabolic heat
generation rate required within the different human body types
with the skin/fat thickness of 0.0075, 0.005 and 0.0025 m so as
to maintain the skin temperature at 34°C. Assume that inspite
of the change in ambient air temperature the perspiration rate
remains constant at 0.0005 s~'. Plot a graph of metabolic heat
generation rate against the ambient temperature with a tem-
perature increment of 5°C.

3-136 Consider the conditions of Example 3—14 in the text
for two different environments of air and water with convec-
tive heat transfer coefficient of 2 W/m?K and 20 W/m?>K,
respectively. The ambient (7,,) and surrounding temperature
(T, for both air and water may be assumed to be 15°C. What
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would be the metabolic heat generation rate required to main-
tain the skin temperature at 34°C?

3-137 Consider the conditions of Example 3—14 in the text
except that the ambient air is at a temperature of 30°C. A person
with skin/fat layer thickness of 0.003 m is doing vigorous exer-
cise which raises the metabolic heat generation rate from 700 to
7000 W/m? over a period of time. Calculate the perspiration rate
required in lit/s so as to maintain the skin temperature at 34°C.
Use the perspiration properties to be the same as that of liquid
water at the average surface skin temperature of 35.5°C.

3-138 We are interested in steady state heat transfer analy-
sis from a human forearm subjected to certain environmental
conditions. For this purpose consider the forearm to be made up
of muscle with thickness r,, with a skin/fat layer of thickness
over it, as shown in the Figure P3—138. For simplicity approxi-
mate the forearm as a one-dimensional cylinder and ignore the
presence of bones. The metabolic heat generation rate (¢,,) and
perfusion rate (p) are both constant throughout the muscle. The
blood density and specific heat are p, and c;, respectively. The
core body temperate (7,) and the arterial blood temperature
(T,) are both assumed to be the same and constant. The mus-
cle and the skin/fat layer thermal conductivities are k,, and k.,
respectively. The skin has an emissivity of &€ and the forearm
is subjected to an air environment with a temperature of 7.,
a convection heat transfer coefficient of #,,, and a radiation
heat transfer coefficient of /4. Assuming blood properties and
thermal conductivities are all constant, (@) write the bioheat
transfer equation in radial coordinates. The boundary condi-
tions for the forearm are specified constant temperature at the
outer surface of the muscle (7;) and temperature symmetry at
the centerline of the forearm. (b) Solve the differential equation
and apply the boundary conditions to develop an expression
for the temperature distribution in the forearm. (¢) Determine
the temperature at the outer surface of the muscle (7;) and the
maximum temperature in the forearm (7,,,,) for the following
conditions:

r, = 0.05m, 1, = 0.003 m,é, = 700 W/m?, p = 0.0005 1/s,
T, = 37°C, T = T,y = 24°C, & = 0.95,

p, = 1000 kg/m®, ¢, = 3600 J/kgK, k, = 0.5 W/mK,
k= 0.3 W/mK, hegny = 2 W/m2K, hyg = 5.9 W/m2K

Skin/Fat
Ly

FIGURE P3-138

Heat Transfer in Common Configurations

3-139C What is a conduction shape factor? How is it related
to the thermal resistance?

3-140C What is the value of conduction shape factors in
engineering?
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3-141 A 20-m-long and 8-cm-diameter hot-water pipe of a
district heating system is buried in the soil 80 cm below the
ground surface. The outer surface temperature of the pipe is
60°C. Taking the surface temperature of the earth to be 5°C
and the thermal conductivity of the soil at that location to be
0.9 W/m:-K, determine the rate of heat loss from the pipe.

2

5°C

80cm
. 60°C
'

I‘D=80m )

! 20m !

FIGURE P3-141

3-142 A thin-walled cylindrical container is placed horizon-
tally on a snow covered ground. The container is 1.5 m long
and has a diameter of 10 cm. The container contains chemicals
undergoing exothermic reaction and generating heat at 900 W/m?.
After a severe winter storm, the container is covered with ap-
proximately 30 cm of fresh snow. At the surface, the snow has
a temperature of —5°C. Determine the surface temperature of
the container. Discuss whether or not the snow around the con-
tainer will begin to melt.

3-143 Hot water at an average temperature of 53°C and an
average velocity of 0.4 m/s is flowing through a 5-m section
of a thin-walled hot-water pipe that has an outer diameter of
2.5 cm. The pipe passes through the center of a 14-cm-thick
wall filled with fiberglass insulation (k = 0.035 W/m-K). If the
surfaces of the wall are at 18°C, determine (a) the rate of heat
transfer from the pipe to the air in the rooms and (b) the tem-
perature drop of the hot water as it flows through this 5-m-long
section of the wall. Answers: 19.6 W, 0.024°C

17T~ Hot water
‘c‘;“ : {5m
B s
S em |
53°C(_) 1F— Wall

REENN ]

FIGURE P3-143

3-144 Hot- and cold-water pipes 8 m long run parallel to
each other in a thick concrete layer. The diameters of both

pipes are 5 cm, and the distance between the centerlines of
the pipes is 40 cm. The surface temperatures of the hot and
cold pipes are 60°C and 15°C, respectively. Taking the thermal
conductivity of the concrete to be k = 0.75 W/m-K, determine
the rate of heat transfer between the pipes. Answer: 306 W

3-145 Reconsider Prob. 3—-144. Using EES (or other)

<& software, plot the rate of heat transfer between
the pipes as a function of the distance between the centerlines
of the pipes in the range of 10 cm to 1.0 m. Discuss the results.

3-146E A row of 3-ft-long and 1-in-diameter used uranium
fuel rods that are still radioactive are buried in the ground par-
allel to each other with a center-to-center distance of 8 in at a
depth of 15 ft from the ground surface at a location where the
thermal conductivity of the soil is 0.6 Btu/h-ft-°F. If the surface
temperature of the rods and the ground are 350°F and 60°F,
respectively, determine the rate of heat transfer from the fuel
rods to the atmosphere through the soil.

T 350°F

9.
I<8in+8in->|<8in

FIGURE P3-146E

3-147 Hot water at an average temperature of 80°C and an
average velocity of 1.5 m/s is flowing through a 25-m section
of a pipe that has an outer diameter of 5 cm. The pipe extends
2 m in the ambient air above the ground, dips into the ground
(k = 1.5 W/m:-K) vertically for 3 m, and continues horizontally
at this depth for 20 m more before it enters the next building.
The first section of the pipe is exposed to the ambient air at
8°C, with a heat transfer coefficient of 22 W/m?2-K. If the sur-
face of the ground is covered with snow at 0°C, determine
(a) the total rate of heat loss from the hot water and (b) the
temperature drop of the hot water as it flows through this
25-m-long section of the pipe.

Hot water pipe

FIGURE P3-147

3-148 Hot water at an average temperature of 85°C passes
through a row of eight parallel pipes that are 4 m long and



have an outer diameter of 3 cm, located vertically in the mid-
dle of a concrete wall (k = 0.75 W/m-K) that is 4 m high, 8 m
long, and 15 cm thick. If the surfaces of the concrete walls are
exposed to a medium at 32°C, with a heat transfer coefficient
of 12 W/m2K, determine the rate of heat loss from the hot
water and the surface temperature of the wall.

3-149 Two flow passages with different cross-sectional shapes,
one circular another square, are each centered in a square solid
bar of the same dimension and thermal conductivity. Both con-
figurations have the same length, 7, and 7. Determine which
configuration has the higher rate of heat transfer through the
square solid bar for (a) a = 1.2b and (b) a = 2b.

FIGURE P3-149

3-150 Consider a tube for transporting steam that is not
centered properly in a cylindrical insulation material (k =
0.73 W/m-K). The tube diameter is D; = 20 cm and the insula-
tion diameter is D, = 40 cm. The distance between the center
of the tube and the center of the insulation is z = 5 mm. If the
surface of the tube maintains a temperature of 100°C and the
outer surface temperature of the insulation is constant at 30°C,
determine the rate of heat transfer per unit length of the tube
through the insulation.

FIGURE P3-150

3-151 Consider two tubes of the same diameter (D, = 20 cm),
length, and surface temperature (7). One tube is properly cen-
tered in a cylindrical insulation of D, = 40 cm; the other tube is
placed in eccentric with the same diameter cylindrical insulation,
where the distance between the center of the tube and the center
of the insulation is z = 5 mm. If both configurations have the
same outer surface temperature 7, determine which configura-
tion has the higher rate of heat transfer through the insulation.
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FIGURE P3-151

3-152 Consider a 25-m-long thick-walled concrete duct (k =
0.75 W/m-K) of square cross section. The outer dimensions
of the duct are 20 cm X 20 cm, and the thickness of the duct
wall is 2 cm. If the inner and outer surfaces of the duct are at
100°C and 30°C, respectively, determine the rate of heat trans-
fer through the walls of the duct. Answer: 47.1 kW

FIGURE P3-152

3-153 Consider a house with a flat roof whose outer dimen-
sions are 12 m X 12 m. The outer walls of the house are 6 m
high. The walls and the roof of the house are made of 20-cm-
thick concrete (k = 0.75 W/m-K). The temperatures of the
inner and outer surfaces of the house are 15°C and 3°C,
respectively. Accounting for the effects of the edges of adjoin-
ing surfaces, determine the rate of heat loss from the house
through its walls and the roof. What is the error involved in
ignoring the effects of the edges and corners and treating the
roof as a 12 m X 12 m surface and the walls as 6 m X 12 m
surfaces for simplicity?

3-154 A 3-m-diameter spherical tank containing some radio-
active material is buried in the ground (k = 1.4 W/m-K). The
distance between the top surface of the tank and the ground
surface is 4 m. If the surface temperatures of the tank and the
ground are 140°C and 15°C, respectively, determine the rate of
heat transfer from the tank.

3-155 Radioactive material, stored in a spherical vessel of
diameter D = 3.5 m, is buried underground at a depth of 10 m.
The radioactive material inside the vessel releases heat at a rate
of 1000 W/m?3. The surface temperature of the vessel is con-
stant at 480°C and the thermal conductivity of the ground is
2 W/m-K. When it snows in the winter, will the area directly
above the spherical vessel be covered with snow?
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Special Topics:
Heat Transfer through the Walls and Roofs

3-156C What is the R-value of a wall? How does it differ
from the unit thermal resistance of the wall? How is it related
to the U-factor?

3-157C What is effective emissivity for a plane-parallel air
space? How is it determined? How is radiation heat transfer
through the air space determined when the effective emissivity
is known?

3-158C The unit thermal resistances (R-values) of both
40-mm and 90-mm vertical air spaces are given in Table 3-9
to be 0.22 m®C/W, which implies that more than doubling
the thickness of air space in a wall has no effect on heat transfer
through the wall. Do you think this is a typing error? Explain.

3-159C What is a radiant barrier? What kind of materials are
suitable for use as radiant barriers? Is it worthwhile to use radi-
ant barriers in the attics of homes?

3-160C Consider a house whose attic space is ventilated
effectively so that the air temperature in the attic is the same as
the ambient air temperature at all times. Will the roof still have
any effect on heat transfer through the ceiling? Explain.

3-161 Determine the summer R-value and the U-factor of
a wood frame wall that is built around 38-mm X 140-mm
wood studs with a center-to-center distance of 400 mm. The
140-mm-wide cavity between the studs is filled with mineral
fiber batt insulation. The inside is finished with 13-mm gypsum
wallboard and the outside with 13-mm wood fiberboard and
13-mm X 200-mm wood bevel lapped siding. The insulated
cavity constitutes 80 percent of the heat transmission area,
while the studs, headers, plates, and sills constitute 20 percent.
Answers: 3.213 m2-K/W, 0.311 W/m2.K

3-162 The 13-mm-thick wood fiberboard sheathing of the
wood stud wall in Prob. 3-161 is replaced by a 25-mm-thick
rigid foam insulation. Determine the percent increase in the
R-value of the wall as a result.

(\1

FIGURE P3-162

3-163 The overall heat transfer coefficient (the U-value) of a
wall under winter design conditions is U = 2.25 W/m?K. Now
a layer of 100-mm face brick is added to the outside, leaving
a 20-mm air space between the wall and the bricks. Determine
the new U-value of the wall. Also, determine the rate of heat
transfer through a 3-m-high, 7-m-long section of the wall after
modification when the indoor and outdoor temperatures are
22°C and —25°C, respectively.

N

FIGURE P3-163

3-164 Consider a flat ceiling that is built around 38-mm X
90-mm wood studs with a center-to-center distance of 400 mm.
The lower part of the ceiling is finished with 13-mm gypsum
wallboard, while the upper part consists of a wood subfloor
(R = 0.166 m>°C/W), a 13-mm plywood, a layer of felt
(R = 0.011 m*>°C/W), and linoleum (R = 0.009 m?-°C/W). Both
sides of the ceiling are exposed to still air. The air space consti-
tutes 82 percent of the heat transmission area, while the studs
and headers constitute 18 percent. Determine the winter R-value
and the U-factor of the ceiling assuming the 90-mm-wide air
space between the studs (@) does not have any reflective surface,
(b) has a reflective surface with & = 0.05 on one side, and (c) has
reflective surfaces with € = 0.05 on both sides. Assume a mean
temperature of 10°C and a temperature difference of 5.6°C for
the air space.

Existing

wall
Face

brick

<
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FIGURE P3-164




3-165 Determine the winter R-value and the U-factor
of a masonry cavity wall that consists of 100-mm com-
mon bricks, a 90-mm air space, 100-mm concrete blocks
made of lightweight aggregate, 20-mm air space, and 13-mm
gypsum wallboard separated from the concrete block by
20-mm-thick (1-in X 3-in nominal) vertical furring whose
center-to-center distance is 400 mm. Neither side of the
two air spaces is coated with any reflective films. When
determining the R-value of the air spaces, the temperature
difference across them can be taken to be 16.7°C with a
mean air temperature of 10°C. The air space constitutes
84 percent of the heat transmission area, while the verti-
cal furring and similar structures constitute 16 percent.
Answers: 1.02 m2.°C/W, 0.978 W/m2.K

FIGURE P3-165

3-166 Repeat Prob. 3—165 assuming one side of both air
spaces is coated with a reflective film of & = 0.05.

3-167 Determine the winter R-value and the U-factor of a
masonry wall that consists of the following layers: 100-mm
face bricks, 100-mm common bricks, 25-mm urethane rigid
foam insulation, and 13-mm gypsum wallboard.

Answers: 1.404 m2.°C/W, 0.712 W/m2.K

3-168 The overall heat transfer coefficient (the U-value) of
a wall under winter design conditions is U = 1.40 W/m?-K.
Determine the U-value of the wall under summer design
conditions.

3-169E Determine the winter R-value and the U-factor of
a masonry cavity wall that is built around 4-in-thick concrete
blocks made of lightweight aggregate. The outside is finished
with 4-in face brick with 3-in cement mortar between the
bricks and concrete blocks. The inside finish consists of 3-in
gypsum wallboard separated from the concrete block by
3_in-thick (1-in by 3-in nominal) vertical furring whose cen-
ter-to-center distance is 16 in. Neither side of the 3-in-thick
air space between the concrete block and the gypsum board
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is coated with any reflective film. When determining the
R-value of the air space, the temperature difference across it can
be taken to be 30°F with a mean air temperature of 50°F. The air
space constitutes 80 percent of the heat transmission area, while
the vertical furring and similar structures constitute 20 percent.

AN 2

1

FIGURE P3-169E

3-170 Determine the summer and winter R-values, in
m?-°C/W, of a masonry wall that consists of 100-mm face
bricks, 13-mm of cement mortar, 100-mm lightweight con-
crete block, 40-mm air space, and 20-mm plasterboard.
Answers: 0.809 and 0.795 m2-°C/W

3-171E The overall heat transfer coefficient of a wall is determined
to be U = 0.075 Btu/h-{t>-F under the conditions of still air inside
and winds of 7.5 mph outside. What will the U-factor be when the
wind velocity outside is doubled? Answer: 0.0755 Btu/h-ft*°F

3-172 Two homes are identical, except that the walls of one
house consist of 200-mm lightweight concrete blocks, 20-mm
air space, and 20-mm plasterboard, while the walls of the
other house involve the standard R-2.4 m?-°C/W frame wall
construction. Which house do you think is more energy efficient?

3-173 Determine the R-value of a ceiling that consists of a
layer of 19-mm acoustical tiles whose top surface is covered
with a highly reflective aluminum foil for winter conditions.
Assume still air below and above the tiles.

Highly
reflective
foil

<L

Acoustical
tiles

FIGURE P3-173
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Review Prohlems

3-174 Consider two identical people each generating 60 W
of metabolic heat steadily while doing sedentary work, and
dissipating it by convection and perspiration. The first person
is wearing clothes made of I-mm-thick leather (k =
0.159 W/m-K) that covers half of the body while the second
one is wearing clothes made of 1-mm-thick synthetic fabric
(k = 0.13 W/m:K) that covers the body completely. The
ambient air is at 30°C, the heat transfer coefficient at the outer
surface is 15 W/m?:K, and the inner surface temperature of the
clothes can be taken to be 32°C. Treating the body of each per-
son as a 25-cm-diameter, 1.7-m-long cylinder, determine the
fractions of heat lost from each person by perspiration.

3-175 Cold conditioned air at 12°C is flowing inside a
1.5-cm-thick square aluminum (k = 237 W/m-K) duct of
inner cross section 22 cm X 22 cm at a mass flow rate of
0.8 kg/s. The duct is exposed to air at 33°C with a combined
convection-radiation heat transfer coefficient of 13 W/m?K.
The convection heat transfer coefficient at the inner surface is
75 W/m2K. If the air temperature in the duct should not increase
by more than 1°C determine the maximum length of the duct.

3-176 Hot water is flowing at an average velocity of 1.5 m/s
through a cast iron pipe (k = 52 W/m-K) whose inner and outer
diameters are 3 cm and 3.5 cm, respectively. The pipe passes
through a 15-m-long section of a basement whose temperature
is 15°C. If the temperature of the water drops from 70°C to 67°C
as it passes through the basement and the heat transfer coeffi-
cient on the inner surface of the pipe is 400 W/m?-K, determine
the combined convection and radiation heat transfer coefficient
at the outer surface of the pipe. Answer: 272.5 W/m?.K

3-177 The plumbing system of a house involves a 0.5-m sec-
tion of a plastic pipe (k = 0.16 W/m-K) of inner diameter 2 cm
and outer diameter 2.4 cm exposed to the ambient air. During
a cold and windy night, the ambient air temperature remains at
about —5°C for a period of 14 h. The combined convection
and radiation heat transfer coefficient on the outer surface of

Exposed
water pipe
Tair =-5°C
1 2.4 cm Air
Water
Soil

FIGURE P3-177

the pipe is estimated to be 40 W/m?K, and the heat of fusion
of water is 333.7 kJ/kg. Assuming the pipe to contain station-
ary water initially at 0°C, determine if the water in that section
of the pipe will completely freeze that night.

3-178 A cylindrical nuclear fuel rod of 15 mm in diameter is
encased in a concentric hollow ceramic cylinder with inner

diameter of 35 mm and outer diameter of 110 mm. This created an
air gap between the fuel rod and the hollow ceramic cylinder with
a convection heat transfer coefficient of 10 W/m?-K. The hollow
ceramic cylinder has a thermal conductivity of 0.07 W/m-K and
its outer surface maintains a constant temperature of 30 °C. If the
fuel rod generates heat at a rate of 1 MW/m?, determine the tem-
perature at the surface of the fuel rod. Answer: 1026°C

Fuel rod T,
1 MW/m? Air gap, h = 10 W/m?.K
Ceramic o
k=0.07 W/mK Ty=30°C

Dy =15mm

‘Dz =35mm

A
Y

D3 =110 mm

FIGURE P3-178

3-179 Steam at 235°C is flowing inside a steel pipe (k =
61 W/m-K) whose inner and outer diameters are 10 cm and
12 cm, respectively, in an environment at 20°C. The heat trans-
fer coefficients inside and outside the pipe are 105 W/m*K
and 14 W/m?K, respectively. Determine (a) the thickness
of the insulation (k = 0.038 W/m-K) needed to reduce the
heat loss by 95 percent and (b) the thickness of the insulation
needed to reduce the exposed surface temperature of insulated
pipe to 40°C for safety reasons.

3-180 A spherical vessel, 3.0 m in diameter (and negligible
wall thickness), is used for storing a fluid at a temperature of
0°C. The vessel is covered with a 5.0-cm-thick layer of an in-
sulation (k = 0.20 W/m-K). The surrounding air is at 22°C.
The inside and outside heat transfer coefficients are 40 and
10 W/m?>K, respectively. Calculate (@) all thermal resistances,
in K/W, (b) the steady rate of heat transfer, and (c) the tem-
perature difference across the insulation layer.

3-181 One wall of a refrigerated warehouse is 10.0-m-high
and 5.0-m-wide. The wall is made of three layers: 1.0-cm-thick
aluminum (k = 200 W/m-K), 8.0-cm-thick fibreglass (k =
0.038 W/m-K), and 3.0-cm thick gypsum board (k =
0.48 W/m:K). The warehouse inside and outside temperatures
are —10°C and 20°C, respectively, and the average value of
both inside and outside heat transfer coefficients is 40 W/m>K.
(a) Calculate the rate of heat transfer across the warehouse
wall in steady operation.
(b) Suppose that 400 metal bolts (k = 43 W/m-K), each
2.0 cm in diameter and 12.0 cm long, are used to fasten
(i.e., hold together) the three wall layers. Calculate the
rate of heat transfer for the “bolted” wall.



(c) What is the percent change in the rate of heat transfer
across the wall due to metal bolts?

3-182 A 4-m-high and 6-m-long wall is constructed of two
large 2-cm-thick steel plates (k = 15 W/m:-K) separated by
1-cm-thick and 20-cm wide steel bars placed 99 cm apart. The
remaining space between the steel plates is filled with fiberglass
insulation (k = 0.035 W/m:-K). If the temperature difference
between the inner and the outer surfaces of the walls is 22°C, de-
termine the rate of heat transfer through the wall. Can we ignore
the steel bars between the plates in heat transfer analysis since
they occupy only 1 percent of the heat transfer surface area?

Steel plates

- Fiberglass
| — insulation
A\ /

99 cm

lcm

\ = 7
201’2)‘ 20 cm L}cm

FIGURE P3-182

3-183 A typical section of a building wall is shown in Fig. P3—183.
This section extends in and out of the page and is repeated in the
vertical direction. The wall support members are made of steel
(k = 50 W/m-K). The support members are 8 cm (f,3) X 0.5 cm
(Lp). The remainder of the inner wall space is filled with insulation
(k = 0.03 W/m-K) and measures 8 cm (t,;) X 60 cm (Lg). The
inner wall is made of gypsum board (k = 0.5 W/m-K) thatis 1 cm
thick (7,,) and the outer wall is made of brick (k = 1.0 W/m-K) that
is 10 cm thick (#3,). What is the temperature on the interior brick
surface, 3, when 7} = 20°C and 7, = 35°C?
0 1 2 3 4 5
~N— [
4

SRR T

FIGURE P3-183
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3-184 A 10-cm-long bar with a square cross-section, as
shown in Fig. P3-184, consists of a 1-cm-thick copper layer
(k = 400 W/m-K) and a 1-cm-thick epoxy composite layer
(k = 0.4 W/m:-K). Calculate the rate of heat transfer under a
thermal driving force of 50°C, when the direction of steady one-
dimensional heat transfer is (a) from front to back (i.e., along its
length), (b) from left to right, and (c¢) from top to bottom.
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FIGURE P3-184

3—-185 Circular fins of uniform cross section, with diameter
of 10 mm and length of 50 mm, are attached to a wall with
surface temperature of 350°C. The fins are made of material
with thermal conductivity of 240 W/m-K, and they are exposed
to an ambient air condition of 25°C and the convection heat
transfer coefficient is 250 W/m?-K. Determine the heat transfer
rate and plot the temperature variation of a single fin for the
following boundary conditions:

(a) Infinitely long fin

(b) Adiabatic fin tip

(c) Fin with tip temperature of 250°C

(d) Convection from the fin tip
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FIGURE P3-185

3-186 A total of 10 rectangular aluminum fins (k =
203 W/m-K) are placed on the outside flat surface of an elec-
tronic device. Each fin is 100 mm wide, 20 mm high and 4 mm
thick. The fins are located parallel to each other at a center-to-
center distance of 8 mm. The temperature at the outside sur-
face of the electronic device is 60°C. The air is at 20°C, and
the heat transfer coefficient is 100 W/m2 K. Determine (a) the
rate of heat loss from the electronic device to the surrounding
air and (b) the fin effectiveness.

3-187 A plane wall with surface temperature of 300°C
is attached with straight aluminum triangular fins (k =
236 W/m:-K). The fins are exposed to an ambient air condition
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of 25°C and the convection heat transfer coefficient is
25 W/m?-K. Each fin has a length of 55 mm, a base of 4 mm
thick and a width of 110 mm. Using Table 3—4, determine the
efficiency, heat transfer rate, and effectiveness of each fin.

k=236 W/m-K

Air, 25°C
h=25W/m2K

t=4mmI

w =110 mm

L =55mm
FIGURE P3-187

3-188 A plane wall surface at 200°C is to be cooled with alu-
minum pin fins of parabolic profile with blunt tips. Each fin
has a length of 25 mm and a base diameter of 4 mm. The fins
are exposed to an ambient air condition of 25°C and the heat
transfer coefficient is 45 W/m?-K. If the thermal conductivity
of the fins is 230 W/m-K, determine the heat transfer rate from
a single fin and the increase in the rate of heat transfer per
m? surface area as a result of attaching fins. Assume there are
100 fins per m? surface area.

