A Holistic Approach to A-Level SUBSIDIARY NATICS SECOND EDITION KAWUMA FAHAD WITH SOLUTIONS TO UNEB PAST PAPER QUESTIONS $$0 = 1 - \frac{6\sum d^2}{n(n^2-1)}$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ F=ma REVISED BY LUBWAMA HAMZA GOMBE'S,S A book that guarantees you a point in Sub-Math | <u>CONTENTS</u> | |---| | | | PREFACE(iii) ACKNOWLEDGEMENT(vii) | | | | EXAMINATION TIPS (viii) | | PART I: PURE MATHEMATICS | | PARTITURE | | CHAPER ONE: LOGARITHMS, SURDS AND INDICES | | CHAPTER TWO: POLYNOMIALS | | CHAPTER THREE: QUADRATIC EQUATIONS | | CHAPTER FOUR: SERIES | | CHAPTER FIVE: DIFFERENTIATION | | CHAPTER SIX: MATRICES | | CHAPTER SEVEN: VECTORS | |--| | CHAPTER EIGHT: INTEGRATION | | CHAPTER NINE: TRIGONOMETRY | | CHAPTER TEN: DIFFERENTIAL EQUATIONS | | PART II: PROBABILITY AND STATISTICS | | CHAPTER ELEVEN: DESCRIPTIVE STATISTICS | | presentation methods, Frequency tables, Histograms, Cumulative frequency graph (Ogive), Interpretation of statistical diagrams (Frequency tables, Histograms and Ogive), Mean, mode and median, Range, Quartiles/percentiles, Variance and standard deviation, Data analysis. | | oresentation methods, Frequency tables, Histograms, Cumulative frequency graph (Ogive), Interpretation of statistical diagrams (Frequency tables, Histograms and Ogive), Mean, mode and median, Range, Quartiles/percentiles, Variance and | | Presentation methods, Frequency tables, Histograms, Cumulative frequency graph (Ogive), Interpretation of statistical diagrams (Frequency tables, Histograms and Ogive), Mean, mode and median, Range, Quartiles/percentiles, Variance and standard deviation, Data analysis. CHAPTER TWELVE: MOVING AVERAGES | | CHAPTER FOURTEEN: SCATTER GRAPHS AND CORRELLATION155 - 168 Concept of correlation. Scatter diagrams, Line of best fit, Rank correlation coefficient, Applications of coefficient of correlation | |--| | CHAPTER FIFTEEN: THE PROBABILITY THEORY | | diagrams. CHAPTER SIXTEEN: PERMUTATIONS AND COMBINATIONS | | CHAPTER SEVENTEEN: RANDOM AND CONTINOUS VARIABLES | | Discrete random variables | | Concept of discrete random Variable, Probability density function (p.d.f) of a discrete random Variable, Properties of a p.d.f of a discrete random variable, Probability distribution table, Expectation E(X), Variance, Var(X), and Standard deviation of a discrete random variable, Mode. Continuous random variables | | Continuous random variable, Continuous probability Function, Properties of a Continuous random Variable, Expectation, variance and standard deviation of a continuous random variable. | | CHAPTER EIGHTEEN: BINOMIAL DISTRIBUTION210 - 216-
Concept of a binomial Distribution, Properties of a binomial Distribution,
Binomial notation, Binomial tables, Expectation, variance and Standard deviation | | CHAPTER NINTEEN: NORMAL DISTRIBUTION | | PART III: MECHANICS | | PART III: MECHANICS CHAPTER TWENTY: LINEAR MOTION | | Distance, displacement, velocity speed average mand | | Displacement-time graphs, Velocity-time graphs, Equations of linear motion, Numerical problems. | | CHAPTER TWENTY-ONE: RESULTANT AND COMPONENTS OF FORCES233-241 Resultant of parallel forces, non-parallel forces, any number of forces, Components of a force, Resultant of a number of forces. | |--| | CHAPTER TWENTY-TWO: FRICTION | | CHAPTER TWENTY-THREE: NEWTON'S LAWS OF MOTION250-259 A body at rest, a body in motion, connected bodies along horizontal and inclined planes. | | CHAPTER TWENTY-FOUR: WORK, ENERGY AND POWER | # Examination Format There will be one paper of **2 hours 40 minutes**. The paper will consist of two sections: Section A and Section B. Section A will comprise short questions on Pure Mathematics, Statistics and Mechanics while Section B will comprise longer questions. Section A will consist of eight (8) compulsory questions. Candidates will be required to attempt all questions each carrying 5 marks. Section B will consist of six (6) questions of which candidates will be required to attempt any four (4) each carrying 15 marks. In Section B, six (6) questions will be set from Pure Mathematics, Mechanics and Probability and Statistics. # **DEDICATION:** Of course, to my beloved parents υ # Examination tips - > Read carefully the instructions on the question paper. - If you only have to answer some of the questions, read the questions and choose which to do. Start with the questions you know best. - > If the instructions say "Answer all questions", work out steadily through the paper, leaving out any questions you cannot do. - > Read each question carefully to be sure what it is you are required to do - > Set out all your work carefully and neatly and make your method clear. If the examiners can see what you have done, they will be able to give marks for the correct method even if you have the answer wrong. - If you have to write an explanation as your answer, try to keep it short - > Check your answers, especially numerical ones. Look to see if your answers are sensible. - Make sure you know how to use a calculator. They don't all work the same way. - > When doing a calculation, keep all figures shown on the calculator, only round off the final answer. - Make sure you take all the equipment you need to the exam that is pens, pencils, ruler, compasses and calculator (make sure its battery is working) - When you have completed the exam, check to see that you have not missed out any questions. - You must show all working. If you give a correct answer without a working, you will receive no marks. - Avoid panic. If you have done your revision, you have no need to panic. If you find the examination difficult, so will everyone else. This means the pass mark will be lower. - If you cannot do a question, move on and don't worry about it. Often the answer will come a few minutes later. - > If panic occurs, try to find a question you can do. Success will help to calm your nerves. # CHAPTER 1: SURDS, LOGARITHMS AND INDICES Expressions such as $\sqrt{4}$, $\sqrt{25}$ have exact numerical values i.e. $\sqrt{4} = 2$, $\sqrt{25} = 5$. However expressions such as $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$can not be written numerically as exact quantities i.e. $\sqrt{2} = 1.414$ and $\sqrt{3} = 1.732$. Such numbers are called irrational and it's often more convenient to leave them in the form # Examples: 1. Write the following as the simplest possible surds (i) $$\sqrt{8}$$ (ii) $\sqrt{12}$ (iii) $\sqrt{50}$ (iv) $\sqrt{48}$ Solution (i) $$\sqrt{8} \approx \sqrt{2 \times 4} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$$ (ii) $$\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$$ (iii) $$\sqrt{50} = \sqrt{25 \times 2} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$$ (iv) $$\sqrt{48} = \sqrt{16 \times 3} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$$ 2. Simplify; (i) $$\sqrt{75} + \sqrt{108} + \sqrt{27}$$ $$\sqrt{75} + \sqrt{108} + \sqrt{27} = \sqrt{25 \times 3} + \sqrt{36 \times 3} + \sqrt{9 \times 3} = \sqrt{25} \times \sqrt{3} + \sqrt{36} \times \sqrt{3} + \sqrt{9} \times \sqrt{3} = 5\sqrt{3} + 6\sqrt{3} + 3\sqrt{3} = 14\sqrt{3}$$ (ii) $$\sqrt{50} + \sqrt{2} - 2\sqrt{18} + \sqrt{8}$$ ## Solution $$\sqrt{50} + \sqrt{2} - 2\sqrt{18} + \sqrt{8} = \sqrt{25 \times 2} + \sqrt{2} - 2\sqrt{9 \times 2} + \sqrt{4 \times 2}$$ $$= \sqrt{25} \times \sqrt{2} + \sqrt{2} - 2\sqrt{9} \times \sqrt{2} + \sqrt{4} \times \sqrt{2}$$ $$= 5\sqrt{2} + \sqrt{2} - 2 \times 3\sqrt{2} + 2\sqrt{2}$$ $$= 8\sqrt{2} - 6\sqrt{2} = 2\sqrt{2}$$ 3. Expand and simplify (a) $$(3-3\sqrt{3})(3+2\sqrt{3})$$ (b) $$(5-2\sqrt{7})(5+2\sqrt{7})$$ # Solution (a) $$(3 - 3\sqrt{3})(3 + 2\sqrt{3}) = 6 - 9\sqrt{3} + 4\sqrt{3} - 6(\sqrt{3})^2$$ = $6 - 5\sqrt{3} - 6 \times 3 = -12 - 5\sqrt{3}$ (b) $$(5-2\sqrt{7})(5+2\sqrt{7}) = 25-10\sqrt{7}+10\sqrt{7}-4(\sqrt{7})^2$$ = $25-4\times7=25-28=-3$ 41: 4. Rationalize the denominator of $\frac{3}{\sqrt{2}}$ # Solution Multiply numerator and denominator by $\sqrt{2}$ $$\frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$$ 5. Express $\frac{\sqrt{2}}{2\sqrt{3}}$ in the form $\sqrt{\frac{a}{b}}$ where a and b are real numbers. $$\frac{\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{4} \times \sqrt{3}} = \frac{\sqrt{2}}{\sqrt{12}} = \sqrt{\frac{2}{12}} = \sqrt{\frac{1}{6}}$$ Alternatively; $$\frac{\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{2}}{2\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{6}}{6} = \frac{\sqrt{6}}{\sqrt{36}} = \sqrt{\frac{6}{36}} = \sqrt{\frac{1}{6}}$$ 6. Rationalize the denominator of $\frac{3-\sqrt{5}}{1+3\sqrt{5}}$ Multiply numerator and denominator by the denominator with sign of $3\sqrt{5}$ changed (conjugate of the denominator) $$\frac{3-\sqrt{5}}{1+3\sqrt{5}} = \frac{3-\sqrt{5}}{1+3\sqrt{5}} \times \frac{1-3\sqrt{5}}{1-3\sqrt{5}} = \frac{(3-\sqrt{5})(1-3\sqrt{5})}{(1+3\sqrt{5})(1-3\sqrt{5})}$$ $$= \frac{3-9\sqrt{5}-\sqrt{5}+3\sqrt{25}}{1^2-(3\sqrt{5})^2} = \frac{3+15-10\sqrt{5}}{1-45}$$ $$= \frac{18-10\sqrt{5}}{-44} = \frac{18}{-44} - \frac{10\sqrt{5}}{-44}$$ $$= \frac{-9}{22} + \frac{5}{22}\sqrt{5}$$ 7. Rationalize the denominator of $\frac{1}{3-\sqrt{2}}$ $$\frac{\frac{1}{3-\sqrt{2}} =
\frac{\frac{\text{Solution}}{3-\sqrt{2}}}{\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}} = \frac{\frac{3+\sqrt{2}}{3^2-(\sqrt{2})^2}}{\frac{3^2-(\sqrt{2})^2}{9-2}} = \frac{\frac{3+\sqrt{2}}{7}(3+\sqrt{2})}{\frac{3+\sqrt{2}}{9-2}}$$ 8. Express $\frac{2\sqrt{3}+3\sqrt{2}}{2\sqrt{3}-3\sqrt{2}}$ in the form $a+b\sqrt{c}$ $$\frac{2\sqrt{3} + 3\sqrt{2}}{2\sqrt{3} - 3\sqrt{2}} = \frac{\frac{\text{Solution}}{(2\sqrt{3} + 3\sqrt{2})(2\sqrt{3} + 3\sqrt{2})}}{(2\sqrt{3} + 3\sqrt{2})(2\sqrt{3} + 3\sqrt{2})} = \frac{2\sqrt{3} \times 2\sqrt{3} + 2\sqrt{3} \times 3\sqrt{2} + 3\sqrt{2} \times 2\sqrt{3} 2\sqrt{$$ 9. Simplify $\frac{1}{1-\sqrt{3}} = \frac{1}{1+\sqrt{3}}$ $$\frac{1}{1-\sqrt{3}} - \frac{1}{1+\sqrt{3}} = \frac{(1+\sqrt{3})-(1-\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} = \frac{1+\sqrt{3}-1+\sqrt{3}}{1-(\sqrt{3})^2} = \frac{2\sqrt{3}}{1-3} = \frac{2\sqrt{3}}{-2} = -\sqrt{3}$$ # Trial questions 1. Simplify (a) $\sqrt{8} + 18 - 2\sqrt{2}$ (b) $$\sqrt{75} + 2\sqrt{12} - \sqrt{27}$$ (c) $$\sqrt{28} + \sqrt{175} - \sqrt{63}$$ (d) $$\sqrt{512} + \sqrt{128} + \sqrt{32}$$ (e) $$\sqrt{1000} - \sqrt{40} - \sqrt{90}$$ [Ans: (a) $3\sqrt{2}$ (b) $6\sqrt{3}$ (c) $4\sqrt{7}$ (d) 28 (e) $5\sqrt{10}$ 1 2. Express $\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}$ in the form $a-b\sqrt{c}$ [Ans: $5-2\sqrt{6}$] 3. Given that $\frac{3\sqrt{5}-2\sqrt{3}}{3\sqrt{5}+2\sqrt{3}} = p + q\sqrt{r}$. Find p, q and r $\left[Ans: p = \frac{19}{11}, q = \frac{-4}{21}, r = 15\right]$ 4. Rationalize the surd $\frac{1}{3\sqrt{5}-\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{3}}$ [Ans; $\frac{1}{7}(10+4\sqrt{15})$] $$\left[Ans; \frac{1}{7}(10 + 4\sqrt{15})\right]$$ 5. Simplify $\frac{\sqrt{3}-2}{2\sqrt{3}+3}$ in the form $p+q\sqrt{3}$ [Ans: $4-\frac{7}{3}\sqrt{3}$] $$[\Lambda ns: 4 - \frac{7}{3}\sqrt{3}]$$ 6. Simplify $\frac{1}{\sqrt{5}-\sqrt{2}}$ $$\left[Ans: \frac{1}{2}(\sqrt{5} + \sqrt{3})\right]$$ 7. Rationalize (i) $\frac{1}{3\sqrt{5}-\sqrt{3}} + \frac{1}{\sqrt{5}+3}$ [Ans: $\frac{12\sqrt{5}-10\sqrt{3}}{21}$] (ii) $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ [Ans: $5-2\sqrt{6}$] 8. Simplify $\frac{1}{3-\sqrt{7}} + \frac{1}{3+\sqrt{7}}$ 9. Rationalize the denominator of (a) $\frac{\sqrt{5}+1}{\sqrt{5}-\sqrt{3}}$ (b) $\frac{\sqrt{2}+2\sqrt{5}}{\sqrt{5}-\sqrt{2}}$ (c) $\frac{\sqrt{10}+2\sqrt{5}}{\sqrt{10}+\sqrt{5}}$ (d) $\frac{2\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$ (e) $\frac{1}{3\sqrt{2}-2\sqrt{3}}$ (f) $\frac{\sqrt{6}+\sqrt{3}}{\sqrt{6}-\sqrt{3}} \quad [\text{Ans: (a)} \ \tfrac{1}{2} \left(5+\sqrt{3}+\sqrt{5}+\sqrt{15}\right) \text{ (b)} \ 4+\sqrt{10} \text{ (c)} \ \sqrt{2} \text{ (d)} \ -7+3\sqrt{6} \text{ (e)} \ \tfrac{1}{6} \left(3\sqrt{2}+2\sqrt{3}\right) \right]$ (f) $\frac{1}{3}(9+2\sqrt{18})$] 10. Express in the form $a + b\sqrt{c}$, (a) $$(\sqrt{5}+2)^2$$ (b) $(1+\sqrt{2})(3-2\sqrt{2})$ (c) $\frac{\sqrt{3}+2}{2\sqrt{3}-1}$ (d) $\sqrt{3}+2+\frac{1}{\sqrt{3}-2}$ [Ans: (a) $$9 + 4\sqrt{5}$$ (b) $-1 + \sqrt{2}$ (c) $\frac{8}{11} + \frac{5}{11}\sqrt{3}$ (d) 0] 11. Express $\frac{3\sqrt{7}-2\sqrt{3}}{2\sqrt{7}+\sqrt{3}}$ in the form $\frac{a-b\sqrt{c}}{d}$ where a, b, c and d are integers [Ans: $\frac{48-7\sqrt{21}}{25}$] 12. Given that $\frac{\sqrt{8}-\sqrt{18}}{1-\sqrt{2}}=a+b\sqrt{2}$, determine the values of a and b [Ans: a=-2,b=-1] 13. Express $2\sqrt{50} - 3\sqrt{2} + \sqrt{800} - 2\sqrt{72}$ in the form $a\sqrt{b}$. Given that $\sqrt{2} = 1.414$, evaluate the above expression [Ans: 15√2 or 21.21] 14. Evaluate $\frac{2}{\sqrt{5}-\sqrt{3}} - \frac{1}{\sqrt{5}+\sqrt{3}}$ given that $\sqrt{5} = 2.236$ and $\sqrt{3} = 1.732$ [Ans: 3.716] 15. Given that $t = \frac{1}{2}(\sqrt{5} + 1)$. Show that $t^2 = 1 + t$ # INDICES: Index is another word to mean power i.e. for $a^3 = a \times a \times a$, here a is the base and 3 is a power or an index or exponent. 1. $$a^m \times a^n = a^{m+n}$$ i.e. $a^3 \times a^2 = a^{3+2} = a^3 =$ 2. $$a^m \div a^n = a^{m-n}$$ ie $3^3 \div 3^2 = 3^{3-2} = 3^1 = 3$ 3. $$(a^m)^n = a^{mn} ie (4^2)^3 = 4^{2 \times 3} = 4^6$$ 4. $$a^0 = 1$$ ie $5^0 = 1$, $\left(\frac{2}{7}\right)^0 = 1,1000^0 = 1$ etc 5. $$a^{-n} = \frac{1}{a^n}$$ ie $2^{-1} = \frac{1}{2^1}$, $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$ 6. $$a^{\frac{1}{n}} = \sqrt[n]{a}$$ i.e. $4^{\frac{1}{2}} = \sqrt[2]{4} = 2$ 6. $$a^{\frac{1}{n}} = \sqrt[n]{a}$$ i.e. $4^{\frac{1}{2}} = \sqrt[2]{4} = 2$ 7. $a^n \times b^n = (ab)^n$ i.e. $2^2 \times 3^2 = (2 \times 3)^2 = 6^2 = 36$ 8. $$a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{(a^m)}$$ # **Examples** 1. Simplify (i) $$27^{\frac{1}{3}}$$ (ii) $4^{\frac{-1}{2}}$ (iii) $100^{1\frac{1}{2}}$ (iv) $(625)^{\frac{-1}{4}}$ (v) $(\frac{27}{1000})^{\frac{-1}{3}}$ (i) $$\frac{\text{Solution}}{27^{\frac{1}{3}} = (3^3)^{\frac{1}{3}}} = 3^{3 \times \frac{1}{3}} = 3^1 = 3$$ (ii) $$4^{\frac{-1}{2}} = (2^2)^{\frac{-1}{2}} = 2^{2\times\frac{-1}{2}} = 2^{-1} = \frac{1}{2}$$ (iii) $$100^{1\frac{1}{2}} = 100^{\frac{3}{2}} = (10^2)^{\frac{3}{2}} = 10^{2 \times \frac{3}{2}} = 10^3 = 1000$$ (iv) $(625)^{\frac{-1}{4}} = (5^4)^{\frac{-1}{4}} = 5^{4 \times \frac{-1}{4}} = 5^{-1} = \frac{1}{5}$ (iv) $$(625)^{\frac{-1}{4}} = (5^4)^{\frac{-1}{4}} = 5^{4\times\frac{-1}{4}} = 5^{-1} = \frac{1}{5}$$ (v) $$\left(\frac{27}{1000}\right)^{\frac{-1}{3}} = \frac{\left(27\right)^{\frac{-1}{3}}}{\left(1000\right)^{\frac{-1}{3}}} = \frac{\left(3^{3}\right)^{\frac{-1}{3}}}{\left(10^{3}\right)^{\frac{-1}{3}}} = \frac{3^{3} \times \frac{-1}{3}}{10^{3} \times \frac{-1}{3}} = \frac{3^{-1}}{10^{-1}}$$ $$= 3^{-1} \div 10^{-1} = \frac{1}{3} \div \frac{1}{10} = \frac{1}{3} \times \frac{10}{1} = \frac{10}{3}$$ Simplify $$(i) \frac{\frac{277 \times 243^{\frac{1}{2}}}{243^{\frac{4}{3}}}}{\frac{Solution}{243^{\frac{1}{2}}}} = \frac{\frac{1}{3} \times 3^{\frac{1}{2}} \times 3^{\frac{1}{2}}}{\frac{3}{2} \times 3^{\frac{1}{2}}} = \frac{3^{\frac{3}{2}} \times 3^{\frac{5}{2}}}{3^{\frac{4}{3}}} = \frac{3^{\frac{3}{2}} \times 3^{\frac{5}{2}}}{3^{\frac{4}{3}}} = \frac{3^{\frac{4}{3}}}{3^{\frac{4}{3}}} = 1$$ (ii) $$\frac{a^{\frac{1}{n}} \cdot a^{-n}}{a^{\left(\frac{n+1}{n}\right)}}$$ $$\frac{a^{\frac{1}{n}} \div a^{-n}}{a^{(\frac{n+1}{n})}} = \frac{a^{\frac{1}{n}} \div \frac{1}{a^{\frac{n}{n}}}}{a^{(\frac{n+1}{n})}} = \frac{a^{\frac{1}{n}} \times a^{n}}{a^{(\frac{n+1}{n})}} = \frac{a^{\frac{1}{n}+n}}{a^{(\frac{n+1}{n})}} = \frac{a^{(\frac{n^{2}+1}{n})}}{a^{(\frac{n+1}{n})}}$$ $$= a^{(\frac{n^{2}+1}{n}) - (\frac{n+1}{n})} = a^{(\frac{n^{2}-n}{n})} = a^{n-1}$$ (iii) $$\frac{\frac{1}{86 \times 4^{\frac{1}{3}}}}{326 \times 16^{\frac{1}{12}}}$$ # Solution $$\frac{\frac{1}{86 \times 4^{\frac{1}{3}}}}{\frac{1}{326 \times 16^{\frac{1}{12}}}} = \frac{(2^3)^{\frac{1}{6}} \times (2^2)^{\frac{1}{3}}}{(2^5)^{\frac{1}{6}} \times (2^4)^{\frac{1}{12}}} = \frac{\frac{2^{\frac{3}{6}} \times 2^{\frac{2}{3}}}{2^{\frac{5}{6}} \times 2^{\frac{4}{12}}} = \frac{\frac{2^{\frac{3}{6}} + \frac{2}{3}}{2^{\frac{5}{6}} + \frac{1}{12}}}{\frac{2^{\frac{5}{6}}}{2^{\frac{5}{6}}}} = \frac{2^{\frac{7}{6}}}{2^{\frac{7}{6}}} = 1$$ (iv) $$\frac{3(2^{n+1})-4(2^{n-1})}{2^{n+1}-2^n}$$ ## Solution $$\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n} = \frac{3(2^n \times 2) - 4(2^n \times 2^{-1})}{(2^n \times 2 - 2^n)} = \frac{6(2^n) - 4\left(\frac{2^n}{2}\right)}{2^n(2-1)}$$ $$= \frac{6(2^n) - 2(2^n)}{2^n} = \frac{2^n(6-2)}{2^n} = 4$$ $$(v) \qquad \frac{9^{n+1} \times 6^{n-1}}{3^{2n-1} \times 2^n}$$ $$\frac{9^{n+1} \times 6^{n-1}}{3^{2n-1} \times 2^n} = \frac{3^{2(n+1)} \times (3 \times 2)^{n-1}}{3^{2n-1} \times 2^n} = \frac{3^{2n+2} \times 3^{n-1} \times 2^{n-1}}{3^{2n-1} \times 2^n}$$ $$= \frac{3^{2n+2+n-1} \times 2^{n-1}}{3^{2n-1} \times 2^n} = \frac{3^{3n+1} \times 2^{n-1}}{3^{2n-1} \times 2^n}$$ $$= 3^{(3n+1)-(2n-1)} \times 2^{(n-1)-2n}$$ $$= 3^{3n+1-2n+1} \times 2^{n-1-2n}$$ $$= 3^{n+2} \times 2^{-n-1}$$ $$(vi) \quad \frac{x^{2n+1} \times x^{\frac{1}{2}}}{\sqrt{x^{3n}}}$$ $$\frac{x^{2n+1} \times x^{\frac{1}{2}}}{\sqrt{x^{3n}}} = \frac{x^{2n+1+\frac{1}{2}}}{x^{\frac{3n}{2}}} = \frac{x^{2n+\frac{3}{2}}}{x^{\frac{3n}{2}}} = \frac{x^{\frac{4n+3}{2}}}{x^{\frac{3n}{2}}} = \frac{x^{\frac{4n+3}{2}}}{x^{\frac{3n}{2}}} = x^{\frac{4n+3}{2}} = x^{\frac{4n+3-3n}{2}} = x^{\frac{4n+3-3n}{2}} = x^{\frac{4n+3-3n}{2}}$$ # Equations involving indices: Solve the following equations; 1. $$3^{x} = 81$$ $$3^{x} = 3^{4}$$ $$\therefore x = 4$$ 2. $$27^{x} = \frac{1}{9}$$ $(3^{3})^{x} = \frac{1}{3^{2}}$ $3^{3x} = 3^{-2}$ $3x = -2 \implies x = \frac{-2}{3}$ 3. $$4^{x} = 0.5$$ $4^{x} = \frac{1}{2}$ $(2^{2})^{x} = 2^{-1}$ $2^{2x} = 2^{-1}$ $2x = -1, x = \frac{-1}{2}$ 3. $$2^{2x+3} + 1 = 9(2^x)$$ # Solution $$2^{2x} \times 2^{3} + 1 = 9(2^{x})$$ $$8(2^{2x}) - 9(2^{x}) + 1 = 0$$ $$8(2^{x})^{2} - 9(2^{x}) + 1 = 0 \text{ since } 2^{2x} = 2^{x} \times 2^{x} = (2^{x})^{2}$$ Let $2^{x} = y$, then; $$8y^{2} - 9y + 1 = 0$$ $$8y^{2} - 8y - y + 1 = 0$$ $$(8y - 1)(y - 1) = 0 \text{ , either } 8y - 1 = 0 \Rightarrow y = \frac{1}{8} \text{ or } y - 1 = 0 \Rightarrow y = 1$$ When $y = \frac{1}{8}$, $2^{x} = \frac{1}{8} \Rightarrow 2^{x} = \frac{1}{2^{2}} \Rightarrow 2^{x} = 2^{-3}$, $x = -3$ $$When $y = 1, 2^{x} = 1 \leftrightarrow 2^{x} = 2^{0}$, $x = 0$$$ $\therefore x = 0 \text{ or } x = -3$ 4. $$3(3^{2x})+26(3^x)-9=0$$ # Solution $$3(3^{x})^{2}+26(3^{x})-9=0$$ Let $y=3^{x}$, then $3y^{2}+26y-9=0$ $3y^{2}-y+27y-9=0$ $y(3y-1)+9(3y-1)=0$ $(3y-1)(y+9)=0$ Either $3y-1=0$, $y=\frac{1}{3}$ or $y+9=0$, $y=-9$ Either $3^{x}=\frac{1}{3}$, $3^{x}=3^{-1}$ $\therefore x=-1$ Or $3^{x}=-9$ and value of x does not exist 5. $$2^{2x+1} + 15(2^x) = 8$$ ## Solution $$2^{2x} \times 2^{1} + 15(2^{x}) - 8 = 0$$ $$2(2^{x})^{2} + 15(2^{x}) - 8 = 0$$ Let $2^{x} = y$, then $2y^{2} + 15y - 8 = 8$ $$2y^{2} - y + 16y - 8 = 0$$ $$y(2y - 1) + 8(2y - 1) = 0$$ $$(2y - 1)(y + 8) = 0$$ Either $2y - 1 = 0$ or $y + 8 = 0 \implies y = \frac{1}{2}$ or $y = -8$ Either $2^{x} = \frac{1}{2} = 2^{-1} \implies x = -1$ or Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$2^x = -8$$ and value of x does not exist $x = -1$ 6. $$4^{(2t+1)} + 4^{(t+3)} = 16\frac{1}{4}$$
Solution $4^{2t} \times 4^1 + 4^t \times 4^3 = \frac{65}{4}$ $4(4^{2t}) + 64(4^t) = \frac{65}{4}$ Let $4^t = y \Rightarrow 4y^2 + 64y = \frac{65}{4}$ $16y^2 + 256y - 65 = 0$ on multiplying through by 4 $16 \times -65 = -1040$ whose factors are 260 and -4 that add up to 256 $16y^2 + 260y - 4y - 65 = 0$ $4y(4y + 65) - (4y + 65) = 0$ $(4y + 65)(4y - 1) = 0$ Either $4y + 65 = 0 \Rightarrow 4y = -65$ which gives $y = -\frac{65}{4}$ $4^t = -\frac{65}{4}$ and here value of t does not exist or $4y - 1 = 0 \Rightarrow 4y = 1$ which gives $y = \frac{1}{4}$ $4^t = \frac{1}{4} \Rightarrow 4^t = 4^{-1}$ 7. $$2^{4(x-1)} = (4 \times 8^x)^3$$ Solution $2^{4x-4} = [2^2 \times (2^3)^x]^3$ $2^{4x-4} = [2^2 \times 2^{3x}]^3$ $$2^{4x-4} = [2^{2} \times (2^{3})^{4}]$$ $$2^{4x-4} = [2^{2} \times 2^{3x}]^{2}$$ $$2^{4x-4} = [2^{(2+3x)}]^{2}$$ $$2^{4x-4} = 2^{2(2+3x)}$$ $$\Rightarrow 4x - 4 = 4 + 6x$$ $$4x = 8 + 6x$$ $$-2x = 8$$ $\therefore x = -4$ $\therefore t = -1$ # Trial questions: I. Simplify (i) $$\frac{\frac{1}{8^{\frac{1}{6}} \times 4^{\frac{1}{3}}}}{\frac{1}{32^{\frac{1}{6}} \times 16^{\frac{1}{12}}}}$$ [Ans: 1] $$(v)\frac{\frac{3}{22}\times 16^{\frac{1}{8}}}{\frac{1}{276}\times 10^{\frac{1}{2}}}$$ [Ans: 8] (ii) $$\frac{x^{\frac{-2}{3}} \times x^{\frac{1}{4}}}{x^{\frac{1}{6}}}$$ $$\left[Ans: x^{\frac{-7}{12}}\right]$$ (vi) $$y^{\frac{3}{2}}=64$$ [Ans: 8] $$(iii)^{\frac{\chi^{2n+1}\times\chi^{\frac{1}{2}}}{\sqrt{\chi^{3n}}}}$$ $$\left[Ans: x^{\left(\frac{n+3}{2}\right)}\right] \qquad \text{(vii)} \quad \left(\frac{27}{0}\right)^{\frac{-2}{3}} \qquad \text{[Ans: } \frac{2}{3} \quad \text{]}$$ (vii) $$\left(\frac{27}{8}\right)^{\frac{2}{3}}$$ [Ans: $$\frac{2}{3}$$] (iv) $$\frac{9^{\frac{1}{2}} \times 27^{\frac{1}{3}}}{64^{\frac{1}{3}} \times 16^{\frac{1}{2}}}$$ [Ans: $\frac{9}{16}$] (viii) $\frac{32^{\frac{3}{4}} \times 16^{0} \times 8^{\frac{5}{4}}}{128^{\frac{3}{2}}}$ [Ans: $\frac{1}{8}$] (ix) $4^{-\frac{n}{2}} \times 2^{n+3} \times 16^{-\frac{1}{2}}$ [Ans: 2] 2. Solve the following equations (i) $$9^{x} = \frac{1}{729}$$ [Ans: $x = -3$] (ii) $8^{x} = 0.25$ [Ans: $x = \frac{-2}{3}$] (iii) $32^{x} = 0.25$ [Ans: $x = \frac{-2}{5}$] (iv) $9^{x} = 27^{\frac{3}{4}}$ [Ans: $x = \frac{9}{8}$] (v) $2^{2x} - 5(2^{x}) + 4 = 0$ [Ans: $x = 2$ or 0]. (vi) $2^{2x+2} + 8 = 33(2^{x})$ [Ans: $x = -2$ or 3]. (vii) $3^{2x} - 12(3^{x}) + 27 = 0$ [Ans: $x = 2$ or 1]. (viii) $x^{4} - 4x^{2} + 3 = 0$ [Ans: $x = \pm 1$ or $\pm \sqrt{3}$, hint Let $y = x^{2}$]. (ix) $(\frac{1}{4})^{x} \times 2^{x+1} = \frac{1}{8}$ [Ans: $x = 4$]. (x) $3(4^{x}) - 8(2^{x}) + 4 = 0$ [Ans: $x = 1$ or -0.585]. (xi) $3^{x^{2}+2} = 27^{2x-1}$ [Ans: $x = 1$ or 5]. (xii) $5^{2x-5} = 125^{x^{2}-2}$ [Ans: $x = 1$ or $-\frac{1}{3}$]. (xiii) $5^{2x} - 2(5^{x}) - 8 = 0$ [Ans: $x = 0.861$]. # LOGARITHMS: Logarithm is another word to mean index or power i.e. if $y = a^x$, then we define x as logarithm of y to hase a (log_a y) if $$y = a^x$$, then $x = \log_a y$ # Operating rules for logarithms - 1. $\log_a b + \log_a c = \log_a bc$ ie $\log_2 3 + \log_2 5 = \log_2 3 \times 5 = \log_2 15$ - 2. $\log_a b \log_a c = \log_a \left(\frac{b}{c}\right)$ ie $\log_3 6 \log_3 8 = \log_3 \left(\frac{6}{3}\right) = \log_3 2$ - 3. $\log_a b^n = n \log_a b$ ie $\log_3 7^2 = 2 \log_3 7$ - 4. $\log_a b = \frac{\log_e b}{\log_e a}$ i.e. $\log_2 3 = \frac{\log_4 3}{\log_4 2}$, $\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$. This is known as the change of base rule. - $5. \log_a h = \frac{1}{\log_h a}$ - 6. $\log_a 1 = 0$ since $a^0 = 1$ $$7.\log_a a = 1$$ since $a^1 = a$ # **Examples** - 1. Express the following statements in logarithm notation - $16 = 2^4$ (ii) $27 = 3^3$ (i) Introducing log2 on both sides (ii) Introducing log3 on both sides (i) $$\log_2 2^4 = \log_2 16 \log_2 16 = \log_2 2^4 \log_2 16 = 4$$ $$\log_3 27 = \log_3 3^3$$ # Advanced Level Subsidiary Mathematics by Kawuna Fahad 2nd Edition - 2. Express the following in index notation - (i) $\log_2 32 = 5$ (ii) $7 = \log_2 128$ <u>Solution</u> (i) $$2^5 = 32$$ (ii) $2^7 = 128$ 3. Simplify $\log_4 9 + \log_4 21 - \log_4 7$ Solution $$\log_4 9 + \log_4 21 - \log_4 7 = \log_4 (9 \times 21) - \log_4 7$$ $$= \log_4 \left(\frac{9 \times 21}{7}\right) = \log_4 27 = \log_4 3^3 = 3\log_4 3$$ 1. Simplify $\log_5 125 - \log_5 50 + \log_5 2$ Solution $$\begin{aligned} \log_5 125 - \log_5 50 + \log_2 2 &= \log_5 5^3 - \log_5 (2 \times 25) + \log_5 2 \\ &= 3 \log_5 5 - [\log_5 2 + \log_5 25] + \log_5 2 \\ &= 3 - \log_5 2 - \log_5 25 + \log_5 2 \\ &= 3 - \log_5 5^2 = 3 - 2 \log_5 5 = 3 - 2 = 1 \end{aligned}$$ i. If $\log_7 2 = 0.356$ and $\log_7 3 = 0.566$. Find the value of $2\log_7 \left(\frac{7}{15}\right) + \log_7 \left(\frac{25}{12}\right) - 2\log_7 \left(\frac{7}{3}\right)$ Solution $$= \log_{7} \left(\frac{7}{15}\right)^{2} + \log_{7} \left(\frac{25}{12}\right) - \log_{7} \left(\frac{7}{3}\right)^{2} = \log_{7} \left(\frac{49}{225}\right) + \log_{7} \left(\frac{25}{12}\right) - \log_{7} \left(\frac{49}{9}\right)$$ $$= \log_{7} \left(\frac{49}{225} \times \frac{25}{12}\right) - \log_{7} \left(\frac{49}{9}\right)$$ $$= \log_{7} \left(\frac{49}{225} \times \frac{25}{12} \div \frac{49}{9}\right) = \log_{7} \left(\frac{49}{225} \times \frac{25}{12} \times \frac{9}{49}\right)$$ $$= \log_{7} \left(\frac{1}{12}\right) = \log_{7} 1 - \log_{7} 12 = -\log_{7} 12$$ $$= -\log_{7} (4 \times 3) = -(\log_{7} 4 + \log_{7} 3)$$ $$= -(\log_{7} 2^{2} + \log_{7} 3) = -(2\log_{7} 2 + \log_{7} 3)$$ $$= -(2 \times 0.356 + 0.566)$$ $$= -1.278$$. Find the value of log, 12 Solution Let $$x = \log_7 12$$, then $7^x = 12$ Introducing log_{10} on both sides gives $$log_{10} 7^{x} = log_{10} 12$$ $$x log_{10} 7 = log_{10} 12$$ $$x = \frac{log_{10} 7}{log_{10} 12} = \frac{1.0792}{0.8451} = 1.277$$. Solve for x in $\log_5(4 - x) - \log_5(x + 2) = \log_5 x$ Solution $\log_5\left(\frac{4-x}{x+2}\right) = \log_5 x$. Since the logarithms are to the same bases on both sides, then; $$\frac{4-x}{x+2} = x$$ $$4-x = x(x+2)$$ $$4-x = x^2 + 2x$$ $$x^2 + 3x - 4 = 0$$ $$x^2 - x + 4x - 4 = 0$$ $$x(x-1) + 4(x-1) = 0$$ $$(x-1)(x+4) = 0$$ $$\therefore \text{Either} \quad x-1 = 0 \implies x = 1 \text{ or } x+4 = 0 \implies x = -4$$ 8. Solve the equation $(0.2)^x = (0.5)^{x+7}$ # Solution Introducing log₁₀ on both sides gives; $$l.og 0.2^{x} = log 0.5^{x+7}$$ $$xlog 0.2 = (x+7) log 0.5$$ $$\frac{x}{x+7} = \frac{log 0.5}{log 0.2} = 0.4307$$ $$x = 0.4307(x+7)$$ $$x = 0.4307x + 3.0147$$ $$0.5693x = 3.0147$$ $$\therefore x = 5.2955$$ 9. If $3 \div \log_{10} x = 2 \log_{10} y$. Express x in terms of y ## Solution Using $$3\log_{10} 10 + \log_{10} x = 2\log_{10} y$$ since $\log_{10} 10 = 1$ $\log_{10} 10^3 + \log_{10} x = \log_{10} y^2$ $\log_{10} 1000x = \log_{10} y^2$ Since the logarithms are to the same bases on both sides, then; $$1000x = y^2$$ $$\therefore x = \frac{y^2}{1000} \text{ or } x = 0.001y^2$$ 10. Solve $$(0.1)^x = (0.2)^5$$ ## Solution Log $$0.1^x = \log 0.2^5$$ $x \log 0.1 = 5 \log 0.2$ $$x = \frac{5 \log 0.2}{\log 0.1} = \frac{5 \times -0.69897}{-1} = 3.495$$ $$\therefore x = 3.495$$ 11. Express log₉ xy in terms of log₃ x and log₃ y # Solution Using the change of base rule, $$\log_9 xy = \frac{\log_3 xy}{\log_3 9}$$ = $\frac{\log_3 xy}{\log_3 3^2} = \frac{\log_2 xy}{2\log_3 3} = \frac{1}{2} (\log_3 xy)$ $$= \frac{1}{2}(\log_3 x + \log_3 y)$$ 12. Solve for x in the equation; $\log_5 x + \log_x 5 = 2.5$ We see that the logarithms are not to the same bases so we make them the same, thus logs $$x + \frac{1}{\log_5 x} = 2.5$$ (Since $\log_x 5 = \frac{1}{\log_5 x}$) Let $\log_5 x = y$, then $y + \frac{1}{y} = 2.5$ $y^2 + 1 = 2.5y$ $10 \ y^2 + 10 = 25y$ (multiplying through by 10) $10 \ y^2 - 25y + 10 = 0$ $a = 10, b = -25 \ and \ c = 10$ Alternatively, by factorization $y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $10 \ y^2 - 20y - 5y + 10 = 0$ $= \frac{-(-25) \pm \sqrt{(-25)^2 - 4 \times 10 \times 10}}{2 \times 10}$ $10y(y - 2) - 5(y - 2) = 0$ $= \frac{25 \pm \sqrt{225}}{20} = \frac{25 \pm 15}{20}$ $(y - 2)(10y - 5) = 0$ either $y = \frac{25 + 15}{20} = \frac{40}{20} = 2$ or $y = \frac{25 - 15}{20} = \frac{10}{20} = \frac{1}{2}$ Either $y - 2 = 0 \Rightarrow y = 2$ $or \ y = \frac{25 - 15}{20} = \frac{10}{20} = \frac{1}{2}$ Or $10y - 5 = 0 \Rightarrow y = \frac{1}{2}$ Either $\log_5 x = 2 \Rightarrow 5^2 = x, \therefore x = 25$ Or $\log_5 x = \frac{1}{2} \Rightarrow 5^{\frac{1}{2}} = x, \therefore x = \sqrt{5}$ 13. Simplify log₈ 4 Using the change of base rule i.e. $\log_a b = \frac{\log_c b}{\log_c a}$ We can change the base 8 to the lowest possible base i.e. 2 $$\log_{8} 2 = \frac{\log_{2} 4}{\log_{2} 8} = \frac{\log_{2} 2^{2}}{\log_{2} 2^{3}} = \frac{2 \log_{2} 2}{3 \log_{2} 2} = \frac{2}{3}$$ 14. Show that $\log_8 x = \frac{2}{3} \log_4 x$. Hence without sing tables or calculator evaluate $\log_8 6$ correct to 3 decimal places given that $log_4 3 = 0.7925$ ## Solution By using the change of base rule and changing the base from 8 to 4 $$\log_8 x = \frac{\log_4 x}{\log_4 8}$$ We can now simplify log₄ 8 by changing the base to 2 $$\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{\log_2 2^3}{\log_2 2^2} = \frac{3\log_2 2}{2\log_2 2} = \frac{3}{2}$$ Thus $$\log_8 x = \frac{\log_4 x}{\left(\frac{3}{2}\right)} = (\log_4 x) \times \frac{2}{3} = \frac{2}{3}\log_4 x$$ Now $$\log_8 6 = \frac{2}{3} \log_4 6$$ since $x = 6$ $$\frac{2}{3}\log_4 6 = \frac{2}{3}\log_4 (2 \times 3) = \frac{2}{3}[\log_4 2 + \log_4 3]$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$= \frac{2}{3} \left[\log_4 4^{\frac{1}{2}} + 0.7925 \right]$$ $$= \frac{2}{3} \left[\frac{1}{2} \log_4 4 + 0.7925 \right]$$ $$= \frac{2}{3} \left[\frac{1}{2} + 0.7925 \right] = \frac{2}{3} \left[0.5 + 0.7925 \right] = \frac{2}{3} \times 1.2925$$ $$= 0.862 (3 d. p)$$ 15. Solve the equation $3 \log_2 P - 6 \log_P 2 + 7 = 0$ # Solution . Using the laws of logarithms, $\log_P 2 = \frac{1}{\log_2 P}$ $$\Rightarrow 3\log_2 P - 6\left(\frac{1}{\log_2 P}\right) + 7 = 0$$ Let $\log_2 P = y \Rightarrow 3y
- \frac{6}{y} + 7 = 0$ $$3y^2 - 6 + 7y = 0 \text{ on multiplying through by y}$$ $$3y^2 + 7y - 6 = 0$$ $$3y^2 + 9y - 2y - 6 = 0$$ $$3y(y+3) - 2(y+3) = 0$$ $$(y+3)(3y-2) = 0$$ either $y+3=0 \Rightarrow y=-3$ or $3y-2=0 \Rightarrow y=\frac{2}{3}$ when $y=-3$, $\log_2 P=-3 \Rightarrow P=2^{-3}=\frac{1}{2^3}=\frac{1}{8}$ when y = -3, $\log_2 P = -3$ $\Rightarrow P = 2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ when $y = \frac{2}{3}$, $\log_2 P = \frac{2}{3} \Rightarrow P = 2^{\frac{2}{3}} = 1.587$ 16. Solve for x without using tables or a calculator $\log_3 x - 10 \log_x 3 = 3$ $$\log_x 3 = \frac{1}{\log_3 x} \Rightarrow \log_3 x - \frac{10}{\log_3 x} = 3$$ Let $\log_3 x = y$ thus $y - \frac{10}{y} = 3$ $$y^2 - 10 = 3y \quad \text{on multiplying through by y}$$ $$y^2 - 3y - 10 = 0$$ $$y^2 - 5y + 2y - 10 = 0$$ $$y(y - 5) + 2(y - 5) = 0$$ $$(y - 5)(y + 2) = 0$$ Either $y - 5 = 0 \Rightarrow y = 5 \text{ or } y + 2 = 0 \Rightarrow y = -2$ When $y = 5$, $\log_3 x = 5 \Rightarrow x = 3^5 = 243$ When $y = -2$, $\log_3 x = -2 \Rightarrow x = 3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ # Trial questions - 1. Simplify $1 + \log_{10} \left(\frac{4}{x^4} \right)^{\frac{-1}{2}} 2 \log_{10} x$ [Ans: log₁₀ 5] - 2. Solve the simultaneous equations; $\log_{10} x - \log_{10} y = \log_{10} 2.5$ and $\log_{10} x + \log_{10} y = 1$ [Ans: x = 5 or y = 2] # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition 3. Find $\log_{\sqrt{5}} 30$ correct to 2 decimal places [Ans: 4.23] 4. If $p = \log_7\left(\frac{14}{15}\right)$, $q = \log_7\left(\frac{21}{20}\right)$, $r = \log_7\left(\frac{49}{50}\right)$, given that $\log_7 2 = 0.356$ and $\log_7 3 = 0.566$, find the values of (a) p+q-r (b) p+3q-2r[Ans: $(a) \ 0 \ (b) \ 0.064$] 5. Solve the equation $(0.2)^x = (0.5)^{x+7}$ [Ans: x = 5.294]6. Solve the equation $\log_3 x - 4 \log_x 3 + 3 = 0$ [Ans: $x = \frac{1}{81}$ or 3] 7. Solve the simultaneous equations x + y = 20 and $\log_3 x = \log_9 y$ [Ans: (4,6); (-5,25)] 8. Solve the equation $\log_2 x - \log_x 8 = 2$ [Ans: $x = 8 \text{ or } \frac{1}{2}$] 9. Solve for x in the equation $log_4(6-x) = log_2 x$ 10. (i) If $log_a(2 + a) = 2$, Find a [Ans: a = 2] (ii) $log_a(6-a) = 2$ [Ans: a = 2] 11. Evaluate $\frac{\log 81}{\log 729}$ [Ans: $\frac{2}{3}$] 12. Determine $\log 0.27$ given that $\log 3 = 0.4771$ [Ans: -0.5687] 13. Express as a single logarithm and simplify your answer $\log \sqrt{x^2 - 1} + \frac{1}{2} \log \left(\frac{x+1}{x-1} \right)$ [Ans: $\log(x+1)$ 14. Given that $\log_3 2 = 0.63$. Find the value of x in the equation $3^{2x} = 3^y + 2$ [Ans: x = 0.63] 15. Simplify $\log_7 98 - \log_7 30 + \log_7 15$ [Ans: 2] 16. Determine the values of (i) $\log_2 32 - \log_2 128 + \log_2 64$ (ii) $\log_3 90$ [Ans: (i) 4 (ii) 4.095] 17. If $\log_2 8^x = \frac{1}{\sqrt{3}}$, show that $x = \frac{\sqrt{3}}{9}$ 18. Solve the simultaneous equations $\log_2 x + \log_2 y = 3$ and $\log_y x = 2$ [Ans:x = 4 and y = 219. Find the value of x if $1.38^x = 2.628$ [Ans: x = 3] 20. Simplify $\log_{10} 160 + 2 \log_{10} \left(\frac{5}{2}\right) - 1$ [Ans: 2] 21. Given that $\log_{10} 2 = 0.301$, $\log_{10} 3 = 0.477$ and $\log_{10} 7 = 0.845$, Evaluate $\log_{10} \sqrt{\left(\frac{63}{8}\right)}$ [Ans: 0.448] 22. Evaluate log_{0.4} 50 [Ans: -4.269] 23. Solve the equation $2 \log_3 x + 3 \log_x 3 - 5 = 0$ [Ans: x = 1 or x = 5.224. Without using tables or calculator, find the value of x in $\log \frac{5}{2} + \log \frac{16}{13} - \log \frac{5}{26} = \log(x^2 - 3x)$ (Ans: x = 5.77 or x = -2.7725. Express $2 \log_3 18 + \log_3 3^{-1} - \log_3 6^2 + 1$ as a single logarithm $\log_3 Q$ [Ans: $\log_3 9$] 26. Solve for x in the equation $\log_4 4x = 2 \log_x 4$ [Ans: $x = 4 \text{ or } \frac{1}{16}$] ı # CHAPTER 2: POLYNOMIALS Polynomials are algebraic expressions that include real numbers and variables. They contain more the one term. Polynomials are the sums of monomials. A monomial has one term for example 5y or $-8x^2$ or 3 are monomials. A sum of two monomials that are not like terms for example; $-3x^2 + 2$, or $9y + 2y^2$ is a special polyte. called a binomial. Similarly, a sum of three monomials is a trinomial for example: $-3x^2 = 3x - 2$. Degree of a polynomial The degree of the polynomial is the highest exponent of the variable for example; $3x^2$ has a degree of $2x^3$ has a degree of 5 and 2 has a degree of zero. When the variable does not have an exponent - $a_{1}w_{2}$ understand that there is a '1' e.g., 3x is the same as $3x^{t}$. $$x^5 + 3x^4 + 2x^3 + x^2 - 2x + 1$$ is a polynomial of degree 5 $$4x^3 + 2x^2 - 7$$ is a polynomial of degree 3 $$2x^2 - 8x + 9$$ is a polynomial of degree 2 c.t.c Note: All quadratic expressions of the form $ax^2 + bx + c$ are polynomials of degree 2 # Operations on Polynomials: Addition of Polynomials: Below, the steps for addition of polynomials, the first basic operation on polynomials are clearly laid - 1. Collect Like terms at one place - 2. Add the numerical coefficients of like terms - 3. Write the sum in both standard and simplest form Examples: į THE RESTREET OF THE PARTY TH 1. Add the following polynomials: (a) $$2a + 3h$$ and $-4b + 5a$ (b) $6x + 2y - 3z$ and $9z + 3y - 5x$ Solution: (a) We know what is meant by like terms. They are terms in which literal coefficients are same. So, a like terms means to add the numerical coefficients of two or more polynomials which have same lite: coefficients. In 2a + 3b and -4b + 5a: 2a and 5a are like terms and 3b and -4b is another pair of like terms. So, add them (the like terms): $$2a + 5a = 7a$$ $$3b - 4b = -b$$ Now, 7a and -b are unlike terms which cannot be added like like terms. So, the two unlike terms 7a 2 b are written and the symbol '+' is written to indicate the addition operation of polynomials in the giv question So, the sum of 2a + 3b and -4b + 5a is 7a - b (b) In 6x + 2y - 3z and 9z + 3y - 5x the like terms are 6x and -5x, 2y and 3y, -3z and 9zSo, the sum of like terms is $$6x - 5x = x$$ $$2y + 3y = 5y$$ $$-3z + 9z = 6z$$ Now write these sums connected by the addition sign '+' to indicate the sum of the two polynomials if question (i.e. the addition operation on polynomials) ÷, ا نا $$= x + 5y + 6z$$ 2. Simplify $$(2x + 5y) + (3x - 2y)$$ Solution $$(2x + 5y) + (3x - 2y) = 2x + 5y + 3x - 2y$$ $$= 2x + 3x + 5y - 2y$$ $$= 5x + 3y$$ 3. Simplify $$(3x^3 + 3x^2 - 4x + 5) + (x^3 - 2x^2 + x - 4)$$ Solution $$(3x^3 + 3x^2 - 4x + 5) + (x^3 - 2x^2 + x - 4)$$ $$= 3x^3 + 3x^2 - 4x + 5 + x^3 - 2x^2 + x - 4$$ $$= 3x^3 + x^3 + 3x^2 - 2x^2 - 4x + x + 5 - 4$$ $$= 4x^3 + x^2 - 3x + 1$$ 4. Simplify $$(7x^2 - x - 4) + (x^2 - 2x - 3) + (-2x^2 + 3x + 5)$$ Solution It is perfectly okay to have to add three or more polynomials at once. I will just go slowly and do each step thoroughly, and it should work out right. $$(7x^{2}-x-4) + (x^{2}-2x-3) + (-2x^{2}+3x+5)$$ $$= 7x^{2}-x-4+x^{2}-2x-3+-2x^{2}+3x+5$$ $$= 7x^{2}+1x^{2}-2x^{2}-1x-2x+3x-4-3+5$$ $$= 8x^{2}-2x^{2}-3x+3x-7+5$$ $$= 6x^{2}-2$$ 5. Simplify $$(x^3 + 5x^2 - 2x) + (x^3 + 3x - 6) + (-2x^2 + x - 2)$$ Solution $$(x^3 + 5x^2 - 2x) + (x^3 + 3x - 6) + (-2x^2 + x - 2)$$ $$= x^3 + 5x^2 - 2x + x^3 + 3x - 6 + -2x^2 + x - 2$$ $$= x^3 + x^3 + 5x^2 - 2x^2 - 2x + 3x + x - 6 - 2$$ $$= 2x^3 + 3x^2 + 2x - 8$$ ## Subtraction of Polynomials: The steps for subtraction of polynomials, the second basic operation on polynomials are as follows: - 1. Subtract similar terms. To do this, change the algebraic sign of what is to be subtracted and add it to the other. - 2. To subtract unlike terms, just write the operation sign before what is to be subtracted ## Examples 1. Simplify $$(x^3 + 3x^2 + 5x - 4) - (3x^3 - 8x^2 - 5x + 6)$$ Solution $$(x^3 + 3x^2 + 5x - 4) - (3x^3 - 8x^2 - 5x + 6)$$ $$= (x^3 + 3x^2 + 5x - 4) - (3x^3) - (-8x^2) - (-5x) - (6)$$ $$= x^3 + 3x^2 + 5x - 4 - 3x^3 + 8x^2 + 5x - 6$$ $$= x^3 - 3x^3 + 3x^2 + 8x^2 + 5x + 5x - 4 - 6$$ $$= -2x^3 + 11x^2 + 10x - 10$$ # CHAPTER 2: POLYNOMIALS Polynomials are algebraic expressions that include real numbers and variables. They contain more than one term. Polynomials are the sums of monomials. A monomial has one term for example 5y or $-8x^2$ or 3 are monomials. A sum of two monomials that are not like terms for example; $-3x^2 + 2$, or $9y + 2y^2$ is a special polynomial called a binomial. Similarly, a sum of three monomials is a trinomial for example; $-3x^2 + 3x - 2$. Degree of a polynomial The degree of the polynomial is the highest exponent of the variable for example; $3x^2$ has a degree of 2, 2x⁵ has a degree of 5 and 2 has a degree of zero. When the variable does not have an exponent - always understand that there is a '1' e.g., 3x is the same as $3x^{i}$. $$x^5 + 3x^4 + 2x^3 + x^2 - 2x + 1$$ is a polynomial of degree 5 $4x^3 + 2x^2 - 7$ is a polynomial of degree 3 $$4x^3 + 2x^2 - 7$$ is a polynomial of degree 3 $$2x^2 - 8x + 9$$ is a polynomial of degree 2 e.t.c Note: All quadratic expressions of the form $ax^2 + bx + c$ are polynomials of degree 2 # Operations on Polynomials: Addition of Polynomials: Below, the steps for addition of polynomials, the first basic operation on polynomials are clearly laid out: - 1. Collect Like terms at one place - 2. Add the numerical coefficients of like terms - 3. Write the sum in both standard and simplest form Examples: 1. Add the following polynomials: (a) $$2a + 3b$$ and $-4b + 5a$ (b) $6x + 2y - 3z$ and $9z + 3y - 5x$ Solution: (a) We know what is meant by like terms. They are terms in which literal coefficients are same. So, to add like terms means to add the numerical coefficients of two or more polynomials which have same literal coefficients. In 2a + 3b and -4b + 5a: 2a and 5a are like terms and 3b and -4b is another pair of like terms. So, add them (the like terms): $$2a + 5a = 7a$$ $3b - 4b = -b$ Now, 7a and -b are unlike terms which cannot be added like like terms. So, the two unlike terms 7a and -Now, /a and -b are diffice terms /a and b are written and the symbol '+' is written to indicate the addition
operation of polynomials in the given So, the sum of 2a + 3b and -4b + 5a is 7a - b (b) In 6x + 2y - 3z and 9z + 3y - 5x the like terms are 6x and -5x, 2y and 3y, -3z and 9z (b) In $$0x + 2y + 3z$$ diverges is So, the sum of like terms is $$6x - 5x = x$$ $$2y + 3y = 5y$$ $$3z + 9z = 6z$$ Now write these sums connected by the addition sign '+' to indicate the sum of the two polynomials in the question (i.e. the addition operation on polynomials) # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition 2. Divide $40a^5b^4 + 55a^3b^5 + 35a^3b^4 + 70ab$ by a^2b^2 Solution: Divide each in the polynomial $40a^5b^4 + 55a^3b^5 + 35a^3b^4 + 70ab$ by a^2b^2 Let us find the quotients separately as follows: $(40a^5b^4)/(a^2b^2) = 40a^{5-2}$, $b^{4-2} = 40a^3b^2$ $$(a^{2}b^{3})/(a^{2}b^{2}) = 40a^{3-2}, b^{4-2} = 4$$ $$(55a^{3}b^{3})/(a^{2}b^{2}) = 55a^{3}b^{3}$$ $$(55a^3b^5)/(a^2b^2) = 55ab^3$$ $$(35a^3b^4)/(a^2b^2) = 35ab^2$$ $$(70ab)/(a^2b^2) = 70/(ab)$$ Now write the above four quotients next to each other, separated by the + sign to indicate their addition $40a^3b^2 + 55ab^3 + 35ab^2 + 70/(ab)$ Factorization of polynomials of degree 2 The polynomials of degree 2 i.e. in the form $ax^2 + bx + c$ can be factorised in the steps in the following Example: Factorize $6x^2 + 13x + 6$ Solution - 1. Multiply the a term (6 in the example) by the c term (also 6 in the example). $6 \times 6 = 36$ - 2. Find two numbers that when multiplied equal this number (36) and add up to be the b term (13). $4 \times 9 = 36$ and 4 + 9 = 13 - 3. Substitute the two numbers you get into this form as k and h (order does not matter): $$ax^2 + kx + hx + c$$ $6x^2 + 4x + 9x + 6$ 4. Factor the polynomial by grouping. Organize the equation so that you can take out the greatest common factor of the first two terms and the last two terms. Both factored groups should be the same. Add the GCF's together and enclose them in brackets next to the factored group. $$6x^{2} + 4x + 9x + 6$$ $$2x(3x + 2) + 3(3x + 2)$$ $$(2x + 3)(3x + 2)$$ Difference of Two Squares If you see something of the form $a^2 - b^2$, you should remember the formula $$(a+b)(a-b) = a^2 - b^2$$ Example: $$x^2 - 4 = (x - 2)(x + 2)$$ Solving simple polynomials Example: Solve $3x^3 + 2x^2 - x = 0$ Solution This is cubic ... but wait, you can factor out "x": $$3x^3+2x^2-x=x(3x^2+2x-1)=0$$ Now we have one root (x=0) and what is left is quadratic, which we can solve exactly by factorizing it. either $$x = 0$$ or $3x^2 + 2x - 1 = 0$ Now solving, $3x^2 + 2x - 1 = 0$, we have: $$3x^2 + 3x - x - 1 = 0$$ $$3x(x+1) - (x+1) = 0$$ $$(x+1)(3x-1)=0$$ either $$x + 1 = 0 \Rightarrow x = -1$$ or $3x - 1 = 0 \Rightarrow x = \frac{1}{3}$ # Advanced Level Subsidiary Mathematics by Karvuma Fahad 2nd Edition 2. Simplify $$(6x^3 - 2x^2 + 8x) - (4x^3 - 11x + 10)$$ Solution $$(6x^3 - 2x^2 + 8x) - (4x^3 - 11x + 10)$$ $$= (6x^3 - 2x^2 + 8x) - (4x^3 - 11x + 10)$$ $$= (6x^3 - 2x^2 + 8x) - (4x^3) - (-11x) - (10)$$ $$= 6x^3 - 2x^2 + 8x - 4x^3 + 11x - 10$$ $$= 6x^3 - 4x^3 - 2x^2 + 8x + 11x - 10$$ $$= 2x^3 - 2x^2 + 19x - 10$$ Multiplication of Polynomials: Multiplication of polynomials is the third important operation on polynomials. Here are the steps to follow when multiplying polynomials; - > First multiply numerical coefficients and literal coefficients separately. Next, multiply these two products - > To multiply two polynomials when each one has more than one term; Multiply each term of one polynomial with each term of the other polynomial and write like terms together. # Examples: Multiply the following polynomials: 1. 5p and 8q Solution: Product of numerical coefficients 5 and 8 is 40 and product of literal coefficients p and q is pq. Now, write the product of these two as: 40pq $$2.4x^3 + 2$$ and $2x^2 + 3x$ $$4x^3 + 2$$ and $2x^2 + 3x$ # Division of Polynomials: - 1. To divide a monomial by another monomial, divide the numerical coefficients and the literal coefficients separately. - 2. To divide a polynomial by a monomial, divide each term in the polynomial by the monomial. # Examples: Divide the following polynomials 1, 50p¹q⁶ by 5pq # Solution: Divide the numerical coefficients and write their quotient i.e $\frac{50}{s} = 10$ now divide literal coefficients and write their quotient as write their quotient as $$p^{4}q^{6} \text{ by pq {recall exponents rule: } {\frac{x^{m}}{x^{n}} = x^{m-n}}}$$ $$\frac{p^{4}q^{6}}{pq} = p^{4-1} \times q^{6-1} = p^{3}q^{5}$$ is the quotients next to each other to do $$\frac{p^4q^6}{p^4q^6} = p^{4-1} \times q^{6-1} = p^3q^5$$ Now, write the coefficients next to each other to denote their product $50p^3q^5$ # CHAPTER 3: QUADRATIC EQUATIONS Any equation of the form $ax^2 + bx + c = 0$ is called a quadratic equation and the values of x, which satisfy the equation, are called roots. # Solution of a quadratic equation that factorizes # Example ħ 1. Find the roots of the equation $x^2 - 5x + 6 = 0$ # Solution $$x^2 - 2x - 3x + 6 = 0$$ $$x(x-2) - 3(x-2) = 0$$ $$(x-2)(x-3)=0$$ Either $$x - 2 = 0$$, $x = 2$ or $x - 3 = 0$, $x = 3$ # Solution of a quadratic equation that does not factorize # By completing the square This method uses the expansion $(x+b)^2 = x^2 + 2bx + b^2$. It is important to note that the last term b^2 . is the square of half the coefficient of x, (2b) Note that the coefficient of the highest term x^2 should be 1 # Examples 1. Find the roots of the equation $2x^2 - 5x + 1 = 0$ Dividing through by 2 gives; $$x^2 - \frac{5}{2}x + \frac{1}{2} = 0$$ $$x^2 - \frac{5}{2}x = -\frac{1}{2}$$ Adding the square of half the coefficient of x to both sides of the equation; $$x^{2} - \frac{5}{2}x + \left(\frac{5}{4}\right)^{2} = -\frac{1}{2} + \left(\frac{5}{4}\right)^{2}$$ $$\left(x-\frac{5}{4}\right)^2=-\frac{1}{2}+\frac{25}{16}$$ $$\left(x-\frac{5}{4}\right)^2=\frac{17}{16}$$ $$\sqrt{\left(x-\frac{5}{4}\right)^2} = \sqrt{\frac{17}{16}}$$ $$x - \frac{5}{4} = \frac{\sqrt{17}}{4}$$ $$x = \frac{5 \pm \sqrt{17}}{4}$$ $$x = \frac{5 \pm \sqrt{17}}{4}$$ $$x = 2.281$$ or $x = 0.219$ 2. Solve $$2x^2 - 6x + 4 = 0$$ $$2x^2 - 6x + 4 = 0$$ $$x^2 - 3x + 2 = 0$$ $$x^2 - 3x = -2$$ Adding the square of half the coefficient of x to each side of the equation $$x^{2} - 3x + \left(\frac{3}{2}\right)^{2} = -2 + \left(\frac{3}{2}\right)^{2}$$ $$\left(x - \frac{3}{2}\right)^{2} = -2 + \frac{9}{4}$$ $$\left(x - \frac{3}{2}\right)^{2} = \frac{1}{4}$$ $$\sqrt{\left(x - \frac{3}{2}\right)^{2}} = \sqrt{\frac{1}{4}}$$ $$x' - \frac{3}{2} = \pm \frac{1}{2}$$ $$x = \frac{3 \pm 1}{2}$$ $$\therefore x = 2 \text{ or } x = 1$$ 3. Solve $$x^2 + 3x - 1 = 0$$ # Solution $$x^2 + 3x = 1$$ Adding the square of half the coefficient of x to each side of the equation gives; $$x^{2} + 3x + \left(\frac{3}{2}\right)^{2} = 1 + \left(\frac{3}{2}\right)^{2}$$ $$\left(x + \frac{3}{2}\right)^{2} = 1 + \frac{9}{4}$$ $$\left(x + \frac{3}{2}\right)^{2} = \frac{13}{4}$$ $$x + \frac{3}{2} = \pm \frac{\sqrt{13}}{2}$$ $$x = \frac{-3 \pm \sqrt{13}}{2} \quad \text{giving } x = \frac{-3 + \sqrt{13}}{2} = 0.30 \text{ or } x = \frac{-3 - \sqrt{13}}{2} = -3.30$$ # Maximum and Minimum values The method of completing the square, used to solve any equation in the form $ax^2 + bx + c = 0$ can be used to find the maximum or minimum value of the expression $ax^2 + bx + c$ For example, consider the expression $x^2 + 3x + 4$ By completing the square; $$x^{2} + 3x + 4 = x^{2} + 3x + \left(\frac{3}{2}\right)^{2} - \left(\frac{3}{2}\right)^{2} + 4$$ $$= \left[x^{2} + 3x + \left(\frac{3}{2}\right)^{2}\right] - \frac{9}{4} + 4$$ $$= \left[x + \frac{3}{2}\right]^{2} + \frac{7}{4}$$ Now $\left[x + \frac{3}{2}\right]^2$ cannot be negative for any value of x, i.e $\left[x + \frac{3}{2}\right]^2 \ge 0$ Thus $x^2 + 3x + 4$ is always positive and will have a minimum value of $\frac{7}{4}$ when $x + \frac{3}{2} = 0$ i.e. when $x = -\frac{3}{2}$ # Example 2 Find the maximum value of $5 - 2x - 4x^2$ # Solution Let us first rewrite $$5 - 2x - 4x^2$$ as $-4x^2 - 2x + 5$ $-4x^2 - 2x + 5 = -4\left(x^2 + \frac{1}{2}x\right) + 5$ $= -4\left(x^2 + \frac{1}{2}x + \frac{1}{16}\right) + \frac{4}{16} + 5$ $= -4\left(x + \frac{1}{4}\right)^2 + \frac{21}{4}$ $= \frac{21}{4} - 4\left(x + \frac{1}{4}\right)^2$ Now $4\left(x + \frac{1}{4}\right)^2 \ge 0$ Thus $5 - 2x - 4x^2$ has a maximum value of $\frac{21}{4}$ when $x = -\frac{1}{4}$ # Example 3 1 Find by completing the square, the greatest value of the function $f(x) = 1 - 6x - x^2$ Solution $$1 - 6x - x^2 = -x^2 - 6x + 1$$ $$= -[x^2 + 6x] + 1$$ $$= -[x^2 + 6x + 3^2 - 3^2] + 1$$ $$= -[x^2 + 6x + 9 - 9] + 1$$ $$= -[x^2 + 6x + 9] + 9 + 1$$ $$= -(x + 3)^2 + 10 = 10 - (x + 3)^2$$ Since $(x + 3)^2$ is the square of a real number, it cannot be negative, it is zero when = -3, otherwise it is positive $10 - (x + 3)^2$ is therefore always less than or equal to 10 Thus, the greatest value is 10 # IN GENERAL For a quadratic equation $ax^2 + bx + c = 0$, the roots are obtained from the formula; $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ ## Example 2 Solve $x^2 + 3x - 1 = 0$ # Solution Comparing with the general equation $ax^2 + bx + c = 0$; a = 1, b = 3, c = -1Substituting in the formula $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Advanced Level Subsidiary Mathematics by Kayuma Fahad. 2nd Edition $$x = \frac{-3\pm\sqrt{3^2-4\times 1-1}}{2\times 1}$$ $$x = \frac{-3\pm\sqrt{9+4}}{2} \implies x = \frac{-3+\sqrt{13}}{2} \quad \text{Or } x = \frac{-3-\sqrt{13}}{2} \quad \text{i. } x = 0.30 \text{ or } x = -3.30$$ # ROOTS OF QUADRATIC EQUATIONS If the equation $ax^2 + bx + c = 0$ has roots α and β , then its equivalent equation will be: the equation $$ax^2 + bx + c = 0$$ has reconstructed $(x - \alpha)(x - \beta) = 0$ as it gives $x = \alpha$ or $x = \beta$ $$x^{2} - \beta x - \alpha x + \alpha \beta = x^{2} + \frac{b}{a}x + \frac{c}{a}$$ $$x^{2} - (\alpha + \beta)x + \alpha\beta = x^{2} + \frac{b}{a}x + \frac{c}{a}$$ By comparing the coefficients on both sides, we obtain $$\alpha + \beta = -\frac{b}{a} \quad