3-189 Steam in a heating system flows through tubes whose
outer diameter is 3 cm and whose walls are maintained at
a temperature of 120°C. Circular aluminum alloy fins (k =
180 W/m-K) of outer diameter 6 cm and constant thickness r =
2 mm are attached to the tube, as shown in Fig. P3-189. The
space between the fins is 3 mm, and thus there are 200 fins per
meter length of the tube. Heat is transferred to the surround-
ing air at 25°C, with a combined heat transfer coefficient of
60 W/m?-K. Determine the increase in heat transfer from the
tube per meter of its length as a result of adding fins.

r,=3cm rp=15cm

T,
h

t=2mm

v
IS=3mm

FIGURE P3-189

3-190 A 0.2-cm-thick, 10-cm-high, and 15-cm-long circuit
board houses electronic components on one side that dissipate
a total of 15 W of heat uniformly. The board is impregnated
with conducting metal fillings and has an effective thermal
conductivity of 12 W/m-K. All the heat generated in the com-
ponents is conducted across the circuit board and is dissipated

from the back side of the board to a medium at 37°C, with
a heat transfer coefficient of 45 W/m?K. (a) Determine the
surface temperatures on the two sides of the circuit board.
(b) Now a 0.1-cm-thick, 10-cm-high, and 15-cm-long alumi-
num plate (k = 237 W/m:-K) with 20 0.2-cm-thick, 2-cm-long,
and 15-cm-wide aluminum fins of rectangular profile are at-
tached to the back side of the circuit board with a 0.03-cm-
thick epoxy adhesive (k = 1.8 W/m-K). Determine the new
temperatures on the two sides of the circuit board.
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3-191 In a manufacturing plant, 100 mm by 40 mm thin
rectangular electronic devices are assembled in
mass quantity. The top surface of the electronic device is made
of aluminum and is attached with a HS 5030 aluminum heat
sink positioned horizontally. The electronic device dissipates
45 W of heat through the heat sink. Both aluminum surfaces
have a roughness of about 10 wm and an average interface
pressure of 1 atm. To prevent the electronic device from over-
heating, the top surface temperature should be kept below
85°C in an ambient surrounding of 30°C. Your task as a prod-
uct engineer is to ensure that the heat sink attached on the
device’s top surface is capable to keep the device from over-
heating. Determine whether or not the top surface temperature
of the electronic device, with a HS 5030 heat sink attached on
it, is higher than 85°C. If so, what action can be taken to reduce
the surface temperature to below 85°C? Since your company
has a vast quantity of the HS 5030 heat sinks in the inventory,
replacing the heat sinks with more effective ones is too costly
and is not a viable solution.

3-192 A row of 10 parallel pipes that are 5 m long and have
an outer diameter of 6 cm are used to transport steam at 145°C
through the concrete floor (k = 0.75 W/m-K) of a 10-m X 5-m
room that is maintained at 20°C. The combined convection and
radiation heat transfer coefficient at the floor is 12 W/m?K. If
the surface temperature of the concrete floor is not to exceed



35°C, determine how deep the steam pipes should be buried
below the surface of the concrete floor.
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FIGURE P3-192

3-193 A 0.6-m-diameter, 1.9-m-long cylindrical tank con-
taining liquefied natural gas (LNG) at —160°C is placed at the
center of a 1.9-m-long 1.4-m X 1.4-m square solid bar made
of an insulating material with k = 0.0002 W/m-K. If the outer
surface temperature of the bar is 12°C, determine the rate of
heat transfer to the tank. Also, determine the LNG temperature
after one month. Take the density and the specific heat of LNG
to be 425 kg/m? and 3.475 kJ/kg-°C, respectively.

3-194 In a combined heat and power (CHP) generation pro-
cess, by-product heat is used for domestic or industrial heating
purposes. Hot steam is carried from a CHP generation plant
by a tube with diameter of 127 mm centered at a square cross-
section solid bar made of concrete with thermal conductivity
of 1.7 W/m:-K. The surface temperature of the tube is constant
at 120°C, while the square concrete bar is exposed to air with
temperature of —5°C and convection heat transfer coefficient of
20 W/m?K. If the temperature difference between the outer
surface of the square concrete bar and the ambient air is to be
maintained at 5°C, determine the width of the square concrete
bar and the rate of heat loss per meter length.
Answers: 1.32 m, 530 W/m
Air, -5°C
h=20 Wm?K

Concrete bar

T, =120°C k=17WmK

FIGURE P3-194

3-195 A l.4-m-diameter spherical steel tank filled with iced
water at 0°C is buried underground at a location where the thermal
conductivity of the soil is k = 0.55 W/m-K. The distance between
the tank center and the ground surface is 2.4 m. For ground sur-
face temperature of 18°C, determine the rate of heat transfer to
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the iced water in the tank. What would your answer be if the soil
temperature were 18°C and the ground surface were insulated?

3-196 A thin-walled spherical tank in buried in the ground at
a depth of 3 m. The tank has a diameter of 1.5 m, and it con-
tains chemicals undergoing exothermic reaction that provides
a uniform heat flux of 1 kW/m? to the tank’s inner surface.
From soil analysis, the ground has a thermal conductivity of
1.3 W/m-K and a temperature of 10°C. Determine the surface
temperature of the tank. Discuss the effect of the ground depth
on the surface temperature of the tank.

Fundamentals of Engineering (FE) Exam Problems

3-197 Heat is lost at a rate of 275 W per m? area of a 15-cm-
thick wall with a thermal conductivity of k = 1.1 W/m-K. The
temperature drop across the wall is
(a) 37.5°C (b) 27.5°C
(d) 8.0°C (e) 4.0°C

(c) 16.0°C

3-198 Consider a wall that consists of two layers, A and B,
with the following values: k, = 0.8 W/m:K, L, = 8 cm, kz =
0.2 W/m-K, Ly = 5 cm. If the temperature drop across the wall
is 18°C, the rate of heat transfer through the wall per unit area
of the wall is
(a) 180 W/m?  (b) 153 W/m?
(d) 72 W/m?  (e) 51.4 W/m?

3-199 Heat is generated steadily in a 3-cm-diameter spherical
ball. The ball is exposed to ambient air at 26°C with a heat trans-
fer coefficient of 7.5 W/m?-K. The ball is to be covered with a
material of thermal conductivity 0.15 W/m-K. The thickness of
the covering material that will maximize heat generation within
the ball while maintaining ball surface temperature constant is

(a) 0.5 cm (b) 1.0 cm (¢) 1.5cm

(d)2.0cm (e)2.5cm

(c) 89.6 W/m?

3-200 Consider a 1.5-m-high and 2-m-wide triple pane win-
dow. The thickness of each glass layer (k = 0.80 W/m-K) is
0.5 cm, and the thickness of each air space (k = 0.025 W/m-K)
is 1 cm. If the inner and outer surface temperatures of the
window are 10°C and 0°C, respectively, the rate of heat loss
through the window is

(a) 15 W b)) 12 W

(d)25W (e)37TW

(c)46 W

3-201 Consider two metal plates pressed against each other.
Other things being equal, which of the measures below will
cause the thermal contact resistance to increase?

(a) Cleaning the surfaces to make them shinier.

(b) Pressing the plates against each other with a greater force.

(c) Filling the gap with a conducting fluid.

(d) Using softer metals.

(e) Coating the contact surfaces with a thin layer of soft

metal such as tin.

3-202 A 10-m-long 5-cm-outer-radius cylindrical steam pipe
is covered with 3-cm thick cylindrical insulation with a thermal
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conductivity of 0.05 W/m-K. If the rate of heat loss from the
pipe is 1000 W, the temperature drop across the insulation is
(a) 163°C (b) 600°C (c) 48°C
(d) 79°C (e) 251°C

3-203 A 6-m-diameter spherical tank is filled with liquid
oxygen (p = 1141 kg/m?, ¢, = 1.71 kJ/kg-°C) at —184°C. It is
observed that the temperature of oxygen increases to —183°C
in a 144-hour period. The average rate of heat transfer to the
tank is
(a) 249 W (b) 426 W
(d) 1640 W  (e) 2207 W

3-204 A 2.5 m-high, 4-m-wide, and 20-cm-thick wall of a
house has a thermal resistance of 0.0125°C/W. The thermal
conductivity of the wall is
(a) 0.72 W/m-K (b) 1.1 Wm-K
(d) 16 W/m-K (e) 32 W/m-K

3-205 Consider two walls, A and B, with the same surface
areas and the same temperature drops across their thicknesses.
The ratio of thermal conductivities is k4/kz; = 4 and the ratio
of the wall thicknesses is L,/Ly; = 2. The ratio of heat transfer
rates through the walls 0,/Qy is

(@) 0.5 b)1 (©2 A4 (e)8

3-206 A hot plane surface at 100°C is exposed to air at 25°C
with a combined heat transfer coefficient of 20 W/m?K. The
heat loss from the surface is to be reduced by half by cover-
ing it with sufficient insulation with a thermal conductivity of
0.10 W/m-K. Assuming the heat transfer coefficient to remain
constant, the required thickness of insulation is

(a) 0.1 cm (b) 0.5 cm (¢)1.0cm

(d) 2.0cm (e) 5cm

3-207 A room at 20°C air temperature is loosing heat to the
outdoor air at 0°C at a rate of 1000 W through a 2.5-m-high and
4-m-long wall. Now the wall is insulated with 2-cm thick insu-
lation with a conductivity of 0.02 W/m-K. Determine the rate
of heat loss from the room through this wall after insulation.
Assume the heat transfer coefficients on the inner and outer
surface of the wall, the room air temperature, and the outdoor
air temperature to remain unchanged. Also, disregard radiation.

(a) 20 W (b) 561 W (c) 388 W

(d) 167W (e) 200 W

3-208 A l-cm-diameter, 30-cm-long fin made of aluminum
(k = 237 W/m-K) is attached to a surface at 80°C. The surface
is exposed to ambient air at 22°C with a heat transfer coeffi-
cient of 11 W/m?K. If the fin can be assumed to be very long,
the rate of heat transfer from the fin is
(a) 22 W b)3W
(d) 4 W (e)4.TW

3-209 A 1-cm-diameter, 30-cm-long fin made of aluminum
(k = 237 W/m-K) is attached to a surface at 80°C. The surface
is exposed to ambient air at 22°C with a heat transfer coeffi-
cient of 11 W/m?K. If the fin can be assumed to be very long,
its efficiency is

(c) 5ST0 W

(c) 1.6 W/m-K

(©)3TW

(a) 0.60 (b) 0.67
(d) 0.77 (e) 0.88

3-210 A hot surface at 80°C in air at 20°C is to be cooled
by attaching 10-cm-long and 1-cm-diameter cylindrical fins.
The combined heat transfer coefficient is 30 W/m?2-K, and heat
transfer from the fin tip is negligible. If the fin efficiency is
0.75, the rate of heat loss from 100 fins is

(a) 325W (b) 707 W (c) 566 W

(d) 424 W (e) 754 W

(c)0.72

3-211 A cylindrical pin fin of diameter 0.6 cm and length of
3 cm with negligible heat loss from the tip has an efficiency of
0.7. The effectiveness of this fin is

(@ 03 ()0.7 ()2 (@8 (e)14

3-212 A 3-cm-long, 2-mm X 2-mm rectangular cross-
section aluminum fin (k = 237 W/m-K) is attached to a sur-
face. If the fin efficiency is 65 percent, the effectiveness of this
single fin is

(@) 39 ()30 ()24 ()18 (e)7

3-213 Two finned surfaces with long fins are identical,
except that the convection heat transfer coefficient for the first
finned surface is twice that of the second one. What statement
below is accurate for the efficiency and effectiveness of the
first finned surface relative to the second one?

(a) Higher efficiency and higher effectiveness

(b) Higher efficiency but lower effectiveness

(c) Lower efficiency but higher effectiveness

(d) Lower efficiency and lower effectiveness

(e) Equal efficiency and equal effectiveness

3-214 A 20-cm-diameter hot sphere at 120°C is buried in the
ground with a thermal conductivity of 1.2 W/m-K. The dis-
tance between the center of the sphere and the ground surface
is 0.8 m and the ground surface temperature is 15°C. The rate
of heat loss from the sphere is
(a) 169 W ()20 W
(d)312W (e) 1.8 W

(©) 217 W

3-215 A 25-cm-diameter, 2.4-m-long vertical cylinder con-
taining ice at 0°C is buried right under the ground. The cylin-
der is thin-shelled and is made of a high thermal conductivity
material. The surface temperature and the thermal conductivity
of the ground are 18°C and 0.85 W/m-K respectively. The rate
of heat transfer to the cylinder is
(a)372W (b) 632 W
(d) 480 W (e) 1210 W

3-216 Hot water (¢, = 4.179 kl/kg-K) flows through a
200-m-long PVC (k = 0.092 W/m-K) pipe whose inner diam-
eter is 2 cm and outer diameter is 2.5 cm at a rate of 1 kg/s,
entering at 40°C. If the entire interior surface of this pipe is
maintained at 35°C and the entire exterior surface at 20°C, the
outlet temperature of water is
(a) 39°C (b) 38°C
(d) 36°C (e) 35°C

(c) 158 W

(c) 37°C



3-217 The walls of a food storage facility are made of a
2-cm-thick layer of wood (k = 0.1 W/m-K) in contact with
a 5-cm-thick layer of polyurethane foam (k = 0.03 W/m-K).
If the temperature of the surface of the wood is —10°C and
the temperature of the surface of the polyurethane foam is
20°C, the temperature of the surface where the two layers are
in contact is

(a) =7°C

(d) 8°C
3-218 The equivalent thermal resistance for the thermal cir-
cuit shown here is

(b) —2°C
(e) 11°C

(c)3°C
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3-219 The 700 m? ceiling of a building has a thermal resis-
tance of 0.52 m>K/W. The rate at which heat is lost through
this ceiling on a cold winter day when the ambient tempera-
ture is —10°C and the interior is at 20°C is

(a) 23.1 kW  (b) 40.4 kW (c) 55.6 kW

(d) 68.1kW  (e) 88.6 kW

3-220 A 1-m-inner-diameter liquid-oxygen storage tank at a
hospital keeps the liquid oxygen at 90 K. The tank consists
of a 0.5-cm-thick aluminum (k = 170 W/m-K) shell whose
exterior is covered with a 10-cm-thick layer of insulation
(k = 0.02 W/m-K). The insulation is exposed to the ambient
air at 20°C and the heat transfer coefficient on the exterior side
of the insulation is 5 W/m?-K. The rate at which the liquid oxy-
gen gains heat is

(a) 141 W b) 176 W

(d) 201 W (e) 221 W

3-221 A 1-m-inner-diameter liquid-oxygen storage tank at a
hospital keeps the liquid oxygen at 90 K. The tank consists
of a 0.5-cm-thick aluminum (k = 170 W/m-K) shell whose
exterior is covered with a 10-cm-thick layer of insulation (k =
0.02 W/m:-K). The insulation is exposed to the ambient air at
20°C and the heat transfer coefficient on the exterior side of
the insulation is 5 W/m?-K. The temperature of the exterior
surface of the insulation is
(a) 13°C (b) 9°C
(d) —3°C (e) —12°C

() 181 W

(c) 2°C

CHAPTER 3

3-222 The fin efficiency is defined as the ratio of the actual
heat transfer from the fin to
(a) The heat transfer from the same fin with an adiabatic tip
(b) The heat transfer from an equivalent fin which is infi-
nitely long
(c) The heat transfer from the same fin if the temperature
along the entire length of the fin is the same as the base
temperature
(d) The heat transfer through the base area of the same fin
(e) None of the above

3-223 Computer memory chips are mounted on a finned
metallic mount to protect them from overheating. A 152 MB
memory chip dissipates 5 W of heat to air at 25°C. If the tem-
perature of this chip is to not exceed 50°C, the overall heat
transfer coefficient—area product of the finned metal mount
must be at least

(a) 0.2 W/°C

(d) 0.5 W/°C

(b) 0.3 W/°C
(e) 0.6 W/°C

(c) 0.4 W/°C

3-224 1In the United States, building insulation is specified
by the R-value (thermal resistance in h-ft>-°F/Btu units). A
homeowner decides to save on the cost of heating the home
by adding additional insulation in the attic. If the total R-value
is increased from 15 to 25, the homeowner can expect the heat
loss through the ceiling to be reduced by

(a) 25% (b)40% (c)50% (d)60% (e) 75%

3-225 A triangular shaped fin on a motorcycle engine
is 0.5-cm thick at its base and 3-cm long (normal distance
between the base and the tip of the triangle), and is made of
aluminum (k = 150 W/m-K). This fin is exposed to air with a
convective heat transfer coefficient of 30 W/m? K acting on
its surfaces. The efficiency of the fin is 50 percent. If the fin
base temperature is 130°C and the air temperature is 25°C,
the heat transfer from this fin per unit width is

(@)32W/m  (b)47 W/m (c) 68 W/m

(d)82W/m  (e)95 W/m

3-226 A plane brick wall (k = 0.7 W/m-K) is 10 cm thick.
The thermal resistance of this wall per unit of wall area is

() 0.143 m>-K/W (0) 0.250 m>K/W

(c) 0.327 m>-K/W (d) 0.448 m>-K/W

(e) 0.524 m>K/W

Design and Essay Problems

3-227 The temperature in deep space is close to absolute
zero, which presents thermal challenges for the astronauts who
do space walks. Propose a design for the clothing of the astro-
nauts that will be most suitable for the thermal environment in
space. Defend the selections in your design.

3-228 In the design of electronic components, it is very desir-
able to attach the electronic circuitry to a substrate material
that is a very good thermal conductor but also a very effec-
tive electrical insulator. If the high cost is not a major concern,
what material would you propose for the substrate?



STEADY HEAT CONDUCTION

3-229 Using cylindrical samples of the same material, devise
an experiment to determine the thermal contact resistance.
Cylindrical samples are available at any length, and the thermal
conductivity of the material is known.

3-230 Find out about the wall construction of the cabins of
large commercial airplanes, the range of ambient conditions
under which they operate, typical heat transfer coefficients on
the inner and outer surfaces of the wall, and the heat genera-
tion rates inside. Determine the size of the heating and air-
conditioning system that will be able to maintain the cabin
at 20°C at all times for an airplane capable of carrying
400 people.

3-231 Repeat Prob. 3-230 for a submarine with a crew of 60
people.

3-232 A house with 200-m? floor space is to be heated with
geothermal water flowing through pipes laid in the ground
under the floor. The walls of the house are 4 m high, and there
are 10 single-paned windows in the house that are 1.2 m wide
and 1.8 m high. The house has R-19 (in h-ft>°F/Btu) insulation
in the walls and R-30 on the ceiling. The floor temperature is

not to exceed 40°C. Hot geothermal water is available at 90°C,
and the inner and outer diameter of the pipes to be used are
2.4 cm and 3.0 cm. Design such a heating system for this
house in your area.

3-233 Using a timer (or watch) and a thermometer, conduct
this experiment to determine the rate of heat gain of your
refrigerator. First, make sure that the door of the refrigerator
is not opened for at least a few hours to make sure that steady
operating conditions are established. Start the timer when the
refrigerator stops running and measure the time Az, it stays
off before it kicks in. Then measure the time Az, it stays on.
Noting that the heat removed during Az, is equal to the heat
gain of the refrigerator during A¢, + At, and using the power
consumed by the refrigerator when it is running, determine
the average rate of heat gain for your refrigerator, in watts.
Take the COP (coefficient of performance) of your refrigera-
tor to be 1.3 if it is not available.

Now, clean the condenser coils of the refrigerator and remove
any obstacles on the way of airflow through the coils. By replac-
ing these measurements, determine the improvement in the COP
of the refrigerator.



TRANSIENT HEAT
CONDUCTION

he temperature of a body, in general, varies with time as well as position.

In rectangular coordinates, this variation is expressed as 7(x, y, z, f), where

(x, v, z) indicate variation in the x-, y-, and z-directions, and ¢ indicates
variation with time. In the preceding chapter, we considered heat conduction
under steady conditions, for which the temperature of a body at any point
does not change with time. This certainly simplified the analysis, especially
when the temperature varied in one direction only, and we were able to obtain
analytical solutions. In this chapter, we consider the variation of temperature
with time as well as position in one- and multidimensional systems.

We start this chapter with the analysis of lumped systems in which the tem-
perature of a body varies with time but remains uniform throughout at any
time. Then we consider the variation of temperature with time as well as posi-
tion for one-dimensional heat conduction problems such as those associated
with a large plane wall, a long cylinder, a sphere, and a semi-infinite medium
using transient temperature charts and analytical solutions. Finally, we con-
sider transient heat conduction in multidimensional systems by utilizing the
product solution.

CHAPTER

OBJECTIVES
When you finish studying this chapter,
you should be able to:

Assess when the spatial variation
of temperature is negligible,

and temperature varies nearly
uniformly with time, making the
simplified lumped system
analysis applicable,

Obtain analytical solutions for
transient one-dimensional
conduction problems in rectan-
gular, cylindrical, and spherical
geometries using the method of
separation of variables, and
understand why a one-term
solution is usually a reasonable
approximation,

Solve the transient conduction
problem in large mediums using
the similarity variable, and pre-
dict the variation of temperature
with time and distance from the
exposed surface, and

Construct solutions for multi-
dimensional transient conduc-
tion problems using the product
solution approach.
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(a) Copper ball

(b) Roast beef

FIGURE 4-1
A small copper ball can be modeled
as a lumped system, but a roast

beef cannot.
/"
h
Solid body T,
m = mass
V = volume
p = density

T; = initial temperature

I T=1()

0 =hA|T, - T(]

FIGURE 4-2
The geometry and parameters involved
in the lumped system analysis.

4-1 = LUMPED SYSTEM ANALYSIS

In heat transfer analysis, some bodies are observed to behave like a “lump”
whose interior temperature remains essentially uniform at any times during
a heat transfer process. The temperature of such bodies can be taken to be a
function of time only, 7(z). Heat transfer analysis that utilizes this idealiza-
tion is known as lumped system analysis, which provides great simplifica-
tion in certain classes of heat transfer problems without much sacrifice from
accuracy.

Consider a small hot copper ball coming out of an oven (Fig. 4-1). Mea-
surements indicate that the temperature of the copper ball changes with time,
but it does not change much with position at any given time. Thus the tem-
perature of the ball remains nearly uniform at all times, and we can talk about
the temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If
you have done any roasting, you must have noticed that the temperature dis-
tribution within the roast is not even close to being uniform. You can easily
verify this by taking the roast out before it is completely done and cutting it
in half. You will see that the outer parts of the roast are well done while the
center part is barely warm. Thus, lumped system analysis is not applicable in
this case. Before presenting a criterion about applicability of lumped system
analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass m, volume V, surface area A,,
density p, and specific heat ¢, initially at a uniform temperature T; (Fig. 4-2).
At time ¢t = 0, the body is placed into a medium at temperature 7., and heat
transfer takes place between the body and its environment, with a heat trans-
fer coefficient h. For the sake of discussion, we assume that 7., > T}, but the
analysis is equally valid for the opposite case. We assume lumped system
analysis to be applicable, so that the temperature remains uniform within the
body at all times and changes with time only, 7' = T(¢).

During a differential time interval dt, the temperature of the body rises by
a differential amount d7. An energy balance of the solid for the time interval
dt can be expressed as

Heat transfer into the body | [ The increase in the
during dt | energy of the body
during dt

or
hA(T.. — T) dt = mc, dT (4-1)

Noting that m = pV and dT = d(T — T.,) since T,, = constant, Eq. 4—1 can be
rearranged as

AT — T.) hA,
= - dt 4-2)

T-T, pVc,

Integrating from ¢ = 0, at which 7' = T}, to any time #, at which T'= T(7), gives

Tt — T, hA;
In = - t (4-3)
T, - T, pVe,




Taking the exponential of both sides and rearranging, we obtain

Tt — T,
— X =h 44
T —T. e (4-4)

where

/—hA‘ 1/ 4-5
)_p\/' (1/s) (4-5)

('I’

is a positive quantity whose dimension is (time)~!. The reciprocal of b has
time unit (usually s), and is called the time constant. Equation 4—4 is plotted
in Fig. 4-3 for different values of b. There are two observations that can be
made from this figure and the relation above:

1. Equation 4—4 enables us to determine the temperature 7(¢) of a body at
time ¢, or alternatively, the time ¢ required for the temperature to reach
a specified value 7(?).

2. The temperature of a body approaches the ambient temperature 7., expo-
nentially. The temperature of the body changes rapidly at the beginning,
but rather slowly later on. A large value of b indicates that the body
approaches the environment temperature in a short time. The larger the
value of the exponent b, the higher the rate of decay in temperature.
Note that b is proportional to the surface area, but inversely proportional
to the mass and the specific heat of the body. This is not surprising since
it takes longer to heat or cool a larger mass, especially when it has a
large specific heat.

Once the temperature 7(7) at time 7 is available from Eq. 4-4, the rate of con-
vection heat transfer between the body and its environment at that time can be
determined from Newton’s law of cooling as

Ot = hA[T(t) — T..] (W) (4-6)

The total amount of heat transfer between the body and the surrounding
medium over the time interval # = 0 to ¢ is simply the change in the energy
content of the body:

Q = mc,[T(1) — T} (kJ) 4-7)

The amount of heat transfer reaches its upper limit when the body reaches the
surrounding temperature 7,, Therefore, the maximum heat transfer between
the body and its surroundings is (Fig. 4—4)

Qmux = ”’ICIV(T—L - Tz) (kJ) (4-8)

We could also obtain this equation by substituting the 7(z) relation from
Eq. 4-4 into the Q(¢) relation in Eq. 4-6 and integrating it from ¢ = 0 to  — .

Criteria for Lumped System Analysis
The lumped system analysis certainly provides great convenience in heat
transfer analysis, and naturally we would like to know when it is appropriate
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FIGURE 4-3
The temperature of a lumped

system approaches the environment
temperature as time gets larger.
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FIGURE 44

Heat transfer to or from a body
reaches its maximum value
when the body reaches

the environment temperature.
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FIGURE 4-5

Jean-Baptiste Biot (1774-1862) was

a French physicist, astronomer, and
mathematician born in Paris, France.
Although younger, Biot worked on the
analysis of heat conduction even earlier
than Fourier did (1802 or 1803) and
attempted, unsuccessfully, to deal with
the problem of incorporating external
convection effects in heat conduction
analysis. Fourier read Biot’s work and
by 1807 had determined for himself
how to solve the elusive problem. In
1804, Biot accompanied Gay Lussac
on the first balloon ascent undertaken
for scientific purposes. In 1820, with
Felix Savart, he discovered the law
known as “Biot and Savart’s Law.” He
was especially interested in questions
relating to the polarization of light, and
for his achievements in this field he was
awarded the Rumford Medal of the Royal
Society in 1840. The dimensionless
Biot number (Bi) used in transient heat
transfer calculations is named after him.
© World History Archive/Alamy.

to use it. The first step in establishing a criterion for the applicability of the
lumped system analysis is to define a characteristic length as

and a dimensionless Biot number (Fig. 4-5) Bi as

hL(‘
s —
k

(4-9)

The characteristic length L. to be used in the Biot number for simple geom-
etries in which heat transfer is one-dimensional, such as a large plane wall of
thickness 2L, a long cylinder of radius r,, and a sphere of radius r,, becomes
L (half thickness), r,/2, and r,/3, respectively. Equation 4-9 can also be
expressed as (Fig. 4-6).

Bi— h AT _ Convection at the surface of the body
" WL, AT

Conduction within the body

or

. LJk Conduction resistance within the body

1/h ~ Convection resistance at the surface of the body

When a solid body is being heated by the hotter fluid surrounding it (such
as a potato being baked in an oven), heat is first convected to the body and
subsequently conducted within the body. The Biot number is the ratio of the
internal resistance of a body to heat conduction to its external resistance to
heat convection. Therefore, a small Biot number represents small resistance
to heat conduction, and thus small temperature gradients within the body.

Lumped system analysis assumes a uniform temperature distribution
throughout the body, which is the case only when the thermal resistance of
the body to heat conduction (the conduction resistance) is zero. Thus, lumped
system analysis is exact when Bi = 0 and approximate when Bi > 0. Of
course, the smaller the Bi number, the more accurate the lumped system anal-
ysis. Then the question we must answer is, how much accuracy are we willing
to sacrifice for the convenience of the lumped system analysis?

Before answering this question, we should mention that a 15 percent
uncertainty in the convection heat transfer coefficient 4 in most cases is con-
sidered “normal” and ‘“expected.” Assuming % to be constant and uniform is
also an approximation of questionable validity, especially for irregular geom-
etries. Therefore, in the absence of sufficient experimental data for the specific
geometry under consideration, we cannot claim our results to be better than
*15 percent, even when Bi = 0. This being the case, introducing another source
of uncertainty in the problem will not have much effect on the overall uncer-
tainty, provided that it is minor. It is generally accepted that lumped system
analysis is applicable if

Bi=0.1

When this criterion is satisfied, the temperatures within the body relative to
the surroundings (i.e., T — T,) remain within 5 percent of each other even
for well-rounded geometries such as a spherical ball. Thus, when Bi < 0.1,



the variation of temperature with location within the body is slight and can
reasonably be approximated as being uniform.

The first step in the application of lumped system analysis is the calculation
of the Biot number, and the assessment of the applicability of this approach.
One may still wish to use lumped system analysis even when the criterion
Bi < 0.1 is not satisfied, if high accuracy is not a major concern.

Note that the Biot number is the ratio of the convection at the surface to
conduction within the body, and this number should be as small as possible
for lumped system analysis to be applicable. Therefore, small bodies with
high thermal conductivity are good candidates for lumped system analysis,
especially when they are in a medium that is a poor conductor of heat (such
as air or another gas) and motionless. Thus, the hot small copper ball placed
in quiescent air, discussed earlier, is most likely to satisfy the criterion for
lumped system analysis (Fig. 4-7).

Some Remarks on Heat Transfer in Lumped Systems
To understand the heat transfer mechanism during the heating or cooling of a
solid by the fluid surrounding it, and the criterion for lumped system analy-
sis, consider this analogy (Fig. 4-8). People from the mainland are to go by
boat to an island whose entire shore is a harbor, and from the harbor to their
destinations on the island by bus. The overcrowding of people at the harbor
depends on the boat traffic to the island and the ground transportation system
on the island. If there is an excellent ground transportation system with plenty
of buses, there will be no overcrowding at the harbor, especially when the
boat traffic is light. But when the opposite is true, there will be a huge over-
crowding at the harbor, creating a large difference between the populations at
the harbor and inland. The chance of overcrowding is much lower in a small
island with plenty of fast buses.

In heat transfer, a poor ground transportation system corresponds to poor
heat conduction in a body, and overcrowding at the harbor to the accumula-
tion of thermal energy and the subsequent rise in temperature near the surface
of the body relative to its inner parts. Lumped system analysis is obviously
not applicable when there is overcrowding at the surface. Of course, we have
disregarded radiation in this analogy and thus the air traffic to the island. Like
passengers at the harbor, heat changes vehicles at the surface from convection
to conduction. Noting that a surface has zero thickness and thus cannot store
any energy, heat reaching the surface of a body by convection must continue
its journey within the body by conduction.

Consider heat transfer from a hot body to its cooler surroundings. Heat is
transferred from the body to the surrounding fluid as a result of a temperature
difference. But this energy comes from the region near the surface, and thus
the temperature of the body near the surface will drop. This creates a tempera-
ture gradient between the inner and outer regions of the body and initiates heat
transfer by conduction from the interior of the body toward the outer surface.

When the convection heat transfer coefficient /# and thus the rate of convec-
tion from the body are high, the temperature of the body near the surface drops
quickly (Fig. 4-9). This creates a larger temperature difference between the
inner and outer regions unless the body is able to transfer heat from the inner to
the outer regions just as fast. Thus, the magnitude of the maximum temperature
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The Biot number can be viewed as the
ratio of the convection at the surface

to conduction within the body.
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Analogy between heat transfer to a
solid and passenger traffic to an island.
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T, =20°C

Convection

h=2000 W/m?-K

FIGURE 4-9

When the convection coefficient /4 is
high and £ is low, large temperature

differences occur between the inner

and outer regions of a large solid.

Thermocouple
wire

Gas

T.,h —> Junction

D =1mm
(1)

FIGURE 4-10
Schematic for Example 4-1.

difference within the body depends strongly on the ability of a body to conduct
heat toward its surface relative to the ability of the surrounding medium to con-
vect heat away from the surface. The Biot number is a measure of the relative
magnitudes of these two competing effects.

Recall that heat conduction in a specified direction n per unit surface area is
expressed as ¢ = —k dT/dn, where d7/0n is the temperature gradient and k is
the thermal conductivity of the solid. Thus, the temperature distribution in the
body will be uniform only when its thermal conductivity is infinite, and no such
material is known to exist. Therefore, temperature gradients and thus tempera-
ture differences must exist within the body, no matter how small, in order for
heat conduction to take place. Of course, the temperature gradient and the ther-
mal conductivity are inversely proportional for a given heat flux. Therefore, the
larger the thermal conductivity, the smaller the temperature gradient.

EXAMPLE 4-1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose
junction can be approximated as a 1-mm-diameter sphere, as shown in
Fig. 4-10. The properties of the junction are k = 35 W/m-K, p = 8500 kg/m3,
and ¢, = 320 J/kg-K, and the convection heat transfer coefficient between
the junction and the gas is h = 210 W/m?2-K. Determine how long it will take
for the thermocouple to read 99 percent of the initial temperature difference.

SOLUTION The temperature of a gas stream is to be measured by a ther-
mocouple. The time it takes to register 99 percent of the initial AT is to be
determined.
Assumptions 1 The junction is spherical in shape with a diameter of
D = 0.001 m. 2 The thermal properties of the junction and the heat transfer
coefficient are constant. 3 Radiation effects are negligible.

Properties The properties of the junction are given in the problem statement.
Analysis The characteristic length of the junction is

vV  emD? 1
L= — = ==
A wD*> 6

s

1
D = <(0.001 m) = 167 X 10*m

Then the Biot number becomes

hL, (210 W/m>K)(1.67 X 10~*m)
ko 35 W/m-K

Bi = =0.001 < 0.1
Therefore, lumped system analysis is applicable, and the error involved in this
approximation is negligible.

In order to read 99 percent of the initial temperature difference T, — T,
between the junction and the gas, we must have

For example, when T,= 0°C and 7., = 100°C, a thermocouple is considered to
have read 99 percent of this applied temperature difference when its reading
indicates T(f) = 99°C.
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The value of the exponent b is

hA, h 210 W/m2K

b= = = =0.462 5!
pc,V peL, (8500 kg/m*)(320 kg K)(1.67 X 10~* m) °

We now substitute these values into Eq. 4-4 and obtain

In — T, .
L TRt s ()0] = e 046257
7=

which yields
t=10s

Therefore, we must wait at least 10 s for the temperature of the thermocouple
junction to approach within 99 percent of the initial junction-gas temperature
difference.

Discussion Note that conduction through the wires and radiation exchange
with the surrounding surfaces affect the result, and should be considered in a
more refined analysis.

Ptd EXAMPLE 4-2 Air Cooling of Metal Plates Cooling chamber, 15°C

Metal plates (k = 180 W/m-K, p = 2800 kg/m3, and ¢, = 880 J/kg-K) with S
a thickness of 2 cm exiting an oven are conveyed through a 10-m long cool-

ing chamber at a speed of 4 cm/s (Fig. 4-11). The plates enter the cool-

ing chamber at an initial temperature of 700°C. The air temperature in the

cooling chamber is 15°C, and the plates are cooled with blowing air and the 2cm

convection heat transfer coefficient is given as a function of the air velocity

h = 33V°8, where his in W/m2K and Vis in m/s. To prevent any incident

of thermal burn, it is necessary to design the cooling process such that the

plates exit the cooling chamber at a relatively safe temperature of 50°C or Metal plate

less. Determine the air velocity and the heat transfer coefficient such that the

temperature of the plates exiting the cooling chamber is at 50°C. TTTTT TTTTT Blowing air

SOLUTION In this example, the concepts of Prevention through Design (PtD)

are applied in conjunction with lumped system analysis. Metal plates exiting

an oven are being cooled by air in a cooling chamber. The air velocity and

convection heat transfer coefficient that are required to cool the plates so that

they exit the cooling chamber at 50°C are to be determined.

Assumptions 1 The thermal properties of metal plates are constant. 2 Con-

vection heat transfer coefficient is uniform. 3 Heat transfer by radiation is

negligible. 4 The Biot number is Bi < 0.1 so that the lumped system analysis

is applicable (this assumption will be verified).

Properties The properties of the metal plates are given as kK = 180 W/m-K,

p = 2800 kg/m?3, and c, = 880 J/kg-K.

Analysis The characteristic length and the Biot number of the metal plate are
vV  2LA _ 20mm

L.=—= =L = = 10 mm
A 2A 2

s

FIGURE 4-11
Schematic for Example 4-2.
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Using the lumped system analysis,
hA, h 33V08 33y08

b= _ _ air _ air
pc,V  pcL,  pc,L, (2800 kg/m*)(880 J/kg-K)(0.010 m)

The duration of cooling can be determined from the cooling chamber
length and the speed of the plates,

10 m
r=—" =250
0.04 m/s s
() — T, 1 [T - T,
()7=e”” — b=—*ln[()7}
T,— T, t LT, -T,

1 -1
— ln( 20 > ) = 0.0119s™!
250s \700 — 15

Thus, the air velocity and convection heat transfer coefficient necessary to cool
the plates to 50°C as they exit the cooling chamber is

33vai
= = 0.01195s!
pe,Le
0.0119 s~1)(2800 kg/m?)(880 J/kg-K)(0.010 m) ]/
7 o )(2800 kg/m*)(880 J/kg-K)( >] S
700 T T T T T 33
soo b ] h = 33V%8 = 33(15.3 m/s)°8 = 293 W/m2K
500 ] Since this analysis was carried out under the assumption that it is a lumped
£ 400 '\ 7 system, and for this assumption to be applicable, the condition Bi < 0.1
2 300 \ . needs to be satisfied
=T L i . hL, (293 W/m?K)(0.010 m)
200 Bi = = = 0.0163 < 0.1
ool I . k 180 W/m-K
oL . Discussion The effect of the air velocity on the temperature of the plates exit-
0 5 o 15 20 25 ing the cooling chamber is plotted in Fig. 4-12. The figure shows that for air
Vair» m/s velocities less than 15.3 m/s the temperature of the plates stays well below
50°C which should prevent any incident of thermal burn.
FIGURE 4-12

Variation of plate temperature with the
air velocity at the exit of the cooling

chamber 4-2 - TRANSIENT HEAT CONDUCTION IN LARGE
PLANE WALLS, LONG CYLINDERS, AND
SPHERES WITH SPATIAL EFFECTS

In Section 4-1, we considered bodies in which the variation of temperature
within the body is negligible; that is, bodies that remain nearly isothermal dur-
ing a process. Relatively small bodies of highly conductive materials approxi-
mate this behavior. In general, however, the temperature within a body changes
from point to point as well as with time. In this section, we consider the varia-
tion of temperature with time and position in one-dimensional problems such as
those associated with a large plane wall, a long cylinder, and a sphere.
Consider a plane wall of thickness 2L, a long cylinder of radius r,, and a
sphere of radius r, initially at a uniform temperature T, as shown in Fig. 4—13.
At time ¢ = 0, each geometry is placed in a large medium that is at a constant
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temperature 7., and kept in that medium for ¢+ > 0. Heat transfer takes place
between these bodies and their environments by convection with a uniform
and constant heat transfer coefficient 4. Note that all three cases possess geo-
metric and thermal symmetry: the plane wall is symmetric about its center
plane (x = 0), the cylinder is symmetric about its centerline (r = 0), and the
sphere is symmetric about its center point (r = 0). We neglect radiation heat
transfer between these bodies and their surrounding surfaces, or incorporate
the radiation effect into the convection heat transfer coefficient .

The variation of the temperature profile with time in the plane wall is illus-
trated in Fig. 4—-14. When the wall is first exposed to the surrounding medium at
T,.<T,;att = 0, the entire wall is at its initial temperature 7;. But the wall tem-
perature at and near the surfaces starts to drop as a result of heat transfer from
the wall to the surrounding medium. This creates a temperature gradient in the
wall and initiates heat conduction from the inner parts of the wall toward its
outer surfaces. Note that the temperature at the center of the wall remains at 7;
until ¢ = 1,, and that the temperature profile within the wall remains symmetric
at all times about the center plane. The temperature profile gets flatter and flat-
ter as time passes as a result of heat transfer, and eventually becomes uniform at
T = T.. That is, the wall reaches thermal equilibrium with its surroundings. At
that point, heat transfer stops since there is no longer a temperature difference.
Similar discussions can be given for the long cylinder or sphere.

Nondimensionalized One-Dimensional Transient
Conduction Problem

The formulation of heat conduction problems for the determination of the
one-dimensional transient temperature distribution in a plane wall, a cylinder,
or a sphere results in a partial differential equation whose solution typically
involves infinite series and transcendental equations, which are inconvenient
to use. But the analytical solution provides valuable insight to the physical
problem, and thus it is important to go through the steps involved. Below we
demonstrate the solution procedure for the case of plane wall.

Consider a plane wall of thickness 2L initially at a uniform temperature of
T;, as shown in Fig. 4-13a. At time ¢t = 0, the wall is immersed in a fluid at
temperature 7., and is subjected to convection heat transfer from both sides
with a convection coefficient of 4. The height and the width of the wall are
large relative to its thickness, and thus heat conduction in the wall can be
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FIGURE 4-13

Schematic of the simple
geometries in which heat
transfer is one-dimensional.

T_ [
' A Y1=0
t=1)
I=f3 |
T, t— >
0 %
h Initially T
T=| T; n
FIGURE 4-14

Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for 7, > T..
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approximated to be one-dimensional. Also, there is thermal symmetry about
the midplane passing through x = 0, and thus the temperature distribution
must be symmetrical about the midplane. Therefore, the value of temperature
atany —x value in —L = x = 0 at any time # must be equal to the value at +x in
0 = x = L at the same time. This means we can formulate and solve the heat
conduction problem in the positive half domain 0 = x = L, and then apply the
solution to the other half.

Under the conditions of constant thermophysical properties, no heat genera-
tion, thermal symmetry about the midplane, uniform initial temperature, and
constant convection coefficient, the one-dimensional transient heat conduc-
tion problem in the half-domain 0 = x = L of the plane wall can be expressed
as (see Chapter 2)

o . . 9*T 1 oT
Differential equation: —5 = —— (4-10a)
ax- o ot
o aT(0, 1) dT(L, 1)
Boundary conditions: ; =0 and -k ; = h[T(L,t) — T_] (4-10b)
ax ax
Initial condition: T(x,0) = T, (4-100¢)

where the property a = k/pc, is the thermal diffusivity of the material.

We now attempt to nondimensionalize the problem by defining a
dimensionless space variable X = x/L and dimensionless temperature 0(x, ) =
[T(x, t) — T.)/IT; — T.]. These are convenient choices since both X and 0 vary
between 0 and 1. However, there is no clear guidance for the proper form of
the dimensionless time variable and the h/k ratio, so we will let the analysis
indicate them. We note that

0 a0 L T &0 [ T

a0 1 oT
= = o e _ s and L= %
X ox/L)y T, —T,ox aX> T,— T, ox*

a T, — T, ot

Substituting into Eqs. 4-10a and 4-10b and rearranging give
6279 — Lizﬁ n 86(1’0 — hig(l l‘)
x?  aar © )¢ ko

(4-11)

Therefore, the proper form of the dimensionless time is 7 = a#/L?, which is
called the Fourier number Fo (named after Jean Baptiste Joseph Fourier,
see Fig. 1-27), and we recognize Bi = k/hL as the Biot number defined in
Section 4—1. Then the formulation of the one-dimensional transient heat con-
duction problem in a plane wall can be expressed in nondimensional form as

%0 a0
Dimensionless differential equation: ——— = — (4-12a)
X ot
. . 36(0, 7) a0(1, ) .
Dimensionless BC'’s: =0 and = —Bif(1, 1)
0X X
(4-12b)
Dimensionless initial condition: 6(X,0) =1 (4-12¢)
where
T(x,t) — T,
0X,7) = T T Dimensionless temperature

Dimensionless distance from the center



. hL .
Bi = i Dimensionless heat transfer coefficient (Biot number)
at . . . .
T = 7 = Fo Dimensionless time (Fourier number)

The heat conduction equation in cylindrical or spherical coordinates can
be nondimensionalized in a similar way. Note that nondimensionalization
reduces the number of independent variables and parameters from 8 to 3—
fromx, L, t, k, a, h, T; and T, to X, Bi, and Fo (Fig. 4-15). That is,

0 = f(X, Bi, Fo) (4-13)

This makes it very practical to conduct parametric studies and avoid results
in graphical form. Equation 4—13 is the generalized version of Eq. 4—4 for the
lumped system analysis (no space variables). This can be shown by using the
definitions of 6, «, L., Bi, and Fo in Eq. 4-4. The final result is

T - T, hay

_ T oV
_7:eb[:ep%:e

T, - T,

—BiFo

or 6 = f(Fo, Bi) which is the special case of Eq. 4-13 with no space variable.

Exact Solution of One-Dimensional

Transient Conduction Problem*

The non-dimensionalized partial differential equation given in Eqgs. 4-12
together with its boundary and initial conditions can be solved using several
analytical and numerical techniques, including the Laplace or other transform
methods, the method of separation of variables, the finite difference method, and
the finite-element method. Here we use the method of separation of variables
developed by J. Fourier in the 1820s and is based on expanding an arbitrary
function (including a constant) in terms of Fourier series. The method is applied
by assuming the dependent variable to be a product of a number of functions,
each being a function of a single independent variable. This reduces the partial
differential equation to a system of ordinary differential equations, each being a
function of a single independent variable. In the case of transient conduction in
a plane wall, for example, the dependent variable is the solution function (X, 7),
which is expressed as 0(X, 7) = F(X)G(7), and the application of the method
results in two ordinary differential equation, one in X and the other in 7.

The method is applicable if (1) the geometry is simple and finite (such as a rectan-
gular block, a cylinder, or a sphere) so that the boundary surfaces can be described
by simple mathematical functions, and (2) the differential equation and the bound-
ary and initial conditions in their most simplified form are linear (no terms that
involve products of the dependent variable or its derivatives) and involve only one
nonhomogeneous term (a term without the dependent variable or its derivatives). If
the formulation involves a number of nonhomogeneous terms, the problem can be
split up into an equal number of simpler problems each involving only one nonho-
mogeneous term, and then combining the solutions by superposition.

Now we demonstrate the use of the method of separation of variables by
applying it to the one-dimensional transient heat conduction problem given in

*This section can be skipped if desired without a loss of continuity.
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(a) Original heat conduction problem:

#T 1 T
——=———— e, O)=T
ox* a  ox . 0) !
aT(0, 1) -0,k JdT(L, t) — WL, 1) -T,]
ax ox

T=FxLtkahT,T.)

(b) Nondimensionalized problem:

2
00 _ 0 gx.0=1

ax> or
PO _, 90 7) - _pig(1, 7)
X ax
0 = (X, Bi, 7)
FIGURE 4-15

Nondimensionalization reduces

the number of independent variables in
one-dimensional transient conduction

problems from 8 to 3, offering great
convenience in the presentation
of results.
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Eqgs. 4-12. First, we express the dimensionless temperature function 6(X, 7)
as a product of a function of X only and a function of 7 only as

6(X, 1) = FX)G(T) 4-14)
Substituting Eq. 4-14 into Eq. 4-12a and dividing by the product FG gives
L 1o -
FdX*> Gdr

Observe that all the terms that depend on X are on the left-hand side of the equation
and all the terms that depend on 7 are on the right-hand side. That is, the terms that
are function of different variables are separated (and thus the name separation of
variables). The left-hand side of this equation is a function of X only and the right-
hand side is a function of only 7. Considering that both X and 7 can be varied inde-
pendently, the equality in Eq. 4-15 can hold for any value of X and 7 only if Eq. 415
is equal to a constant. Further, it must be a negative constant that we will indicate by
— A2 since a positive constant will cause the function G(7) to increase indefinitely with
time (to be infinite), which is unphysical, and a value of zero for the constant means
no time dependence, which is again inconsistent with the physical problem. Setting
Eq. 4-15 equal to —A? gives

%Jr/\ZF:o and fo—F)LZG:O (4-16)
whose general solutions are
F = C,cos(AX) + C,sin(AX) and G = Cye "7 @17
and
0 = FG = Cye ""[C,cos(AX) + C,sin(AX)] = e " [Acos(AX) + Bsin(AX)]

(4-18)

where A = C,C; and B = C,C; are arbitrary constants. Note that we need to
determine only A and B to obtain the solution of the problem.
Applying the boundary conditions in Eq. 4—12b gives

80(0, ’T) 2 . Y

X =0— —e M (AAsin0 + BAcosO0) = — B =0 — 0 = Ae *"cos(AX)
a0(1, 7) . s e .
e —Bif(1,7) - —Ae *"AsinA = —Bide *"cos A — Atan A = Bi

But tangent is a periodic function with a period of 7, and the equation
AtanA = Bi has the root A; between 0 and 7, the root A, between 7r and 27,
the root A, between (n—1)7 and n7r, etc. To recognize that the transcendental
equation A tan A = Bi has an infinite number of roots, it is expressed as

A tanA, = Bi (4-19)

Eq. 4-19 is called the characteristic equation or eigenfunction, and its
roots are called the characteristic values or eigenvalues. The characteristic
equation is implicit in this case, and thus the characteristic values need to be
determined numerically. Then it follows that there are an infinite number of
solutions of the form Ae *"cos(AX), and the solution of this linear heat con-
duction problem is a linear combination of them,

0= DA, Vcos(A,X) (4-20)
n=1



The constants A, are determined from the initial condition, Eq. 4-12c,

0X,00=1 — 1= > A,cos(\,X) (4-21)
n=1

This is a Fourier series expansion that expresses a constant in terms of an
infinite series of cosine functions. Now we multiply both sides of Eq. 4-21
by cos(A,,X), and integrate from X = 0 to X = 1. The right-hand side involves
an infinite number of integrals of the form [ écos(/\m)O cos(A,X)dx. It can be
shown that all of these integrals vanish except when n = m, and the coefficient

A, becomes

! ! 5 4sin A,

L cos (A, X)dX = A,,‘[) cos” (A, X)dX — A, = 20+ sin(2h) (4-22)

This completes the analysis for the solution of one-dimensional transient
heat conduction problem in a plane wall. Solutions in other geometries such
as a long cylinder and a sphere can be determined using the same approach.
The long cylinder approximation allows the assumption of one-dimensional
conduction in the radial direction. It is a reasonable approximation for cylin-
ders having length (L) to radius (r,) ratio, L/r, = 10. The results for all three
geometries are summarized in Table 4—1. The solution for the plane wall
is also applicable for a plane wall of thickness L whose left surface atx = 0 is
insulated and the right surface at x = L is subjected to convection since this is
precisely the mathematical problem we solved.

The analytical solutions of transient conduction problems typically involve
infinite series, and thus the evaluation of an infinite number of terms to deter-
mine the temperature at a specified location and time. This may look intimi-
dating at first, but there is no need to worry. As demonstrated in Fig. 4-16,
the terms in the summation decline rapidly as n and thus A, increases because
of the exponential decay function e ~*7. This is especially the case when the
dimensionless time 7 is large. Therefore, the evaluation of the first few terms
of the infinite series (in this case just the first term) is usually adequate to
determine the dimensionless temperature 6.

TABLE 4-1
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0,=A, N cos(A, X)
4sin A,
2A, + sin(2A,)
A tan A, =Bi
ForBi=5,X=1,andr=0.2:

n=

A A, 6,
13138 1.2402  0.22321
4.0336 03442 0.00835
6.9096  0.1588  0.00001
9.8928 —0.876 _ 0.00000

n

ENOSY [ O) Ll S

FIGURE 4-16

The term in the series solution of
transient conduction problems decline
rapidly as n and thus A, increases
because of the exponential decay
function with the exponent —A,,7.

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r,and a sphere of radius r, subjected to convention from

all surfaces.*

Geometry Solution A,’s are the roots of
PI I o= 4 sin 4, A Ax/L A, tan A, = Bi
ane wa = R —— P t =
Zl 2+ sinaay ¢ eos /L) w80 Ay = B
. X 2 Ji (A,) J (A
Cylinder 0= s o ¢ i) A, 1) g
n=1 )\n J() (/\n) + ‘]1 (/\n) JO ()\n)
e 4(sin A, — A, cos A,) sin (A, x/L)
Sphere 0= — AT 1—A, cot A, = Bi
P 21 20, — sin2r) ¢ A x/L n €O Ay = B

*Here @ = (T — T.)AT, — T.) is the dimensionless temperature, Bi = hL/k or hr, /k is the Biot number, Fo = 7 = at/L?

or ar/r? is the Fourier number, and J, and J; are the Bessel functions of the first kind whose values are given in Table 4-3.
Note that the characteristic length used for each geometry in the equations for the Biot and Fourier numbers is different for
the exact (analytical) solution than the one used for the lumped system analysis.
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Approximate Analytical and Graphical Solutions

The analytical solution obtained above for one-dimensional transient heat
conduction in a plane wall involves infinite series and implicit equations,
which are difficult to evaluate. Therefore, there is clear motivation to simplify
the analytical solutions and to present the solutions in tabular or graphical
form using simple relations.

The dimensionless quantities defined above for a plane wall can also be
used for a cylinder or sphere by replacing the space variable x by r and the
half-thickness L by the outer radius r, Note that the characteristic length in
the definition of the Biot number is taken to be the half-thickness L for the
plane wall, and the radius r, for the long cylinder and sphere instead of V/A
used in lumped system analysis.