\text{and} \quad \alpha\beta = \frac{c}{a}$$ Hence the equation $ax^2 + bx + c = 0$ can be written in the form; nce the equation $$ax^2 + bx + c = 0$$ and $x^2 - (Sum \ of \ roots)x + (product \ of \ roots) = 0$ 1. Write down the sum and product of the roots of the following equations: Examples 1. Write down the sum and product of the roots of the following equation (i) $$3x^2 - 2x - 7 = 0$$ (ii) $5x^2 + 11x + 3 = 0$ (iii) $2x^2 + x - 7 = 0$ (i) $$x^2 - \frac{2}{3}x - \frac{7}{3} = 0$$; sum of roots = $-\left(-\frac{2}{3}\right) = \frac{2}{3}$ and product of roots = $-\frac{7}{3}$ (i) $$x^2 - \frac{\pi}{3}x - \frac{\pi}{3} = 0$$ (sum of roots = $-\frac{11}{5}$ and product of roots = $\frac{3}{5}$ (ii) $x^2 + \frac{11}{5}x + \frac{3}{5} = 0$; sum of roots = $-\frac{11}{5}$ and product of roots = $-\frac{7}{2}$ (ii) $$x^2 + \frac{1}{5}x + \frac{7}{5} = 0$$; sum of roots $\frac{1}{5}$ and product of roots $= -\frac{7}{2}$ 2. Find the equation whose roots are $\frac{3}{4}$ and $-\frac{1}{2}$ Sum of roots $=\frac{3}{4}+\left(-\frac{1}{2}\right)=\frac{1}{4}$ and product of roots $=\frac{3}{4}\times\left(-\frac{1}{2}\right)=-\frac{3}{8}$ The equation is in the form $x^2 - (Sum \ of \ roots)x + (product \ of \ roots) = 0$ $$x^{2} - \left(\frac{1}{4}\right)x + \left(\frac{-3}{8}\right) = 0$$ $$8x^{2} - 2x - 3 = 0$$ 3. Find the equation whose roots are $\frac{1}{3}$ and $-\frac{1}{4}$ Sum of roots = $\frac{1}{3} + \frac{1}{4} = \frac{1}{3} - \frac{1}{4} = \frac{4-3}{12} = \frac{1}{12}$ Product of roots $=\frac{1}{2}\times-\frac{1}{4}=-\frac{1}{12}$ The equation is in the form $x^2 - (Sum \ of \ roots)x + (product \ of \ roots) = 0$ $$x^2 - \left(\frac{1}{12}\right) + \left(\frac{-1}{12}\right) = 0$$ $$12x^2 - x - 1 = 0$$ 4. The roots of the equation $3x^2 + 4x - 5 = 0$ are α and β , find the values of; (i) $$\frac{1}{\alpha} + \frac{1}{\beta} \quad (ii) \alpha^2 + \beta^2$$ $$\alpha + \beta = -\frac{4}{3} \qquad \alpha \beta = -\frac{5}{3}$$ (i) $$\frac{1}{a} + \frac{1}{\beta} = \frac{a+\beta}{a\beta} = \frac{\frac{-4}{3}}{\frac{-5}{3}} = -\frac{4}{3} \times -\frac{3}{5} = \frac{4}{5}$$ (ii) From $$(\alpha + \beta)^2 = (\alpha + \beta)(\alpha + \beta) = \alpha^2 + 2\alpha\beta + \beta^2$$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= \left(\frac{-4}{3}\right)^2 - 2\left(\frac{-5}{3}\right)$ $= \frac{16}{9} + \frac{10}{3} = \frac{16+30}{9} = 5\frac{1}{9}$ 5. The roots of the equation $2x^2 - 7x + 4 = 0$ are α and β . Find the equation whose roots are $\frac{\alpha}{8}$ and $\frac{\beta}{\alpha}$. From the given equation, sum of roots, $\alpha + \beta = \frac{7}{2}$ and product of roots $\alpha\beta = 2$ For the new roots, sum $$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{\left(\frac{7}{7}\right)^2 - 4}{2} = \frac{\left(\frac{49}{4}\right) - 4}{2} = \frac{33}{8}$$ Product of new roots, $$\frac{\alpha}{\beta} \times \frac{\beta}{\alpha} = 1$$ The equation is given by $$x^2 - (Sum \ of \ roots)x + (product \ of \ roots) = 0$$ $$x^2 - \frac{33}{2}x + 1 = 0$$ $$x^2 - \frac{33}{8}x + 1 = 0$$ $$8x^2 - 33x + 8 = 0$$ 6. Find the values of k if the roots of the equation $3x^2 + 5x - k = 0$ differ by 2 # Solution Let one root be α , then the other will be $\alpha+2$ Sum of roots $$\alpha + \alpha + 2 = -\frac{5}{3}$$, $2\alpha = -\frac{5}{3} - 2 \Rightarrow \alpha = -\frac{11}{6}$ Product of roots $$\alpha(\alpha + 2) = -\frac{k}{3}$$, $\alpha^2 + 2\alpha = -\frac{k}{3}$ Substituting for α in equation *** gives; 7. If one of the roots of the equation $27x^2 + bx + 8 = 0$ is the square of the other, find b. ## Solution Let one root be α , then the other will be α^2 , then; Sum of roots $$\alpha + \alpha^2 = -\frac{b}{27} \dots \dots (i)$$ and product of roots $\alpha \times \alpha^2 = \frac{b}{27} \dots \dots (ii)$ $$\alpha^3 = \left(\frac{2}{3}\right)^3 \quad hence \ \alpha = \frac{2}{3} \quad \text{Which we substitute in equation (i) to find b;}$$ $$\frac{2}{3} + \left(\frac{2}{3}\right)^2 = -\frac{b}{27}$$ $$\frac{2}{3} + \frac{4}{9} = -\frac{b}{27}$$ $$\frac{10}{9} = -\frac{b}{27} \quad \therefore b = -30$$ 8. Given that α and β are the roots of the equation $2x^2 - 5x + 4 = 0$, write down the values of $\alpha + \beta$ and $\alpha\beta$. Determine the equation whose roots are $\frac{1}{2\alpha}$ and $\frac{1}{2\beta}$ # Solution $$x^{2} - \frac{5}{2}x + 2 = 0$$ $$\alpha + \beta = \frac{5}{2} \quad , \quad \alpha\beta = 2$$ Sum of new roots $=\frac{1}{2\alpha} + \frac{1}{2\beta} = \frac{\beta + \alpha}{2\alpha\beta} = \frac{\frac{5}{2}}{2(2)} = \frac{5}{2} \div 4 = \frac{5}{8}$ Product of new roots = $\frac{1}{2\alpha} \times \frac{1}{2\beta} = \frac{1}{4\alpha\beta} = \frac{1}{4(2)} = \frac{1}{8}$ The equation is given by $x^2 - (Sum \ of \ roots)x + (product \ of \ roots) = 0$ $$x^{2} - \frac{5}{8}x + \frac{1}{8} = 0$$ $$8x^{2} - 5x + 1 = 0$$ # The discriminant The value of the expression $(h^2 - 4ac)$ will determine the nature of the roots of the quadratic equation $ax^2 + bx + c = 0$ and it is called discriminant i.e. it discriminates between the roots of the equation. For; - (i) Two real roots, $b^2 4ac > 0$ - (ii) Repeated or equal roots $b^2 4ac = 0$ - (iii)No real roots, $b^2 4ac < 0$ Given that the equation $(5a + 1)x^2 - 8ax + 3a = 0$ has equal roots, find the possible values of a We identify a, b and c from the above equation and then apply the condition for equal roots $$a = (5a + 1) \qquad b = -8a \text{ and } c = 3a$$ For equal roots, $$b^2 - 4ac \cdot 0$$ $(-8a)^2 - 4(5a + 1)(3a) = 0$ $$-8a)^{2} - 4(5a + 1)(5a)^{2} - 64a^{2} - 12a(5a + 1) = 0$$ $$\frac{64a^2 - 60a^2 - 12a = 0}{64a^2 - 60a^2 - 12a} = 0$$ $$4a^2 - 12a = 0$$ $$4a(a-3)=0$$ $$4a(a-3) = 0$$ 12 Hither $4a = 0$ or $a-3 = 0$ $a = 0$ or $a = 3$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition # Trial questions 1. State (i) the sum (ii) the product of the roots of each of the following equations (a) $$x^2 + 9x + 4 = 0$$ (b) $x^2 - 7x + 2 = 0$ (c) $2x^2 - 7x + 1 = 0$ (d) $3x^2 + 10x - 2 = 0$ [Ans: (a) -9, 4 (b) 2, 7 (c) $7/x + 1/x +$ [Ans: (a) -9, 4 (b) 2, 7 (c) $\frac{7}{2}$, $\frac{1}{2}$ (d) $\frac{-10}{3}$, $\frac{-2}{3}$] 2. In each part of this equation, you are given the sum and product of the roots of a quadratic. Find the quadratic equation in the form $ax^2 + bx + c = 0$ | | 2 | T | | <u>. </u> | | | - | |--------------------|--------|------------|-------------|--|-------------|----------|---------------| | S.u. | | U | _c | d | 0 | <u> </u> | - | | Sum | -3 | 16 | 7 | -2/3 | | | <u>g</u> | | Product | -1 | -4 | | -2/3 | <u>-5/2</u> | 3/4 | -1/4 | | [Ans: (a) χ^2 | +3x-1= | = 0 (b) ×2 | | <u>-7/3</u> | -2 | -5 | -1/3 | | ` _ | ,, | V (U) X | ~ 0x - 4 = | 0.60×2 | 74 | (4) = 3 | · | [Ans: (a) $x^2 + 3x - 1 = 0$ (b) $x^2 - 6x - 4 = 0$ (c) $x^2 - 7x - 5 = 0$ (d) $3x^2 + 2x - 7 = 0$ (e) $x^2 + 5x - 4 = 0$ (f) $2x^2 + 3x - 10 = 0$ (g) $12x^2 + 3x - 4 = 0$ 3. If α , β are the roots of the equation $3x^2 - x - 1 = 0$, form the equations whose roots are; (i) $$2\alpha, 2\beta$$ (ii) α^2, β^2 (iii) $\frac{1}{\alpha}, \frac{1}{\beta}$ (iv) $\alpha + 1, \beta + 1$ ť [Ans: (i) $3x^2 - 2x - 4 = 0$ (ii) $9x^2 - 9x + 1 = 0$ (iii) $x^2 + x - 3 = 0$ (iv) $3x^2 - 7x + 3 = 0$] 4. One of the roots of the equation $ax^2 + bx + c = 0$ is three times the other. Show that $3b^2 - 16ac = 0$ 5. If the roots of the equation $2x^2 - 7x + 1 = 0$ are α and β find the quadratic equation whose roots are $\frac{1}{a^2}$ and $\frac{1}{a^2}$ [Ans: $x^2 + 45x + 4 = 0$] 6. Given that α and β are the roots of the quadratic equation $3x^2-x-5=0$. Form the equation whose roots are $2\alpha - \frac{1}{\beta}$ and $2\beta - \frac{1}{\alpha}$ [Ans: $15x^2 - 13x - 169 = 0$] 7. One root of the equation $2x^2 - x + c = 0$ is twice the other. Find the value of c [Ans: $c = \frac{1}{9}$] Find the value of k for which the equation 4(x-1)(x-2) = k has roots which differ by 2 [Ans: k = 3.1 9. If the roots of the equation $x^2 + px + 7 = 0$ are equal. Find the possible values of p [Ans: $p = \pm 6$] Find the quadratic equation, which has the difference of its roots equal to 2 and the difference of the squares of its roots equal to 5. [Ans: $16x^2 - 40x + 9 = 0$] 11. Each of the following expressions has a maximum or minimum value for all real values Find (i) which it is, maximum or minimum (ii) its value (iii) the value of x (a) $$x^2 + 4x - 3$$ [Ans: (i) min (ii) -7 (iii) -2] (b) $$2x^2 + 3x + 1$$ [Ans: (i) min (ii) $\frac{-1}{8}$ (iii) $\frac{-3}{4}$] (c) $$x^2 - 6x + 1$$ [Ans: (i) min (ii) -8 (iii) 3] (d) $$3 - 2x - x^2$$ [Ans: (i) max (ii) 4 (iii) -1] (e) $$5 + 2x - x^2$$ [Ans: (i) max (ii) 6 (iii) 1] 12. (i) Express the function $13 + 6x + 3x^2$ in the form $a(x+b)^2 + q$ where a, b and q are constants. (ii) Find the value of x when the function is minimum (iii) State the minimum value of the function [Ans: (i) $$13 + 6x + 3x^2 = 3(x+1)^2 + 10$$ (ii) $x = -1$ (iii) 10] # **CHAPTER 4: SERIES** Consider the following sets of numbers 2, 4, 6, 8, 10, 1, 2, 4, 8, 16, 4, 9, 16, 25, 36, Each set of numbers in the order given has a pattern and there is an obvious rule for obtaining the next number and as many subsequent numbers we wish to find. Such sets are called sequences and each number in the set is a term of a sequence. # <u>Series</u> When the terms of a sequence are added, a series is formed i.e $$1+2+4+8+16+...$$ is a series As each term is a power of 2, we can write this series in the form; $$2^0 + 2^1 + 2^2 + 2^3 + 2^4 + \cdots$$ All the terms of this series are in the form 2^{r} , so 2^{r} is the general term We can thus define the series as the sum of terms of the form 2^r where r takes on integer values
i.e if we decide to take the first five terms, r takes on integer values from 0 to 4 Using \sum as the symbol for "the sum of terms such as", we can redefine our series concisely as; $$\sum_{r=0}^{4} 2^{r}$$ $\sum_{r=2}^{10} r^3 \text{ means "the sum of all terms of the form } r^3$ where r takes all values from 2 to 10 inclusive $\sum_{r=3}^{10} r^3 = 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3$ $$\sum_{r=2}^{10} r^3 = 2^3 + 3^3 + 4^3 + 5^3 + 6^3 + 7^3 + 8^3 + 9^3 + 10^3$$ We shall consider two important series or progressions i.e. arithmetic and geometrical progressions # ARITHMETIC PROGRESSIONS (A.Ps) The difference between any term (except the first) and its predecessor (the term immediately in front) is constant in this series. This is called the common difference, d, of the A.P. Consider (c) -5, -1, 3, 7, d=3 (a)5, 8, 11, 14 (b) 1+3+5+7+.....+99 d=2 is we denote the first by a, then; | In general, if wi | e denote the man | 13 | 4 | n \ | |-------------------|------------------|----------------|----------|------------| | No. of term | T T. | T ₁ | T4 | Tn | | Denoted by | $\frac{1}{a}$ | d = a + d + d | a+2d+d | | | Term | | a + 2d | a+3d | a + (n-1)d | | 1. 1 | l | T ic the | nth term | | : For any A.P. $T_n = a + (n-1)d$ whe T_n is the nth term 1. Find the 35th term of 5, 9, 13,...... # Solution $$a = 5$$, $d = 9 - 5 = 4$ and $n = 35$ $T_n = a + (n - 1)d$ $T_{35} = 5 + (34)(4) = -141$ 2. How many terms are in the A.P $2+4+6+\cdots+46$? ## <u>Solution</u> $$a = 2$$, $d = 2$ $nth term = 46$ $T_n = a + (n - 1)d$ $46 = 2 + (n - 1)2$ $2n = 46$ $\therefore n = 23 terms$ 3. The 7th term of an A.P is 27 and the 12th term is 47. Find the first term and common difference of the progression. # Solution $$T_7 = a + 6d = 27 \dots (i)$$ $T_{12} = a + 11d = 47 \dots (ii)$ equation (ii) – (i) gives $5d = 20$, $d = 4$ Using (i) $a + 6 \times 4 = 27$ $a + 24 = 27 \Rightarrow a = 3$ 4. The arithmetic progression A.P is given below $$\log_3(x+2)$$, $\log_3(x+3)$, $\log_3(x+5)$ Find the value of x. # Solution In an A.P, there is a constant difference between the respective terms i.e. the common difference and this is what we are going to use to solve this question $$\log_3(x+5) - \log_3(x+3) = \log_3(x+3) - \log_3(x+2)$$ $$\log_3\left(\frac{x+5}{x+3}\right) = \log_3\left(\frac{x+3}{x+2}\right)$$ Since the logarithm are to the same bases, then; $$\frac{x+5}{x+3} = \frac{x+3}{x+2}$$ $$(x+5)(x+2) = (x+3)(x+3)$$ $$x^2 + 2x + 5x + 10 = x^2 + 3x + 3x + 9$$ $$x^2 + 7x + 10 = x^2 + 6x + 9$$ $$7x + 10 = 6x + 9$$ $$.7x - 6x = 9 - 10$$ $$x = -1$$ # Sum of an arithmetic progression The sum of an AP is obtained using the formula $S_n = \frac{n}{2}(2a + (n-1)d)$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition # **Examples** 1. Find the sum of the first 12 terms of the AP 3, 7, 11... $$a = 3$$, $d = 4$ $n = 12$ $S_{12} = \frac{12}{2}(2(3) + (12 - 1)4) = 6(6 + 44) = 6(50) = 300$ 2. Find the sum of the series $11 + 13 + 15 + \dots + 89$ # Solution $$a = 11, d = 2 nth term = 89$$ $$89 = 11 + (n-1) \times 2$$ $$78 = 2(n-1)$$ $$39 = n-1 \therefore n = 40$$ $$S_n = \frac{n}{2}(2a + (n-1)d)$$ $$S_{40} = \frac{40}{2}(2 \times 11 + (40-1)2) = 2000$$ 3. The fourth term of an AP is 13 and the tenth term is 31. Find the sum of the first ten terms of the AP # Solution $$T_4 = a + 3d = 13 \dots (i)$$ $T_{10} = a + 9d = 31 \dots (ii)$ Solving (i) and (ii) simultaneously i.e. (ii)-(i) $$6d=18 : d=3$$ $$a+3\times 3=13$$ $$a=4$$ $$a = 4$$ For $$n = 10$$, $S_{10} = \frac{10}{2}(2 \times 4 + (10 - 1)3) = 5(35) = 175$.. The sum of the ten terms of the AP is 175 # GEOMETRIC PROGRESSIONS (G.Ps) The ratio of each term (except the first) to its predecessor is a constant in this series. It is called the common ratio denoted by r i.e. (c) 144, 72, 36, 18,..... $r = \frac{72}{144} = \frac{1}{3}$ In gener | ral, if we deno | (C the ma | 7'- | T_{A} | T_5 | |-----------------|--------------|----------|-----------------|-----------------| | T_1 | T2 | ar × r | $ar^2 \times r$ | $ar^3 \times r$ | | a | $a \times r$ | a, 2 | ar ³ | ar-1 | | | ar | <u> </u> | T is the 1 | ith term | We can deduce that $T_n = ar^{n-1}$ where T_n is the nth to # Examples 1. Find the 20th term of the GP 2, 6, 18... Here $$r = \frac{6}{2} = 3$$ and $n = 2$ $T_n = \alpha r^{n-1}$ $$T_{20} = 2 \times 3^{20-1} = 2 \times 3^{19} = 2324522934$$ 2. Find the third and tenth term of the GP $3+6+\cdots+10$ # Solution $$a = 3$$, common ratio(r) = $\frac{6}{3} = 2$ 3^{rd} term = $ar^2 = 3 \times 2^2 = 12$ 10^{th} term = $ar^9 = 3 \times 2^9 = 1536$ 3. The second term of a GP is $\frac{8}{9}$ and the sixth term is $4\frac{1}{2}$. Find the first term and the first term and common ratio # Solution $$T_2 = ar = \frac{\frac{6}{9} \dots \dots (i)}{\frac{8}{9} \dots \dots (ii)}$$ $$T_6 = ar^5 = \frac{9}{2} \dots \dots (ii)$$ equation (ii) ÷ (i) gives; $$\frac{ar^{5}}{ar} = \frac{\frac{9}{2}}{\frac{9}{9}} = \frac{81}{16}$$ $$r^{4} = \frac{81}{16} = \frac{3^{4}}{2^{4}} = \left(\frac{3}{2}\right)^{4}$$ $$\therefore r = \frac{3}{2}$$ From (i) $$ar = \frac{8}{9}$$, $a\left(\frac{3}{2}\right) = \frac{8}{9}$ $$\therefore a = \frac{16}{27}$$ 4. The second and fourth terms of a G.P are 10 and 40 respectively. Find the possible progressions and the seventh term in each case. ٠<u>.</u>: $$2^{nd} term; \quad ar = 10 \dots (i)$$ $$4^{th} term; ar^3 = 40 ...(ii)$$ $$\frac{equation (ii)}{equation (i)} \text{ gives; } \frac{ar^3}{ar} = \frac{40}{10}$$ $$\Rightarrow r^2 = 4$$ $$r=\sqrt{4}=\pm 2$$ Either $$r = -2$$ or $r = 2$ When $$r = 2$$, $a(2) = 10 \Rightarrow a = 5$ Hence the G.P is 5, 10, 20, 40, # The sum of a GP The sum of n terms of a GP is given by the formula; $$s_n = \frac{a(r^n - 1)}{r - 1}$$ if $r > 1$ or $s_n = \frac{a(1 - r^n)}{1 - r}$ if $r < 1$ # **Examples** 1. Find the sum of the first ten terms of the series $8+4+2+\cdots$ Here $$a = 8$$, $r = \frac{1}{2}$, $n = 10$ $$s_{10} = \frac{8\left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}} = \frac{8\left(1 - \frac{1}{2^{10}}\right)}{\frac{1}{2}}$$ $$= 16\left(1 - \frac{1}{1024}\right) = 16\left(\frac{1023}{1024}\right) = \frac{1023}{64} = 15.98$$ $$\therefore The sum of the first ten terms of the series is 15.98$$ 2. What is the least number of terms of the series $2 + 3 + \frac{9}{2} + \dots$ which must be taken for the sum to exceed 30? $$a = 2 \quad and \quad r = \frac{3}{2}$$ $$s_n = \frac{a(r^n - 1)}{r - 1}$$ $$s_n = \frac{2\left(\left(\frac{3}{2}\right)^n - 1\right)}{\frac{3}{2} - 1} > 30$$ $$4(1.5^n - 1) > 30$$ $$1.5^n - 1 > 7.5$$ $$1.5^n > 8.5 \quad and \quad by \quad introducing \quad log_{10} \quad on \quad both \quad sides \quad gives ;$$ $$\log 1.5^n > \log 8.5$$ $$\log 1.5 > \log 8.5$$ $$\log 1.5 > \log 8.5$$ $$n > \frac{\log 8.5}{\log 1.5} = \frac{0.9294}{0.1761} = 5.278$$ since n must be an integer, we must take 6 terms for the sum to exceed 30 3. Find the eighth term and the sum of the first eight terms of the series $\frac{1}{2}$, 1, 2, 4, ... $$a = \frac{\frac{\text{Solution}}{n}}{n^{th} \ term} = ar^{n-1}$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$8^{th} term = \frac{1}{2} (2)^{8-1} = \frac{1}{2} \times 128 = 64$$ $$s_n = \frac{a(r^n - 1)}{r - 1}$$ $$s_8 = \frac{\frac{1}{2} (2^8 - 1)}{2 - 1} = \frac{1}{2} (256 - 1) = 127.5$$ 4. The angles of a triangle form a geometrical progression. If the smallest angle is 20°, determine the ## Solution Here a = 20 and the GP is $20,20r,20r^2$ $20 + 20r + 20r^2 = 180$ (since angles of a triangle add up to 180°) $20r + 20r^2 = 160$ $r^2 + r - 8 = 0$ (On dividing through by 20 and re arranging) a = 1, b = 1, c = -8Using $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $r = \frac{-(1) \pm \sqrt{(1)^2 - 4(1)(-8)}}{2(1)} = \frac{-1 \pm \sqrt{33}}{2} = \frac{-1 \pm 5.74}{2}$ $\therefore r = \frac{-1 + 5.74}{2} = 2.37$ The largest angle = $ar^2 = 20 \times (2.37)^2 = 20 \times 5.6169 = 112.30$ ∴ The largest angle is 112° ## The sum to infinity of a G.P Consider the general G.P. $a + ar + ar^2 + \cdots$ $$S_n = \frac{a(r^{n}-1)}{r-1} \text{ and if } |r| < 1, \text{ then } \lim_{n \to \infty} r^n = 0$$ $$\implies \lim_{n \to \infty} S_n = \frac{a}{1-r}$$ Therefore, for a G.P the sum to infinity, $S_{\infty} = \frac{a}{1-r}$ ### Example I Find the sum to infinity of the following G.P 8, 4, 2, 1, 1/2, $$a = 8$$, $r = \frac{4}{6} = \frac{1}{2}$ $S_{\infty} = \frac{a}{1-r} = \frac{8}{1-\frac{1}{2}} = 8 \div \frac{1}{2} = 16$ ## Example 2 Find the sum to infinity of the following G.P; $1 - \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \cdots$ $$a = 1, \quad r = -\frac{1}{4} \div 1 = -\frac{1}{4}$$ $$S_{\infty} = \frac{a}{1-r} = \frac{1}{1-(-\frac{1}{4})} = 1 \div \frac{5}{4} = \frac{4}{5}$$ ## Trial questions - 1. Find the number of terms in each of the following A.Ps - (a) $5 + 8 + 11 + 14 + \cdots + 57$ - (b) $1 + 6 + 11 + \dots + 501 + 506$ [Ans: (a) 20 (b) 102] - 2. Find the sum to infinity of the series; - (a) $16 + 12 + 9 + \cdots$ - (b) $16 + 8 + 4 + 2 + 1 + \cdots$ - (c) $84 42 + 21 10\frac{1}{2} + \cdots$ [Ans: (a) 64 (b) 32 (c) 56] - 3.Find the sum of each of the following A.Ps - (a) $2+4+6+8+10+\cdots+146$ - (b) $100 + 95 + 90 + 85 + \cdots \dots -20$ - (c) $4 + 10 + 16 + 22 + 28 + \dots + 334$ [Ans: (a) 5402 (b) 1000 (c) 9464] - 5. What is the number of terms of a geometric progression 5, 10, 20...... that can give a sum greater than 500,000? - The 10th term of an arithmetic progression is 20 and the 15th term is 44. Find the value of the first term and the common difference ,hence find the sum of the first 60 terms [Ans:5430] - 7. The 8th term of an AP is twice the third term and the sum of the first eight terms is 39. Find the sum of the of the first 21 terms of the AP [Ans: 204.75] - 8. Five numbers are in a geometric progression, the first being 8 and the last 648. Find the common ratio - 9. How many terms of the GP $3 + 5 + 8\frac{1}{3} + \cdots$ must be taken for the
sum to exceed 100? - 10. In an AP, the 18th term is twice the 9th term. Find the ratio of the sum of 18 terms to the sum of 93 [Ans: 19:5] - 11. An AP has 37 terms of which 9 is the fourth and $58\frac{1}{2}$ is the last. Find the sum of the AP. terms of this AP. [Ans: $1165\frac{1}{5}$] - If $3\frac{5}{9}$ and $40\frac{1}{2}$ are the first and last terms of a GP respectively and that there are seven terms $\left\{ \text{Ans}: \frac{16}{3} \right\}$ altogether, find the second term - The sum of the first twenty terms of an AP is 800. Given that the sum of the first twenty six terms is 1352, determine (i) the first term and common difference (ii) the 23rd term [Ans: (i) a = 2, d = 4 (ii) 90] - The first and last terms of an AP are -3 and 58 respectively. The sum of all the terms of the progression is 5060. Find the number of terms and the common difference. [Ans: n = 184, $d = \frac{1}{3}$] - progression is 2005. AP is 15 and the fourth term is 6. Find the 10^{th} term and the sum of the first 10 15. The first term of an AP is 15 and the fourth term is 6. Find the 10^{th} term and the sum of the first 10 - terms - The series of an AP a_1, a_2 and a_3 sum up to 12. The sixth term a_6 is 16. Determine the sum of the first 10 terms of the progression. [Ans: $S_{10} = 145$] # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition 17. The first two terms of an AP and a GP are alike. The first term of each progression is 20. The sum of the first five terms of the AP is 80. Find the common difference of the AP and the common ratio of the GP, hence find the difference between the five terms [Ans: $d = -2, r = \frac{9}{10}, 1.122$] - 18. The sum of the first 12 terms of an AP is 72. The eighth term is four times the sum of the fourth and fifth terms .Determine (i) the first term and the common difference of the AP (ii) the sum of the [Ans: (i) a = -7.2, d = 2.4 (ii) 312] - 19. The sum of the second and third terms of a GP is 48. The sum of the fifth and sixth terms is (i)the common ratio and the first term of the GP (ii) the sum of the first twelve terms of the GP [Ans: (i) r = 3, $\alpha = 4$ (ii) 1062880] - 20. The first, third and eleventh terms of an AP are also the first second and third terms of a GP. Given that the first term of the AP is 2, find the (i) common ratio, r and common difference, d (ii) the sum of the first 10 terms of the AP (iii) number of terms of a GP that give a total of 699050 [Ans: (i) d = 3, r = 4 (ii) 155 - (iii)n = 10] 21. The first two terms of an AP are 4 and -8. Find the number of terms whose sum is -156. [Ans: n = 78] - 22. Given that 4 and -8 are the first two terms of a GP, find the fifth term and the sum of the first five [Ans: 48, 44] # CHAPTER 5: DIFFERENTIATION Differentiation is the process of obtaining the gradient of the curve. The gradient function $\frac{dy}{dx}$ (pronounced as " dee y dee x") or the differential coefficient of y with respect to x. ## The form ax" If $y = ax^n$, then $\frac{dy}{dx} = nax^{n-1}$ where a is a constant (Multiply by the power and then decrease the power by one) ## Example Differentiate the following with respect to x (ii) $3x^5$ (iii) $\frac{3}{x^2}$ (iv) \sqrt{x} (i) $$let y = x^{R} \Rightarrow \frac{dy}{dx} = 8 \times x^{R-1} = 8x^{7}$$ (i) let $$y = x^8 \Rightarrow \frac{dy}{dx} = 8 \times x^{8-1} = 8x^7$$ (ii) let $y = 3x^5 \Rightarrow \frac{dy}{dx} = 5 \times 3x^{5-1} = 15x^4$ (iii) let $$y = \frac{3}{x^2} = 3x^{-2} \Rightarrow \frac{dy}{dx} = -2 \times 3x^{-2-1} = -6x^{-3} = -\frac{6}{x^3}$$ (iv) let $$y = \sqrt{x} = x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2} \times x^{\frac{1}{2} - 1} = \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$$ If y = k and k is a constant, $\frac{dy}{dx} = 0$ $\Rightarrow \text{ The decimal}$ ⇒ The derivative of a constant is zero If y = 6, then $\frac{dy}{dx} = 0$ ## Differentiating a sum or difference When differentiating a sum or difference, we differentiate separately i.e. $$If y = f(x) + g(x) - h(x)$$ $$\frac{dy}{dx} = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x)) - \frac{d}{dx}(h(x))$$ $$\frac{dy}{dx} = f'(x) + g'(x) - h'(x)$$ ## Example 1 If $y = ax^2 + bx + c$. Find $\frac{dy}{dx}$ if a, b and c are constants $\frac{dy}{dx} = 2ax + b$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition If $$y = 3x^2 - 6x + \frac{2}{x^2}$$, find $\frac{dy}{dx}$ Solution $$y = 3x^2 - 6x + \frac{2}{x^2} = 3x^2 - 6x + 2x^{-2}$$ $$\frac{dy}{dx} = 6x - 6 + (-2 \times x^{-2-1})$$ $$= 6x - 6 - 4x^{-3} = 6x - 6 - \frac{4}{x^3}$$ ## Example 3 Find $$\frac{dy}{dx}$$ if $y = x^3 + 7x^2 - 2x + 12$. Solution $$\frac{dy}{dx} = 3x^2 + 14x - 2$$ ## Gradient of a function / curve The gradient of a curve is not a constant therefore the gradient of a curve is determined at a particular point. The gradient of the curve at any point is defined as the gradient of the tangent to the curve at that point and measures the rate of increase of y with respect to x The gradient of the curve at a point is equal to the gradient of the tangent at that same point Gradient of tangent = $\frac{\delta y}{\delta x} \approx \frac{dy}{dx}$ Therefore the gradient of the tangent to the curve y = f(x) is given by $\frac{dy}{dx}$ or f'(x) ## Example 1 Find the gradient of the curve $y = x^3 + x^2 - 2x$ ## Solution $$\frac{dy}{dx} = 3x^2 + 2x - 2$$: the gradient of the curve is $3x^2 + 2x - 2$ ### Example 2 Find the gradient of the curve $y = 2x^2 - 5$ at a point at the point (1, -2) ## Solution $$\frac{dy}{dx} = 4x$$ At a point $$(1, -2)$$, $x = 1$ $$\frac{dy}{dx} = 4 \times 1 = 4$$.. The gradient of the curve is 4 at the point (1, -2) ## Example 3 The curve $y = ax^3 - 2x^2 - x + 7$ has a gradient of 3 at the point where x = 2. Determine the value of a. Gradient of the curve $$= \frac{dy}{dx} = 3$$ at $x = 2$ If $y = ax^3 - 2x^2 - x + 7$, $\frac{dy}{dx} = 3ax^2 - 4x - 1$ at $x = 2$, $\frac{dy}{dx} = 3a(2)^2 - 4(2) - 1 = 12a - 9$ $\Rightarrow 12a - 9 = 3$ $12a = 12$, $\therefore a = 1$ ## Equation of the tangent to the curve at a point When given a point on a certain curve, the equation of the tangent at that point can be obtained. The tangent to curve at a point is the line touches the curve at that point. ### Example 1 Find the equation of the tangent to the curve $y = x^3 - 3x + 2$ at the point where x = 2 ## Solution Gradient of the tangent = $\frac{dy}{dx} = 3x^2 - 3$ When $$x = 2$$, $\frac{dy}{dx} = 3(2)^2 - 3 = 9$ It is important that you get the y coordinate by substituting the x-value in the equation of the curve i.e. $$y = 2^3 - 3(2) + 2 = 4$$ The point is (2, 4) The equation of the tangent can be obtained from; $$\frac{y-4}{x-2} = 9$$ $$y-4 = 9x - 18$$ $$y = 9x - 14$$ is the equation of the tangent to the curve ## Example 2 · Find the equation of the tangent to the curve $4y = x^2$ at a point (2, 1) ## Solution Solution $$y = \frac{x^2}{4}$$ $$\frac{dy}{dx} = \frac{x}{2} \quad \text{At } (2, 1) \quad , x = 2 \text{ hence } \frac{dy}{dx} = \frac{2}{2} = 1$$ Gradient of tangent =1 $$\frac{y-1}{x-2} = 1 y-1 = x-2$$ y = x - 1 is the equation of the tangent to the curve ## Equation of normal at a given point A line perpendicular to a tangent at the given point of contact on the curve is called the normal at that point. If the gradient of the tangent is m, the product of the normal is $\frac{-1}{m}$ (from gradient of 1 lines) In other words, the product of the gradients of perpendicular lines is -1. Gradient of tangent \times gradient of normal \approx -1 Gradient of tangent = $$\frac{dy}{dx}$$, Gradient of normal = -1 / $\frac{dy}{dx} = \frac{-1}{gradient of tangent}$ ## Example 1 Find the gradient of the normal to the curve $y = 4x - x^2$ at the point where x = 1 $$\frac{dy}{dx} = 4 - 2x$$ At $$x = 1$$, $\frac{dy}{dx} = 4 - 2(1) = 2$ when $$x = 1$$, $y = 4(1) - 1^2 = 3$ Gradient of tangent = 2, Gradient of normal = $\frac{-1}{2}$ at a point (1, 3) The equation of the normal is thus given by; $$\frac{y-3}{x-1} = \frac{-1}{2}$$ $$2(y-3) = -1(x-1)$$ $$2y-6 = -x+1$$ 2y + x = 7 is the equation of normal to the curve ## Example 2 Find the equation of the tangent and normal to the curve $y = x^2 - 4x + 1$ at the point (-2, 13) ## Solution $$y = x^2 - 4x + 1, \frac{dy}{dx} = 2x - 4$$ At (-2, 13), $$\frac{dy}{dx} = 2(-2) - 4 = -8$$ Thus gradient of the tangent is -8 Equation of tangent is given by; $\frac{y-13}{x+2} = -8 \Rightarrow y-13 = -8(x+2)$ $$y - 13 = -8x - 16$$ $$y = -8x + 3$$ Gradient of the normal $=\frac{-1}{-8}=\frac{1}{8}$ ## Example Find the maximum and minimum values of the function $y = 2x^3 - 13x^2 - 12x$ ## Solution $$\frac{dy}{dx} = 6x^2 - 6x - 12 = 6(x^2 - x - 2)$$ For maximum and minimum values, $\frac{dy}{dx} = 0$ $$\Rightarrow 6(x^2 - x - 2) = 0$$ $$x^2 - x - 2 = 0$$ $$(x-2)(x+1) = 0 \implies x = -1 \text{ or } x = 2$$ Therefore, the turning points are where x = -1 and x = 2. The sign of $\frac{dy}{dx}$ is now tested on each side of the turning values of x | | _ | | | | | | | |----------|---|----------|----|---|---|-----|---| | <u> </u> | <u> </u> | L | 2 | R | L | -1 | R | | : | $\frac{\text{sign of }}{\frac{dy}{dx}}$ | <u>-</u> | 0 | + | + | .0 | _ | | | | | | | | | | | | | 1 | 41 | | | 17. | | Minimum Hence at x = -1, the function has a maximum value of 7 and when x = 2, the function has a minimum value of -20 ## Example 2 Find the turning points of $y = x^3 - 6x^2 - 15x + 3$ and distinguish between them ## Solution $$y = \frac{x^3 - 6x^2 - 15x + 3}{x^3 - 6x^2 - 15x + 3}$$ $$\frac{dy}{dx} = 3x^2 - 12x - 15$$ For turning points; $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 12x - 15 = 0$ $$3x^2 - 12x - 15 = 0$$ $$x^2 - 4x - 5 = 0$$ $$x^2 - 5x + x - 5 = 0$$ $$x(x-5) + (x-5) = 0$$ $$(x-5)(x+1)=0$$ $$x = 5 \text{ or } x = -1$$ When $$x = 5$$, $y = (5)^3 - 6(5)^2 - 15(5) + 3 = 125 - 150 - 75 + 3 = -97$ when $$x = 5$$, $y = (3)^3 - 6(-1)^2 - 15(-1) + 3 = -1 - 6 + 15 + 3 = 11$ The sign of
$\frac{dy}{dx}$ is now tested on each side of the turning values of x to identify the nature of the turning points ## Applications of differentiation ## Stationary points A point on a curve at which $\frac{dy}{dx} = 0$ is called a stationary point. At such point, the tangent to the curve is parallel to the x-axis ### Example Find the stationary points of the curve $y = 4x^3 + 15x^2 - 18x + 7$ $$\frac{dy}{dx} = 12x^2 + 30x - 18$$ For stationary values $$\frac{dy}{dx} = 0 \implies 12x^2 + 30x - 18 = 0$$ $$2x^{2} + 5x - 3 = 0$$ (on dividing through by 6) $2x^{2} + 2x + 3x - 3 = 0$ $$2x^2 + 2x + 3x - 3 = 0$$ $$(2x-1)(x+3)=0$$ Either $$x = -3$$ or $x = \frac{1}{2}$ $$(2x-1)(x+3) = 0$$ Either $x = -3$ or $x = \frac{1}{2}$ When $x = -3$, $y = 4(-3)^3 + 15(-3)^2 - 18(-3) + 7 = 88$ When $$x = \frac{1}{2}$$, $y = 4(\frac{1}{2})^3 + 15(\frac{1}{2})^2 - 18(\frac{1}{2}) + 7 = \frac{9}{4}$ Therefore the stationary points are (3, 88) and $(\frac{1}{2}, \frac{9}{4})$ ## Maximum and minimum turning points Consider a curve passing through a stationary point and reaching a maximum value at that point If it reaches a minimum value at a stationery point ## Example. Find the maximum and minimum values of the function $y = 2x^3 - 13x^2 - 12x$ ## Solution $$\frac{dy}{dx} = 6x^2 - 6x - 12 = 6(x^2 - x - 2)$$ For maximum and minimum values, $\frac{dy}{dx} = 0$ $$\Rightarrow 6(x^2-x-2)=0$$ $$x^2-x-2=0$$ $$(x-2)(x+1) = 0 \Rightarrow x = -1 \text{ or } x = 2$$ Therefore, the turning points are where x = -1 and x = 2. The sign of $\frac{dy}{dx}$ is now tested on each side of the turning values of x | , sign or dx | | | | _ | | | |---|---|---|---|--------------|-----------|----| | x | L | 2 | R | <u>_L</u> | <u>-1</u> | K_ | | $\begin{array}{c} sign \ of \\ \frac{dy}{dx} \end{array}$ | _ | 0 | + | , +
 | 0 | _ | | | | | | | | | | | | J | | | Mavimum | | Minimum Maximum Hence at x = -1, the function has a maximum value of 7 and when x = 2, the function has a minimum value of -20 ## Example 2 Find the turning points of $y = x^3 - 6x^2 - 15x + 3$ and distinguish between them $$y = x^3 - 6x^2 - 15x + 3$$ $$\frac{dy}{dx} = 3x^2 - 12x - 15$$ For turning points; $\frac{dy}{dx} = 0 \Rightarrow 3x^2 - 12x - 15 = 0$ $$3x^2 - 12x - 15 = 0$$ $$x^2 - 4x - 5 = 0$$ $$x^2 - 5x + x - 5 = 0$$ $$x(x-5) + (x-5) = 0$$ $$(x-5)(x+1)=0$$ $$x = 5 \text{ or } x = -1$$ $$x = 5 \text{ or } x = -1$$ When $x = 5$, $y = (5)^3 - 6(5)^2 - 15(5) + 3 = 125 - 150 - 75 + 3 = -97$ $$(-1)^3 - 6(-1)^2 - 15(-1) + 3 = -1 - 6 + 15 + 3 = 13$$ when x = -1, $y = (-1)^3 - 6(-1)^2 - 15(-1) + 3 = -1 - 6 + 15 + 3 = 11$ The sign of $\frac{dy}{dx}$ is now tested on each side of the turning values of x to identify the nature of the turning points | x | l, | 5 | R | | -1 | R | |--|----|---------|----|---------------|---------|---------| | $\begin{array}{c} sign\ of \\ dy \\ \hline dx \end{array}$ | | 0 | 4. | -J- | 0 | | | | | | | | | | | | N | 4inimum | | _ | Mavimum | | Therefore (5, -97) is a minimum turning point and (-1, 11) is a maximum turning point ## The Second derivative test The nature of the turning points can be found by using the second derivative test in such a way that if the curve has a maximum turning point, then $\frac{d^2y}{dx^2} < 0$ (negative) and the curve has a minimum turning point if $\frac{d^2y}{dx^2} > 0$ (positive) ## Example Determine the nature of the turning points of the following curves (a) $$y = 15 - 2x^2$$ (b) $y = x^2 - 3x + 2$ $$y = \frac{\text{Solution}}{y = 15 - 2x^2}$$ (a) $$y = 15 - 2x^2$$ $\frac{dy}{dx} = -4x$ $\frac{d^2y}{dx^2} = -4$ (which is less than 0 / negative) The curve therefore has a maximum turning point The curve therefore has a maximum turning point (b) $$y = x^2 - 3x + 2$$ $\frac{dy}{dx} = 2x - 3$ $\frac{d^2y}{dx^2} = 2$ (which is greater than zero/ positive) The curve therefore has a minimum turning point ## Curve sketching 14 For the function y = f(x), we can plot values of x against the corresponding values of y and obtain an accurate graph of the function. A less accurate representation, which we call a sketch is adequate for many purposes provided that the sketch still shows the salient and noteworthy features of the function. We shall now learn to sketch curves and we shall mainly concentrate on quadratic curves (in the form $y = ax^2 +$ bx + c). The other curves are beyond the scope of the syllabus. - The main guidelines are:- - \geq Determining the intercepts (where the curve cuts the axes) of the curve i.e. where x = 0 - > The position and nature of the turning point i.e. maximum or minimum ## Examples 1. Sketch the curve $y = 2x^2 - 6x + 4$ ## Solution ## **Intercepts** when $$y = 0$$, $2x^2 - 6x + 4 = 0$ $2x^2 - 2x - 4x + 4 = 0$ $2x(x - 1) - 4(x - 1) = 0$ $(x - 1)(2x - 4) = 0$ $x = 1$ or $x = 2$ (1, 0) and (2, 0) are the intercepts on the x-axis when x = 0, y = 4, hence (0,4) is the intercept on the y-axis $$\frac{dy}{dx} = 4x - 6$$ For turning points, $$\frac{dy}{dx} = 0 \implies 4x - 6 = 0$$ $$x = \frac{3}{2}$$ We need to find the corresponding y-value of the turning point when $$x = \frac{3}{2}$$; $y = 2(\frac{3}{2})^2 - 6(\frac{3}{2}) + 4 = -\frac{1}{2}$ $$\therefore (\frac{3}{2}, -\frac{1}{2}) \text{ is the turning point}$$ We now investigate for the nature of the turning point of the curve by using the values on the immediate left and right of the turning point. | of the fatting bount | | | | | | | | | | |----------------------|-----------------|---|---|-----|-------|---|--|--|--| | Val | ue of x | L | | 1.5 | R
 | | | | | | Sign | $\frac{dy}{dx}$ | | | 0 | Γ- | + | | | | |) 31g | dx dx | | | l | / | | | | | | | | | _ | | | | | | | We now come to realize that (1.5, -0.5) is a minimum turning point Alternatively; using the second derivative method, $\frac{d^2y}{dx^2} = 4$ which is greater than 0 Implying that the curve has a maximum turning point. 2. Sketch the curve $y = 4x - x^2$ ### **Solution** ## Intercepts when $$y = 0$$, $4x - x^2 = 0$ $$x(4-x)=0$$ Either x = 0, or x = 4, \Rightarrow (0,0) and (4,0) are the x - intercepts ## Turning point $$y=4x-x^2$$ $$\frac{dy}{dx} = 4 - 2x$$ $$4-2x=0\Rightarrow x=2$$ when $$x = 2$$, $y = 4(2) - 2^2 = 4$ We now investigate for the nature of the turning point of the curve | 17-1 C | | <u>6 point</u> (| or the curve | |-------------------------|-------------|------------------|--------------| | Value of x | L | 2 | R | | Sign of $\frac{dy}{dx}$ | + | 0 | _ | | | | | | We observe that (2, 4) is a maximum turning point Alternatively; if we would wish to investigate the nature of the turning point using the second derivative, we find out that $\frac{d^2y}{dx^2} = -2$ which is less than $0 \left(\frac{d^2y}{dx^2} < 0 \right)$ Hence, the curve has a maximum turning point We can now sketch the curve 3. Sketch the graph of the function $y = 5 + 4x - x^2$ ## Solution ## Intercepts when $$y = 0, 5 + 4x - x^2 = 0$$ $$5 + 5x - x - x^2 = 0$$ $$5(1+x) - x(1+x) = 0$$ $$(1+x)(5-x)=0$$ either $$x = 5$$ or $x = -1$ The curve cuts the x-axis at (5, 0) and (-1, 0) when $$x = 0$$, $y = 5 + 4(0) - 0^2 = 5$ The curve cuts the y-axis at (0, 5) Turning point $$y = 5 + 4x - x^2$$ $$\frac{dy}{dx} = 4 - 2x$$ $\frac{dy}{dx} = 4 - 2x$ For turning points, $\frac{dy}{dx} = 0 \implies 4 - 2x = 0$ which gives x = 2 Now we need to find the y - value corresponding to the x-value obtained above we need to find the y - value corresponding when $$x = 2$$, $y = 5 + 4(2) - (2)^2 = 5 + 8 - 4 = 9$ Thus (2, 9) is the turning point Nature of the turning point | he turning point | | | - | |-------------------------|---|--------------|--| | | L | 2 | <u> </u> | | Sign of $\frac{dy}{dx}$ | + | 0 | _] | | Jign of dx | | | | | | | <u> </u> | | Thus (2, 9) is a maximum turning point Alternatively, we can find the nature of the turning point using the second derivative From $$\frac{dy}{dx} = 4 - 2x$$ $$\frac{d^2y}{dx^2} = -2$$ $$\frac{d^2y}{dx^2} = -2$$ Since $\frac{d^2y}{dx^2} < 0$, it is a maximum turning point 4. Sketch the curve $y = x^2 + 2x - 3$ ## Solution Intercepts when $$y = 0$$, $x^2 + 2x - 3 = 0$ $x^2 + 3x - x - 3 = 0$ $x(x + 3) - (x + 3) = 0$ $(x + 3)(x - 1) = 0$ either x = -3 or x = 1 The curve cuts the x-axis at (1, 0) and (-3, 0) when $$x = 0$$, $y = (0)^2 + 2(0) - 3 = -3$ The curve cuts the y-axis at (0, -3) ## Turning point $$y = x^2 + 2x - 3$$ $$\frac{dy}{dx} = 2x + 2$$ For turning points, $\frac{dy}{dx} = 0$ $\Rightarrow 2x + 2 = 0$ which gives x = -1 Now we need to find the y - value corresponding to the x-value obtained above when $$x = 2$$, $y = (-1)^2 + 2(-1) - 3 = -4$ Thus $(-1, -4)$ is the two Thus (-1, -4) is the turning point Nature of the turning point | | _ | | | |-------------------------|-----------------------|-------------|-----| | C' a dv | <u>-</u> | -1 | R | | Sign of $\frac{dy}{dx}$ | - | 0 | + | | | | | · . | | | | | | | (2, 9) is a minimu | <u></u> _ | | | Thus (2, 9) is a minimum turning point Alternatively, we can find the nature of the turning point using the second derivative From $$\frac{dy}{dx} = 2x + 2$$ $\frac{d^2y}{dx^2} = 2$ which is positive (> 0) hence minimum turning point ### Note: From all the graphs of the functions, it follows that the curve $y = ax^2 + bx + c$ has a maximum turning point when a < 0 and a minimum turning point when a > 0 If y = f(x), $\frac{dy}{dx}$ is the rate of change of y with respect to x Similarly if u = f(v), then $\frac{du}{dv}$ is the rate of change of change of u with respect to v Now the velocity v of a body is defined as the rate of displacement s of a body from some fixed origin, with respect to time i.e. $v = \frac{ds}{dt}$ The acceleration α of a body is defined as the rate of the velocity of a body with respect to time i.e. $\alpha =
\frac{d\nu}{dt}$ So displacement, velocity and acceleration are linked up with the process of differentiation with respect to ## Examples 1. The displacement's metres of a body from an origin O at a time t seconds is given by $s = 2t^2 - \frac{1}{2}$ 3t + 6. Find (a) the displacement (b) the velocity (c) the acceleration of the body when t = 1Solution $Given s = 2t^2 - 3t + 6$ (a) When $$t = 1$$, $s = 2(1)^2 - 3(1) + 6 = 5 m$ (b) Since $$v = \frac{ds}{dt}$$ $v = \frac{ds}{dt} = 4t - 3$ when $t = 1, v = 4(1) - 3 = 1 \text{ m/s}$ (c) From $$a = \frac{dv}{dt}$$ $v = 4t - 3$, $a = \frac{dv}{dt} = 4 \text{ ms}^{-2}$ 2. If $v = t^2 - 4t + 3$, find (a) the values of t when the body is at rest (b) the acceleration when t = 5 (a) At rest, $$v = 0$$ $$t^{2} - 4t + 3 = 0$$ $$t^{2} - t - 3t + 3 = 0$$ $$t(t - 1) - 3(t - 1) = 0$$ $$(t - 1)(t - 3) = 0$$ $$t = 1 \text{ or } t = 3$$ (b) Using $$a = \frac{dv}{dt}$$ $v = t^2 - 4t + 3 \Rightarrow \frac{dv}{dt} = 2t - 4$ $a = 2t - 4$ when $t = 5$, $a = 2(5) - 4 = 6m/s^2$ 3. If $s = 5t^3 - t$, find the expressions of v and a in terms of t $$Solution$$ $$v = \frac{ds}{dt} = 15t^2 - 1$$ $$a = \frac{dv}{dt} = 30t$$ ## Differentiation of trigonometric functions Derivatives at Sin x with respect to x, we get cos x and if we differentiate cos x with respect to When we differentiate sin x with respect to mosition to recall the shows the learner should be in nosition to recall the shows the learner should be in position to recall the shows the learner should be in position to recall the shows the shows the learner should be in position to recall the shows show Derivatives of sin x and cos x When we different when we different should be in position to recall the above statement. x, we get $-\sin x$. The learner should be in position to recall the above statement. $$\frac{dy}{dx}\sin x = \cos x$$ $$\frac{dy}{dx}\cos x = -\sin x$$ ## Derivatives of sin kx and cos kx If we let $y = \sin kx$ and we let u = kx where k is a constant then $$y = \sin u \Rightarrow \frac{dy}{du} = \cos u$$ and $\frac{du}{dx} = k$ Using the chain rule; $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = k \times \cos u = k \cos kx$ $$\therefore \frac{d}{dx}\sin kx = k\cos kx$$ ## Similarly; If we let $y = \cos kx$ and we let u = kx where k is a constant then $$y = \cos u \Rightarrow \frac{dy}{du} = -\sin u$$ and $\frac{du}{dx} = k$ Using the chain rule; $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = k \times -\sin u = -k \sin kx$ $$\therefore \frac{d}{dx}\cos kx = -k\sin kx$$ ### Examples Find $$\frac{dy}{dx}$$ if (a)y = $\sin 4x$ (b) $y = \cos 7x$ $$(b) y = \cos 7x$$ ### Solution (a) let $y = \sin 4x$ and we let u = 4x then $$y = \sin u \Rightarrow \frac{dy}{du} = \cos u$$ and $\frac{du}{dx} = 4$ Using the chain rule, $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 4 \times \cos u = 4 \cos 4x$ $$\therefore \frac{dy}{dx} = 4\cos 4x$$ (b) let $y = \cos 7x$ and we let u = 7x then $$y = \cos u \Rightarrow \frac{dy}{du} = -\sin u$$ and $\frac{du}{dx} = 7$ Using the chain rule; $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 7 \times -\sin u = -7\sin 7x$ $$\therefore \frac{dy}{dx} = -7 \sin 7x$$ With practice, the reader will soon be able to differentiate such functions directly e.g if $$y = \cos 4x$$, $\frac{dy}{dx} = (-\sin 4x) \times \frac{d}{dx}(4x) = -4\sin 4x$ if $$y = \sin 7x$$, $\frac{dy}{dx} = (\cos 7x) \times \frac{d}{dx}(7x) = 7\sin 7x$ ## Derivatives of asin kx, $a \cos kx$, $a \sin kx + c$ and $a \cos kx + c$ Where a, k and c are constants 130 $$\frac{d}{dx}a\sin kx = a\frac{d}{dx}\sin kx = ak\cos kx$$ $$\frac{d}{dx}a\sin kx = a\frac{d}{dx}\sin kx = ak\cos kx$$ $$\frac{d}{dx}a\cos kx = a\frac{d}{dx}\cos kx = -ak\sin kx$$ $$\frac{d}{dx}[a\sin kx + c] = \frac{d}{dx}a\sin kx + \frac{d}{dx}c = ak\cos kx$$ $$\frac{d}{dx}[a\sin kx + c] = \frac{d}{dx}a\sin kx + \frac{d}{dx}c = ak\cos kx$$ $$\frac{d}{dx}[a\cos kx + c] = \frac{d}{dx}a\cos kx + \frac{d}{dx}c = -ak\sin kx$$ meddelle gan Find $\frac{dy}{dx}$ if (a) $y = 5 \sin 9x$ (b) $y = 3 \cos 8x$ (c) $y = 6 \sin 3x + 4$ (d) $y = 3 \cos 2x + 6$ (a) $$\frac{dy}{dx} = 5 \frac{d}{dx} \sin 9x = 5 \times 9 \cos 9x = 45 \cos 9x$$ (b) $$\frac{dy}{dx} = 3\frac{d}{dx}\cos 8x = 3 \times -8\sin 8x = -24\sin 8x$$ (c) $$\frac{dy}{dx} = \frac{d}{dx} 6 \sin 3x + \frac{d}{dx} (4) = 18 \cos 3x$$ $$(d) \frac{dy}{dx} = \frac{d}{dx} 3\cos 2x + \frac{d}{dx}(6) = -6\sin 2x$$ ## Derivatives of $a \sin(kx + c)$ and $a \cos(kx + c)$ If we let $y = a \sin(kx + c)$ and we let u = kx + c Then $$y = a \sin u \Rightarrow \frac{dy}{du} = a \cos u$$ and $\frac{du}{dx} = k$ Using the chain rule; $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = k \times a \cos u = ak \cos(kx + c)$ $$\therefore \frac{d}{dx}a\sin(kx+c) = ak\cos(kx+c)$$ ## Similarly; If we let $y = a \cos(kx + c)$ and we let u = kx + c then $$y = a \cos(kx + b)$$ and $y = a \sin u$ and $\frac{du}{dx} = k$ Using the chain rule; $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = k \times -a \sin u = -ak \sin(kx + c)$ $$\frac{d}{dx} a \cos(kx + c) = -ak \sin(kx + c)$$ ## Examples: The state of s Examples: Find $$\frac{dy}{dx}$$ if $(a)y = 5\sin(4x+3)$ (b) $y = 3\cos(5x+10)$ Solution (a) $$\frac{dy}{dx} = 5 \times 4 \cos(4x + 3) = 20 \cos(4x + 3)$$ (b) $$\frac{dy}{dx} = -3 \times 5 \sin(5x + 10) = -15 \sin(5x + 10)$$ ## Trial questions - 1. Differentiate the following with respect to x - $9x^2 + 3x + 5$ (ii) $(x+2)^2$ (lii) $\frac{x^5 x^2 + 1}{x^2}$ [Ans: (i)] - 2. Find the equation of the tangent to the curve $y = 3x^2 + 7x 2$ at the point, P where x = -1 [Ans:] - 3. Find the gradient of the curve $y = x^2 + 6x 4$ at the point where the curve cuts the y-axis [Ans: 6] - 4. Find the equations of the tangent and normal to the following curves at the points indicated - (a) $y = x^2$ at (3,9) [Ans: y = 6x 9, 6y + x = 57] - (b) $y = 5 2x^2$ at (-1, 3) [Ans: y = 4x + 7, 4y + x = 11] - (c) $y = 4 + x 2x^2$ at a point where x = 1 [Ans: y + 3x = 6, 3y = x + 8] - 5. Find the coordinates of any stationary points on the given curves and distinguish between them. 1. . - (a) $y = 2x^2 8x$ [Ans: min at (2, -8) - (b) $y = 18x 20 3x^2$ [Ans: Max at (3,7)] - (c) $y = x^3 + 3x^2 9x 5$ [Ans: max at (-3, 22), min at (1, -10)] - 6. Sketch the following curves, clearly indicating on your sketch the coordinates of any turning points and any points where the curve cuts the axes. - (a) y = (1-x)(x-5) - (b) $y = x^2 8x 20$ - (c) $y = x^2 + 2x 3$ - (d) $y = x^2 + 10x + 10$ - (e) $y = 3x x^2$ - 7. Differentiate the following trigonometric functions with respect to x - (a) $7 \sin(8x + 3)$ [Ans: $56 \cos(8x + 3)$] - (b) $15\cos(3x+4)$ [Ans: $-45\sin(3x+4)$ - (c) $24\cos 2x + 3$ [Ans: $-48\sin 2x$] - (d) $13 \sin 4x + 3$ [Ans: $52 \cos 4x$] ## CHAPTER 6: MATRICES A matrix is a rectangular array of numbers called elements or entries. Information can conveniently be presented as an array of rows and columns. ## Order of a matrix The order of a matrix gives the format of how a matrix should be written. It is always in the form $m \times n$ where m is the number of rows and n is the number of columns in the matrix. For example - $A2 \times 2$ matrix (i) In thus matrix, the number of rows is 2 and the number of columns are also 2 i.e. - (ii) $\Lambda 3 \times 3$ matrix In thus matrix, the number of rows is 3 and the number of columns are also 3 i.e. $\begin{pmatrix} 3 & 1 & 0 \\ 4 & 0 & 1 \\ 1 & 9 & 2 \end{pmatrix} : \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ - (iv) $A3 \times 2 matrix$ (iii) $\begin{pmatrix} 2 & 4 & 0 \\ 1 & 6 & 9 \end{pmatrix}$ Note: Other matrices of different order are possible i.e. $1 \times 2, 2 \times 1, 1 \times 3, 3 \times 1, e.t.c$ ## Operations on matrices ## Addition and Subtraction Two or more matrices can be added if they have the same order i.e. the number of rows and columns in the first matrix must be equal to the number of rows and columns in the second matrix. . - Examples 1. $$\binom{a \ b}{c \ d'} + \binom{e \ f}{g \ h} = \binom{a+e \ b+f}{c+g \ d+h}$$ 2. $\binom{-2 \ 0}{3 \ 2} + \binom{-1 \ 3}{0 \ 2} = \binom{-2+-1 \ 0+3}{3+0 \ 2+2} = \binom{-3 \ 3}{3 \ 4}$ 3. $\binom{1 \ 0 \ 1}{3 \ -1 \ 2} + \binom{3 \ 2 \ 1}{2 \ 0 \ -3} = \binom{1+3 \ 0+2 \ 1+1}{3+2 \ -1+0 \ 2\pm 3} = \binom{4 \ 2 \ 2}{5 \ -1 \ -1}$ 4. $\binom{a \ b}{c \ d'} - \binom{e \ f}{g \ h} = \binom{a-e \ b-f}{c-g \ d-h}$ 5. $\binom{3 \ 1}{-2 \ 0} - \binom{-1 \ -3}{0 \ 2} = \binom{3--1 \ 1--3}{-2-0 \ 0-2} = \binom{4 \ 4}{-2 \ -2}$ 6. $\binom{6 \ 3}{1 \ 2} - \binom{0 \ -1}{3 \ 0} = \binom{6-0 \ 3-1}{1-3 \ 0-0} = \binom{6 \ 4}{-7 \ 3} -2 \ 0$ ## Multiplication of matrices ## Scalar multiplication This is the type of multiplication where we multiply a given matrix with a constant, which is taken as a scalar. ## Examples 1. Expand $a \begin{pmatrix} b & c \\ e & f \end{pmatrix}$ ### Solution $$a\begin{pmatrix} b & c \\ e & f \end{pmatrix} = \begin{pmatrix} a \times b & a \times c \\ a \times e & a \times f \end{pmatrix} = \begin{pmatrix} ab & ac \\ ae & af \end{pmatrix}$$ 2. Given the matrix $A = \begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 3 \\ -2 & 8 \end{pmatrix}$. Find (i) 2A (ii) 4B - A (iii) 3(A + B) ### Solution (i) $$2A = 2\begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 2 \times 3 & 2 \times 0 \\ 2 \times 1 & 2 \times -2 \end{pmatrix} = \begin{pmatrix} 6 & 0 \\ 2 & -4 \end{pmatrix}$$ (ii) $$4B = 4 \begin{pmatrix} 0 & 3 \\ -2 & 8 \end{pmatrix} = \begin{pmatrix} 4 \times 0 & 4 \times 3 \\ 4 \times -2 & 4 \times 8 \end{pmatrix} = \begin{pmatrix} 0 & 12 \\ -8 & 32 \end{pmatrix}$$ $4B - A = \begin{pmatrix} 0 & 12 \\ -8 & 32 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -3 & 12 \\ -9 & 34 \end{pmatrix}$ (iii) $$A + B = \begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ -2 & 8 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -1 & 6 \end{pmatrix}$$ $3(A + B) = 3\begin{pmatrix} 3 & 3 \\ -1 & 6 \end{pmatrix} =
\begin{pmatrix} 9 & 9 \\ -3 & 18 \end{pmatrix}$ 3. Given the matrix $A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix}$. Find $\det(2A + 3B - C)$ ### Solution $$2A + 3B - C = 2 \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} + 3 \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix}$$ $$= \begin{pmatrix} 8 & 2 \\ 10 & 4 \end{pmatrix} + \begin{pmatrix} -3 & 3 \\ 6 & 9 \end{pmatrix} - \begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 5 \\ 16 & 13 \end{pmatrix} - \begin{pmatrix} 0 & 3 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 2 \\ 14 & 14 \end{pmatrix}$$ $$\det(2A + 3B - C) = 5 \times 14 - 14 \times 2 = 70 - 28 = 42$$ ## General Multiplication of matrices We can multiply two or more matrices if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. ### Examples Expand $$1. \ \binom{a \quad b}{c \quad d} \binom{e \quad f}{g \quad h}$$ ### Solution When we are expanding, we multiply row by column $$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a \times e + b \times g & a \times f + b \times h \\ c \times e + d \times g & c \times f + d \times h \end{pmatrix} = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix}$$ 2. $\begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}$ $$\binom{3}{2} \quad \binom{1}{1} \binom{0}{3} \quad \binom{1}{1} = \binom{3 \times 0 + 1 \times 3}{2 \times 0 + 1 \times 3} \quad \binom{3 \times 1 + 1 \times 1}{2 \times 1 + 1 \times 1} = \binom{0 + 3}{0 + 3} \quad \binom{3 + 1}{2 + 1} = \binom{3}{3} \quad \binom{4}{3}$$ 3. $\begin{pmatrix} 3 & 4 \\ 2 & 5 \end{pmatrix}^2$ 4. $$\binom{8}{5} \quad \binom{9}{-1} \binom{-2}{4} \quad \binom{3}{0}$$ 4. $$\binom{8}{5} \binom{9}{-1} \binom{-2}{4} \binom{3}{0}$$ $$\binom{8}{5} \binom{9}{5} \binom{-2}{4} \binom{3}{0} = \binom{8 \times -2 + 9 \times 4}{5 \times -2 + -1 \times 4} \binom{8 \times 3 + 9 \times 0}{5 \times 3 + -1 \times 0}$$ $$= \binom{-16 + 36}{-10 - 4} \binom{24 + 0}{15 + 0} = \binom{20}{-14} \binom{24}{15}$$ $$AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$ However, the product BA is not defined because it is impossible 6. Given the matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find the matrix products AB and BA. Given the matrices $$A = \begin{pmatrix} 3 & 4 \end{pmatrix}$$ to $\begin{pmatrix} c & a \end{pmatrix}$. What conclusion can you draw from your solution. What conclusion can you draw from your solution. $$AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 \times a + 2 \times c & 1 \times b + 2 \times d \\ 3 \times a + 4 \times c & 3 \times b + 4 \times d \end{pmatrix} = \begin{pmatrix} a + 2c & b + 2d \\ 3a + 4c & 3b + 4d \end{pmatrix}$$ $$BA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} a \times 1 + b \times 3 & a \times 2 + b \times 4 \\ c \times 1 + d \times 3 & c \times 2 + d \times 4 \end{pmatrix} = \begin{pmatrix} a + 3b & 2a + 4b \\ c + 3d & 2c + 4d \end{pmatrix}$$ We can observe that $AB \neq BA$ We can observe when multiplying two matrices, the commutative law does not hold i.e. $AB \neq Note$: in general, when multiplying two matrices, the commutative law does not hold i.e. $AB \neq Note$: BA as we have seen above. ## The determinant of a matrix Consider a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, the determinant is denoted by det A or |A| defined as the difference between the product of the elements in the major/leading diagonal and the product of the elements in the minor diagonal i.e. $$|A| = \det A = ad - bc$$ ## Examples 15 If $$M = \begin{pmatrix} 4 & 1 \\ 3 & -1 \end{pmatrix}$$, find det M Solution $$\det M = (4 \times -1) - (1 \times 3) = -4 - 3 = -7$$ 2. If $$A = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}$$, find $|A|$ Solution $$|A| = (1 \times 0) - (3 \times 1) = 0 - 3 = -3$$ 3. Given that $$A = \begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix}$$, $B = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$, Find (i) $\det(3A + B)$ (ii) $\det(2A - B)$ Solution (i) $$3A + B = 3\begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 9 \\ 3 & 0 \end{pmatrix} + \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 11 \\ 4 & 1 \end{pmatrix}$$ $$det(3A + B) = (6 \times 1) - (4 \times 11) = 6 - 44 = -38$$ (ii) $$2A - B = 2\begin{pmatrix} 1 & 3 \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 2 & 0 \end{pmatrix} - \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 4 \\ 1 & -1 \end{pmatrix}$$ $$\det(2A - B) = (-1 \times -1) - (4 \times 1) = 1 - 4 = -3$$ ## Singular matrix A matrix whose determinant is zero is called a singular matrix. ## Examples 1. Given that $$A = \begin{pmatrix} 4 & 6 \\ 1 & 1 \end{pmatrix}$$ and $B = \begin{pmatrix} -1 & -4 \\ 2 & 1 \end{pmatrix}$. Show that $A + B$ is a singular matrix. $$\overline{A+B} = \begin{pmatrix} 4 & 6 \\ 1 & 1 \end{pmatrix} + \begin{pmatrix} -1 & -4 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 3 & 2 \end{pmatrix}$$ $$\det(A + B) = 3 \times 2 - 2 \times 3 = 6 - 6 = 0$$ Since the det (A + B) = 0, A + B is a singular matrix 2. Given that matrix $$A = \begin{pmatrix} 4 & 2 \\ a & 3 \end{pmatrix}$$ is a singular matrix, find the value of a . ## Solution $$\det A = 4 \times 3 - 2 \times a = 12 - 2a$$ For a singular matrix, det A = 0 $$\Rightarrow$$ 12 - 2 $a = 0$ $$2a = 12$$ thus $a = 6$ 3. Given that $M = \begin{pmatrix} 3a & a-6 \\ -6 & a+2 \end{pmatrix}$, find the values of a for which the matrix M is singular $$\det M = 3a(a+2) - (-6)(a-6) = (3a^2 + 6a) - (-6a + 36)$$ $$= 3a^2 + 6a + 6a - 36$$ $$= 3a^2 + 12a - 36$$ Since matrix M is singular, then det M = 0 $$\Rightarrow 3a^{2} + 12a - 36 = 0$$ $$a^{2} + 4a - 12 = 0$$ $$a^{2} - 2a + 6a - 12 = 0$$ $$a(a - 2) + 6(a - 2) = 0$$ $$(a - 2)(a + 6) = 0$$ $$a = 2 \text{ or } a = -6$$ ## Inverse of a matrix The inverse of a matrix A is given by $\frac{1}{\det A} \times the \ adjoint \ matrix$. The inverse of a matrix A is denoted by A^{-1} . To get the adjoint, we interchange the entries of the major diagonal and multiply the entries of the minor diagonal by -1 i.e. If $$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$, Adjoint $A = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ $$\det A = ad - bc$$ $$A^{-1} = \frac{1}{\det A} \times Adjoint A = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$ Note: The inverse of a singular matrix does not exist because we end up with a division by zero, which is undefined. Examples 1. If $$A = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix}$$, $B = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$, find (i) A^{-1} (ii) B^{-1} (iii) $(A + B)^{-1}$ Solution (i) $$\frac{\text{Solution}}{\det A = (3 \times 1) - (1 \times 0) = 3 - 0 = 3}$$ $$Adjoint A = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$$ $$A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$$ (ii) $$\det B = (-1 \times 3) - (2 \times 1) = -3 - 2 = -5$$ $$A^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$$ $$B^{-1} = \frac{1}{-5} \begin{pmatrix} 3 & -2 \\ -1 & -1 \end{pmatrix}$$ (iii) $$B^{-1} = \frac{1}{-5} \begin{pmatrix} -1 & -1 \end{pmatrix}$$ $$A + B = \begin{pmatrix} 3 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$ $$\det(A + B) = (2 \times 4) - (3 \times 1) = 8 - 3 = 5$$ $$Adjoint (A + B) = \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$$ Advanced Level Subsidiary Mathematics by Kawama Fahad 2nd Edition $$(A+B)^{-1} = \frac{1}{5} \begin{pmatrix} 4 & -3 \\ -1 & 2 \end{pmatrix}$$ 2. Given the matrix $A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix}$, $B = \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix}$, find $(AB)^{-1}$ $AB = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} -1 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 \times -1 + 1 \times 2 & 4 \times 1 + 1 \times 3 \\ 5 \times -1 + 2 \times 2 & 5 \times 1 + 2 \times 3 \end{pmatrix}$ $= \begin{pmatrix} -4 + 2 & 4 + 3 \\ -5 + 4 & 5 + 6 \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ -1 & 11 \end{pmatrix}$ $\det(AB) = (-2 \times 11) - (-1 \times 7) = -2$ $$t(AB) = (-2 \times 11) - (-1 \times 7) = -4$$ $$Adjoint AB = \begin{pmatrix} 11 & -7 \\ 1 & -2 \end{pmatrix}$$ $$(AB)^{-1} = \frac{1}{-15} \begin{pmatrix} 11 & -7 \\ 1 & -2 \end{pmatrix}$$ ## **Identity** matrix An identity matrix is a matrix which has the entries in the major diagonal equal to one and the entries in the minor diagonal all equal to zero e.g. $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is a 2 × 2 idententity matrix, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is a 3 × 3 identity matrix. The identity Matrix is denoted by I. ### Examples 1. Given that $$A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$, find (i) A^{-1} (ii) AA^{-1} (i) $$\det A = (1 \times 1) - (1 \times 2) = 1 - 2 = -1$$ $$Adj A = \begin{pmatrix} 1 & -2 \\ -1 & -1 \end{pmatrix}$$ $$A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$ (i) $$\det A = (1 \times 1) - (1 \times 2) = 1 - 2 = -1$$ $Adj A = \begin{pmatrix} 1 & -2 \\ -1 & -1 \end{pmatrix}$ $A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$ (ii) $AA^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 \times -1 + 2 \times 1 & 1 \times 2 + 2 \times -1 \\ 1