We mentioned earlier that the terms in the series solutions in Table 4-1
converge rapidly with increasing time, and for 7 > 0.2, keeping the first term
and neglecting all the remaining terms in the series results in an error under
2 percent. We are usually interested in the solution for times with 7 > 0.2, and
thus it is very convenient to express the solution using this one-term approxi-
mation, given as

Tx,t) — T

Plane wall: 0yl = T -7 - Ale’)‘zf" cos (A\x/L), 7>0.2 (4-23)
I(r,t) — T, >

Cylinder: Oy = ﬁ = A e M7 Jy(\yrlry), > 0.2 (4-24)
I(r,t) — T, 2 sin(A r/r,)

sphere: = = p AT ! —

Sphere: O pn T — T Ae Arr, >0.2 (4-25)

where the constants A; and A, are functions of the Bi number only, and their
values are listed in Table 4-2 against the Bi number for all three geometries.
The function J, is the zeroth-order Bessel function of the first kind, whose
value can be determined from Table 4-3. Noting that cos (0) = J,(0) = 1 and
the limit of (sin x)/x is also 1, these relations simplify to the next ones at the
center of a plane wall, cylinder, or sphere:

T,— T, 2

Center of plane wall (x = 0): 00 wan = 7-0,77— =Ae 1T (4-26)
T‘(J o T’x 2

Center of cylinder (r = 0): 0o, ey = ﬁ = A MiT (4-27)
. T‘(i - T\‘ 2

Center of sphere (r = 0): 0o, spn = ﬁ =Ae Mi" (4-28)

(o)

Comparing the two sets of equations above, we notice that the dimensionless
temperatures anywhere in a plane wall, cylinder, and sphere are related to the
center temperature by

0 Ax\ 6. A 0, sin(A,r/r,
_wall cos(—l>, N 10(71), and L Wyr/r,) (4-29)

6o, wan L J 0y cp Ty 6o, sph AT,

which shows that time dependence of dimensionless temperature within a
given geometry is the same throughout. That is, if the dimensionless center
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TABLE 4-2 TABLE 4-3
Coefficients used in the one-term approximate solution of transient one- The zeroth- and first-order Bessel
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hl/k functions of the first kind
fora plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of n Jolm) Jy(m)
radius r,)
, 0.0 1.0000 0.0000
Plane Wall Cy//nder Sphere 0.1 0.9975 0.0499
Bi A A M A A A 0.2 0.9900 0.0995
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030 0.3 0.9776 0.1483
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060 0.4 0.9604 0.1960
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179 0.5 0.9385 0.2423
0.08 02791 1.0130 0.3960 1.0197 0.4860  1.0239 0.6 0.9120 0.2867
0.1 0.3111 1.0161 0.4417 1.0246 0.5423  1.0298 0.7 0.8812 0.3290
0.2 04328 1.0311 0.6170 1.0483 0.7593  1.0592 0.8 0.8463 0.3688
0.3 0.5218 1.0450 0.7465 1.0712 0.9208  1.0880 0.9 0.8075 0.4059
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
05 06533 1.0701 009408 1.1143 1.1656 1.1441 }(1) 8'3?22 8'1‘;88
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713 15 06711 04983
0.7 0.7506  1.0918 1.0873 1.1539 1.3525 1.1978 13 06201 05220
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236 L 05669 05419

0.9 0.8274 1.1107 1.2048  1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558  1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384  2.0288 1.4793

1.5 0.5118 0.5579
1.
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227 1
1
1

0.4554 0.5699
0.3980 0.5778

6
7
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202 8 0.3400 0.5815
9
0
1

5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479  2.0490 1.56253 2.6537 1.8338

0.2818 0.5812

7.0 1.3766 1.25632  2.0937 1.5411 2.7165 1.8673 2. 0.2239 0.5767
8.0 1.3978 1.2570  2.1286 1.6526  2.7654 1.8920 2. 0.1666 0.5683
9.0 1.4149 1.2598  2.1566 1.5611 2.8044 1.9106 2.2 0.1104 0.5560
10.0 1.4289 1.2620 2.1795 1.5677  2.8363 1.9249 2.3 0.0555 0.5399
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781 2.4 0.0025 0.5202
30.0 1.5202 1.2717  2.3261 1.6973  3.0372 1.9898
40.0 1.56325 1.2723  2.3455 1.5993  3.0632 1.9942 2.6 —0.0968 0.4708
50.0 1.5400 1.2727  2.3572 1.6002  3.0788 1.9962 2.8 —0.1850 0.4097
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990 3.0 —0.2601 0.3391
© 1.5708 1.2732  2.4048 1.6021 3.1416  2.0000 3.2 -0.3202 0.2613

temperature 6, drops by 20 percent at a specified time, so does the dimension-
less temperature 6, anywhere else in the medium at the same time.

Once the Bi number is known, these relations can be used to determine the
temperature anywhere in the medium. The determination of the constants A,
and A, usually requires interpolation. For those who prefer reading charts to
interpolating, these relations are plotted and the one-term approximation solu-
tions are presented in graphical form, known as the transient temperature charts.
Note that the charts are sometimes difficult to read, and they are subject to
reading errors. Therefore, the relations above should be preferred to the charts.

The transient temperature charts in Figs. 4-17, 4-18, and 4-19 for a large
plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947
and are called Heisler charts. They were supplemented in 1961 with transient
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(a) Midplane temperature. T, Initially
From M. P. Heisler, “Temperature Charts for Induction and Constant Temperature Heating,” h T=g T;
Trans. ASME 69, 1947, pp. 227-36. Reprinted by permission of ASME International. 0
0 _ T-T, [0) [—2L
00 - TO -T. Qmax I
L0 P S A T Lo i 7
0.9 HHH MRl 0.9 Bi = hL/k / / / /
L1 04 Ll 7 / / 7 / 1
0.8 - 0.8 7 7 / /
0.7 / 0.7 / / / /
T el : BAW A11 11/ 8TV ATV / /
0.6 0.6 e
SIS aed A T
05 05 SOOI LT [ S LU~ oy I~y |«
L // / // sy : /
0.4 084 0.4 ) 7 i 7 7
03 -l 03 / / AL/ /
0.2 -+ ‘%‘/ 0.2 / / /
T I LA
0.11.0 0.1 b o H i f i
o [THT Plate 0 R e e | e | Fe = Plate
0.01 0.1 1.0 10 100 107 1074 1073 1072 107! 1 10 10? 10° 10*
1k Bi’r = Pat/k?
Bi = AL

(b) Temperature distribution.

From M. P. Heisler, “Temperature Charts for
Induction and Constant Temperature Heating,”
Trans. ASME 69, 1947, pp. 227-36. Reprinted
by permission of ASME International.

FIGURE 4-17

(c) Heat transfer.
From H. Grober et al.

Transient temperature and heat transfer charts for a plane wall of thickness 2L initially at a uniform temperature 7;
subjected to convection from both sides to an environment at temperature 7., with a convection coefficient of 4.
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Transient temperature and heat transfer charts for a long cylinder of radius 7, initially at a uniform temperature 7;
subjected to convection from all sides to an environment at temperature 7., with a convection coefficient of /.
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FIGURE 4-19
Transient temperature and heat transfer charts for a sphere of radius r, initially at a uniform temperature 7; subjected to
convection from all sides to an environment at temperature 7., with a convection coefficient of A.



heat transfer charts by H. Grober. There are three charts associated with each
geometry: the first chart is to determine the temperature 7, at the center of the
geometry at a given time 7. The second chart is to determine the temperature
at other locations at the same time in terms of 7,,. The third chart is to deter-
mine the total amount of heat transfer up to the time 7. These plots are valid
for 7 > 0.2.

Note that the case 1/Bi = k/hL = 0 corresponds to & — o, which corresponds
to the case of specified surface temperature T,,. That is, the case in which the
surfaces of the body are suddenly brought to the temperature 7., at t = 0 and
kept at 7., at all times can be handled by setting A to infinity (Fig. 4-20).

The temperature of the body changes from the initial temperature 7; to the
temperature of the surroundings 7, at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
T;> T.,) is simply the change in the energy content of the body. That is,

Qmux = Incp(Tx o T/) = [)V(,'P(Tl o Tl) (kJ) (4_30)

where m is the mass, Vis the volume, p is the density, and ¢, is the specific heat
of the body. Thus, Q,,.« represents the amount of heat transfer for t — oo.
The amount of heat transfer Q at a finite time ¢ is obviously less than this
maximum, and it can be expressed as the sum of the internal energy changes
throughout the entire geometry as

0= jpcp[T(x,t) ~ T1dV 4-31)
v

where T(x, t) is the temperature distribution in the medium at time 7. Assum-
ing constant properties, the ratio of Q/Q,,,, becomes

0 _ Jope,lTln) — TNV ¢ J(l v ws)
Onmax pe(T,, — THV Vi
Using the appropriate nondimensional temperature relations based on the one-
term approximation for the plane wall, cylinder, and sphere, and performing
the indicated integrations, we obtain the following relations for the fraction of
heat transfer in those geometries:

0 sin A,
Plane wall: — =1-=0) gy — (4-33)
Qmux wall )\|
. 0 ) Ji(ApD
Cylinder: < =1-20g o —— (4-34)
Qmux cyl e /\]
0 sin A; — A cos A,
Sphere: =1-=30) jh ———F (4-35)
Qmux sph )\;

These Q/Q...x ratio relations based on the one-term approximation are also
plotted in Figures 4-17¢, 4-18c, and 4-19¢, against the variables Bi and /?at/k* for
the large plane wall, long cylinder, and sphere, respectively. Note that once
the fraction of heat transfer Q/Q,.. has been determined from these charts or
equations for the given #, the actual amount of heat transfer by that time can
be evaluated by multiplying this fraction by Q,.... A negative sign for Q.
indicates that the body is rejecting heat (Fig. 4-21).
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(a) Finite convection coefficient

(b) Infinite convection coefficient

FIGURE 4-20

The specified surface

temperature corresponds to the case
of convection to an environment at
T, with a convection coefficient &
that is infinite.
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(Grober chart)
(b) Actual heat transfer for time ¢
FIGURE 4-21

The fraction of total heat transfer
O/Q,nax Up to a specified time 7 is
determined using the Grober charts.

Qconducted

b’

Qsmred

ot _ Qconducted

Fourier number: 7 ==—
LZ

Qstored

FIGURE 4-22

Fourier number at time ¢ can be
viewed as the ratio of the rate of heat
conducted to the rate of heat stored
at that time.

The use of the Heisler/Grober charts and the one-term solutions already dis-
cussed is limited to the conditions specified at the beginning of this section:
the body is initially at a uniform temperature, the temperature of the medium
surrounding the body and the convection heat transfer coefficient are constant
and uniform, and there is no heat generation in the body.

We discussed the physical significance of the Biot number earlier and indi-
cated that it is a measure of the relative magnitudes of the two heat transfer
mechanisms: convection at the surface and conduction through the solid. A small
value of Bi indicates that the inner resistance of the body to heat conduction is
small relative to the resistance to convection between the surface and the fluid.
As aresult, the temperature distribution within the solid becomes fairly uniform,
and lumped system analysis becomes applicable. Recall that when Bi < 0.1, the
error in assuming the temperature within the body to be uniform is negligible.

To understand the physical significance of the Fourier number 7 (or Fo),
we express it as (Fig. 4-22)

The rate at which heat is conducted

across a body of thikness L and
at kL?* (1/L) AT _ normal area I? (and thus volume L?)

TT T pe, it AT

The rate at which heat is stored (4-36)

in a body of volume L

Therefore, the Fourier number is a measure of heat conducted through a body
relative to heat stored. Thus, a large value of the Fourier number indicates
faster propagation of heat through a body.

Perhaps you are wondering about what constitutes an infinitely large plate or
an infinitely long cylinder. After all, nothing in this world is infinite. A plate
whose thickness is small relative to the other dimensions can be modeled as an
infinitely large plate, except very near the outer edges. But the edge effects on
large bodies are usually negligible, and thus a large plane wall such as the wall
of a house can be modeled as an infinitely large wall for heat transfer purposes.
Similarly, a long cylinder whose diameter is small relative to its length can be
analyzed as an infinitely long cylinder. The use of the transient temperature
charts and the one-term solutions is illustrated in Examples 4-3, 44, and 4-5.

EXAMPLE 4-3 Boiling Eggs

An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 4-23).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be h =
1200 W/m2-K, determine how long it will take for the center of the egg to
reach 70°C.

SOLUTION An egg is cooked in boiling water. The cooking time of the egg is
to be determined.

Assumptions 1 The egg is spherical in shape with a radius of r, = 2.5 cm.
2 Heat conduction in the egg is one-dimensional because of thermal symmetry
about the midpoint. 3 The thermal properties of the egg and the heat transfer
coefficient are constant. 4 The Fourier number is 7 > 0.2 so that the one-term
approximate solutions are applicable.



Properties The water content of eggs is about 74 percent, and thus the ther-
mal conductivity and diffusivity of eggs can be approximated by those of water
at the average temperature of (5 + 70)/2 = 37.5°C; k = 0.627 W/m-K and
a = klpc, = 0.151 X 10% m%s (Table A-9).

Analysis Egg white begins to thicken at 63°C and turns solid at 65°C. The
yolk begins to thicken at 65°C and sets at 70°C. The whole egg sets at temper-
atures above 70°C. Therefore, the egg in this case will qualify as hard boiled.
The temperature within the egg varies with radial distance as well as time,
and the temperature at a specified location at a given time can be determined
from the Heisler charts or the one-term solutions. Here we use the latter to
demonstrate their use. The Biot number for this problem is

- hr, (1200 W/m>K)(0.025 m) s
T T 0.627 W/m-K -

which is much greater than 0.1, and thus the lumped system analysis is not
applicable. The coefficients A; and A; for a sphere corresponding to this Bi
are, from Table 4-2,

A, =3.0754, A, = 1.9958

Substituting these and other values into Eq. 4-28 and solving for 7 gives

Iy - T, 2 70 — 95

T o7 = AT o o e = 19958 CUSYT —— 7= 0,209

which is greater than 0.2, and thus the one-term solution is applicable with
an error of less than 2 percent. Then the cooking time is determined from the
definition of the Fourier number to be

_7ry (0.209)(0.025 m)*
T a 0151 X 10 °m?s

= 865 s = 14.4 min

Therefore, it will take about 15 min for the center of the egg to be heated from
5°C to 70°C.
Discussion Note that the Biot number in lumped system analysis was defined
differently as Bi = hL./k = h(r,/3)/k. However, either definition can be used in
determining the applicability of the lumped system analysis unless Bi = 0.1.
Also note that the cooking time depends on many parameters such as the size
of the egg, its temperature before cooking, the boiling temperature of water (and
thus altitude), the heat transfer coefficient (and thus the level of bubble motion
during boiling). Therefore, there is a considerable amount of science or a good
amount of experience behind boiling eggs to the correct amount of doneness.

EXAMPLE 4-4 Heating of Brass Plates in an Oven

In a production facility, large brass plates of 4-cm thickness that are initially
at a uniform temperature of 20°C are heated by passing them through an oven
that is maintained at 500°C (Fig. 4—-24). The plates remain in the oven for a
period of 7 min. Taking the combined convection and radiation heat transfer
coefficient to be h = 120 W/m?-K, determine the surface temperature of the
plates when they come out of the oven.
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h=1200 W/m*K
T,=95°C

FIGURE 4-23
Schematic for Example 4-3.

T, =500°C
h =120 W/m2K
P
_7 |2L=4cm
Brass
plate
T;=20°C
FIGURE 4-24

Schematic for Example 4-4.
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SOLUTION Large brass plates are heated in an oven. The surface temperature
of the plates leaving the oven is to be determined.

Assumptions 1 Heat conduction in the plate is one-dimensional since the
plate is large relative to its thickness and there is thermal symmetry about
the center plane. 2 The thermal properties of the plate and the heat transfer
coefficient are constant. 3 The Fourier number is 7 > 0.2 so that the one-term
approximate solutions are applicable.

Properties The properties of brass at room temperature are k = 110 W/m-K,
p = 8530 kg/m3, ¢, = 380 J/kg-K, and a« = 33.9 X 107 m?/s (Table A-3).
More accurate results are obtained by using properties at average temperature.
Analysis The temperature at a specified location at a given time can be deter-
mined from the Heisler charts or one-term solutions. Here we use the charts to
demonstrate their use. Noting that the half-thickness of the plate is L = 0.02 m,
from Fig. 4-17 we have

1k 110 W/m-K _ 4sg
Bi AL (120 W/m*K)(0.02 m) ’ T T
== 046
(339 X 10°m¥s)(7 X 60s) 356 I, - T,
T T (0.02 m)? -
Also,
1 k
E = E =458
T-T,
—= =0.99
£ _ é =1 TO - TOO
L L
Therefore,
=i, T m-m B
T—T. T, -T.T -T. - 0.46 X 0.99 = 0.455
and

T=T,+ 0455, — T..) = 500 + 0.455(20 — 500) = 282°C

Therefore, the surface temperature of the plates will be 282°C when they leave
the oven.
Discussion We notice that the Biot number in this case is Bi = 1/45.8 = 0.022,
which is much less than 0.1. Therefore, we expect the lumped system analysis to
be applicable. This is also evident from (T — T.)/(Ty — T.) = 0.99, which indi-
cates that the temperatures at the center and the surface of the plate relative to
the surrounding temperature are within 1 percent of each other. Noting that the
error involved in reading the Heisler charts is typically a few percent, the lumped
system analysis in this case may yield just as accurate results with less effort.
The heat transfer surface area of the plate is 2A, where A is the face area of
the plate (the plate transfers heat through both of its surfaces), and the volume
of the plate is V = (2L)A, where L is the half-thickness of the plate. The expo-
nent b used in the lumped system analysis is

e hA;,  hRA)  p
B pc,V B pc, (2LA) " pc,L

P

120 W/m?-K

= =0.00185 57!
(8530 kg/m*)(380 J/kg-K)(0.02 m) s
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Then the temperature of the plate at t = 7 min = 420 s is determined from

T0) ~ T, = bt T'(®) — 500 = (000185 57)4205)
T, — T, 20 — 500
It yields
T(@t)=279°C

which is practically identical to the result obtained above using the Heisler
charts. Therefore, we can use lumped system analysis with confidence when
the Biot number is sufficiently small.

T..=200°C

EXAMPLE 4-5 Cooling of a Long Stainless Steel )
h'=80 W/m2-K

Cylindrical Shaft

Stainless steel

A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes shaft

out of an oven at a uniform temperature of 600°C (Fig. 4-25). The shaft is . : . .

then allowed to cool slowly in an environment chamber at 200°C with an aver- T; = 600°C D=20cm

age heat transfer coefficient of h = 80 W/m?-K. Determine the temperature

at the center of the shaft 45 min after the start of the cooling process. Also, FIGURE 4-25
determine the heat transfer per unit length of the shaft during this time period. Schematic for Example 4-5.

SOLUTION A long cylindrical shaft is allowed to cool slowly. The center tem-
perature and the heat transfer per unit length are to be determined.
Assumptions 1 Heat conduction in the shaft is one-dimensional since it is
long and it has thermal symmetry about the centerline. 2 The thermal proper-
ties of the shaft and the heat transfer coefficient are constant. 3 The Fourier
number is 7 > 0.2 so that the one-term approximate solutions are applicable.
Properties The properties of stainless steel 304 at room temperature are
k= 14.9 W/m-K, p = 7900 kg/m3, c,= 477 J/kg-K, and & = 3.95 X 1076
m?/s (Table A-3). More accurate results can be obtained by using properties
at average temperature.

Analysis The temperature within the shaft may vary with the radial distance r
as well as time, and the temperature at a specified location at a given time can
be determined from the Heisler charts. Noting that the radius of the shaft is
r,= 0.1 m, from Fig. 4-18a we have

1k 49 WmK o
Bi hr, (80 Wm2K)0.1lm) Iy — T,
ar _ (395 X 10 m¥s)(45 X 605) _ I - T,

T (0.1 m)?

and
Ty =T, + 0.4T;, — T.,) = 200 + 0.4(600 — 200) = 360°C

Therefore, the center temperature of the shaft drops from 600°C to 360°C in
45 min.

. __________________________________________________________________________BEE EEREREBEEENN,]
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To determine the actual heat transfer, we first need to calculate the maxi-
mum heat that can be transferred from the cylinder, which is the sensible
energy of the cylinder relative to its environment. Taking L = 1 m,

m = pV = pmr? L= (7900 kg/m*)7(0.1 m)*(1 m) = 248.2 kg
O = me,(T, — T.)) = (248.2 kg)(0.477 kI/kg-K)(600 — 200)°C
= 47,350 kJ

The dimensionless heat transfer ratio is determined from Fig. 4-18c for a long
cylinder to be

1 1
I = —— = —— = 55y
=BT 1se 03
hat
k2

2 = 0.62
Qmax

= Bi*r = (0.537)%(1.07) = 0.309

Therefore,

0 = 0.620,,.« = 0.62 X (47,350 kJ) = 29,360 kJ
which is the total heat transfer from the shaft during the first 45 min of the
cooling.

Alternative solution We could also solve this problem using the one-term
solution relation instead of the transient charts. First we find the Biot number
hr, (80 W/m?-K)(0.1 m)

Bi=— = Taowmx 97

The coefficients A; and A; for a cylinder corresponding to this Bi are deter-
mined from Table 4-2 to be

A =0970, A, =1.122

Substituting these values into Eq. 4-27 gives

T, — T 2 §
0y =7 = Ae 7= 1.122¢" 05000 = 0.41

and thus
Ty,=T.+ 041(T;, — T..) = 200 + 0.41(600 — 200) = 364°C
The value of Ji(A;) for A; = 0.970 is determined from Table 4-3 to be
0.430. Then the fractional heat transfer is determined from Eq. 4-34 to be

o Ji(A) 0430
0.~ 1 — 26, N - 1 =2 X041 5570 = 0.636

and thus
0 = 0.6360,,,, = 0.636 X (47,350 kJ) = 30,120 kJ

Discussion The slight difference between the two results is due to the reading
error of the charts.



4-3 = TRANSIENT HEAT CONDUCTION
IN SEMI-INFINITE SOLIDS

A semi-infinite solid is an idealized body that has a single plane surface and
extends to infinity in all directions, as shown in Figure 4-26. This idealized
body is used to indicate that the temperature change in the part of the body in
which we are interested (the region close to the surface) is due to the thermal
conditions on a single surface. The earth, for example, can be considered to
be a semi-infinite medium in determining the variation of temperature near its
surface. Also, a thick wall can be modeled as a semi-infinite medium if all we
are interested in is the variation of temperature in the region near one of the
surfaces, and the other surface is too far to have any impact on the region of
interest during the time of observation. The temperature in the core region of
the wall remains unchanged in this case.

For short periods of time, most bodies can be modeled as semi-infinite sol-
ids since heat does not have sufficient time to penetrate deep into the body,
and the thickness of the body does not enter into the heat transfer analysis. A
steel piece of any shape, for example, can be treated as a semi-infinite solid
when it is quenched rapidly to harden its surface. A body whose surface is
heated by a laser pulse can be treated the same way.

Consider a semi-infinite solid with constant thermophysical properties, no
internal heat generation, uniform thermal conditions on its exposed surface,
and initially a uniform temperature of 7;throughout. Heat transfer in this case
occurs only in the direction normal to the surface (the x direction), and thus it
is one-dimensional. Differential equations are independent of the boundary or
initial conditions, and thus Eq. 4-10a for one-dimensional transient conduc-
tion in Cartesian coordinates applies. The depth of the solid is large (x — )
compared to the depth that heat can penetrate, and these phenomena can be
expressed mathematically as a boundary condition as T(x — %, 1) = T;.

Heat conduction in a semi-infinite solid is governed by the thermal condi-
tions imposed on the exposed surface, and thus the solution depends strongly
on the boundary condition at x = 0. Below we present a detailed analytical
solution for the case of constant temperature 7 on the surface, and give the
results for other more complicated boundary conditions. When the surface
temperature is changed to 7, at + = 0 and held constant at that value at all
times, the formulation of the problem can be expressed as

Differential i P*T 14T @372

ifferential equation: — = —— a
1 o« ar

Boundary conditions: T0,1) = T, and T(x —>o0,t) = T, (4-37h)

Initial condition: T(x,0) = T, (4-37¢)

The separation of variables technique does not work in this case since the
medium is infinite. But another clever approach that converts the partial differ-
ential equation into an ordinary differential equation by combining the two inde-
pendent variables x and ¢ into a single variable n), called the similarity variable,
works well. For transient conduction in a semi-infinite medium, it is defined as

X

Similarity variable: n = (4-38)

dat
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FIGURE 4-26
Schematic of a semi-infinite body.
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FIGURE 4-27

Transformation of variables in the
derivatives of the heat conduction
equation by the use of chain rule.
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FIGURE 4-28

Error function is a standard

mathematical function, just like the
sinus and tangent functions, whose

value varies between 0 and 1.

3.0

Assuming T = T(n) (to be verified) and using the chain rule, all derivatives
in the heat conduction equation can be transformed into the new variable, as
shown in Fig. 4-27. Noting that m = 0 at x = 0 and n — % as x — % (and also
at t = 0) and substituting into Eqs. 4-37 give, after simplification,

il a1 (4-39a)
el _ 5 4 3
dn? de

T0) =T, and T(m—o0) =T, (4-39h)

Note that the second boundary condition and the initial condition result in the
same boundary condition. Both the transformed equation and the boundary
conditions depend on 1 only and are independent of x and ¢. Therefore, trans-
formation is successful, and 7 is indeed a similarity variable.

To solve the 2nd order ordinary differential equation in Egs. 4-39, we
define a new variable w as w = dT/dn. This reduces Eq. 4-39a into a first
order differential equation than can be solved by separating variables,

dw )
— = 2nw — S —2mdn — lnw= -1+ C,—>w=Ce "
where C; = In C,,. Back substituting w = d7/dn and integrating again,
n 2
T= CIJ e " du+ C, (4-40)
0

where u is a dummy integration variable. The boundary condition at n = 0
gives C, = T, and the one for n — % gives

e du+ C,=C—+Tg - C, =———F—— (4-41)

Tizclf \2; (L\/*S)
0 o

Substituting the C, and C, expressions into Eq. 4-40 and rearranging, the
variation of temperature becomes

T — Ts 2 K 2
=——| e “du=erf(n) =1 — erfc(n) (4-42)
o

Ti_ T.r \/’7;

where the mathematical functionsrom

2 K —u? 2 K —u?
erf(n) = 7J e du and erfc(n) =1 —erf(n) =1 — 7J e du (4-43)
o 0

Va Va

are called the error function and the complementary error function,
respectively, of argument n (Fig. 4-28). Despite its simple appearance, the
integral in the definition of the error function cannot be performed analyti-
cally. Therefore, the function erfc(n) is evaluated numerically for different
values of 7, and the results are listed in Table 4-4.
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TABLE 4-4

The complementary error function

7 erfc (n) Ul erfc (n) i erfc (n) n erfc () n erfc (n) n erfc (n)

0.00 1.00000 | 0.38 0.5910 |0.76 0.2825 | 1.14 0.1069 1.52 0.03159 |1.90 0.00721
0.02 0.9774 0.40 0.5716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 |1.92 0.00662
0.04 0.9549 0.42 0.5525 | 0.80 0.2579 | 1.18 0.09516 | 1.56 0.02737 | 1.94 0.00608
0.06 0.9324 0.44 0.5338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557
0.08 0.9099 0.46 0.5153 | 0.84 0.2349 |1.22 0.08447 | 1.60 0.02365 | 1.98 0.00511
0.10 0.8875 0.48 0.4973 | 0.86 0.2239 |1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 |0.88 0.2133 |1.26 0.07476 | 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 0.4621 | 0.90 0.2031 |1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16  0.8210 0.54 0.4451 |0.92 0.1932 | 1.30 0.06599 | 1.68 0.01751 |2.30 0.00114
0.18 0.7991 0.56 0.4284 | 0.94 0.1837 |1.32 0.06194 | 1.70 0.01612 | 2.40 0.00069
0.20 0.7773 0.58 0.4121 | 0.96 0.1746 | 1.34 0.05809 | 1.72 0.01500 | 2.50 0.00041
0.22  0.7557 0.60 0.3961 | 0.98 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 |1.00 0.1573 |1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
0.26 0.7131 0.64 0.3654 |1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 |2.80 0.00008
0.28 0.6921 0.66 0.3506 | 1.04 0.1413 |1.42 0.04462 | 1.80 0.01091 |2.90 0.00004
0.30 0.6714 0.68 0.3362 |1.06 0.1339 |1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 0.3222 | 1.08 0.1267 |1.46 0.03895 | 1.84 0.00926 |3.20 0.00001
0.34 0.6306 0.72 0.3086 |1.10 0.1198 |1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36 0.6107 0.74 0.2953 |1.12 0.1132 | 1.50 0.03390 | 1.88 0.00784 | 3.60 0.00000

Knowing the temperature distribution, the heat flux at the surface can be
determined from the Fourier’s law to be

kaT dT am Coo-T 1 KT, — T) (aaa)
g, = —k—| =-k_——| = —kCe =——" (444
x|, —g dn dx =0 ! Vdatly=0 V mrat

The solutions in Eqs. 4-42 and 4-44 correspond to the case when the tem-
perature of the exposed surface of the medium is suddenly raised (or lowered) 77,
to T, at t = 0 and is maintained at that value at all times. The specified surface 1,0 ; ; ; .

temperature case is closely approximated in practice when condensation or N -
boiling takes place on the surface. Using a similar approach or the Laplace 08
transform technique, analytical solutions can be obtained for other boundary 06 i j
conditions on the surface, with the following results. L |
/\ erfc(n)
0.4
Case 1: Specified Surface Temperature, 7, = constant (Fig. 4-29). - \ —
0.2
Ttx,n — T, x KT, — T) 0.0 L1 L \\u
— = erfc and éls(t) = (4-45) 0.0 0.5 1.0 1.5 2.0
T, - T, 2V at Tat =X
A at
Case 2: Specified Surface Heat Flux, ¢, = constant. FIGURE 4-29
Dimensionless temperature
distribution for transient conduction
4| [4dat X " x in a semi-infinite solid whose
Ten) = T; = k a P\ ) 2V at (4-46) surface is maintained at a constant

temperature 7
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Case 3: Convection on the Surface, ¢ (t) = h[T., — T(0, ?)].

= erfc - + +

Teot) — T, x| exp(hx hzar>erfc x N ar
T.- T, 2Vt k& 2V at k

(4-47)

Case 4: Energy Pulse at Surface, ¢, = constant.

Energy in the amount of e, per unit surface area (in J/m?) is supplied to
the semi-infinite body instantaneously at time ¢t = 0 (by a laser pulse, for
example), and the entire energy is assumed to enter the body, with no heat
loss from the surface.

Tx,n) =T, = (4-48)

Ve i)
5 x| =2
Warida T\ dat

Note that Cases 1 and 3 are closely related. In Case 1, the surface x = 0 is
brought to a temperature 7, at time ¢ = 0, and kept at that value at all times. In
Case 3, the surface is exposed to convection by a fluid at a constant tempera-
ture T,, with a heat transfer coefficient 4.

The solutions for all four cases are plotted in Fig. 4-30 for a representative
case using a large cast iron block initially at 0°C throughout. In Case 1, the
surface temperature remains constant at the specified value of 7, and tem-
perature increases gradually within the medium as heat penetrates deeper into
the solid. Note that during initial periods only a thin slice near the surface is
affected by heat transfer. Also, the temperature gradient at the surface and
thus the rate of heat transfer into the solid decreases with time. In Case 2,
heat is continually supplied to the solid, and thus the temperature within the
solid, including the surface, increases with time. This is also the case with
convection (Case 3), except that the surrounding fluid temperature 7, is the
highest temperature that the solid body can rise to. In Case 4, the surface is
subjected to an instant burst of heat supply at time ¢ = 0, such as heating by
a laser pulse, and then the surface is covered with insulation. The result is an
instant rise in surface temperature, followed by a temperature drop as heat is
conducted deeper into the solid. Note that the temperature profile is always
normal to the surface at all times. (Why?)

The variation of temperature with position and time in a semi-infinite solid
subjected to convection heat transfer is plotted in Fig. 4-31 for the nondi-
mensionalized temperature against the dimensionless similarity variable
1 = x/V4at for various values of the parameter 1\ az/ k. Although the
graphical solution given in Fig. 4-31 is simply a plot of the exact analyti-
cal solution, it is subject to reading errors, and thus is of limited accuracy
compared to the analytical solution. Also, the values on the vertical axis of
Fig. 4-31 correspond to x = 0, and thus represent the surface temperature.
The curve h'Vat / k = o corresponds to i — o, which corresponds to the case
of specified temperature T, at the surface at x = 0. That is, the case in which
the surface of the semi-infinite body is suddenly brought to temperature 7., at
t = 0 and kept at T,, at all times can be handled by setting 4 to infinity. For a
finite heat transfer coefficient 4, the surface temperature approaches the fluid
temperature 7,, as the time ¢ approaches infinity.



265
CHAPTER 4

100 100

80 80

60 60 &
o 1 Sh ©
S 40 il \ =
i 05h ]
20\ 0.1h 1 20
F0.01 h\_‘ -
0 N1y . 1 0
0 0.2 0.4 0.6 0.8 1 02 04 0.6 0.8
/-> Distance from surface x, m /-> Distance from surface x, m
. T,=0°C _ , T,=0°C
T, =100°C 4, =7000 W/m
(a) Specified surface temperature, 7= constant (b) Specified surface heat flux, ¢,=constant
100 100
80 80
60 60
© o
& 40 &40
20 20
0 0
0.2 0. 0.6 0.8 2 0.4 0.6 0.8
F’ Distance from surface x, m /—> Distance from surface x, m
— 0o T;,=0°C
h 2?5 ;vl/og 12 Lo e,=1.7x107J/m* :
= m2-
(c¢) Convection at the surface (d) Energy pulse at the surface, e, = constant

FIGURE 4-30

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 1075 m?/s,
k = 80.2 W/m:-K) initially at 0 °C under different thermal conditions on the surface.

Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at uniform temperatures 7 ;and Tp;
are brought into contact, they instantly achieve temperature equality at the
contact surface (temperature equality is achieved over the entire surface if
the contact resistance is negligible). If the two bodies are of the same mate-
rial with constant properties, thermal symmetry requires the contact surface
temperature to be the arithmetic average, T, = (T,,; + Tp,)/2 and to remain
constant at that value at all times.
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FIGURE 4-31
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Variation of temperature with position and time in a semi-infinite solid initially at temperature 7; subjected to convection
to an environment at 7, with a convection heat transfer coefficient of / (plotted using EES).

FIGURE 4-32
Contact of two semi-infinite solids of
different initial temperatures.

If the bodies are of different materials, they still achieve a temperature
equality, but the surface temperature 7 in this case will be different than
the arithmetic average. Noting that both bodies can be treated as semi-infinite
solids with the same specified surface temperature, the energy balance on the
contact surface gives, from Eq. 445,

, . ko(Tg = Ty kg(Ty = Ty Ty, — T, (kpc,)p
G54 = 458 =~ = g =/
! ! V mo,t V ot T, — T, (kpc,),

Then Tis determined to be (Fig. 4-32)

T — \/MTAJ + \/mTB,i
\/(kpcp)A + \/(kpcp)s

(4-49)

Therefore, the interface temperature of two bodies brought into contact is
dominated by the body with the larger kpc,,. This also explains why a metal
at room temperature feels colder than wood at the same temperature. At room
temperature, the Vkpc, value is 24 kJ/m*K for aluminum, 0.38 kJ/m*K for
wood, and 1.1 kJ/m?K for the human flesh. Using Eq. 449, it can be shown
that when a person with a skin temperature of 35°C touches an aluminum
block and then a wood block both at 15°C, the contact surface temperature
will be 15.9°C in the case of aluminum and 30°C in the case of wood.



EXAMPLE 4-6 Minimum Burial Depth of Water Pipes
to Avoid Freezing

In areas where the air temperature remains below 0°C for prolonged periods
of time, the freezing of water in underground pipes is a major concern. For-
tunately, the soil remains relatively warm during those periods, and it takes
weeks for the subfreezing temperatures to reach the water mains in the ground.
Thus, the soil effectively serves as an insulation to protect the water from sub-
freezing temperatures in winter.

The ground at a particular location is covered with snow pack at —10°C for
a continuous period of three months, and the average soil properties at that
location are k = 0.4 W/m-K and @ = 0.15 X 10-® m?%s (Fig. 4-33). Assuming
an initial uniform temperature of 15°C for the ground, determine the minimum
burial depth to prevent the water pipes from freezing.

SOLUTION The water pipes are buried in the ground to prevent freezing. The
minimum burial depth at a particular location is to be determined.
Assumptions 1 The temperature in the soil is affected by the thermal condi-
tions at one surface only, and thus the soil can be considered to be a semi-
infinite medium. 2 The thermal properties of the soil are constant.

Properties The properties of the soil are as given in the problem statement.
Analysis The temperature of the soil surrounding the pipes will be 0°C after
three months in the case of minimum burial depth. Therefore, from Fig. 4-31,
we have

WV at

= (since h — o0)
k - 2 _ 036
Twn =T, _ 0-15 _ " N
T —-T  —-10-15

We note that
t = (90 days)(24 h/day)(3600 s/h) = 7.78 X 10°s

and thus

x=2nVar =2 X 036V (0.15 X 105 m¥s)(7.78 X 10°s) = 0.78 m

Therefore, the water pipes must be buried to a depth of at least 78 cm to avoid
freezing under the specified harsh winter conditions.

ALTERNATIVE SOLUTION The solution of this problem could also be deter-
mined from Eq. 4-45:

—r 7 = a v=1 = erfc ~r
LT, 2V at —10-15 2V at

The argument that corresponds to this value of the complementary error func-
tion is determined from Table 4-4 to be = 0.37. Therefore,

= 0.60

x=29Var =2 X 037V(0.15 X 107 m¥s)(7.78 X 10°s) = 0.80 m

Again, the slight difference is due to the reading error of the chart.

267
CHAPTER 4

,T=-10°C

Watér pipe <«—

Crmive

FIGURE 4-33
Schematic for Example 4-6.
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FIGURE 4-34
Schematic for Example 4-7.
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FIGURE 4-35

Variation of temperature within
the wood and aluminum blocks at
t = 20 min.

EXAMPLE 4-7 Surface Temperature Rise of Heated Blocks

A thick black-painted wood block at 20°C is subjected to constant solar heat
flux of 1250 W/m? (Fig. 4-34). Determine the exposed surface temperature of
the block after 20 minutes. What would your answer be if the block were made
of aluminum?

SOLUTION A wood block is subjected to solar heat flux. The surface tempera-
ture of the block is to be determined, and to be compared to the value for an
aluminum block.

Assumptions 1 All incident solar radiation is absorbed by the block. 2 Heat
loss from the block is disregarded (and thus the result obtained is the maxi-
mum temperature). 3 The block is sufficiently thick to be treated as a semi-
infinite solid, and the properties of the block are constant.

Properties Thermal conductivity and diffusivity values at room temperature are
k=0.159 W/m-K and a = k/pc,=1.75 x 107 m?/s for hardwoods (Table A-5)
and k=237 W/m-K and « = 9.71 X 10=® m?s for pure aluminum (Table A-3).
Analysis This is a transient conduction problem in a semi-infinite medium
subjected to constant surface heat flux, and the surface temperature can be

expressed from Eq. 4-46 as

7, [4at
T. = 70,9 = T, + =, (=X
kN m

Substituting the given values, the surface temperatures for both the wood and
aluminum blocks are determined to be

> [41.75 X 107 m¥/s)(20 X 60
_ e 4 1250W/m \/ ( m?/s)( 5)

T = = 149°C
e 0.159W/m-K a
1250W/m2  [4(9.71 X 1075 m%/s)(20 X 60
T, a = 20°C + o \/ ( i S _22.0°C
g 237W/m-K T

Note that thermal energy supplied to the wood accumulates near the surface
because of the low conductivity and diffusivity of wood, causing the surface
temperature to rise to high values. Metals, on the other hand, conduct the heat
they receive to inner parts of the block because of their high conductivity and
diffusivity, resulting in minimal temperature rise at the surface. In reality, both
temperatures will be lower because of heat losses.

Discussion The temperature profiles for both wood and aluminum blocks at
t = 20 min are evaluated and plotted in Fig. 4-35 using EES. At a depth of
x = 0.044 m the temperature in both blocks is 21.8°C. At a depth of 0.08 m, the
temperatures become 20.0°C for wood and 21.6°C for aluminum block, which
confirms that heat penetrates faster and further in metals compared to nonmetals.

4-4 = TRANSIENT HEAT CONDUCTION IN

i
B
| |
c
MULTIDIMENSIONAL SYSTEMS

The transient temperature charts and analytical solutions presented earlier can
be used to determine the temperature distribution and heat transfer in one-
dimensional heat conduction problems associated with a large plane wall, a



long cylinder, a sphere, and a semi-infinite medium. Using a superposition
approach called the product solution, these charts and solutions can also be
used to construct solutions for the two-dimensional transient heat conduction
problems encountered in geometries such as a short cylinder, a long rectan-
gular bar, or a semi-infinite cylinder or plate, and even three-dimensional
problems associated with geometries such as a rectangular prism or a semi-
infinite rectangular bar, provided that all surfaces of the solid are subjected
to convection to the same fluid at temperature 7., with the same heat transfer
coefficient &, and the body involves no heat generation (Fig. 4-36). The solu-
tion in such multidimensional geometries can be expressed as the product of
the solutions for the one-dimensional geometries whose intersection is the
multidimensional geometry.

Consider a short cylinder of height a and radius r, initially at a uniform
temperature 7;. There is no heat generation in the cylinder. At time ¢ = 0, the
cylinder is subjected to convection from all surfaces to a medium at tempera-
ture T, with a heat transfer coefficient 4. The temperature within the cylinder
will change with x as well as r and time # since heat transfer occurs from the top
and bottom of the cylinder as well as its side surfaces. That is, T = T(r, x, f) and
thus this is a two-dimensional transient heat conduction problem. When the
properties are assumed to be constant, it can be shown that the solution of this
two-dimensional problem can be expressed as

I(r,x,t) = T - TG, 1) — T, I(r,0) = T,
T, — T, Jomee \ T.—T, )0\ T,— T, )i

That is, the solution for the two-dimensional short cylinder of height a and
radius r, is equal to the product of the nondimensionalized solutions for the
one-dimensional plane wall of thickness a and the long cylinder of radius
r,, which are the two geometries whose intersection is the short cylinder, as
shown in Fig. 4-37. We generalize this as follows: the solution for a multi-
dimensional geometry is the product of the solutions of the one-dimensional
geometries whose intersection is the multidimensional body.
For convenience, the one-dimensional solutions are denoted by

(4-50)

TCx,t) — T,
oot = (57
I(r, ) — T,
oot = (“F
T(x, ) — T,
Osemi—inf(-x9 t) = (ﬁ) :2111;15 infinite (4-51)

For example, the solution for a long solid bar whose cross section is an a X b
rectangle is the intersection of the two infinite plane walls of thicknesses a and
b, as shown in Fig. 4-38, and thus the transient temperature distribution for
this rectangular bar can be expressed as

Tx,y, 1) — T
ﬁ rectangular =
i ) bar

The proper forms of the product solutions for some other geometries are given
in Table 4-5. It is important to note that the x-coordinate is measured from the

H\\ u]](X» T)H\\ u]](.\" f) (4-52)
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A short cylinder of radius r, and
height a is the intersection of a long
cylinder of radius r, and a plane wall
of thickness a.
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TABLE 4-5

Multidimensional solutions expressed as products of one-dimensional solutions for bodies that are initially at a uniform
temperature T; and exposed to convection from all surfaces to a medium at T,

0 >
! r, r ‘
A
5 .
-
0(r, 1) = 6.y(r, 1) 0Cx, r, 1) = Oy (1, 1) Ogerpiing (5, 1) 0Cx, r, 1) = Oy (r; 1) Oy (x, 1)
Infinite cylinder Semi-infinite cylinder Short cylinder
0(x, y, 2, 1) =
0(x, 1) = esemi—inf (x, 1) 0(x, ¥, 1= esemi-inf (x, 1) esemi-inf (y’ 1) osemi—inf (x, 1) esemi-inf (y’ ) esemi-inf (z, 1)
Semi-infinite medium Quarter-infinite medium Corner region of a large medium
2L |
2L
[€—>
2,
>
o[£ ¥ !
0(x, y,2,1) =
60(x, 1) = Oyan(x, 1) 0Cx, y, 1) = O (X, 1) Oemiing (v, 1) Oatt 4 1) Oemizing (Vs ) Osemicing (22 1)
Infinite plate (or plane wall) Semi-infinite plate Quarter-infinite plate
7, i
X |
I |
I |
I |
I |
I |
I |
I |
I 'Lz
)= = M5
. g%
0(x, y,z, 1) = 0(x,y,z,1) =
00x, y, 1) = 0511 (X, 1) Oy (0, 1) O att (6 D) Oyary 05 1) Ogernicing (2 1) Oant 6 ) Oy, 1) Oy (2, 1)
Infinite rectangular bar Semi-infinite rectangular bar Rectangular parallelepiped




surface in a semi-infinite solid, and from the midplane in a plane wall. The
radial distance r is always measured from the centerline.

Note that the solution of a two-dimensional problem involves the product of
two one-dimensional solutions, whereas the solution of a three-dimensional
problem involves the product of three one-dimensional solutions.

A modified form of the product solution can also be used to determine the
total transient heat transfer to or from a multidimensional geometry by using
the one-dimensional values, as shown by L. S. Langston in 1982. The tran-
sient heat transfer for a two-dimensional geometry formed by the intersection
of two one-dimensional geometries 1 and 2 is

(o () ()] e
Qmi\?\ total, 2D sz\,\ 1 Qmux 2 Qmux 1

Transient heat transfer for a three-dimensional body formed by the intersec-
tion of three one-dimensional bodies 1, 2, and 3 is given by

()= (o) * (@) [1- (&2
Qmu,\' total, 3D Qmux 1 Qmux 2 Qmux 1
23], _(¢ - <Q> } (4-54)
- <Qm;1x>3|: : <Qnm\>l} { l Qmux 2

The use of the product solution in transient two- and three-dimensional heat
conduction problems is illustrated in the following examples.

EXAMPLE 4-8 Cooling of a Short Brass Cylinder

A short brass cylinder of diameter D = 10 cm and height H = 12 cm is initially
at a uniform temperature 7, = 120°C. The cylinder is now placed in atmo-
spheric air at 25°C, where heat transfer takes place by convection, with a heat
transfer coefficient of h = 60 W/m2-K. Calculate the temperature at (a) the
center of the cylinder and (b) the center of the top surface of the cylinder
15 min after the start of the cooling.

SOLUTION A short cylinder is allowed to cool in atmospheric air. The temper-
atures at the centers of the cylinder and the top surface are to be determined.
Assumptions 1 Heat conduction in the short cylinder is two-dimensional, and
thus the temperature varies in both the axial x- and the radial r~directions.
2 The thermal properties of the cylinder and the heat transfer coefficient are
constant. 3 The Fourier number is 7 > 0.2 so that the one-term approximate
solutions are applicable.

Properties The properties of brass at room temperature are k = 110 W/m-K
and a = 33.9 X 1076 m?%s (Table A-3). More accurate results can be obtained
by using properties at average temperature.

Analysis (a) This short cylinder can physically be formed by the intersection of
a long cylinder of radius r, = 5 cm and a plane wall of thickness 2L = 12 cm, as

271
CHAPTER 4

/ Plane wall
T,
h
-+ /
b
2
{ Plane wall
e a]
FIGURE 4-38

A long solid bar of rectangular
profile a X b is the intersection
of two plane walls of
thicknesses a and b.
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FIGURE 4-39
Schematic for Example 4-8.

shown in Fig. 4-39. The dimensionless temperature at the center of the plane
wall is determined from Fig. 4-17ato be

at (339 X 1072 m¥/s)(900 s)

_ Y = 8.48

L) (0.06 m)? r0,t)—-T,
ewall(o’ t) = ﬁ =08

L_k_ 10WmK o -

Bi AL (60 W/m*-K)(0.06 m) '

Similarly, at the center of the cylinder, we have

_ar _ (339 X 109 ms)900s)
T (0.05 m)2 o T(O,1) — T,
chl(o, l‘) = ﬁ =05

1 00

1 _k _ 1I0W/mK  _
Bi  hr, (60 W/m2-K)(0.05 m)

Therefore,
7(0,0,1) — T,
(Z—ik) zl;f?i[;der = Oyan(0, 1) X 0,1(0,1) = 0.8 X 0.5 = 0.4
and
7(,0,¢)=T,+ 0.4T; — T,) = 25 + 0.4(120 — 25) = 63°C

This is the temperature at the center of the short cylinder, which is also the
center of both the long cylinder and the plate.

(b) The center of the top surface of the cylinder is still at the center of the
long cylinder (r = 0), but at the outer surface of the plane wall (x = L). There-
fore, we first need to find the surface temperature of the wall. Noting that
x=L=0.06m,

x _006m _
L 0.06m I'Lt)—T, 0.98
L_k__ tlowmk _ .1 fo~Te
Bi AL (60 W/m?-K)(0.06 m) i
Then
0L, 1) = Tt — T _ (T(L’ 2 T°°><T° _ T°°> =098 X 0.8 = 0.784
wall s Ti_Too TO_Too Ti_Too . . b
Therefore,

T(L, 0.1 — T,
g Json = Ol 0eyi(0, 1) = 0.784 X 0.5 = 0.392

cylinder
and
T(L,0,t) =T, + 0.392(T; — T..) = 25 + 0.392(120 — 25) = 62.2°C

which is the temperature at the center of the top surface of the cylinder.



EXAMPLE 4-9 Heat Transfer from a Short Cylinder

Determine the total heat transfer from the short brass cylinder (p = 8530 kg/m3,
¢, = 0.380 kJ/kg-K) discussed in Example 4-8.

SOLUTION We first determine the maximum heat that can be transferred
from the cylinder, which is the sensible energy content of the cylinder relative
to its environment:
m = pV = pmr?H = (8530 kg/m?*)7(0.05 m)*(0.12 m) = 8.04 kg
Omax = mc,(T; — T.,) = (8.04 kg)(0.380 kJ/kg-K)(120 — 25)°C = 290.2 kJ

Then we determine the dimensionless heat transfer ratios for both geometries.
For the plane wall, it is determined from Fig. 4-17c to be

1 1
= ——=—— =00327
B =78 ~ 306
( 0 >plm =023
h*at - 5 O,/ wall
kT = Bi't = (0.0327)%(8.48) = 0.0091
Similarly, for the cylinder, we have
Bi ! ! 0.0272
i=——=—2-=0.
1/Bi 36.7
i ! <QQ> infinie. = 0.47
h*at . cylinder
2 = Bir = (002727(122) = 0.0090 ’

Then the heat transfer ratio for the short cylinder is, from Eq. 4-53,

0 (o0 o\[. (0
(Qmax>shoncy1 B (Qmax)l - (Qmax)2|:1 (Qmax>lj|

=0.23 + 0.47(1 — 0.23) = 0.592

Therefore, the total heat transfer from the cylinder during the first 15 min of
cooling is

0 = 0.5920,.. = 0.592 X (290.2 kJ) = 172 kJ

EXAMPLE 4-10 Cooling of a Long Cylinder hy Water

A semi-infinite aluminum cylinder of diameter D = 20 cm is initially at a
uniform temperature 7,= 200°C. The cylinder is now placed in water at 15°C
where heat transfer takes place by convection, with a heat transfer coefficient
of h = 120 W/m2-K. Determine the temperature at the center of the cylinder
15 cm from the end surface 5 min after the start of the cooling.

SOLUTION A semi-infinite aluminum cylinder is cooled by water. The tem-
perature at the center of the cylinder 15 cm from the end surface is to be
determined.

Assumptions 1 Heat conduction in the semi-infinite cylinder is two-
dimensional, and thus the temperature varies in both the axial x- and the
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radial r~directions. 2 The thermal properties of the cylinder and the heat trans-
fer coefficient are constant. 3 The Fourier number is 7 > 0.2 so that the one-
term approximate solutions are applicable.

| T.=15°C 5 Properties The properties of aluminum at room temperature are k =
| ! fr=120 W/m™K 237 W/m-K and @ = 9.71 X 10-® m?%/s (Table A-3). More accurate results can
T, = 200°C . . .
| be obtained by using properties at average temperature.
D =20cm Analysis  This semi-infinite cylinder can physically be formed by the intersec-
o tion of an infinite cylinder of radius r, = 10 cm and a semi-infinite medium,
as shown in Fig. 4-40.

» x=15cm We solve this problem using the one-term solution relation for the cylinder
- ol _l_ and the analytic solution for the semi-infinite medium. First we consider the
—Ir= infinitely long cylinder and evaluate the Biot number:

FIGURE 440
. hr, 120 W/m?K)(0.1 m
Schematic for Example 4-10. Bi = = ( X ) = 0.05

k 237 W/m-K

The coefficients A; and A; for a cylinder corresponding to this Bi are deter-
mined from Table 4-2 to be A; = 0.3126 and A; = 1.0124. The Fourier
number in this case is

L (971 X 10 m¥s)(5 X 605)
TR (0.1 m)?

o

=291>0.2
and thus the one-term approximation is applicable. Substituting these values
into Eq. 4-27 gives

00 = 010, 1) = Aje ™7 = 1.0124¢~03120°29D = 0.762

The solution for the semi-infinite solid can be determined from

X
1 - esemi-inf(x’ t) = erfc ( )
2Vt
(hx hzat) erfc( X, h\/&)
— N + [E—
VIS Na K
First we determine the various quantities in parentheses:

5= X _ 0.15 m — 044
Nar 2V (971 X 1075 m¥s)(5 X 60's)

War (120 Wim>K)V(9.71 X 1075 m%s)(300 5)

— 0.086
k 237 WimK
he (120 Wi K)(0.15m)
ko 237 W/m-K = 0.0759
h’at KV at \?
= ( \é‘;) — (0.086)* = 0.0074

Substituting and evaluating the complementary error functions from Table 4-4,
Ogemi-int(X, 1) = 1 — erfc (0.44) + exp (0.0759 + 0.0074) erfc (0.44 + 0.086)
=1 —0.5338 + exp (0.0833) X 0.457
= 0.963
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Now we apply the product solution to get

T(x,0,1) — T,
W f:;rlriltil-di:rﬁnne = Oemicint (X, t)@cyl(o, t) =0.963 X 0.762 = 0.734

and
T(x,0,t) =T, + 0.734(T; — T.,,) = 15 + 0.734(200 — 15) = 151°C

which is the temperature at the center of the cylinder 15 cm from the exposed
bottom surface.