\times -1 + 1 \times 1 & 1 \times 2 + 1 \times -1 \end{pmatrix} = \begin{pmatrix} -1 + 2 & 2 - 2 \\ -1 + 1 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ We can observe that the above product gives an identity matrix. Thus for all Note: We can observe that the above product gives an identity matrix. Thus for all matrices, the product $AA^{-1} = I$ where I is an identity matrix. 2. Given that A is the matrix $\begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$. Determine the scalars x and y such that $A^2 + xA + yI = 0$ where I is a 2 × 2 identity matrix. $$A^{2} = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 2 \times 2 + 4 \times -1 & 2 \times 4 + 4 \times 3 \\ -1 \times 2 + 3 \times -1 & -1 \times 4 + 3 \times 3 \end{pmatrix} = \begin{pmatrix} 0 & 20 \\ -5 & 5 \end{pmatrix}$$ $$xA = x \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 2x & 4x \\ -x & 3x \end{pmatrix}$$ $$yl = y \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} y & 0 \\ 0 & y \end{pmatrix}$$ Given $A^2 + xA + yl = 0$ $$\begin{pmatrix} 0 & 20 \\ -5 & 5 \end{pmatrix} + \begin{pmatrix} 2x & 4x \\ -x & 3x \end{pmatrix} + \begin{pmatrix} y & 0 \\ 0 & y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ $$\begin{pmatrix} 2x + y & 20 + 4x \\ -5 - x & 5 + 3x + y \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ $$-5 - x = 0 \dots (i)$$ $$x = -5$$ $$2x + y = 0 \dots (ii)$$ $$y = -2x$$ $$y = -2(-5) = 10$$ 3. Given the matrix $P = \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix}$, determine the matrix Q such that QP = I where I is a 2×2 identity matrix let $$Q = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$ $$\Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$\begin{pmatrix} -2a + 3b & -4a + 5b \\ -2c + 3d & -4c + 5d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$-2a + 3b = 1 \dots (i)$$ $$-4a + 5b = 0 \dots (ii)$$ We can solve the simultaneous equations (i) and (ii) using elimination or substitution method. Using climination $$2(i)$$; $-4a + 6b = 2$ (ii) $-4a + 5b = 0$ $b = 2$ Substitute for b in eqn (ii) $$-4a + 5 \times 2 = 0$$ $$-4a = -10 \implies a = \frac{10}{4} = \frac{5}{2} = 2.5$$ Similarly $-2c + 3d = 0 \dots (iii)$ $$-4c + 5d = 1 \dots (iv)$$ Solving equation (iii) and (iv) simultaneously gives; $$2(iii) - 4c + 6d = 0$$ $$- 4c + 5d = 1$$ $$- 4c - 1$$ Substitute for d in (iv) $$-4c + 5(-1) = 1$$ $-4c = 6 \Rightarrow c = -\frac{6}{4} = -1.5$ Therefore the matrix $Q = \begin{pmatrix} 2.5 & 2 \\ -1.5 & -1 \end{pmatrix}$ ## Solving simultaneous equations using matrices One of the most important applications of matrices is to find the solution of linear simultaneous equations. It is a requirement to first re-arrange the given simultaneous equations into matrix format. ## Example 1 Consider the simultaneous equations $$x + 2y = 4$$ $$3x - 5y = 1$$ Provided you understand how matrices are multiplied together, you will realize these can be written in This is the matrix form of the simultaneous equations. Here the unknown matrix is X, since A and B are already known. A is called the matrix of coefficients. Now given AX = B, we can multiply both sides by the inverse of A, provided it exists to obtain; $A^{-1}AX = A^{-1}B$ But $$AA^{-1} = I$$, the identity matrix Further more IX = X since multiplying any matrix by an identity matrix of the appropriate order leaves the matrix unaltered. Therefore $X = A^{-1}B$ Thus if $$AX = B$$, then $X = A^{-1}B$ This result gives us a method for solving simultaneous equations. All we need to do is to write them in matrix form, calculate the inverse of the matrix of coefficients, and finally perform and finally perform a matrix multiplication. $$\begin{pmatrix} \frac{\text{Solution}}{2} \\ \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$ We need to calculate the inverse of $A = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$ $$det A = (1 \times -5) - (2 \times 3) = -11$$ $$A^{-1} = -\frac{1}{11} \begin{pmatrix} -5 & -2 \\ -3 & 1 \end{pmatrix}$$ $$X = A^{-1}B = -\frac{1}{11} \begin{pmatrix} -5 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} = -\frac{1}{11} \begin{pmatrix} -5 \times 4 + -2 \times 1 \\ -3 \times 4 + 1 \times 1 \end{pmatrix} = -\frac{1}{11} \begin{pmatrix} -22 \\ -11 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$ $$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \implies x = 2 \text{ and } y = 1$$ ### Example 2 Using matrices, calculate the values of x and y for the following simultaneous equations $$2x - 2y - 3 = 0$$ $$8y = 7x + 2$$ ### Solution Step 1: write the equations in the form ax + by = c $$2x - 2y = 3 7x - 8y = -2$$ Step 2; write the equations in matrix form coefficients of first equation $-\frac{2}{7} - \frac{2}{-8} \left(\frac{x}{y} \right) = \left(\frac{3}{-2} \right) - \text{constant of first equation}$ coefficients of second equation $-\frac{2}{7} - \frac{2}{-8} \left(\frac{x}{y} \right) = \left(\frac{3}{-2} \right) - \text{constant of second equation}$ Step 3: Find the inverse of a 2×2 matrix the inverse of a 2 × 2 matrix $$determinant = (2 × -8) - (-2 × 7) = -16 + 14 = -2$$ $$determinant = (2 × -8) - (-2 × 7) = -16 + 14 = -2$$ $$inverse = -\frac{1}{2} \begin{pmatrix} -8 & 2 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 3.5 & -1 \end{pmatrix}$$ this equation by the inverse Step 4: Multiply both sides of the matrix equation by the inverse Therefore x = 14 and y = 12.5 Solve the simultaneous equations below using the matrix method. $$x + 2y = 4$$ $$x + y = 3$$ $$x + y = 3$$ Solution $$\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$ let $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} x \\ y \end{pmatrix}$ and $C = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ Now $AB = C \implies B = \frac{C}{A}$ which gives $B = A^{-1}C$ $$B = A^{-1}C$$ $$\det A = (1 \times 1) - (2 \times 1) = 1 - 2 = -1$$ $$A^{-1} = \frac{1}{-1} \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$ But $B = A^{-1}C \implies \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ $$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 \times 4 + 2 \times 3 \\ 1 \times 4 + -1 \times 3 \end{pmatrix} = \begin{pmatrix} -4 + 6 \\ 4 + -3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$ From the equality of matrices, x = 2 and y = ## Example 4 Solve the simultaneous equations using the matrix method $$2x + y = 3$$ $$4x - 2y = 10$$ Solution $$\begin{pmatrix} 2 & 1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \end{pmatrix}$$ let $A = \begin{pmatrix} 2 & 1 \\ 4 & -2 \end{pmatrix}$, $B = \begin{pmatrix} x \\ y \end{pmatrix}$ and $C = \begin{pmatrix} 3 \\ 10 \end{pmatrix}$ det $A = (2 \times -2) - (4 \times 1) = -4 - 4 = -8$ $$A^{-1} = -\frac{1}{8} \begin{pmatrix} -2 & -1 \\ -4 & 2 \end{pmatrix}$$ But $B = A^{-1}C \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{8} \begin{pmatrix} -2 & -1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 10 \end{pmatrix}$ $$\begin{pmatrix} x \\ y \end{pmatrix} = -\frac{1}{8} \begin{pmatrix} -2 \times 3 + -1 \times 10 \\ -4 \times 3 + 2 \times 10 \end{pmatrix} = -\frac{1}{8} \begin{pmatrix} -16 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$ $x = 2$ and $y = -1$ ## Solving mathematical problems using the matrix method In day-to-day life, we are obligated to solving problems which require the ideas of finding total expenditures, the would be amount of profit got after transacting a business and others. These mathematical problems can be solved using the matrix approach ## Example 1 A grocery sells two kinds of meat products A and B. Athieno bought 4 kg of A and 6 kg of B paying a total of B paying a total of shs 5280/=, Namusisi bought 5kg of A and 3 kg of B at a total cost of 4440/= - Write down two equations to describe Athieno's and Namusisi's purchase - By combining the two equations in matrix form, determine the cost of 1 kg of each meat (ii) - How much would Mugisha pay for 6 kg of A and 5 kg of B (iii) ## Solution Let $x = cost \ of \ grade \ A \ per \ kg$ $$y = cost \ of \ grade \ B \ per \ kg$$ Athieno's purchase; 4x + 6y = 5280 Namusisi's purchase; 5x + 3y = 4440 (i) The equations are; $$4x + 6y = 5280$$ $5x + 3y = 4440$ Determinant of the matrix of coefficients = $(4 \times 3) - (5 \times 6) = -18$ The inverse matrix = $$-\frac{1}{18}\begin{pmatrix} 3 & -6 \\ -5 & 4 \end{pmatrix}$$ $$y = -\frac{1}{18} \times -8640 = 480$$ Hence the cost of 1 kg of A = sh 600 And the cost of 1 kg of B = sh 480 (iii) Mugisha paid $$(6 \times 600) + (5 \times 480) = sh 6000$$ ## Example 2 At Jenga-mwili supermarket, Mercy bought 5 trays of eggs and 7 kg of irish potatoes at shs 11800. Moses bought 6 trays of eggs and 8 kg of irish potatoes at shs. 14000. If shs t and shs p are the prices of a tray of eggs and a kg of potatoes respectively - Write two equations to describe the purchase of the two men (i) - By combining the two equations to a matrix form, determine the cost of purchasing each item (ii) - How much would Hanifa pay for 2 trays of eggs and 2 kilograms of irish potatoes? (iii) (i) $$5t + 7p = 11800 \dots \dots \dots \dots (i)$$ $6t + 8p = 14000 \dots \dots \dots \dots (ii)$ (ii) $$\begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix} \begin{pmatrix} t \\ p \end{pmatrix} = \begin{pmatrix} 11800 \\ 14000 \end{pmatrix}$$ Determinant of the matrix of coefficients = $(5 \times 8) - (7 \times 6) = -2$ The inverse matrix = $$-\frac{1}{2}\begin{pmatrix} 8 & -7 \\ -6 & 5 \end{pmatrix}$$ Thus Determinant of the matrix of coefficients
= (The inverse matrix = $$-\frac{1}{2}\begin{pmatrix} 8 & -7 \\ -6 & 5 \end{pmatrix}$$ as $$\begin{pmatrix} t \\ p \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 8 & -7 \\ -6 & 5 \end{pmatrix}\begin{pmatrix} 11800 \\ 14000 \end{pmatrix}$$ $$\begin{pmatrix} t \\ p \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} 94400 - 98000 \\ -70800 + 70000 \end{pmatrix}$$ $$\begin{pmatrix} t \\ p \end{pmatrix} = -\frac{1}{2}\begin{pmatrix} -3600 \\ -800 \end{pmatrix}$$ $$t = -\frac{1}{2} \times -3600 = 1800/=$$ $$p = -\frac{1}{2} \times -800 = 400/=$$ For 2 trays and 2 kg of irish potatoes, Hanifa pays (iii) $2 \times 1800 + 2 \times 400 = 4400$ Four students; Kale, Linda, Musa and Nana went to a stationery shop. Kale hought 4pens, 6 counter books and 1 graph book Linda bought 10 pens and 5 counter books Musa bought 3 pens and 3 graph books Nana bought 5 pens, 2 counter books and 8 graph books The costs of a pen, a counter book and a graph were shs 400, shs 1200 and shhs 1000 respectively. - (a) (i) Write a 4×3 matrix for the items bought by the four students - (ii) Write a 3 × 1 matrix for the costs of each item - (b) Use the matrices in (a) to calculate the amount of money spent by each student - (c) If each student was to buy 4 pens, 10 counter books and 6 graph books, how much money would be spent by all the four students Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition ### Solution (a) Let P = pen, C = counter books and G = graph books Hence the 4×3 matrix for the items bought is: $$\begin{pmatrix} 4 & 6 & 1 \\ 10 & 5 & 0 \\ 3 & 0 & 3 \\ 5 & 2 & 8 \end{pmatrix}$$ (ii) Cost $P = \begin{cases} 400 \\ 1200 \\ 6 \end{cases}$ Hence the 3×1 matrix for the cost of each item is; $$\begin{pmatrix} 400 \\ 1200 \\ 1000 \end{pmatrix}$$ (b) By multiplying the two matrices $$= \frac{Kale}{Linda} \begin{pmatrix} 1600 + 7200 + 1000 \\ 4000 + 6000 + 0 \\ 1200 + 0 + 3000 \\ Nana \end{pmatrix} = \frac{Kale}{Linda} \begin{pmatrix} 9800 \\ 10000 \\ 4200 \\ 12400 \end{pmatrix}$$ Hence kale spent shs 9800, Linda shs 10000, Musa shs 4200 and Nana shs 12400 (c) $$\begin{array}{c|cccc} & P & C & G \\ Kale & 4 & 10 & 6 \\ Linda & 4 & 10 & 6 \\ Musa & 4 & 10 & 6 \\ Nana & 4 & 10 & 6 \end{array}$$ Cost by Kale = $4 \times 400 + 10 \times 1200 + 6 \times 1000 = 1600 + 12000 + 6000 = 19600$ Total cost by all the four students = $4 \times 19600 = 78,400$ ## Example 4 A retail trader ordered for shirts from a Kampala wholesale shop as follows | | • | Size | | | | | | | |--------|-------|--------|-------|-------------|--|--|--|--| | Colour | Small | Medium | Large | Extra large | | | | | | Blue | 0 | 40 | 20 | 0 | | | | | | Green | 30 | 0 | 25 | 0 | | | | | | Yellow | 0 | 20 | 0 | 10 | | | | | Given below is the cost for each size of shirt | œ | below is the cost for each size of shift | | | | | | | | | |---|--|-------------|--------|-------|-------------|--|--|--|--| | | | | Size | | | | | | | | | | Small | Medium | Large | Extra large | | | | | | | Cost (U shs) | | 3600 | 4200 | 4800 | | | | | - (a) Write down a - 4×3 matrix for the order of the shirts made (i) - $A 4 \times 1$ cost matrix - (b) Given that the trader had to pay 17% tax of the cost of the shirts purchased, find his expenditure on the order. ## **Solution** Tax paid = $$\frac{17}{100} \times 543000 = 92310$$ Total expenditure = $543000 + 92310 = 635310/=$ ## Trial questions 1. Solve the following sets of simultaneous equations using the inverse matrix method (a) $$5x + y = 13$$ and $3x + 2y = 5$ (b) $$3x + 2y = -2$$ and $x + 4y = 6$ (c) $$4x + 2y = 6$$ and $3x + 5y = 5$ 3 4 9 3 X (d) $$7x + 4 = 5y$$ and $4 - 2x + y = 0$ (e) $$2y - 4x + 2 = 0$$ and $3x - 2y = 5$ (f) $$3x + y = 5$$ and $7x = 2y + 2$ (g) $$3x + 2y = 5$$ and $5x + 4y = 11$ [Ans: (a) $$x = 3$$, $y = -2$ (b) $x = -2$, $y = 2$ (c) $x = \frac{10}{7}$, $y = \frac{1}{7}$ (d) $x = 8$, $y = 12$ (e) $$x = -3, y = -7$$ (f) $x = \frac{12}{13}, y = \frac{29}{13}$ (g) $x = -1, y = 4$ 2. Given the matrices $A = \begin{pmatrix} 1 & 0 \\ 4 & 5 \end{pmatrix}$ and $B = \begin{pmatrix} 6 & -1 \\ -2 & -3 \end{pmatrix}$ find (i) Matrix C which is equal to $$2A - 3B$$ (iii) Show that $$\det(AB) = (\det A)(\det B) [\text{Ans: (i)} \begin{pmatrix} -16 & 3 \\ 14 & 19 \end{pmatrix}] (ii) \begin{pmatrix} 6 & -1 \\ 14 & -19 \end{pmatrix}]$$ 3. Given that $$A = \begin{pmatrix} 3 & 0 \\ 1 & -2 \end{pmatrix}$$ and $B = \begin{pmatrix} 1 & 2 \\ 5 & 0 \end{pmatrix}$, determine (i) $A + B$ (ii) $(AB)^2$ [Ans: (i) $$\begin{pmatrix} 4 & 2 \\ 6 & -2 \end{pmatrix}$$ (ii) $\begin{pmatrix} -45 & 30 \\ -45 & -50 \end{pmatrix}$] 4. Given that $$\begin{pmatrix} 3-a & 3 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} -3 \\ x \end{pmatrix} = \begin{pmatrix} -3 \\ x \end{pmatrix}$$ find the values of a and x [$$Ans: a = 1, x = 1$$] 5. Given that $$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$ and $\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ find $AB - BA$ [Ans: $\begin{pmatrix} -4 & 0 \\ 0 & 4 \end{pmatrix}$] 6. A and B are two matrices such that $$A = \begin{pmatrix} 1 & 3 \\ 4 & 11 \end{pmatrix}$$ and $B = \begin{pmatrix} -1 & 2 \\ 1 & 3 \end{pmatrix}$; find (i) matrix $$P = AB$$ (ii) P^{-1} [Ans: (i) $\begin{pmatrix} 2 & 11 \\ 7 & 41 \end{pmatrix}$ (ii) $-\frac{1}{5}\begin{pmatrix} 41 & -11 \\ -7 & 2 \end{pmatrix}$] 7. Given the matrices $$P = \begin{pmatrix} 2 & -2 \\ 0 & 1 \end{pmatrix}$$, $Q = \begin{pmatrix} 3 & 2 \\ 4 & -1 \end{pmatrix}$, $R = \begin{pmatrix} 5 & -4 \\ -1 & 2 \end{pmatrix}$; determine (i) P. Q + R (ii) the determinant of (P. Q + R) [Ans: (i) $$\begin{pmatrix} 3 & 2 \\ 3 & 1 \end{pmatrix}$$ (ii) -3] 8. Find the inverse of $$A = \begin{pmatrix} 4 & -1 \\ 2 & 3 \end{pmatrix}$$, $\begin{bmatrix} Ans: \frac{1}{14} \begin{pmatrix} 3 & 1 \\ -2 & 4 \end{pmatrix} \end{bmatrix}$ 9. Given that $$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$ show that $A^2 - 4A = I$ where I is a 2 × 2 identity matrix 10. Given that matrix $$A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$, find the values of the scalar λ for which $A - \lambda I$ is singular where I is a 2 × 2 identity matrix. [Ans: $\lambda = 4$ or -1] 11. Given that $$A = \begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix}$$ and $B = \begin{pmatrix} 6 & 8 \\ 10 & -12 \end{pmatrix}$; Find $(AB)^{-1}$ [Ans: $\frac{1}{304}\begin{pmatrix} 12 & -28 \\ 10 & 2 \end{pmatrix}$] 12. Given that $$P = \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix}$$, $Q = \begin{pmatrix} -1 & 1 \\ 4 & 5 \end{pmatrix}$ and $R = \begin{pmatrix} 4 & 6 \\ 10 & 15 \end{pmatrix}$, find the matrix T such that $T = P^2 + 3Q - R$ [Ans: $\begin{pmatrix} 2 & 9 \\ 26 & 33 \end{pmatrix}$] ٠, - 13. The matrix $\begin{pmatrix} 0 & 4 \\ 3 & -1 \end{pmatrix}$ is pre-multiplied by the column matrix $\begin{pmatrix} x \\ y \end{pmatrix}$ to give $\begin{pmatrix} -8 \\ x \end{pmatrix}$, find the values of x and y. [Ans: x = -1, y = -2,] - 14. Given the matrix $P = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ and $Q = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$, find (i) PQ (ii) a 2 × 2 matrix R such that QR = P [Ans: (i) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (ii) $\begin{pmatrix} 7 & 12 \\ 4 & 7 \end{pmatrix}$] - 15. Given that $P = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 5 \\ 2 & -3 \end{pmatrix}$ and $R = \begin{pmatrix} 4 & 3 \\ 1 & -2 \end{pmatrix}$, find (i) QR P (ii) determinant of QR P [Ans: (i) $\begin{pmatrix} 7 & -6 \\ 2 & 14 \end{pmatrix}$ (ii) 110] - 16. Given the matrix $A = \begin{pmatrix} 2 & 3 \\ 5 & 7 \end{pmatrix}$, find a matrix B such that $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ [Ans: $\begin{pmatrix} -1 & -3 \\ r & c \end{pmatrix}$] - 17. If $\begin{pmatrix} 4 & 1 \\ x & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix}$, determine the values of x and y [Ans: x = 2 or -6, y = -4 or 28] - 18. Given that $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & -2 \\ 0 & 1 \end{pmatrix}$, Evaluate $(A + B)^2 \begin{bmatrix} Ans: \begin{pmatrix} 0 & 0 \\ 15 & 25 \end{pmatrix} \end{bmatrix}$ - 19. If $\begin{pmatrix} 2 & 4 \\ -3 & 3 \end{pmatrix} + k \begin{pmatrix} 3 & 1 \\ 0 & n \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ -3 & -1 \end{pmatrix}$, find the values of k and n [Ans: k = 2, n = -2] - 20. Find the values of a and b such that $\begin{pmatrix} 3 & b \\ 4 & a \end{pmatrix} \begin{pmatrix} 7a \\ 2 \end{pmatrix} = \begin{pmatrix} 43 \\ 30 \end{pmatrix}$ [Ans: a = 1, b = 11] - 21. Given that $A = \begin{pmatrix} 3 & -2 \\ -4 & 5 \end{pmatrix}$, find a matrix B such that $AB = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$. Hence or otherwise find the inverse of matrix A. [Ans: $B = \begin{pmatrix} 5 & 20 \\ 4 & 3 \end{pmatrix}$; $A^{-1} = \frac{1}{7}\begin{pmatrix} 5 & 2 \\ 4 & 3 \end{pmatrix}$] - 22. Given the matrices $A = \begin{pmatrix} 4.5 & 1 \\ 0 & 7 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$, find a matrix M such that 3M 2I = 2A B where I is a 2 × 2 identity matrix [Ans: $M = \begin{pmatrix} 3 & 1 \\ -1 & 5 \end{pmatrix}$] - 23. If $A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}$. Show that $(A + B)^2 = A^2 + B^2$ - 24. Given that $D = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and I is a 2×2 identity matrix, obtain the values of p and q such that $D^2 = pD + qI$. [Ans: p = 2, q = -1] - 25. Given the matrices $A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$; find λ such that $|A \lambda I| = 0$, where I is a 2×2 identity matrix. [Ans: $\lambda = 1$ or 4] - 26. Find the possible values x can take on given $A = \begin{pmatrix} x^2 & 3 \\ 1 & 3x \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 6 \\ 2 & x \end{pmatrix}$ and $AB = \begin{pmatrix} 3 & 6 \\ 2 & x \end{pmatrix}$ - 27. Given the matrices $A = \begin{pmatrix} 1 & 0 \\ 2 &
-1 \end{pmatrix}$ and $B = \begin{pmatrix} -2 & 1 \\ 3 & 0 \end{pmatrix}$, find $(A + B)^2 [Ans: \begin{pmatrix} 11 & -4 \\ -10 & 11 \end{pmatrix}]$ - 28. Given the matrix $C = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$, find the values of b such that $C^2 5C + bI = 0$ [Ans: b = 6] - 29. Sarah found out that she could buy 12 pencils and 10 books for shs. 2100. Alternatively she could buy 20 pencils and 4 books for shs. 1600 at the same price per item. Find the cost of each item [Ans: pencil = 50/= ; book = 150/=] # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition - 30. Two ladies Sarah and Fiona went for shopping. Sarah bought 1 kg of sugar, 500 gm of tea, 2 loaves of bread while Fiona bought 2 kg of sugar, 1 loaf of bread and 3 litres of milk. The cost price of the items were; sugar shs 2200 per kg, tea shs 500 per kg, shs 3500 per loaf and shs 1200 - (a) Write down a matrix for the - (i) Purchases - (ii) Cost price - (b) Use matrix multiplication to determine the difference in expenditure of the two ladies. [Ans: (a) (i) $$Sarah$$ $\begin{pmatrix} S & T & B & M \\ 1 & \frac{1}{2} & 2 & 0 \\ 2 & 0 & 1 & 3 \end{pmatrix}$ (ii) $\begin{pmatrix} S & T & B & M \\ T & 500 \\ 3500 \\ M \end{pmatrix}$ (iii) 2050/=] # CHAPTER 7: INTEGRATION Integration is the process of obtaining an original function from a given gradient function; hence, it is the reverse of differentiation. of differentiation. If $$\frac{dy}{dx} = x^n$$, then $y = \frac{x^{n+1}}{n+1}$ where $n \neq -1$ $$\Rightarrow \int ax^n dx = \frac{x^{n+1}}{n+1} + C$$ where C is an arbitrary constant The general rule when integrating a power of x is that we add one onto the exponent/power and then divide by the new exponent/power. It clear (hopefully) that we will need to avoid n=-1 in this formula because we will end up with division by zero, which is undefined. ## Indefinite integrals We call $\int f(x) dx$ an indefinite integral because it does not give a definite answer and we add an arbitrary constant after integrating. arbitrary constant after integrating. We know that $$y = x^3$$, $y = x^3 + 5$, $y = x^3 - 6$ all satisfy $\frac{dy}{dx} = 3x^2$, for this reason When we integrate $3x^2$, we write $y = x^3 + C$ because we are not certain whether the original function had a constant or not as when we differentiate a constant we get zero. Note: We always integrate with respect to a certain variable i.e. $\int f(x) dx$ means integrating the function with respect to x and $\int f(t) dt$ means integrating the function with respect to t. ## Example 1 Integrate the following with respect to x (a) ## Solution $$\int 5 \, dx = \int 5x^0 \, dx = \frac{5x^{0+1}}{0+1} + C = 5x + C$$ Hence $\int k dx = kx + C$, where k and C are constants (b) x^{3} $$\int x^3 dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C$$ (c) $x^{\frac{3}{2}}$ $$\int \frac{\text{Solution}}{x^{\frac{3}{2}} dx} = \frac{\frac{x^{\frac{3}{2}+1}}{3} + C}{\frac{3}{2} + 1} + C = \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + C = \frac{2x^{\frac{5}{2}}}{5} + C$$ (d) $4\sqrt{x}$ $$\int \frac{\text{Solution}}{4\sqrt{x} \, dx} = \int 4x^{1/2} \, dx = 4\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{4x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{8x^{\frac{3}{2}}}{3} + C$$ (c) $$7x^5$$ $$\int 7x^5 dx = \frac{\text{Solution}}{6} + C = \frac{7x^6}{6} + C$$ (f) $\frac{1}{\sqrt{x}}$ $$\int \frac{1}{\sqrt{x}} dx = \int \frac{1}{x^{\frac{1}{2}}} dx = \int x^{-\frac{1}{2}} dx = \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} + C = 2x^{\frac{1}{2}} + C = 2\sqrt{x} + C$$ # Integrating a sum or difference When integrating a sum or difference, just like differentiating, we integrate the terms separately. #### Example 2 Integrate $3x^3 - 4x^2 + 5x - 1$ with respect to x $$\int (3x^3 - 4x^2 + 5x - 1) dx = \int 3x^3 dx - \int 4x^2 dx + \int 5x dx - \int 1 dx$$ $$= \frac{3x^4}{4} - \frac{4x^3}{3} + \frac{5x^2}{2} - x + C$$ Note: with practice, the reader can do the above integral at once without even separating the terms as in the next example. #### Example 3 Integrate $5t^3 - 10t^{-6} + 4$ with respect to $$\int (5t^3 - 10t^{-6} + 4) dt = 5\left(\frac{1}{4}\right)t^4 - 10\left(\frac{1}{-5}\right)t^{-5} + 4t + C$$ $$= \frac{5}{4}t^4 + 2t^{-5} + 4t + C$$ #### Techniques of integrating Some integrals require simplification before you can do the integrating. The methods of simplifying can be expanding if given a product or dividing to simplest form as in the following examples. #### Example 4 Find $$\int (x-1)(x^3+2) dx$$ #### Solution We need to first expand the product $(x-1)(x^3+2)$ $$(x-1)(x^3+2) = x^4 + 2x - x^3 - 2 = x^4 - x^3 + 2x - 2$$ We can integrate the result of expansion, thus $$\int (x-1)(x^3+2) dx = \int (x^4-x^3+2x-2) dx$$ $$= \frac{x^5}{5} - \frac{x^4}{4} + \frac{2x^2}{2} - 2x + C$$ $$=\frac{x^5}{5}-\frac{x^4}{4}+x^2-2x+C$$ #### Example 5 Find $$\int \frac{x^5 - x^2 + 1}{x^2} dx$$ We need to first simplify $\frac{x^5-x^2+1}{x^2}$ by dividing the terms separately $$\frac{x^5 - x^2 + 1}{x^2} = \frac{x^5}{x^2} - \frac{x^2}{x^2} + \frac{1}{x^2} = x^3 - 1 + x^{-2}$$ rate the result of division, thus $$\int \frac{x^5 - x^2 + 1}{x^2} dx = \int (x^3 - 1 + x^{-2}) dx = \frac{x^4}{4} - x + \frac{x^{-1}}{-1} + C$$ $$= \frac{x^4}{4} - x - \frac{1}{x} + C$$ #### Definite integrals A definite integral is one that gives a definite answer since it has limits i.e. $\int_a^b f(x) dx$ is a definite integral where a is the lower limit and b, the upper limit. Suppose $$\int f(x) dx = F(x) + c$$ Suppose $$\int f(x) dx = F(a) + c$$ $$\int_{x=a}^{x=b} f(x) dx = [F(b) + c] - [F(a) + c]$$ $$= F(b) - F(a)$$ We usually write this as $\int_{x=a}^{x=b} f(x) dx = [F(x)]_a^b$ Note: The constants of integration cancel out in case of a definite integral thus there is no need to add an arbitrary constant to the final answer. ## Examples . Evaluate the following integrals $$\int_1^4 x^{\frac{1}{2}} dx$$ $$\int_{1}^{4} x^{\frac{1}{2}} dx = \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{4} = \frac{2}{3}(4)^{\frac{3}{2}} - \frac{2}{3}(1)^{\frac{3}{2}}$$ $$= \frac{16}{3} - \frac{2}{3} = \frac{14}{3}$$ $$2 \int_0^2 x^2 + 1 dx$$ 2. $$\int_{0}^{2} x^{2} + 1 \, dx$$ $$\frac{\text{Solution}}{\int_{0}^{2} x^{2} + 1 \, dx} = \left[\frac{x^{3}}{3} + x \right]_{0}^{2} = \left(\frac{2^{3}}{3} + 2 \right) - \left(\frac{0^{3}}{3} + 0 \right)$$ Advanced Level Subsidiary Mathematics by Kawuma Edhad 2nd Edition $$\frac{8}{3} + 2 = \frac{14}{3}$$ $3. \int_{-3}^{1} 6x^2 - 5x + 2 \, dx$ Solution $$\int_{-3}^{1} 6x^2 - 5x + 2 \, dx = \left[2x^3 - \frac{5}{2}x^2 + 2x \right]_{-3}^{1}$$ $$= \left(2(1)^3 - \frac{5}{2}(1)^2 + 2(1) \right) - \left(2(-3)^3 - \frac{5}{2}(-3)^2 + 2(-3) \right)$$ $$= \left(2 - \frac{5}{2} + 2 \right) - \left(-54 - \frac{45}{2} - 6 \right)$$ $$= \frac{3}{2} - \left(-\frac{165}{2} \right) = \frac{160}{2} = 84$$ 4. $\int_1^3 (x^2 - 4x + 1) dx$ <u>Solution</u> $$\int_{1}^{3} (x^{2} - 4x + 1) dx = \left[\frac{x^{3}}{3} - 2x^{2} + x \right]_{1}^{3}$$ $$= \left(\frac{(3)^{3}}{3} - 2(3)^{2} + 3 \right) - \left(\frac{(1)^{3}}{3} - 2(1)^{2} + 1 \right)$$ $$= (9 - 18 + 3) - \left(\frac{1}{3} - 2 + 1 \right)$$ $$= (-6) - \left(-\frac{2}{3} \right) = -\frac{16}{3}$$ 5. $\int_1^2 y^2 + y^{-2} \, dy$ <u>Solution</u> $$\int_{1}^{2} y^{2} + y^{-2} dy = \left[\frac{y^{3}}{3} + \frac{y^{-1}}{-1} \right]_{1}^{2} = \left[\frac{y^{3}}{3} - \frac{1}{y} \right]_{1}^{2}$$ $$= \left(\frac{(2)^{3}}{3} - \frac{1}{2} \right) - \left(\frac{(1)^{3}}{3} - \frac{1}{1} \right)$$ $$= \frac{8}{3} - \frac{1}{2} - \frac{1}{3} + 1 = \frac{17}{6}$$ $6. \int_0^4 \sqrt{t}(t-2) dt$ Solution · We need to first multiply the integral before integrating. $$\sqrt{t}(t-2) = t^{\frac{1}{2}}(t-2) = t^{\frac{3}{2}} - 2t^{\frac{1}{2}}$$ Thus $\int_0^4 \sqrt{t}(t-2) dt = \int_0^4 t^{\frac{3}{2}} - 2t^{\frac{1}{2}} dt = \left[\frac{5}{5} - 2\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right]^4 = \left[\frac{2}{5}t^{\frac{5}{2}} - \frac{4}{3}t^{\frac{3}{2}}\right]_0^4$ $$= \left(\frac{2}{5}(4)^{\frac{5}{2}} - \frac{4}{3}(4)^{\frac{3}{2}}\right) - (0)$$ $$= \frac{64}{5} - \frac{32}{3} = \frac{32}{15}$$ In the evaluation process, recall that; $$(4)^{\frac{5}{2}} = ((4)^{\frac{1}{2}})^5 = 2^5 = 32$$ $$(4)^{\frac{3}{2}} = ((4)^{\frac{1}{2}})^3 = 2^3 = 8$$ ## Area under the curve The area between the graph of y = f(x) and the x-axis is given by the definite integral of the function of the curve. $$Area = \int_{a}^{b} f(x) \, dx$$ This formula gives a positive result for the area above the x-axis and a negative result for the area below the x-axis. Note: If asked to find the area under the curve, it is a requirement to first sketch the curve i.c. by getting the intercepts and knowing the nature of the turning point. The nature of the turning point can be known by mere looking at the equation of the curve i.e. the coefficients of the x^2 [This is very important] If first asked to sketch the curve, then go smoothly through the processes of curve sketching. #### **Examples** 1. Find the area enclosed by the curve $y = 4x - x^2$ #### - Solution The x-intercepts are when y = 0, i.e $4x - x^2 = 0$, x(4 - x) = 0; x = 0 and x = 4 The curve has a maximum turning point [Recall concept] We can now sketch the curve as follows; $$A = \int_{a}^{b} y \, dx = \int_{0}^{4} (4x - x^{2}) \, dx$$ $$= \left[2x^{2} - \frac{x^{3}}{3} \right]_{0}^{4} = \left(2(4)^{2} - \frac{(4)^{3}}{3} \right) - 0$$ $$= \left(32 - \frac{64}{3} \right) - 0 = \frac{32}{3} \, sq. \, units$$ 2. Find the area between $y = 7 - x^2$ and the x-axis between the values x = -1 and x = 2 3. Find the area enclosed by the curve $y = x^2 - 3x$ and the x-axis #### Solution First make a sketch of the curve to where your area lies The area has a negative value because it lies below the x-axis but we shall always take the positive value. Therefore $A = \frac{9}{7}$ sq units ## Displacement, Velocity and Acceleration We earlier saw
that displacement, velocity and acceleration are linked up process of differentiation. Similarly; acceleration (a), velocity (v) and displacement (s) in the reverse order are linked up together by a process of integration. From $$a = \frac{dv}{dt}$$, it follows that $v = \int a \, dt$ Similarly from $v = \frac{ds}{dt}$, it follows that $s = \int v \, dt$ #### **Examples** 1. If $v = 3t^2 - 8t$ and s = 3 when t = 0, find the expression for s in terms of t Solution $$s = \int v \, dt = \int (3t^2 - 8t) \, dt$$ $$s = t^3 - 4t^2 + C$$ But s = 3 when t = 0, [This helps you calculate the value of the constant C] 3 = C $$\therefore s = t^3 - 4t^2 + 3$$ 2. If $v = t^2 - 4t + 3$ and s = 4 when t = 3, find the displacement when t = 1 $$\frac{\text{Solution}}{s = \int v \, dt = \int (t^2 - 4t + 3) \, dt}$$ $$s = \frac{t^3}{3} - 2t^2 + 3t + C$$ but s = 4 when t = 3 Substituting; 4 = 9 - 18 + 9 + C $$C = 4$$ $$s = \frac{t^3}{3} - 2t^2 + 3t + 4$$ Displacement when t = 1, $s = \frac{(1)^3}{3} - 2(1)^2 + 3(1) + 4$ $$s=\frac{16}{3}m$$ 3. If a = 1 - t and when t = 2, v = 1 and $s = \frac{13}{3}$, find the expressions for v and s in terms of t. $$v = \int a \, dt = \int_{t^2} (1 - t) \, dt$$ $$v=t-\frac{t^2}{2}+C$$ But when $$t = 2$$, $v = 1$ nen 1 = 2, $$V = 1$$ 1 = $2 - \frac{2^2}{2} + C$ $$C = 1$$ Therefore $v = t - \frac{t^2}{2} + 1$ Similarly $s = \int v \, dt = \int \left(t - \frac{t^2}{2} + 1\right) dt$ $$s = \frac{t^2}{2} - \frac{t^3}{6} + 2t + C$$ But when $$t = 1$$, $s = \frac{13}{3}$ $$\frac{13}{3} = \frac{1}{2} - \frac{1}{6} + 2 + C$$ $$\frac{13}{3} = \frac{1}{3} + 2 + C$$ $$c = 2$$ $$s = \frac{t^2}{2} - \frac{t^3}{6} + 2t + C$$ But when $t = 1$, $s = \frac{13}{3}$ $$\frac{13}{3} = \frac{1}{2} - \frac{1}{6} + 2 + C$$ $$\frac{13}{3} = \frac{1}{3} + 2 + C$$ $$C = 2$$ Thus $s = \frac{t^2}{2} - \frac{t^3}{6} + 2t + 2$ - 4. A body moves in a straight line. At time t seconds, its acceleration is given by - body moves in a sure 0, the velocity of the body is 2 m/s and its displacement is 1m. Find the a = 6t + 1. When t = 0, the velocity of the body is 2 m/s and its displacement is 1m. Find the expressions of v and s in terms of t. Solution $$a = \frac{dv}{dt} = 6t + 1$$ $$a = \frac{1}{dt}$$ $$v = \int a \, dt = \int 6t + 1 \, dt$$ # Advanced Level Subsidiary Mathematics by Kawuna Fahad 2nd Edition $$v = 3t^2 + t + C$$ But when t = 0, v = 2, thus $2 = 0 + C \Rightarrow C = 2$ Substituting for C; $v = 3t^2 + t + 2$ Now using, $$v = \frac{ds}{dt} = v = 3t^2 + t + 2$$ $s = \int v \, dt = \int (3t^2 + t + 2) \, dt$ $s = t^3 + \frac{t^2}{2} + 2t + C$ But when $$t = 0$$, $s = 1$, $$\Rightarrow 1 = 0 + C$$ thus $C = 1$ Substituting; $$s = t^3 + \frac{t^2}{2} + 2t + 1$$ #### Trial questions 1. Integrate the following with respect to x (i) $$x^5$$ (ii) $\frac{1}{x^5}$ (iii) $\sqrt[4]{x}$ (iv) x^{-3} (v) $\frac{1}{x^{\frac{5}{2}}}$ (vi) $x^{-\frac{1}{2}}$ (vii) x (viii) $\frac{1}{\sqrt[3]{x}}$ [Ans: (i) $$\frac{1}{6}x^6 + c$$ (ii) $-\frac{1}{4}x^{-4} + c$ (iii) $\frac{4}{5}x^{\frac{5}{6}} + c$ (iv) $-\frac{1}{2}x^{-2} + c$ $$(v) - \frac{2}{3}x^{-\frac{3}{2}} + c (vi)2x^{\frac{1}{2}} + c (vii)\frac{1}{2}x^2 + c (viii)\frac{3}{2}x^{\frac{2}{3}} + c$$ Evaluate each of the C.V. 2. Evaluate each of the following definite integrals (i) $$\int_0^2 x^3 dx$$ (ii) $\int_1^2 x^5 dx$ (iii) $\int_2^4 (x^2 + 4) dx$ (iv) $\int_0^3 (x^2 + 2x - 1) dx$ (v) $$\int_0^2 (x^3 - 3x) dx$$ (vi) $\int_1^2 (x^3 - 3x^2 + 2x) dx$ (vii) $\int_{-1}^1 2x - 3 dx$ (viii) $\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{x^3} dx$ [Ans: (i)4 (ii) $$\frac{63}{6}$$ (iii) $26\frac{2}{3}$ (iv) 15 (v) -2 (vi) - $\frac{1}{4}$ (vii) -6 (viii) 6] - 3. Find the area enclosed by the curve $y = x^2 1$ and the x axis [Ans: $\frac{4}{3}$ sq units] - 4. Find the area enclosed by the curve $y = x^2 6x$ and the x axis [Ans: 36sq units] - 5. Find the area enclosed by the curve $y = 4 + 3x x^2$ and x axis [Ans: $20\frac{5}{5}$] - 6. Find the area enclosed by the curve $y = x^2 4x 5$ and the x axis [Ans: 36] - 7. If a = 6t 12, and when t = 0, v = 9 and s = 6, find the expressions for the velocity and displacement. [Ans: $v = 3t^2 - 12t + 9$, $s = t^3 - 6t^2 + 9t + 6$] # **CHAPTER 8: VECTORS** A vector quantity is one that has magnitude and it is related to a definite direction in space i.e. #### Equal vectors For any two vectors to be be equal, they must have the same magnitude and direction #### Parallel vectors Two vectors a and b are parallel if one is a scalar multiple of the other i.e. $$a = \lambda b$$ #### Position vectors A position vector whose distance and direction from the origin is specific. Consider a vector at + bf The position vector \overrightarrow{OP} is given by $\overrightarrow{OP} = al + bl$ #### Addition and subtraction of vectors #### Example If $$a = 3i + 4j$$ and $b = 2i + 8j$. Find (a) a+b (b) a-2b Solution (a) $$a + b = 3i + 4j + 2i + 8j = 5i + 12j$$ (b) $$a - 2b = 3i + 4j - 2(2i + 8j)$$ = $3i + 4j - 4i - 16j$ = $-i - 12j$ #### Modulus of a vector The modulus of a vector a is the magnitude of a i.e. the length of the line representing a. The modulus of a vector a is denoted by [a] $$|a(+b)| = \sqrt{a^2 + b^2}$$ Note: the vector at +bf can be denoted by $\binom{a}{b}$ which is a column vector, V.xample Given that a = 3i + 4j and b = 2i + 8j. Find (a) |a| (b) |b| (c) |a + b| (a) $$|a| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$ (b) $$|b| = \sqrt{2^2 + 8^2} = \sqrt{68} = 2\sqrt{17}$$ (c) $$a + b = 3i + 4j + 2i + 8j$$ $|a + b| = \sqrt{5^2 + 12^2} = \sqrt{169} = 13$ ## Unit vectors A unit vector is a vector whose magnitude or length is one. It is usually written as \tilde{a} . The unit vector of a is given by $\tilde{a} = \frac{a}{|a|}$ #### Example 1 Find the unit vector of 2i - j $$|2i - j| = \sqrt{2^2 + (-1)^2} = \sqrt{5}$$ Units The unit vector will be $\frac{1}{\sqrt{5}}(2i-j)$ #### Example2 Find the unit vector of a if a = 3i + 2j $$|\alpha| = \sqrt{3^2 + 2^2} = \sqrt{13}$$ $$\tilde{\alpha} = \frac{a}{|\alpha|}$$ $$\tilde{\alpha} = \frac{1}{\sqrt{13}}(3i + 2j)$$ #### Further examples 1. In a parallelogram OABC, $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$. The point D lies on AB such that AD: DB = 1:2. Express the following vectors in terms of a and c. (a) \overrightarrow{CB} (b) \overrightarrow{BC} (c) \overrightarrow{AB} (d) \overrightarrow{AD} (e) \overrightarrow{OD} (f) \overrightarrow{DC} Let us draw the parallelogram - (a) \overrightarrow{CB} is the same length as \overrightarrow{OA} and it is in the same direction $\Rightarrow \overrightarrow{CB} = \overrightarrow{OA}$ $: \overline{CB} = a$ - (b) \overrightarrow{BC} is the same length as \overrightarrow{CB} but it is in the same direction $\Longrightarrow \overrightarrow{BC} = -\overrightarrow{CB}$ $$:: \overrightarrow{BC} = -a$$ - (c) \overrightarrow{AB} is the same length as \overrightarrow{OC} and is in the same direction $\Rightarrow \overrightarrow{AB} = \overrightarrow{OC}$ $\therefore \overrightarrow{OC} = c$ - (d) AD:DB= 1: 2 $\overrightarrow{AD} = \frac{1}{3} \overrightarrow{AB}$ $\overrightarrow{AD} = \frac{1}{3} c$ - (e) $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$ $= a + \frac{1}{3}c$ $= \frac{1}{3}(3a + c)$ - (1) $\overrightarrow{DC} = \overrightarrow{DB} + \overrightarrow{BC}$ $= \frac{2}{3}c + (-a)$ $= \frac{2}{3}(2c - 3a)$ 2. The diagram below shows a parallelogram OABC with $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c.D$ is a point on AB such that AD: DB=2:1. OD produced meets CB produced at E. $\overrightarrow{DE} = h\overrightarrow{OD}$ and $\overrightarrow{BE} = k\overrightarrow{CB}$. Find - (a) \overrightarrow{BE} in terms of a and k - (b) \overrightarrow{DE} in terms of h, a and c ## Solution (a) $$\overrightarrow{BE} = k\overrightarrow{CB}$$ But $$\overrightarrow{CB} = \overrightarrow{OA} = a$$ $$B\widetilde{E} = ka$$ (b) $$\overrightarrow{DE} = h\overrightarrow{OD}$$ $$\overline{DE} = \overline{ROD} But $\overline{OD} = \overline{OA} + \overline{AD} = a + \frac{2}{3}\overline{AB}$$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$= a + \frac{2}{3}c = \frac{1}{3}(3a + 2c)$$ $$\therefore \overrightarrow{DE} = h \times \frac{1}{3}(3a + 2c) = \frac{h}{3}(3a + 2c)$$ 3.1f O, A, B, C are four points such that $\overrightarrow{OA} = 10a$, $\overrightarrow{OB} = 5b$, $\overrightarrow{OC} = 4a + 3b$. Show that A,B and C are #### Solution $$\therefore \overrightarrow{BC} = -\frac{2}{5} \overrightarrow{AB}$$ \overrightarrow{AB} and \overrightarrow{BC} are in opposite direction and since B is a common point, A, B and C are collinear 4.OABC is a parallelogram with OA=a and OC=c, D is a midpoint of \overrightarrow{BC} and \overrightarrow{OD} meets \overrightarrow{AC} at E Given that OE=hOD and AE=kAC Find in terms of vectors a and c, the vectors OE, AE and CE #### Solution From OE=hOD OD = OC + CD CD = $$\frac{1}{2}CB = \frac{1}{2}OA = \frac{1}{2}a$$ OD = c + $\frac{1}{2}a = \frac{1}{2}(2c + a)$ $$OE = \frac{h}{2}(2c + a)$$ $$AE = AO + OE$$ $$= -a + \frac{h}{2}(2c + a)$$ $$= \frac{2hc + ha - 2a}{2} = \frac{1}{2}(2hc + (h - 2)a)$$ ## Alternatively; From AE=kAC $$AC = AO + OC$$ $$AC = OC - OA = c - a$$ $$AE = k(c - a)$$ CE = CO + OE = OE - OC , = $$\frac{h}{2}(2c + a) - c$$ = $\frac{2hc + ha - 2c}{2} = \frac{1}{2}(2c(h - 1) + ha)$ 5. M is the mid-point of \overline{PQ} in the triangle OPQ. If OP = p and OQ = q, find in terms of the vectors p and q, the vectors PQ, PM and OM. N is a point on \overline{OM} such that ON: NM = 2: 1. Express ON and PN in terms of p and q. Given that S is a mid-point of \overline{OQ} , use vector methods to show that N lies on \overline{PS} and hence determine the ratio $\overline{PN}:\overline{SN}$ ### Solution $$PQ = PO + OQ = -OP + OQ$$ $$PQ = OQ - OP$$ $$pO = q - p$$ $p_Q = q - p$ $PM = \frac{1}{2}PQ$, since M is the mid-point of \overline{PQ} $$PM = \frac{1}{2}(q-p)$$ $$OM = OP + PM$$ $$= (p + \frac{1}{2}q - \frac{1}{2}p)$$
$$=\frac{1}{2}(p+q)$$ $=\frac{1}{2}(p+q)$ ON: NM=2:1 (total ratio = 2 + 1=3) ON: $$NM=2:1$$ (total ratio $= \frac{2}{3}OM = \frac{2}{3} \times \frac{1}{2}(p+q)$ $$ON = \frac{1}{3}(p+q)$$ PN = PO + ON (see diagram) = OP + ON = ON - OP = $$\frac{1}{3}(p+q) - p = \frac{1}{3}q - \frac{2}{3}p$$ $\therefore pN = \frac{1}{3}(q-2p)$ Now NS = NO + OS = OS - ON But OS = $\frac{1}{2}OQ$ since S is the mid-point of OQ $\Rightarrow OS = \frac{1}{2}q$ Also $ON = \frac{1}{3}(p+q)$ from above $\Rightarrow NS = \frac{1}{2}q - \frac{1}{3}(p+q) = \frac{1}{2}q - \frac{1}{3}p - \frac{1}{3}q = \frac{3q-2p-2q}{6} = \frac{q-2p}{6}$ NS = $\frac{1}{6}(q-2p)$ But PN = $\frac{1}{6}(q-2p)$ so $\frac{pN}{6} = \frac{\frac{1}{3}(q-2p)}{6} - \frac{1}{3} = \frac{6}{3}$ But PN = $$\frac{1}{3}(q - 2p)$$ so $\frac{PN}{NS} = \frac{\frac{1}{3}(q - 2p)}{\frac{1}{6}(q - 2p)} = \frac{1}{3} \times \frac{6}{1} = 2$ $\frac{PN}{NS} = 2 \implies PN = 2NS$ Since PN is a scalar multiple of NS, then PN is parallel to NS. But since both vectors contain a common point N, N and S are collinear (lie on a straight line) and so N lies on PS as required. Now $$\frac{PN}{NS} = \frac{2}{1}$$ so PN: NS = 2:1 Hence $\overline{PN} : \overline{SN} = 2:1$ #### The scalar product The scalar dot product of two vectors is defined as the product of the magnitude of the two vectors and the cosine of the angle between the two vectors ### Properties of the scalar product 1. From definition $a.b = |a||b|\cos\theta$, it follows that two perpendicular vectors have a scalar product of zero $$\Rightarrow a.b = 0$$ $$2, a.b = b.a$$ 3. $$a.(b+c) = a.b + a.c$$ 4. $$\lambda(a \cdot b) = a \cdot (\lambda b) = (\lambda a) \cdot b = \lambda |a| |b| \cos \theta$$ Consider the vectors $a = x_1i + y_1j$ and $b = x_2i + y_2j$ Now $$a \cdot b = (x_1i + y_1j) \cdot (x_2i + y_2j)$$ $$= x_1x_2i \cdot i + x_1y_2i \cdot j + y_1x_2j \cdot i + y_1y_2j \cdot j$$ But $i \cdot i = j \cdot j = 1$ and $i \cdot j = j \cdot i = 0$ $a \cdot a \cdot b = x_1 x_2 + y_1 y_2 = |a||b| \cos \theta$ where θ is the acute angle between a and b. Find the angle between the vectors a and b given that a = 3i + 4j and b = 5i - 12j #### Solution Let θ be the required angle $$a. b = |a||b| \cos \theta$$ $$|a| = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$$ $$|b| = \sqrt{5^2 + (-12)^2} = \sqrt{169} = 13$$ $$a. b = {3 \choose 4} \cdot {5 \choose -12} = (3 \times 5) + (4 \times -12) = 15 - 48 = -33$$ $$-33 = 5 \times 13 \cos \theta$$ $$-\frac{33}{65} = \cos \theta$$ $$\cos \theta = -0.50769$$ $$\theta = \cos^{-1}(-0.50769) = 120.51^{0}$$ The angle between the vectors is 120.510 The points A, B, C and D have position vectors -2i + 3j, 3i + 8j, 7i + 6j and 7i - 4j respectively. Show that AC is perpendicular to BD. #### Solution To show that two vectors are perpendicular, we must get their dot product and it should be equal to zero. Example 2 The position vectors $OP = {2 \choose 3}$ and $OQ = {4 \choose -1}$ are joined to form triangle OPQ. Determine (i) the Example 3 lengths of triangle OPQ - (ii) the angle between OP and OQ - (iii) the area of the triangle OPO ## Solution. (i) $$\overrightarrow{OP} = |OP| = \sqrt{2^3 + 3^2} = \sqrt{13}units$$ $$\overrightarrow{OQ} = |OQ| = \sqrt{4^3 + (-1)^2} = \sqrt{17}units$$ $$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = {4 \choose -1} - {2 \choose 3} = {2 \choose -4}$$ $$\overrightarrow{PQ} = |PQ| = \sqrt{2^2 + (-4)^2} = \sqrt{20} units$$ (ii) $$OP.OQ = \binom{2}{3}.\binom{4}{-1} = (2 \times 4) - (3 \times -1) = 8 - 3 = 5$$ Using $OP.OQ = |OP||OQ|\cos\theta$ $5 = \sqrt{13} \times \sqrt{17}\cos\theta$ $\cos\theta = \frac{5}{\sqrt{221}} = 0.336$ $\theta = 70.37^{\circ}$ (iii) $$A = \frac{1}{2} |OP| |OQ| \sin \theta$$ $$= \frac{1}{2} \times \sqrt{13} \times \sqrt{17} \sin 70.37^{\circ}$$ $$= 7 sq units$$ #### Example 4 A triangle PQR has vertices P(1, -1), Q(6, 4) and R(3, 7). Using vectors, show that triangle PQR has a right angle at Q. Hence, find the area of the triangle PQR. #### Solution Let us first assume the right-angled triangle If PQR is right angled, then it must satisfy the Pythagoras theorem i.e. $a^2 + b^2 = c^2$ In this case $\overline{PQ}^2 + \overline{QR}^2 = \overline{PR}^2$ $$PQ = OQ - OP = \binom{6}{4} - \binom{1}{-1} = \binom{5}{5}$$ $$QR = OR - OQ = {3 \choose 7} - {6 \choose 4} = {-3 \choose 3}$$ $$|QR| = \sqrt{(-3)^2 + 3^2} = \sqrt{18}$$ $$PR = OR - OP = {3 \choose 7} - {1 \choose -1} = {2 \choose 8}$$ $$|PR| = \sqrt{2^2 + 8^2} = \sqrt{68}$$ Now $$PQ^2 = (\sqrt{50})^2 = 50$$ $\overline{PQ}^2 = \left(\sqrt{50}\right)^2 = 50$ $\overline{QR}^2 = \left(\sqrt{18}\right)^2 = 18$ $$\overline{PR^2} = \left(\sqrt{68}\right)^2 = 68$$ From above; $\overline{PQ}^2 + \overline{QR}^2 = 50 + 18 = 68 = \overline{PR}^2$ Therefore, the triangle PQR is right-angled at Q $$A = \frac{1}{2} \times b \times h = \frac{1}{2} \times \sqrt{18} \times \sqrt{50} = 15 \text{ sq. units}$$ ## Trial questions - 1. If the point P has position vector 7i 3j and point Q has position vector 5i + 5j. Find (a) [Ans: (a) - 2i + 8j (b) 2i - 8j] - 2. The point P has position vector 3i 2j and Q is a point such that $\overrightarrow{QP} = 2i 3j$. Find the position [Ans: i+j] - 3. Given that a = 3i j and b = 2i + j, find (a) |a| (b) |b| (c) a + b (d) |a + b|[Ans: (a) $\sqrt{10}$ (b) $\sqrt{5}$ (c)5i (d) 5] - 4. Given that $a = {2 \choose 3}$ and $b = {1 \choose -3}$; find (a) a + 2b (b) |a + 2b| (c) 2a + 3b(d) |2a + 3b| [Ans: (a) $\binom{4}{-3}$ (b) 5 (c) $\binom{7}{-3}$ (d) $\sqrt{58}$] - 5. The three points A, B, and C have position vectors a, b and c respectively. If c = 3b 2a. Show - 6. The three points A, B and C have position vectors i = j, 5i = 3j and 11i = 6j respectively. Show that A. B and C are collinear. - 7. Find the angle between each of the following pairs of vectors - (a) a = 3i + 4j and b = 5i + 12j [Ans: 140] - (b) c = 5i j and d = 2i + 3j[Ans: 68⁰] - (b) i = m, (c) and D have position vectors 5i + j, -3i + 2j, -3i 3j and i 6j. The points A, B, C and D have position vectors 5i + j, -3i + 2j, -3i 3j and i 6j. respectively. Show that AC is perpendicular to BD - respectively. The points E. F and G have position vectors 2i + 2j, i + 6j and -7i + 4j. Show that the triangle 9. The points E. F and G have position vectors 2i + 2j, i + 6j and -7i + 4j. Show that the triangle 9. EFG is right angled at F. - 10. If $a = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$ find a unit vector parallel to a [Ans: $\begin{pmatrix} \frac{3}{5} \\ \frac{-4}{5} \end{pmatrix}$ - 11. The points A, B and C have position vectors 4l j, i + 3j and -5l + 2j respectively. Find (a) \overrightarrow{AB} (b) \overrightarrow{BC} (c) \overrightarrow{CA} (d)the angles of a triangle ABC [Ans: (a) -3i + 4j (b) -6i - j (c)9i - 3j (d) 35° , 117° , 28°] - 12. E is the centre of the rectangle ABCD and $\overrightarrow{AB} = a$, $\overrightarrow{BC} = b$, Express in terms of a and b the vectors $(i)\overrightarrow{AC}$ $(ii)\overrightarrow{CD}$ (iii) \overrightarrow{BD} (iv) \overrightarrow{EB} (v) \overrightarrow{EA} [Ans: (i) a + b (ii) -a (iii) b - a (iv) $\frac{1}{2}(a - b)(v) - \frac{1}{2}(a + b)$] - 13. The position vectors of three points A, B and C relative to the origin O are p, 3q p and 9q 5prespectively. Show that the points A, B and C lie on the same straight line, state the ratio AB : BC Given that OBCD is a parallelogram and that E is the point such that DB = $\frac{1}{3}DE$, find the position vectors of D and E relative O [Ans: 1:2,6q-4p, 5p-3q] - 14. The position vectors of the points A and B with respect to the origin O are 2i + 3j. -i + 5j respectively. Find the position vector C such that $\overrightarrow{AC} = 2\overrightarrow{AB}$. Calculate the angle between the vectors \overrightarrow{AB} and \overrightarrow{OB} [Ans: -4i + 7j, 45°] - 15. The position vectors of points A, B and C relative to the origin O are $\binom{1}{3}$, $\binom{2}{6}$ and $\binom{5}{5}$ respectively. Write down the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC} . Use the vector methods to calculate (i) angle BAC (ii) angle ABC. State the special property of triangle ABC and deduce its area. [Ans: $\binom{1}{3}$, $\binom{4}{2}$, $\binom{3}{-1}$, 45^0 , 90^0 , right angled isosceles, 5 sq units] - 16. Given the vectors a = 2i 4j and b = 3i + 5j. Find the - (a) Modulus of the vector 5a + 2b - (b) Angle between the vectors a and b [Ans: (a) 18.87 (b) 122.47] - 17. If a = 2i + j and b = i 2j. Express in terms of i and j - (i) 2a + b (ii) -3a + 4b, hence find the angle between the vectors 2a + b and [Ans: (i) 5i (ii) -2i - 11j; 100.30^{0}] - 18. The position vectors of the points P, Q and R are -2i + 4j, 2i + 4j and 2i + 8j respectively. Show that QP and QR are perpendicular - 19. Given that p = 7i + 4j, q = 3i 5j, determine (i) the angle between p and q (ii) |3p 4q|[Ans: (i) 88.87° (ii) 33.24] - 20. Given that a = 3i 4j and b = -5i + 12j, find (i) (3a + b), b (ii) the angle between a and b [Ans: (i) -20 (ii) 165.75°] - 21. The points A, B and C have position vectors 5i + 2j, 4i + 6j and -2i + 6j respectively Determine (i) |BC| (ii) |AC| (iii) the angle between BC and AC [Ans: (i) 6 (ii) 8.06 (iii) 29.72°] - 22. The points P, Q, R and S have position vectors $p = {5 \choose 1}$, $q = {-3 \choose 2}$, $r = {-3 \choose -3}$ and $s = {-3 \choose 2}$ - $\binom{1}{-6}$ respectively. Show that PR is perpendicular to QS. # CHAPTER 9: TRIGONOMETRY Trigonometry is a branch of mathematics that studies the relationship between the three sides and the three angles of a right angled triangle in terms of ratios and representing them as trigonometric ratios; sine, cosine and tangent. Trigonometric ratios for the general angle The trigonometric ratios include the main three mentioned above and the others include secant, cosecant and cotangent abbreviated as see, cosec and cot respectively. If we consider a right angled triangle ABC then $$\sin