EXAMPLE 4-11 Refrigerating Steaks while Avoiding Frosthite

In a meat processing plant, 1-in-thick steaks initially at 75°F are to be cooled in
the racks of a large refrigerator that is maintained at 5°F (Fig. 4-41). The steaks
are placed close to each other, so that heat transfer from the 1-in-thick edges
is negligible. The entire steak is to be cooled below 45°F, but its temperature is
not to drop below 35°F at any point during refrigeration to avoid “frostbite.” The
convection heat transfer coefficient and thus the rate of heat transfer from the
steak can be controlled by varying the speed of a circulating fan inside. Deter-
mine the heat transfer coefficient h that will enable us to meet both temperature
constraints while keeping the refrigeration time to a minimum. The steak can
be treated as a homogeneous layer having the properties p = 74.9 Ibm/ft3, c, = FIGURE 4-41
0.98 Btu/lbm-°F, k = 0.26 Btu/h-ft-°F, and & = 0.0035 ftZ/h. Schematic for Example 4-11.

SOLUTION Steaks are to be cooled in a refrigerator maintained at 5°F. The
heat transfer coefficient that allows cooling the steaks below 45°F while avoid-
ing frostbite is to be determined.

Assumptions 1 Heat conduction through the steaks is one-dimensional since
the steaks form a large layer relative to their thickness and there is thermal
symmetry about the center plane. 2 The thermal properties of the steaks and
the heat transfer coefficient are constant. 3 The Fourier number is 7 > 0.2 so
that the one-term approximate solutions are applicable.

Properties The properties of the steaks are as given in the problem statement.
Analysis The lowest temperature in the steak occurs at the surfaces and the
highest temperature at the center at a given time, since the inner part is the
last place to be cooled. In the limiting case, the surface temperature at x = L
= 0.5 in from the center will be 35°F, while the midplane temperature is 45°F
in an environment at 5°F. Then, from Fig. 4-17b, we obtain

x 05in

L 05in 1k
Tw.n - T,
T,— T, 45-5

which gives

_ L k_
h_l.SL_

0.26 Btu/h-ft-°F

= of2.°
SO e
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Discussion The convection heat transfer coefficient should be kept below this
value to satisfy the constraints on the temperature of the steak during refrig-
eration. We can also meet the constraints by using a lower heat transfer coef-
ficient, but doing so would extend the refrigeration time unnecessarily.

The restrictions that are inherent in the use of Heisler charts and the one-
term solutions (or any other analytical solutions) can be lifted by using the
numerical methods discussed in Chapter 5.

TOPIC OF SPECIAL INTEREST*

Microorganism population

Time
FIGURE 442
Typical growth curve of
microorganisms.
50
Environment
0 100
Temperature Oxygen Relative
level humidity
Air motion
o Food
—
Water content
> Chemical composition
—> Contamination level
; The use of inhibitors
pH level
—
FIGURE 443

The factors that affect the rate of
growth of microorganisms.

Refrigeration and Freezing of Foods

Control of Microorganisms in Foods

Microorganisms such as bacteria, yeasts, molds, and viruses are widely
encountered in air, water, soil, living organisms, and unprocessed food items,
and cause off-flavors and odors, slime production, changes in the texture and
appearances, and the eventual spoilage of foods. Holding perishable foods at
warm temperatures is the primary cause of spoilage, and the prevention of
food spoilage and the premature degradation of quality due to microorgan-
isms is the largest application area of refrigeration. The first step in controlling
microorganisms is to understand what they are and the factors that affect their
transmission, growth, and destruction.

Of the various kinds of microorganisms, bacteria are the prime cause for
the spoilage of foods, especially moist foods. Dry and acidic foods create an
undesirable environment for the growth of bacteria, but not for the growth of
yeasts and molds. Molds are also encountered on moist surfaces, cheese, and
spoiled foods. Specific viruses are encountered in certain animals and humans,
and poor sanitation practices such as keeping processed foods in the same area
as the uncooked ones and being careless about handwashing can cause the
contamination of food products.

When contamination occurs, the microorganisms start to adapt to the new
environmental conditions. This initial slow or no-growth period is called the
lag phase, and the shelf life of a food item is directly proportional to the length
of this phase (Fig. 4—42). The adaptation period is followed by an exponential
growth period during which the population of microorganisms can double two
or more times every hour under favorable conditions unless drastic sanitation
measures are taken. The depletion of nutrients and the accumulation of toxins
slow down the growth and start the death period.

The rate of growth of microorganisms in a food item depends on the char-
acteristics of the food itself such as the chemical structure, pH level, presence
of inhibitors and competing microorganisms, and water activity as well as the
environmental conditions such as the temperature and relative humidity of the
environment and the air motion (Fig. 4—43).

*This section can be skipped without a loss of continuity.



Microorganisms need food to grow and multiply, and their nutritional
needs are readily provided by the carbohydrates, proteins, minerals, and
vitamins in a food. Different types of microorganisms have different
nutritional needs, and the types of nutrients in a food determine the types of
microorganisms that may dwell on them. The preservatives added to the
food may also inhibit the growth of certain microorganisms. Different kinds
of microorganisms that exist compete for the same food supply, and thus the
composition of microorganisms in a food at any time depends on the initial
make-up of the microorganisms.

All living organisms need water to grow, and microorganisms can-
not grow in foods that are not sufficiently moist. Microbiological growth
in refrigerated foods such as fresh fruits, vegetables, and meats starts at the
exposed surfaces where contamination is most likely to occur. Fresh meat
in a package left in a room will spoil quickly, as you may have noticed. A
meat carcass hung in a controlled environment, on the other hand, will age
healthily as a result of dehydration on the outer surface, which inhibits
microbiological growth there and protects the carcass.

Microorganism growth in a food item is governed by the combined effects
of the characteristics of the food and the environmental factors. We cannot do
much about the characteristics of the food, but we certainly can alter the envi-
ronmental conditions to more desirable levels through heating, cooling, venti-
lating, humidification, dehumidification, and control of the oxygen levels. The
growth rate of microorganisms in foods is a strong function of temperature,
and temperature control is the single most effective mechanism for controlling
the growth rate.

Microorganisms grow best at “warm” temperatures, usually between
20 and 60°C. The growth rate declines at high temperatures, and death
occurs at still higher temperatures, usually above 70°C for most micro-
organisms. Cooling is an effective and practical way of reducing the
growth rate of microorganisms and thus extending the shelf life of per-
ishable foods. A temperature of 4°C or lower is considered to be a safe
refrigeration temperature. Sometimes a small increase in refrigeration
temperature may cause a large increase in the growth rate, and thus a
considerable decrease in shelf life of the food (Fig. 4-44). The growth
rate of some microorganisms, for example, doubles for each 3°C rise in
temperature.

Another factor that affects microbiological growth and transmission is the
relative humidity of the environment, which is a measure of the water content
of the air. High humidity in cold rooms should be avoided since condensation
that forms on the walls and ceiling creates the proper environment for mold
growth and buildups. The drip of contaminated condensate onto food products
in the room poses a potential health hazard.

Different microorganisms react differently to the presence of oxygen in
the environment. Some microorganisms such as molds require oxygen for
growth, while some others cannot grow in the presence of oxygen. Some
grow best in low-oxygen environments, while others grow in environ-
ments regardless of the amount of oxygen. Therefore, the growth of certain
microorganisms can be controlled by controlling the amount of oxygen in
the environment. For example, vacuum packaging inhibits the growth of
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Rate of growth

Temperature

FIGURE 444

The rate of growth of microorganisms
in a food product increases
exponentially with increasing
environmental temperature.
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Microorganisms

FIGURE 4-45

Freezing may stop the growth of
microorganisms, but it may not
necessarily kill them.

Freezer Refrigerator
—18 to -35°C 1 to 4°C

Frozen Fresh
foods foods
FIGURE 446

Recommended refrigeration and
freezing temperatures for most
perishable foods.

microorganisms that require oxygen. Also, the storage life of some fruits can
be extended by reducing the oxygen level in the storage room.

Microorganisms in food products can be controlled by (1) preventing con-
tamination by following strict sanitation practices, (2) inhibiting growth by
altering the environmental conditions, and (3) destroying the organisms by
heat treatment or chemicals. The best way to minimize contamination in food
processing areas is to use fine air filters in ventilation systems to capture the
dust particles that transport the bacteria in the air. Of course, the filters must
remain dry since microorganisms can grow in wet filters. Also, the ventila-
tion system must maintain a positive pressure in the food processing areas to
prevent any airborne contaminants from entering inside by infiltration. The
elimination of condensation on the walls and the ceiling of the facility and the
diversion of plumbing condensation drip pans of refrigerators to the drain sys-
tem are two other preventive measures against contamination. Drip systems
must be cleaned regularly to prevent microbiological growth in them. Also,
any contact between raw and cooked food products should be minimized,
and cooked products must be stored in rooms with positive pressures. Frozen
foods must be kept at —18°C or below, and utmost care should be exercised
when food products are packaged after they are frozen to avoid contamination
during packaging.

The growth of microorganisms is best controlled by keeping the tempera-
ture and relative humidity of the environment in the desirable range. Keep-
ing the relative humidity below 60 percent, for example, prevents the growth
of all microorganisms on the surfaces. Microorganisms can be destroyed
by heating the food product to high temperatures (usually above 70°C),
by treating them with chemicals, or by exposing them to ultraviolet light or
solar radiation.

Distinction should be made between survival and growth of microorgan-
isms. A particular microorganism that may not grow at some low tem-
perature may be able to survive at that temperature for a very long time
(Fig. 4-45). Therefore, freezing is not an effective way of killing microor-
ganisms. In fact, some microorganism cultures are preserved by freezing
them at very low temperatures. The rate of freezing is also an important
consideration in the refrigeration of foods since some microorganisms
adapt to low temperatures and grow at those temperatures when the cool-
ing rate is very low.

Refrigeration and Freezing of Foods
The storage life of fresh perishable foods such as meats, fish, vegetables, and
fruits can be extended by several days by storing them at temperatures just above
freezing, usually between 1 and 4°C. The storage life of foods can be extended
by several months by freezing and storing them at subfreezing temperatures,
usually between —18 and —35°C, depending on the particular food (Fig. 4-46).
Refrigeration slows down the chemical and biological processes in
foods, and the accompanying deterioration and loss of quality and nutri-
ents. Sweet corn, for example, may lose half of its initial sugar content in
one day at 21°C, but only 5 percent of it at 0°C. Fresh asparagus may lose
50 percent of its vitamin C content in one day at 20°C, but in 12 days



at 0°C. Refrigeration also extends the shelf life of products. The first appear-
ance of unsightly yellowing of broccoli, for example, may be delayed by three
or more days by refrigeration.

Early attempts to freeze food items resulted in poor-quality products because
of the large ice crystals that formed. It was determined that the rate of freezing
has a major effect on the size of ice crystals and the quality, texture, and nutri-
tional and sensory properties of many foods. During slow freezing, ice crystals
can grow to a large size, whereas during fast freezing a large number of ice
crystals start forming at once and are much smaller in size. Large ice crystals
are not desirable since they can puncture the walls of the cells, causing a deg-
radation of texture and a loss of natural juices during thawing. A crust forms
rapidly on the outer layer of the product and seals in the juices, aromatics, and
flavoring agents. The product quality is also affected adversely by temperature
fluctuations of the storage room.

The ordinary refrigeration of foods involves cooling only without any
phase change. The freezing of foods, on the other hand, involves three stages:
cooling to the freezing point (removing the sensible heat), freezing (removing
the latent heat), and further cooling to the desired subfreezing temperature
(removing the sensible heat of frozen food), as shown in Figure 4—47.

Beef Products

Meat carcasses in slaughterhouses should be cooled as fast as possible to a uni-
form temperature of about 1.7°C to reduce the growth rate of microorganisms
that may be present on carcass surfaces, and thus minimize spoilage. The right
level of temperature, humidity, and air motion should be selected to prevent
excessive shrinkage, toughening, and discoloration.

The deep body temperature of an animal is about 39°C, but this temperature
tends to rise a couple of degrees in the midsections after slaughter as a result
of the heat generated during the biological reactions that occur in the cells.
The temperature of the exposed surfaces, on the other hand, tends to drop as a
result of heat losses. The thickest part of the carcass is the round, and the cen-
ter of the round is the last place to cool during chilling. Therefore, the cooling
of the carcass can best be monitored by inserting a thermometer deep into the
central part of the round.

About 70 percent of the beef carcass is water, and the carcass is cooled
mostly by evaporative cooling as a result of moisture migration toward the
surface where evaporation occurs. But this shrinking translates into a loss of
salable mass that can amount to 2 percent of the total mass during an overnight
chilling. To prevent excessive loss of mass, carcasses are usually washed or
sprayed with water prior to cooling. With adequate care, spray chilling can
eliminate carcass cooling shrinkage almost entirely.

The average total mass of dressed beef, which is normally split into two
sides, is about 300 kg, and the average specific heat of the carcass is about
3.14 kJ/kg-K (Table 4-6). The chilling room must have a capacity equal
to the daily kill of the slaughterhouse, which may be several hundred. A
beef carcass is washed before it enters the chilling room and absorbs a
large amount of water (about 3.6 kg) at its surface during the washing
process. This does not represent a net mass gain, however, since it is lost
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Typical freezing curve of a food item.

TABLE 4-6

Thermal properties of beef

Quantity

Typical value

Average density

Specific heat:
Above freezing
Below freezing

Freezing point

Latent heat of fusion

Thermal
conductivity

1070 kg/m?

3.14 kl/kg-K
1.70 kJ/kg-K
—2.7°C
249 kl/kg
0.41 W/m-K
(at 6°C)
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FIGURE 448

Typical cooling curve of a beef
carcass in the chilling and holding
rooms at an average temperature
of 0°C.

From ASHRAE, Handbook: Refrigeration,
Chap. 11, Fig. 2.
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by dripping or evaporation in the chilling room during cooling. Ideally, the
carcass does not lose or gain any net weight as it is cooled in the chilling
room. However, it does lose about 0.5 percent of the total mass in the hold-
ing room as it continues to cool. The actual product loss is determined by
first weighing the dry carcass before washing and then weighing it again
after it is cooled.

The refrigerated air temperature in the chilling room of beef carcasses
must be sufficiently high to avoid freezing and discoloration on the outer
surfaces of the carcass. This means a long residence time for the massive
beef carcasses in the chilling room to cool to the desired temperature. Beef
carcasses are only partially cooled at the end of an overnight stay in the
chilling room. The temperature of a beef carcass drops to 1.7 to 7°C at the
surface and to about 15°C in mid parts of the round in 10 h. It takes another
day or two in the holding room maintained at 1 to 2°C to complete chilling
and temperature equalization. But hog carcasses are fully chilled during
that period because of their smaller size. The air circulation in the holding
room is kept at minimum levels to avoid excessive moisture loss and dis-
coloration. The refrigeration load of the holding room is much smaller than
that of the chilling room, and thus it requires a smaller refrigeration system.

Beef carcasses intended for distant markets are shipped the day after
slaughter in refrigerated trucks, where the rest of the cooling is done. This
practice makes it possible to deliver fresh meat long distances in a timely
manner.

The variation in temperature of the beef carcass during cooling is given in
Figure 4-48. Initially, the cooling process is dominated by sensible heat trans-
fer. Note that the average temperature of the carcass is reduced by about 28°C
(from 36 to 8°C) in 20 h. The cooling rate of the carcass could be increased by
lowering the refrigerated air temperature and increasing the air velocity, but
such measures also increase the risk of surface freezing.

Most meats are judged on their tenderness, and the preservation of ten-
derness is an important consideration in the refrigeration and freezing
of meats. Meat consists primarily of bundles of tiny muscle fibers bundled
together inside long strings of connective tissues that hold it together.



The tenderness of a certain cut of beef depends on the location of the cut, the
age, and the activity level of the animal. Cuts from the relatively inactive mid-
backbone section of the animal such as short loins, sirloin, and prime ribs are
more tender than the cuts from the active parts such as the legs and the neck
(Fig. 4-49). The more active the animal, the more the connective tissue, and
the tougher the meat. The meat of an older animal is more flavorful, however,
and is preferred for stewing since the toughness of the meat does not pose a
problem for moist-heat cooking such as boiling. The protein collagen, which
is the main component of the connective tissue, softens and dissolves in hot
and moist environments and gradually transforms into gelatin, and tenderizes
the meat.

The old saying “one should either cook an animal immediately after
slaughter or wait at least two days” has a lot of truth in it. The biomechani-
cal reactions in the muscle continue after the slaughter until the energy sup-
plied to the muscle to do work diminishes. The muscle then stiffens and
goes into rigor mortis. This process begins several hours after the animal
is slaughtered and continues for 12 to 36 h until an enzymatic action sets
in and tenderizes the connective tissue, as shown in Figure 4-50. It takes
about seven days to complete tenderization naturally in storage facilities
maintained at 2°C. Electrical stimulation also causes the meat to be tender.
To avoid toughness, fresh meat should not be frozen before rigor mortis has
passed.

You have probably noticed that steaks are tender and rather tasty when they
are hot but toughen as they cool. This is because the gelatin that formed during
cooking thickens as it cools, and meat loses its tenderness. So it is no surprise
that first-class restaurants serve their steak on hot thick plates that keep the
steaks warm for a long time. Also, cooking softens the connective tissue but
toughens the tender muscle fibers. Therefore, barbecuing on low heat for a
long time results in a tough steak.

Variety meats intended for long-term storage must be frozen rapidly to
reduce spoilage and preserve quality. Perhaps the first thought that comes to
mind to freeze meat is to place the meat packages into the freezer and wait.
But the freezing time is foo long in this case, especially for large boxes. For
example, the core temperature of a 4-cm-deep box containing 32 kg of variety
meat can be as high as 16°C 24 h after it is placed into a —30°C freezer. The
freezing time of large boxes can be shortened considerably by adding some
dry ice into it.

A more effective method of freezing, called quick chilling, involves the
use of lower air temperatures, —40 to —30°C, with higher velocities of
2.5 m/s to 5 m/s over the product (Fig. 4-51). The internal temperature
should be lowered to —4°C for products to be transferred to a storage
freezer and to —18°C for products to be shipped immediately. The rate of
freezing depends on the package material and its insulating properties, the
thickness of the largest box, the rype of meat, and the capacity of the refrig-
eration system. Note that the air temperature will rise excessively during
initial stages of freezing and increase the freezing time if the capacity of the
system is inadequate. A smaller refrigeration system will be adequate if dry
ice is to be used in packages. Shrinkage during freezing varies from about
0.5 to 1 percent.
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Various cuts of beef.

From National Livestock and Meat Board.
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The freezing time of meat can be
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temperature air at high velocity.
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TABLE 4-7

Storage life of frozen meat products
at different storage temperatures
(from ASHRAE Handbook:
Refrigeration, Chap. 10, Table 7)

Storage Life, Months

Temperature
Product —12°C —18°C —23°C
Beef 4-12 6-18 12-24
Lamb 3-8 6-16 12-18
Veal 3-4 4-14 8
Pork 2-6 4-12 8-15
Chopped beef 3-4 4-6 8
Cooked foods 2-3 2-4
Refrigerated
Freezer dock
-23°C 1.5°C
Refrigerated
Sliding truck
door
i®a®
FIGURE 4-52

A refrigerated truck dock for loading
frozen items to a refrigerated truck.

Although the average freezing point of lean meat can be taken to be —2°C
with a latent heat of 249 kJ/kg, it should be remembered that freezing occurs
over a temperature range, with most freezing occurring between —1 and
—4°C. Therefore, cooling the meat through this temperature range and remov-
ing the latent heat takes the most time during freezing.

Meat can be kept at an internal temperature of —2 to —1°C for local use and
storage for under a week. Meat must be frozen and stored at much lower tem-
peratures for long-term storage. The lower the storage temperature, the longer
the storage life of meat products, as shown in Table 4-7.

The internal temperature of carcasses entering the cooling sections
varies from 38 to 41°C for hogs and from 37 to 39°C for lambs and
calves. It takes about 15 h to cool the hogs and calves to the recommended
temperature of 3 to 4°C. The cooling-room temperature is maintained at
—1 to 0°C and the temperature difference between the refrigerant and the
cooling air is kept at about 6°C. Air is circulated at a rate of about 7 to 12 air
changes per hour. Lamb carcasses are cooled to an internal temperature of
1 to 2°C, which takes about 12 to 14 h, and are held at that temperature with
85 to 90 percent relative humidity until shipped or processed. The recom-
mended rate of air circulation is 50 to 60 air changes per hour during the
first 4 to 6 h, which is reduced to 10 to 12 changes per hour afterward.

Freezing does not seem to affect the flavor of meat much, but it affects the
quality in several ways. The rate and temperature of freezing may influence
color, tenderness, and drip. Rapid freezing increases tenderness and reduces
the tissue damage and the amount of drip after thawing. Storage at low freez-
ing temperatures causes significant changes in animal fat. Frozen pork experi-
ences more undesirable changes during storage because of its fat structure, and
thus its acceptable storage period is shorter than that of beef, veal, or lamb.

Meat storage facilities usually have a refrigerated shipping dock where the
orders are assembled and shipped out. Such docks save valuable storage space
from being used for shipping purposes and provide a more acceptable work-
ing environment for the employees. Packing plants that ship whole or half
carcasses in bulk quantities may not need a shipping dock; a load-out door is
often adequate for such cases.

A refrigerated shipping dock, as shown in Figure 4-52, reduces the
refrigeration load of freezers or coolers and prevents temperature fluctua-
tions in the storage area. It is often adequate to maintain the shipping docks
at 4 to 7°C for the coolers and about 1.5°C for the freezers. The dew point
of the dock air should be below the product temperature to avoid condensa-
tion on the surface of the products and loss of quality. The rate of airflow
through the loading doors and other openings is proportional to the square
root of the temperature difference, and thus reducing the temperature dif-
ference at the opening by half by keeping the shipping dock at the aver-
age temperature reduces the rate of airflow into the dock and thus into the
freezer by 1 — \/(S = 0.3, or 30 percent. Also, the air that flows into
the freezer is already cooled to about 1.5°C by the refrigeration unit of
the dock, which represents about 50 percent of the cooling load of the
incoming air. Thus, the net effect of the refrigerated shipping dock is a
reduction of the infiltration load of the freezer by about 65 percent since
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1 — 0.7 X 0.5 = 0.65. The net gain is equal to the difference between the
reduction of the infiltration load of the freezer and the refrigeration load of
the shipping dock. Note that the dock refrigerators operate at much higher
temperatures (1.5°C instead of about —23°C), and thus they consume much
less power for the same amount of cooling.

Poultry Products
Poultry products can be preserved by ice-chilling to 1 to 2°C or deep chilling
to about —2°C for short-term storage, or by freezing them to —18°C or below
for long-term storage. Poultry processing plants are completely automated, and
the small size of the birds makes continuous conveyor line operation feasible.
The birds are first electrically stunned before cutting to prevent strug-
gling. Following a 90- to 120-s bleeding time, the birds are scalded by
immersing them into a tank of warm water, usually at 51 to 55°C, for up to
120 s to loosen the feathers. Then the feathers are removed by feather-picking
machines, and the eviscerated carcass is washed thoroughly before chilling.
The internal temperature of the birds ranges from 24 to 35°C after washing,

H,0

depending on the temperatures of the ambient air and the washing water as 1000 g 9%80¢

well as the extent of washing. @ . . @
To control the microbial growth, the USDA regulations require that poultry

be chilled to 4°C or below in less than 4 h for carcasses of less than 1.8 kg, in

less than 6 h for carcasses of 1.8 to 3.6 kg. and in less than 8 h for carcasses

Air chilling

more than 3.6 kg. Meeting these requirements today is not difficult since the __Immersion chilling
slow air chilling is largely replaced by the rapid immersion chilling in tanks ~ 7~ I:I; 0~
of slush ice. Immersion chilling has the added benefit that it not only prevents 1000g | ~ \ﬁ{:{?;www 1050 ¢

mass of salable product. Cool air chilling of unpacked poultry can cause a
moisture loss of 1 to 2 percent, while water immersion chilling can cause
a moisture absorption of 4 to 15 percent (Fig. 4-53). Water spray chilling

dehydration, but it causes a net absorption of water and thus increases the Z

~-W

can cause a moisture absorption of up to 4 percent. Most water absorbed is FIGURE 4-53
held between the flesh and the skin and the connective tissues in the skin. In Air chilling causes dehydration and
immersion chilling, some soluble solids are lost from the carcass to the water, thus weight loss for poultry, whereas
but the loss has no significant effect on flavor. immersion chilling causes a weight

Many slush ice tank chillers today are replaced by continuous flow-type gain as a result of water absorption.

immersion slush ice chillers. Continuous slush ice-chillers can reduce the
internal temperature of poultry from 32 to 4°C in about 30 minutes at a rate
up to 10, 000 birds per hour. Ice requirements depend on the inlet and exit
temperatures of the carcass and the water, but 0.25 kg of ice per kg of carcass
is usually adequate. However, bacterial contamination such as salmonella
remains a concern with this method, and it may be necessary to chloride the
water to control contamination.

Tenderness is an important consideration for poultry products just as it
is for red meat, and preserving tenderness is an important consideration in
the cooling and freezing of poultry. Birds cooked or frozen before passing
through rigor mortis remain very tough. Natural tenderization begins soon
after slaughter and is completed within 24 h when birds are held at 4°C.
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The storage life of fresh poultry
decreases exponentially with
increasing storage temperature.

9
o Giblets /
8 m Inside surface
7 0 13 mm depth
” ® Under skin
56
: il
£° /
= =
24
2 /' ¢ ©
2 ] /
o
(e}
| l—'// /
g o

0
-84 -73 -62 51

—40 29 -18 -7

Air temperature, °C

Note: Freezing time is the
temperature to fall from O

time required for
to —4°C. The values

are for 2.3 to 3.6 kg chickens with initial
temperature of 0 to 2°C and with air velocity

of 2.3 to 2.8 m/s.

FIGURE 4-55

The variation of freezing time of
poultry with air temperature.