\theta = \frac{a}{c}$$, $\cos \theta = \frac{b}{c}$ Also $$\tan \theta = \frac{a}{b} = \frac{\frac{a}{c}}{\frac{b}{c}} = \frac{\sin \theta}{\cos \theta}$$ It can also be observed that the remaining angle, $B = 90 - \theta$ And that $$\sin(90 - \theta) = \frac{b}{c} = \cos \theta$$ and $\cos(90 - \theta) = \frac{a}{c} = \sin \theta$ Therefore $$\sin \theta = \cos(90 - \theta)$$ and $\cos \theta = \sin(90 - \theta)$ Now using the Pythagoras theorem i.e. $a^2 + b^2 = c^2$ Dividing through by c^2 gives $$\frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$ $$\left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$$ $$\Rightarrow \sin^2\theta + \cos^2\theta = 1$$ Though we have derived these relationships using an acute angle, they are identities i.e. true for any angle and should be memorized. The three remaining trigonometric ratios are reciprocals of sine, cosine and tangent. Further trigonometric identities Using $$\sin^2\theta + \cos^2\theta = 1$$ Dividing through by $\cos^2\theta$ Frough by $$\cos^2\theta$$ $$\frac{\sin^2\theta}{\cos^2\theta} + \frac{\cos^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$ $$But \frac{\sin\theta}{\cos\theta} = \tan\theta \quad \text{and } \frac{1}{\cos\theta} = \sec\theta$$ Therefore; $tan^2\theta + 1 = sec^2\theta$ Now if we divide the original identity by $sin^2\theta$, we obtain; $$\frac{\sin^2\theta}{\sin^2\theta} + \frac{\cos^2\theta}{\sin^2\theta} = \frac{1}{\sin^2\theta}$$ But $\frac{\cos\theta}{\sin\theta} = \cot\theta$ and $\frac{1}{\sin\theta} = \csc\theta$ Therefore $1 + \cot^2 \theta = \csc^2 \theta$ These three identities will be found useful later when solving equations Trigonometric ratios for general angles The relationship between the ratios of the general angles and the corresponding acute angles depends on which quadrant the basic angle lies in. The angles can lie in four quadrants following in the anti-clockwise direction. In the 1st quadrant, all are positive, in the 2nd quadrant only sine is positive, in the 3rd quadrant only tan is positive and in the 4th quadrant only cosine is positive. Note that the positive angle are measured in the anticlockwise direction and the negative angles are measured in the clockwise direction. The relationships can be summarized as shown below. It can also be remembered by a student saying "All Scientist Take Chemistry" in the anticlockwise direction. Trigonometric ratios for special angles The trigonometric ratios of the angles 0° , 30° , 45° , 60° and 90° are used often in mechanics and other branches of mathematics and so it is useful to have their values in surd form. #### 30^{0} and 60^{0} Suppose ΔPQR is equilateral, with sides 2 units and that PM is the perpendicular bisector of QR Using the Pythagoras theorem, $MP^2 + MQ^2 = PQ^2$ $$MP = \sqrt{2^2 - 1^2} = \sqrt{3}$$ Since $\triangle PQR$ is equilateral, $PQM = 60^{\circ}$ and $QPM = 30^{\circ}$ From $$\triangle PQM$$; $\sin 30^{\circ} = \frac{1}{2}$; $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$; $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$ And $$\sin 60^{\circ} = \frac{\sqrt{3}}{2}$$; $\cos 60^{\circ} = \frac{1}{2}$; $\tan 60^{\circ} = \frac{\sqrt{3}}{1} = \sqrt{3}$ Consider a right-angled triangle which is isosceles and in which the equal sides are 1 unit in length. The equal sides will each be 450 Using the Pythagoras theorem; $BC^2 = 1^2 + 2^2$ or $BC = \sqrt{2}$ hagoras theorem; $$BC^2 = 1^3 + 2^{-6} = 1^{-6} = 1^{-6}$$ Hence $\sin 45^0 = \frac{1}{\sqrt{2}} \text{ or } \frac{\sqrt{2}}{2}$; $\cos 45^0 = \frac{\sqrt{2}}{2}$; $\tan 45^0 = \frac{1}{1} = 1$ ## 0^0 and 90^0 and $$90^{\circ}$$ $\sin 0^{\circ} = 0$, $\cos 0^{\circ} = 1$ and $\tan 0^{\circ} = 0$ $$\sin 0^0 = 0$$, $\cos 0^0 = 1$ and $\tan 0^0 = 0$ $\sin 90^0 = 1$, $\cos 90^0 = 0$ and $\tan 90^0 = \frac{\sin 90^0}{\cos 90^0} = \frac{1}{0} = \infty$ (undefined) The results can be summarized in the table below | Angle | sin | cos | tan | |-------|-----------------------------|----------------------|----------------------| | 0. | 0 | 1 | 0 | | 30* | 1
2 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}}$ | | 45* | $\frac{1}{\sqrt{2}}$ | $\frac{1}{\sqrt{2}}$ | 1 | | 60° | $\frac{\sqrt{2}}{\sqrt{3}}$ | 1
2 | √3 | | 90° | 1 | o | ∞ | ## Examples # 1. Show that $\cos^2 30^0 + \cos 60^0 \sin 30^0 = 1$ The left hand side is $\cos^2 30^0 + \cos 60^0 \sin 30^0$ $L.H.S = (\cos 30^{\circ})(\cos 30^{\circ}) + \cos 60^{\circ} \sin 30^{\circ}$ $= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 = R.H.S$ as required ## Obtuse angles Trigonometric ratios of obtuse angles cannot be defined by means of a right angled triangle. Trigonometric ratios or obtuse angle is the sine, cosine or tangent of a supplement angle, with the The sine, cosine or tangent of an obtuse angle is the sine, cosine or tangent of an obtuse angle is the sine, cosine or tangent of an obtuse angle is the sine, cosine or tangent of an obtuse angle is the sine, cosine or tangent of an obtuse angle is the sine, cosine or tangent of a supplement angle, with the propriate sign If $$\theta$$ is an obtuse angle; $\sin \theta = +\sin(180^{\circ} - \theta)$; $\cos \theta = -\cos(180^{\circ} - \theta)$; $\tan \theta = -\tan(180^{\circ} - \theta)$ - 2. Write each of the following as trigonometric ratios of an acute angle - (a) sin 155° (b) cos 140° (c) tan 130° #### Solution (a) $$\sin 155^0 = +\sin(180^0 - \theta) = \sin 25^0$$ (b) $$\cos 140^{\circ} = -\cos(180^{\circ} - 140^{\circ}) = -\cos 40^{\circ}$$ (c) $$\tan 1300 = -\tan(180^{\circ} - 130^{\circ}) = -\tan 50^{\circ}$$ 3. If $\sin 35^{\circ} = 0.5736$, find the values of (a) $\sin 145^{\circ}$ (b) $\cos 125^{\circ}$ (a) $$\sin 145^{\circ} = +\sin(180^{\circ} - 145^{\circ}) = \sin 35^{\circ} = 0.5736$$ (b) $$\cos 125^{\circ} = -\cos(180^{\circ} - 125^{\circ}) = \sin 35^{\circ} = 0.5736$$ $= -\cos(90^{\circ} - 35^{\circ}) = -\cos(90^{\circ} - 35^{\circ})$ $= -\sin 35^{\circ} = -0.5736$ 4. Given that $\sin \theta = \frac{7}{25}$ and that θ is an acute angle, find (a) $\cos \theta$ (b) $\tan \theta$ ## Solution First sketch a right angled triangle containing an angle θ and with two sides of the length 7 and 25 such that $\sin \theta = \frac{7}{25}$ Using the Pythagoras theorem, the third side of the triangle = $\sqrt{25^2 - 7^2}$ = 240.50×55 , whatera, Uganda Since θ is acute, the trigonometric ratios of θ will be positive, hence (a) $$\cos \theta = \frac{24}{25}$$ (b) $\tan \theta = \frac{7}{24}$ 5. Given that $\sin \theta = \frac{24}{25}$ and that θ is an obtuse angle, find (a) $\cos \theta$ (b) $\tan \theta$ Solution As θ is obtuse, sketch a right-angled triangle containing an angle $(180^{\circ} - \theta)$ and with two sides of length 24 and 25 units. As $\sin \theta$ and $\sin(180^{\circ} - \theta)$ are numerically equal, $\sin(180^{\circ} - \theta) = \frac{24}{25}$ Using the Pythagoras theorem, the third side of the triangle = $\sqrt{25^2 - 7^2} = 24$ (a) $$\cos \theta = -\cos(180^{\circ} - \theta) = -\frac{7}{25}$$ (b) $$\tan \theta = -\tan(180^{\circ} - \theta) = -\frac{24}{7}$$ # Maximum and minimum values of sine and cosine The trigonometric ratios of all angles differ from the trigonometric ratios of acute angles only is sign. From the definition of sine and cosine The maximum value of $\sin \theta$ is + 1 (when $\theta = 90^{\circ}, 450^{\circ} \dots \dots$) And the minimum value of $\sin \theta$ is -1 (when $\theta = 270^{\circ}, 630^{\circ} \dots \dots$) The maximum value of $\cos \theta$ is +1 (when $\theta = 0^{\circ}, 360^{\circ}, \dots$) And the minimum value of $\cos \theta$ is -1 (when $\theta = 180^{\circ}, 540^{\circ}, \dots$) #### Example Write down the maximum and minimum values of each of the following and state the smallest value of θ , from 0° to 360° , for which these occur (a) $$1-2\cos\theta$$ (b) $$3\sin\theta - 1$$ #### Solution (a) $\cos \theta$ varies -1 to +1, hence $2 \cos \theta$ varies $-2 \cot +2$ Thus the maximum value of $1-2\cos\theta$ is 1-(-2)=3 and occurs when $\cos\theta=$ -1 i.e when $\theta = 180^{\circ}$ The minimum value of $1-2\cos\theta$ is 1-2=-1 and occurs when $\cos\theta=1$ i.e. when $\theta=0^{\circ}$ (b) $\sin \theta$ varies -1 to +1, hence $3 \sin \theta$ varies - 3 to +3 Thus the maximum value of $3 \sin \theta - 1$ is 3 - 1 = 2 and occurs when $\sin \theta = 1$ i. e when $\theta = 90^{\circ}$ The minimum value of $3 \sin \theta - 1$ is -3 - 1 = -4 and occurs when $\sin \theta = -1$ i.e. when $\theta = 270^{\circ}$ ## Graphs of trigonometric functions $$y = \sin x$$ The graph is continuous It ranges from -1 to 1 $(-1 \le \sin x \le 1)$ It is periodic i.e. it repeats itself every 3600 $$y = \cos x$$ The graph is continuous It ranges from -1 to 1 $(-1 \le \cos x \le 1)$ It is periodic i.e. it repeats itself every 3600 $y = \tan x$ The graph is not continuous being undefined when $\theta = 90^{\circ}, 270^{\circ}, 450^{\circ}$ e.t.c Ranges from $-\infty$ to ∞ $(-\infty \le \tan x \le \infty)$ $\tan 0^0 = \tan 180^0 = \tan 360^0$ ## Solving trigonometric equations #### Example 1 Solve the equation $\cos x = \frac{\sqrt{3}}{2}$ for values of x such that $0^{\circ} \le x \le 360^{\circ}$ Solution The acute angle with a cosine of $\frac{\sqrt{3}}{2}$ is 30° , so solutions will make an angle of 30° with the x-axis. The fact that the cosine is positive indicates that there are solutions in the 1st and 4th quadrants. For the range $0^0 \le x \le 360^0$, $x = 30^0$ or 330^0 ### Example 2 Solve the equation $\tan x = -\sqrt{3}$ for values of x such that $-180^{\circ} \le x \le 180^{\circ}$ We first ignore the minus sign and we find $\tan^{-1} \sqrt{3} = 60^{\circ}$ and so the solutions will make an angle of 60° with the x-axis. Using the fact the tangent is negative; there are solutions in the 2nd and 4th quadrants.
For the range $-180^{\circ} \le x \le 180^{\circ}$, $x = -60^{\circ}$ or 120° #### Example 3 Solve the following equations for $0^0 \le x \le 360^0$ $(a)\cos x = 0.2$ (b) $\sin x = -0.2$ #### Solution | (a) We require the acute angle with cosine of 0.2. This is found by either using the inverse cosine function (written as cos⁻¹ or arcos) on a calculator or by using cosine tables. $\cos^{-1} 0.2 = 78.46^{\circ}$ i.e. solutions will make an angle of 78.46° with the x-axis Because the cosine is positive, solutions are found in the 1st and 4th quadrants. Thus the solutions can be sketched as shown below. For the range $0^{\circ} \le x \le 360^{\circ}$, $x = 78.46^{\circ}$ or 281.54° (b) We first ignore the minus sign in $\sin x = -0.2$ From a calculator or tables, $\sin^{-1} 0.2 = 11.54^{\circ}$ But sine is negative, solutions are found in the 3rd and 4th quadrants thus solutions can be sketched as below; For the range $0^0 \le x \le 360^0$, $x = 191.54^0$ or 348.46^0 #### Example 4 VEC. 80 200 THE RESERVE OF THE PROPERTY Solve $\cos x = -0.3 \ for - 180^{\circ} \le x \le 180^{\circ}$ #### Solution First ignore the minus sign $$\cos^{-1} 0.3 = 72.54^{\circ}$$ Because the cosine is negative, the solutions are in the 2nd and 3rd quadrants. Thus, solutions can be sketched as shown. For a range $-180^{\circ} \le x \le 180^{\circ}$, $x = 107.46^{\circ}$ or -107.46° ## Example 5 $\overline{\text{Solve sin}(x + 10^0)} = -0.5 \text{ for } 0^0 \le x \le 360^0$ $\sin^{-1} 0.5 = 30^{\circ}$ i. e solutions will make an angle 30° with the x-axis Because sine is negative, solutions will be in the 3rd and 4th quadrants Thus $$x + 10^0 = 210^0$$ or $x + 10^0 = 330^0$ $x = 200^0$ or 320^0 Example 6 Solve $3(\tan x + 1) = 2 \text{ for } -180^{\circ} \le x \le 180^{\circ}$ Solution Expanding: $3 \tan x + 3 = 2$ $$\tan x = -\frac{1}{3}$$ $\tan^{-1}\frac{1}{3} = 18.43^{\circ}$ i.e. solutions will make an angle of 18.43° with the x-axis Since tan is negative, solutions are in the 2nd and 4th quadrants For $-180^{\circ} \le x \le 180^{\circ}$, $x = -18.43^{\circ}$ or 161.57° #### Example 7 Solve $\sin^2 x + \sin x \cos x = 0$ for $0^0 \le x \le 360^0$ #### Solution 1 Factorizing $\sin x (\sin x + \cos x) = 0$ Thus Either $\sin x = 0$ or $\sin x + \cos x = 0$ $\sin^{-1} 0 = 0$ and solutions acn be sketched $$x = 0^{\circ}, 180^{\circ}, 360^{\circ}$$ $$\sin x = -\cos x \Rightarrow \frac{\sin x}{\cos x} = -1$$ thus $\tan x = -1$ $\tan^{-1} 1 = 45^{\circ}$, and because the tangent is negative, solutions will occur in the 2^{nd} and 4^{th} quadrants $$x = 135^{\circ} \text{ or } 315^{\circ}$$ Thus 0 for $0^0 \le x \le 360^0$, $x = 0^0$, 135^0 , 180^0 , 315^0 , 360^0 Note: It is important that we factorize $sin^2x + sin x cos x$ in the above example and do not attempt to cancel by $\sin x$. Cancelling will lead to $\sin x = -\cos x$ and so solutions arising from $\sin x = 0$ would be lost. ## Example 8 Solve the equation $4 \sin \theta = \tan \theta$ for $0^{\circ} \le x \le 360^{\circ}$ #### Solution | $$4\sin\theta = \frac{\sin\theta}{\cos\theta}$$ $$4\sin\theta\cos\theta = \sin\theta$$ $$4 \sin \theta \cos \theta - \sin \theta = 0$$ $$\sin \theta (4 \cos \theta - 1) = 0$$ Either $\sin \theta = 0$, $\theta = 0^{0}$, 180^{0} , 360^{0} Or $4 \cos \theta - 1 = 0$ $$\cos \theta = \frac{1}{4}$$ $$\cos^{-1} \frac{1}{4} = 75.52^{0}$$ Cosine is positive so the angles will lie in the 1st and 4th quadrants a = 75.520 and 400 $$\theta = 75.52^{\circ}$$ or 248.48° for $0^{\circ} \le x \le 360^{\circ}$, $\theta = 0^{\circ}$, 75.52° , 180° , 284.48° , 360° ### Example 9 Solve $6\cos^2 x - \cos x - 1 = 0$ for $0^0 \le x \le 360^0$ #### Solution We need to first factorize the expression $$6\cos^2 x - 3\cos x + 2\cos x - 1 = 0$$ $$3\cos x (2\cos x - 1) + (2\cos x - 1) = 0$$ $$(2\cos x - 1)(3\cos x + 1) = 0$$ $$either 2\cos x - 1 = 0 \quad \text{or} \quad 3\cos x + 1 = 0$$ $$\cos x = \frac{1}{2}$$ $$\cos x = \frac{1}{2}$$ Now $\cos^{-1}\frac{1}{2} = 60^{\circ}$ and because \cos is positive, solutions lie in the $\cos^{-1}\frac{1}{3} = 70.53^{\circ}$ and because cos is negative, solutions lie in the 1st and 4th quadrants $x = 60^{\circ}, 300^{\circ}$ $x = 109.47^{\circ}, 250.53^{\circ}$ $x = 60^{\circ}, 300^{\circ}$ Thus for the range $0^{\circ} \le x \le 360^{\circ}; x = 60^{\circ}, 109.47^{\circ}, 250.53^{\circ}, 300^{\circ}$ Note: In some cases, factorizing can give a bracket that does not lead to any solutions. For example if we had to solve $10(\cos x - 2) = 0 \text{ for } 0^0 \le x \le 360^0$ Therefore for $$0^0 \le x \le 360^0$$ $$(2\cos x - 1)(\cos x - 2) = 0 \text{ for } 0^0 \le x \le 360^0$$ $$\cos x - 1 = 0 \text{ or } \cos x - 2 = 0$$ $$\cos x = \frac{1}{2} \text{ } \cos x = 2$$ $$\cos^{-1} \frac{1}{2} = 60^0 \text{ } \cos^{-1} 2 = \text{no solutions}$$ Therefore for $0^0 \le x \le 360^0$, $x = 60^0$, 300^0 #### Example 10 Solve the equation $4\cos x - 3\sec x = 2\tan x$ for $-180^{\circ} \le x \le 180^{\circ}$ $$4\cos x - 3\sec x = 2\tan x$$ $$4\cos x - \frac{3}{\cos x} = \frac{2\sin x}{\cos x}$$ Multiplying through by $\cos x$ gives; $$4\cos^2 x - 3 = 2\sin x$$ But $\cos^2 x = 1 - \sin^2 x$ $$4(1 - \sin^2 x) - 3 = 2\sin x$$ $$4 - 4\sin^2 x - 3 = 2\sin x$$ $$4\sin^2 x + 2\sin x - 1 = 0$$ $$\sin x = \frac{-2 \pm \sqrt{(4+6)}}{2} - \frac{-2 \pm \sqrt{11}}{2}$$ $$\sin x = \frac{-2 \pm \sqrt{(4+6)}}{8} = \frac{-2 \pm \sqrt{10}}{8}$$ $\sin x = \frac{-2\pm\sqrt{(4+6)}}{8} = \frac{-2\pm\sqrt{10}}{8}$ Hence $\sin x = 0.3090$ or -0.8090 Now $$\sin^{-1} 0.3090 = 18^{\circ}$$ and $$\sin^{-1} 0.8090 = 54^{\circ}$$ Thus for the range $-180^{\circ} \le x \le 180^{\circ}$, $x = -126^{\circ}$, -54° , 18° , 162° ## The compound angle formulae The compound angle formula gives the relationship between compound angles i.e. the sum and difference between two angles. Their proofs are not required at this level. They are as follows; $$\sin(A + B) = \sin A \cos B + \sin B \cos A$$ $$\sin(A - B) = \sin A \cos B - \sin B \cos A$$ $$\cos(A+B) = \cos A \cos B - \sin A \sin B$$ $$\cos(A - B) = \cos A \cos B + \sin A \sin B$$ ### Example 1 Evaluate the following without using tables or a calculator (a) cos 75° (b) sin 75° (c) $$\cos 15^\circ$$ (d) $\sin 15^\circ$ (e) $\sin 330^\circ$ (f) $\cos 240^\circ$ ## <u>Solution</u> (a) $$\cos 75^{\circ} = \cos(45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$ $$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{3} - \frac{\sqrt{2}}{2} \times \frac{1}{3} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$$ $$= \frac{1}{2} \times \frac{1}{3} - \frac{1}{2} \times \frac{1}{2} = \frac{16}{4}$$ $$\cos 75^0 = \frac{\sqrt{6} - \sqrt{2}}{2}$$ $$\cos 75^{0} = \frac{\sqrt{6} - \sqrt{2}}{4}$$ (b) $\sin 75^{0} = \sin(45^{0} + 30^{0}) = \sin 45^{0} \cos 30^{0} + \sin 30^{0} \cos 45^{0}$ $$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$$ $$\sin 75^0 = \frac{\sqrt{6} + \sqrt{2}}{4}$$ (c) $$\cos 15^{\circ} = \cos(45^{\circ} - 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ}$$ $$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$$ $$\cos 15^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$$ (d) $$\sin 15^{\circ} = \sin(45^{\circ} - 30^{\circ}) = \sin 45^{\circ} \cos 30^{\circ} - \sin 30^{\circ} \cos 45^{\circ}$$ $$= \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$$ $$\sin 15^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4}$$ (e) $$\sin 330^{\circ} = \sin(360^{\circ} - 30^{\circ}) = \sin 360^{\circ} \cos 30^{\circ} - \cos 360^{\circ} \sin 30^{\circ}$$ = $0 \times \cos 30^{\circ} - (1) \times \sin 30^{\circ} = -\sin 30^{\circ} = -\frac{1}{2}$ (1) $$\cos 240^{\circ} = \cos(180^{\circ} + 60^{\circ}) = \cos 180^{\circ} \cos 60^{\circ} - \sin 180^{\circ} \sin 60^{\circ}$$ $$= (-1) \times \cos 60^{\circ} - 0 \times \sin 60^{\circ}$$ $$= -\cos 60^{\circ} = -\frac{1}{2}$$ #### Example 2 THE PARTY OF THE PROPERTY OF THE PARTY OF THE PARTY AND THE PARTY OF THE PARTY Given that α and β are acute angles with $\sin \alpha = \frac{7}{25}$ and $\cos \beta = \frac{5}{13}$, find without using tables or calculator the values of (a) $\sin(\alpha + \beta)$ (b) $\cos(\alpha + \beta)$ #### Solution We first sketch the two triangles to represent the given situations and get the remaining sides where necessary since $$\sin \alpha = \frac{7}{25}$$; $\cos \alpha = \frac{24}{25}$ since $\cos \beta = \frac{5}{13}$, $\sin \beta = \frac{12}{13}$ since $$\sin \alpha = \frac{1}{25}$$; $\cos \alpha = \frac{1}{25}$ (a) $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$ $= \frac{7}{25} \times \frac{5}{13} + \frac{12}{13} \times \frac{24}{25} = \frac{323}{325}$ (b) $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$ (b) $$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$ = $\frac{24}{25} \times \frac{5}{13} - \frac{7}{25} \times \frac{12}{13} = \frac{120}{325} + \frac{64}{325} = \frac{204}{325}$ Solve the equation $\cos \theta \cos 20^{\circ} + \sin \theta \sin 20^{\circ} = 0.75$ for $0^{\circ} \le x \le 360^{\circ}$ ## Solution Solution $$\cos \theta \cos 20^{\circ} + \sin \theta \sin 20^{\circ} = 0.75$$ $$\frac{80 \cos 20}{\cos(0 - 20^{\circ})} = 0.75$$ $\cos(v-20)$, and because the cosine is positive; solutions are in the 1st and 4th quadrants. Q,i ie : $$\frac{4141^{\circ}}{4141^{\circ}}$$ $$\approx \theta - 20^{\circ} = 41.41^{\circ} \text{ or } 318.59^{\circ}$$ $$\approx \theta = 61.41^{\circ} \text{ or } 338.59^{\circ}$$ #### Example 4 Prove the following identities (a) $\sin(90^{\circ} - \theta) = \cos \theta$ (b) $\cos(180^{\circ} - \theta) = -\cos \theta$ (a)
$$\sin(90^{\circ} - \theta) = \sin 90^{\circ} \cos \theta - \sin \theta \cos 90^{\circ}$$ $= (1) \cos \theta - (\sin \theta)(0) = \cos \theta$ (b) $\cos(180^{\circ} - \theta) = \cos 180^{\circ} \cos \theta + \sin 180^{\circ} \sin \theta$ $= (1) \cos \theta + (0) \sin \theta = \cos \theta$ #### Example 5 Prove that $cos(A + B) cos(A - B) \equiv cos^2 A - sin^2 B$ #### Solution $$L.H.S = \cos(A + B)\cos(A - B)$$ $$= (\cos A \cos B - \sin A \sin B)(\cos A \cos B - \sin A \sin B)$$ $$= \cos^2 A \cos^2 B + \cos A \cos B \sin A \sin B - \sin A \sin B \cos A \cos B - \sin^2 A \sin^2 B$$ $$= \cos^2 A \cos^2 B - \sin^2 A \sin^2 B$$ $$= \cos^2 A (1 - \sin^2 B) - (1 - \cos^2 A) \sin^2 B$$ $$= \cos^2 A - \cos^2 A \sin^2 B - \sin^2 B + \cos^2 A \sin^2 B$$ $$= \cos^2 A - \sin^2 B = R.H.S$$ #### The solution of triangles A triangle possesses six elements i.e. the three sides and the three angles. If any three elements (other than three angles.) are given, the remaining three elements can be found .This is called solving the triangle, In solving the triangle, two geometrical facts are useful i.e. - 1. In any triangle the sun of the angles is 180° - 2. In any triangle, the largest side opposite the greater angle and the shortest side is opposite the angle #### The sine rule Consider a triangle ABC with sides a, b and c ### Example 1 Find the length of the side BC in the given triangle #### Solution Using the sine rule; $$\frac{BC}{\sin 55} = \frac{8.3}{\sin 72}$$ $\frac{\dot{B}C}{BC} = \frac{8.3 \sin 55}{\sin 72} = 7.15 \text{ cm}$ #### Example 2 Find the angle x in the given triangle #### **Solution** Using the sine rule; $\frac{8}{\sin 70} = \frac{6}{\sin x}$ $\sin x = \frac{6 \sin 70}{8} = 0.7048$ $x = \sin^{-1}(0.7048) = 44.81^{0}$ In the triangle ABC, $A = 59^{\circ}$, $B = 39^{\circ}$ and a = 6.73cm. Find the length of the smallest side and the length of the remaining side. ## Solution First sketch the triangle $$C = 180^{\circ} - (39^{\circ} + 59^{\circ}) = 82^{\circ}$$ The smallest side corresponds to the smallest angle, which is 390 Using the sine rule, $$\frac{b}{\sin 39} = \frac{6.73}{\sin 59}$$ $$b = \frac{6.73 \sin 39}{\sin 59} = 4.94 \text{ cm}$$ $$6.73 \quad \text{but } C = 82^{\circ}$$ $$\frac{c}{\sin c} = \frac{6.73}{\sin 59}$$ but $C = 82^{\circ}$ 4. 1. $$c = \frac{6.73 \sin 62}{\sin 59} = 7.78 \ cm$$ #### The cosine rule Consider the triangle ABC shown below with the sides a, b and c Then; $$a^{2} = b^{2} + c^{2} - 2bc \cos A$$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = b^{2} + a^{2} - 2ab \cos C$ #### Example 1 Find the length of side BC in the following triangle #### Solution **Solution** By using the cosine rule; $$BC^2 = 12^2 + 8^2 - 2(12)(8) \cos 140^0$$ = $144 + 64 - 192(-0.776)$ = $208 + 147.1 = 355.1$ $BC = \sqrt{355.1} = 18.8 \text{ cm}$ #### Example 2 Find the angle θ in the triangle below Using the cosine rule; $$7^2 = 5^2 + 4^2 - 2(4)(5)\cos\theta$$ $\cos\theta = \frac{25+16-49}{40} = -0.2$ $\theta = \cos^{-1}(-0.2) = 101.54^0$ #### Example 3 In the takingle XYZ, YZ = 6.7 cm, XY = 2.3 cm and angle XYZ = 46.53° . Calculate angle XYZ. Solution From the cosine rule; $$XZ^2 = YZ^2 + XY^2 - 2(YZ)(XY)\cos(XYZ)$$ = $6.7^2 + 2.3^2 - 2(6.7)(2.3)\cos 46.53^0$ = $44.89^0 + 5.29^0 - 21.20^0 = 28.98$ $XZ = \sqrt{28.98} = 5.383 cm$ Now by using the sine rule; $$\frac{XY}{\sin XZY} = \frac{XZ}{\sin XYZ}$$ $$\sin XZY = \frac{XY \sin XYZ}{XZ} = \frac{2.3 \sin 46.53}{5.383} = 0.3101$$ $$XZY = \sin^{-1}(0.3101) = 18.06^{0}$$ #### The area of a triangle Consider the triangles shown below; The area of the triangle is obtained from the formula; $$Area = \frac{1}{2} \times base \times Altitude = \frac{1}{2} \times b \times h$$ A triangle ABC has a perpendicular drawn from A to the side BC If h is the length of the perpendicular, then $h = b \sin C$ or $c \sin B$ from the triangles ACN and ABN New area of triangle = $$\frac{1}{2}ah$$ = $\frac{1}{2}ab \sin \theta$ = $\frac{1}{2}ac \sin \theta$ Similarly it can be shown that the area equals to $\frac{1}{2}bc \sin A$. # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition Example 1 Find the area of the triangle shown below $$Area = \frac{1}{2} \times 5 \times 6 \times \sin 50^{\circ} = 11.5 \ cm^{2}$$ #### Example 2 In the triangle ABC, AB = 5 cm, BC = 6 cm and angle ABC = 60° . Find the area of the triangle ABC. #### Solution $$Area = \frac{1}{2}ac \sin B = \frac{1}{2} \times 6 \times 5 \sin 60 = 15 \times 0.866 = 12.99 \ cm^2$$ #### Example 3 Given triangle ABC in which AB = 4 cm, a = 7 cm and AC = 5 cm. Find the (i) Angle ABC (ii) Area of triangle ABC #### Solution (i) using the cosine rule; $b^2 = a^2 + c^2 - 2ac \cos B$ $$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{7^2 + 4^2 - 5^2}{2 \times 7 \times 4} = \frac{40}{56} = 0.71432$$ $$B = \cos^{-1}(0.71432) = 44.4^0$$ (ii) Area of ABC = $\frac{1}{2}ac \sin B = \frac{1}{2} \times 7 \times 4 \times \sin 44.4^{\circ}$ Note: since we are given all the three sides of the triangle, the area of this triangle can be calculated using Hero's formula. #### Hero's formula Using Hero's formula, the area of a triangle can be found from the three sides in a triangle ABC as follows; $$Area = \sqrt{s(s-a)(s-b)(s-c)}$$ Where the sides are a, b and c and s is the semi-perimeter gotten from $s = \frac{1}{2}(a + b + c)$ #### Example 1 The sides of a triangle are a = 12.7 cm, b = 13.9 cm and c = 8.6 cm. Calculate the area of the triangle. #### Solution Semi-perimeter = $$\frac{1}{2}(12.7 + 13.9 + 8.6) = 17.6$$ $s - a = 17.6 - 12.7 = 4.9$ $s - b = 17.6 - 13.9 = 3.7$ $s - c = 17.6 - 8.6 = 9.0$ Area = $$\sqrt{s(s-a)(s-b)(s-c)} = \sqrt{17.6 \times 4.9 \times 3.7 \times 9} = 53.59 \text{ cm}^2$$ #### Example 2 Find the area of the following triangle #### Solution $$s = \frac{4+7+9}{2} = \frac{20}{2} = 10$$ $$Area = \sqrt{10(10-4)(10-7)(10-9)} = \sqrt{180} = 13.4 \text{ cm}^2$$ #### Trial questions - 1. Solve the following equations for the values of x between 0° and 360° - (a) $5\cos x = \cot x$ [Ans: 11.53°, 90°, 168.47°, 270°] - (b) $3 \tan x = \sec x [Ans: 41.82^{\circ}, 138.18^{\circ}]$ - (c) $\sin^2 x = \frac{1}{4}$ [Ans: 30°, 150°, 210°, 330°] - (d) $\tan^2 x = \frac{1}{3}$ [Ans: 30°, 150°, 210°, 330°] - (e) $2\cos^2 x + 3\cos x + 1 = 0$ [Ans: 120^0 , 180^0 , 240^0] - (f) $\cos^2 x + \sin x + 1 = 0$ [Ans: 270°] - (g) $2 \cot^2 x + \tan x 3 = 0$ [Ans: 30°, 41.82°, 138.18°, 150°] - (h) $\sec^2 x 3\tan x + 1 = 0$ [Ans: 45.63°, 43°, 225°, 243.43°] - (i) $2 \cot x + \tan x 3 = 0$ [Ans: 45°, 63.43°, 225°, 243.43°] - (j) $2\sin^2 x + 3\sin x = 2$ [Ans: 30°, 150°] - 2. Show that $cos(x + 120^{\circ}) + cos(x + 240^{\circ}) = 0$ - 3. Prove the following identities Prove the following identities $$(a) \frac{\sin \theta}{1 + \cos \theta} + \frac{1 + \cos \theta}{\sin \theta} = 2 \csc \theta$$ $$\frac{\cos \theta}{\cos \theta} = \cos \theta$$ (b) $$\frac{\cos \theta c \theta}{\cot \theta + \tan \theta} = \cos \theta$$ (c) $\sec^4 \theta - \sec^2 \theta = \tan^4 \theta + \tan^2 \theta$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition - 4. A and B are acute angles such that $\sin A = \frac{12}{13}$ and $\cos B = \frac{4}{5}$. Without using tables or calculator, find the values of (a) $\sin(A - B)$ (b) $\cos(A - B)$ [Ans: (a) $\frac{33}{65}$ (b) $\frac{56}{65}$] - 5. C and D are both obtuse angles such that $\sin C = \frac{3}{5}$ and $\sin D = \frac{5}{13}$. Without the use of tables or a calculator, find the values of (a) $\sin(C + D)$ (b) $\cos(C - D)$ [Ans: (a) $-\frac{56}{65}$ (b) $\frac{63}{65}$] 6. In the triangle ABC, $\Delta B = 15$ cm, BC = 6 cm and angle $\Delta BC = 60^{\circ}$, find (i) AC (ii) the remaining angles (iii) area of the triangle. [Ans: (i) AC = 5.57 cm (ii) 51.1° , 68.9° (iii) $12.99 cm^{2}$] - 7. Prove the following identities - (a) $cos(90^0 + \theta) = -\sin\theta$ - (b) $\sin(A + B) + \sin(A B) = 2 \sin A \sin B$ - (c) $\sin(90^{\circ} + \theta) = \cos \theta$ - (d) $\cos(A + B) \cos(A B) = -2 \sin A \sin B$ - (c) $\sin \theta \tan \theta + \cos \theta = \sec \theta$ - (f) $cosec \theta sin \theta = cot \theta cos \theta$ - (g) $(\sin \theta + \cos \theta)^2 + (\sin \theta \cos \theta)^2 = 2$ - 8. If A and B are acute angles such that $\sin A = 0.28$ and $\cos B = 0.8$. Without using tables or a calculator, find the values of; - (a) sin(A + B)(b) $\cos(A - B)$ [Ans: (a)0.8 (b)0.936] - 9. Solve the following equations for $0^0 \le \theta \le 360^0$ - (a) $\cos 40^{\circ} \cos \theta \sin 40^{\circ} \sin \theta = 0.4 \text{ [Ans: 26.4°, 253.6°]}$ - (b) $\sin(\theta + 45^{\circ}) = \sqrt{2}\cos\theta$ [Ans: 45°, 225°] - 10. Solve the triangle ABC given that $A = 66^{\circ}$, $C = 44^{\circ}$ and a = 7cm [Ans: $B = 70^{\circ}$, $c = 5.32 \, cm$, $b = 7.2 \, cm$] 11. Solve the triangle ABC given that $A = 45^{\circ}$, c = 5 cm and b = 6 cm [Ans: $a = 4.31 \, cm$, $C = 55.1^{\circ}$, $B = 79.9^{\circ}$] 12. Solve the triangle ABC given that $C = 50^{\circ}$, c = 8cm, and a = 10 cm [Ans: $A = 73.2^{\circ}$, $B = 56.8^{\circ}$, b = 8.73 cm or $A = 106.8^{\circ}$, $B = 23.2^{\circ}$, b = 4.12 cm] # **CHAPTER 10: DIFFERENTIAL EQUATIONS** A differential equation is an equation that contains a differential coefficient e.g. $$\frac{dy}{dx} = 3x$$ $$\frac{d^2y}{dx^2} + 4x \frac{dy}{dx} = 6$$ ## Order of a differential equation The order of a differential equation is the highest derivative, which appears in it for instance; The equation $\frac{dy}{dx} - 4x = 3$ is a first order differential equation because it contains only a first differential coefficient i.e. dy The equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} = 9$ is a second order differential equation because it contains a second differential coefficient, $\frac{d^2y}{dx^2}$ Note: Any differential equation represents a relationship between two variables say x and y and the same relationship can often be expressed in a form that does not contain a differential
coefficient e.g. $y = x^2 +$ C and $\frac{dy}{dx} = 2x$ # Solution to a differential equation The solution of a differential equation is an equation relating the variables involved but containing no differential coefficient like $\frac{dy}{dx}$. There are two types of solutions i.e. (i) The general solution This contains an arbitrary constant It may be obtained if the "x-value" and the corresponding "y-value" are given. These are called (ii) Particular solution initial conditions are used to calculate the value of the constant. Consider $\frac{dy}{dx} = 3x^2$; this is a first order differential equation By separating the variables $$dy = 3x^2 dx$$ Integrating on both sides $$\int dy = \int 3x^2 dx$$ $y = x^3 + C$; This is a general solution If x = 1, when y = 2 (these are initial conditions) $$2 = 1 + 0$$ $$\Rightarrow C = 1$$ $\therefore y = x^3 + 1$ (This is a particular solution) # Zidminsssill.cassl.Stalmidians.Mathamather.lnc.Kawauna.Eahad.........................2nd.Edittou Separable differential equations A separable differential equation is any differential equation that we can write in the following form Note that in order for a differential equation to be separable, all the y's in the differential equation must be multiplied by the derivative and the x's in the differential equation must be on the other side of the equal Solving separable differential equations is fairly easy. We first rewrite the differential equation as: Then you integrate on either sides $$\int N(y) dy = \int M(x) dx$$ # Examples 1. Find the general solutions to the following differential equations (a) $$3y\frac{dy}{dx} = 5x^2$$ # Solution By separating variables i.e. by separating dy from dx and collecting on one side all terms involving y together with dy, while all the x terms with dx, it gives: $$3ydy = 5x^2dx$$ We now integrate both sides of the equation $$\int \Im y dy = \int \Im x^2 dx$$ $$\frac{\Im y^2}{2} = \frac{\Im x^3}{3} + C$$ (b) $$u \frac{du}{dv} = v + 2$$ ### Solution $$u du = (v + 2)dv$$ Integrating on both sides gives; $$\int u \, du = \int (v+2) dv$$ $$\frac{u^2}{2} = \frac{v^2}{2} + 2v + C$$ (c) $$\frac{dy}{dx} = y^2$$ # Solution $$\int \frac{1}{y^2} dy = dx$$ $$\int y^{-2} dy = \int dx$$ $$-y^{-1} = x + c$$ $$-\frac{1}{y} = x + C$$ (d) $$\frac{1}{x} \frac{dy}{dx} = \frac{1}{y^2 - 2}$$ # Solution By separating the variables; $$(y^2-2)\,dy=x\,dx$$ Integrating on both sides; $$\int (y^2 - 2) dy = \int x dx$$ $$\frac{y^3}{3} - 2y = \frac{x^2}{2} + C$$ (c) $$\frac{dy}{dx} = x^2 - 2x$$ Solution $$dy = (x^2 - 2x)dx$$ $$\int dy = \int (x^2 - 2x)dx$$ $$y = \frac{x^3}{3} - x^2 + C$$ 2. Find the particular solutions of the following differential equations Find the particular solutions of the follows: (a) $$y^2 \frac{dy}{dx} = x^2 + 1$$ if $y = 1$ when $x = 2$ Solution $$y^{2}dy = (x^{2} + 1)dx$$ $$\int y^{2}dy = \int (x^{2} + 1)dx$$ $$\therefore \frac{y^{3}}{x^{3}} = \frac{x^{3}}{x^{3}} + x + C$$ This is a general solution but since the initial condition is given, we can find the value of C $^{1}, \quad \frac{y^{3}}{3} = \frac{x^{3}}{3} + x + C$ eneral solution but so $$\frac{(1)^3}{3} = \frac{(2)^3}{3} + 2 + C$$ $C = -\frac{13}{3}$ therefore $\frac{y^3}{3} = \frac{x^3}{3} + x - \frac{13}{3}$ is the particular solution (b) $$\frac{dy}{dx} = 6y^2x$$ if $y = \frac{1}{25}$ when $x = 1$ $$v^{-2}dy = 6x dx$$ $$y^{-2}dy = 6x^{-1}dx$$ $$\int y^{-2}dy = \int 6x^{-1}dx$$ $$\frac{y^{-1}}{y^{-1}} = \frac{6x^2}{2} + C$$ $y^{-2}dy = 6x dx$ $\int y^{-2}dy = \int 6x dx$ $\frac{y^{-1}}{-1} = \frac{6x^2}{2} + C$ $-\frac{1}{y} = 3x^2 + C$ So, we now have the general solution. Let us apply the initial condition and find the value of C So, we now have the general solution C = -28 ow have the general solution. Let us apply $$\frac{1}{1} = 3(1)^2 + C$$ which gives $C = -28$ Substitute this value in the general solution to get the particular solution $\frac{75}{1-3r^2-28}$ abstitute this value $$-\frac{1}{y} = 3x^2 - 28$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition (c) $$\frac{dy}{dx} = \frac{3x^2 + 4x - 4}{2y - 4}$$ if $y = 3$ when $x = 1$ ## Solution This differential equation is clearly separable, so let us put it in the proper form and then integrate both sides $$(2y-4)dy = (3x^2 + 4x - 4)dx$$ $$\int (2y-4)dy = \int (3x^2 + 4x - 4)dx$$ $$y^2 - 4y = x^3 + 2x^2 - 4x + C$$ When $x = 1, y = 3$ $$(3)^2 - 4(3) = (1)^3 + 2(1)^2 - 4(1) + C$$ $$C = -2$$ Therefore $y^2 - 4y = x^3 + 2x^2 - 4x - 2$ # Natural occurrences of differential equations Differential equations often arise when a physical situation is interpreted mathematically (i.e. when a mathematical model is made of the physical situation). Differential equations are used to solve applied problems such as those involving carbon dating and radioactive decay; the amount of drug in an organ: mixtures; supply and demand; logistic growth and marginal productivity. ## Example 1 A body moves with a velocity v, which is inversely proportional to its displacement s from a fixed point. Form a differential equation to represent the information ### Solution Velocity is the rate of change of displacement with respect to time $$v \propto \frac{1}{s}$$ $$k = \frac{k}{s} \quad \text{where } k \text{ is a constant}$$ But $v = \frac{ds}{dt}$ $$\Rightarrow \frac{ds}{dt} = \frac{k}{s}$$ $$s \frac{ds}{dt} = k \quad \text{is the differential equation}$$ ### Example 2 A particle moves in a straight line with an acceleration that is inversely proportional to its velocity (acceleration is the rate of change of velocity) - (a) Form the differential equation to represent this data - (b) Given that the acceleration is 2 m/s² when the velocity is 5 m/s, solve the differential equation (a) Using $\frac{dv}{dt}$ for acceleration, we have; $$\frac{dv}{dt} \propto \frac{1}{v} \qquad \Rightarrow \frac{dv}{dt} = \frac{k}{v}$$ $$\frac{dv}{dt} \propto \frac{1}{v} \implies \frac{dv}{dt} = \frac{k}{v}$$ (b) If $v = 5$, $\frac{dv}{dt} = 2$ Then $2 = \frac{k}{5} \Rightarrow k = 10$ $$\frac{dv}{dt} = \frac{10}{t}$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$v dv = 10 dt$$ $$\int v dv = \int 10 dt$$ $$\frac{v^2}{2} = 10t + c$$ The rate of change of the price with respect to time is inversely proportional to the current price, P. Form a differential equation to represent the above information and solve it. $$\frac{\frac{dP}{dt} \propto \frac{1}{P}}{\frac{dP}{dt} = \frac{k}{P}}$$ $$P dP = k dt$$ $$\int P dP = \int k dt$$ $$\frac{P^2}{2} = kt + C$$ # Trial questions 1. Solve the differential equation $\frac{dy}{dx} = 3x^2y^2$ given that y = 1 when x = 0 [Ans: $$x^3y = y - 1$$] 2. Find the general solution to the differential equation $6t \frac{dt}{ds} + 1 = 0$, and the particular solution given by the conditions s = 0 when t = -2 [Ans: $s = 12 - 3t^2$] 3. Find the general solutions of the following differential equations $$(a)\frac{dy}{dx} = 3x$$ $$(b) 2y \frac{dy}{dx} = 3$$ 3. Find the general solutions of the following $$\frac{dy}{dx} = 3x$$ (c) $\frac{dy}{dx} = \frac{x-4}{4y^3}$ (d) $$\frac{dy}{dx} = -\frac{x}{y}$$ (e) $\frac{dy}{dx} = y^{\frac{4}{5}}$ (d) $$\frac{dy}{dx} = -\frac{x}{y}$$ $(e)\frac{dy}{dx} = y^{\frac{2}{5}}$ [Ans: (a) $y = \frac{3x^2}{2} + C$ (b) $y^2 = 3x + C$ (c) $y^4 = \frac{x^2}{2} - 4x + C$ (d) $\frac{y^2}{2} = \frac{-x^2}{2} + C$ (e) $$5y^{\frac{1}{5}} = x + C$$ 4. Find the particular solution of the differential equation $\frac{dx}{dt} = t$, where x = 3 when t = 1. [Ans: $$x = \frac{t^2}{2} + \frac{5}{2}$$] 5. The rate of change of y with respect to x is proportional to the square of x. Write a differential equation that models this statement. [Ans: $\frac{dy}{dx} = kx^2$] 6. Given that $\frac{dy}{dx} = x^2 + kx$ where k is a constant. If y has a turning point at the point (3, -2), calculate the value of (i) k (ii) y when x = 4 [Ans: (i) k = -3 (ii) $y = -\frac{1}{6}$] # CHAPTER 11: DESCRIPTIVE STATISTICS This is the branch of mathematics dealing with collection, interpretation, presentation and analysis of data where data refers to the facts in the day-to-day life. Statistical methods are used in research to collect, analyze and formulate research findings in every field at higher institutions of learning. Statistical data can be categorized into two .i.e. Qualitative and Quantitative. Qualitative data measures attributes such as sex, colour, and so on while Quantitative data can be represented by numerical quantity Quantitative data is of two forms, i.e. Continuous or discrete. Discrete data is the information collected by counting and usually takes on integral values e.g. number of students in a class, school etc. Continuous data can take on any value i.e. weight, height, mass, etc. The quantity, which is counted or measured, is called the variable. # CRUDE/RAW/UNGROUPED DATA These are individual values of a variable that have been arranged in order and grouped in small number of classes. # **GROUPED / CLASSIFIED DATA** These are individual values of a variable that have been arranged in order and grouped in small number of classes. ### POPULATION AND SAMPLES A population is a total set of Items under consideration and it's defined by some characteristics of these items. A sample is a finite subset of a population. PRESENTATION OF DATA WALLS LIERARY The ways of presenting data include: > Bar graphs - > Histogram - > Frequency Polygon - > The Ogive - > Pie chart ### BAR GRAPH A bar graph or bar chart is a graph where the class frequencies are plotted against class limits. ### HISTOGRAM A histogram is a graph where the class frequencies are plotted versus class boundaries. 77: P. O. Gox 59, idbarars , Uganda 775 # Example 1 The times taken by rats to pass through a maze are recorded in the table below. Use the data given to plot a bar graph and histogram. | į | graph and histogr | aın. | | | | 00.24 | 25 30 | |---|-------------------|-------|-------|-------|-------|-------|----------| | | Time(seconds) | 10-14 | 15-19 | 20-24 | 25-29 | 30-34 | 33-37
| | 1 | Frequency | 3 | 11 | 19 | 22 | 6 | <u> </u> | # Solution THE THE THE TANK AND SECTION OF THE PROPERTY OF A SECTION OF THE S | Class limits | Class boundaries | Frequency | |--------------|------------------|-----------| | 10 - 14 | 9.5 - 14.5 | 3 | | 15 - 19 | 14.5 - 9.5 | 11 | | 20 - 24 | 19.5 - 24.5 | 19 | | 25 - 29 | 24.5 - 29.5 | 22 | | 30 - 34 | 29.5 - 34.5 | 6 | | 35 - 39 | 34.5 - 39.5 | 2 | | | | | <u>Bar gi</u> | <u>aph</u> | i | | | |---|------------------|-------------------|--|------------------|--|---|---| | ^ | | | ! | -:
-:: |] | | | | 1.22 | | - | | E | | | | | | | <u> </u> | / [## :- | 1-11:11 | := :+::- | | | | 그 그 중단법의 | : : | <u></u> | | <u> </u> | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | T | | 1-20 | | 1 1 1 1 = | | | | | | | 计一个 | | = | · - 1 | | | | | | 宇水十 年輕調 | | | | | | ======================================= | | | [- | | | | | | 11 | | | 化二十二二二 | | | 1 | | - : - | | | | 116 | | 1 Line | | - | | | _ | | - 1 | | 1 42 | | ! | | | | | 台 性事 自由 | - | 1 | | - | | | | | [] [] [] [] [] [] [] [] [] [] | | | | | :-:- | - 1 | | | | | # . | 1 | | | | : interior | |) <u>-</u> | - 1 | | ## F | | | | | | 10-1- | | | | | . : ; : ! | | <u></u> | | == | ÷. 11 1 11 1-1-1 | | | | | | | | | T | | | - | | | | | 3 7 | | | | | <u> </u> | | | | | - ! | | | | | 1 | _ 1 2 | | 6+ | | | | <u> </u> | . | <u> </u> | | | - | | | <u> </u> | <u> </u> | 1 | 1-11 | | | 14+ === | 블라니 - | | | | 1 | | | | 147 | <u></u> | | | | | | | | | 围 | 1-1-1 | 1-1-1-1-1 | | | | · · · · · · · · · · · · · · · · · · · | | ~] | 1 | | - | | | | | | | | 1111111111 | | 11:5515
25-24 | <u> </u> | | 711 1 1 1 3 3 1 3 1 1 | | استناء ا | 0-14 | 15-14 | CLV22 L | ドエーント
とアルハル | :1- | | .5.7 15.1 | Note: The mode can be obtained from histogram as shown above. Estimated mode from histogram = 24.5 + 1 = 25.5 The reader should also note that these are spaces between the bars for a bar graph while there are no spaces for a histogram. Shading of the histogram is not important and if it is used, let it be uniform # Advanced Level Subsidiary Mathematics by Kawuma Fahad Example 2 The table below shows the population of Kampala in millions for different age groups | The table below shows | the population in millions | |-----------------------|----------------------------| | Age group | Population in millions | | Below 10 | 2 | | 10 and under 20 | 8 | | 20 and under 30 | 10 | | 30 and under 40 | 14 | | 40 and under 50 | 5 | | 50 and under 60 | 1 | Draw a histogram to represent the above data Solution | Frequency | |-----------| | 2 | | 8 | | 10 | | 14 | | 5 | | 1 | | | In this case, The class boundaries are given i.e. 0 - < 10 # Histogram | | | | | | | | | | | | • | |---------------------------------------|-----------------|-------------|-------------------------|---|-----------|-----------------|-------------|----------------------|-----------------|-----------|---| | | | | | | | | | ==- | | | | | 1 A. | . :.=:: | : *** | | 1.71 | i | | | : | | | [FEFF] 2 - 2-4 (2-1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | \1`· | · | | | L:: 1:122 | | | | | : | | '' 1_'' <u> </u> | | ' l' | | | : <u>:</u> = | 9211144 A | : ' | : | | : | | - | | | - | , _2] | | | | | | | | · | | | | i-16+3 | := | - : | :=: | | : : [| • • | | | | | <u></u> | | | 727.29 | | | | | <u>. '</u> | <u> </u> | -:-: | <i></i> | <u></u> | | | - - | | | | | ; | - | · · · · • | • • | Ī | - 1 | [| | | - === | | 1. 1 | ! . | } | : | = :- | : | | | | | 1 14+ | 1 1 1 1 1 1 1 1 | 717 . I-1 | 1 | | | • • | | | • : | | | | | 1 1 | | = | - | 1 1 | : | | | | : | ::::::::::::::::::::::::::::::::::::: | | } [| -74 | | : | ١. | | 1 | • | | | . 1 | i i me acar | | 1 1 | 4 | : 15:1 | | | | 1 | | i | ::_{ | | | | 1712 | | • | | | | T 1 | | - 1 | | | | | '- | | | | | [• • •] | | 7.5 | | | ! | | | | :, | : | | | : | | :: | 1 | ·: · . | | - - - - | | ~ . | | • | , | | | | : | | . ! | | | | Achien. | | | | | i T | 7, -1 | | | | : | | | $= \widetilde{\mathcal{Q}}_{max} = 0$ | | . : - : - = | | [] · | 1 1 | | : | | : | | | | _ <u>7</u> | == | | | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | 7 11 | : : : | | | | | 집 . | | | | 1: 1:2: | · -, | ::-:: | | 1 : [| | : | | | / 2T | -: <u>-:</u> :[| | | | | | | | | | 11:1:1: | | - "i - [- | 7-2: | ! | | | | | 127 | | | ·i | | | i i | -; -=- | | | l' . ' | 1 | ;, | _:: :: | ; | 1 | i | | | ļ- , | :! | | | i | | · | | .:-::: | : <u>-</u> - i. | ΞΞ. | 4 <u>5.113 (41.44.44.4</u> | | 1 b T | | : | | 1 - | 1 1 | ; . | | | | | 1. 1. 1. 1. 1. | | ; I | | · ` : : | | - } | 1 1 | | = 1 | | | <u></u> - | | | | | 77 77 77 | | | 3 1 | ===: | | | | j | 可以一个,这可谓是 | | | 1 | | - : : | | | ::=: | 그는 !~ | - 1 | . : | - [| | | 442 | un en en en | :1 | 1.1.1 | | * * † | 5 27 | — ; | į. | · | j | | | 1 1. | 1 4: | i : : | | -1 . | | | i | - 12 | | . } | Bar 4 - 2 - 4 - 24 - 4 | | - - | | -:[| | | ::: . | : | | :;:::= | | == .: } | ramas (Artist 1941) | | ! | _ + 4:1 | • • | - 1 | | | : I | 1 ::: | : :: | .1 | - 1 | | | 127 | | | | | | | : | - : : : : | | · | | | - I I | - 41 - 21 | - i · . | , î | | 1 | ÷:-: | 1.4 | | 1 | | | | | | | | | | | | i : | | | | | _اذ_ن_ا | 41: 12 | | ina mila mai | 9711 | l' ::l | 1:::: | | 7.27 | | ij. | | | | - 19 | · | | دي | | } | <u> </u> | 60 | | | | | | | | $\subset L^{\lambda}$. | | リングル | 16 6 | - | | , | 7 | o | | | | | | | | | | | | | | The frequency polygon is obtained by plotting class frequencies versus class marks. Then the consecutive Class mark/ mid interval value $(x) = \frac{1}{2}$ (Lower class limit + upper class) i.e. for the class 10-14, class mark(x) = $\frac{1}{2}(10 + 14) = 12$ The class mark is also known as the mid mark # Example 3 The age distribution of a group of people is given in the table below. | Marks $10-19$ $20-29$ $30-39$ 40 | | |--|---| | [requency 1 3 40 - 49 50 50 50 | | | Construct a frequency polygon for the data above Solution 8 12 10 | 6 | # Solution | Class Limits | Class mark | · | |--------------|------------|-----------| | 10-19 | 14.5 | Frequency | | 20-29 | 24.51 | 1 | | 30-39 | 34.5 | 3 | | 40-49 | 44.5 | 5 | | 50-59 | 54,5 | 8 | | 60-69 | 64,5 | 12 | | 70-79 | 74.5 | 10 | | | | 6 | # MEASURES OF CENTRAL TENDENCY The measures of central tendency include mean, mode and median. They are called so because they are centered about the same value. This is the sum of the data values divided by the number of values in the data. It is denoted by \overline{X} Mean, $$\bar{X} = \frac{\sum x}{n}$$ where \sum means summation The mean for grouped data can also be calculated from; (i) $$\bar{X} = \frac{\sum fx}{\sum f}$$ where x is the class mark and f is the frequency (ii) $$\bar{X} = A + \frac{\sum fd}{\sum f}$$ where A is the Assumed mean / Working mean and d is the deviation where $d = x - A$ # Examples 1. The measured weight for a child over eight-year period gave the following results (in kgs) 32, 33, 35, 38, 43, 53, 63, 65. Calculate the mean weight of the child. Mean = $$\frac{\sum x}{n}$$ = $\frac{32+33+35+38+43+53+63+65}{8}$ = 45.25kg | | Lalaur ais | es the age it | n years of 4 | s students. De | delinine inc | 111¢m, «Po. | | |---------------|--------------|----------------|--------------|----------------|--------------|--------------|--| | The informati | on octow giv | C3 tile uB+ | | 117 | 1.0 | <u> 7</u> 21 | | | | 14 | 115 | 16 | 11/ | | | | | Age | <u> 14</u> | • | 1/ | 10 | g | 18 | | | Emauency | 12 |]6 | | | | | | | Frequency | | | | | | | | | Soli | <u>ution</u> | |------|--------------| | | | | Solution | | | |----------|--------------|-----| | | Frequency(f) | fx | | Agc(x) | 2 | 28 | | 14 | 6 | 90 | | 15 | 14 | 224 | | 16 | | 170 | | 17 | 10 | 162 | | 18 | 9 | 168 | | 21 | | | | 5 | 49 | 842 | | | 17 / 047 | | Mean, $$\bar{X} = \frac{\Sigma fx}{\Sigma f} = \frac{842}{8} = 17.184 \text{ years}$$ 3. The data below shows the weights in kg of an S.5 class in a certain school. | The data below shows the v | veignts in kg of | an 3.5 Ctas | S III A CCIL | am school | • | | |----------------------------|------------------|-------------|--------------|-----------|---------|---------| | | -19 20 - 24 | 25 - 29 | 30 - 34 | 35 – 39 | 40 – 44 | 45 – 49 | | Weight(kg) 5 9 | 12 | 18 | 25 | 15 | 10 | 6 | | Frequency 3 | the class | | | | | 1 | Calculate the mean weight of the class | | Class | Class mark (x) | T | | |-----|--|------------------------|--------------|-------------| | | 10-14 | 12: | Frequency(f) | n. | | | 15-19 | 17 ' | · · | lx | | | 20-24 | 22 | 9 | 60 ·
153 | | | 25-29 | 27 | 12 | 264 | | | 30-34 | 32 - | 18 | 486 | | | 35-39 | 37 | 25 | 800 | | | 40-44 | 42 | 15 | 555 | | | 45-49 | 47 | 10 | 420 | | | Σ | | 6 | 282 | | Mea | $\lim_{x \to \infty} \overline{X} = \frac{\sum fx}{\sum fx}$ | $=\frac{3020}{}=30.20$ | 100- | 3020 | | | , | = = 30 7n | | | Mean, $\bar{X} = \frac{2J\lambda}{\Sigma f} = \frac{3020}{100} = 30.20$ 4. The table below shows the marks obtained by students in a sub-maths test marked out of 40 | Marks | 10-14 15 10 | ned by studen | ts in a sub- | maths tes | t marked of | и | |-------------------------|-------------------|---------------|--------------|-------------|-------------|---| | Cumulative frequency | 7 13 - 19 | 20 – 24 | 25 – 29 | 30 – 34 | 40 - 49 | | | Calculate the mean mark | k of the et al. | 17 | 38 | 45 | 50 | | | | k of the students | | | | | | # Solution 5
4 1 In this case, the cumulative frequencies are given instead of the frequencies; therefore we have to find the frequencies. The first value of the cumulative frequency is the first value of frequency. We obtain the next values of frequency by subtracting the consecutive cumulative frequencies. | Marks | Cumulative frequency(F) | | iencies. | | |-----------------------|-------------------------|--------------|----------------|------| | 10 – 14 | 2 | Frequency(f) | Class mark (x) | fx | | 15 – 19 | 8 | 2 | 12 | 24 | | 20 - 24 | 17 | 6 | 17 | 102 | | 25 – 29 | 38 | 9 | 22 | 198 | | $\frac{23-29}{30-34}$ | | 21 | 27 | 567 | | 35 - 39 | 45 | 7 | 32 | 224 | | 22 – 38 | 50 | 5 | 37 | 185 | | <u> </u> | $= \Sigma fr$ 1300 | 50 | | 1300 | Mean, $$\bar{X} = \frac{\sum fx}{\sum f} = \frac{1300}{50} = 26$$ # Mean from assumed/Working mean We can calculate the mean when give the assumed mean which is also known as the working mean using the formula; $$ar{X}=A+ rac{\Sigma fd}{\Sigma f}$$ where A is the Assumed mean / Working mean and d is the deviation where $d=x-A$ 5. The height to the nearest class of 30 pupils is shown in the table below. Using 152cm as the assumed mean, calculate the mean height. | Height(x cm) 148 149 150 151 152 153 154 155 1 | - 140 140 150 151 157 155 1 | 1 122 1 | | |--|---|---------|------| | | 148 149 150 151 152 155 1 | 122 [| 56 I | | No. of Pupil 1 2 2 3 6 7 4 3 2 | 1 2 2 3 6 7 4 | 3 2 | | # Solution PARAME SEC. SCHOOL MADAMAN SEC. DESCRIPTION TO SERVICIAN SEC. BOHOLL SANDE SEC. SOLIDOLI SANDERS SEC. SOLIDOLI SEC. SOLIDOLI SEC. Assumed mean, A =152 | nean, A =152 | | | fd | |--------------|--------------|------------------------------|----| | Height(x) | Frequency(f) | Deviation, $d = x - \Lambda$ | -4 | | 148 | l l | -4 | -6 | | 149 | 2 | \ -3 | -4 | | 150 | 2 | -2 | -3 | | 141 | 3 | -l | 0 | | 152 | a | 0 | 7 | | 153 | \ T . | | 8 | | 154 | 4 | 12 | 9 | | 155 | 3 | 3 | 8 | | 156 | 2 | 4 | 15 | | Σ | 30 | | | $$\frac{\sum}{\sum} \frac{30}{\text{Mean, } \bar{X} = \Lambda + \frac{\sum f d}{\sum f} = 152 + \frac{15}{30} = 152 + 0.5 = 152.5 \text{ cm}}$$ 6. The number of accidents that took place at black spot on a certain road in 2008 were recorded as | follows: | | 10 10 | 11 - 13 | 14 – 18 | |--------------------|----------------|----------------|---------------|---------| | No. of accidents 0 | $\frac{-4}{5}$ | 10 | 8 | 5 | | No. of days 2 | | wher of accide | ents per day. | | Using 9 as the working mean, calculate the mean number of accidents per day. # Solution 5 | | Λ <u>= 9</u> | | TE-ca(f) | Deviation $(d = x - A)$ | ſd | |----------------|--------------|----------|-------------------------|-----| | Class | Mid value(x) | Freq(f) | -7 | -14 | | 0 - 4 | 2 | 5 - | -7 | -15 | | 5 – 7 | 6 | 10 | | 0 | | 810. | 19 | 8 | 3 | 24 | | 11 - 13 | 12
16 | 5 | 7 | 35 | | <u>14 – 18</u> | | 30 | | 30 | Mean, $$\bar{X} = A + \frac{\sum fd}{\sum f} = 9 + \frac{30}{30} = 9 + 1 = 10$$ ## MEDIAN The median of a group of numbers is the number in the middle when the numbers are in order of Determine the median for the following observations # Solution 1,2.4,6,6,7,8 The median is 6 3,3,3,4,4,6,6,7,7,8 The median = $$\frac{4+6}{2} = \frac{10}{2} = 5$$ # Advanced Level Subsidiary Mathematics by Kawama Eahad 2nd Edition For grouped data, we can use the following formula to calculate the median i.e $$Median = L_1 + \left(\frac{\frac{N}{2} - F_b}{f_{m_s}}\right) \times C$$ Where: L_1 ^m lower class boundary of the median class N =Total number of observations or the total frequency F_b = Cumulative frequency before median class $f_{\rm m}$ = Frequency of the median class C = Class width - # Class width This is the difference between the lower and upper class boundaries i.e. for the class 40 - 44, the class width is 44.5 - 39.5 = 5. Note that it depends on the degree of accuracy i.e. for the class 7.0 - 7.4, the class width will be 7.45 - 6.95 = 0.5 # Advantages of the median It is easy to understand and calculate It is not affected by extreme values # Disadvantage of the median It is only one or two values to decide the median ### THE MODE This is the number in a set of numbers that occurs the most i.e. the modal value of 5, 6, 3, 4, 5, 2, 5, 4 and 3 is 5 because there are more 5s than any other number. For grouped data, the mode is calculated from; $$Mode = L_1 + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right) \times C$$ Where; $L_1 =$ lower class boundary of the modal class Δ_1 = difference between the modal frequency and the value before it Δ_2 = difference between the modal frequency and the value after it C = class width Note: The modal class is identified as the class with the highest frequency and the mode can as well be estimated from the histogram as we have already seen. Example 1 The following were the heights of people in a certain town of Uganda. | Height(cm) 101 - 120 | 100 | 131 – 140 | 141 – 150 | 151 – 160 | 161 – 170 | 171 – 190 | |------------------------|-----|-----------|-----------|-----------|------------------|-----------| | No. of p'ple 1 | 3 | 5 | 7 | 4 | 2 | 1 | Calculate the mean, mode, and median for the data. ## Solution TOTAL TITLE TOTAL TOOLIS WAS AND STATE OF THE PROPERTY OF THE | <u>uon</u> | | | | | 1-1-1-1 | |-------------------------------------|----|-------------------------|------------------------|-------------|---| | Class | f | Class mark(x) | fx | F | Class boundaries | | 101 + 120
121 - 130 | 3 | 110.5
125.5 | 110.5
376.5 | 1
4
9 | 100.5 - 120.5
120.5 - 130.5
130.5 - 140.5 | | 131 - 140 | 7 | 135.5
145.5
155.5 | 677.5
1018.5
622 | 16
20 | 140.5 - 150.5
150.5 - 160.5 | | 151 - 160
161 - 170
171 - 190 | 2 | 165.5
180.5 | 331 | 22 23 | 160.5 – 170.5
170.5 – 190.5 | | $\sum_{i=1}^{1/1-190}$ | 23 | 100.5 | 3316.5 | | | Mean, $$\bar{X} = \frac{\sum fx}{\sum f} = \frac{3.5316}{23} = 144 \text{ cm}$$ Median class is 141 - 150 Median $$\stackrel{\cdot}{=} L_1 + \left(\frac{N}{2} \frac{F_b}{f_m}\right) \times C$$ $L_1 = 140.5, F_b = 9, f_m = 7, \frac{N}{2} = \frac{23}{2} = 11.5, C = 10$ Median = $140.5 + \left(\frac{11.5 - 9}{7}\right) \times 10 = 140.5 + \frac{2.5}{7} \times 10$ = $140.5 + 3.57 = 144.1$ cm Mode = $$L_1 + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right) \times C$$ $L_1 = 140.5, \ \Delta_1 = 7 - 5 = 2, \ \Delta_2 = 7 - 4 = 3$ Mode = $140.5 + \left(\frac{2}{2+3}\right) \times 10 = 140.5 + 4 = 144.5 \text{ cm}$ Note: Do you realize that the mean, mode and median have closely the same values? Hence they are the measures of central tendency. The data below shows the weights in kg of an S.5 class in a certain school. | the weights | in kg ot i | an 5.5 cia | ss in a cen | ani schoo | <u></u> | | |----------------------------|-------------------|------------|-------------|-----------|---------|---------| | | $\frac{3}{20-24}$ | 25 – 29 | 30 – 34 | 35 – 39 | 40 – 44 | 45 – 49 | | Weight(kg) $10-14$ $13-19$ | 12 | 18 | 25 | 15 | 10 | 6 | | Frequency 5 | he of the | class | <u> </u> | | | | Calculate the median and modal weight of the class | 9.5 - 14.5 | |----------------------------| | 14.5 – 19.5 | | 19.5 – 24.5
24.5 – 29.5 | | 29.5 – 34.5
34.5 – 39.5 | | 39.5 - 44.5
44.5 - 49.5 | | | $$Median = L_1 + \left(\frac{\frac{N}{2} - F_b}{f_m}\right) \times C$$ The median class is 30 - 34, $L_1 = 29.5$, $f_m = 25$, $F_b = 44$, $\frac{N}{2} = \frac{100}{2} = 50$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition model an = $$29.5 + \left(\frac{50-11}{25}\right) \times 5 = 29.5 + 1.2 = 30.7 \text{ kg}$$ Mode = $L_1 + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right) \times C$ model class is $30 - 34$, $\Delta_1 = 25 - 18 = 7$, $\Delta_2 = 25 - 15 = 10$ The model class is $$30 - 34$$, $\Delta_1 = 25 - 18 = 7$, $\Delta_2 = 25 - 15 = 10$ $mode = 29.5 + \left(\frac{7}{7 + 10}\right) \times 5 = 29.5 + 2.06 = 31.56 \text{ kg}$ # THE OGIVE The Ogive is also known as the cumulative frequency curve where by cumulative frequency curve is plotted against the upper class boundaries and the consecutive points are joined into a smooth curve using free hand. Examples I. The frequency distributed table shows the weights of 100 children measured to the nearest kg. | 1, 100 000 | | | | | | | | <u> </u> | |------------|---------|-----------------|---------|---------|---------|---------|---------|----------------| | Weight | 10 – 14 | <u> 15</u> – 19 | 20 – 24 | 25 – 29 | 30 – 34 | 35 – 39 | 40 – 44 | <u>45 – 39</u> | | No. of | 5 | 9 | 12 | 18 | 25 | 15 | 10 | 6 | | Children | | | | | | | | <u> </u> | Draw a cumulative frequency curve for the data. ## Solution We need to draw a distribution table with the cumulative frequencies and class boundaries | Class | freq(f) | Cumulative frequency (F) | Class boundaries | |---------------------------|---------|--------------------------|------------------| | 10 – 14 | 5 | 5 | 9.5 – 14.5 | | 15 – 19 | 9 | 14 | 14.5 - 19.5 | | $\frac{13-15}{20-24}$ | 12 | 26 | 19.5 – 24.5 | | $\frac{20 - 24}{25 - 29}$ | 18 | 44 | 24.5 - 29.5 | | 30 – 34 | 25 | 69 | 29.5 – 34.5 | | 35 – 39 | 15 | 84 | 34.5 - 39.5 | | 40 - 44 | 10 | 94 | 39.5 – 44.5 | | 45 – 49 | 6 | 100 | 44.5 – 49.5 | | | | <u>OGI</u> | | ا ند دد. | | | · | <u></u> | |---|---|---|---|--------------------|-----------------|---|---|----------------| | · · · · · · · · · · · · · · · · · · · | | · | | | | | # | | | | | 1 ; ' == | | 1 | - | | | - , | | | | | : | **** | !! | .: . | • • • • • • | 1 | | · · · | 1 | | **** | | <u>,</u> | | | - | | | | |
| المستحد والمستحدر | 1T | <u>-</u> : [] ; | · ::: | 1:: | | | | | L' THE | | <u></u> | | 6 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1 | | | | | | | | : | | | 11:11: | | | ļ , l; | | | · .i: . | نأبحرن | | 1 | | | _ i i | ! | | | رو ا السه | K | | | 113 | | 1 | 1 | · [. [] | | /- -/-: | : | ļ. | 1 1 | ! | | u dinina. | | | <u> </u> | -/ | i i. | | · | · | |
<u>ب</u> | | 리스 : :: | | 1.1:00 | | | | | | | | -1 | /- | | ==- | | · · · · · · | : : | | | | · [· · · · · · · · · · · · · · · · · · | | | | | · | | | | | | (. | | | | | | | 11: -4:4 | | | ' ' | | | , . | <u></u> | | | 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | - i | <u> </u> | - | | | ; | | | | | - <u></u> | l-Astriji | - 1 | | | | 1 | | LETTER A G | 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 | : = | <u> </u> | ::::::: | • | :- | | -1 | | | | | · | ==:4: | <u> </u> | : : : : : : : : : : : : : : : : : : | <u>-1::-: </u> -:-:- | | | | <u> -</u> | · · · / - | 1 | | | | 1.1. 1111 | 11 | | | | 1 - 1 / 1 | | | | | | $\mathbf{I} f$ | | | | <u> </u> | | | - | | | | | | | / | | | 노 네 | <u> </u> | | J.\. | | 111111111111111111111111111111111111111 | T | 1137 f 123 | . <u> </u> | | | | | 7- | | | ; | | MATERIAL L | . : | آ | 1111111111 | | | | | | | . <u>4 1 . 4 4 .</u> | | | | | | | | | ・ お裏 | | | ., ••! | • | | | | E | | /:= | 1 1 1 | | ::::: | 1 :::: | | | | | | ^ | 1.24.: 4 | | | 1 | | \ | | 1 - 1 - 1 - | | - / 1 3.11 | . | | • | ; | | | | | | ; / | 12 | | | 1 _:: | 1 1 | 11.20 | | 1 | | | : : - : - : - : - : - : - : - : - : - : | | | | | . 1 | | | | 7 | 1 : | • 1 | | | | | | | - | <u>/ ===</u> | : | | | - | | | | <u> </u> | | | <u> </u> | | | | | 7 | | | - X- | <u> </u> | | | | - | ,,, , , , , , , , , , , , , , , , , , | - | | · | | , | | | | 4 1 | ··· i | | | | 1 // | | 1 | | | | | 1:1-: | | | | |] :1::::: | | 1.2 | - | | 1 1 | | | | | 12.1 | <u>:</u> ; | i | - | | | | | 7/ | | H=: 1.7-13 | · | | : -:[][| | | | 十つ いしょ | | <u> </u> | _ _:==!==::: | · · | | | | | | | | | -11157 | | | | | | | | | | | 1111 | | <u>- </u> | | | | | | | | | . : - | 1: | | | | | 널: 뭐! | | -1: 17: | 1 | <u> </u> | <u>. ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u> | 4 · 6 · 7 · 6 · 4 · 6 · — 4 · 1 · — | | | | | | 34.5 3 | | | | | | | | | | | | | | | | THE PROPERTY OF THE POST OF THE PARTY OF THE PROPERTY P # Estimating median and quartiles using the Ogive 2. The marks obtained by 40 pupils in a mathematics examination were as follows: | reta america obtained by an P | <u> артто – .</u> | | | | | |-------------------------------|-------------------|-------------|-----------|----------|-------------| | The marks obtained by 40 p | 30 – 39 | 40 – 49 | 50 – 59 | 60 - 69 | 70 – 79 | | Marks 20 22 | 4 | 8 | 15 | 9 | 2 | | No. of pupils 2 | and use it | to estimate | the media | n mark w | Spor Augeli | Plot a cumulative frequency curve and use it to estimate the median mark, upper quartile, lower quartile and the inter quartile range | Sol | 111 | ı | 0 | n | |------|-----|---|---|----| | SILI | .,, | u | ж | 15 | | 11111111 | Berry (18 | T | | |----------|-----------|----------|------------------------| | Class | Freq(I) | <u> </u> | Unner olana kanala i | | 20 - 29 | | 2 | Upper class boundaries | | | .1 | 7 | 29.5 | | 30 - 39 | '4 | 6 | 39.5 | | 40 - 49 | 8 | 14 | 49,5 | | 50 - 59 | 15 | | | | | | 29 | 59,5 | | 60 - 69 | 9 | 38 | 69,5 | | 70 - 79 | כ | | | | 1.0 | <u> </u> | 40 | 79,5 | | | | | | | - ا | i. / | (| : | | - •. I | • • - 1 | | <u>0</u> | GIVE | 4 | | | | | | | |-----------|--------------|-----------------|------------------|------------------------|----------|--------------|----------------|-----------------------------|------------|--------|--------------|----------------|--|---|-----------|---------| | | ا ، | 11 | 1 | | | | | | | | | 1 | | | | | | | | 11 1 | 14 | | | !: | | |
 | | | | | :: '''
::::::::::::::::::::::::::::: | t : : t | | | | | | -1 -1 | 1.3.2.2 j
1.3.1.2 j | | | <u>.</u> | | |
 | المسلمة أ | ; <u>; ; ;</u> | | | | | | | , | | | | | | | | | | | | | | | 1 1 | | | ,,,, | | | | | : | | | | | | | | | | | | 5 | , je - | | <u>Li l'</u> l'e | 12 | z u V | 1- <u>Ti</u> | ξ= <u>Ε</u> C | 63) | | | ; ; . !
! | | <u> </u> | | | | | TREGUENCY | | <i>.</i>
; • | ! · · · · ! | : | | | 7.1. | 1 | | | | | | | | _ | | - 1 | | | | | | 1 : : : | | | | | | | | | | 1-1-1 | | ILA TIVE | - N.S. | | <u></u> | E: 15 f | <u> </u> | | | /· . : : :
/ . <u></u> - | | | - : : | - | | - ! | | | | CUMENT | | | | | | | | | | | | | | | | | | | <u> 15</u> - | | | | | | / / | | | | | | | | | 1 2 2 7 | | | 100 | 2:5 | المادر | 2 | ^←TI | 1./ | 6.7 | | 1:: | 111 | | 11 1 | | | | | | | | | | | | 1 | | | | | | | | | | | | | -5 | | | | | 11::: | | 1 1 1 | 1 1 - | | | | | | | | 3 | ' ' | 24.5 | 3 | क्षे र | up | 49.5
PER | くたん | 51.5
55 | ನಿರಿದಗ | رياج
13 م | ΕΞ ડ ' | 7115 | | | | $Median = \left(\frac{1}{2}N\right)^{th} measure = \frac{1}{2} \times 40 = 20^{th} measure$ Draw a dotted line across the graph from F = 20 to meet the curve and drop a vertical dotted line to meet the horizontal axis. This gives the estimated median Hence the median = 54 marks # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition # <u>Quartiles</u> The lower quartile (Q_1) is the value 25% way through the distribution and the value 75% way through the distribution is called the upper quartile (Q_3) . tion is called the upper quartic($$Q_3$$). Lower quartile(Q_1) = $\left(\frac{1}{4}N\right)^{th}$ measure = $\frac{1}{4} \times 40 = 10^{th}$ measure From the graph, lower quartile = 45.5 Upper quartile $$(Q_3) = \left(\frac{3}{4}N\right)^{th}$$ measure $= \frac{3}{4} \times 40 = 30^{th}$ measure From the graph, upper quartile = 60 The difference between the upper quartile and lower quartile is called the Interquartile range. The Interquartile range = $$Q_3 - Q_1$$ For the given graph, interquartile range = 60 - 45.5 = 14.5 The semi-interquartile range or quartile deviation = $\frac{1}{2}(Q_3 - Q_1)$ For the given graph, interquartile range = $\frac{1}{2} \times 14.5 = 7.25$ The percentiles divide a distribution into one hundred equal parts. The lower quartile, Q1 is the 25th percentile P25, the median is the 50th percentile P50 and the upper quartile Q3 is the 75th percentile P75. The data shows the marks obtained by 80 form IV pupils in a certain school. | The data shows the marks obta | nined by 80 form IV pupils in a certain 1 | 71-80 | 81-90 | 91-100 | |-------------------------------|---|-------|-------|--------| | Mark 1-10 11-20 2 | -30 3 -40 -<u></u> | 8 | 6 | 4 | | | and use your graph to estimate | | | | Draw a cumulative frequency and use your graph to estimate - the 20th and 80th percentile mark - the number of pupils who scored a distinction given that the mark for a distinction was 85 (i) (ii) # Solution | | (6) | F | Upper class boundaries | |----------|----------|------|------------------------| | Marks | Freq(f) | | 10.5 | | 1-10 | 3 | 8 | 20.5 | | 11 - 20 |) 5 | 13 | 30.5 | | 21 - 30 | 5 | 22 | 40.5 | | 31 - 40 | 9 | 33 | 50.5 | | 41 - 50 | 111 | 48 | 60.5 | | 51 - 60 | 15 | 62 | 70.5 | | 61 - 70 | 14 | 70 | 80.5 | | 71 – 80 | 8 | 76 | 90.5 | | 81 - 90 | 6 | 80 | 100.5 | | 91 - 100 | <u> </u> |] 00 | | (i) 20^{lh} percentile mark $=\frac{20}{100} \times 80 = 16^{th}$ measure From the graph, 20th percentile mark = 32.5 80^{th} percentile mark = $\frac{80}{100} \times 80 = 64^{th}$ measure From the graph, 80th percentile mark = 71.5 To obtain the number of pupils who scored a distinction, we draw a dotted vertical line from 85 on the horizontal axis to meet the curve at a certain point. From that point, draw a horizontal dotted line to meet the cumulative frequency axis From the graph, we read off 73 but this is not the number of pupils that scored above 85 marks. To obtained the required number, we subtract this value from the total number of pupils i.e Number of pupils that scored above 85 = 80 - 73 = 7 pupils # **MEASURES OF DISPERSION** The spread of observations in relation to a measure of central tendency of the given data is known as dispersion. In order to compare data, the measure of dispersion is taken into account along with the measure of central tendency, # The range This is the difference between the largest and the smallest values of the data. i.e. for the data about lengths of leaves in garden tree, 5,6,7,7,4,5,3,2,9,8,8,6,5,3 Range = $$9-2 = 7$$ # Standard deviation This is the positive square root of variance. Standard deviation is denoted by σ Standard deviation $(\sigma) = \sqrt{Variance}$ The following expressions can be used to calculate the standard deviation; $$\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$ When using the assumed/ working mean, A $$\sigma = \sqrt{\frac{\sum f d^2}{\cdot \sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$$ Note: the expression under the square root is the variance 1. Calculate the standard deviation for the distribution of marks in the table below. | Calculate the sta | ındard d | eviation for tr | ie aistrioui | JOH OF MAIN. | | - | |-------------------|------------------|-----------------|--------------|--------------|---|---------------| | Marks | T5 | 6 | 7 | 8 _ | 9 | | | | -\ -\ | | <u> </u> | 6 | 4 | | | 1 Frequency | دا | [0 | | | | | ## Solution . | Marks(x) | Frequency(f) | fx | $\int fx^2$ | |--------------|--------------|-----|-------------| | 5 | 3 | 15 | 75 | | 6 | 8 | 48 | 288 | | .7 | 9 | 63 | 441 | | 8 | 6 | 48 | 384 | | 0 | 4 | 36 | 324 | | | 30 | 210 | 1512 | $$\sigma = \sqrt{\frac{\sum
fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$ $$\sigma = \sqrt{\frac{1512}{30} - \left(\frac{210}{30}\right)^2} = \sqrt{50.4 - 49} = \sqrt{1.4} = 1.183$$ 2. The table below shows the weights to the nearest kg of 150 patients who visited a certain health unit during a certain week | during a certain week | 20 140 49 | 50 - 59 60 60 | |-----------------------|------------------------------|---------------| | | 20 - 29 30 - 39 40 - 49 | 70 - 79 | | Weight(kg) 10-19 | 132 | 28 12 | | No. of patients 30 | 10 27 | | | No. or management | the maights of the patients. | | Calculate the standard deviation of the weights of the patients. # Advanced Level Subsidiary Mathematics by Kawama Fahad 2nd Edition Solution | Class | Freq(f) | χ. | | | |---------------------|----------|----------------|-----------------|-------------| | 10-19 | 30 | 14.5 | $\frac{1}{435}$ | $-\int x^2$ | | 20-29 | 16 | 24.5 | 392 | 6307.5 | | 30-39 | 24 | 34.5 | 828 | 9604 | | 40-49 | 32 | 44,5 | 1424 | 28566 | | 50-59 | 28 | 54.5 | | 63368 | | 60-69 | 12 | 64,5 | 1526 | 83167 | | 70-79 | 8 | 74.5 | 774 | 49923 | | $\overline{\Sigma}$ | 150 | - | 596 | 44402 | | <u></u> | 2 43 - 3 | | 5975 | 285337.5 | $$\sigma = \sqrt{\frac{\Sigma f x^2}{\Sigma f}} - \left(\frac{\Sigma f x}{\Sigma f}\right)^{\frac{1}{2}},$$ $$\sigma = \sqrt{\frac{285337.5}{150}} - \left(\frac{5975}{150}\right)^{\frac{1}{2}} = \sqrt{1902.25 - 1586.69} = \sqrt{315.56} = 17.76$$ 3. The table below gives the points scored by a team in various events. Find the mean and standard deviation using working mean $\Lambda = 4$ | Points | $\overline{}$ | 1 | | | _ | | | | |---------------|---------------|--------------|-----------|---|----------|----------------|--------------|------| | 7 011103 | <u>''</u> | _ <u>-</u> ' | <u> 2</u> | 3 | 4 | 5 | 16 | 17 I | | No. of events | | ٦ _ | 4 | 7 | <u> </u> | - - | | 1- | | | <u> </u> | <u> </u> | | |) |) | 4 | ו לו | Solution ŗ | Points | Frequency | d = x - A | fd | fd ² | |------------|-----------|-----------|-----|-----------------| | 0 | 1 | -4 | 1-4 | 16 | | 1 | 3 | -3 | -9 | 27 | | 2 | 4 | -2 | -8 | 16 | | 3 | 7 | -1 | 1-7 | 7 | | 4 | 5 | 0 | 0 | Ö | | 5 | 5 | 11 | 5 | 5 | | 6 | 2 | 2 | 4 | 8 | | 7 | 3 | 3 | 9 | 27 | | \sum_{i} | 30 | | -10 | 100 | Mean, $$\tilde{X} = \Lambda + \frac{\sum fd}{\sum f} = 4 + \frac{-10}{30} = 4 - 0.33 = 3.67$$ points Standard deviation, $$\sigma = \sqrt{\frac{\Sigma f d^2}{\Sigma f} - \left(\frac{\Sigma f d}{\Sigma f}\right)^2}$$ $$\sigma = \sqrt{\frac{106}{30} - \left(\frac{-10}{30}\right)^2} = \sqrt{3.533 - 0.111} = \sqrt{3.422} = 1.85 \text{ points}$$ 4. The table below shows the weight in kg of 100 boys in a certain school | | | | _ - | | | |------------|---------|---------|----------------|---------|---------| | Weight(kg) | 60 - 62 | 63 – 65 | 66 – 68 | 69 – 71 | 72 – 74 | | Frequency | 8 | 10 | 45 | 30 | 7 | Using the assumed mean of 67, calculate the mean and standard deviation | C. | ١ | 4: | | | |----|---|----|---|---| | So | ш | u | v | ш | | _ <u>3</u> | So <u>lution</u> | | | | 5.12 | |------------|------------------|---------------|-------------------|-------|--------------------------| | Weight | Freq(f) | Mid value (x) | $d = x - \Lambda$ | fd | $\int \frac{f d^2}{d^2}$ | | 60-62 | 8 | 61 | -6 | -48 | 288 | | 63-65 | 10 | 64 | -3 | -30 | 90 | | 66-68 | 45 | 67 | 0 | 0 | 0 0 | | 69-71 | 30 | 70 | 3 | 3 | 270 | | 72-74 | 7 | 73 | 6 | 6 | 252 | | Σ | 100 | | | 54_,_ | 900 | Mean, $$\bar{X} = A + \frac{\Sigma fd}{\Sigma f} = 67 + \frac{54}{100} = 67 + 0.54 = 67.54$$ points Standard deviation, $$\sigma = \sqrt{\frac{\sum f d^2}{\sum f} - \left(\frac{\sum f d}{\sum f}\right)^2}$$ $$\sigma = \sqrt{\frac{\Sigma f}{100} - \left(\frac{54}{100}\right)^2} = \sqrt{9 - 0.2916} = \sqrt{8.7084} = 2.951$$ # Trial questions 1. The table below shows the weekly wages of a number of workers at a small factory. | The table bel | ow show | s the wee | Kly wage | S OI a Hui | 11001 01 11 | 125 124 | 135-144 | 145-154 | |-----------------------------------|---------|-----------|----------|------------|-------------|---------|----------|---------| | Weekly wages | 75-84 | 85-94 | 95-104 | 105-114 | 115-124 | 123-134 | 4 | 1 | | Frequency | 2 | 3 | 7 | <u> </u> | <u> 10</u> | 8 | <u> </u> | | | | | 1.1 | | | | | | | Calculate the modal, median and the mean wage 2. Below are heights, measured to the nearest cm of 50 pupils | ATC HEIGH | 167 | 165 | 162 | 160 | 157 | 160 | 152 | 157 | 162 | |-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 157 | 107 | 100 | 102 | 155 | 160 | 157 | 160 | 162 | 160 | | 157 | 165 | 152 | 162 | 133 | 100 | 131 | 100 | 157 | 140 | | 157 | 152 | 167 | 157 | 160 | 160 | 162 | 165 | 127 | 100 | | 157 | 157 | 157 | 160 | 157 | 162 | 155 | 157 | 160 | 157 | | , | 131 | 150 | 160 | 157 | 157 | 165 | 160 | 162 | 150 | | 150 | 162 | 132 | 100 | 107 | | | | | | a) Make a frequency distribution table by dividing them into class intervals of 5 starting with the class 148-152 b) Draw a cumulative frequency curve and use it to estimate (i) The median (ii) Interquartile range 3 The table below shows marks obtained by students of mathematics in a certain school. | The table below snow | S Illai K3 Ot | Maniod of 5 | | | | |----------------------|---------------|-------------|--------|------------|---------| | | 30-<40 | 40-<50 | 50-<60 | 60-<70 | _70-<80 | | Marks | 2 | 15 | 10 | 11 | 27 | | No. of students | <u> </u> | 1 1 1 1 1 | | alam Canal | | Calculate the mean, median and standard deviation for the above data (i) (ii) . Draw an Ogive for the above data 2. Below are heights, measured to the nearest cm of 50 pupils. | re neigius, i | 11Chang | | | | | | | | |---------------|---------|-----|-----|-----|-----|-----|-----|-----| | 157 167 | 165 | 162 | 160 | 157 | 160 | 152 | 157 | 162 | | 157 165 | 152 | 162 | 155 | 160 | 157 | 160 | 162 | 160 | | 157 152 | 167 | 157 | 160 | 160 | 162 | 165 | 157 | 160 | | 157 157 | 107 | 140 | 157 | 162 | 155 | 157 | 160 | 167 | | 157 157 | 157 | 100 | 127 | 167 | 165 | 160 | 100 | 137 | | 150 162 | 152 | 160 | 157 | 137 | 103 | 100 | 162 | 150 | a) Make a frequency distribution table by dividing them into class intervals of 5 starting with the class 148-152 b) Draw a cumulative frequency curve and use it to estimate The median (i) (ii) Interquartile range # Advanced Level Subsidiary Mathematics by Kawuna Fahad 2nd Edition 3. The table below shows marks obtained by students of mathe | Marks | 30-<40 | 40-<50 | this of mathem | ialies in a certai | n school | |----------|---------------|---------|----------------|--------------------|----------| | No. of | 2 | 15 | 50-<60 | 60-<70 | 70-<80 | | students | · I | 1'' | 10 | 11 | 27 | | | te the mean w | <u></u> | | i | j | Calculate the mean, median and standard deviation for the above data (i) Draw an Ogive for the above data (ii) Sixty pupils were asked to draw a free hand line of length 20cm. The lengths of the lines were measured to nearest em, and were recorded as shown in the table | [] anoth(cm) 11-13 | 12.15 | | | | | |----------------------|-----------------------|-------------|--------|-------|---------------| | Length(cin) [11-13 | <u> 13-15</u> 15-1 | 7 17-19 | 110.21 | 21-23 | .23-25 | | Frequency 3 | 16 | | 19-21 | 21-23 | ' | | ricquency 15 | | 15 | 113 | 110 |] 2] | 3) Calculate the mean length b) Draw a cumulative frequency graph and estimate the median, the upper and the lower quartiles. Below are the heights to the nearest cm of 40 students | 150 170 | 152 | 155 | 169 | 167 | 157 | 158 | 157 | |---------|-----|-------------|-----|-----|-----|-----|-----| | 167 164 | 165 | 164 | 163 | 162 | 163 | 158 | 158 | | 160 160 | 159 | 16 i | 161 | 161 | 160 | 160 | 160 | | 159 162 | 160 | 159 | 160 | 161 | 161 | 156 | 150 | Make a frequency distribution table starting with class interval 150-152 b) Draw an Ogive and use it to estimate the median, Interquartile range and the 20th percentile height. 6. Calculate the mean and the standard deviation of the following distribution of scores | Catonine and | | | | | | | | ግ | |--------------|-----|------|-------|-------|-------|-------|-------|---| | Scores | 1-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 1 | | Frequency | 3 | 19 | 38 | 69 | 45 | 21 | 5 | J | 7. The numbers of the eggs collected from a poultry farm for 40 consecutive days were as follows. | 138 | 145 | 145 | 157 | 150 | 142 | 154 | 140 | |-----|-----|-----|-----|-----|-----|-----|-----| | 146 | 135 | 128 | 149 | 164 | 147 | 152 | 138 | | 168 | 142 | 135 | 125 | 158 | 135 | 148 | 176 | | | | 165 | | | | | | | | | 144 | | | | | | - a) Construct a frequency distribution table with classes of equal interval width 5, starting from 125-129. - b) Draw a cumulative frequency curve (Ogive) and use it to estimate the (i) Interquartile range - Median number of eggs (iii) - 8. The following marks were obtained by 85 students in an English examination; 96 81 23 62 44 18 62 70 72 40 81 70 30 28 23 02 60 20 48 50 19 33 32 58 71 62 19 12 83 53 81 73 52 25 71 61 46 64 35 59 82 82 42 63 43 17 35 72 37 54 47 76 18 44 65 45 70 38 63 89 31 37 93 03 63 25 52 53 38 57 53 71 70 63 89 31 37 93 58 58 - a) Using class intervals of 10 marks, and starting with a class of 0-9; construct a frequency distribution table. - b) Using your table to find the (i) Median mark - Mean mark (ii) - Standard deviation (iii) - 9. The marks obtained by 50 students in a test were: 76 17 57 63 12 96 38 46 82 48 61 93 44 19 70 60 71 18 40 54 50 27 62 42 63 52 53 38 62 25 62 23 32 81 31 63 64 18 70 27 52 81 35 63 38 37 44 19 70 32 - a) Construct a grouped frequency distribution table with equal class intervals of 10 marks, starting with the 10-19 class group. - b) Draw a histogram and use it to estimate the modal mark. - e) Calculate the mean and standard deviation of the mark. - 10. The
times taken by a group of students to solve a mathematical problem are given below. | times taken by a gr | oup of students to s | olve a matt | nematicat | problem | 30-34 | |---------------------|-------------------------------|-------------|-----------|-------------|-------------| | | 5-9 10-14 | 15-19 | 20-24 | 25-29 | 30-34- | | Time(min) | 5 14 | 30 | 17 | <u> </u> | | | No. of students | 5 14
for the data like it. | to estimate | the moda | il time for | SOLAILIP or | - (a) Draw a histogram for the data. Use it to estimate the modal time for solving a problem. - (b) Calculate the mean time and standard deviation of solving a problem. - 11. The table below shows the weights (in kg) of 150 patients who visited a certain health unit during a certain week. | I tie tent- | | | | | |-----------------|-------------------|-----------------|-----------------|---------------| | a certain week. | | 0.30 40-49 | 50-59 60-69 | 70-79 | | Weight (kg) | 0-19 20-29 30 | 0-39 40-49 | 20 12 | 8 | | | 30 16 24 | 432 | 20 | | | No. of patients | 4 | d modal weights | of the patients | | - a) Calculate the appropriate mean and modal weights of the patients. - b) Plot an Ogive for the above data. Use the Ogive to estimate the median and semi interquartile - 12. In agricultural experiment, the gains in mass (in kg) of 100 cows during a certain period were | III BELLOCATION . | | | | | |-----------------------|------------------------|-------|-------|-------| | recorded as follows; | 10-14 15-19 | 20-24 | 25-29 | 30-34 | | Gain in mass (kg) 5-9 | $-\frac{10-11}{29}$ 37 | 16 | 14 | _2 | | Frequency | 1 | | | | Calculate the (i) mean mass gained - (ii)Standard deviation - (iii)Median - 13. The table below shows the marks of 36 candidates in oral examination. - Construct a frequency distribution table having an interval of 6marks starting with the 30-(i) 35 class group. - Draw a cumulative frequency curve and use it to estimate the median mark. (ii) - Calculate the mean mark. - (ii) Construct a frequency distribution of the following data on the length 5of time (in minutes), it took 50 persons to complete a certain application form. # Using class intervals of length 5minutes starting with the interval 10-14. Calculate the (i) Mean (ii)Standard deviation using Assumed menn A= 22 15. The ages of students in an Institution were as follows | Age | 18.<19 10.<20 | 1 | | | | |------------------|----------------|---------------------|----------|-------------|--------| | No of students | 12 19.520 | <u> 20-<</u> 21 | 21-<22 | 23-<24 | 24-<25 | | 14(1) | 1-12 35 | 38 | 24 | | 3 | | 75 Draw a histor | rum of the day | · | <u> </u> | 0 | | histogram of the data and use it to estimate the modal age. (i) Use the data to estimate the median, upper and lower quartile ages. (ii) 16. The table below shows the masses of 40 students to the no | (turn(kn) | 20 - 29 | 20 20 | - student | s to the nea | irest kg | | |---------------------------------------|---------|---------|-----------|--------------|----------|---------| | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 30 – 39 | 40 - 49 | 50 - 59 | 60 - 69 | 70 – 79 | | Number of students |] | m | 9 | 4m | X | | (a) Find the value of m (h) Using 50 as the working mean, calculate the mean mass (e) Calculate the standard deviation 17. The table below gives the frequency distribution of the marks obtained by 130 students in a physics test. | Marks | 21 - 30 | 31 – 40 | 41 – 50 | 51 - 60 | 61 – 70 | 71 – 80 | 81 – 90 | 91 –
100 | |-----------|---------|---------|---------|---------|---------|---------|---------|-------------| | Frequency | 1 | 3 | 6 | 24 | 30 | 31 | 22 | 13 | :: • ;; (a) Calculate the median mark (b) (i) draw a histogram to represent the data and use the histogram to estimate the mode 18. The table below shows the marks obtained by 76 candidates in a biology examination | | | | | | _ | <u> </u> | | |------------|---------|---------|---------|---------|---------|----------|----------| | Marks | 50 – 54 | 55 - 59 | 60 - 64 | 65 - 69 | 70 – 74 | 75 – 79 | 80 - 84 | | Number of | 3 | 7 | 15 | 22 | 19 | 8 | 2 | | candidates | | | | | | | <u>_</u> | (a) Calculate (i) mean mark (ii) median mark (b) Draw a histogram and use it to estimate the mode 19. The table below shows the number of students of a certain school who took breakfast in a certain month of 30 days 170 145 168 158 135 124 182 152 171 159 164 192 165 190 158 173 194 132 177 151 179 154 131 160 215 167 143 122 203 130 (a) Construct a frequency distribution table of equal class interval, starting with 120 - 129 (b) Plot a cumulative frequency curve and use it to estimate the Median (ii) interquartile range (i) The table below shows the masses(in kg) of 30 girls selected at random from a certain school 20. 59 60 68 68 52 62 55 65 43 50 58 45 60 70 52 49 54 59 62 42 70 60 46 64 54 45 73 58 60 45 Make a frequency distribution table with classes having an interval of 5 kg beginning with 40 -(i) 44 class - Calculate the mean mass for the sample (ii) - Plot a cumulative frequency curve and use it to estimate the median (iii) - What is the probability that a girl in the school chosen at random weighs between 50.5 kg and 63 (iv) - 21. The table below shows the frequency distribution of marks of 800 candidates who sat a national examination | 21. The table below show | stite itequation | | | | |--------------------------|------------------|--|-----------|---------| | examination. | | | 71 - | 81- 91- | | Marks(%) 1-10 11- | 21 - 31 - | $\begin{vmatrix} 41 - & 51 - \\ 60 & 60 \end{vmatrix}$ | 70 80 | 90 100 | | 20 | 30 40 | 50 60 | 90 60 | 30 10 | | Frequency 30 50 | 100 150 | 150 130 | <u>/-</u> | _ | 100 (a) (i) construct a cumulative frequency distribution for the data (ii) draw a cumulative frequency curve for the distribution - (b) Use your graph to estimate; - median mark (i) - percentage number of candidates that failed if the pass mark was 50% (ii) - inter quartile range (iii) - 22. The table below shows the results of candidates who sat a mathematics examination marked out of 60 | e calculate the mean | | araskamalics (| vanninauon oo | | |------------------------------------|------------------------------|-------------------|----------------|-----------------| | . The table below shows the result | is of candidates who sai a | manicatios | | 50 50 | | The table below shows the result | 100 00 | 30 – 39 | 40 – 49 | <u> </u> | | | 1 - 19 $20 - 29$ | | | 13 | | Marks V | _ _ | 46 | 28 | , , , | | Number of 7 26 |) 140 | | | | | Millings of 1 | 1 | | _ | <u> </u> | | candidates | uency curve and use it to e | etimate the rat | ige of marks o | t flic widale 2 | | Laine Senou | iency curve and use it to co | Stilliture rice : | -5- | | - Draw a cumulative frequency curve and use it to estimate the range of marks of the middle 50% (i) of the candidates - Find'the mean mark for the examination - 23. The table below shows the weights in kilograms of 200 cows | e table below shows Weight (kg) | Frequency | |---------------------------------|-----------| | 44 – 47 | 15 | | 48 - 51 | 3 | | 52 - 55 | 45 | | 56 - 59 | 7 | | 60 - 63 | 46 | | 64 – 67 | 20 | | | 61 | | 68 – 71
72 – 75 | | - (a) Find the mean and standard deviation - (b) Calculate the modal weight - (c) Draw an Ogive and use it to estimate, - Semi-interquartile range (ii) The percentage of cows weighing below 65 kg - 24. The table below shows the marks obtained by 100 students in a sub maths test | The table below shows the marks | s obtained by | y too stud | ents in a sub | o maths tes | it . | بر | | |---------------------------------------|---------------|--------------|---------------|-------------|----------|-----------|--| | The table below shows $11-10 = 11-20$ | 21 - 30 | 31 - 40 | 41 - 50 | 51-60 | 161 - 70 | T71-80 | | | Marks | 25 | 40 | 64 | 82 | 101-10 | 100 | | | Cumulative 5 | [| 1 | 1 " | 04 | 192 | 100 | | | frequency frequency | u curve and | use it to es | limata da | | <u> </u> | | | | | y curre and | use it to C | ennate the | | | | | - (a) Draw a cumulative frequency curve and use it to estimate the - Median mark - (i) Mark at which a distinction was awarded if 20 students obtained a distinction - (b) Calculate the mean mark using the working mean of 45.5 # CHAPTER 12: INDEX NUMBERS An index number is a statistical measure, which represents the change in a variable or group of variables with respect to time, environment or other characteristics. This is the year against which all the other years are compared. The price in the base year is normally # Current year This is the year (period) for which the index is to be calculated. The price in the current year is normally # Basic characteristics of index numbers - > The index for the base period is which is standard practice The statement "2012 = 100" is used to - > The change in the value of the index from the base period to any given period is simply a measure of percentage change from the base period for two periods - > The change in the value of an index does not indicate percentage change unless one time period is the base period - > Index numbers measure relative changes. They measure the relative change in the value of a variable or a group of related variables over a period of time or between places. # Types of index numbers - Simple index numbers - Aggregate index numbers - Composite index numbers - > Value index numbers ### SIMPLE INDEX NUMBERS A simple price index measures the relative change from the base period for a single measurement. This includes price index, quantity index, wage index etc. Simple price index is often known as a price relative and it is given by Simple index number = $$\frac{price \text{ in the current year}}{price \text{ in the base year}} \times 100 = \frac{P_1}{P_0} \times 100$$ This measures the changes in wages of workers Simple
wage index = $$\frac{W_1}{W_0} \times 100$$ Where W_1 is the wage of workers in the current year W_0 is the wage of workers in the base year # Quantity index This type of index number pertains to measuring changes in volumes of commodities like goods produced or goods consumed. Quantity index = $$\frac{q_1}{q_0} \times 100$$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition An article cost shs 500 in 1990 and shs 800 in 1994. Taking 1990 as the base year, find the price relative in 1994. # Solution Solution Price relative = $$\frac{p_1}{p_0} \times 100 = \frac{800}{500} \times 100 = 160$$ This indicates that the price of the article has gone up by 60% The wage of nurses in Uganda in 1995 was shs 20,000. The wage of the same nurses in 1997 was increased by 25000. Using 1995 as the base year, calculate the nurses' wage index for 1997. $$W_1 = 20,000 + 25,000 = 45,000$$ $W_0 = 20,000$ Wage index = $\frac{W_1}{W_0} \times 100 = \frac{45000}{20000} \times 100 = 225$ Therefore the nurses wage increased by 125% in 1995 Note: The percentage sign is always omitted in the final answer. The construction of index numbers can be divided into two types i.e. - (a) Unweighted indices - (b) Weighted indices # UNWEIGHTED INDEX NUMBERS The following are the methods of constructing unweighted index numbers - Simple aggregative method (i) - Simple average of price relative method (ii) # Simple aggregative method This is a simple method for constructing index numbers. In this, the total of current year prices for various commodities is divided by the corresponding base year total and multiplying the result by 100 Simple aggregate price index = $$\frac{\sum P_1}{\sum P_0} \times 100$$ Simple aggregate price mack $$\sum P_0$$. Where $\sum P_1$ = the total of commodity prices in the current year $\sum P_0$ = the total of same commodity prices in the base year Calculate the price index number for 2003, taking the year 2000 as the base year | <u>*</u> | unber for 2003 taking the | year 2000 as, the hase year | |-------------------|----------------------------|-----------------------------| | the price index n | umber for 2003, taking the | Price in the year 2003 | | Commodity | Price in the year 2000 | | | <u> </u> | 600 | 800 | | [Λ | 1 | 600 | | l B | 500 | 1000 | | Ċ | 700 | | | 10 | 1200 | 1600 | | D | : | l 1500 | | E | 1000 | <u> </u> | | | _ | | Solution Simple aggregate price index = $$\frac{\sum P_1}{\sum P_0} \times 100 = \frac{800 + 600 + 1000 + 1600 + 1500}{600 + 500 + 700 + 1200 + 1000} \times 100$$ $$=\frac{5500}{4000} \times 100 = 137.5$$ $= \frac{5500}{4000} \times 100 = 137.5$ This shows that there is an increase of 37.5% in the prices of the commodities An average family in Kampala spent the following amounts on the items shown in the years 1997 and 1998 | ITEM | Amount in shs (1997) | Amount in shs (1998) | |---------------|----------------------|----------------------| | Housing | 80,000 | 90,000 | | Clothing | 20,000 | 20,000 | | Electricity | 20,000 | 25,000 | | Water | 25,000 | 25,000 | | Food | 140,000 | 160,000 | | Transport | 30,000 | 36,000 | | Medical | 30,000 | 35,000 | | Miscellaneous | 30,000 | 40,000 | Using 1997 as the base year, calculate the simple aggregate expenditure index for 1998 # Solution Total expenditure in 1997 = 80,000+20,000+20,000+25,000+140,000+30,000+30,000+30,000 = 375,000/= Total expenditure in 1998 =90,000+20,000+25,000+25,000+160,000+36,000+35,000+40,000 = 431,000/= Simple aggregate expenditure = $\frac{431000}{375000} \times 100 = 114.93$ Example 3 Data chip manufactures and sells three computer chip models; the basic, financial and scientific. The respective retail prices are 950, 3500 and 7000 in 1994; 150, 1800 and 2500 in 1998; 80, 600 and 1250 in 2002. Calculate the simple aggregate price index for 1998 and 2002 taking 1994 as the base year. ## Solution | Chip Model | | l price | | |------------|-------|---------|------| | | 1994 | 1998 | 2002 | | Basic | 950 | 150 | 80 | | Financial | 3500 | 1800 | 600 | | Scientific | 7000 | 2500 | 1250 | | Σ | 11450 | 4450 | 1930 | Simple aggregate price index for $1998 = \frac{4450}{11450} \times 100 = 38.86$ Simple aggregate price index for $2002 = \frac{1930}{11450} \times 100 = 16.86$ Conclusion: Since the index in the base period, 1994 is 100, the difference in the indices for 1994 and 1998 indicates that the average price of the three models is declined by; $$100 - 38.86 = 61.14\%$$ The decline in price from 1994 to 2002 is 100 - 16.86 = 83.14% Simple average of price relatives method In this method, the price relatives for all commodities is calculated and then their average is taken to calculate the index number $\frac{\sum_{P_0}^{P_1} \times 100}{-}$ where n is the number of items Simple average of price indices = Construct by simple average of price relative method the price index of 2004, taking 1999 as the base year from the following data | following data | | | | | T.C. | F | |-----------------|------|------|------------|-------------|------|--------| | Commodity | A | В | <u> C</u> | D | 2500 | 2000 | | Price (in 1999) | 6000 | 5000 | 6000 | 5000 | 2500 | 3000 | | Price (in 2004) | 8000 | 6000 | 7200 | 7500 | 3750 | 1 2000 | Solution 1 | Commodity | Price in 1999 (P ₀) | Price in 2004(P ₁) | Price relatives $\left(\frac{P_1}{P_0} \times 100\right)$ | |----------------------------|--|--|--| | A
B
C
D
E
F | 6000
5000
6000
5000
2500
2000 | 8000
6000
7200
7500
3750
3000 | 133.33
120.00
120.00
150.00
150.00
150.00
823.33 | Simple price index = $$\frac{\sum_{P_0}^{P_1} \times 100}{n} = \frac{823.33}{6} = 137.22$$ Find the simple price index for 2001 taking 1996 as the base year from the following data | nd the simple price index for 200 |)] taking | 1990 as uic | tase year | 110111 1110 | - | |-----------------------------------|-------------|-------------|-----------|-------------|---------------| | | Wheat | Rice | Sugar | Ghec | Meat | | Commodity | | | | 4000 | 8000 | | Price(in 1996) per unit | 1200 | 2000 | 1200 | 4000 | 8000 | | Price(iii 199 <u>0) per unit</u> | | | | | | Solution | Commodity. | Price in 1996 (P ₀) | Price in 2001(P ₁) | Price relatives $\left(\frac{P_1}{P_0} \times 100\right)$ | |------------|---------------------------------|--------------------------------|---| | Wheat | 1200 | 1600 | 133.33 | | Rice | 2000 | 2500 | 125.00 | | Sugar | 1200 | 1600 | 133.33 | | Ghee | 4000 | 6000 | 150.00 | | Meat | 8000 | 9600 | 120.00 | Simple price index = $$\frac{\sum_{P_0}^{P_1} \times 100}{n} = \frac{661.66}{6} = 132.33$$ Example 3 The table below shows the average retail price in shillings of a kilogram of sugar during the years 1983 -1988 | 8 | 1983 | 1984 | 1985 | 1986 | 1987 | 1989 | |--------------|------|-------------|------|------|------|------| | Year | 110 | 120 | 130 | 150 | 165 | 185 | | Retail Price | | | 1 | | | | Using 1983 as the base, find the price index corresponding to all years. By how much would a family have reduced their consumption of sugar in 1988 if they had to spend the same amount of money as they did in 1983? Using 1986 as the base, find the retail price index for the given years (ii) Using 1983 – 1985 as the base, find the retail price in 1989, if the price index was 160 (iii) ## Solution (i) | Year | Retail Price | | |------|----------------|---| | Year | Iverall Lilice | Price index $(\frac{P_1}{P_1} \times 100)$ | | 1983 | 110 | Price index $\left(\frac{P_1}{P_0} \times 100\right)$ | | 1984 | 120 | 100 | | 1985 | | 109.09 | | | 130 | 118.18 | | 1986 | 150 | 136.36 | | 1987 | 165 | 150 | | 1988 | | 168.18 | Price index in 1988 = 168.18 Implying the price of sugar increased by 168.18 - 100 = 68.18%Hence the family's consumption reduced by 68.18% # Base value $P_0 = 150$ | Year | Retail Price | Price index $\left(\frac{P_1}{P_0} \times 100\right)$ | |------|--------------|---| | 1983 | 110 | 73.33 | | 1984 | 120 | 80 | | 1985 | 130 | 86.78 | | 1986 | 150 | 100 | | 1987 | 165 | 110 | | 1988 | 185 | 123.33 | (iii) Average retail price from $$1983 - 1985 = \frac{110 + 120 + 130}{3} = 120$$ $$\frac{P_{1999}}{120} \times 100 = 160$$ $$P_{1999} = \frac{160 \times 120}{100} = 192$$ # WEIGHTED PRICE INDICES ť Index numbers at times are needed where there is more than just one item i.e an index number that compares the cost of living depends on food, housing, clothing, entertainment, c.t.c. They can be calculated in terms of the weight using the weighted price index. The weighted price index can also be referred to as the cost of living index. # Construction of the weighted price indices ### Case1: When prices of the items and weights attached are given, here we consider three situations When the units of the items under consideration are uniform, here the aggregate weighted price index is used Weighted aggregate price index = $\frac{\sum P_1 w}{\sum P_0 w} \times 100$ Note: Weighted aggregate price index can also be referred to as composite index When the units of the items are not uniform, here we use the simple average of price relatives i.e $$\frac{\sum_{p_0}^{p_1} \times 100}{n}$$ Weighted average price index = $\frac{\sum_{P_0}^{P_1} \times w}{\sum w} \times 100$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition When the price relatives and weights of the items are given, here the weighted price index is (iii) given by; Weighted price index = $\frac{\sum PW}{\sum W}$ where P is the price relative # Examples 1. Find the cost of living index based on the following data | the cost of living i | ndex based on
the follow | owing data | |----------------------|--------------------------|------------| | Item | Price index | Weight | | Food | 120 | 172 | | | 124 | 160 | | Clothing | 125 | 170 | | Housing | 135 | 210 | | Transport | | 140 | | Others | 104 | | # Solution | Others 104 140 14360 Σ 852 104640 Σ Σ Σ Σ 104640 = 122.82 | Item Food Clothing Housing Transport Others | | | | |--|---|--|--|--| |--|---|--|--|--| Cost of living index = weighted price index = $\frac{\sum PW}{\sum W} = \frac{104640}{852} = 122.82$ | orresponding price (in | shs) are in the | Price 1998 | Price 2000 | |------------------------|-----------------|-------------------|------------| | Chicken feed | Weight
120 | 500 | 600 | | A | 60 | 300 | 360 | | B | 50 | 250 | 400 | | <u>C</u> | the weighted | average price ind | ex | Using 1998 as the base year, calculate the weighted average price index | g 1998 as the base
plution
Commodity | Weight | Price (Po) | Price(P1) | $\frac{P_1}{P_0}$ | $\frac{P_1}{P_0}W$ | |--|-----------|-------------------|-------------------|-------------------|--------------------| | A | 120
60 | 500
300
250 | 600
360
400 | 1.2
1.2
1.6 | 144
72
80 | | c | 230 | | - | <u> </u> | 296 | Weighted aggregate price index = $\frac{296}{230} \times 100 = 128.7$ Conclusion: the price of chicken feeds increased by 28.7% 3. The following items are used in the assembly of a TV set; 8 transistors, 22 resistors, 9 capacitors, 2 The tonowing nems are discourted and a circuit board. Due to inflation, the price of each component has increased as shown | Rem 120 165 150 160 200 250 250 250 250 | below Transistors | Resistors | Capacitors | Diodes | Circuit | |--|-------------------|-----------|-------------|--------|---------| | Price in 1986 180 210 170 180 250 | litem | 165 | 1 | 1 | 200 | | Price in 1986 1980 number of the assembled TV set in 1986 using 1980 as the ba | 1 | | | | | Calculate the composite index number of the assembled TV set in 1986 using 1980 as the base year. # Advanced Level Subsidiary Mathematics by Kawama Eahad 2nd Edlthon Solution | ı | |---| | | | | | | Composite index = Weighted aggregate price index = $$\frac{|0400|}{\sum P_0 W} \times 100$$ = $\frac{8200}{6460} \times 100 = 127$ 4. The prices of unit values of four commodities A, B, C and D in the years 1994 and 1996 were as below. | Commodities | Price 1994 | Price 1996 | Weights | |-------------|------------|------------|---------| | Λ | 400 | 500 | 7 | | В | 900 | 1100 | /2 | | C | 600 | 700 | 1 1 | | D | 600 | 800 | 6 | (a) Taking 1994 as the base year, Calculate the Simple price index for 1996 (ii) Weighted average price index (b) Suppose that the actual quantities consumed per week by a family in 1994 were 5kg, 2kg, 3 litres and $1\frac{1}{2}$ kg of A, B, C and D respectively. Determine the average percentage increase in the price of commodities in 1996. # Solution (a) | Commodity | Weight(W) | Price(Po) | Price(P1) | $\frac{P_1}{P_0} \times 100$ | PW | |-----------|-----------|-----------|-----------|------------------------------|---------| | A | 7 | 400 | 500 | 125 | 875 | | В | 2 | 900 | 1100 | 122.22 | 244.44 | | lĉ | 3 | 600 | 700 | 116.67 | 350 | | D | 6 | 600 | 800 | 133.33 | 800 | | 2 | 18 | | <u></u> | 497.22 | 2269.44 | (i) Simple price index = $\frac{\sum_{P_0}^{P_1} \times 100}{n} = \frac{497.22}{4} = 124.31$ Weighted average price index = $\frac{\sum PW}{\sum W} \times 100 = \frac{2269.44}{18} = 126.1$ (ii) (b) We can find the percentage increase in the prices using the weighted aggregate price index since | ひょいないがわまた かなりの りじ | PPH VIVEH | | | | | |-------------------|-----------|------------|------|-------------------------|--------| | Commedity | Weight(W) | Price (Po) | PoW | Price (P ₁) | P_1W | | Commodity | 5 | 400 | 2000 | 500 | 2500 | | A | 2 | 900 | 1800 | 1100 | 2200 | | В | 2 | 600 | 1800 | 700 | 2100 | | C |)