Tenderization is rapid during the first three hours and slows down thereafter.
Immersion in hot water and cutting into the muscle adversely affect tender-
ization. Increasing the scalding temperature or the scalding time has been
observed to increase toughness, and decreasing the scalding time has been
observed to increase tenderness. The beating action of mechanical feather-
picking machines causes considerable toughening. Therefore, it is recom-
mended that any cutting be done after tenderization. Cutting up the bird into
pieces before natural tenderization is completed reduces tenderness consider-
ably. Therefore, it is recommended that any cutting be done after tenderiza-
tion. Rapid chilling of poultry can also have a toughening effect. It is found
that the tenderization process can be speeded up considerably by a patented
electrical stunning process.

Poultry products are highly perishable, and thus they should be kept at the
lowest possible temperature to maximize their shelf life. Studies have shown
that the populations of certain bacteria double every 36 h at —2°C, 14 h at
0°C, 7 h at 5°C, and less than 1 h at 25°C (Fig. 4-54). Studies have also shown
that the total bacterial counts on birds held at 2°C for 14 days are equivalent
to those held at 10°C for 5 days or 24°C for 1 day. It has also been found that
birds held at —1°C had 8 days of additional shelf life over those held at 4°C.

The growth of microorganisms on the surfaces of the poultry causes the
development of an off-odor and bacterial slime. The higher the initial amount of
bacterial contamination, the faster the sliming occurs. Therefore, good sanitation
practices during processing such as cleaning the equipment frequently and
washing the carcasses are as important as the storage temperature in extending
shelf life.

Poultry must be frozen rapidly to ensure a light, pleasing appearance.
Poultry that is frozen slowly appears dark and develops large ice crys-
tals that damage the tissue. The ice crystals formed during rapid freezing
are small. Delaying freezing of poultry causes the ice crystals to become
larger. Rapid freezing can be accomplished by forced air at temperatures
of —23 to —40°C and velocities of 1.5 to 5 m/s in air-blast tunnel freez-
ers. Most poultry is frozen this way. Also, the packaged birds freeze much
faster on open shelves than they do in boxes. If poultry packages must
be frozen in boxes, then it is very desirable to leave the boxes open or
to cut holes on the boxes in the direction of airflow during freezing. For
best results, the blast tunnel should be fully loaded across its cross-section
with even spacing between the products to assure uniform airflow around
all sides of the packages. The freezing time of poultry as a function of
refrigerated air temperature is given in Figure 4-55. Thermal properties of
poultry are given in Table 4-8.

Other freezing methods for poultry include sandwiching between cold
plates, immersion into a refrigerated liquid such as glycol or calcium
chloride brine, and cryogenic cooling with liquid nitrogen. Poultry can
be frozen in several hours by cold plates. Very high freezing rates can be
obtained by immersing the packaged birds into a low-temperature brine. The
freezing time of birds in —29°C brine can be as low as 20 min, depend-
ing on the size of the bird (Fig. 4-56). Also, immersion freezing produces
a very appealing light appearance, and the high rates of heat transfer make
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continuous line operation feasible. It also has lower initial and maintenance TABLE 4-8
costs than forced air, but leaks into the packages through some small holes Thermal properties of poultry
or cracks remain a concern. The convection heat transfer coefficient is Quantity Typical value

17 W/m?2K for air at —29°C and 2.5 m/s whereas it is 170 W/m2K for sodium

chloride brine at —18°C and a velocity of 0.02 m/s. Sometimes liquid nitrogen Average density:

; o Muscle 1070 kg/m3
is used to crust freeze the poultry products to —73°C. The freezing is then Skin 1030 kg/m3
completed with air in a holding room at —23°C. Specific heat:

Properly packaged poultry products can be stored frozen for up to about Above freezing 2.94 kl/kg-K
a year at temperatures of —18°C or lower. The storage life drops consider- Below freezing 1.55 kJ/kg-K
ably at higher (but still below-freezing) temperatures. Significant changes Freezing point -2.8°C
occur in flavor and juiciness when poultry is frozen for too long, and a stale Latent heat of fusion 247 kl/kg
rancid odor develops. Frozen poultry may become dehydrated and experi- Thermal conductivity: (in W/m-K)
ence freezer burn, which may reduce the eye appeal of the product and Breast muscle 0.502 at 20°C

1.384 at —20°C
1.506 at —40°C
Dark muscle 1.557 at —40°C

cause toughening of the affected area. Dehydration and thus freezer burn
can be controlled by humidification, lowering the storage temperature, and
packaging the product in essentially impermeable film. The storage life
can be extended by packing the poultry in an oxygen-free environment.
The bacterial counts in precooked frozen products must be kept at safe
levels since bacteria may not be destroyed completely during the reheating
process at home.

Frozen poultry can be thawed in ambient air, water, refrigerator, or oven
without any significant difference in taste. Big birds like turkey should be
thawed safely by holding it in a refrigerator at 2 to 4°C for two to four days,
depending on the size of the bird. They can also be thawed by immersing them
into cool water in a large container for 4 to 6 h, or holding them in a paper bag.
Care must be exercised to keep the bird’s surface cool to minimize microbio-
logical growth when thawing in air or water.
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EXAMPLE 4-12 Chilling of Beef Carcasses in a Meat Plant

The chilling room of a meat plant is 18 m X 20 m X 5.5 m in size and has
a capacity of 450 beef carcasses. The power consumed by the fans and the
lights of the chilling room are 26 and 3 kW, respectively, and the room gains
heat through its envelope at a rate of 13 kW. The average mass of beef car-
casses is 285 kg. The carcasses enter the chilling room at 36°C after they
are washed to facilitate evaporative cooling and are cooled to 15°C in 10 h.
The water is expected to evaporate at a rate of 0.080 kg/s. The air enters the
evaporator section of the refrigeration system at 0.7°C and leaves at —2°C.
The air side of the evaporator is heavily finned, and the overall heat trans-
fer coefficient of the evaporator based on the air side is 20 W/m?-K. Also,
the average temperature difference between the air and the refrigerant in the
evaporator is 5.5°C. Determine (a) the refrigeration load of the chilling room,
(b) the volume flow rate of air, and (c) the heat transfer surface area of the
evaporator on the air side, assuming all the vapor and the fog in the air freezes
in the evaporator.

SOLUTION The chilling room of a meat plant with a capacity of 450 beef car-
casses is considered. The cooling load, the airflow rate, and the heat transfer
Lights, 3 kW area of the evaporator are to be determined.
Assumptions 1 Water evaporates at a rate of 0.080 kg/s. 2 All the moisture in
the air freezes in the evaporator.
Evaporation Properties The heat of fusion and the heat of vaporization of water at 0°C are
0.080 kg/s 333.7 kJ/kg and 2501 kJ/kg (Table A-9). The density and specific heat of air
at 0°C are 1.292 kg/m3 and 1.006 kJ/kg-K (Table A-15). Also, the specific
heat of beef carcass is determined from the relation in Table A-7b to be

13 kW

¢, = 1.68 + 2.51 X (water content) = 1.68 + 2.51 X 0.58 = 3.14 kJ/kg-K

l l l Refrigerated
air Analysis (a) A sketch of the chilling room is given in Figure 4-57. The amount
Fans, 26 kW T T T of beef mass that needs to be cooled per unit time is
A |_ J 1A Myees = (Total beef mass cooled)/(Cooling time)
L 07°C Evaporator e _I = (450 carcasses)(285 kg/carcass)/(10 X 3600 s) = 3.56 kg/s
' The product refrigeration load can be viewed as the energy that needs to be
0 removed from the beef carcass as it is cooled from 36 to 15°C at a rate of
evap 3.56 kg/s and is determined to be
FIGURE 4-57

Schematic for Example 4-12. Otee = (1, ATyt = (3.56 ke/s)(3.14 KI/kg-K)(36 — 15)°C = 235 kW

Then the total refrigeration load of the chilling room becomes

Qtotal, chillroom — Qbecf + Qfan + Qlights + Qheat gain =235+26+3+ 13
= 277 kW

The amount of carcass cooling due to evaporative cooling of water is
Qbeef, evaporative = (thg)water = (0080 kg/S)(ZSOl kJ/kg) = 200 kW

which is 200/235 = 0.85 = 85 percent of the total product cooling load. The
remaining 15 percent of the heat is transferred by convection and radiation.
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(b) Heat is transferred to air at the rate determined above, and the tempera-
ture of the air rises from —2°C to 0.7°C as a result. Therefore, the mass flow
rate of air is

o Qw 277 kW
i T (@ AT, (1,006 KI/kg K)[0.7 — (—2)°C]

= 102.0 kg/s

Then the volume flow rate of air becomes

_omy, 102 Kkg/s
P 1.292 kg/m®

Vs = 78.9 m%/s

(c) Normally the heat transfer load of the evaporator is the same as the refrig-
eration load. But in this case the water that enters the evaporator as a liquid is
frozen as the temperature drops to —2°C, and the evaporator must also remove
the latent heat of freezing, which is determined from

O freczing = (M higen)waer = (0.080 ke/s)(333.7 ki/kg) = 27 kW
Therefore, the total rate of heat removal at the evaporator is
Qevaporator = Qtotal, chill room + ereezing =277 + 27 = 304 kW

Then the heat transfer surface area of the evaporator on the air side is
determined from Qeyaporator = (UA)ir siceA T,

 Qevporsor 304,000 W

_ = 2764 m?
UAT — Q0 WmPK)55°C)  2/o4m

Obviously, a finned surface must be used to provide such a large surface area
on the air side.

SUMMARY

In this chapter, we considered the variation of temperature
with time as well as position in one- or multidimensional
systems. We first considered the lumped systems in which the
temperature varies with time but remains uniform throughout
the system at any time. The temperature of a lumped body
of arbitrary shape of mass m, volume V, surface area A,,
density p, and specific heat c, initially at a uniform tem-
perature 7; that is exposed to convection at time = 0 in a
medium at temperature 7,, with a heat transfer coefficient &
is expressed as

™w-T,_
T, - T,
where
hA
p= s _ h
pc,V  pc,L,

is a positive quantity whose dimension is (time)~!. This rela-
tion can be used to determine the temperature 7(¢) of a body
at time ¢ or, alternatively, the time ¢ required for the temper-
ature to reach a specified value 7(f). Once the temperature
T(r) at time ¢ is available, the rate of convection heat trans-
fer between the body and its environment at that time can be
determined from Newton’s law of cooling as

O = hA[T(t) — T,

The fotal amount of heat transfer between the body and the
surrounding medium over the time interval t = 0 to ¢ is simply
the change in the energy content of the body,

Q = mc,[T(t) — T}

The maximum heat transfer between the body and its surround-
ings is

Qmax = mc, (T, — Tz)
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The error involved in lumped system analysis is negligible
when

hL

c

Bi = X

<0.1

where Bi is the Biot number and L, = V/A, is the characteristic
length.

When the lumped system analysis is not applicable, the
variation of temperature with position as well as time can be
determined using the transient temperature charts given in
Figs. 4-17,4-18, 4-19, and 4-31 for a large plane wall, a long
cylinder, a sphere, and a semi-infinite medium, respectively.
These charts are applicable for one-dimensional heat transfer
in those geometries. Therefore, their use is limited to situa-
tions in which the body is initially at a uniform temperature, all
surfaces are subjected to the same thermal conditions, and the
body does not involve any heat generation. These charts can
also be used to determine the total heat transfer from the body
up to a specified time ¢.

Using the one-term approximation, the solutions of one-
dimensional transient heat conduction problems are expressed
analytically as

TCx,t) — T, 2
Plane wall: 01 = -7 - Aje M7 cos (Ax/L)
T(r,t) — T, 2
Cylinder: Oy = P A7 Jo(Ayrir,)
T(r,t) — T, 2 sin(A,r/r,)
. - - " — AT -9
Sphere: Oon T —T. Ae AT,

where the constants A, and A, are functions of the Bi number
only, and their values are listed in Table 4-2 against the Bi
number for all three geometries. The error involved in one-
term solutions is less than 2 percent when 7 > 0.2.

Using the one-term solutions, the fractional heat transfers in
different geometries are expressed as

Plane wall: ( Q > =1-0, M
. Qmax wall 0, wall /\1

. [ ) Ji(A)

Cylinder: — =1-260 —_—
vlinder. ( 0. Jen 0, cyl A

(0] sin A, — A,cos A,
Sphere: 0 )= L =300 gh 35
sp

Qmax /\?

The solutions of transient heat conduction in a semi-infinite
solid with constant properties under various boundary condi-
tions at the surface are given as follows:

Specified Surface Temperature, T, = constant:

T(x,1) — T, rf( x > d o KT, — T)
——— =erfc and ¢(f) = ——
T, — T, 2\/0; ot

Specified Surface Heat Flux, ¢, = constant:

Tt — T qs[ 4at ( X2 > " X
x, ) — T, ==\ |—exp|——] — xerfc[ —=
Yk 7 P\ 4 2V at

Convection on the Surface, q(t) = h[T,, — T(0, )]:

Tx,0) — T, ; X hx N hat
—— =erfc — exp| —
.- T, Wa) TNk TR

Xerfc< al + hv;)
2Vat k

Energy Pulse at Surface, e, = constant:

T, 1) — T & < - >

x,t) —T,= —F——exp| ——

N AVE T P\ 4

where erfc(m) is the complementary error function of argument 7).

Using a superposition principle called the product solu-
tion these charts can also be used to construct solutions for
the two-dimensional transient heat conduction problems en-
countered in geometries such as a short cylinder, a long rect-
angular bar, or a semi-infinite cylinder or plate, and even
three-dimensional problems associated with geometries such
as a rectangular prism or a semi-infinite rectangular bar, pro-
vided that all surfaces of the solid are subjected to convection
to the same fluid at temperature 7., with the same convection
heat transfer coefficient £, and the body involves no heat gen-
eration. The solution in such multidimensional geometries
can be expressed as the product of the solutions for the one-
dimensional geometries whose intersection is the multidimen-
sional geometry.

The total heat transfer to or from a multidimensional geometry
can also be determined by using the one-dimensional values.
The transient heat transfer for a two-dimensional geometry
formed by the intersection of two one-dimensional geometries
land2is

Q2 _ (2 2N (L)
(Qmax)loml, 2D B (Qmax>l " (Qmax)Z |:1 (Qmax>1:|

Transient heat transfer for a three-dimensional body formed
by the intersection of three one-dimensional bodies 1, 2, and
3 is given by

(o)~ (o) (2 [~ (2
o)l
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PROBLEMS*

Lumped System Analysis

4-1C What is the physical significance of the Biot number? Is
the Biot number more likely to be larger for highly conducting
solids or poorly conducting ones?

4-2C What is lumped system analysis? When is it
applicable?

4-3C In what medium is the lumped system analysis more
likely to be applicable: in water or in air? Why?

4-4C For which solid is the lumped system analysis more
likely to be applicable: an actual apple or a golden apple of the
same size? Why?

4-5C For which kind of bodies made of the same material is
the lumped system analysis more likely to be applicable: slen-
der ones or well-rounded ones of the same volume? Why?

4-6C Consider heat transfer between two identical hot solid
bodies and the air surrounding them. The first solid is be-
ing cooled by a fan while the second one is allowed to cool
naturally. For which solid is the lumped system analysis more
likely to be applicable? Why?

*Problems designated by a “C" are concept questions, and
students are encouraged to answer them all. Problems designated
by an “E” are in English units, and the Sl users can ignore them.
Problems with the icon % are solved using EES, and complete
solutions together with parametric studies are included on the text
website. Problems with the icon & are comprehensive in nature,
and are intended to be solved with an equation solver such as EES.
Problems with the icon ¥ are Prevention through Design problems.

4-7C Consider heat transfer between two identical hot solid
bodies and their environments. The first solid is dropped
in a large container filled with water, while the second one
is allowed to cool naturally in the air. For which solid is the
lumped system analysis more likely to be applicable? Why?

4-8C Consider a hot baked potato on a plate. The tempera-
ture of the potato is observed to drop by 4°C during the first
minute. Will the temperature drop during the second minute be
less than, equal to, or more than 4°C? Why?

Cool Hot
o baked

potato

FIGURE P4-8C

4-9C Consider a potato being baked in an oven that is main-
tained at a constant temperature. The temperature of the potato
is observed to rise by 5°C during the first minute. Will the tem-
perature rise during the second minute be less than, equal to, or
more than 5°C? Why?

4-10C Consider two identical 4-kg pieces of roast beef. The
first piece is baked as a whole, while the second is baked after
being cut into two equal pieces in the same oven. Will there be
any difference between the cooking times of the whole and cut
roasts? Why?
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4-11C Consider a sphere and a cylinder of equal volume
made of copper. Both the sphere and the cylinder are initially
at the same temperature and are exposed to convection in the
same environment. Which do you think will cool faster, the
cylinder or the sphere? Why?

4-12 Obtain relations for the characteristic lengths of a large
plane wall of thickness 2L, a very long cylinder of radius r,,
and a sphere of radius r,,.

4-13 Obtain a relation for the time required for a lumped
system to reach the average temperature 5 (7; + T..), where
T;is the initial temperature and 7., is the temperature of the
environment.

4-14 A brick of 203 X 102 X 57 mm in dimension is being
burned in a kiln to 1100°C, and then allowed to cool in a room
with ambient air temperature of 30°C and convection heat
transfer coefficient of 5 W/m?K. If the brick has properties
of p = 1920 kg/m?, ¢, = 790 J/kg'K, and k = 0.90 W/m-K,
determine the time required to cool the brick to a temperature
difference of 5°C from the ambient air temperature.

4-15 Consider a 1000-W iron whose base plate is made of
0.5-cm-thick aluminum alloy 2024-T6 (p = 2770 kg/m®, ¢, =
875 J/kg'K, @ = 7.3 X 1073 m?s). The base plate has a surface
area of 0.03 m?. Initially, the iron is in thermal equilibrium
with the ambient air at 22°C. Taking the heat transfer coef-
ficient at the surface of the base plate to be 12 W/m?K and as-
suming 85 percent of the heat generated in the resistance wires
is transferred to the plate, determine how long it will take for
the plate temperature to reach 140°C. Is it realistic to assume
the plate temperature to be uniform at all times?

iron

FIGURE P4-15

4-16 @ Reconsider Prob. 4-15. Using EES (or other) soft-

<& ware, investigate the effects of the heat transfer co-
efficient and the final plate temperature on the time it will take
for the plate to reach this temperature. Let the heat transfer co-
efficient vary from 5 W/m?-K to 25 W/m?K and the tempera-
ture from 30°C to 200°C. Plot the time as functions of the heat

transfer coefficient and the temperature, and discuss the results.

4-17 Metal plates (k = 180 W/m-K, p = 2800 kg/m?, and
¢, = 880 J/kg-K) with a thickness of 1 cm are being heated in
an oven for 2 minutes. Air in the oven is maintained at 800°C
with a convection heat transfer coefficient of 200 W/m>K. If
the initial temperature of the plates is 20°C, determine the tem-
perature of the plates when they are removed from the oven.

4-18 A 5-mm-thick stainless steel strip (k = 21 W/m-K, p =
8000 kg/m?, and ¢, = 570 J/kg-K) is being heat treated as it
moves through a furnace at a speed of 1 cm/s. The air tempera-
ture in the furnace is maintained at 900°C with a convection
heat transfer coefficient of 80 W/m?-K. If the furnace length is
3 m and the stainless steel strip enters it at 20°C, determine the
temperature of the strip as it exits the furnace.

Furnace
900°C
1 cm/s
—_
7 0 [
( | 3m |
Stainless steel
20°C
FIGURE P4-18
4-19 A batch of 2-cm-thick stainless steel plates (k =

<& 21 WmK, p = 8000 kg/m?, and ¢, = 570 Jkg-K)
are conveyed through a furnace to be heat treated. The plates
enter the furnace at 18°C, and travel a distance of 3 m inside the
furnace. The air temperature in the furnace is maintained at
950°C with a convection heat transfer coefficient of 150 W/m>K.
Using EES (or other) software, determine how the velocity of the
plates affects the temperature of the plates at the end of the heat
treatment. Let the velocity of the plates vary from 5 to 60 mm/s,
and plot the temperature of the plates at the furnace exit as a
function of the velocity.

Furnace, 950°C
5 to 60 mm/s

Stainless steel plate

FIGURE P4-19
4-20 A 6-mm-thick stainless steel strip (k = 21 W/m-K,
A< p = 8000 kg/m?, and ¢, = 570 J/kg-K) exiting an
oven at a temperature of 500°C is allowed to cool within a buf-
fer zone distance of 5 m. To prevent thermal burn to workers



who are handling the strip at the end of the buffer zone, the
surface temperature of the strip should be cooled to 45°C. If
the air temperature in the buffer zone is 15°C and the convec-
tion heat transfer coefficient is 120 W/m?2-K, determine the
maximum speed of the stainless steel strip.

4-21 After heat treatment, the 2-cm thick metal
Y= plates (k = 180 W/m-K, p = 2800 kg/m?, and
¢, = 880 J/kg-K) are conveyed through a cooling chamber with
a length of 10 m. The plates enter the cooling chamber at an
initial temperature of 500°C. The cooling chamber maintains a
temperature of 10°C, and the convection heat transfer coeffi-
cient is given as a function of the air velocity blowing over the
plates 7 = 33V 08, where h is in W/m>K and V is in m/s. To
prevent any incident of thermal burn, it is necessary for the
plates to exit the cooling chamber at a temperature below 50°C.
In designing the cooling process to meet this safety criteria, use
the EES (or other) software to investigate the effect of the air
velocity on the temperature of the plates at the exit of the cool-
ing chamber. Let the air velocity vary from 0 to 40 m/s, and plot
the temperatures of the plates exiting the cooling chamber as a
function of air velocity at the moving plate speed of 2, 5,
and 8 cm/s.

4-22 A long copper rod of diameter 2.0 cm is initially at a
uniform temperature of 100°C. It is now exposed to an air
stream at 20°C with a heat transfer coefficient of 200 W/m?K.
How long would it take for the copper road to cool to an aver-
age temperature of 25°C?

4-23 Springs in suspension system of automobiles are made
of steel rods heated and wound into coils while ductile.
Consider steel rods (p = 7832 kg/m?, ¢, = 434 J/kg'K, and
k = 63.9 W/m-K) with diameter of 2.5 cm and length of
1.27 m. The steel rods are heated in an oven with a uniform
convection heat transfer coefficient of 20 W/m?K. The steel
rods were heated from an initial temperature of 20°C to the
desired temperature of 450°C before being wound into coils.
Determine the ambient temperature in the oven, if the steel
rods were to be heated to the desired temperature within
10 minutes.

4-24 Steel rods (p = 7832 kg/m?, ¢, = 434 J/kg'K, and
k = 63.9 W/m:-K) are heated in a furnace to 850°C and then
quenched in a water bath at 50°C for a period of 40 seconds
as part of a hardening process. The convection heat transfer
coefficient is 650 W/m?-K. If the steel rods have diameter of
40 mm and length of 2 m, determine their average temperature
when they are taken out of the water bath.

4-25 To warm up some milk for a baby, a mother pours milk
into a thin-walled cylindrical container whose diameter is
6 cm. The height of the milk in the container is 7 cm. She then
places the container into a large pan filled with hot water at
70°C. The milk is stirred constantly, so that its temperature is
uniform at all times. If the heat transfer coefficient between the
water and the container is 120 W/m?-K, determine how long it
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will take for the milk to warm up from 3°C to 38°C. Assume
the entire surface area of the cylindrical container (including
the top and bottom) is in thermal contact with the hot water.
Take the properties of the milk to be the same as those of
water. Can the milk in this case be treated as a lumped system?
Why? Answer: 4.50 min

4-26 A person is found dead at 5pm in a room whose temper-
ature is 20°C. The temperature of the body is measured to be
25°C when found, and the heat transfer coefficient is estimated
to be 8 W/m?-K. Modeling the body as a 30-cm-diameter,
1.70-m-long cylinder and using the lumped system analysis
as a rough approximation, estimate the time of death of that
person.

4-27 The temperature of a gas stream is to be measured by
a thermocouple whose junction can be approximated as a
1.2-mm-diameter sphere. The properties of the junction are
k = 35 W/m-K, p = 8500 kg/m?, and ¢, = 320 J/kg-K, and
the heat transfer coefficient between the junction and the gas
is h = 90 W/m?K. Determine how long it will take for the
thermocouple to read 99 percent of the initial temperature
difference. Answer: 27.8 s

4-28 In an experiment, the temperature of a hot gas stream
is to be measured by a thermocouple with a spherical junc-
tion. Due to the nature of this experiment, the response time
of the thermocouple to register 99 percent of the initial tem-
perature difference must be within 5 s. The properties of the
thermocouple junction are k = 35 W/m-K, p = 8500 kg/m?,
and ¢, = 320 J/kg-K. If the heat transfer coefficient between
the thermocouple junction and the gas is 250 W/m?-K, deter-
mine the diameter of the junction.

4-29 A thermocouple, with a spherical junction diam-
eter of 0.5 mm, is used for measuring the temperature of
hot air flow in a circular duct. The convection heat trans-
fer coefficient of the air flow can be related with the diam-
eter (D) of the duct and the average air flow velocity (V) as
h = 2.2(VID)*5, where D, h, and V are in m, W/m%K and
m/s, respectively. The properties of the thermocouple junc-
tion are k = 35 W/m-K, p = 8500 kg/m’, and ¢, = 320 J/kg-K.
Determine the minimum air flow velocity that the thermo-
couple can be used, if the maximum response time of the
thermocouple to register 99 percent of the initial temperature
difference is 5 s.

Air flow, V
T, h —> Thermocouple junction
R —
—_—
 —
D =0.5 mm
FIGURE P4-29



292
TRANSIENT HEAT CONDUCTION

4-30 Pulverized coal particles are used in oxy-fuel com-
bustion power plants for electricity generation. Consider a
situation where coal particles are suspended in hot air flow-
ing through a heated tube, where the convection heat trans-
fer coefficient is 100 W/m?K. If the average surface area
and volume of the coal particles are 3.1 mm? and 0.5 mm?,
respectively, determine how much time it would take to heat
the coal particles to two-thirds of the initial temperature
difference.

4-31 Oxy-fuel combustion power plants use pulverized
coal particles as fuel to burn in a pure oxygen environment
to generate electricity. Before entering the furnace, pulverized
spherical coal particles with an average diameter of 300 pwm,
are being transported at 2 m/s through a 3-m long heated tube
while suspended in hot air. The air temperature in the tube is
900°C and the average convection heat transfer coefficient is
250 W/m?-K. Determine the temperature of the coal particles
at the exit of the heated tube, if the initial temperature of the
particles is 20°C.