) | 600 | 900 | 800 | 1200 | | D | 1.3 | 1000 | 6500 | | 8000 | | 7 | | | | | | Weighted aggregate price index = $\frac{\sum P_1 W}{\sum P_0 W} \times 100 = \frac{8000}{6500} \times 100 = 123.1$ Percentage increase in the price of commodities = 123.1 - 100 = 23.1% 5. The cost of making a cake is calculated from the cost of baking flour, sugar, milk and eggs. The following table gives the cost of these items in 1990 and 1996 | Item | Price 1990 | Price 1996 | Weight | |----------------|------------|------------|---------| | Flour per kg | 600 | 780 | 12 | | Sugar per kg | 500 | 400 | Ì 5 | | , | | 300 | 2 | | Milk per litre | 250 | | 1 | | Eggs per egg | 100 | 150 | <u></u> | Using 1990 as the base year, Calculate the price relative for each item. Hence find the simple price index for the cost of (i) making a cake. Find the weighted aggregate price index for the cost of a cake. (ii) Solution Price relatives P₀W P_1W Weight 1996(P1) 1990(Po) Item $(\frac{P_1}{P_0} \times 100)$ 7200 12 780 600 Flour/kg 2500 80 5 500 400 Sugar/kg 9360 2000 600 500 2 120 300 Milk/ltr 250 150 100 150 100 150 Eggs/egg 12110 10300 480 The price relatives are indicated by $\frac{P_1}{P_0} \times 100$ in the table (i), Simple price index = $\frac{480}{4}$ = 120 Weighted aggregate price index = $\frac{\sum P_1 W}{\sum P_0 W} \times 100 = \frac{12110}{10300} \times 100 = 117$ (ii) When the prices and quantities of items are given, here two approaches are used - Laspeyres' method (i) - Paasche method (ii) These two methods differ only in the period used for weighting. The Laspeyres' method uses base-period weights, that is the original prices and quantities of the items bought are used to find the percentage change over a period of time in either price or quantity consumed depending on the problem. The Paasche method uses current year weights. Laspeyres' Price index = $$\frac{\sum P_1 q_0}{\sum P_0 q_0} \times 100$$ Where P_1 is the current year price P_0 is the base year price q_0 is the quantity used in the base period Paasche's price index = $\frac{\sum P_1 q_1}{\sum P_0 q_1} \times 100$ Where q_1 is the quantity used in the base period. The table below shows the prices for six items and the number of units of each consumed by a typical family in 1995 and 2005. | Item | 1995 | | 2005 | | | |-----------------------------|-------------|-----------|--------------|-----------|--| | 1/lanD | Price | Quantity | Price | Quantity | | | Bread (loaf)
Eggs(dozen) | 770
1850 | 50 | 1980 | 55 | | | Milk (litre) | 880 | 26
102 | 2980 | 20 | | | Apples (500g) | 1460 | 30 | 1980
1750 | 130
40 | | | Juice (300ml) | 1580 | 40 | 1700 | 40 | | | Coffee (400g) | 4400 | 12 | 4750 | 12 | | Determine the weighted price index and interpret the result Using the Laspeyres' method | Thallette mem | | | , | | | | |---------------|------|----------------|--------------|-----|--------|--------| | ltem | Po | Q ₀ | Pı | Qı | PiQo | PoQo | | Bread (loaf) | 770 | 50 | 1980 | 55 | 99000 | 38500 | | Eggs(dozen) | 1850 | 26 | 2980 | 20 | 77480 | 48100 | | Milk (litre) | 880 | 102 | 1980 | 130 | 201960 | 89760 | | Apples (500g) | 1460 | 30 | 1750 | 40 | 52500 | 43800 | | Juice (300ml) | 1580 | 40 | 1700 | 41 | 68000 | 63200 | | Coffee (400g) | 4400 | 12 | 4750 | 12 | 57000 | 52800 | | Σ | | | | | 555940 | 336160 | Weighted Price index = $$\frac{\sum P_1 q_0}{\sum P_0 q_0} \times 100$$ = $\frac{555940}{336160} \times 100 = 165.4$ This result indicates that there has been an increase of 65.4% in the prices of the items between 1995 and 2005 Alternatively by using the Paasche method | Item Po Qo Pi Qi PiQi PoQi Bread (loaf) 770 50 1980 55 108900 42350 Eggs(dozen) 1850 26 2980 20 59600 37000 Milk (litre) 880 102 1980 130 257400 114400 Apples (500g) 1460 30 1750 40 70000 58400 Juice (300ml) 1580 40 1700 41 69700 64780 Coffee (400g) 4400 12 4750 12 57000 52800 | vely by using the r | aasene m | - | | | ~ | | |---|---|-----------------------------|-----------------------------|------------------------------|-----------------------|-----------------------------------|-----------------------------------| | Bread (loaf) 770 50 1980 55 108900 42350 Eggs(dozen) 1850 26 2980 20 59600 37000 Milk (litre) 880 102 1980 130 257400 114400 Apples (500g) 1460 30 1750 40 70000 58400 Juice (300ml) 1580 40 1700 41 69700 64780 Coffee (400g) 4400 12 4750 12 57000 52800 | | -T' | | Pi | Q ₁ | P ₁ Q ₁ | P ₀ Q ₁ | | Coffee (400g) | Bread (loaf) Eggs(dozen) Milk (litre) Apples (500g) Juice (300ml) | 1850
880
1460
1580 | 50
26
102
30
40 | 2980
1980
1750
1700 | 20
130
40
41 | 59600
257400
70000
69700 | 37000
114400
58400
64780 | | 5 | Coffee (400g) | 4400 | . 12 | - 4730 | 112 | 622600 | 369730 | Weighted price index = $$\frac{\sum P_1 q_1}{\sum P_0
q_1} \times 100$$ = $\frac{622600}{369730} \times 100 = 168.4$ that there has been an increase of 68.4% in the This result indicates that there has been an increase of 68.4% in the prices of the items between 1995 and 2005 For examinations, the student is free to use any of the above methods at his own discretion but not both. The consumer price index (C.P.I) is an example of the Laspeyres' index Value index = $$\frac{\sum P_1 q_1}{\sum P_0 q_0} \times 100$$ Course was an allower. The prices and quantities sold at Waleska Department Store for various items for May 2000 and May 2005 are given in the table below. | Item | Price 2000
(dollars) | Quantity sold in 2000 | Price 2005 in dollars | Quantity sold
in 2005 | |--------------|-------------------------|-----------------------|-----------------------|--------------------------| | Ties (each) | 10 | 1000 | 12 | 120 | | Suits (each) | 300 | 100 | 400 | | | Shoes (pair) | 100 | 500 | 120 | | What is the value index for May 2005 using May 2000 as the base period? Solution | Solutio | <u> </u> | | | | | D. O. | |--------------|----------------|-------|-----------|----------------|----------------|--------| | Item | P ₀ | Qo | Pı | Q ₁ | Po Qo
10000 | 10800 | | Ties (each) | 10 | 1000 | 12
400 | 900
120 | 30000 | 48000 | | Suits (each) | 300
100 | 500 | 120 | 500_ | 50000 | 60000 | | Shoes (pair) | | | | | 90000 | 118800 | | 1,4 | ! | 10000 | | | | | Value index $$=\frac{\sum P_1 q_1}{\sum P_0 q_0} \times 100 = \frac{118800}{90000} \times 100 = 132$$ This implies that the sales increased by 32% from May 2000 to May 2005 The table below represents the changes in the domestic consumption of the indicated food items | Unit | Price in shillings | | Quantity | | | |------|---------------------------|--|---------------------------|--|--| | | 2009 | 2010 | 2009 | 2010 | | | ko | 180 | 150 | 1500 | 2500 | | | | 500 | 700 | 80 | 100 | | | 1 | 400 | 700 | 60 | 60 | | | | 1000 | 800 | 45 | 60 | | | kg | 700 | 600 | 120 | 100 | | | | kg
loaf
litre
kg | Unit 271ce 2009 kg 180 toaf 500 litre 400 kg 1000 | Vinit Price in shirings | 2009 2010 2009 kg 180 150 1500 loaf 500 700 80 litre 400 700 60 kg 1000 800 45 700 600 120 | | Using 2009 as the base year, calculate the - Price index for each food item for 2010 (i) - Simple aggregate price index for 2010 (ii) • - The value index for 2010 (iii) # Solution etion (i) Price index for matooke = $$\frac{150}{100} \times 100 = 83.33$$ For bread = $$\frac{700}{500} \times 100 = 140$$ For milk = $\frac{700}{400} \times 100 = 175$ For vegetables $\frac{1000}{1000} \times 100 = 80$ For fruits = $\frac{600}{700} \times 100 = 85.71$ For fruits = $$\frac{600}{700} \times 100 = 85.71$$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition \mathcal{H}^{\bullet} Ù (ii) Simple aggregate price index = $$\frac{\sum P_1}{\sum P_0} \times 100$$ = $\frac{150+700+700+800+600}{180+500+400+1000+700} \times 100 = \frac{2950}{2780} \times 100 = 106.2$ | Matooke
Bread 5
Milk 4
Vegetables 1 | Po Qo 180 1500 500 80 400 60 1000 60 700 100 | Pt
150
700
700
800
600 | Q ₁
2500
100
60
60
100 | P ₀ Q ₀
270000
40000
24000
45000
84000 | P ₁ Q ₁
375000
70000
42000
48000
60000 | |--|--|---------------------------------------|--|---|---| | Value ind | $\int_{CX} \frac{\sum P_1 q_1}{\sum P_1 q_1} $ | 595 | | 463000 | 595000 | Value index = $\frac{\sum P_1 q_1}{\sum P_0 q_0} \times 100 = \frac{595000}{463000} \times 100 = 128.51$ 1. The average prices for bananas, milk and wheat were as follows for 1997 and 1998 | 1 | tem | d wheat were as follows for 1 | |---------|-----------|-------------------------------| | • | | Prices in shillings | | Bananas | | 97 1998 | | Milk | 3000 per | bunch 5000 per bunch | | Meat | 700 per I | litre 800 per litre | | | 2500 per | r kg 2000 per kg | (a) Calculate the price relatives for these commodities for 1998 taking 1997 as the base year hence (b) Given that meat, bananas and milk are given weights of 2,1 and 3 respectively, taking 1997 as the base, calculate the index number for the total costs of the commodities for a family in 1998 [Ans: (a) 120.32 (b) 112.87] 2. The cost of making a cake is calculated from the cost of baking flour, sugar, milk and eggs. The following table gives the cost of these items in 1985 and 1986 | ĭ. | thing table gives the cost of these items in 1985 and 1986 | | | | | | |----|--|------------|-------------|-------------|--|--| | L | Item | Price 1985 | Price 1986 | Weight | | | | 1 | Flour per kg | 60 | 78 | 12 | | | | 1 | Sugar per kg | 50 | 40 | 5 | | | | | Milk per litre | 25 | 30 | | | | | | Egg per egg | 10 | 15 | | | | | | | | | | | | Using 1985 as the base year, Calculate the price index for each item hence find the simple price index of making a cake (ii) Find the weighted aggregate price index for the cost of a cake If the cost of making a cake in 1986 was shs 30, find the cost in 1985 using the two indices in (i) and (ii) [Ans: (i) 120 (ii) 117.57 (iii) 26/= 3. The table below represents the weights and index for five items | Item | Food | Tobacco | Housing | Transport | Medical | |--------|------|---------|---------|-----------|---------| | Weight | 304 | 129 | 331 | 120 | 116 | | Index | 124 | 126 | 127 | 119 | 128 | | | 111 | | F 4 1 5 | 15.1.0 | | Determine the weighted index number for all items [Ans: 125.1 2] 4. The following table shows the prices and quantities of some four commodities A, B, C and D for the years 2006 and 2007 ## Advanced Level Subsidiary Mathématics by Kawuma Fahad 2nd Edition | Item | | Price per unit | | Quantities | |------|------|----------------|------|-------------| | _ | 2006 | 2007 | 2006 | 2007 | | Λ | 100 | 120 | 36 | 42 | | В | 110 | 100 | 96 | 88 | | C | 50 | 65 | 10 | 12 | | D. | 80 | 85 | 11 | <u> 10</u> | Using 2006 as the base year, Calculate - Price index number for 2007 (i) - Simple aggregate price index number (ii) - Weighted price index number (iii) - Value index number (iv) [Ans: (i) 111.79 (ii) 108.82 (iii) 107 (iv) 105.21 5. The table below shows the prices of four commodities and their weights in 2006 and 2007 | table below shows the pr | ices of four con | amountes and the | _ | |--|-----------------------------|-----------------------------|---------------| | Commodity | 2006 | Price (U shs)
2007 | Weight | | Banana(1 bunch) Meat(1kg) Milk (1 litre) Sugar (1kg) | 3000
2500
300
1500 | 8000
3000
400
1800 | 3
1
2 | Taking 2006 as the base year, find for 2006, the; - (a) (i) price relative for each commodity - (ii) simple aggregate price index - (b) Weighted price index for all the commodities [Ans:(a) (ii) 180.82 (b) 197.37 - 6. The prices per unit (in U shs) of four food stuffs A, B,C and D in December 2004 and December 2005 are shown in the following table | . 1 | Price (U s | ns) in December | |------------|---------------|-----------------------| | Food stuff | 2004 | 2005 | | | 635 | 887.5 | | \ <u>^</u> | 720 | 815 | | B | 730 | 1045 | | C | 362 | 503 | | D | O and D are i | 5. 4. 3 and 7 respect | The weights of the food stuffs A, B, C and D are 6, 4, 3 and 7 respectively. Taking 2004 as the base year, calculate for 2005 the - (a) price relative for each food stuff hence the simple price index - (b) (1) weighted price mass. (ii) price of food stuff costing shs 500 in December 2004 using the weighted aggregate index. (ii) price of food stuff costing shs 500 in December 2004 using the weighted aggregate index. ns: (a) (ii) 133.7 (b) (i) 133.93 (ci) 7. The price (in shillings) per litre of fuel in months of January and May of a certain year are given in [Ans: (a) (ii) 133.7 (b) (i) 133.53 (ii) 667.64/=] the table below. | below. | January | May | |--------|---------|---------------------| | | 1470 | 1420 | | Petroi | 1270 | 1220 | | Diesel | 1140 | 1160 | | l | | ry as the base [Ans | Find the simple price index for May taking January as the base [Ans: 98.15] nd the simple price mass for the quantities and prices for the years 1998 and 2005 for Sam's student 8. The following table shows the quantities and prices for the years 1998 and 2005 for Sam's student Centre' ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition | Item | 1998 | | 2005 | | |---|-------------------------------------|--------------------|---|--------------------| | Pens (dozen) Pencils(dozen) Erasers(each) Paper (pkg) Printer drum (each) | Price (U shs) 900 650 450 890 6000 | Quantity 5 5 25 50 | Price (U shs)
1100
800
550
1090 | Quantity 6 6 28 75 | | Printer cartridges | 16000 | 30
15 | 5000
20000 | 45
20 | Taking 1998 as the base year, calculate the Simple price index for 2005 Weighted price index (ii) [Ans: (i) 116.4 (ii) 109.05 (iii) 151.72] Value index (iii) 9. The table below shows the cost per kg of some items commonly used by a certain family Item Sugar Posho Salt Rice Millet Cost per kg 2200 2000 500 2600 3000 (a) Using posho as the base, calculate the price relatives of each item hence determine the cost of living index 1000 (b) Comment on the
results in (a) above [Ans: (a) 103 (b) increase by 3% 10. The table shows the prices of items in uganda shillings and their weights in 2010 and 2013 | Items | 2010 | 2013 | Weights | |-------|------|------|---------| | Rice | 2400 | 2800 | 3 | | Meat | 5000 | 7000 | 1 | | Posho | 1200 | 1600 | 2 | | Beans | 2000 | 2500 | 4 | Calculate the aggregate weighted index for the items taking 2010 as the base year [Ans:126.55] 11. The price relatives for five commodities A, B, C, D and E are shown in the table below with their respective weights. | respective werg | espective weights. | | | | | | |-----------------|--------------------|-----|-----|---|-----|--| | Commodity | A | В | С | D | E | | | Price relative | 145 | 125 | 130 | х | 120 | | | Weight | 1.2 | 3 | 4 | 5 | 1 . | | Find the value of x if the weighted price index is 127. [Ans: 91] 12. The expenses of a house hold (in thousands of Uganda shillings) for the first month of three consecutive years (2000 - 2002) were as follows | Surve years (2000 2002) note as tenent | | | | | | |--|------|------|------|--|--| | Item | | Year | | | | | | 2000 | 2001 | 2002 | | | | Food | 240 | 300 | 320 | | | | Fuel | 40 | 50 | 56 | | | | Transport | 80 | 120 | 120 | | | | Others | 120 | 150 | 160 | | | Taking 2000 as the base year, find the price relatives for the years 2001 and 2002. (i) Using the weights of 4, 1, 2 and 3 for food, fuel, transport and others respectively, calculate (ii) the weighted aggregate index for 2001 and 2002. [Ans: (i) 127.63 (ii) 135.26] # CHAPTER 13: MOVING AVERAGES Many sets of data display trends, which depend upon time of year or the particular month or even the time For example, we would expect the sales of umbrellas against the seasons of the year (autumn, winter, summer, spring etc.). We would expect some wildly fluctuating graph as follows; Umbrellas sold MIA'N In attempting to glean meaningful information from such graphs, we really need to isolate the different seasons, each of which exerts its own seasonal influence. One way of doing this is to use what are termed moving averages, which are designed to level out the large fluctuations which can occur in a set of data that varies over time. CHRANARA RKC. MC1100E. JAMANAMA SECTORIL Suppose you have measured the weight of a child over an eight-year period and have the following figures (in kg) 32, 33, 35, 38, 43, 53, 63, 65 We can take the average of each 3 years period. These are 3 year / 3 point moving averages Let M_B denote moving averages i.e M₁ will denote the first, M₂ the second and so on denote moving a coordinate of the last) $$M_1 = \frac{32+33+35}{3} = \frac{100}{3} = 33.3$$ $$M_2 = \frac{33+35+38}{3} = \frac{106}{3} = 35.3$$ $$M_3 = \frac{35+38+43}{3} = \frac{116}{3} = 38.7$$ $$M_4 = \frac{38+43+53}{3} = \frac{134}{3} = 44.7$$ $$M_5' = \frac{43+53+63}{3} = \frac{159}{3} = 53.0$$ $$M_6 = \frac{53+63+65}{3} = \frac{181}{3} = 60.3 \text{ (this is the last)}$$ If we are to calculate the 4 year/ 4point moving averages If we are to calculate the 4 years $$M_1 = \frac{30+33+35+38}{4} = \frac{136}{4} = 34$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$M_2 = \frac{33+35+38+43}{4} = \frac{149}{4} = 37.3$$ $$M_3 = \frac{35+38+43+53}{4} = \frac{169}{4} = 42.3$$ $$M_4 = \frac{38+43+53+63}{4} = \frac{197}{4} = 49.3$$ $$M_5 = \frac{43+53+63+65}{4} = \frac{224}{4} = 56 \quad \text{(this is the last)}$$ ### Example 2 A college records the number of people who sign up for adult education classes each term. The table shows the numbers from December 2000 to June 2002 | Term | December | | 02 | | | | |--------------------------|----------|-------|------|----------|-------|------| | | 2000 | March | June | December | March | June | | Number of people | 520 | 2001 | 2001 | 2001 | 2002 | 2002 | | a) calculate the three n | | 300 | 380 | 640 | 540 | 599 | - (a) calculate the three point moving averages for the data - (b) Plot the three point moving averages with the original data together on the same axis. - (c) (i) comment on the trend of the number of people who sign up in the period - (ii) use your graph to the three point moving average that will be plotted at june 2002 ### Solution The three point moving averages are; (a) $$M_1 = \frac{520+300+380}{3} = \frac{1200}{3} = 400$$ $$M_2 = \frac{300+380+640}{3} = \frac{1320}{3} = 440$$ $$M_3 = \frac{380+640+540}{3} = \frac{1560}{3} = 520$$ $$M_4 = \frac{640+540+500}{3} = \frac{1680}{3} = 560$$ Alternatively, we can decide to calculate the moving averages in a table as below | Term | Dec
2000 | March
2001 | June
2001 | Dec
2001 | March
2002 | June
2002 | |----------------------|-------------|------------------------|------------------------|------------------------|------------------------|--| | Number of people | 520 | 300 | 380 | 640 | 540 | 599 | | Moving totals (M.T) | | 1200 | 1320 | 1560 | 1680 | • • • • • • • • • • • • • • • • • • • | | Moving averages(M.A) | | $\frac{1200}{3} = 400$ | $\frac{1320}{3} = 440$ | $\frac{1560}{3}$ = 520 | $\frac{1680}{3} = 560$ | | (b) We always plot the moving averages in the middle of the respective grouping - (c) (i) The nature of the line of best fit gives us the trend and we can identify that the number of people who sign up for adult education generally increases over the given period. - (ii) From the line of best fit, we can estimate the moving average plotted at June to be 610 (a) したとうちいいいというない Caperage with an areas of 1 The table below shows the amounts of Jenny's gas bills from September 2001 to December 2002 in dollars. | Date September 2001 | December | March | June | September | December | |---------------------|----------|-------|------|-----------|----------| | | 2001 | 2002 | 2002 | 2002 | 2002 | | 28.70 | 32.40 | 29.10 | 7.80 | 30.30 | 38.60 | - (a) Calculate the four point moving averages for the data - (b) Graph the raw data and the moving averages - (c) Comment on the trend of the bills over the given period $$M_1 = \frac{\frac{\text{Solution}}{4}}{\frac{28.70 + 32.40 + 29.10 + 7.80}{4}} = \frac{98}{4} = 24.5$$ Advanced Level Subsidiary Mathematics by Kawunia Fahad 2nd Edition - $$M_2 = \frac{32.40 + 29.10 + 7.80 + 30.30}{4} = \frac{99.6}{4} = 24.9$$ $$M_3 = \frac{29.10 + 7.80 + 30.30 + 38.90}{4} = \frac{106.1}{4} = 26.53$$ A graph showing the amounts of Jenny's bills and the four point moving averages (c) There is a general increase in Jenny's gas bills ### Example 4 The amount of water used every after 6 months over a period of 4 years is shown in the following table. | Year | 20 | 80 | 200 |)9 | 20 | 10 | 20 | 11 | |-----------------|-----|-----|-----|-----|-----|-----|-----|-----| | Month | Mar | Oct | Mar | Oct | Маг | Oct | Mar | Oct | | Water used (m3) | 36 | 45 | 29 | 43 | 38 | 45 | 52 | 46 | - (a) Calculate the three point moving averages for the data - (b) On the same axis, plot the original data and the moving averages - (c) (i) comment on the amount of water used in the period (ii) Using your graph, estimate the amount of water that was used in March 2012 . (a) $$M_1 = \frac{\text{Solution}}{3} = \frac{110}{3} = 36.7$$ $M_4 = \frac{43+38+45}{3} = \frac{126}{3} = 42$ $M_2 = \frac{45+29+43}{3} = \frac{117}{3} = 39$ $M_5 = \frac{38+45+52}{3} = \frac{135}{3} = 45$ $M_3 = \frac{29+43+38}{3} = \frac{110}{3} = 36.7$ $M_6 = \frac{45+52+46}{3} = \frac{143}{3} = 47.7$ | (b) · | of water used (in m ³) and the three point moving a | verages | |----------------------------|---|---------------------| | A graph showing the amount | of water used (in m-) and the | | | 1 | | | | | | | | | | | | | | | | 20 | | | | | | × | | | | | | | | | | ¥ 1 | | إورية أحماله المريا | | 3 1 1 | | | | | | | | 3 1 | | | | 35 | | | | | | | Mer Die Mar die M | | | not mar | 7008 . 7000 Just 8610 7010 30 | H 500 | 2003 300£ (c)(i) the amount of water used generally increases over the period (ii) PRAIN TELEBEROL factions he her agreed .; Menning and octions Let the amount in March 2012 be x Moving average plotted at October 2011 = 51 Hence $$\frac{52+46+x}{3} = 51$$ $$98 + x = 153$$ $$x = 55m^3$$ Example 2 The table below shows the annual production of copper in millions of kilograms in a certain country for the period 1960 - 1970 | period 1960 - 15 | 970
1060 T | '61 | '62 | '63 | '64 | ' 65 | ' 66 | '67 | 68' | ' 69 | 1970 | |------------------|---------------|------------|------------|------------|------------|-------------|-------------|-----|-----|-------------|------| | Tyear | 960
196 | 146 | 172 | 178 | 155 | 152 | 130 | 154 | 166 | 164 | 135 | | Annuai | | | | | | | | | | | | | production |
S vear | movin | g aver | ages | | | | | | | | - (a) Construct the 5 year moving averages - (a) Constitution axis, plot the original data and the moving averages (b) On the same axis, plot the original data and the moving averages - (c) Comment on the trend of production over the 11 year period. (c) Comment Solution (a) $$M_1 = \frac{196+146+172+178+155}{5} = 169.4$$ $$M_5 = \frac{155 + 152 + 130 + 154 + 166}{5} = 151.4$$ Advanced Level Subsidiary Mathematics by Kawunia Eahad 2nd Edition $$M_{2} = \frac{\frac{146+172+178+155+152}{5}}{\frac{5}{5}} = 160.6 \qquad M_{6} = \frac{\frac{152+130+154+166+164}{5}}{\frac{5}{5}} = 153.2$$ $$M_{3} = \frac{\frac{172+178+155+152+130}{5}}{\frac{5}{5}} = 157.4 \qquad M_{7} = \frac{\frac{130+154+166+164+135}{5}}{\frac{5}{5}} = 149.8$$ $$M_{4} = \frac{\frac{178+155+152+130+154}{5}}{\frac{5}{5}} = 153.8$$ Alternatively, if you used the table to calculate the five year moving averages, you would have the following; | Year | 1960 | ·61 | '62 | '63 | ¹64 | ' 65 | ,00 | '67 | *68 | ' 69 | 1970 | |-------------------|------|-----|------------|------------
-------|-------------|-------|-------|-------|-------------|------| | Annual production | 196 | 146 | 172 | 178 | 155 | 152 | 130 | 154 | 166 | 164 | 135 | | Moving
totals | X | X | 847 | 803 | 787 | 769 | 757 | 766 | 749 | X | X | | Moving averages | X | Х | 169.4 | 160.6 | 157.4 | 153.8 | 151.4 | 153.2 | 149.8 | X | X | HARALINA BUNGULIA BUNGA LIBARTA (c) The production generally decreases over the period ### Example 6 The table below shows the amount of milk (in thousands of litres) produced by a certain exotic farm in yearly quarters for the 1986 - 1989 period. | Year | T | QU/ | ARTER | | |------|-----------------|-----------------|-----------------|-----------------| | , | 1 st | 2 nd | 3 rd | 4 th | | 1986 | 19.5 | 30.0 | 32.5 | 25.0 | | 1987 | 30.5 | 37.0 | 38.5 | 26.5 | | 1988 | 36.5 | 44.5 | 46.6 | 35.0 | | 1989 | 45.5 | 50.5 | 52.5 | 42.5 | (a) Calculate the four point moving averages for the data ### Advanced Level Subsidiary Mathematics by Kawania Fahad 2nd Edition - (b) On the same axes, plot the four point moving averages and the original data - (c) (i) comment on the trend of milk production over the period of 4 years. - (ii) Use your graph to estimate the amount of milk that will be plotted in the 1st quarter of 1990. (a) $$M_1 = \frac{\frac{\text{Solution}}{4}}{4} = 26.5 + 30.0 + 32.5 + 25.0 = 26.75$$ $M_2 = \frac{30.0 + 32.5 + 25.0 + 30.5}{4} = 29.5$ $M_3 = \frac{32.5 + 25.0 + 30.5 + 37.0}{4} = 31.25$ $M_4 = \frac{25.0 + 30.5 + 37.0 + 38.5}{4} = 32.75$ $M_5 = \frac{30.5 + 37.0 + 38.5 + 26.5}{4} = 33.13$ $M_6 = \frac{37.0 + 38.5 + 26.5 + 36.5}{4} = 34.63$ $M_7 = \frac{38.5 + 26.5 + 36.5 + 44.5}{4} = 36.5$ $M_{13} = \frac{45.5 + 50.0 + 52.5}{4} = 47.63$ $M_{13} = \frac{45.5 + 50.0 + 52.5 + 42.5}{4} = 47.63$ - (c) (i) The production generally increases over the given period - (ii) Let the amount of milk produced in the 1st quarter of 1990 be x From the graph, the 14^{th} moving average, $M_{14} = 49.5$ $$\Rightarrow \frac{50.0+52.5+42.5+x}{4} = 49.5$$ $$145 + x = 198 \Rightarrow x = 53$$ ### Example 7 The table below indicates the quarterly variation in a certain school earnings in millions of shillings from 1950 - 1952. | Year | | OU | ARTER | | |----------------------|--|--------------------|--------------------|-------------------| | | 1 st | 2 nd | 3 rd | 4 th | | 1950
1951
1952 | 11.0
10.5
9.9 | 10.0
9.7
9.3 | 10.0
9.4
9.0 | 9.4
9.3
8.6 | - (a) Calculate the quarterly moving averages for the data - (b) On the same axes, plot the four point moving averages and the original data - (c) (i) comment on the trend of the school earnings over the period - (ii) Estimate the earning that will be recorded in the first quarter of 1953 $$M_6 = \frac{9.7 + 9.4 + 9.3 + 9.9}{4} = \frac{38.3}{4} = 9.58$$ $$M_7 = \frac{9.4 + 9.3 + 9.9 + 9.3}{4} = \frac{37.9}{4} = 9.48$$ $$M_8 = \frac{9.3 + 9.9 + 9.3 + 9.0}{4} = \frac{37.5}{4} = 9.38$$ $$M_9 = \frac{9.9 + 9.3 + 9.0 + 6.6}{4} = \frac{36.0}{4} = 9.2$$ - (c) (i) the school's earnings generally decrease over the period - (ii) let the school's earnings in the first quarter of 1953 be x The 10^{th} moving average from the graph $M_{10} = 9.1$ $$\frac{9.3+9.0+8.6+x}{4} = 9.1$$ $$26.9 + x = 4 \times 9.1$$ $$x = 36.4 - 26.9 = 9.5$$ Therefore, it is estimated that the school's earnings in the 1st quarter of 1953 would be 9.5 million Ug .shs. ### Trial questions - 1. The sales (in thousands of shillings) of a computer accessories company for the period 2002 to 2004 are given in the table below. | Year | QUARTER | | | | | | | |------|---------|-----------------|-----------------|-----------------|--|--|--| | | 121 | 2 nd | 3 rd | 4 th | | | | | 2002 | 1235 | 1242. | 1410. | 1400 | | | | | 2003 | 1275 | 1270 | 1450 | 1480 | | | | | 2004 | 1302 | 1280 | 1510 | 1500 | | | | - (a) Calculate the four point moving averages - (b) On the same axes, plot graphs of the sales and the moving averages against time. Comment on the general trend of the sales for the three years period - (c) Use your graph to estimate the sales of computer accessories in the first quarter of 2005. - 2. The table below shows the quarterly cost (in 1000's Uganda shillings) of electricity for a house hold over a period of 3 years 1992 - 1994 | Year | QUARTER | | | | | | | |--------|---------|-----------------|-----------------|-----------------|--|--|--| | 2 | 1 st | 2 nd | 3 rd | 4 th | | | | | 1992 | 68 | 60 | 59 | 65 | | | | | 1993 | 82 | 80 | 80 | · 92 | | | | | .1994 | 94 | 78. | 90 | 105 . | | | | | 1.1994 | 94 | /8. | 90 | 100 . | | | | - (a) Calculate the four point moving averages - (b) On the same axes, plot both the raw data and the moving averages - (c) Comment on the trend of electricity over the period of 3 years - 3. The table below shows the electricity supplied (in million kilowatt hours) to a company on a quarterly basis between 1988 and 1991 | Year | | QUARTER | | | | | | | | |------|------|-----------------|-----------------|-----------------|--|--|--|--|--| | | 150 | 2 nd | 3 rd | 4 th | | | | | | | 1988 | 8.9 | 7.1 | 6.7 | 9.3 | | | | | | | 1989 | 10.1 | 7.5 | 7.1 | 10.5 | | | | | | | 1990 | 11.7 | 7.5 | 8.3 | 16.9 | | | | | | | 1991 | 12.5 | 8.3 | 9.5 | 17.7 | | | | | | - (a) Calculate the quarterly moving averages - (b) On the same axes, represent the data above and the quarterly moving averages - (c) Comment on the trend of power supply to the company over the four years period - 4. The average prices of a bunch of matooke in each third of a year over a period of $3\frac{1}{3}$ years are given in Uganda shillings in the table below. | Year | 1 st third | 2 nd third | 3 rd third | | |------|-----------------------|-----------------------|-----------------------|--| | 1998 | | 5000 | 5200 | | | 1999 | | 5700 | 6000 | | | 2000 | ′ T | 6500 | 6800 | | | 2001 | ' IIII. | l x | | | - (a) Calculate the three point moving averages - (b) On the same graph, plot the raw data and the moving averages - (c) (i) comment on the trend of prices of matooke for this period - Use your graph to estimate the value of X in the table ### 5. The table below shows the number of first grades scored by a candidate class of a certain school on termly basis for the years 2008 to 2011 | Vann | FIRST GRADES | | | | | | | | | | |------|----------------------|----------------------|----------------------|--|--|--|--|--|--|--| | Year | 1 st term | 2 nd term | 3 rd term | | | | | | | | | 2008 | 72 | 80 | 84 | | | | | | | | | 2009 | 76 | 92 | 80 | | | | | | | | | 2010 | 96 | 100 | 98 | | | | | | | | | 2011 | 102 | 108 | - | | | | | | | | - (i) Calculate a three point moving averages for the data - (ii) Plot the first grades and the 3-point moving averages on the same graph - (iii) From the graph, predict the number of first grades x obtained in 3rd term of 2011 - (iv) Comment on the trend of performance - 6. The table below shows the number of bags sold by a certain shop, over the period of 12 weeks... | | | _ | | | | | | | | | | | | |---|-----------|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------| | 1 | Week | | 2 | 3 | 4 | 5 | 6 | 7 . | 8 | 9 | 10 | 11 | √12 . | | | No. of | 422 | 318 | 349 | 252 | 386 | 230 | 256 | 141 | 264 | 168 | 272 | 260 | | 1 | bags sold | <u> </u> | | | | | | | | | | | | - (a) Calculate the 3 weekly moving averages - (b) On the same axes, show the weekly sales and the 3- weekly moving averages - (c) Comment on the trend of sales of the bags over the 12 weeks period - 7. The table below shows the students' enrollment in school over a period of 12 years | | • | | | | | | | | | | | | |----------|------|------|------|------|------|------|------|------|------|------|------|------| | Year | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | | students | 700 | 765 | 810 | 840 | 900 | 925 | 975 | 1034 | 1059 | 1110 | 1150 | 1188 | - (a) Calculate the four point moving averages - (b) (i) plot the four point moving averages on the graph - - (ii) Use the graph to predict the students' enrollment for the year 2004. - 8. The table below shows the average school fees per student of a certain school in thousands of Uganda shillings from 2001 to 2004 | Year | | term fee | | ds of Ug shs | |------|----------------------|----------|----------------------|----------------------| | | 1 st term | | 2 nd term | 3 rd term | | 2001 | 180 | | 200 | 210 | | 2002 | 190 | | 230 | 200 4 | | 2003 | - 240 | | 250 | 245 | | 2004 | 255 | | 270. | | - (i) Calculate the 3-point moving averages for the data - (ii) Plot the term fees and the 3-point moving averages on the same graph - (iii) From the graph, predict the fees per student for the third term of 2004. - 9. The expenditure on school fees (in thousands of Ug shs) by a family for three years is shown in the following table. | Year | | QUARTER | | | | | | | | | |------|-----|-----------------|-----------------|-----------------|--|--|--|--|--|--| | | 181 | 2 nd | 3 rd | 4 th | | | | | | | | 2001 | 84 | 64 | 61 | 82 | | | | | | | | 2002 | 92 | 70 | 70 | 85 . | | | | | | | | 2003 | 100 | 81 - | 81 | 96 | | | | | | | | 1 | 1 | I | 7 | | | | | | | | - (i) Calculate the four point moving averages - (ii) Plot the expenditure on fees and the four point moving averages on the same graph ### Advanced Level Subsidiary Mathematics by Kawuma Fahad Comment on the trend of the school fees over the given period. shows the monthly sales of a certain product (in kg) in the year 1995 (iii) 1 | | - alony | chows | he mon | thly sal | es of a c | ertain p | Hounci | (111 K5) | ii the y | | | _ | | |-----------------|---------|-------|--------|----------|-----------|----------|--------|----------|----------|-----|-----|-----|---| | 10. The table b | below | | 124 | 1 4 | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Month . | Jan | Feb | | Apr | 744 | 700 | 756 | 784 | 828 | 800 | 840 | 880 | | | Sales | 672 |
636 | 680 | 704 | 144 | 700 | 1.00 | | | | | | Т | (a) Calculate the 6-point moving averages (b) Plot on the same axes the actual sales and the moving averages. Comment on the trend of sales during the year. 11. The table below shows the annual production of oil in millions of litres by a company for a period 1998 - 2006 | 998 – 2006 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | |------------------------|------|------|------|------|------|------|------|------| | Year 1999
Prodn 195 | 145 | 170 | 177 | 154 | 152 | 132 | 155 | 167 | (a) Construct a 5-year moving averages for the oil production (b) On the same axes, plot the graphs of annual production and moving averages (c) Comment on the general trend of oil production over the year period ### CHAPTER 14: SCATTER GRAPHS AND CORRELATION the relation between two variables can more appreciably be shown on diagrams or graphs known as scatter graphs. A scatter graph is obtained by representing the scores of one variable on the vertical axis and the other corresponding values on the horizontal axis. ### Example Draw a scatter diagram for the following data | | X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | T . | | Lia | | | • | | |------|----------|--------|---------------------|--|----------------|-------------|--|-----------------|--|-------------|--|---|---|--|------------------------| | | Y | 5 | 4 | 7 | 6 | 9 | 8 | | 8 | 9_ | 10 | | | | | | Soli | ıtion | | <u> </u> | | <u>.</u> | <u> </u> | | 11 | 10 | 13 | 12 | | | | 4+ | | 5010 | | | | | | _ | | | | | | | | | | | | 75 | | | | · | | | - | | | ; | | | 1.1 | | | | 154 | | | | ; | - | | | - | | | <u>i</u> | İ | | | | | - 1 | | | | • | | : | . | ••• | | | | | | i=:::: | | | Ì | - | | ; | ~~ | | | | ∙II. | | | 1 | ×: | | 1 | | | 12 | | : : | 11.1 | . : • | | | - - | ; | • • | i | | | | 1 | | | | | ; : . | · | : | |] | - | | | | 1.7.7.7 | 7 | | | | | | · ==== | <u> </u> | -i | | | | | <u> : </u> | | <u>; </u> | | | 1775 | | | | | · · | | -j · | | === | | . | 777 | | [1.1] | | ===== | 4.3.3.5 | 1 :=== | | | 10 | | | | \Box | | 1 | | 11. | | ! | ķ -; | | ==== | | | | . J. | | <u>: </u> | | <u></u> - | <u> </u> | | <u>-</u> j- | | ::- | : == := | <u> </u> | [] [: [] | ++++ | <u> </u> | | | | | 1 .:::- | 1 | İ | - | · - | ··· [| 1 | === | | 1111 | | | | | | - † | | | | | | | ! | - * | | • | i i- | | | | | | i | | | | | | | | | | | | | İ., , | | | | | | 7 | | - X | • | | _ - | ; | | | | 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | ::: | | | | 6+ | • | !
! - | | <u>-:</u> -:- | | <u>.</u> | | . <u>-</u> | <u>.</u> | | | | | | | | | | | : | : 1 | | ì | - - | | • | | 1 : | | | i | | | <u> </u> | ; | K | ! . | - | | | - - | ~ | | · · · · · · · · · · · · · · · · · · · | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | | | | | ٦L | | | <u>J-::.</u> - | ·- ¦ | | == | <u> </u> | ; | | ; -:- -:- | | : :: == | | 1 | | | 4 | | ' | 1 | <u></u> | |] | | | , | : = : = | | · · | :- | | | | - - | | : | ·: | -:- | | | | <u>:=:</u> | <u>··</u> | | | | | ==:[| | | - 1. | . | | † | - | ; 🖫 | - | <u>: [:</u> | | | | 11::: | | <u>::</u> | 1777 | | | 고† | · : : | | | : ; | | 1-1- | - | | | ; | | - | | | | | | | | <u>l</u> . | <u>. </u> : | :: | -:: | <u>: :</u> | | | 1:::: | | | - - - - - - - - - - - - - - - - - - - | | | | ſ | : | | <u>.</u> | : [] | = | <u>:</u> | : | | =::- | | | === | : | · | | | -باه | | | <u>.</u> | 5 | • • | <u> </u> | <u>-Ļ-</u> | | | | <u> </u> | | | : : : <u>- : - : </u> | | | | | • | | | | | - | • | |] } | ا. د | , , | o . | | #### REGRESSION LINE When a scatter graph is plotted, a line of best fit can be drawn through the points. This line is called the regression line. regression line. The regression line passes through the point (\bar{X}, \bar{Y}) where $\bar{X} = \frac{\sum X}{n}$ and $\bar{Y} = \frac{\sum Y}{n}$ The regression line passes through the above point such that there are equal number of points both below and above the line. ### Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition ### Example 1 In two different athletics competition C1 and C2, ten schools A, B, C, D, E, F, G, H, I, J participated and their performances in points are given below. | t | heir pertormai | nces in p | oints are | given be | low. | | | - | | 1 | | |---|----------------|-----------|-----------|----------|------|-----|-------------|---------------|-----|------|-------------| | Γ | Competition | A | В | C | D | E | F | 607 | 510 | 560 | 540 | | ľ | Cı | 556 | 473 | 502 | 514 | 435 | 499 | 507 | 560 | 597 | 572 | | Ī | C ₂ | 590 | 496 | 578 | 608 | 524 | 504 | 600 | 100 | 1377 | | - Plot the points on a scatter diagram C2 against C1 (i) - Draw a line of best fit through the plotted points on your scatter diagram (ii) - Estimate how many points a school would have scored in competition C2 if it had scored 525 (iii) points in the competition Ci ### Solution 5 8 1 (i) (i) $$\bar{X} = \frac{\sum c_1}{10} = \frac{5096}{10} = 509.6$$ ### Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition and $$\vec{Y} = \frac{\Sigma c_2}{10} = \frac{5625}{10} = 562.5$$ The line of best fit passes through the point (509.6, 562.5) (ii) From the graph, the school would have scored 572 points in Cz if it had scored 525 points in Cz. ### · Example 2 The table below shows the marks scored in mathematics and fine art of 10 students in a certain school. | | | | | | | | illes a | nu mi | . dit Oi | 10 30 | 44 | | |-----|-------------|------|------|-----|------|-------|---------|-------|----------|-------|-----|---| | 1 | Mathematics | 140 | 48 | 79 | 26 | 155 | 135 | 137 | T 70 | 60 | 40 | 1 | | l F | ine Art | 1 59 | 162 | 23 | 1 17 | 1 10 | 130 | 100 | 120 | 55 | 47 | 1 | | | | | , ~- | 100 | 14/ | I → D | 1 14 | 101 | 1 /9 | 1 33 | 107 | ı | - (i) Draw a scatter diagram and comment on your result - (ii) Plot a line of best fit on your scatter diagram and estimate the score in fine art if 65 marks were scored by a student in Mathematics ### Solution (ii) $$\vec{X} = \frac{\sum X}{10} = \frac{490}{10} = 49 \text{ and } \vec{Y} = \frac{\sum Y}{10} = \frac{535}{10} = 53.5$$ From the graph, a student who scored 65 marks in mathematics would have scored 68 marks in fine art. ### CORRELATION Correlation is a method used to determine the relation between two or more variables. Correlation coefficient is the index used to measure the degree of correlation Types of correlation PRINCIPLE PRINCES This diagram shows a positive correlation This diagram shows a negative correlation This diagram shows no correlation Interpretation of the magnitude of correlation coefficient | Correlation coefficient | Interpretation | | |-------------------------|--------------------------|---| | 0'-0.19 | *Chance correlation | ١ | | 0.2 - 0.39 | Slight correlation | | | 0.4-0.59 | *Moderate correlation | | | 0.6 - 0.79 | -Substantial correlation | | | 0.0 0.22 | High correlation | | Note: the sign associated with the correlation coefficient will be the one responsible for the type of coefficient i.e. -0.85 would indicate a high negative correlation, 0.24 would indicate a slight positive correlation and so on. ### Rank correlation The degree of relationship can be calculated using the spearman's correlation coefficient (ρ) as indicated below; Spearman's rank correlation coefficient, $\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$ Where d is the difference between the rankings of a given scores and n is the number of pairs. ### Examples TOTAL STOCKED CONTRACTOR STOCKED TO THE STOCKED STOCKE 1. Two examiners X and Y each marked the scripts of 10 candidates who sat a mathematics examination. The table below shows the examiner's rankings of the candidates | Examiner A | В | C | D | E | F | G | Н | Ī | J | |-----------------------|----|----|---|---|---|---|----|---|---| | Y 5 | 3_ | 6_ | 1 | 4 | 7 | 2 | 10 | 8 | 9 | | $\frac{\lambda}{V}$ 6 | 3 | 7 | 2 | 5 | 4 | 1 | 10 | 9 | 8 | ### Solution | | T | | |-----|------------------|---| | Ry | $d = R_x - R_y$ | l d ² | | 6 - | - - | | | 3 | 0, | | | 1 7 | ا آراً | 1 % | | 1 5 |] - ; | \ | | 4 | - ! | 1 | | 15 | <u> - </u> | 1 | | | R _y | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | ### Advanced:Level Subsidiary Mathematics by Kassuna: Eahad: 2nd Edition | F
G
H | 7
2
10
8 | 4
1
10 | 3
1
0 | 9 1 0 | |-------------|-------------------|--------------|-------------|---------------------------| | j GYU? | 9 | 8 | •
 | $\frac{1}{\sum d^2 = 16}$ | $$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 16}{10(100 - 1)} = 1 - 0.097 = 0.903$$ Comment: there is a very high positive correlation between the two examiners X and Y 2. The table below shows the marks of eight students in physics and mathematics. Rank the results and find the value of the rank correlation. Comment on the result. | 111 | | 11. 001 | 1111171 | (())) () | 10 1621 | 111. | | | |----------------|----|---------|---------|-----------|---------|------|----|----| | Physics (X) | 65 | 65 | 70 | 75 | 75 | 80 | 85 | 85 | | Mathematics(Y) | 50 | 55 | 58 | 55 | 65 | 58 | 61 | 65 | ### Solution | <u>X</u> | <u> </u> | Rx | Ry | d = Rx - Ry | d ² | |----------|----------|-----|-----|-------------|----------------| | 65
65 | 50 | 7.5 | 8'. | 0.5 | 0.25 | | | 55 | 7.5 | 6.5 | 1 | 1 | | 70 | 58
 6 . | 4.5 | -1.5 | 2.25 | | 75 | 55 | 4.5 | 6.5 | -2 | 4 | | 75 | 65 | 4.5 | 1.5 | 3 | 9 | | 80 | 58 | 13 | 4.5 | -1.5 | 2.25 | | 85 | 61 | 1.5 | 3 | -1.5 | 2.25 | | 85 | 65 | 1.5 | 1.5 | 10, | 1 0 2 3 | $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 21}{8(64 - 1)} = 1 - 0.25 = 0.75$$ There is a positive substantial correlation between the two subjects 3. Eight students of a certain school participated in the 1989 and 1990 national mathematics contests: : Their scores were as follows. | Participant | Α | В | C | D | E | F | G | Н | |-------------|----|----|----|----|----|----|----|----| | 1989 | 72 | 60 | 56 | 76 | 68 | 52 | 80 | 64 | | 1990 | 56 | 44 | 60 | 74 | 66 | 38 | 68 | 52 | - (a) Calculate the mean scores for the participants each year - (b) Compute a rank correlation coefficient for the performance of the participants in the two years. - (c) Use the values obtained in (a) and (b) to comment on - (i) The level of difficulty of the two contests - (ii) Whether the two contests examined had the same mathematic aptitude #### Solution (a) For 1989, Mean = $\frac{72+60+56+76+68+52+80+64}{8} = \frac{528}{8} = 66$ For 1990, Mean = $$\frac{56+44+60+74+66+38+68+52}{8} = \frac{458}{8} = 57.25$$ (b) | | <u> </u> | | | | | | |-------------|----------|---------|----------------|------|------------|-----------------| | Participant | 1989(X) | 1990(Y) | R _X | Ry . | d · | d^2 | | A | 72 | 56 | 3 | 5 | -2 | 4 | | В | 60 | 44 | 6 | 7 | -1 | 1 | | C | 56 | 60 | 7 | 4 | 3 | 9. | | D ` | 76 . | 74 | 2 | 1 | 1 | 1 | | E | 68 | 66 | 4 | 3. | 1 | 1 | | F | 52 | 38 | 8 | 8 | lo | 0 | | G | 80 | 68 | 1 | 2 | -1 | 1 | | <u> </u> | 64 | 52 | 5 | 6 | - <u>l</u> | 1 | | | , | • • • | | | • | $\sum d^2 = 18$ | $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 18}{8(64 - 1)} = 1 - 0.2143 = 0.7857$$ (ii) the two contests had the same mathematical aptitude | fettii rokemer | **** | | | | ~ | | | | | | _ | | |----------------|----------------|-----|----------------|------|----|----|----------|----|----|----|----|----| | Students | Α | B | \overline{C} | D | Е | F | G | Н | I | J | K | L | | Marks(X) | 53 | 74 | 48 | 71 | 68 | 60 | 47 | 72 | 48 | 65 | 80 | 40 | | Marks(Y) | 41 | 50 | 44 | 38 | 41 | 48 | 45 | 57 | 36 | 46 | 50 | 47 | | I IVIALKSU I I | - | 100 | רד | JU _ | | | <u> </u> | | | | | | - Plot a scatter graph for the above data (i) - Calculate the rank correlation coefficient for the data (ii) - What conclusions can one draw from your result in (ii) above (iii) Solution A scatter graph showing the marks obtained by 12 students in statistics examinations (i) 160 # Advanced Level Subsidiary Mathematics by Kawuma Fahad ... 2nd Edition | - | | ٠ | ٠. | |----|---|---|----| | • | ٠ | 1 | ١ | | | 1 | ı | , | | ٠. | ٠ | ٠ | • | | Student | \overline{x} | ΤΥ | Rx | T-5- | T | | |----------|----------------|----|---------------|------|-----------------|------------------| | Λ | 53 | 41 | | Ry | $d = R_X - R_Y$ | d ² | | В | 74 | 50 | 8 | 9.5 | -1.5 | 2.25 | | C | 48 | 44 | 2 | 2.5 | -0.5 | 0.25 | | D | 71 | | 9.5 | 8 | 1.5 | 2.25 | | E | 1 | 38 | 4 | 11 | -7 | 49 | | | 66 | 41 | 5 | 9.5 | -4.5 | 20.25 | | F | 60 | 48 | 7 | 4 | 3 | 9 | | G | 47 | 45 | 11 | 7 | 4 | 16 | | H | 72 | 57 | 3 | l i | $\frac{1}{2}$ | 4 | | ļ ī | 48 | 36 | 9.5 | 12 | -2.5 | 6,25 | | l J | 65 | 46 | 6 | 6, | 0 | 0.23 | | K | 80 | 50 | l i | 2.5 | -1.5 | 2.25 | | <u>L</u> | 40 | 47 | 12 | 5 | 7 | 49 | | | | | - | 1 | 1 | Σ J2 — 160 E . 6 | $$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 160.5}{12(144 - 1)} = 1 - 0.5612 = 0.4388$$ - (iii) Conclusion: there is a moderate positive correlation between the marks X and Y - 5. The following table gives the marks obtained in calculus, physics and statistics by seven students; | | | | _ | _ | I. | , | | |------------|----|----|----|------|----|----|----| | Calculus | 72 | 50 | 60 | 55 | 35 | 48 | 82 | | Physics | 61 | 55 | 70 | 50 | 30 | 50 | 73 | | Statistics | 50 | 40 | 62 | · 70 | 40 | 40 | 60 | Draw scatter diagrams and determine the rank correlation coefficients between the performances of the students in - (i) Calculus and Physics - (ii) Calculus and statistics Give interpretations to your results # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition- | | | | <u>Soluti</u> | <u>on</u> | | | | | a and ab | veice | | | | | |-----------------|----------------|------------------------|--|--|--|-------------------|----------------------------|----------------|---|---|---|------------------|---------------|--------------| | A scat | ter | diagr | a <u>m sho</u> v | ving | <u>the per</u> | <u>forman</u> | ce in ca | Henin | s and ph | 7,716.0 | | | | | | | A | -; _ | | F | [· ; · ·] - · | | | | | | | | | × | | , | | | | | <u> </u> | 1 | | | | | | | | | | · · | - : | | , | | | | | | - 1 (| | ; | | | | | <u> </u> | 3 1 | | | | _ ; ; ; ; ; | | 1 | | | | ; · | | | | | 8 | 5 | | | | | | 1! | - : | ! | | | | : ! - | *** | | : === | | | | | | · • • | | | | | | | | مرس | | | _ _ | · · · - · | 1 | | | | . | | | · · | | | | | | | -: ; | | | | | ! | | | | | | | | | | <u> </u> | :: | | | | <u> </u> | · • - | | | | | | | | <i>=:1</i> : | | <u></u> | 3.1- | | | 1111 | | | | | | | | | | | | 1 1 | | | | | · · · · · · · · · | :-::- | 11177 | | | | | | 4 | | | <u></u> | - | | 1 1 | | | | 1 | | | | | | | | | 1::: | | | | | | | <u></u> | | : -1 | | | | | | | | | .: ===== | | :::= | | ··· <u> </u> | 1 | | i | | 1 . | | | | | | - -†-• | | -1 | | | | | | | | | <u>-</u> | · | | | 1.1.2 | :: : | : | | 11.17 | <u>:</u> | : : : | 1 | | | | 1 | | | | | 1 | _ - | | | - | | | 111 -11 | | | | | | | | | | | | | | | | | - 1: | | | | | | | | | [T | : ": | | | | | | | | | | | | | | | \$ 5 †= | | | 1: . ; ; | | | | | : <u>-</u> | 21.1177 | | <u></u> | <u> </u> | , | | | = = | | | 1: 17 | | | <u> </u> | | | | | | | | | | _ _ | | | | 11111 | | | = | —Ķ | | | | - | | | <u> </u> | <u>-</u> - | 4 | | <u>-=j</u> | | | | | | | | -1-6 | 6 | | . : - -; === | 4441 | | | | | | | | 1 4 4 5 | · · · | | | 3 | | | | | | | 1 | | | | | . ; | | | | CALCULUS | | | | | 1 | | | | | | | | | | | | | | | <u> </u> | | | x | | | | | | | | | ି ଠା | | | | 1 | | | ī: | .: | | | | ; | : | • | | | 5- : | : | | 1:::: | <u> </u> | | | | | | |) ; | | | | [: | | | | 11-1- | | | | | | | ·· | ==1 | | | | | - | | | T | T. 1. - | | | | | | | 1 : : : | | | | | | | | | | | | | x | | , , | | | | | | -1. | | | | · | -:: | | | | .: :: | | 1: : | | | | -5 | | II [] [- | | 1117 | | | x- | | | | | | | | | | - - | | | 1 · · · | | | | | | | <u> </u> | : : - | | | | | _ = | | : : : : = = | <u> </u> | | | <u> </u> | | | <u> </u> | | | 1 | | | | ::: = | | | 1 | | · · · <u> </u> | | | | |] | | | | | -4 | 3 | | | -111 | | | : | | <u>,—i.::</u> - | | | 1 | · | | | | | | <u>: ;; =</u> = | | <u>├</u> .: : | | | <u>···· -</u> | | <u> </u> | <u> </u> | <u> </u> | · · · · · · · | | | 1:1: | :: = | | <u> </u> | | | |] H- | | | ! ! | | | | | | | | | | | , | |] : : : - | | | · · · · · · · · · · · · · · · · · · · | <u>-: </u> | ļ | | | | [::: | := = | | 11 | | <u> • • • • • • • • • • • • • • • • • • •</u> | | 1 | | | | | - | | | | | -+ه | | | | | | | :::: | | · | |] | • • • | . • • | | | - ' | | | | | | | | | | | | | | | | - | | | | | | 1 | | 1 | | • • • • • | | | • | | 7 | _ - | | | | : , : _; _ | | | . | • | ****** | • • | | • • | | | .: | . [- | <u>-</u> | | | 1 1 1 1 1 1 | | | | | | | | !- | - 1 - 1 - 1 | | <u> </u> | 5· ∳ - | | | <u></u> - | ::::::: | | | . 1 | | ļ · · | | i · | : | | | ::: | 7 (1 | | | | 77.7 | | | | | | | ļ | : ': | | | :::: | : - | | | | | .: | | - : | | | * * * * * * * * | 1 | | • : | | | - - | | | 1 | | | | · · · — | | • | | i | - | ٠ | | | <u>- []</u> | | | <u>. </u> | i | | ` - <u>-</u> }- | . | - | | | <u> </u> | · | | | -30 | سلت | | 35 | A | Ġ | 45 | ٥,٠ | :
Ysic | , 5 5 | ৻৽ | 6 | Ċ | 't | 7 | | | * ३० | | ٥٥ | | - | | PH | 1510 | 7 | | _ | | | | | scatt | ter diagram showing | n 41 | _ | | | | , | |----------|---|---------------------------------------|---|-----------------|---|--|-------------| | : 1 | 1711 -1111 | <u>e the performat</u> | <u>ice in calcu</u> ' | lus and statict | ine | | | | · : . T | | [-] 1 | | . 113 inst | 162 | | | | | ······································ | | ###################################### | | | ::=::::::::::::::::::::::::::::::::::: | - 14-4 | | | | | | | | | <u> </u> | | -40 + | | [:::::::::::::::::::::::::::::::::::: | | <u>*1</u> | | ··· · · · · · · · · · · · · · · · | | | • • | | | | <u> </u> | | | := | | | | | <i></i> ↓: ↓: | | 1 | | - , , - , | | 1 | | | | | =::4:: =1 | | | | . | 1 | 1 | | | | | | | 1.75 | * | 14 41 | | | | | | | 1. 1 | - | | | · ···· | . | | | | :: | 1 | 1 = = ! | ! " | | | - , = 1 | | | | | | | | 127 to: 1 | : = = : = : : : : : : : : : : : : : : | | | 1- 1 | 1 | X | | .711 | | | | | 7 | | | | | | = = = = : | | | | 1 17 17 17 | | | | | | | | } | | | | | | | | | 1: | -11 1221 | | | | | | | | -65 | 1.