4-32 Plasma spraying is a process used for coating a mate-
rial surface with a protective layer to prevent the material from
degradation. In a plasma spraying process, the protective layer
in powder form is injected into a plasma jet. The powder is
then heated to molten droplets and propelled onto the mate-
rial surface. Once deposited on the material surface, the mol-
ten droplets solidify and form a layer of protective coating.
Consider a plasma spraying process using alumina (k = 30 W/m-K,
p = 3970 kg/m?, and ¢, = 800 J/kg-K) powder that is injected
into a plasma jet at 7., = 15,000°C and & = 10,000 W/m?>-K.
The alumina powder is made of particles that are spherical
in shape with an average diameter of 60 wm and a melting
point at 2300°C. Determine the amount of time it would take
for the particles, with an initial temperature of 20°C, to reach
their melting point from the moment they are injected into the
plasma jet.

4-33 Consider a spherical shell satellite with outer diameter
of 4 m and shell thickness of 10 mm is reentering the atmo-
sphere. The shell satellite is made of stainless steel with prop-
erties of p = 8238 kg/m’, ¢, =468 J/kg'K, and k = 13.4 W/m-K.
During the reentry, the effective atmosphere temperature sur-
rounding the satellite is 1250°C with convection heat transfer
coefficient of 130 W/m?K. If the initial temperature of the
shell is 10°C, determine the shell temperature after 5 minutes
of reentry. Assume heat transfer occurs only on the satellite
shell.

4-34 Carbon steel balls (p = 7833 kg/m?, k = 54 W/m-K,
¢, = 0.465 kl/kg-°C, and a = 1.474 X 107° m?%s) 8 mm in
diameter are annealed by heating them first to 900°C in a furnace
and then allowing them to cool slowly to 100°C in ambient air
at 35°C. If the average heat transfer coefficient is 75 W/m?>K,
determine how long the annealing process will take. If 2500 balls
are to be annealed per hour, determine the total rate of heat trans-
fer from the balls to the ambient air.

Furnace Air, 35°C

Steel ball 100°C

FIGURE P4-34

4-35 @ Reconsider Prob. 4-34. Using EES (or other) soft-

<& ware, investigate the effect of the initial tempera-
ture of the balls on the annealing time and the total rate of heat
transfer. Let the temperature vary from 500°C to 1000°C. Plot
the time and the total rate of heat transfer as a function of the

initial temperature, and discuss the results.

4-36E In a manufacturing facility, 2-in-diameter brass
balls (k = 64.1 Btu/h-ft-°F, p = 532 Ibm/ft}, and ¢, =
0.092 Btu/lbm-°F) initially at 250°F are quenched in a wa-
ter bath at 120°F for a period of 2 min at a rate of 120 balls
per minute. If the convection heat transfer coefficient is
42 Btu/h-ft>-°F, determine (a) the temperature of the balls after
quenching and () the rate at which heat needs to be removed
from the water in order to keep its temperature constant at
120°F.

FIGURE P4-36E

4-37 Consider a sphere of diameter 5 cm, a cube of side
length 5 cm, and a rectangular prism of dimension 4 cm X
5 c¢cm X 6 cm, all initially at 0°C and all made of silver (k =
429 WimK, p = 10,500 kg/m?, ¢, = 0.235 kl/kg-K). Now
all three of these geometries are exposed to ambient air at
33°C on all of their surfaces with a heat transfer coefficient of
12 W/m?K. Determine how long it will take for the tempera-
ture of each geometry to rise to 25°C.

4-38 An electronic device dissipating 20 W has a mass of
20 g, a specific heat of 850 J/kg-K, and a surface area of
4 cm?. The device is lightly used, and it is on for 5 min and
then off for several hours, during which it cools to the ambient
temperature of 25°C. Taking the heat transfer coefficient to be
12 W/m?-K, determine the temperature of the device at the end
of the 5-min operating period. What would your answer be if
the device were attached to an aluminum heat sink having a
mass of 200 g and a surface area of 80 cm?? Assume the device
and the heat sink to be nearly isothermal.



Transient Heat Conduction in Large Plane Walls,
Long Cylinders, and Spheres with Spatial Effects

4-39C An egg is to be cooked to a certain level of doneness
by being dropped into boiling water. Can the cooking time be
shortened by turning up the heat and bringing water to a more
rapid boiling?

4-40C What is an infinitely long cylinder? When is it proper
to treat an actual cylinder as being infinitely long, and when is
it not? For example, is it proper to use this model when finding
the temperatures near the bottom or top surfaces of a cylinder?
Explain.

4-41C What is the physical significance of the Fourier num-
ber? Will the Fourier number for a specified heat transfer prob-
lem double when the time is doubled?

4-42C Why are the transient temperature charts prepared us-
ing nondimensionalized quantities such as the Biot and Fourier
numbers instead of the actual variables such as thermal con-
ductivity and time?

4-43C Can the transient temperature charts in Fig. 4-17 for
a plane wall exposed to convection on both sides be used for a
plane wall with one side exposed to convection while the other
side is insulated? Explain.

4-44C How can we use the transient temperature charts when
the surface temperature of the geometry is specified instead of
the temperature of the surrounding medium and the convection
heat transfer coefficient?

4-45C The Biot number during a heat transfer process be-
tween a sphere and its surroundings is determined to be 0.02.
Would you use lumped system analysis or the transient tem-
perature charts when determining the midpoint temperature of
the sphere? Why?

4-46C A body at an initial temperature of 7;is brought into a
medium at a constant temperature of 7.,. How can you deter-
mine the maximum possible amount of heat transfer between
the body and the surrounding medium?

4-47 A hot brass plate is having its upper surface cooled by
impinging jet of air at temperature of 15°C and convection

U Air, 15°C
4/4/ &»ﬂZOW/mZAK

L=10cm

Insulation

FIGURE P4-47
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heat transfer coefficient of 220 W/m?-K. The 10-cm thick brass
plate (p = 8530 kg/m?, ¢, = 380 J/kg-K, k = 110 W/m-K, and
a = 33.9 X 10° m%s) has a uniform initial temperature of
650°C, and the bottom surface of the plate is insulated. Deter-
mine the temperature at the center plane of the brass plate after
3 minutes of cooling. Solve this problem using analytical one-
term approximation method (not the Heisler charts).

4-48 In a meat processing plant, 2-cm-thick steaks (k =
0.45 W/m-K and @ = 0.91 X 1077 m?s) that are initially at
25°C are to be cooled by passing them through a refrigeration
room at —11°C. The heat transfer coefficient on both sides of
the steaks is 9 W/m?K. If both surfaces of the steaks are to be
cooled to 2°C, determine how long the steaks should be kept
in the refrigeration room. Solve this problem using analytical
one-term approximation method (not the Heisler charts).

4-49 A 10-cm thick aluminum plate (p = 2702 kg/m?, ¢, =
903 J/kgK, k = 237 W/m-K, and @ = 97.1 X 10 m?%/s) is
being heated in liquid with temperature of 500°C. The alumi-
num plate has a uniform initial temperature of 25°C. If the
surface temperature of the aluminum plate is approximately
the liquid temperature, determine the temperature at the center
plane of the aluminum plate after 15 seconds of heating. Solve
this problem using analytical one-term approximation method
(not the Heisler charts).

Aluminum plate
T, =500°C

FIGURE P4-49

4-50 In a production facility, 3-cm-thick large brass plates
(k = 110 W/m-K, p = 8530 kg/m?, ¢, = 380 J/kg-K, and

Furnace, 700°C
—_

Brass plate
25°C

FIGURE P4-50
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a = 33.9 X 1075 m?%s) that are initially at a uniform tempera-
ture of 25°C are heated by passing them through an oven main-
tained at 700°C. The plates remain in the oven for a period of
10 min. Taking the convection heat transfer coefficient to be
h = 80 W/m>K, determine the surface temperature of the
plates when they come out of the oven. Solve this problem
using analytical one-term approximation method (not the
Heisler charts). Can this problem be solved using lumped
system analysis? Justify your answer.

4-51 @ Reconsider Prob. 4-50. Using EES (or other) soft-

<& ware, investigate the effects of the temperature of
the oven and the heating time on the final surface temperature
of the plates. Let the oven temperature vary from 500°C to
900°C and the time from 2 min to 30 min. Plot the surface tem-
perature as the functions of the oven temperature and the time,
and discuss the results.

4-52 Layers of 23-cm-thick meat slabs (k = 0.47 W/m-K and
a = 0.13 X 107° m%s) initially at a uniform temperature of
7°C are to be frozen by refrigerated air at —30°C flowing at a
velocity of 1.4 m/s. The average heat transfer coefficient be-
tween the meat and the air is 20 W/m2-K. Assuming the size of
the meat slabs to be large relative to their thickness, determine
how long it will take for the center temperature of the slabs to
drop to —18°C. Also, determine the surface temperature of the
meat slab at that time.

4-53 In an annealing process, a 50-mm-thick stainless steel
plate (p = 8238 kg/m’, ¢, = 468 J/kg'K, k = 13.4 W/m-K,
and o = 3.48 X 10~ m?/s) was reheated in a furnace from an
initial uniform temperature of 230°C. The ambient tempera-
ture inside the furnace is at a uniform temperature of 1000°C
and has a convection heat transfer coefficient of 215 W/m?-K.
If the entire stainless steel plate is to be heated to at least
600°C, determine the time that the plate should be heated
in the furnace using (a) Table 4-2 and (b) the Heisler chart
(Figure 4-17).

4-54 A heated 6-mm-thick Pyroceram plate (p = 2600 kg/m?,
¢, = 808 J/kgK, k = 3.98 Wm-K, and @ = 1.89 X 10° m?%s)
is being cooled in a room with air temperature of 25°C and con-
vection heat transfer coefficient of 13.3 W/m?-K. The heated
Pyroceram plate had an initial temperature of 500°C, and is
allowed to cool for 286 seconds. If the mass of the Pyroceram
plate is 10 kg, determine the heat transfer from the Pyroc-
eram plate during the cooling process using (a) Table 4-2 and
(b) Figure 4-17.

4-55E Layers of 6-in-thick meat slabs (k = 0.26 Btu/h-ft-°F
and @ = 1.4 X 107° ft¥/s) initially at a uniform temperature of
50°F are cooled by refrigerated air at 23°F to a temperature of
36°F at their center in 12 h. Estimate the average heat trans-
fer coefficient during this cooling process. Solve this problem
using the Heisler charts. Answer: 1.5 Btu/h-ft?-°F

4-56 A long cylindrical wood log (k = 0.17 W/m-K and
a = 1.28 X 1077 m?%s) is 10 cm in diameter and is initially

at a uniform temperature of 15°C. It is exposed to hot gases
at 550°C in a fireplace with a heat transfer coefficient of
13.6 W/m2-K on the surface. If the ignition temperature of the
wood is 420°C, determine how long it will be before the log
ignites. Solve this problem using analytical one-term approxi-
mation method (not the Heisler charts).

4-57E Long cylindrical AISI stainless steel rods (k =
7.74 Btu/h-ft-°F and @ = 0.135 ft?/h) of 4-in-diameter are heat
treated by drawing them at a velocity of 7 ft/min through a
21-ft-long oven maintained at 1700°F. The heat transfer coef-
ficient in the oven is 20 Btu/h-ft>°F. If the rods enter the oven
at 70°F, determine their centerline temperature when they
leave. Solve this problem using analytical one-term approxi-
mation method (not the Heisler charts).

Oven
1700°F

(] (]
! 21 ft |

(
Stainless steel

70°F
FIGURE P4-57E

4-58 A long iron rod (p = 7870 kg/m?, ¢, = 447 J/kg-K,
k =80.2 W/mK, and a = 23.1 X 107 m%/s) with diameter of
25 mm is initially heated to a uniform temperature of 700°C.
The iron rod is then quenched in a large water bath that is
maintained at constant temperature of 50°C and convec-
tion heat transfer coefficient of 128 W/m?-K. Determine the
time required for the iron rod surface temperature to cool to
200°C. Solve this problem using analytical one-term approxi-
mation method (not the Heisler charts).

Tron rod

|
Water,|50°C
h =128 W/m>K

FIGURE P4-58

4-59 A 30-cm-diameter, 4-m-high cylindrical column of a
house made of concrete (k = 0.79 W/m-K, & = 5.94 X 1077 m%s,
p = 1600 kg/m?, and ¢, = 0.84 kJ/kg-K) cooled to 14°C during
a cold night is heated again during the day by being exposed



to ambient air at an average temperature of 28°C with an
average heat transfer coefficient of 14 W/m?K. Using
analytical one-term approximation method (not the Heisler
charts), determine (@) how long it will take for the column
surface temperature to rise to 27°C, (b) the amount of heat
transfer until the center temperature reaches to 28°C, and
(c) the amount of heat transfer until the surface temperature
reaches to 27°C.

4-60 A long 35-cm-diameter cylindrical shaft made of stainless
steel 304 (k = 14.9 W/mK, p = 7900 kg/m?, ¢, = 477 J/kg'K,
and o = 3.95 X 107° m%/s) comes out of an oven at a uniform
temperature of 400°C. The shaft is then allowed to cool slowly
in a chamber at 150°C with an average convection heat trans-
fer coefficient of 7 = 60 W/m?K. Determine the temperature
at the center of the shaft 20 min after the start of the cooling
process. Also, determine the heat transfer per unit length of
the shaft during this time period. Solve this problem using
analytical one-term approximation method (not the Heisler
charts). Answers: 390°C, 15,900 kJ

4-61 @ Reconsider Prob. 4-60. Using EES (or other) soft-

<& ware, investigate the effect of the cooling time on
the final center temperature of the shaft and the amount of heat
transfer. Let the time vary from 5 min to 60 min. Plot the cen-
ter temperature and the heat transfer as a function of the time,

and discuss the results.

4-62 A 2-cm-diameter plastic rod has a thermocouple
inserted to measure temperature at the center of the rod.
The plastic rod (p = 1190 kg/m?, ¢, = 1465 J/kg'K, and
k = 0.19 W/m-K) was initially heated to a uniform tempera-
ture of 70°C, and allowed to be cooled in ambient air tem-
perature of 25°C. After 1388 s of cooling, the thermocouple
measured the temperature at the center of the rod to be 30°C.
Determine the convection heat transfer coefficient for this
process. Solve this problem using analytical one-term approxi-
mation method (not the Heisler charts).

Air, 25°C

Thermocouple
wires

FIGURE P4-62

4-63 A 65-kg beef carcass (k = 0.47 W/m-K and o = 0.13 X
10~° m?/s) initially at a uniform temperature of 37°C is to be
cooled by refrigerated air at —10°C flowing at a velocity of
1.2 m/s. The average heat transfer coefficient between the
carcass and the air is 22 W/m?-K. Treating the carcass as a
cylinder of diameter 24 cm and height 1.4 m and disregarding
heat transfer from the base and top surfaces, determine how
long it will take for the center temperature of the carcass to
drop to 4°C. Also, determine if any part of the carcass will
freeze during this process. Answer: 12.2 h

CHAPTER 4
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FIGURE P4-63

4-64 A long Pyroceram rod (p = 2600 kg/m3, ¢, =
808 J/kg'K, k = 3.98 W/m-K, and « = 1.89 X 10° m?/s)
with diameter of 10 mm has an initial uniform temperature
of 1000°C. The Pyroceram rod is allowed to cool in ambient
temperature of 25°C and convection heat transfer coefficient of
80 W/m>K. If the Pyroceram rod is allowed to cool for 3 min-
utes, determine the temperature at the center of the rod using
(a) Table 4-2 and (b) the Heisler chart (Figure 4-18).

4-65 Steel rods, 2 m in length and 60 mm in diameter, are
being drawn through an oven that maintains a temperature of
800°C and convection heat transfer coefficient of 128 W/m?-K.
The steel rods (p = 7832 kg/m’, c, = 434 J/kgK, k =
63.9 W/mK, and a = 18.8 X 10° m?%s) were initially in
uniform temperature of 30°C. Using (a) Table 4-2 and
(b) Figure 4—18, determine the amount of heat is transferred to

the steel rod after 133 s of heating.

4-66 A father and son conducted the following simple
experiment on a hot dog which measured 12.5 cm in length
and 2.2 cm in diameter. They inserted one food thermometer
into the midpoint of the hot dog and another one was placed
just under the skin of the hot dog. The temperatures of the ther-
mometers were monitored until both thermometers read 20°C,
which is the ambient temperature. The hot dog was then placed
in 94°C boiling water and after exactly 2 minutes they recorded
the center temperature and the skin temperature of the hot dog
to be 59°C and 88°C, respectively. Assuming the following
properties for the hot dog: p = 980 kg/m? and ¢, = 3900 J/
kg-K and using transient temperature charts, determine (a) the
thermal diffusivity of the hot dog, (b) the thermal conductivity
of the hot dog, and (c) the convection heat transfer coefficient.

e A o e

- Boiling water “NNNN

—
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:é Hot dog i §ﬁ
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FIGURE P4-66
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4-67 An experiment is to be conducted to determine heat
transfer coefficient on the surfaces of tomatoes that are placed
in cold water at 7°C. The tomatoes (k = 0.59 W/m-K, o =
0.141 X 107¢ m%s, p = 999 kg/m?, ¢, = 3.99 kl/kg-K) with
an initial uniform temperature of 30°C are spherical in shape
with a diameter of 8 cm. After a period of 2 hours, the tem-
peratures at the center and the surface of the tomatoes are mea-
sured to be 10.0°C and 7.1°C, respectively. Using analytical
one-term approximation method (not the Heisler charts), deter-
mine the heat transfer coefficient and the amount of heat trans-
fer during this period if there are eight such tomatoes in water.

4-68 An ordinary egg can be approximated as a 5.5-cm-
diameter sphere whose properties are roughly £ = 0.6 W/m-K
and a = 0.14 X 107° m?/s. The egg is initially at a uniform
temperature of 8§°C and is dropped into boiling water at 97°C.
Taking the convection heat transfer coefficient to be h =
1400 W/m?K, determine how long it will take for the center
of the egg to reach 70°C. Solve this problem using analytical
one-term approximation method (not the Heisler charts).

Boiling 97°C
water

FIGURE P4-68

4-69 @ Reconsider Prob. 4-68. Using EES (or other) soft-

<& ware, investigate the effect of the final center tem-
perature of the egg on the time it will take for the center to reach
this temperature. Let the temperature vary from 50°C to 95°C.

Plot the time versus the temperature, and discuss the results.

4-70 For heat transfer purposes, an egg can be considered to
be a 5.5-cm-diameter sphere having the properties of water.
An egg that is initially at 8°C is dropped into the boiling water
at 100°C. The heat transfer coefficient at the surface of the
egg is estimated to be 800 W/m?-K. If the egg is considered
cooked when its center temperature reaches 60°C, determine
how long the egg should be kept in the boiling water. Solve
this problem using analytical one-term approximation method
(not the Heisler charts).

4-71 Citrus fruits are very susceptible to cold weather, and
extended exposure to subfreezing temperatures can destroy
them. Consider an 8-cm-diameter orange that is initially at
15°C. A cold front moves in one night, and the ambient temper-
ature suddenly drops to —6°C, with a heat transfer coefficient
of 15 W/m?K. Using the properties of water for the orange and
assuming the ambient conditions to remain constant for 4 h
before the cold front moves out, determine if any part of the
orange will freeze that night. Solve this problem using analyti-
cal one-term approximation method (not the Heisler charts).

4-72 A person puts a few apples into the freezer at —15°C to
cool them quickly for guests who are about to arrive. Initially,
the apples are at a uniform temperature of 20°C, and the heat
transfer coefficient on the surfaces is 8 W/m?K. Treating the
apples as 9-cm-diameter spheres and taking their properties to
be p = 840 kg/m?, ¢, = 3.81 kl/kg-K, k = 0.418 W/m-K, and
a = 1.3 X 1077 m?/s, determine the center and surface temper-
atures of the apples in 1 h. Also, determine the amount of heat
transfer from each apple. Solve this problem using analytical
one-term approximation method (not the Heisler charts).

4-73 @ Reconsider Prob. 4-72. Using EES (or other) soft-

<& ware, investigate the effect of the initial tempera-
ture of the apples on the final center and surface temperatures
and the amount of heat transfer. Let the initial temperature
vary from 2°C to 30°C. Plot the center temperature, the surface
temperature, and the amount of heat transfer as a function of
the initial temperature, and discuss the results.

4-74 A 9-cm-diameter potato (p = 1100 kg/m?, ¢, =
3900 J/kg'K, k = 0.6 W/m-K, and « = 1.4 X 1077 m?%s) that
is initially at a uniform temperature of 25°C is baked in an
oven at 170°C until a temperature sensor inserted to the center
of the potato indicates a reading of 70°C. The potato is then
taken out of the oven and wrapped in thick towels so that al-
most no heat is lost from the baked potato. Assuming the heat
transfer coefficient in the oven to be 40 W/m?2-K, determine
(a) how long the potato is baked in the oven and (b) the final
equilibrium temperature of the potato after it is wrapped. Solve
this problem using analytical one-term approximation method
(not the Heisler charts).

4-75 Chickens with an average mass of 1.7 kg (k =
0.45 W/m-K and a = 0.13 X 107% m%/s) initially at a uniform
temperature of 15°C are to be chilled in agitated brine at —7°C.
The average heat transfer coefficient between the chicken and
the brine is determined experimentally to be 440 W/m?K. Tak-
ing the average density of the chicken to be 0.95 g/cm?® and
treating the chicken as a spherical lump, determine the center
and the surface temperatures of the chicken in 2 h and 45 min.
Also, determine if any part of the chicken will freeze during this
process. Solve this problem using analytical one-term approxi-
mation method (not the Heisler charts).

4-76 Hailstones are formed in high altitude clouds at
253 K. Consider a hailstone with diameter of 20 mm and is
falling through air at 15°C with convection heat transfer coef-
ficient of 163 W/m?*K. Assuming the hailstone can be mod-
eled as a sphere and has properties of ice at 253 K, determine
the duration it takes to reach melting point at the surface of the
falling hailstone. Solve this problem using analytical one-term
approximation method (not the Heisler charts).

4-77 1In Betty Crocker’s Cookbook, it is stated that it takes
2 h 45 min to roast a 3.2-kg rib initially at 4.5°C “rare” in an
oven maintained at 163°C. It is recommended that a meat ther-
mometer be used to monitor the cooking, and the rib is consid-
ered rare done when the thermometer inserted into the center



of the thickest part of the meat registers 60°C. The rib can be
treated as a homogeneous spherical object with the properties
p = 1200 kg/m®, ¢, = 4.1 kI/kg-K, k = 0.45 W/m-K, and o =
0.91 X 1077 m%s. Determine (a) the heat transfer coefficient at
the surface of the rib; (b) the temperature of the outer surface
of the rib when it is done; and (c¢) the amount of heat trans-
ferred to the rib. (d) Using the values obtained, predict how
long it will take to roast this rib to “medium” level, which oc-
curs when the innermost temperature of the rib reaches 71°C.
Compare your result to the listed value of 3 h 20 min.

If the roast rib is to be set on the counter for about 15 min be-
fore it is sliced, it is recommended that the rib be taken out of the
oven when the thermometer registers about 4°C below the indi-
cated value because the rib will continue cooking even after it is
taken out of the oven. Do you agree with this recommendation?
Solve this problem using analytical one-term approximation
method (not the Heisler charts).

Answers: (a) 156.9 W/m?-K, (b) 159.5°C, (c) 1629 kJ, (d)3.0 h

4-78 Repeat Prob. 4-77 for a roast rib that is to be “well-
done” instead of “rare.” A rib is considered to be well-done
when its center temperature reaches 77°C, and the roasting in
this case takes about 4 h 15 min.

4-79 White potatoes (k = 0.50 W/m:K and a = 0.13 X
10~° m?s) that are initially at a uniform temperature of 25°C
and have an average diameter of 6 cm are to be cooled by
refrigerated air at 2°C flowing at a velocity of 4 m/s. The
average heat transfer coefficient between the potatoes and
the air is experimentally determined to be 19 W/m2K.
Determine how long it will take for the center temperature of
the potatoes to drop to 6°C. Also, determine if any part of the
potatoes will experience chilling injury during this process.

Air
2°C
4 m/s

FIGURE P4-79

4-80E Oranges of 2.5-in-diameter (k = 0.26 Btu/h-ft-°F
and a = 1.4 X 107° ft?/s) initially at a uniform temperature
of 78°F are to be cooled by refrigerated air at 25°F flowing
at a velocity of 1 ft/s. The average heat transfer coefficient
between the oranges and the air is experimentally determined
to be 4.6 Btu/h-ft>-°F. Determine how long it will take for the
center temperature of the oranges to drop to 40°F. Also, deter-
mine if any part of the oranges will freeze during this process.

4-81E In a chicken processing plant, whole chickens averaging
5 Ibm each and initially at 65°F are to be cooled in the racks of
a large refrigerator that is maintained at 5°F. The entire chicken
is to be cooled below 45°F, but the temperature of the chicken
is not to drop below 35°F at any point during refrigeration.

CHAPTER 4

The convection heat transfer coefficient and thus the rate of
heat transfer from the chicken can be controlled by varying the
speed of a circulating fan inside. Determine the heat transfer-
coefficient that will enable us to meet both temperature con-
straints while keeping the refrigeration time to a minimum.
The chicken can be treated as a homogeneous spherical object
having the properties p = 74.9 Ibm/ft*, ¢, = 0.98 Btu/Ibm-°F,
k = 0.26 Btu/h-ft-°F, and @ = 0.0035 ft>/h. Solve this problem
using the Heisler charts.

Transient Heat Conduction in Semi-Infinite Solids

4-82C Under what conditions can a plane wall be treated as a
semi-infinite medium?

4-83C What is a semi-infinite medium? Give examples of
solid bodies that can be treated as semi-infinite mediums for
heat transfer purposes.

4-84C Consider a hot semi-infinite solid at an initial tempera-
ture of 7;that is exposed to convection to a cooler medium at
a constant temperature of 7., with a heat transfer coefficient
of h. Explain how you can determine the total amount of heat
transfer from the solid up to a specified time 7,

4-85E The walls of a furnace are made of 1.2-ft-thick con-
crete (k = 0.64 Btw/h-ft-°F and « = 0.023 ft*/h). Initially, the
furnace and the surrounding air are in thermal equilibrium at
70°F. The furnace is then fired, and the inner surfaces of the
furnace are subjected to hot gases at 1800°F with a very large
heat transfer coefficient. Determine how long it will take for
the temperature of the outer surface of the furnace walls to rise
to 70.1°F. Answer: 116 min

4-86 Consider a curing kiln whose walls are made of 30-cm-
thick concrete with a thermal diffusivity of @ = 0.23 X 10~° m%/s.
Initially, the kiln and its walls are in equilibrium with the sur-
roundings at 6°C. Then all the doors are closed and the kiln is
heated by steam so that the temperature of the inner surface of
the walls is raised to 42°C and the temperature is maintained at
that level for 2.5 h. The curing kiln is then opened and exposed
to the atmospheric air after the steam flow is turned off. If the
outer sur