==11 ==1 == 1 == 1 == 1 | | [[[-]] - : [- | | | = . | - : : : : : | | 65 | | - | | | | <u> </u> | : :-: | | | 上面 经运动证据 | B) -1 1 | 1271i- E | | | · - - - - - - - - - | | | T | | | : | | = = = | | 1=: == | | 3 | 1 | | 1 | | | | | | ٠ م) ١٠٠ | <u>-</u> | | tranta "E | | | F | T | | <u> </u> | | | | | | | != :=::: | | , | Landing to the first | | | | | 127 (<u>12</u> 7 , 257) 221 | 1 | | 1 | 1 | | <u> </u> | | 11 | <u> </u> | man managan | | <u> </u> | | | | | 123,,1.12 | | | | 5.5 | | | <u>· · · · · · · · · · · · · · · · · · · </u> | | 1,550 550 | ;;;;== :==;:==;:==;:==;:==;:==;:==;:==;: | <u> </u> | | | | | 1日日・1 | | וֹתבנו רובנו ונונ | | T | | | | <u></u> | | | | | | | - :- | 리 그 그 그 그 | | | | | | | | 5 | x | <u>.: =:</u> "4=", | | | ;:: :: | | 1 | | | 사고 선생님 얼마 얼마 얼마 | | | | | | | | | | | 4 | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | | | | " | | | | ·]=: | | | : = : - : - : - : - : - : - : - : - : - : | | | | | | -45 | 7 | | <u></u> | <u> </u> | | | | | 1243 | | | | | - | | | | | | | | | 1=1 = :== | | | | | 그 사람이 글이 없는데를 | | | · | · | 4 | | | ہ ا | | | | | ======================================= | | I i. | | - 1 | • | : | | - 'TT | -1 1 | | | | 1 | _1':- | | | | 3 1 :: | | | | • | | | -1 | | - - | · · · · · · | | | · [. | | 吾[望: ## · ## · # | T = , '. | | | T := == , i = . | | | 3.5 | 5-† | | ·- · · · · · · · · · · · · · · · · | | <u> </u> | | | | ; 1 | | | 1 | | | 1 | 1 | | j | عائدك بالمسائد | | <u>. E </u> | | ±:=!:= | E: # : : - | | | į | - [2 | .: * <u></u> | -1 | | | | <u> </u> | | | | <u> </u> | tion i | 1 | | - : | | | - | 35 40 | 45 50 | 12 | 60 | 1 | | | | | | | _ | | B- L | | • | et C = calculus, P = Physics, S = Statistics | | Thy ores, o Statistics | | | | | | | | | | | | | |----------|------------------------|----|--|--------------------|-----|-----------------|------------|-------------|-----------------|--|--|--|--| | С | P | S | Rc | Rp | Rs | $d = R_C - R_P$ | d^2 | | | | | | | | 72 | 61 | 50 | 2 | 3 | 4 | -1 -1 | <u>u</u> - | $d=R_C-R_S$ | _d ² | | | | | | 50 | 55 | 40 | 5 | 4 | 6 | [] | 1 1 | -2 | 4 | | | | | | 60 | 70 | 62 | 3 | 2 | 2 | 11 | | -1 | 1 | | | | | | 55 | 50 | 70 | 4 | 5.5 | 1 | -1.5 | 1 | 1 . | 1 | | | | | | 35 | 30 | 40 | 7 | 7 | 6 | | 2.25 | 3 | 9 | | | | | | 48 | 50 | 40 | 6 | 5.5 | 6 | 0.5 | 0 | 1 | 1 | | | | | | 82 | 73 | 60 | Ĭ | 1 | 1 2 | 0.3 | 0.25 | 0 . | 0 . | | | | | | $\sum d$ | | 1 | <u>. </u> | | 1 | <u></u> | 0 | -2 | 4 | | | | | | (i) | | | | . | | | 5.5 | | 20 | | | | | (i) Calculus and physics $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 5.5}{7(49 - 1)} = 1 - \frac{33}{336} = 0.9018$$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad. 2nd Edition There is a high positive correlation Calculus and statistics $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 20}{7(49 - 1)} = 1 - \frac{120}{336} = 0.6429$$ There is a substantial positive correlation 6. The table below represents the scores obtained in biology and geography by 10 students | able below represe | ents tr | ie scoi | res ob | tamed | 1111 010 | 1063 | | 140 | 10 | 50 | 1 | |--------------------|---------|-------------|--------|----------|-------------|------|-----|-----|-----|------|---| | Biology (X) | 51 | 63 | 43 | 60 | 61 | 32_ | 71_ | 40 | 48 | 127- | ł | | | | | 36 | 45 | 49 | 53 | 70 | 38 | 60_ | 52 | J | | Geography(Y) | 01_ | 1 4 1 | 100 | <u> </u> | | 1 | | | | | | Assuming that the highest mark represents the first rank and so on (a) Construct a scatter diagram and line of best fit (b) Use your line of best fit to estimate the score obtained in biology by a student who scores 65 in geography (c) Calculate the spearman's rank correlation coefficient and comment on your result ## Advantant Level Substitions: Modulumates by Kowana Educie. 22d Edition ... Let Ru * rank of biology, Ro * rank of geography | | | the court of | H Pennenala | |------------|----|-----------------------------------|-------------| | Ru | Ro | $d = \mathbb{R}_0 + \mathbb{R}_0$ | n geographe | | 6 | 3 | 3 | 0 | | 2 | 8 | -6 | 36 | | 8 | 10 | -2 | [40] | | 4 | 7 | -3 | 0 | | 3 | 6 | -3 | 9 | | 10 | 5 | 5 | 25 | | 1 | 1 | 0 | 0 | | 9 | 9 | 0 | | | 7 | 4 | 3 | 0 | | 5 | 2 | 3 | 6 | | $\sum d^2$ | | | 110 | Spearman's rank correlation coefficient, $$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 110}{10(100 - 1)}$$ = $1 - \frac{660}{990} = 0.333$ There is a slight positive correlation ### Trial questions The table below shows the marks scored by eight students A, B, C, D, E, F, G, H in three tests of English during the first term of the school calendar. | ſ | Student | ٨ | В | C | D | Е | F | G | Н | |---|----------|----|----|----|----|----|----|----|----| | ſ | TEST I | 80 | 70 | 60 | 74 | 65 | 65 | 48 | 58 | | | TEST II | 70 | 70 | 65 | 70 | 64 | 60 | 58 | 50 | | | TEST III | 75 | 80 | 86 | 82 | 70 | 64 | 60 | 64 | - (a) Calculate the rank correlation coefficient for the performance between - (i) Test I and Test II - (ii) Test I and Test III [Ans: (a)(i) 0.875 (ii) 0.744] - (b) Comment on the relationship of the performance in the three terms - 2. The following are final examination scores which 12 students obtained in Psychology, X and conomics, Y | Oncomics, i | | | | | | | | | | | | | | ٦. | |-------------|------|----|----|----|----|----|-----|----|----|----|----|----|----|----| | Psycholog | v(X) | 35 | 56 | 65 | 78 | 49 | 82 | 22 | 90 | 77 | 35 | 52 | 93 | J. | | Franchic | (Y) | 57 | 72 | 63 | 76 | 53 | 100 | 38 | 82 | 82 | 19 | 43 | 79 |] | - (i) Draw a scatter diagram for the data - (ii) Find the rank correlation coefficient for the performance of the students. [Ans: 0.874] - 3. The marks obtained in two tests X and Y were as follows | ı | marks obtained in two tosts 71 miles | | | | | | | | | | | | | |---|--------------------------------------|-----|------|-------|----|----|----|----|------------|----|--|--|--| | - | X | 51 | 62 | 64 | 47 | 54 | 44 | 68 | 6 1 | 56 | | | | | | $\frac{\lambda}{V}$ | 45 | 54 | 58 | 46 | 49 | 43 | 59 | 56 | 53 | | | | | | 1 | ידו | 1 77 | , ,,, | | | | _ | | | | | | - (i) Plot a scatter diagram and comment on your graph - (ii) calculate the rank correlation coefficient, comment on your result [Ans: 0.97] - 4. The marks scored by 12 students in an English and mathematics examination were | marks scored by 12 students in the 218. | | | | | | | | | | | | | |---|----|----|----|----|----|----|----|----|----|----|----|----| | English | 74 | 52 | 43 | 65 | 39 | 56 | 48 | 37 | 52 | 68 | 45 | 68 | | Mathamatics | 46 | 56 | 38 | 42 | 48 | 51 | 59 | 54 | 45 | 51 | 35 | 61 | - (i) Draw a scatter diagram and comment on the performance of the students in the two subjects. - (ii) Calculate the rank correlation coefficient and comment on your result [Ans: 0.157] 5. (The table below shows the percentage preference of nine most popular holiday destinations as sampled by a tour company for two years 1996 and 1997 | | | | 7 O 141 | · · · · · | • | | | | | |---------------------|----|----|---------|-----------|----|----------------|----|----|----| | Holiday destination | F | G | S | 1 | IA | \overline{T} | Tc | 14 | B | | 1996 | 90 | 80 | 78 | 78 | 50 | 40 | 30 | 20 | 01 | | 1997 | 79 | 90 | 80 | 60 | 60 | 35 | 50 | 60 | 22 | (i) Plot a scatter diagram for the data and comment on the correlation between the figures for the two years (ii) Calculate the spearman's rank correlation coefficient and comment on your result. [Ans: 0.813] 6. The table below shows the height of each boy (X cm) and the distance (Y cm) to which he can throw the ball. | | | | | | | | | | | T T | |--------|------|-----|------|-------|-----|-----|-----|------|----------|----------| | Boy | la - | B. | C · | 1 D - | E | F | G | H | <u> </u> | <u> </u> | | X (cm) | 122 | 124 | 133. | 138 | 144 | 156 | 158 | .161 | 164 | 168 | | Y (cm) | 41 | 28 | 52 | 56 | 29 | 34 | 59 | 61 | 63 | 67 | (i) Draw a scatter diagram for this data 1 (ii) Comment on the relationship between the boys' heights and the distances they throw the ball (iii) Draw a line of best fit. Use the line to estimate the distance the ball can be thrown by a boy of height 175cm (iv) Calculate the rank correlation coefficient between X and Y [Ans: 0.818] 7. The marks obtained by 8 students in English (X) and French (Y) are given below; | FILLER CALLETT | | | | | | | | _ | |----------------|----|----|----|----|----|----|----|----| | English (X) | 55 | 42 | 37 | 59 | 38 | 48 | 56 | 48 | | | 60 | | 41 | 63 | 35 | 39 | 51 | 55 | (i) Plot a scatter graph for the performance of the 8 students in the two subjects. Comment on your graph (ii) Calculate the rank correlation coefficient of the performance of the students in the two subjects. Comment on your result [Ans: 0.768] The marks obtained in physics and chemistry by 10 students in end of year examinations were; | The marks obtain | | | | | | | | _ | | | |------------------|-------|----|---------------|----|----|------|----|----|----|----| | (77) | 54 | 58 | 60 | 60 | 70 | 65 _ | 71 | 68 | 73 | 66 | | Chemistry (X) | 57 . | 61 | 63 | 64 | 74 | 68 | 70 | 73 | 75 | 78 | | L Physics(Y) | , , , | | _ | | | | | | | | (i) Draw a scatter diagram and comment on it (ii) Calculate the rank correlation coefficient of the performance [Ans: 0.839] 9. Three examiners X, Y and Z each marked the scripts of 10 candidates who sat a mathematics examination. The table below shows the examiners' ranking of the candidates. | examination. 11 | T CAN | 1DIDV | TES | <u>-</u> | | | | | | | |------------------|----------------|-------------|-----|----------------|--------------|---|---|----|----|---| | (D)CDC | | TB | C | \overline{D} | E | ŗ | Ğ | Н | ī_ | J | | EXAMINERS | ^ | 15- | 9 | 2 | 10 | 1
 7 | 6 | 3 | 4 | | X |).° | 3 | 6 | 1 | 4 | 7 | 2 | 2 | 8 | 9 | | Y | 2 | 3 | 7 | 2 | 5 | 4 | 1 | 10 | 9 | 8 | | 1 2 | L ⁰ | | | 1.2 | le atrus a m | - | | • | | | Calculate the rank correlation coefficient of rankings between (i) X and Y [Ans: (i) -0.217 (ii) 0.515] (ii) Y and Z [7113. (7) | 10. The following table | 1 44 1 2 4 | 20 2 | 31 | 22 | 36 | 29 | 24 | 30 | 25 | 27 | | |-------------------------|------------|----------|------|----|----|----|----|----|----|--------------|--| | Biology 40 | 120-120- | 20 2 | 2 45 | 25 | 35 | 27 | 23 | 31 | 27 | <u>_26</u> _ | | | Chemistry 40 | 30 28 | <u> </u> | | _ | | | _ | | | | | ## Advanced Level Subsidiary Mathematics by Kayuma Fahad : 2 2nd Edition - (a) Draw a scatter diagram to represent the performance of the students in the two subjects. Comment on the relationship between the performance in biology and chemistry - (b) Calculate the spearman's rank correlation coefficient between the marks of the two subjects 11. The table below shows the performance of 10 students in their inter-house music competition and their performance in their end of term mathematics test. | Student | AD | Tacife | matrics | iest. | | | | | | |-------------------------------|---------|-------------|----------|-------|-----|-----|-----|-----|-----| | Scores in music | 280 270 | C | <u>D</u> | Е | F | G | Н | 1 | J | | Scores in mathematics | 70 270 | 276 | 232 | 250 | 228 | 182 | 205 | 220 | 150 | | (a) Represent the performance | | <u> 72 </u> | _68 | 52 | 55 | 50 | 48 | 61 | 40 | (a) Represent the performances on the same scatter graph. Comment on the graph (b) Calculate the rank correlation coefficient between the students' performance in music competition and their performance in end of term mathematics. Comment on this result. 12. The table below shows the marks of 10 students in three papers [Ans: 0.867] | Paper I | 81 | 42 | 55 | T 25 | TO Stuc | ients in th | irce pap | crs [A | ns: 0.86 | 7] | | |-----------|----------|--------|------|------|---------|-------------|----------|--------|----------|------|----| | Paper II | 64 | 50 | 54 | 0/ | 36 | 46 | 59 | 78 | 30 | 67 | 7 | | Paper III | 59 | 47 | 70 | 70 | 48 | 32 | 49 | 54 | 46 | 58 | ٦. | | (a) Calcu | late the | tank o | 1 /0 | 43 | 60 | <u>54</u> - | 31 | 52 | 68 | 62 ' | 7 | (a) Calculate the rank correlation coefficient between - Paper I and paper II (i) - Paper II and Paper III (ii) Gii) Comment on the relationship between the performance in Paper I and the other two papers [Ans: (i) 0.788 (ii) -0.124] Eight applicants for a certain job obtained the following marks in aptitude and written tests. | Applicant | | Τ | | .011011 | B | arks 1 | ու գրու | uue anu | • | |---|-------------|-----|--|---------|------|----------|----------|-------------------|---| | | А_ | B | l C | l D | I E | F | G | ᇻ | 1 | | Aptitude test | 22 | 145 | | +~- | + | <u> </u> | <u> </u> | 11 | 1 | | | 1.33 | 43 | 112 | 42 | 1 45 | 35 | 40 | 48 | ı | | Written test | 57 | 40 | 40 | + | + | | 1 | - -'`- | 4 | | 111111111111111111111111111111111111111 | <u> </u> | 60 | <u> </u> 40 | /5 | 1.58 | 148 | 54 | 168 - | П | Calculate the rank correlation coefficient of the applicant's performance in the two tests. Comment on your result. [Ans: 0.744] 14. The table below shows the percentage of sand Y in the soil at different depths X(in cm) | 0.21.1.45 | 1 1000 | <u> </u> | C 01 . | Saliu | 1 111 (| iie 50 | II at G | uneren | it dept | hs X(| |--------------------|--------|----------|--------|-------|----------|--------|---------|--------|---------|-------| | Soil depth(X) | 35 | 65 | 55 | 25 | 45 | 75 | 20 | 90 | 51 | 60 | | Percentage of sand | 86 | 70 | 81 | 02 | 70 | 70 | 20 | | 21- | 00 | | (2) Dies | | <u> </u> | 07 | 72 | <u> </u> | 08 | 96 | _58 | 86 | 77 | - (a) (i) Plot a scatter diagram for the data. Comment on the relationship between the depth of the soil and the percentage of sand in the soil - (ii) Draw a line of best fit through the points of the scatter diagram. Use it to estimate the - Percentage of sand in the soil at the depth of 31 cm - Depth of soil with 54% sand - (b) Calculate the rank correlation coefficient between the percentage of sand in the soil and the depth of soil. [Ans: -0.948] - 15. Given the variables X and Y below | | <u> </u> | 80 | 75 | 86 | 60 · | 75 | 92 | 86 | 50 | 164 | Tac | |-------|----------|----------|------------|------------|---------|-----------|-----------|-------|----|------|-------------------| | Ľ | Y | 62 | 58 | 60 | 45 | 68 | 68 | 81 | 10 | - 04 | - /5 | | btair | n the r | ank corr | elation co | nefficient | between | the varia | hlec V or | 4 7 0 | | | 70 | Obtain the rank correlation coefficient between the variables X and Y. Comment on your result. [Ans: 0.715] 16. The table below shows the marks scored by 10 candidates in two subjects x and y | • | 1010 0010 0 | | | | | , . | • | | | | | |-----|-------------|----|----|----|----|-----|---|----|-----|----------|---------| | | Candidate | Α | В | С | D | Е | F ' | G | Н | <u> </u> | <u></u> | | ٠ | Subject x | 34 | 21 | 27 | 28 | 29 | 32 | 39 | 24 | 32 | 36 | | | Subject y | 52 | 46 | 50 | 48 | 50 | 51 | 55 | 47_ | 49 | 51 | | - 4 | | ۰ | _ | | | | | | | | | - Plot a scatter diagram for the data. What does the diagram show? (i) - Draw a line of best fit and find x when y = 45(ii) - Calculate a rank correlation coefficient and comment on your results [Ans: 0.891] (iii) - 17. Below are the marks scored by 8 students A, B, C, D, E, F, G and H in statistics and mechanics test in a given term | a given term | _ | | _ | | | | -i - | 15 | I Gu | Гн | |--------------|----|----|---------------|------------------|---------------|----|-----------------|-------------|-------------|----------| | Student | ·A | ٧. | В | $b_{i+1} \not =$ | C. | D: | <u> </u> | I' | 55 | 72 | | Mechanics | 35 | 1 | 40 | . , | 60 | 54 | 63 | 40 | 33 | 52 | | Statistics | 52 | | 75 | | 41 | 60 | 81 | 31 | 65 : : | <u> </u> | | Statistics | 22 | | _ | | _ | | l relations | hin hatweet | s mechanics | and | - (a) (i) Plot a scatter diagram for the data. Comment on the relationship between mechanics and statistics performance - (ii) Draw a line of best fit through the points of the scatter diagram. Use your result to estimate the marks in statistics for a student who got 47 in mechanics - (b) Calculate the rank correlation coefficient for the two tests. Comment on your result [Ans: 0.190] - 18. The table below shows the scores of eight houses in a music competition for two consecutive years | table below shows | 1116 36 | .0103 | T 6 | T _D | E | T _E | G | H | |-----------------------------|-------------|------------|----------|----------------|-------------------|----------------|----------|------------| | Houses | _A | <u>B</u> _ | <u> </u> | <u>μ</u> | <u>C</u> | 70 | 26 | 02 | | 1 st year scores | 70 | 84 | 65 | 90 | 75 _ | 1/0 | /0 | -72 | | | 76 | 80 | 70 | 84 | 75 | 72 | 75 | <u> </u> | | 2 nd year scores | | 100- | 1 10 | - chous | and co | mmen | f on vot | ır diagran | - Draw a scatter diagram for the data above and comment on your diagram . Calculate a rank correlation coefficient between the 1st and 2nd year scores. Comment on your (i) - (ii) [Ans: 0.869] - 19. The table below shows the scores of nine employees in interview (x) and job performance (y) | . The table below shows the scores of | 57 66 | 79 | 81 | 84 | 52 | \Box | |---------------------------------------|-------|----|----|----|----|--------| | x 57 35 50 | 34 47 | 70 | 84 | 84 | 53 | | | y 66 51 03 | | | | | | - | - (a) (i) Draw a scatter diagram for the data. - (ii) Comment on the relationship between the interview and job performance - (b) (i) Calculate the rank correlation coefficient between x and y. - [Ans: 0.642] (ii) Comment on your result - 20. Eight athletes A, B, C, D, E, F, G and H scored the following points in two events long jump and high jump. | | | B | C i | D | E | F | G | H | |-----------|----|----------|---------------|----|----------|---------|----------|-------| | Athletes | A | <u> </u> | 12 | 10 | 8 | 7 | 4 | l | | Long jump | 13 | 7 | 3 | 5 | 7 | 7 | 9 | 12 | | Wigh jump | ' | <u></u> | L | | st on th | o rolai | tionship | hotre | - (a) Plot a scatter diagram for the data and comment on the relationship between the two events - (b) Calculate a rank correlation coefficient and comment on the value obtained. # CHAPTER 15: THE PROBABILITY THEORY Probability theory is a branch of mathematics concerned with prediction or uncertainty. The term probability arose from the games of chance and gambling i.e. tossing a coin, rolling a die, playing cards etc. The probability of an event is the measure of the likelihood that it will occur and it is given on a numerical scale from 0 to 1. The numbers representing probabilities can be written as percentages, fractions or - > A probability of zero implies that the event is impossible - > A probability of one (100%) indicates that the event is certain to occur. > All other events have a probability between 0 and 1 The closer the probability of an event to 1, the more likely it is to happen and the closer the probability of an event to 0, the less likely it is to happen We talk about a 'fair' coin or a 'fair' dice meaning that all outcomes are equally likely For a fair coin, $P(H) = P(T) = \frac{1}{2}$ The alternative is that the coin or dice is biased Sample space and generation of the sample space Sample space (S) is the set of all possible outcomes of an experiment. Outcomes are events that can occur Each possible outcome is called a sample point Example Rolling a die; S = (1, 2, 3, 4, 5, 6) Tossing a coin; S = (H, T) Note: 1, 2, 3, 4, 5, 6 and H, T
are sample points Generation of the sample space The ways of generating a sample space include the following; - (i) Table of out comes - (ii) Permutations - (iii) Tree diagram Terms used in the set theory An event is a subset of a sample space Intersection of events Consider A and B as two events of a sample space S, the intersection of these two events is given by A \(\Omega\) B i.e. containing sample points common to both A and B Union of events This is a set of all sample points in either A or B or both It is denoted A UB Complement of an event If A is an event of a sample space S, the compliment of A is given by the set containing all sample points in S that are not in A It is denoted A? If A and B are two events, the probability that either event A or B or even both occurs is denoted by The Or situation $P(A \cup B)$ $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ Probability function The probability function of an event A is denoted by P(A) and is the sum of the probabilities of the sample points in A. (i) $P(A) \le 1$ (ii) $P(A) \ge 0$ (iii) P(S) = 1 $$P(A) = \frac{n(A)}{n(S)}$$ The sum of the probabilities if all outcomes to an experiment must be I Example 1 When you toss a coin, what is the probability that it lands heads up? When you toss a coin, there are two possibilities that it lands heads or tails up $$P(heads) + P(tails) = 1$$ But both are equally likely so $$P(heads) = P(tails) = \frac{1}{2}$$ Example 2 The probability that it rains tomorrow is $\frac{2}{3}$. What is the probability that it does not rain tomorrow? Tomorrow it must either rain or not rain so $$P(rain) + P(no\ rain) = 1$$ $$\frac{2}{3} + P(no\ rain) = 1$$ $$P(no\ rain) = 1 - \frac{2}{3} = \frac{1}{3}$$ Find the probability of choosing a defective pen in a lot of 12 out of which 4 are defective, if a single draw is made No. of ways the event can happen = 4 Total no. of possibilities = 12 Hence probability = $\frac{4}{12} = \frac{1}{3}$ Example 4 What is the probability of throwing a number greater than 4 for a die whose faces are numbered from 1 to 6? Solution $$\frac{\text{ion}}{S} = \{1,2,3,4,5,6\} \quad n(S) = 6$$ $$A = \{5,6\} \quad n(A) = 2$$ $$P(A) = \frac{2}{6} = \frac{1}{3}$$ The outcome of two events When dealing with probabilities for two events, it is important to be able to identify all the possible ontcomes. We can use 2-way tables or tree diagrams ### Example 1 A six-sided die and a coin are tossed. List all the possible outcomes. ### Solution The coin can land hends (denoted by H) or tails (T) While the die can show 1, 2, 3, 4, 5 or 6 So for heads on coin, the possible outcomes are; While for tails, they are; This list can conveniently be summarized in a 2-way table i.e | | | _ | | יווע | | | | |------|----|-----------|-----|------|-----|-----|-----| | | | | 2_ | _) | 4_ | 1 | _6_ | | Cala | 11 | 111
T1 | 112 | 10 | 114 | 113 | 116 | | COIN | Ť | TI | T2 | 73 | 74 | T3 | Т6 | ### Example 2 A coin is tossed twice. List all the possible outcomes ### Solution You can use a tree diagram to represent this solution | ••• | | | • , , , | |-----|----------|----------|---------| | | Ist toss | 2nd toss | Outcome | Note that 'TH' is not the same as 'HT' This is an excellent method but it can lead to problems when you have too many branches ### **Determining probabilities** When the outcomes of an event are all equally likely, then the probabilities can be found by considering all the possible outcomes The probability of an outcome is given by; #### Example In a class of 30 children, 16 are girls, 4 wear glasses and 3 are left handed. A child is selected at random from the class. What is the probability that this child is; - (a) a girl - (b) right handed (c) wearing glasses #### <u>Solution</u> (a)In a class, there are 16 girls so $$P(girl) = \frac{16}{30} = \frac{8}{15}$$ There are three left handed children and so the other 27 must be right handed so (b) ### Advanced Level Subsidiary Mathematics by Kawuma Fahad . 2nd Edition . $$P(right\ handed) = \frac{27}{30} = \frac{9}{10}$$ (c) $$P(right \ handed) = \frac{27}{30} = \frac{9}{10}$$ $$P(wears \ glasses) = \frac{4}{30} = \frac{2}{15}$$ ### Probability of two events When two events take place and every outcome is equally likely to happen, the probability of a particular outcome can be readily found from the formula $$probability = \frac{number\ of\ successful\ outcomes}{total\ number\ of\ outcomes}$$ ### Example 1 Two dice are thrown together. Find the probability that the total score is 9 The table shows all the possible outcomes and total scores | | | Second die | | | | | | |--------------|-----|------------|-----|---|-----|----|-----| | | | L | 1 | 3 | 4_ | 5 | 6 | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | . 2 | 3 | 4 | 5 | 6 | 7 | 8 | | First
die | 3 | 4 | 5 | 6 | 7 | 8 | (O) | | | 4 | 3 | 6 | 7 | . 8 | (| 10 | | | 5 | 6 | 7 | 8 | 0 | 10 | 11 | | | 6 | 7 | . 8 | (| 10 | IJ | 12_ | There are 36 possible outcomes and each one is equally likely to occur. The outcomes that give a total of 9 have been circled and there are 4 such outcomes Now the probability can be found $$P(9) = \frac{4}{36} = \frac{1}{9}$$ ### Example 2 A spinner which forms part of a children's game can point to one of the four regions A, B, C or D. What is the probability that when the two children spin the spinner, it points to the same letters ### Solution The table shows all the possible outcomes Second child | | | VIII | | | | |-------------|---|----------|-----|-----|----| | | | A | n | С | D | | | ٨ | ⊘ | ΛB | ۸C | ΛD | | First child | В | ВА | (1) | BC | BD | | | С | СЛ | CD | (3) | CD | | | ם | DA | DВ | Ж | 6 | ## Advanced Level Subsidiary Mathematics by Kayuma Fahad 2nd Edition There are 16 possible outcomes. Each is equally likely to occur. The outcomes that are the same for the children have been circled. There are 4 outcomes of this type The probability that both have the same letter will be given by; $$P(same letter) = \frac{4}{16} = \frac{1}{4}$$ ### Interaction with the set theory . The following results can be deduced from the set theory ### Result 1 For any two events A and B; $P(A) = P(A \cap B) + P(A \cap B')$ For any two events A and B; Result 2 ### Result 3 $P(A') = P(A' \cap B) + P(A' \cap B')$ Note that $A' \cap B' = (A \cup B)'$ ### Result 4 $P(B') = P(A \cap B') + P(A' \cap B')$ محقوب ليهود والرمجي فأنبؤوا والمحج ### Result 5 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ ### Result 6 For any two events; (i) P (A' \cup B)' = P(A' \cap B') $\cdot (ii) P (A' \cup B') = P (A \cap B)'$ ### The contingency table The alternative way of recalling the first four results is by using the contingency table | 1 | P(A) | P(A') | |-------|-----------|------------| | P(B) | P(A∩ B) * | P(A'∩ B) | | P(B') | P(A∩ B') | P(A' ∩ B') | $$P(A) + P(A') = 1$$ and $P(B) + P(B') = 1$ ### Examples 1. Events A and B are such that $P(A) = \frac{19}{30}$, $P(B) = \frac{2}{5}$ and $P(A \cup B) = \frac{4}{5}$. Find $P(A \cap B)$ $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $$\Rightarrow P(A \cap B) = P(A) + P(B) - P(A \cup B)$$ $$= \frac{19}{30} + \frac{2}{5} - \frac{4}{5} = \frac{7}{30}$$ 2. The probability that a student passes mathematics is $\frac{2}{3}$ and the probability that he passes physics is $\frac{4}{9}$. If the probability that he passes at least one of them is $\frac{4}{5}$, find the probability that he passes both papers. ### Solution Let M denote event passing mathematics and P denote passing physics $$P(M) = \frac{2}{3} \qquad P(P) = \frac{4}{9} \qquad P(M \cup P) = \frac{4}{5}$$ $$P(M \cup P) = P(M) + P(P) - P(M \cap P)$$ $$\Rightarrow P(M \cap P) = P(M) + P(P) - P(M \cup P)$$ $$= \frac{2}{3} + \frac{4}{9} - \frac{4}{5} = \frac{14}{45}$$ - 3. One element is randomly selected from a universal set of 20 elements. Sets A and B are subsets of the universal set and n(A) = 15, n(B) = 10 and $n(A \cap B) = 7$. If P(A) is the probability of the selected element belonging to Set A, find - (i) P(A) (ii) $P(A \cap B)$ (iii) P(A') (iv) $P(A \cup B)$ ### Solution Using the venn diagram, we can find the required probabilities (i) $$P(A) = \frac{15}{20} = \frac{3}{4}$$ (ii) $$P(A \cap B) = \frac{7}{20}$$ (iii) $$P(A') = \frac{5}{20} = \frac{1}{4}$$ (iv) $$P(A \cup B) = \frac{18}{20} = \frac{9}{10}$$ - 4. If A and B are two events such that $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$ and $P(A \cap B) = \frac{1}{8}$, find - (a) $P(A \cup B)$ (b) $P(A \cup B)'$ Solution ### 2010 Method I (a) $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $$= \frac{1}{4} + \frac{1}{2} - \frac{1}{8} = \frac{5}{8}$$ Advanced Level Subsidiary Mathematics by Kawaina Fahad Hand 2nd Edition (b) $$P(A \cup B)' = 1 - P(A \cup B) = 1 - \frac{5}{B} = \frac{3}{8}$$ Method II (a) $$P(A \cup B) = \frac{1}{8} + \frac{1}{8} + \frac{3}{8} = \frac{5}{8}$$ (b) $$P(A \cup B)' = \frac{3}{8}$$ 5. In a class of 100 students, 70 offer economics while 50 students offer mathematics. Each student offers at least one of the subjects. Determine the probability for the number of students who offer both subjects. #### Solution Let the number of students who offer both subjects be x $$70 - x + x + 50 - x = 100$$ $$120 - x = 100$$ $$\Rightarrow x = 20$$ Thus $$P(E \cap M) = \frac{20}{100} = 0.2$$ 6. Two dice are thrown, what is the probability of scoring a double or a sum greater than 8? Solution Table of sums ## A table of outcomes can be used to generate the sample space. | | _ | | | | | | | | |------------|-----------|-----|-----|-----|-----|-----|--|--| | | First die | | | | | | | | | <u> </u> | 1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 | | | | l | 2,1 | 2,2 | 2,3 | 2,4 | 2,5 | 2,6 | | | | Second die | 3,1 | 3,2 | 3,3 | 3,4 | 3,5 | 3,6 | | | | | 4,1 | 4,2 | 4,3 | 4,4 | 4,5 | 4,6 | | | | İ | 5,1 | 5,2 | 5,3 | 5,4 | 5,5 | 5,6 | | | | !
————. | 6,1 | 6,2 | 6,3 | 6,4 | 6,5 | 6,6 | | | From the table of sums we can see that the total number of outcomes is 36 Let event A denote scoring a double $$A = \{(1,1)(2,2)(3,3)(4,4)(5,5)(6,6)\}$$ $$n(A) = 6
\Rightarrow P(A) = \frac{6}{36}$$ Let event B denote scoring a sum greater than 8 $$B = \{9, 9, 9, 9, 10, 10, 10, 11, 11, 12\}$$ $$n(B) = 10 \Rightarrow P(B) = \frac{10}{36}$$ $$A \cap B = \{10, 12\} \Rightarrow n(A \cap B) = 2 \text{ thus } P(A \cap B) = \frac{2}{36}$$ $$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $$= \frac{6}{36} + \frac{10}{36} - \frac{2}{36} = \frac{14}{36} = \frac{7}{18}$$ #### Mutually exclusive events . If two events A and B have no sample points in common i.e. if $A \cap B = \{$ } or they cannot occur at the same time, then we say that A and B are mutually exclusive. $P(A \cap B) = 0$ #### Examples 1. Given that A and B are mutually exclusive events such that P(A) = 0.5, P(B) = 0.9, find (i) $P(A' \cup A')$ (ii) $P(A' \cap B')$ (Ly33). Solution For mutually exclusive events, $P(A \cap B) = 0$ (i) $P(A \cup B) = P(A) + P(B) \Rightarrow P(B) = P(A \cup B) - P(A)$ $$P(A' \cup B) = P(A') + P(B) - P(A' \cap B)$$ From the contingency table, $$P(A' \cap B) = P(B) - P(A \cap B)$$ = 0.4 - 0 = 0.4 $$P(A') = 1 - P(A) = 1 - 0.5 = 0.5$$ Therefore $P(A' \cup B) = 0.5 + 0.4 - 0.4 = 0.5$ $$P(\Lambda' \cap B') = P(A \cup B)' = 1 - P(A \cup B)$$ $= 1 - 0.9 = 0.1$ - 2. A and B are mutually exclusive events such that P(A) = 0.3, P(B) = 0.5. Find - $P(A \cup B)$ (ii) P(A') (iii) $P(A' \cap B')$ (i) Solution (i) $$P(A \cap B) = 0 P(A \cup B) = P(A) + P(B) = 0.3 + 0.5 = 0.8$$ (ii) $$P(A') = 1 - P(A) = 1 - 0.3 = 0.7$$ (iii) $$P(B) = P(A \cap B) + P(A' \cap B)$$ $\Rightarrow P(A' \cap B) = P(B) - P(A \cap B)$ $$= 0.5 - 0 = 0.5$$ From $$P(A') = P(A' \cap B') + P(A' \cap B)$$ $P(A' \cap B) = P(A') - P(A' \cap B) = 0.7 - 0.5 = 0.2$ 3. Given that A and B are mutually exclusive events and that $P(A) = \frac{2}{5}$ and $P(B) = \frac{1}{2}$. Find (i) $P(A \cup B) = \frac{1}{2}$. B) (ii) $P(A \cap B')$ (iii) $P(A' \cap B')$ Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$\frac{P(A \cup B)}{(i)} = P(A) + P(B) \\ = \frac{2}{5} + \frac{1}{2} = \frac{9}{10}$$ (ii) $$from P(A) = P(A \cap B') + P(A \cap B)$$ $$\Rightarrow P(A \cap B') = P(A) - P(A \cap B)$$ $$= \frac{2}{5} - 0 = \frac{2}{5}$$ (iii) From $$P(B') = P(A \cap B') + P(A' \cap B')$$ $P(A' \cap B') = P(B') - P(A \cap B')$ But $P(B') = 1 - P(B) = 1 - \frac{1}{2} = \frac{1}{2}$ $\Rightarrow P(A' \cap B') = \frac{1}{2} - \frac{2}{5} = \frac{1}{10}$ #### Independent events Independent events are events such that the occurrence of one does not affect/influence the occurrence of the other. If A and B are independent events, then $$P(A \cap B) = P(A) \times P(B)$$ #### **Examples** - 1. A die is rolled twice. If event A is the first throw shows a six and event B is the second will show a six - (a) Are the events A and B independent? - (b) find P(A and B) #### Solution (a) The events are independent as the number obtained on the first throw does not affect the number obtained on the second throw (b) $$P(A) = \frac{1}{6}$$ and $P(B) = \frac{1}{6}$ $P(A \cap B) = P(A) \times P(B)$ $= \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$ - 2. Two events A and B are independent such that P(B) = 0.6 and $P(A \cup B) = 0.94$. Find, - (i) P(A) (ii) $P(A \cap B)$ #### <u>Solution</u> (i) $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ But $P(A \cap B) = P(A) \times P(B) = 0.6P(A)$ Thus $0.94 = P(A) + 0.6 - 0.6P(A)$ $0.94 - 0.6 = P(A) - 0.6P(A)$ $0.34 = 0.4 P(A)$ $P(A) = \frac{0.34}{0.4} = 0.85$ (ii) $$P(A \cap B) \stackrel{\cdot}{=} P(A) \times P(B)$$ $$= 0.85 \times 0.6 = 0.51$$ Two events A and B are independent events such that P(A) =0.40, P(B)= a and P(A∪B) = 0.70. Find (i) P (A∪B)' (ii) the value of a (iii) P(A∩B) (iv) P(A∩B') #### Solution (i) $$P(A \cup B)' = 1 - P(A \cup B)$$ = 1 - 0.70 = 0.3 From $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ Since A and B are independent, $P(A \cap B) = P(A) \times P(B) = 0.40 \times a = 0.4a$ $\Rightarrow 0.7 = 0.4 + a - 0.4a$ $0.7 - 0.4 = 0.6a$ $0.6a = 0.3 \Rightarrow a = \frac{0.3}{0.6} = 0.5$ (iii) $$P(A \cap B) = 0.4a = 0.4 \times 0.5 = 0.2$$ (iv) Using the contingency table $$P(A) = P(A \cap B) + P(A \cap B')$$ $$\Rightarrow P(A \cap B') = P(A) - P(A \cap B)$$ $$= 0.4 - 0.2 = 0.2$$ - 4. Given that A and B are events such that $P(A) = \frac{2}{3}$ and $P(B) = \frac{1}{5}$. Find - (i) $P(A \cup B)$ (ii) $P(A \cap B')$ (iii) $P(A' \cap B')$ if A and B are independent events. Solution (i) From $$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$ $P(A \cap B) = P(A) \times P(B) = \frac{2}{3} \times \frac{1}{5} = \frac{2}{15}$ $P(A \cup B) = \frac{2}{3} + \frac{1}{5} - \frac{2}{15} = \frac{11}{15}$ (ii) from the contingency table $$P(A) = P(A \cap B) + P(A \cap B')$$ $$\Rightarrow P(A \cap B') = P(A) - P(A \cap B)$$ $$= \frac{2}{3} - \frac{2}{15} = \frac{8}{15}$$ (iii) from $$P(B') = P(A \cap B') + P(A' \cap B')$$ $$P(A' \cap B') = P(B') - P(A \cap B')$$ $$= \frac{4}{5} - \frac{8}{15} = \frac{4}{15}$$ #### Conditional Probability The conditional probability of an event B in relation to an event A is the probability that event B occurs after or given that A has already occurred. If A and B are events, then the conditional probability of A given B denoted as P(A/B) is given by: $$P(A/B) = \frac{P(A\cap B)}{P(B)}$$ provided $P(B) \neq 0$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition Example 1 The probability that a regular scheduled plane departs on time is 0.83 and the probability that it arrives on time is 0.92. The probability that it departs on time and arrives on time is 0.78. Find the probability that the plane; - (i) arrives on time given that it departs on time - (ii) departs on time given that it arrives on time #### Solution Let D denote event plane departs on time $\Rightarrow P(D) = 0.83$ Let A denote event plane arrives on time $\Rightarrow P(A) = 0.92$ $$P(A \cap D) = P(D \cap A) = 0.78$$ (i) $$P(A/D) = \frac{P(A \cap D)}{P(D)} = \frac{0.78}{0.83} = 0.94$$ (ii) $$P(D/A) = \frac{P(D \cap A)}{P(A)} = \frac{0.78}{0.92} = 0.85$$ #### Example 2 Events A and B are such that $P(A) = \frac{1}{2} P(B) = \frac{3}{8} P(A/B) = \frac{7}{12}$. Find: (i) $$P(A \cap B)$$ (ii) $P(B/A')$ #### Solution (i) $$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{7}{12}$$ $P(A \cap B) = \frac{7}{12}P(B) = \frac{7}{12} \times \frac{3}{8} = \frac{7}{32}$ (ii) $$P(B/A') = \frac{P(B \cap A')}{P(A')}$$ $$P(A') = 1 - P(A) = 1 - \frac{1}{2} = \frac{1}{2}$$ But $$P(B \cap A') = P(A' \cap B) = P(B) - P(A \cap B)$$ $$= \frac{3}{8} - \frac{7}{32} = \frac{5}{32}$$ $$P(B/A') = \frac{5/32}{1/2} = \frac{5}{32} \times \frac{2}{1} = \frac{5}{16}$$ #### Probability tree diagrams free diagrams can be used to obtain the possible outcomes of an experiment when the outcomes are not necessarily equally likely or generate a sample space. When using tree diagrams, you always multiply along the branches to determine the probability of combined events. Remember: Branches must add up to 1, ie: 0.8 7 this must be 0.2 because 0.8 + 0.2 = 1. This must be 0.4 because 0.5 + 0.1 + 0.4 = 1. The tree diagram can be used to list the possible outcomes. For example; if a family plans to have three children The possible outcomes are {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG} Now if a coin is tossed three times The possible outcomes are {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} #### Examples - 1. The probability that Jenny is late for school is 0.3. Find the probability that on two consecutive days, she is - (a) never late ### (b) late only once #### Solution The probability of being late is 1 - 0.3 = 0.7. First day The probabilities in each set of branches are multiplied together to give the probability of that outcome (a) The probability that Jenny is never late is given by the bottom set of branches and has a probability 0.49 # Advanced Level Subsidiary Mathematics by Karvana Fahad \ 1.12" Edition \ (b) The probability that she is late race is given by the two middle sets of branches which both have a probability 0.21 So the probability that she is late once is given by 0.21 + 0.21 = 0.42 - 2. If the probability that it rains on any day is $\frac{1}{5}$, find the probability that - (a) It rains on two consecutive days - (b) It rains on only one of the two consecutive days #### Solution The tree diagram shows all the possible outcomes. The probability of each event can be placed on the appropriate branch of tree. The probability of no rain is $1 - \frac{1}{5} = \frac{4}{5}$ - The probability that it rains on two consecutive days is given by the top set of branches and is $\frac{1}{25}$ (a) - There are two outcomes where there is rain on only one of the two days. These are rain no rain, (b) with a probability of $\frac{4}{25}$ and no rain – rain with a probability of $\frac{4}{25}$ The probability of rain on only one day is found by adding these two probabilities together; $$\frac{4}{25} + \frac{4}{25} = \frac{8}{25}$$ - 3. A bag contains 7 discs, 2 of which are red and 5 are green. Two discs are removed at random without replacement and their colours are noted. Find the probability that the discs will be; - (a) both red - (b) different colours (c) the same colour $$R = P(R, R) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{11}$$ $$R = P(R, G) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{11}$$ $$G = P(G, R) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{11}$$ $$G = P(G, G) = \frac{1}{4} \times \frac{1}{8} = \frac{1}{11}$$ - $P(both red) = \frac{1}{21}$ - P(different) = P(R, G) + P(G,R) $=\frac{5}{21}+\frac{5}{21}=\frac{10}{21}$ - (c) P(same) = P(R,R) + P(G,G) $=\frac{1}{21}+\frac{10}{21}=\frac{11}{21}$ - 4. The probability that it will be sunny tomorrow is $\frac{1}{3}$. If it is sunny, the probability that Vivianne plays tennis is $\frac{4}{5}$. If it is not sunny, the probability that she plays tennis is $\frac{2}{5}$. Find the probability that Vivianne plays tennis tomorrow. #### Solution Let S denote event sunny and T denote event Vivianne playing tennis $$P(T) = P(S \cap T) + P(S' \cap T)$$ $$= \frac{1}{3} \times \frac{4}{5} +
\frac{2}{3} \times \frac{2}{5} = \frac{4}{15} + \frac{4}{15} = \frac{8}{15}$$ 5. A box contains 10 green and 6 white marbles. A marble is chosen at random, its colour noted and it is not replaced. This is repeated once more. What is the probability that the marbles chosen at random are of the same colour? Solution- P(marble of the same colour) = P(W₁ $$\cap$$ W₂) + P(G₁ \cap G₂) = $\frac{6}{16} \times \frac{5}{15} + \frac{10}{16} \times \frac{9}{15} = \frac{1}{8} + \frac{3}{8} = \frac{4}{8} = \frac{1}{2}$ - 6. The probability of a person passing maths is 0.7. The probability of a person who passed maths, passing science is 0.8. The probability of a person who has failed maths, passing science is 0.4. Find the probability of a person; - (a) passing maths and science - (b) failing maths and science - (c) passing one subject and failing the other ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition - (a) P(passing maths and science) = 0.56 - (b) P(failing maths and science) =0.18 - (c) P(passing one subject and failing the other) - = P(pass math and fail science) + P(fail math and pass science) - $= 0.7 \times 0.2 + 0.3 \times 0.4 = 0.14 + 0.12 = 0.26$ - 7. A car driver passes through two sets of traffic lights on his way to work. The lights can either be red or green. The probability of red at the first lights is 0.6. The probability of red at the second lights is 0.3. Find the probability that; - (a) both lights are red - (b) both lights are green - (c) one set of lights is and one is green - (d) at least one set of lights is red #### Solution This problem is independent probability i.e. the colour of the second traffic lights is not affected by the colour of the first set. #### Solution | - (a) $P(R, R) = 0.6 \times 0.3 = 0.18$ - (b) $P(G, G) = 0.4 \times 0.7 = 0.28$ - (c) Red and green or green and red $P(R \text{ and } G) + P(G \text{ and } R) = 0.6 \times 0.7 + 0.4 \times 0.3 = 0.42 + 0.12 = 0.54$ (d) Red and red or red and green or green and red P(R and R) + P(R and G) + P(G and R) = 0.18 + 0.42 + 0.12 = 0.72 Alternatively; P(at least red) = 1 - P(green and green) = 1 - 0.28 = 0.72 5% of the female students study computer. What is the probability that a computer student chosen 8. The proportion of semale students at Makerere University is 55%. If 30% of the male students and at random is a female? ### Solution Let F denote Female student and Male student and let C event studying computer. $$5/70.0 = 5.0 \times 24.0 + 20.0 \times 22.0 =$$ $$2691.0 = \frac{2520.0}{0.1625} = (3/7)q$$ ### Trial questions - 1. If $P(A) = \frac{3}{5}$ and $P(B) = \frac{1}{3}$, find (a) $P(A \cup B)$ if A and B are mutually exclusive events - (d) P(A B) if A and B are independent events [Ans: (a) $\frac{t}{24}$ (b) (d) - 2. Given that $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$, $P(A \cap B) = \frac{1}{5}$ and $P(A \cup B) = \frac{5}{6}$. State whether each of the - following statements is true or false - (a) A and B are mutually exclusive events - [Vus: (a) False (b) True] - buil $\lambda_0 = \frac{1}{4} = (8)^{-1}$ And $\lambda_0 = \frac{1}{4} = (1)^{-1}$ and P(B) and Dind AII. (b) A and B are independent events - $[\frac{8}{5} (q) \frac{1}{6} (v) : suv] \qquad (8 \cap V)d(q) (8 \cup V)d(v)$ - 4. A bag contains 9 discs, 2 of which are green and 7 yellow. Two discs are removed at random in - succession, without replacement. Find the probability that the discs will - $\left[\begin{array}{cc} \frac{81}{6} \ (5) & \frac{81}{11} \ (6) & \frac{31}{6} \ (6) \ (5) \end{array}\right]$ (a) Both be green (b) be of the same colour (c) be of different colours - S. If A and B are two events such that $P(A) = \frac{3}{8}$ and $P(B/A) = \frac{3}{7}$, find $P(A \cap B)$ - $\left[-\frac{v}{\varepsilon} : suV\right]$ (h/8)9 built, $\frac{2}{01} = (8 \cap h)^q$ but $\frac{2}{8} = (h/4)^q$ built and P (h/4) and B are two events such that P(h/4) - $= (n/h)^q(n) (n \cap h)^q(n)^{p \cdot (n/h)}$ [\$10 (ii) 500 (i) :suV .81.0 = $(8 \cap \Lambda)$ q.22.0 = $(4 \cap \Lambda)$ q.2.0 = $(6 \cap \Lambda)$ and B are such that $P(\Lambda) = 0.2$, $P(\Lambda' \cap B) = 0.22$, $P(\Lambda \cap B) = 0.18$. | 8. | Two events A and B are such that $P(A) = \frac{1}{2}$, $P\left(\frac{A}{B'}\right) = \frac{2}{3}$, $P\left(\frac{A}{B}\right) = \frac{3}{7}$, where B' is the event B does | |----|---| | | not occur. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(B)$ (iv) $P(B/A)$ | | | [Ans: (i) $\frac{3}{10}$ (ii) $\frac{9}{10}$ (iii) $\frac{7}{10}$ (iv) $\frac{3}{5}$] | - 9. A bag contains 4 white balls, 3 black balls and 1 red ball. Two balls are picked at random in succession without replacement. Find the probability that - both are of the same colour (i) - at least one black ball is picked [Ans: (i) $\frac{9}{28}$ (ii) $\frac{9}{14}$] (ii) - 10. A box contains 7 red balls and 6 blue balls. Two balls are selected at random without replacement. Find the probability that; - (i) they are of the same colour - [Ans: (i) $\frac{6}{13}$ (ii) $\frac{19}{26}$] (ii) at least one is blue - 11. Two boxes P and Q contain white and brown cards. P contains 6 white cards and 4 brown cards. Q contains 2 white cards and 3 brown cards. A box is selected at random and a card selected. Find the probability that; - a brown card selected - (ii) box Q is selected given that the card is white [Ans: (i) $\frac{2}{5}$ (ii) $\frac{1}{2}$] - 12. Bag A contains 3 green and 2 red balls. Bag B contains 4 green and 3 red balls. If a ball is picked at random from a bag chosen at random, find the probability that a red ball is (i) picked (ii) not picked [Ans: (i) $\frac{29}{70}$ (ii) $\frac{41}{70}$] - 13. Two independent events A and B are such that P(A) = 0.40, P(B) = a, $P(A \cup B) = 0.70$. Find (i) $P(A \cup B)'$ (ii) the value of a (iii) $P(A \cap B)$ (iv) $P(A \cap B')$. [Ans: (i) 0.3 (ii) 0.5 (iii) 0.2 (iv) 0.2] - 14. Given that A and B are two events such that P(A) = 0.5, P(B) = 0.7 and $P(A \cup B) = 0.8$. Find (i) $P(A \cap B)$ (ii) $P(A \cap B')$ [Ans: (i) 0.4 (ii) 0.1] - 15. Two events A and B are independent such that P(A) = 0.2 and $P(A \cup B) = 0.8$. Find - (ii) $P(A' \cup B')$ [Ans: (i) $\frac{3}{4}$ (ii) $\frac{17}{20}$] (i) - 16. In a school canteen, the probability that a child has chips with their meal is 0.9 and the probability that they have baked beans is 0.6. Find the probability that a child; - has both chips and beans (i) - has chips but not beans (ii) - [Ans: (i) 0.54 (ii) 0.36 (iii) 0.04] neither chips nor beans (iii) - 17. Paul travels to London on an early train. The probability that he arrives late is $\frac{1}{10}$. He catches the train on two consecutive days. What is the probability that he arrives; - (a) On time on both days (b) on time at least one day (c) late on both days [Ans: (a) $\frac{81}{100}$ (b) $\frac{99}{100}$ (c) $\frac{1}{100}$] - 18. When Jackie's phone rings, the probability that the call is for her is $\frac{3}{4}$ - (a) What is the probability that the call is not for Jackie? - (b) Find the probabilities that; ## Advanced Level Subsidiary Mathematics by Kavuma Fahad 2rd Edition Both calls are for Jackie (ii) only one call is for Jackie (iii) neither call is for Jackie. [Ans: (a) $\frac{1}{4}$ (b) (i) $\frac{9}{16}$ (iii) $\frac{3}{8}$ (iii) $\frac{1}{16}$] 19. John has 8 red socks and six white socks all mixed up in his sock drawer. He takes two socks at random in succession from the drawer without replacement. (a), If the first sock that John takes is red, what is the probability that the second sock will also be red? (b) What is the probability that John will take two socks of the same colour? [Ans: (a) $\frac{7}{13}$ (b) $\frac{43}{91}$] 20. A game contains two tetrahedral dice which have faces numbered 1 to 4. The two dice are thrown and the total score is noted. Find the probability; (i) that a score of 3 is obtained (ii) getting a score greater than 4 (iii) which score is most likely? [Ans: (i) $\frac{1}{8}$ (ii) $\frac{5}{8}$ (iii) 5] 21. In a certain city suburb 30% of the residents read New Vision paper only, 55% read both New Vision and Monitor. If 10% do not read any paper, find the probability that a person picked at random reads; (i) Monitor (ii) Monitor or New Vision but not both [Ans: (i) 0.6 (ii) 0.9] 22. On a route to school, a bus must pass through two sets of traffic lights. The probability that the bus has to stop at a set of lights is 0.6. What is the probability that the bus: . (i) does not have to stop at a set of traffic lights? (ii) gets to school without having to stop at a traffic light? (iii) stops at both sets of traffic lights? (iv) stops at one set of traffic lights? [Ans: (i) 0.4 (ii) 0.16 (iii) 0.36 (iv) 0.48] 23. On average, Maurice comes to tea on 2 days out of every 5. If comes to tea, the probability that we have jam tarts is 0.7. If he does not come for tea, the probability that we have jam tarts is 0.4. What is the probability that we have jam tarts for tea tomorrow? [Ans: 0.52] 24. A die is thrown twice. Find the probability that; (a) two odd numbers are obtained (b) the same two numbers are obtained [Ans: (a) $\frac{1}{4}$ (b) $\frac{1}{6}$ 25. Given that A and B are mutually exclusive events such that P(A) = 0.4, $P(A \cup B) = 0.7$. Find (i) $P(A' \cap B') = 0.4$. P(A \cup B) = 0.7. Find (ii) # Advanced Level Subsidiary Mathematics by Kawuna Fahad 1811 2011 Edition # CHAPTER 16: PERMUTATIONS AND COMBINATIONS #### Permutations A permutation is an ordered arrangement of a number of items For example suppose a photographer must arrange three girls Anne (A), Banks (B) and Catherine (C) in a row for a photograph. He can do this in six possible ways ABC, ACB, BAC, BCA, CAB, CBA Each arrangement is a possible permutation of the girls A, B and C and so there are six permutations
Now if there are four different books on a shelf. In how many ways could they be arranged in order? If we label the books A, B, C and D for convenience, writing the arrangement in which A comes first; ACDB ABDC ADBC... ACBD A D C B i.e. 6 arrangements If we take book B first, there will be six arrangements as well (try it out); the same applies to book C and D coming first. Here there is a total of 24 arrangements of the four books Alternatively, if we have four boxes into each of which one book can be put | Box 1 | Box 2 | Box 3 | Box 4 | |--------------|--------------|--------------|-----------| | Any one of 4 | Any one of 3 | Any one of 2 | No choice | There are four ways of filling the first box and three ways of filling the second since three books are left after filling the first and so on There are $4 \times 3 \times 2$ ways of filling the first three boxes and for the fourth, it is only one way since one book is left Altogether, they become $4 \times 3 \times 2 \times 1 = 24$ ways #### Example 1 In how many ways can 3 books be arranged in order if 7 different books are available? #### Solution | Box 1 | Box 2 | Bo <u>x 3</u> | |--------|--------|---------------| | 7 ways | 6 ways | 5 ways | Here the number of arrangements = $7 \times 6 \times 5 = 210$ #### Example 2 In how many ways can the 1st, 2nd and 3rd prizes be awarded in a race if there are 10 competitors? The 1st prize can be awarded in 10 ways, the 2nd in 9 ways and the third in 8 ways Total number of ways = $10 \times 9 \times 8 = 720$ ways #### Factorial notation Let n be an integer, then the continued product of the 1st n natural numbers is called n factorial denoted by n! It is very important to note that 0! = 1 Hence $$n! = n(n-1)(n-2)(n-3) \dots 3 \times 2 \times 1$$ i.e $$5! = 5 \times 4 \times 3 \times 2 \times 1$$, $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$ Thus the number of ways of arranging n unlike objects in a row is given by n! #### Example 1 Find the number of ways of arranging the letters of the word THURSDAY #### Solution THURSDAY has 8 different/unlike letters Number of ways of arranging the letters = 8! = 40320 ways #### Example 2 Now consider the already looked at example in the introduction of this topic, we can see that the four books can be arranged in $4! = 4 \times 3 \times 2 \times 1 = 24$ ways #### Example 3 Evaluate (a) $\frac{6!}{2\times 4!}$ (b) $\frac{7!}{4!\times 2!}$ (a) $$\frac{6!}{2\times 4!} = \frac{6\times 5\times 4\times 3\times 2\times 1}{2\times (4\times 3\times 2\times 1)} = 15$$ (a) $$\frac{\frac{\text{Solution}}{2\times 4!}}{\frac{2\times 4!}{2\times (4\times 3\times 2\times 1)}} = \frac{6!}{2\times (4\times 3\times 2\times 1)} = 15$$ $$\frac{7!}{4!\times 2!} = \frac{\frac{7\times 6\times 5\times 4\times 3\times 2\times 1}{4\times 3\times 2\times 1\times (2\times 1)}}{4\times 3\times 2\times 1\times (2\times 1)} = 105$$ #### Permutations of objects selected from a group Suppose we wish to arrange r objects from n unlike objects, we usually say that the number of permutations of r objects selected from n unlike objects is ⁿP_r $${}^{n}P_{r} = \frac{n!}{(n-r)!}$$ #### Example 1 In how many ways can the letters of the word MEASURING be arranged or permuted? #### Solution Number of letters = 9. So we are arranging 9 letters out of 9 $${}^{9}P_{9} = \frac{9!}{(9-9)!} = \frac{9!}{0!} = 9! = 362,880 \text{ ways}$$ #### Example 2 In how many ways can the 1st, 2nd and 3rd prizes be awarded in a race if there are 10 competitors? Solution, We are arranging 3 competitors out of 10 thus $$^{10}P_3 = \frac{10!}{(10-3)!} = \frac{10!}{7!} = 720$$ ways (compare with the method used earlier) ### Example 3 Find the number of arrangements using any of the three letters of the word CHEMISTRY? Solution CHEMISTRY has 9 letters so arranging 3 letters out of 9 gives; Advanced Level Subsidiary Mathematics by Kawuna Fahad 2nd Edition. $$^{9}P_{3} = \frac{9!}{(9-3)!} = \frac{9!}{6!} = 504 \ ways \cdots$$ Example 4 Find the number of arrangements using four letters of the word SPHERICAL? Solution SPHERICAL has 9 letters so arranging 4 letters out of 9 gives; $${}^{9}P_{4} = \frac{9!}{(9-4)!} = \frac{9!}{5!} = 3024 \text{ ways}$$ Arrangement of n objects selected from a group with like objects If we wish to arrange n objects with p like objects, q like objects and r like objects, we can obtain it as follows: Number of arrangements = $$\frac{n!}{p!q!r!}$$ Example 1 Find the number of ways of arranging letters of the word BIOLOGY BIOLOGY has 7 letters but two letters are the same i.e. 20's Number of ways $$=\frac{71}{2!}=2520$$ Example 2 Find the number of ways of arranging the letters of the word MESSAGE Solution MESSAGE has 7 letters with 2S's and 2E's ESSAGE has 7 letters with 2S's and 2E's Number of ways = $$\frac{7!}{2! \times 2!}$$ = 1260 Example 3 Example 3 In how many ways can the letters of the word MATHEMATICS be arranged in a row? MATHEMATICS has 11 letters with 2M's, 2A's and 2T's Number of ways = $$\frac{11!}{2!2!2!}$$ = 6652800 Example 4 How many words can be performed from the letters of the word DAUGHTER so that - The vowels always come together (i) - The vowels are never together (ii) Solution | The given word contains 8 different letters. When the vowels AUE are always, they can be (i) treated as an entity i.e DGHTR (AUE) . There are six letters which can be arranged = 6! =720 But the three vowels can also be arranged in 3! = 6 Total number of ways = $720 \times 6 = 4320$ ## Advanced Level Subsidiary Mathematics by Kawama Fahad 2nd Edition The total number of ways of arranging the word DAUGHTER = 8! = 40320 $\binom{number\ of\ ways\ when\ the}{vowels\ are\ never\ together} = \binom{total\ number}{of\ ways} - \binom{number\ of\ ways\ when\ the}{vowels\ are\ always\ together}$ (ii) =40320-4320=36000 #### Example 5 Find the number of ways in which the letters of the word SHALLOW can be arranged (a) if the two $L_{\rm S}$ must not come together (b) if the two L s must always be together #### Solution Leaving out the two L s, the letter SHAOW can be arranged in 5! Ways $\uparrow S \uparrow H \uparrow A \uparrow O \uparrow W \uparrow$ (a) With each of these ways the first L can be inserted in any one of the places. When this is done, there are then 5 possible places for the second L not next to the first. Hence the $_{\rm c}$ total number of arrangements with the two L s separated is 5! \times 6 \times 5 provided the L s can be .. distinguished. They cannot and so the number of arrangements is $$\frac{5! \times 6 \times 5}{2} = 5! \times 15 = 1800$$ (b) In this case take the two L s (LL) as one object. There are then six places for it in each of the 5! arrangements of the letters SHAOW. Hence the number of arrangements is $$6 \times 5! = 6! = 720$$ #### Circular arrangements With circular permutations, it is the relative positions of the items being arranged which is important. For example A B C D E is a different arrangement from E A B C D in a row, is not a different arrangement from When arranging in a circle, we always arrange relative to one object i.e we fix one object and arrange the remaining objects relative to it. Therefore the number of arrangements of n unlike things in a circle will be (n-1)!In the cases where clockwise and anticlockwise arrangements are not considered to be different, this reduces to $\frac{1}{n}(n-1)!$ 1. Five girls Vivianne, Pearl, Praise, Sonia and Joan are to be seated at a circular table. In how many ways can this be done? #### Solution If one girl is fixed, 4 girls remain to be arranged Therefore, number of ways of arranging the five girls = 4! = 24 ways ## Advanced Level Subsidiary Mathematics by Kawunia Fahad 20 2nd Edition 2. Find the number of ways in which ten boys can be arranged on a table Solution One of the boys must be fixed and then we arrange the remaining nine Number of arrangements = 9! = 362880 3. Nine beads, all of different colours are to be arranged on a circular wire. Two arrangements are not considered to be different if they appear the same when the ring is turned over. How many different arrangements are possible? #### Solution When viewed from one side, these arrangements are only different in that one is a clockwise arrangement and the other is anticlockwise. For example the arrangement below; would appear as If one bead is fixed, there are (9-1)! ways of arranging the remaining beads relative to the fixed one i.e. 8! ways. But half of these arrangements will appear the same as the other half when the ring is turned over, because for every clockwise arrangement there is a similar anticlockwise arrangement. Hence; Number of arrangements = $\frac{1}{2}(8!) = 20160 ways$ - 4. In how many ways can five people, Smith, James, Clark, Brown and White be arranged around a reconciler table if - (a) Smith must sit next to brown - (b) Smith must not sit next to brown #### <u>Solution</u> (a) Since Smith and Brown must sit next to each other, Consider these two bonded together as one person. There are now 4 people to sit Fixing one of them, the remaining 3 can be sited in $3 \times 2 \times 1 = 6$ ways relative to the one that was fixed. In each of these arrangements, Brown and smith are seated together in a particular way. Brown and smith could now change their seats giving another 6 ways of arranging the 5 people Total number of arrangements = $2 \times 6 = 12$ ways (b) If Smith is not to sit next to brown, then this situation is mutually exclusive with situation in (a) above Hence $\binom{number\ of\ ways\ when\ Smith}{does\ not\ sit\ next\ to\ Brown} = \binom{total\ number}{of\ ways} - \binom{number\ of\ ways\ in\ which}{Smith\ sits\ next\ to\ Brown}$ Total number of arrangements of 5 people on a circular table = (5-1)! = 4! = 24 Required number of arrangements = 24 - 12 = 12 Thus the number of arrangements in which Smith does not sit next to Brown is 12 # ### **COMBINATIONS** A combination is the number of ways of selecting a group
of objects from a given set of objects e.g. an A. Level subject combinations such as HEG, PCB, PCM, MEG, etc. In making a selection from a number of items, only the contents of the group selected are important, not the order in which the items are selected The number of possible combinations of n different objects, taken r at a time, is given by Cr also written as $$\binom{n}{r}$$ where $${}^{\mathsf{n}}\mathsf{C}_{\mathsf{r}} = \frac{n!}{(n-r)!r!}$$ 1. How many selections of 6 letters can be made from the 9 letters A, B, C, D, E, F, G, H, I? The number of selections is "Cr where r is the number of things selected from a group of n Hence for this case n = 9 and r = 6 Hence for this case $$n = 9$$ and $r = 6$ $${}^{9}C_{6} = \frac{9!}{(9-6)!6!} = \frac{9!}{3!6!} = 84$$ There are 84 selections of 6 letters which can be made from the 9 letters the many states of the contract of the con-2. In how many ways can 4 boys be chosen from 6? #### Solution ' The number of selections = $${}^{6}C_{4} = \frac{6!}{(6-4)!4!} = \frac{6!}{2!4!} = 15$$ 3. A committee of 2 men and 3 women is to be chosen from 5 men and 4 women. How many different committees can be formed? #### Solution The two men can be selected in ${}^5C_2 = 10$ ways The three women can be chosen in ${}^4C_3 = 4$ ways The possible committees are $10 \times 4 = 40$ Note: 10 is multiplied by 4 since the choice of the men and the choice of the women are independent operations. 4. How many different committees, each consisting of 3 boys and 2 girls can be chosen from 7 boys and 2 girls? #### Solution Number of ways of choosing 3 boys from $7 = {}^{7}C_{3} = 35$ Number of ways of choosing 2 girls from $5 = {}^5C_2 = 10$ Number of committees which can be chosen = $35 \times 10 = 350$ - 5.A group consists of 4 boys and 7 girls. In how many ways can a team of five be selected if it is to contain - (a) no boys (b) 2 boys and 3 girls (c) at least 3 boys ? Solution ... # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition - (a) No boys are selected, so the team is chosen from the 7 girls number of ways of choosing 5 girls from $7 = {}^{7}C_{5} = 21$ - (b) 2 boys can be chosen from 4 in ${}^4C_2 = 6$ ways 3 girls can be chosen from 7 in ${}^7C_3 = 35$ ways Number of teams = $6 \times 35 = 210$ - (c) If the team is to have at least 3 boys, then there must be either 3 or 4 boys Number of teams with 3 boys and 2 girls = ${}^4C_3 \times {}^7C_2 = 84$ Number of teams with 4 boys and 1 girl = ${}^4C_4 \times {}^7C_1 = 7$ These are mutually exclusive events, so number of teams with at least 3 boys = 84 + 7 = 91 - 6. A group consists of 6 men and 5 women. If a committee of five members is to be formed, in how many ways can this be done if it must contain - (a) At least one woman (b) not more than three men? Solution - (a) If the committee is to have at least one woman, then it can have 1, 2, 3, 4 or 5 women. With 1 woman and 4 men, number of ways = ${}^5C_1 \times {}^6C_4 = 75$ With 2 women and 3 men, number of ways = ${}^5C_2 \times {}^6C_3 = 200$ With 3 women and 2 men, number of ways = ${}^5C_3 \times {}^6C_2 = 150$ With 4 women and 1 man, number of ways = ${}^5C_4 \times {}^6C_1 = 30$ With 5 women and no man, number of ways = ${}^5C_5 \times {}^6C_0 = 1$ Total number of ways = 75 + 200 + 150 + 30 + 1 = 456 ways - (b) If the committee is not to have more than 3 men, then it can have 3, 2, 1 or no man with 3 men and 2 women, number of ways = ${}^6C_3 \times {}^5C_2 = 200$ With 2 men and 3 women, number of ways = ${}^6C_2 \times {}^5C_3 = 150$ With 1 man and 4 women, number of ways = ${}^6C_1 \times {}^5C_4 = 30$ With no man and 5 women, number of ways = ${}^6C_0 \times {}^5C_5 = 1$ Total number of ways = 200 + 150 + 30 + 1 = 381 ### Trial questions - 1. Evaluate without using a calculator - (a) $\frac{0!}{6!}$ (b) $\frac{9!}{3\times 5!}$ (c) $\frac{5!\times 4!}{6!}$ [Ans: (a) 56 (b) 1008 (c) 4] - 2.1n how many ways can a group of ten children be arranged in a line? [Ans: 10!] - 3. Find the number of permutations of two different letters taken from the letters A, B, C, D, E, F [Ans: 30] - 4.In how many ways can six books be arranged on a shelf when the books are selected from ten different books? [Ans: 151200] - 5. How many code words each consisting of five different letters, can be formed from the letters A, B, C, D, E, F, G and 11? [Ans: 6720] # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition 6.In how many ways can the letters of the word MEDIAN be arranged? [Ans: 720] 7. How many different teams of 7 players can be chosen from 10 girls? [Ans: 120] 8. Three students are to be promoted from a particular class. If five students are under consideration for promotion, in how many ways can the group to be promoted be chosen? [Ans: 10] 9.A librarian has to make a selection of 5 newspapers and 7 magazines from the 8 newspapers and 9 magazines which are available. In how many ways can she make her selection? [Ans: 2016] 10. Find the number of different selections of 3 letters from the word METHOD [Ans: 20] 11. A group consists of 5 boys and 8 girls. In how many ways can a team of four be chosen, if it [Ans: (a) 5 (b) 85 contains (a) no girls (b) not more than one girl (c) at least two boys? 12. In how many ways can a committee of five people be selected from 7 men and 3 women if it must contain (a) 3 men and 2 women (b) 3 women and 2 men (c) at least 1 woman? [Ans: (a) 105 (b) 21 (c) 231] 13. In how many ways can a committee of 7 people be selected from 4 men and 6 women if the committee must have at least 4 women on it? [Ans: 100] 14. A group consists of 5 boys and 8 girls. In how many ways can a team of five be chosen if it is to contain (a) no girls (b) no boys (c) at least one boy? [Ans: (a) 1 (b) 56 (c) 1231] 15. A tennis club has to select two mixed double pairs from a given group of 5 men and 4 women. In how many ways can this be done? [Ans: 120] 16. A circular ring has ten different beads. In how many ways can the beads be arranged along the ring? [Ans: 181440] 17. Find the number of arrangements of the letters of the word COMMITTEE [Ans: 60480] 18. A combination of five vehicles is to be chosen from six saloon cars and seven vans. If at least three saloon cars must be chosen. In how many ways can the combination be done? [Ans: 531] 19. Determine the number of different arrangements of the letters in the word ARRANGE? [Ans: 1260] 20. In how many different ways can the letters of the word REVERSES be arranged? [Ans: 1680] 21. There are 6 women and 4 men wedding preparation meeting. 5 people are chosen at random to constitute an ushering committee. Find the number of committees that can be formed containing at least two women. [Ans: 246 22. A committee of five people is to be selected from 7 women and 4 men. In how many ways can the committee be chosen if there has to be at least a man on the committee? [Ans: 441] 23. Evaluate the following with out using a calculator (i) ${}^{7}C_{4}$ (ii) [Ans: (i) 35 (ii) 840 24. How many possible committees of 5 members can be formed from 6 boys and 5 girls, if there must be at least a boy and a girl on each committee formed [Ans: 455] 1 . . 'nη ٩į I_{ij} ## CHAPTER 17: RANDOM AND CONTINUOUS VARIABLES When carrying out an experiment, variables are used to describe the event. A variable in this case can be defined as a characteristic that can assume different values. Letters of the alphabet such as X, Y, or Z can be used to represent variables. Since the variables are associated with probability, they are called random variables. Random variables may be either discrete or continuous. A discrete random variable is the variable that has values that can be counted while a continuous is one that has uncountable domain. #### DISCRETE RANDOM VARIABLES When a variable is discrete, it is possible to specify or describe all its possible numerical values, for example; - > The number of females in a group of four students; the possible values are 0, 1, 2, 3, 4 - The number of heads obtained when a coin is thrown two times; the possible values are 0, 1, 2. - > The number of boys possible if a family plans to have three children is 0, 1, 2, 3, or 4. #### Consider this situation: By mistake, three faulty fuses are put into a box containing two good fuses are put into a box containing two good fuses. The faulty and good fuses become mixed up making a total of five fuses and indistinguishable by sight. You choose to take two fuses from the box. What is the probability that you take - (a) No faulty fuses - (b) One faulty fuse - (c) Two faulty fuses? It is possible to show the outcomes and probabilities on a tree diagram Let event F denote faulty fuse and F ' denote not faulty - Probability $P(F, F) = \frac{3}{5} \times \frac{2}{4} = 0.3$ - Outcome A suprime military of SI 2 faulty fuses them commensued non-gament of the dis- and the compagnitions - yait, appendents book \$2. and the maint in highest of P1 Committee of the Committee of the - $P(F,F) = \frac{3}{5} \times \frac{2}{4} = 0.3_{+}$, 1 faulty fuse - $P(F', F) = \frac{2}{5} \times \frac{3}{3} = 0.3$ 1 faulty fuse - $P(F', F') = \frac{3}{5} \times \frac{1}{4} = 0.1$ 0 faulty fuses - (a) P(no faulty fuses) = 0.1 - (b) P(one faulty fuse) = 0.3 + 0.3 = 0.6 - (c) P(two faulty fuses) = 0.3 The variable being considered here is "the number of faulty fuses" and is denoted by X The values that X can take are 0, 1 or 2 The probability that there are no faulty fuses, i.e. the probability that the variable X takes on the value 0. can be written as P(X=0), so P(X=0) = 0.1 # Advanced Level Subsidiary Mathematics by Kayyuma Fahad 2nd Edition Similarly P(X = 1) = 0.6 and P(X = 2) = 0.3 When defining variables, the variable is usually denoted by a capital letter (X, Y, R, etc.) and a particular value that variable takes by a small letter (x, y, r, etc.), so that P(X = x) means "the probability that the variable X takes the value x " The probability
distribution for x can be summarized in the table below | ••• | ity distribution for a cum and | | | | | | |-----|--|-----|------------|-----|--|--| | 1 | x | 0 | Π <u>_</u> | 2 | | | | " | P(X=x) | 0.1 | 0.6 | 0.3 | | | If the sum of the probabilities is I, the variable is said to be random In this example; $$P(X = 0) + P(X = 1) + P(X = 2) = 0.1 + 0.6 + 0.3 = 1$$ So X is a discrete random variable. For a discrete random variable, the sum of the probabilities is 1, i.e. $$\sum_{all \ x} P(X = x) = 1$$ also $$P(X = x) \ge 0$$ for all values of x The function responsible for allocating probabilities, P(X = x) is known as the probability density function of X, sometimes abbreviated as p.d.f of X. The probability density function can either list the probabilities individually or summarize them in a formula #### Examples 1. The discrete random variable X has the following probability distribution | | | | | Ψı | <u>-</u> _ | |----------|-----|------|-----|------------|------------| | x | 1 | 2 | 3 | 4 | 5 | | P(X = x) | 0.2 | 0.25 | 0.4 | <i>a</i> . | 0.05 | - (a) Find the value of a - (b) Find (i) $P(1 \le X \le 3)$ (ii) P(X > 2) (iii) P(2 < X < 5) (iv) the mode Solution (a) Using the property $$\sum_{all \, x} P(X = x) = 1$$ $$0.2 + 0.25 + 0.4 + \alpha + 0.05 = 1$$ $$0.9 + a = 1$$ $$a = 0.1$$ (b) (i) $$P(1 \le X \le 3) = P(X = 1) + P(X = 2) + P(X = 3)$$ = $0.2 + 0.25 + 0.4 = 0.85$ (ii) $$P(X > 2) = P(X = 3) + P(X = 4) + P(X = 5)$$ = 0.4 + a + 0.05 = 0.4 + 0.1 + 0.05 = 0.55 (iii) $$P(2 < X < 5) = P(X = 3) + P(X = 4)$$ = 0.4 + a = 0.4 + 0.1 = 0.5 The mode is the value of x with the highest probability. The highest probability in this (iv) case is 0.4 hence the mode is 3 ÷ 2. The p.d.f of a discrete random variable X is given by $P(X = x) = kx^2$ for x = 0, 1, 2, 3, 4. Given ig that k is a constant, find the value of k. . #### Solution By drawing the table, it would help us write out the probability distribution of X | <u> </u> | | | | 4 | | |-----------------------|---|---|----|----|-----| | x | 0 | 1 | 2 | 3 | 4 | | $P(X = \overline{x})$ | 0 | k | 4k | 9k | 16k | ## Advanced Level Subsidiary Mathematics by Kawung Fahad 2nd Edition Since X is a discrete random variable, $$\sum_{all \ x} P(X = x) = 1$$ So $0 + k + 4k + 9k + 16k = 1$ $30k = 1 \Rightarrow k = \frac{1}{30}$ 3. Suppose that a coin is tossed twice so that the sample space $S = \{HH, HT, TH, TT\}$. If X represents the number of heads that come up, find the probability function corresponding to the random variable X #### Solution $$P(HH) = \frac{1}{4}, \quad P(HT) = \frac{1}{4}, \quad (TH) = \frac{1}{4}, P(TT) = \frac{1}{4}$$ $$P(X = 0) = P(TT) = \frac{1}{4}$$ $$P(X = 1) = (HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$ $$P(X = 2) = P(HH) = \frac{1}{4}$$ The probability function is thus given in the solution. The probability function is thus given in the table below | x | 0 | 1 | 2 | |-----------------------|----------|----------|--------------------------| | $P(X = \overline{x})$ | 1 _ | 1 | 1 | | L | <u> </u> | <u> </u> | $\frac{\overline{4}}{4}$ | #### Expectation of X, E(X) E(X) is read as 'E of X' and it gives an average or typical value of X, known as the expected value or expectation of X. This is comparable with the mean in descriptive statistics. The expectation of X (expected value or mean), written as E(X) is given by; $$E(X) = \sum_{all \, x} x P(X = x)$$ The symbol μ , pronounced 'mew' is often used for the expectation, where $\mu = E(X)$ #### **Examples** 1. A random variable X has the following probability distribution | | | | | P. COGO | mry distribut | |------------------|-----|-----|------|---------|---------------| | x | 2 | - l | 0 | 1 | 12 | | P(X = x) | 0.3 | 0.1 | 0.15 | 0.4 | 0.05 | | Daymontation FOO | | | | | | Find the expectation E(X) #### Solution | | | | | | | |-------------|------|------|-------------|---------|--------| | <u> </u> | -2 | -l | 0 | 1 | 2 | | P(X = x) | 0.3 | 0.1 | 0.15 | 0.4 | 0.05 | | xP(X=x) | -0.6 | -0.1 | 0 - | 0.4 | 0.05 | | | | | | * * * * | _ 0.1 | $$E(X) = \sum_{\text{all } x} x P(X = x)$$ = -0.6 + -0.1 + 0 + 0.4 + 0.1 = -0.2 X is the number of heads obtained when two coins are tossed. Find the expected number of heads. $$P(HH) = \frac{1}{4}, \quad P(HT) = \frac{1}{4}, \quad (TH) = \frac{1}{4}, P(TT) = \frac{1}{4}$$ $$P(X = 0) = P(TT) = \frac{1}{4}$$ $$P(X = 1) = (HT) + P(TH) = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$ $$P(X = 2) = P(HH) = \frac{1}{4}$$ | | 4 | | | |---------|-----|-----|---------| | x | 0 | 1 | 2 | | P(X=x) | · 1 | , 1 | | | <u></u> | 4 | 2 | 4 | | xP(X=x) | 0 | 1 | 1 [| | L | , | 5 | <u></u> | $$E(X) = 0 + \frac{1}{2} + \frac{1}{2} = 1$$ 3. X is the random variable 'the number of likely boys obtained' for the family that plans to have three children. Find E(X) #### Solution The possible outcomes are {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG} | (BBS, BBS, BBS, BGB, BGG, GBS, GBS, GBS, | | | | | | | |--|----------|----------|-----|--|---|--| | x | 0 | 1 | | 2 | | 3 | | P(X=x) | 1 | | 3 2 | 1 - | 3 | 1 | | ADCU > | 8 \ | <u> </u> | 8 5 | <u> ` </u> | 8 | <u> 8 </u> | | xP(X=x) | 0: | | 3 | 七 | 6 | <u>3</u> | | F. | 3 6 3 12 | · _ · | 8 | | 8 | 8 | | E(X) = | テナテナマーデ | 1 C. | | | | | $$E(X) = \frac{3}{8} + \frac{6}{8} + \frac{3}{8} = \frac{12}{8} = 1.5$$ - 4. Two fair tetrahedral dice whose faces are numbered 1, 2, 3 and 4 are thrown at the same time. The score is the sum of the numbers which show up on the faces of the dice. - (i) Construct a probability distribution table for the scores - (ii) Calculate the expected score for the throw #### Solution Table of outcomes | | | di | e 2 | ь, | |-------|------|------|------|------| | die 1 | 1 | 2 | 3 | 4 | | 1 | 1, 1 | I, 2 | 1, 3 | 1,4 | | 2 | 2, 1 | 2, 2 | 2, 3 | 2, 4 | | 3 | 3, 1 | 3, 2 | 3, 3 | 3, 4 | | 4 | 4, 1 | 4, 2 | 4, 3 | 4, 4 | table for sum . | 2 | 3 | 4. | 5 | |-----|---|----|-----| | 3 | 4 | 5 | 6 | | 4 | 5 | б | . 7 | | 5 . | 6 | 7 | 8 | Let X be the random variable sum of the scores The p.d.f of X is as shown in the table below; | <u>x</u> | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |----------|----|-----|------------|-----------|-----------|-----------------|----| | P(X=x) | 1 | 2 | 3 | 4 | 3 | 2 | 1 | | | 16 | 16_ | <u> 16</u> | <u>16</u> | <u>16</u> | $\overline{16}$ | 16 | (ii) | x | 2 | 3 | 4 _ | 5 | 6 | 7 | 8 | Σ | |---------|----------------|----------------|-----------------|-----------------|-----------|-----------------|----------------|----------| | P(X=x) | 1/6 | $\frac{2}{16}$ | 16 | 4 16 | 3
16 | $\frac{2}{16}$ | 1 16 | 1 | | xP(X=x) | $\frac{10}{2}$ | $\frac{6}{16}$ | $\frac{12}{16}$ | $\frac{20}{16}$ | 18
16_ | $\frac{14}{16}$ | $\frac{8}{16}$ | 80
16 | $$E(X) = \frac{80}{16} = 5$$ ## Advanced Level Subsidiary Mathematics by Karyuna Fahad ## Variance of X, Var (X) for a discrete random variable, with $E(X) = \mu$, the variance is defined as follows; For a universal part of X written as Var $(X) = E(X - \mu)^2$ The variance of X written as Var $(X) = E(X - \mu)^2$ The variance of X wither as $$Var(X) = \frac{1}{2}$$ Alternatively, $Var(X) = E(X - \mu)^2$ $= E(X^2 - 2\mu)$ $$=E(X^2-2\mu X+\mu^2)$$ $$= E(X^2) - 2\mu E(X) + E(\mu^2)$$ $$= E(X^2) - 2\mu^2 + \mu^2$$ = $$E(X^2) - \mu^2$$ [This format is easier to work with] Note: $$\mu = E(X)$$ and $\mu^2 = [E(X)]^2$ Therefore $$\operatorname{Var}(X) = E(X^2) - [E(X)]^2$$ where $E(X^2) = \sum_{all \, x} x^2 P(X = x)$ $V_{ar}(X)$ is sometimes written as the square of the standard deviation i.e σ^2 Thus standard deviation of X, $\sigma = \sqrt{Var(X)}$ #### Examples 1. The random variable X has a probability distribution as shown in the table | | | | | • | | | |---|--------|-----|-----|-----|-----|-----| | ſ | x | 1 | 2 | 3 | 4 | 5 | | ļ | P(X=x) | 0.1 | 0.3 | 0.2 | 0.3 | 0.1 |
Find (a) E(X) (b) $E(X^2)$ (c) Var(X) (d) the standard deviation of X #### Solution | 11011 | | | | | | |-----------------|-----|-----|-----|-----|-----| | x | 1 | 2 | 3 | 4 | 5 | | P(X = x) | 0.1 | 0.3 | 0.2 | 0.3 | 0.1 | | xP(X=x) | 0.1 | 0.6 | 0.6 | 1.2 | 0.5 | | - x1 (11 - x) | 1 | 4 | 9 | 16 | 25 | | $\chi^2 P(X=x)$ | 0.1 | 1.2 | 1.8 | 4.8 | 2.5 | | 1 X F(A — ~) | 1 0 | | | | | (a) $$E(X) = 0.1 + 0.6 + 0.6 + 1.2 + 0.5 = 3$$ (b) $$E(X^2) = 0.1 + 1.2 + 1.8 + 4.8 + 2.5 = 10.4$$ (c) $$Var(X) = E(X^2) - [E(X)]^2$$ = 10.4 - 3² = 10.4 - 9 = 1.4 $$= 10.4 - 3^2 = 10.4 - 9 - 1.1$$ (d) standard deviation of X, $\sigma = \sqrt{Var(X)} = \sqrt{1.4} = 1.18 (2 d. p)$ 2. The discrete random variable X has p.d.f P(X = x) for x = 1, 2, 3 ... | Crete random | 1 | 2 | 3 | |--------------|-----|-------|-----| | XX | 0.2 | 0.3 . | 0.5 | | p(X = X) | | | | Find (a) E(X) (b) $E(X^2)$ (c) Var(X) (d) the standard deviation of X Solut | · · · · · | | | | | |---------------|----------------|-----|-------|---| | lion ~ | $\overline{1}$ | 2 | 3 | | | P(X=x) | 0.2 | 0.3 | . 0.5 | • | | xP(X=x) | 0.2 | 0.6 | 1.5 | | | 72 XI (X - X) | 1 | 4 | 9 | | | $r^2 P(X=x)$ | 0.2 | 1.2 | 4.5 | | (a) $$E(X) = 0.2 + 0.6 + 1.5 = 2.3$$ # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition (b) $$E(X^2) = 0.2 + 1.2 + 4.5 = 5.9$$ (c) $Var(X) = E(X^2) - [E(X)]^2$ $$f(X) = E(X^2) - [E(X^3)]$$ $$= 5.9 - (2.3)^2 = 5.9 - 5.29 = 0.61$$ (d) standard deviation of X, $\sigma = \sqrt{Var(X)} = \sqrt{0.61} = 0.781$ (3 d. p) ### Trial questions 1. A random variable X has the probability distribution as shown in the table | 1(| 10111 variable A | ins the b | | - | | 16 1 | | |----|----------------------------|--------------|-----|---------------|-------------|-----------|-----| | ſ | | 1 | 12 | 13 | 4 | <u></u> | | | ١ | χ | <u> </u> | | | 0.2 | ፲ ሰ ሰና | | | ì | $\overline{n}(v - \omega)$ | Γ <u>α 1</u> | 103 | l a | U. <u>4</u> | 0.05 | | | ı | P(x = x) | 0.1. | | | 4 | (1) D(2 · | < X | Find (a) the value of a (b) $P(X \ge 4)$ (c) P(X < 1) (d) $P(2 \le X \le 4)$ [Ans: (a) 0.35 (b) 0.25 (c) 0 (d) 0.65] 2. The probability distribution of a random variable X is as shown in the table below | noodoning distri | 0 11110117 | | | | | |------------------|------------|-----|---|-----|-----| | Y | | 2 | 3 | 4 | 5 | | P(X=x) | 0.1 | 0.3 | у | 0.2 | 0.1 | Find (a) the value of y (b) E(X) [Ans: (a) 0.3 (b) 2.9] 3. Find the expected number of heads when two fair coins are tossed [Ans: 1] 4. The discrete random variable X has p.d.f; P(X=0) = 0.05, P(X=1) = 0.45, P(X=2) = 0.5. Find (a) E(X) (b) $E(X^2)$ [Ans: (a) 1.45 (b) 2.45] 5. The discrete random variable X has a p.d.f P(X = x) = kx for x = 1,2,3,4,5 where k is a [Ans: $\frac{11}{3}$] costant. Find E(X) 6. Find Var (X) for each of the following probability distributions | (a) · | | | a. | : | | | |-------|--------|------|-----|-----|-----|-----| | | x | -3 | -2 | 0 | 2 | 3 | | | P(X=x) | 03 . | 0.3 | 02. | 0.1 | 0.1 | | , | | • | | <u> </u> | | | |----|--------|---|---|--------------------------|--------------------------|---| | | x : | 1 | 3 | . 5 | 7 | 9 | | | P(X=x) | 1 | 1 | 1 | 1 | 1 | | Į. | | 6 | 4 | $\frac{\overline{6}}{6}$ | $\frac{\overline{4}}{4}$ | 6 | | х | 0 . | 2 | 5 | 6 | |--------|------|------|------|------| | P(X=x) | 0.11 | 0.35 | 0.46 | 0.08 | | | | | | | (b) $\frac{22}{3}$ (c) 3.67 [Ans: (a) 4.2 7. X is a random variable 'the number on the biased die' and the p.d.f is as shown | x | 1 | 2 | 3 | 4 | 5 | 6 | |----------|---|---|----------|---|-----|----------------| | P(X = x) | 1 | 1 | 1 | у | 1 | - 1 | | | 6 | 6 | <u> </u> | | \ ह | | Find (a) the value of y (b) E(X) (c) $E(X^2)$ (d) Var(X) [Ans: (a) 0.1 (b) 3.5 (c) 15.23 (d) 0.933] - 8. A discrete random variable X can take on the values 0, 1, 2 or 3 and its probability distribution is given by P(X = 0) = k, P(X = 1) = 3k, P(X = 2) = 4k, P(X = 3) = 5k, where k is a constant. Find - (a) the value of k (b) the mean and variance of X [Ans: (a) $\frac{1}{13}$ (b) 2, $\frac{12}{13}$] - 9. a discrete random variable X represents the number of heads obtained when three coins are tossed. (a) Construct the probability distribution table for X ### Advanced Level Subsidiary Mathematics by Kawuma Fahad........ 2nd Edition. (b) Calculate the expected number of heads (c) Find the variance of X [Ans: (b) 1.5 (c) 0.75] [Ans: (b)] [0. The table below shows a random variable | table below one | y a random variab | le X with the fo | u
Mowing | pability distribution | |-----------------|-------------------|------------------|---------------|-----------------------| | 2(2 - 1) | 2 | 3 4 | showing proj | pability distribution | | P(X=x) | $\frac{1}{2k}$ | 1 K | - | | | value of k (ii) | Variance - 621 | 1 4 1 | 3 | | Find the (i) value of k (ii) variance of X [Ans: (i) k = 5/48 (ii) 1.8 11. A random variable X has the p.d.f given by P(X = 0) = 0.1, P(X = 1) = 0.3, p(X = 2) = 0.4 and P(X = 3) = 0.2. Find the Expectation of X (ii) variance of X [Ans: (i) 1.7 (ii) 0.81] 12. A discrete random variable X takes on the values 0, 1, 2, 3 and 4. Its probability distribution is; p(X = 0) = c, P(X = 1) = 2c, P(X = 2) = 3c, P(X = 3) = 4c and P(X = 4) = 5cFind the (i) the value of the constant e (ii) standard deviation of the distribution [Ans: (i) 1/15 (ii) 1.24]: 13. A random variable X has the probability distribution; $$p(X = 0) = P(X = 1) = 0.1$$ $$p(X = 2) = 0.2$$ $$P(X = 3) = P(X = 4) = 0.3$$ Find the mean and variance of X 14. The random variable X has the distribution shown in the table below | <u>x</u> | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |----------|----|----|---|--------|-----|------------|------|-----| | P(X=x) | 1 | 1 | m | 3 | · 6 | 2 | ∙3 ∵ | 1 1 | | | 20 | 20 | : | ${20}$ | 20 | <u> 20</u> | 20 | 20 | Find the (i) value of m (ii) expectation and variance of X [Ans: (i) 3/20 (ii) 2.75; 3.0875: 1 15. A random variable X has a p.d.f f(x) given as; | γ | -1 | 0 | 1 | |---------------|--|----------|------| | P(X=x) | a | 1 | b, ! | | $\frac{1}{3}$ | 10 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <u> </u> | | Where a and b are the probabilities of P(X = -1) and P(X = 1) respectively Given that $E(X) = \frac{1}{6}$, - determine the values of a and b (i) - calculate the variance and standard deviation of X find P(X > -1) [Ans: (i) a = 1/6, b = 1/3 (ii) 0.472; 0.687 (iii) 5/6] (ii) A discrete random variable $$P(X = x) = \begin{cases} \frac{1+l}{ik} & \text{if } i = 1,2,3 \dots 6 \\ 0 & \text{elsewhere} \end{cases}$$ Find the (i) value of k (ii) expectation of X [Ans: (i) k = 20/169 (ii) 3.195] 17. A discrete random variable x has the probability distribution given below 17. A discrete range P(x = 1) = P(x = 3) = 2k and P(x = 2) = 4k where k is a constant. - Find the value of k - (i) State the mode - Calculate the mean (ii) (iii) [Ans: (i) 0.1 (ii) 2 (ii) 2] ## CONTINOUS RANDOM VARIABLES A continuous random variable is one which has a continuous or countable domain For example - > The mass, in grams, of a bag of sugar packed by a particular machine - > The time taken in minutes, to perform a given task - > The height, in metres, of a five year old girl - > The life time in hours of a 100-watt bulb - > The amounts of rainfall in a certain city ## Probability density function (p.d.f) A continuous random variable X is given by its probability distribution function (p.d.f), which is specified for the range of values for which x is valid. The probabilities are given by the area under the curve, it is denoted by f(x) #### Properties of the probability density function - 1. It is non negative i.e $f(x) \ge 0$ for all x - 2. For a continuous random variable X, with a p.d.f f(x) valid over the range $a \le x \le b$ #### **Examples** 1. A continuous random variable X has a p.d.f $f(x) = kx^2$ for $0 \le x \le 4$, find the (a) value of constant k (b) $P(1 \le X \le 3)$ ### Solution (a) $$\int_{a}^{b} f(x) dx = 1$$ $\int_{0}^{4} kx^{2} dx = 1$ $k \int_{0}^{4} x^{2} dx = 1$ $k \left[\frac{x^{3}}{3} \right]_{0}^{4} = 1$ $k \left[\frac{4^{3}}{3} - 0 \right] = 1$ $\frac{64k}{3} = 1 \Rightarrow k = \frac{3}{64}$ $\therefore f(x) = \frac{3}{64}x^{2} \text{ for } 0 \le x \le 4$ (b) $$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f(x) dx$$ $$P(1 \le X \le 3) = \int_{1}^{3} \frac{3}{64} x^2 dx$$ $$= \frac{3}{64} \int_{1}^{3} x^2 dx$$ $$= \frac{3}{64} \left[\frac{x^3}{3} \right]_{1}^{3}$$ $$= \frac{3}{64} \left[\frac{4^3}{3} - \frac{1^3}{3} \right]$$ $$= \frac{3}{64} \left[\frac{27}{3} - \frac{1}{3} \right]$$ $$= \frac{3}{64} \times \frac{26}{3} = 0.40625 = 0.41(2d.p)$$ # Advanced Level Subsidiary Mathematics by Kanyuna Fahad 2nd Edition X is a continuous random variable, the mass, in kilograms of a substance produced per minute in an industrial process where; f(x) = $$\begin{cases} \frac{1}{36}x(6-x) & 0 \le x \le 6 \\ 0 & \text{otherwise} \end{cases}$$ silive that the mass is more than 10 than 10 silive that the mass is more than 10 silive that the mass is more than 10 silive than 10 silive that the mass is more than 10 silive that the mass is more than 10 silive otherwis Find the probability that the mass is more than 5kg Solution #### Solution We are required to find P(X > 5) We are required to find $$Y(X > 5)$$ $$p(X > 5) = \int_{5}^{6} \frac{1}{36} x(6 - x) dx = \frac{1}{36} \int_{5}^{6} (6x - x^{2}) dx \qquad 62^{-\frac{3}{2}} \frac{1}{36} \left[3x^{2} - \frac{x^{3}}{3} \right]_{5}^{6} \qquad 32^{-\frac{3}{2}}$$ $$= \frac{1}{36} \left[(3(6^{2}) - \frac{6^{3}}{3}) - (3(5^{2}) - \frac{5^{3}}{3}) \right] \qquad = \frac{1}{36} \left[(108 - 72) - (75 - \frac{125}{3}) \right] \qquad = \frac{1}{36} \left[36 - \frac{100}{3} \right] = \frac{1}{36} \times \frac{8}{3} = \frac{8}{108} = 0.074$$ ### Example 3 The continuous random variable X has p.d. f(x) where; $$f(x) = \begin{cases} k & 0 \le x < 2\\ k(2x - 3) & 2 \le x \le 3\\ 0 & otherwise \end{cases}$$ Find (a) the value of
the constant k (b) P ($X \le 1$) (c) $P(X \ge 2.5)$ (d) $P(1 \le X \le 2.3)$ Solution (a) $$\int_{all \ x} f(x) \ dx = 1$$ $$\int_{0}^{2} k \ dx + \int_{2}^{3} k(2x - 3) \ dx = 1$$ $$k \int_{0}^{2} dx + k \int_{2}^{3} (2x - 3) \ dx = 1$$ $$k[x]_{0}^{2} + k[x^{2} - 3x]_{2}^{3} = 1$$ $$k(2 - 0) + k([3^{2} - 3(3)] - [2^{2} - 3(2)]) = 1$$ $$2k + k(0 - (-2)) = 1$$ $$2k + k(0 - (-2)) - 1$$ $$2k + 2k = 1, \text{ thus } 4k = 1 \Rightarrow k = \frac{1}{4}$$ $$f(x) = \begin{cases} \frac{1}{4} & 0 \le x < 2\\ \frac{1}{4}(2x - 3) & 2 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$ (b) $$P(X \le 1) = \int_0^1 \frac{1}{4} dx = \left[\frac{x}{4}\right]_0^1 = \left(\frac{1}{4} - 0\right) = \frac{1}{4}$$ (c) $$P(X \ge 2.5) = \int_{2.5}^{3} \frac{1}{4} (2x - 3) dx = \frac{1}{4} \int_{2.5}^{3} (2x - 3) dx$$ = $\frac{1}{4} [x^2 - 3x]_{2.5}^{3}$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$= \frac{1}{4}([3^2 - 3(3)] - [2.5^2 - 3(2.5)])$$ $$= \frac{1}{4}(0 - (-1.25))$$ $$= \frac{1}{4} \times 1.25 = 0.3125$$ (d) $$P(1 \le X \le 3) = \int_{1}^{2} \frac{1}{4} dx + \int_{2}^{2.3} \frac{1}{4} (2x - 3) dx$$ $$= \left[\frac{x}{4}\right]_{1}^{2} + \frac{1}{4} \left[x^{2} - 3x\right]_{2}^{2.3}$$ $$= \left(\frac{2}{4} - \frac{1}{4}\right) + \frac{1}{4} \left(\left[2.3^{2} - 3(2.3)\right] - \left[2^{2} - 3(2)\right]\right)$$ $$= \frac{1}{4} + \frac{1}{4} \left(-1.61 + 2\right)$$ $$= 0.25 + 0.25(0.39) = 0.25 + 0.0975 = 0.3475$$ #### Expectation of X, E(X) For a continuous random variable with a p.d.f f(x) $$E(X) = \int_{\partial U x} x f(x) dx$$, E(X) is referred to as the mean or expectation of X and is often denoted by μ #### Examples 1. The p.d.f of a continuous random variable X is given below $$f(x) = \begin{cases} \frac{1}{9}x^2 & 0 \le x \le 3\\ 0 & otherwise \end{cases}$$ Find (a) μ , the mean of X (b) $P(X < \mu)$ #### **Solution** (a) $$\mu = E(X)$$ $$E(X) = \int_{alt \, x} x f(x) \, dx$$ $$= \int_0^3 x \times \frac{1}{9} x^2 dx = \frac{1}{9} \int_0^3 x^3 \, dx$$ $$= \frac{1}{9} \left[\frac{x^4}{4} \right]_0^3 = \frac{1}{9} \left(\frac{3^4}{4} - 0 \right) = \frac{1}{9} \times \frac{81}{4} = \frac{81}{36} = 2.25$$ (b) $$P(X < \mu) = P(X < 2.25)$$ $P(X < 2.25) = \int_0^{2.25} \frac{1}{9} x^2 dx = \frac{1}{9} \left[\frac{x^3}{3} \right] \frac{2.25}{0} = \frac{1}{9} \left(\frac{2.25^3}{3} - 0 \right) = 0.42$ A teacher of young children is thinking of asking her class to guess her height in metres. The teacher considers that the height guessed by a randomly selected child can be modelled by the random variable X with the probability density function; $$f(x) = \begin{cases} \frac{3}{16}(4x - x^2) & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$ Using this model, (a) find P(X < 1) (b) show that E(X) = 1.25 Advanced Level Subsidiary Mathematics by Kawuna Fahad >> 2" Edition (a) $$P(X < 1) = \int_0^1 \frac{3}{16} (4x - x^2) dx = \frac{3}{16} \int_0^1 (4x - x^2) dx$$ $= \frac{3}{16} \left[2x^3 - \frac{x^3}{3} \right]_0^1$ $= \frac{3}{16} \times \left(\left[2(1) - \frac{1}{3} \right] - 0 \right)$ $= \frac{3}{16} \times \frac{5}{3} = \frac{5}{16} = 0.3125$ (b) $$E(X) = \int_{all \ x} xf(x) \ dx$$ $$= \frac{3}{16} \int_0^2 x(4x - x^2) \ dx = \frac{3}{16} \int_0^2 (4x^2 - x^3) \ dx$$ $$= \frac{3}{16} \left[\frac{4x^3}{3} - \frac{x^4}{4} \right]_0^2 = \frac{3}{16} \left(\left(\frac{4(2)^3}{3} - \frac{2^4}{4} \right) - (0) \right)$$ $$= \frac{3}{16} \left(\frac{32}{3} - \frac{16}{4} \right) = \frac{3}{16} \times \frac{20}{3} = \frac{20}{16} = 1.25$$ 3. A continuous random variable X has a p.d.f f(x) where $$f(x) = \begin{cases} 0.25x & 0 \le x < 2\\ 1 - 0.25x & 2 \le x \le 4\\ 0 & otherwise \end{cases}$$ Find E(X) #### Solution $$E(X) = \int_{all \ x} xf(x) \ dx$$ $$= \int_{0}^{2} x \times 0.25x \ dx + \int_{2}^{4} x(1 - 0.25x) \ dx$$ $$= 0.25 \int_{0}^{2} x^{2} dx + \int_{2}^{4} (x - 0.25x^{2}) \ dx$$ $$= 0.25 \left[\frac{x^{3}}{3} \right]_{0}^{2} + \left[\frac{x^{2}}{2} - 0.25 \frac{x^{3}}{3} \right]_{2}^{4}$$ $$= 0.25 \left(\frac{2^{3}}{3} - 0 \right) + \left(\left(\frac{4^{2}}{2} - 0.25 \frac{(4)^{3}}{3} \right) - \left(\frac{2^{2}}{2} - 0.25 \frac{(2)^{3}}{3} \right) \right)$$ $$= 0.25 \times \frac{8}{3} + \left(\left(8 - \frac{16}{3} \right) - \left(2 - \frac{2}{3} \right) \right)$$ $$= \frac{2}{3} + \left(\frac{8}{3} - \frac{4}{3} \right) = \frac{2}{3} + \frac{4}{3} = \frac{6}{3} = 2$$ 4. A continuous random variable X has a p.d.f defined by; $$f(x) = \begin{cases} \frac{kx}{4} & 0 \le x < 4 \\ k & 4 \le x \le 6 \end{cases}$$ where k is a constant otherwise Find the (a) value of k (b) E(X) (c) value of b for which $P(x \le b) = 0.2$ (a) $$\int_{all \times} f(x) \, dx = 1$$ $$\int_{0}^{4} \frac{kx}{4} dx + \int_{4}^{6} k \, dx = 1$$ $$\frac{k}{4} \int_0^4 x \, dx + k \int_4^6 dx = 1$$ $$\frac{k}{4} \left[\frac{x^2}{4} \right]_0^4 + k \left[x \right]_4^6 = 1$$ $$\frac{k}{4} \left(\frac{4^2}{2} - 0 \right) + k (6 - 4) = 1$$ $$\frac{k}{4} \times 8 + 2k = 1$$ $$2k + 2k = 1, \quad 4k = 1 \implies k = \frac{1}{4}$$ (b) $$E(X) = \int_{all \, x} x f(x) \, dx$$ It is important that we first rewrite the p.d.f replacing k with its value $$f(x) = \begin{cases} \frac{x}{16} & 0 \le x < 4 \\ \frac{1}{4} & 4 \le x \le 6 \\ 0 & otherwise \end{cases}$$ $$E(X) = \int_0^4 x \times \frac{x}{16} dx + \int_4^6 x \times \frac{1}{4} dx$$ $$= \int_0^4 \frac{x^2}{16} dx + \int_4^6 \frac{x}{4} dx = \frac{1}{16} \int_0^2 x^2 dx + \frac{1}{4} \int_4^6 x dx$$ $$= \frac{1}{16} \left[\frac{x^3}{3} \right]_0^4 + \frac{1}{4} \left[\frac{x^2}{2} \right]_4^6$$ $$= \frac{1}{16} \left(\frac{4^3}{3} - 0 \right) + \frac{1}{4} \left(\frac{6^2}{2} - \frac{4^2}{2} \right)$$ $$= \frac{1}{16} \times \frac{64}{3} + \frac{1}{4} (18 - 8)$$ $$= \frac{4}{3} + \frac{1}{4} \times 10 = \frac{4}{3} + \frac{5}{2} = \frac{23}{6} = 3.833$$ $$\therefore E(X) = 3.833$$ (c) $$P(x \le b) = 0.2$$ Since 0.2 is less than 0.5, then we expect b to lie in the range $0 \le x \le 4$ $$P(x \le b) = \int_0^b \frac{x}{16} dx = 0.2$$ $$\frac{1}{16} \int_0^b x dx = 0.2 : b^2 = 32 \times 0.2 = 6.4$$ $$\frac{1}{16} \left[\frac{x^2}{2} \right]_0^b = 0.2$$ $$b = \sqrt{6.4} = 2.53$$ $$\frac{1}{16} \left(\frac{b^2}{2} - 0 \right) = 0.2$$ $$\frac{b^2}{32} = 0.2$$ #### Expectation of any function of X If g(x) is any function of the continuous random variable X having a p.d.f f(x), then $$E(g(x)) = \int_{all \ x} g(x) f(x) \ dx$$ In particular $E(X^2) = \int_{all \ x} x^2 f(x) \ dx$ Advanced Level Subsidiary Mathematics by Kayuma Fahad 2nd Edition Example The continuous random variable X has a p.d.f f(x) where $$f(x) = \begin{cases} \frac{1}{20}(x+3) & 0 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$ Find (a) E(X) (b) $E(X^2)$ #### Solution $$\begin{aligned} (3) & \mathcal{E}(X) = \int_{all \ x} x f(x) \ dx = \int_0^4 \frac{1}{20} x (x+3) \ dx \\ &= \frac{1}{20} \int_0^4 (x^2 + 3x) \ dx \\ &= \frac{1}{20} \left[\frac{x^3}{3} + \frac{3x^2}{2} \right] \frac{4}{0} = \frac{1}{20} \left(\left(\frac{4^3}{3} + \frac{3(4)^2}{2} \right) - (0) \right) \\ &= \frac{1}{20} \times \frac{136}{3} = \frac{34}{15} = 2.267 \end{aligned}$$ (b) $$E(X^2) = \int_{all \ x} x^2 f(x) \, dx$$ $$= \int_0^4 \frac{1}{20} x^2 (x+3) \, dx$$ $$= \frac{1}{20} \int_0^4 (x^3 + 3x^2) \, dx$$ $$= \frac{1}{20} \left[\frac{x^4}{4} + x^3 \right]_0^4 = \frac{1}{20} \left(\left(\frac{4^4}{4} + 4^3 \right) - (0) \right)$$ $$= \frac{1}{20} \times 128 = 6.4$$ Note: $E(X^2)$ is an important value which is needed when calculating the variance of X #### Variance of X, Var (X) If X is a continuous random variable with p.d.f f(x), then; continuous random variable with p.d. $$f(x)$$, then, $$Var(X) = \int_{all \ x} x^2 f(x) \ dx - \mu^2 \quad [\text{Recall: Var}(X) = E(X^2) - [E(X)]^2 \quad],$$ where $\mu = E(X) = \int_{all \ x} x f(x) \ dx$ The standard deviation of X is often written as σ , where $\sigma = \sqrt{Var(X)}$ #### **Examples** 1. The continuous random variable X has p.d.f f(x) where $f(x) = \frac{1}{8}x$; $0 \le x \le 4$ Find (a) E(X) (b) $E(X^2)$ (c) Var(X) (d) the standard deviation, σ of X ### Solution (a) $$E(X) = \int_{all \ x} x f(x) dx$$ = $\int_0^4 x \times \frac{1}{8} x dx = \frac{1}{8} \int_0^4 x^2 dx = \frac{1}{8} \left[\frac{x^3}{3} \right]_0^4 = \frac{1}{8} \left(\frac{4^3}{3} - 0 \right) = \frac{1}{8} \times \frac{64}{3} = 2.7$ $$E(X^{2}) = \int_{all \, x} x^{2} f(x) \, dx$$ $$= \int_{0}^{4} x^{2} \times \frac{1}{8} x \, dx = \frac{1}{8} \int_{0}^{4} x^{3} \, dx = \frac{1}{8} \left[\frac{x^{4}}{4} \right]_{0}^{4} = \frac{1}{8} \left(\frac{4^{4}}{4} - 0 \right) = \frac{1}{8} \times \frac{64}{3} = 8$$ (c) $$Var(X) = E(X^2) - [E(X)]^2$$ = 8 - (2.7)² = 8 - 7.29 = 0.71 (2 d.p) ## Advanced Level Subsidiary Mathematics by Kawuma Fahadis 2nd Edition (d) Standard deviation = $\sqrt{Var(X)} = \sqrt{0.71} = 0.8439$ (d) Standard deviation = $\sqrt{var}(x)$ = 3. As an experiment, a temporary roundabout is installed at cross roads. The time X in minutes which vehicles have to wait before entering the roundabout has a probability density function $$\begin{cases} 0.8 - 0.32x & 0 \le x \le 2.5 \\ 0 & otherwise \end{cases}$$ Find the mean and standard deviation of X #### Solution $$E(X) = \int_{all \, x} x f(x) \, dx$$ $$= \int_0^{2.5} x (0.8 - 0.32x) \, dx = \int_0^{2.5} (0.8x - 0.32x^2) \, dx$$ $$= \left[0.8 \frac{x^2}{2} - 0.32 \frac{x^3}{3} \right] \frac{2.5}{0}$$ $$= \left(\left(0.8 \frac{(2.5)^2}{2} - 0.32 \frac{(2.5)^3}{3} \right) - (0) \right)$$ $$= 0.833 \text{ minutes}$$ $$E(X^2) = \int_{all \, x} x^2 f(x) \, dx = \int_0^{2.5} (0.8x^2 - 0.32x^3) \, dx$$ $$= \left[0.8 \frac{x^3}{3} - 0.32 \frac{x^4}{4} \right] \frac{2.5}{0}$$ $$= \left(\left(0.8 \frac{(2.5)^3}{3} - 0.32 \frac{(2.5)^4}{4} \right) - (0) \right)$$ $$= 4.167 - 3.125$$ $$= 1.042$$ Var $$(X) = E(X^2) - [E(X)]^2 = 1.042 - 0.833^2 = 0.348$$ Standard deviation of $X = \sqrt{0.348} = 0.59$ #### Trial questions - 1. The continuous random variable X has a p.d.f f(x) where $f(x) =
kx^2$ for $0 \le x \le 2$ - (a) Find the value of the constant k - (b) Find $P(X \ge 1)$ - (c) Find $P(0.5 \le x \le 1.5)$ [Ans: (a) $\frac{3}{8}$ (b) $\frac{7}{8}$ (c) $\frac{13}{32}$ - 2. A continuous random variable X has a p.d.f f(x) where f(x) = kx; $0 \le x \le 4$ - (b) find $P(1 \le x \le 2.5)$ (a) Find the value of the constant k [Ans: (a) 0.125 (b) 0.328] - 3. Find E(X) for each of the following continuous random variables (a) $$f(x) = \frac{3}{4}(x^2 + 1)$$; $0 \le x \le 1$ (b) $$f(x) = \frac{3}{4}x(2-x)$$; $0 \le x \le 2$ (c) $$f(x) = kx^3$$; $0 \le x \le 2$ (d) $$f(x) = \begin{cases} \frac{3}{8} & \frac{2}{3} \le x \le 2\\ \frac{3}{32}x(4-x) & 2 \le x \le 4\\ 0 & otherwise \end{cases}$$ [Ans: (a) $$\frac{9}{16}$$ (b) 1 (c)1.6 (d) 2.042] Myallagd Level Subsidiary Mathematics by Kawuma Fahad war 2nd Edition A random variable X has a probability density function f(x) given by $0 \le x \le 5$ $f(x) = \begin{cases} kx(5-x) \\ 0 \end{cases}$ $0 \le x \le 5$ otherwise Show that $k = \frac{6}{125}$ and find the mean of X [Ans: 2.5] 5. For each of the questions (a) to (d), find th of the questions (a) to (d), find $E(X) = (ii) E(X^2) = (iii) Var(X)$ (iv) standard deviation of x (a) $f(x) = \frac{3}{8}x^2$; $0 \le x \le 2$ (b) $f(x) = \frac{1}{4}(4-x); \quad 1 \le x \le 3$ (c) $f(x) = 4x^3$; $0 \le x \le 1$ (d) $f(x) =\begin{cases} \frac{1}{4} & 0 \le x \le 2\\ \frac{1}{4}(2x-3) & 2 \le x \le 3\\ 0 & otherwise \end{cases}$ [Ans: (a) (i) 1.5 (ii) 2.4 (iii) 1.5 (iv) 0.387 (b) (i) $\frac{11}{6}$ (ii) $\frac{11}{3}$ (iii) $\frac{11}{36}$ (iv) 0.553 (c) (i) $\frac{4}{5}$ (ii) $\frac{2}{3}$ (iii) $\frac{2}{75}$ (iv) 0.163 (d) (i) $1\frac{19}{24}$ (ii) $2\frac{1}{24}$ (iii) $\frac{479}{576}$ (iv) 0.912] 6. A continuous random variable X has a probability density function given by $f(x) = \begin{cases} ax & ; & 0 \le x \le 2 \\ a(4-x); & 2 < x \le 4 \text{ where a is a constant} \\ 0 & ; & elsewhere. \end{cases}$ (a) Find the value of a (b) Calculate the expectation; E(X) [Ans: (a) 1/4 (b) 2] 7. A random variable X has a probability density function (p.d.f) $f(x) = \begin{cases} ax & 0 \le x \le 1\\ \frac{1}{2}(4-x) & 1 < x \le 3\\ 0 & elsewhere \end{cases}$ g they are not express as a section of the control (a) Find the value of a (b) The expectation of X, E(X) (c) $P(2 \le X \le 2.5)$ [Ans: (a) -2 (b) 3 (c) 0.4375] $P(Z \le X \le Z.5) \qquad \text{[PIII.5.]} \qquad \text{(a)} \qquad Z = (0) \text{ (b)}$ 7. A random variable X has the probability density function $f(x) = \begin{cases} kx : & 0 < x < 1 \\ \frac{k}{2}x : & 1 \le x \le 2 \end{cases}$ elsewhere Find (i) the value of k (ii) E(X) Standard deviation of X [Ans: (i) 4/5 (ii) 1.2 (iii) 0.51 (iii) # CHAPTER 18: BINOMIAL DISTRIBUTION There are some probability situations that may result into only two outcomes, or even be reduced to only two. Such situations may include: i) When a baby is born, it may be either male or female ii) In a final football match, a team either wins or loses. Other situations that are reduced to only two possible outcomes may include: i) A person taking a Pioneer bus may arrive either on time or not on time. ii) A company producing items that are either defective or not defective iii) A drug administered to a patient may be either effective or ineffective. All the above mentioned situations are called binomial or Bernoulli experiments and the outcomes of a binomial experiment are classified as successes or failures. For a situation to be described using a binomial model, - > a finite number, n, trials are carried out. > the trials are independent > the outcome of each trial is deemed either a success or a failure >, the probability, p, of a successful outcome is the same for each trial The discrete random variable, X, is the number of successful outcomes in n trials. If the above conditions are satisfied, X is said to follow a binomial distribution. This is written $$X \sim B(n, p)$$ Note: the number of trials, n. and the probability of success, p, are both needed to describe the distribution completely. They are known as the parameters of the binomial distribution. Writing P(failure) as q where q = 1 - p If $X \sim B(n, p)$, the probability of obtaining r successes in n trials is P (X = r) where; $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ for $r = 0,1,2,3,.....n$ #### Examples 1. a coin is tossed three times. Find the probability of getting exactly three heads #### Solution 1 The problem can be obtained by looking at the sample space, there are three ways of getting 2 heads out of 8 i.e {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT} The answer is $$\frac{3}{8} = 0.375$$ #### Solution 2 Looking at the problem above from the stand point of a binomial experiment, one can show that it meets - 1. There are only two outcomes for each trial, head or tail - 2. There is a fixed number of trials, three - 3. The outcomes are independent of each other (the outcome of one toss in no way affects the outcome of - 4. The probability of success(heads) is ½ in each case. In this case; n = 3, X = 2, $p = \frac{1}{2}$, $q = \frac{1}{2}$ Hence substituting in this formula gives; $$P(X=r) = {^nC_r}p^rq^{n-r}$$ # Alvanced Level Subsidiary Mathematics by Kawimia Fahadin 122 Editions. $p(2 \text{ heads}) = P(X = 2) = {}^{3}C_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{1} = 3 \times \frac{1}{4} \times \frac{1}{2} = \frac{3}{8}$ which is the same answer obtained by using the sample space 2 Jom from the population, what is the probability of three people are selected at random from the population, what is the probability that exactly two of them have blood type B? Ref X be the random variable people with blood type B When three people are selected, n = 3, p = 0.1, q = 1 - 0.1 = 0.9 $\chi_{\text{is the number of outcomes in 3 trials, so } X \sim B(3, 0.1)$ $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$P(X = 2) = {}^{3}C_{2}(0.1)^{2}(0.9)^{1} = 0.072$$ 3. A biased coin is tossed three times. The probability of heads on any toss is 0.3. Let X denote the number of heads that come up. Calculate (i) $$P(X = 2)$$ (ii) $P(X = 3)$ (iii) $P(1 < X \le 5)$ If we call heads a success, then X has a binomial distribution with parameters n = 6 and p = 0.3 ... (i) $$P(X = 2) = {}^{6}C_{2}(0.3)^{2}(0.7)^{4} = 0.324135 \approx 0.324 (3 d.p)$$ (ii) $$P(X = 3) = {}^{6}C_{3}(0.3)^{3}(0.7)^{3} = 0.18522 \approx 0.185 (3 d.p)$$ (iii) $$P(1 < X \le 5) = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)$$ = 0.324 + 0.185 + ${}^{6}C_{4}(0.3)^{4}(0.7)^{2} + {}^{6}C_{5}(0.3)^{5}(0.7)^{1}$ = 0.324 + 0.185 + 0.059 + 0.01 = 0.578 4. A die is tossed three times. If X is the number of fives obtained. Find the probability that #### Solution $$X \sim B(n, p)$$ $$n = 3$$, $p = \frac{1}{6}$, $q = 1 - \frac{1}{6} = \frac{5}{6}$ n = 3, p = $$\frac{1}{6}$$, q = $1 - \frac{1}{6} - \frac{1}{6}$ (i) $P(X = 0) = {}^{3}C_{0} \left(\frac{1}{6}\right)^{0} \left(\frac{5}{6}\right)^{3} = \frac{125}{216} = 0.5787$ (i) $$P(X = 0) = {}^{3}C_{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{3} = \frac{125}{216} = 0.5787$$ (ii) $P(X = 1) = {}^{3}C_{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{2} = \frac{75}{216} = 0.34722$ (iii) $P(X = 3) = {}^{3}C_{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{0} = \frac{1}{216} = 0.00463$ (iii) $$P(X = 3) = {}^{3}C_{3} \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{0} = \frac{1}{216} = 0.00463$$ 5. Hospital records show that of the patients suffering from a certain disease, 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover? Let X = number who will recover; percentage that recovers = 100 - 75 = 25% $$X \sim B(n,p)$$ $n = 6, p = 0.25$ and $q = 0.75$ (failure if they die) ### Advanced Level Subsidiary Mathematics by Kawama Fahad 2nd Edition $$P(X = 4) = {}^{6}C_{4}(0.25)^{4}(0.75)^{2}$$ = 15 × 0.0021973 = 0.0329595 6. In the old days, there was a probability of 0.8 of success in any attempt to make a telephone call (this depended on the importance of the person making the call or the operator's curiosity) Calculate the probability of 7 successes in 10 attempts. #### Solution Probability of success, p = 0.8, so q = 0.2 Let X =success in getting through $$P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$$ $$P(X = 7) = {}^{10}C_{7}(0.8)^{7}(0.2)^{3}$$ $$= 0.20133$$ - 7. A blind folded marks man finds that on average, he hits the target 4 times out of 5. If he fires 4 shots. What is the probability of; - (a) more than two hits - (b) at least three misses ### Solution (a) $$n = 4, p = \frac{4}{5} = 0.8, q = 1 - 0.8 = 0.2$$ Let X = number of hits $$P(X > 2) = P(X = 3) + P(X = 4)$$ $$= {}^{4}C_{3}(0.8)^{3}(0.2)^{1} + {}^{4}C_{4}(0.8)^{4}(0.2)^{0}$$ $$= 0.8192$$ (b) At least 3 misses means 3 misses or more i.e 3 or 4 misses 3 misses mean 1 hit and 4 misses mean 0 hit $$P(at least 3 misses) = P(X = 1) + P(X = 0)$$ $$= 0.0272$$ - 8. A manufacturer of metal pistons finds that on average, 12% of his pistons are rejected because they are oversize or undersize. What is the probability that a batch of 10 pistons will contain; - (a) not more than two rejects - (b) at least two rejects #### Solution Let X = number of rejects, in this case 'success' means rejection $$n = 10, p = 0.12$$ and $q = 0.88$ (a) not more than two rejects means two rejects or less i.e. $X \le 2$ $$P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$$ $$= {}^{10}C_0(0.12)^0(0.88)^{10} + {}^{10}C_1(0.12)^1(0.88)^9 + {}^{10}C_2(0.12)^2(0.88)^8$$ $$= 0.2785 + 0.37977 + 0.23304$$ $$= 0.89131$$ (b) at least two rejects means two rejects or more i.e $X \ge 2$ ## Advanced Level Subsidiary Mathematics by Kaivuma Fahad 2nd Edition work out all the cases for $X = 2, 3, 4 \dots 10$. But it would be heetic. It is much easier using the $\frac{1}{2} \frac{1}{2} \frac$ Bees or proceed as follows; $$P(X = 1) + P(X = 1)$$ $$P(X = 1) + P(X = 1)$$ $$P(X = 1) + P(X = 1)$$ $$= 1 - P(X = 1)$$ $$= 1 - [0.2785 + 0.37977]$$ $$= 0.34173$$ 9. If a student randomly guesses at five multiple
choice questions, find the probability that the student gets exactly three correct answers if each question has five possible choices. #### Solution x = 5, X = 3 and $p = \frac{1}{5} = 0.2$, since there is one chance in five of guessing a correct answer. $q = \frac{1}{5}$ $$P(X = 3) = {}^{5}C_{3}(0.2)^{3}(0.8)^{2} = 0.05$$ 10. A certain survey found out that 30% of teenage consumers receive their spending money from part-time jobs. If five teenagers are selected at random, find the probability that at least three of them will have part-time jobs. #### Solution . 0.8 Let X = number having part-time jobs $$n = 5, p = 0.3, q = 0.7$$ $$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$$ $$= {}^{5}C_{3}(0.3)^{3}(0.7)^{2} + {}^{5}C_{4}(0.3)^{4}(0.7)^{1} + {}^{5}C_{5}(0.3)^{5}(0.7)^{0}$$ $$= 0.132 + 0.028 + 0.002$$ $$= 0.162$$ - the control of co 11. The probability that a pen drawn at random from a box of pens is 0.1. If a sample of 6 pens is taken, find the probability that it will contain - No defective pens - (ii) 5 or 6 defective pens (iii) Less than 3 defective pens #### Solution $$n = 6, p = 0.1, q = 0.9$$ Let X = number of defective pens Let X = number of defective pend (i) $$P(X = 0) = {}^{6}C_{0}(0.1)^{0}(0.9)^{6} = 0.5314$$ (ii) $$P(5 \text{ or } 6) = P(X = 5) + P(X = 6)$$ $$= {}^{6}C_{5}(0.1)^{5}(0.9)^{1} + {}^{6}C_{6}(0.1)^{6}(0.9)^{0}$$ $$= 0.000054 + 0.000001 = 0.000055$$ (iii) $$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$ $$= {}^{6}C_{0}(0.1)^{0}(0.9)^{6} + {}^{6}C_{1}(0.1)^{1}(0.9)^{5} + {}^{6}C_{2}(0.1)^{2}(0.9)^{4}$$ TO TO SO SHIPS WAR EXCLUSIVE and was now it postful expres eval. # Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $$= 0.5314 + 0.3543 + 0.0984$$ $$= 0.9841$$ Note that most of the above probabilities can be obtained using the tables. The value of n is located from the table and its corresponding p (probability of success noted). The probability can be read off from the table for r = 0, 1, 2, 3, ...n Now let's use the above example to obtain P(X = 0) #### Solution : '1 1' n = 6, p = 0.1 . The second of p = 0.3 | • • • | , , | B(n, p) | individual te | rms | | | | | | | |---------|---------------------|------------|----------------------------|------|-----|------|-----|------|---|------| | n | r | Probabilit | y of success
05 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | | .0.5 | | 6 | 0 1 2 | | 0.5314
0.3543
0.0984 | | | | | | | | | e ta la | 3
4
53
(6) | | 0.0146
0.0012
0.0001 | | | | • | - | ; | ; (| From the table, P(X = 0) = 0.5314 obtained by reading n = 6, r = 0 and p = 0.1 Then $$P(X = 1) = 0.3543$$ $$P(X = 2) = 0.0984$$ - 12. A multiple choice question paper has 15 questions, each with 4 possible answers of which only one is the correct answer. Determine the probability that by mere guessing, one gets: - Solution - Exactly five correct answers (ii) five incorrect answers $$n = 15, p = \frac{1}{4} = 0.25$$ \Rightarrow Let X = number of correct answers (i) $$P(X = 5)$$ From the table when n = 15, r = 5, p = 0.25 $$P(|X=5) = 0.1651$$ P(five incorrect answers) = P(ten correct answers) . . . (ii) $$= P(X=10)$$ Using the tables, n = 15, r = 10, p = 0.25 $$P(X = 10) = 0.0007$$ P(five incorrect answers) = 0.0007 ## Advanced Level Subsidiary Mathematics by Kawung Fahad 200 2nd Editions Mean, Variance and Standard deviation of a binomial distribution per de formulas using the formulas $$\frac{1}{M^{\text{can}}}, \mu = np$$ Mean, $$\mu = npq$$ $$Variance, \sigma^2 = npq$$ Variance, $$\sigma^2 = npq$$ Standard deviation, $\sigma = \sqrt{Var(X)} = \sqrt{npq}$ A coin is tossed four times. Find the mean, variance and standard deviation of the number of heads that will be obtained. #### Solution $$p = \frac{1}{2}, q = \frac{1}{2}$$ $$p = \frac{1}{2}$$, $q = \frac{1}{2}$ $p = \frac{1}{2}$, $q = \frac{1}{2}$ $p = \frac{1}{2}$ $p = \frac{1}{2}$, $q = \frac{1}{2}$ $$variance = npq = 4 \times \frac{1}{2} \times \frac{1}{2} = 1$$ mean = $$np = 1$$, $\frac{1}{2} \times \frac{1}{2} = 1$ yariance = $npq = 4 \times \frac{1}{2} \times \frac{1}{2} = 1$ Standard deviation = $\sqrt{Var(X)} = \sqrt{1} = 1$ 2. In Makerere University, it is known that $\frac{1}{2}$ of the students play volleyball. In a sample of 12 students, what is the expected value and the standard deviation of the number of volley ballers? and the state of the state of the state of Let X = number of volley ballers $$X \sim B(n, p)$$ $$x \sim B(n, p)$$ $n = 12, p = \frac{1}{3}, q = 1 - \frac{1}{3} = \frac{2}{3}$ $$mean = np = 12 \times \frac{1}{3} = 4$$ #### Trial questions But the state of the state of the state of م عرف کا ما در در در در در - 1. 30% of students in a school travel to school by bus. From a sample of ten students chosen at random, find the probability that; - (a) only three travel by bus - (b) less than half travel by bus [Ans: (a) 0.267 (b) 0.850] - 2. in a survey on washing powder, it is found that the probability that a shopper chooses Omo is 0.25. Find the probability that in a random sample of nine shoppers - (a) exactly three choose Omo - (b) more than seven chose Omo [Ans: (a) 0.234 (b) 0.000107] - 3. The random variable X is B (6, 0.42). Find (a) P (X = 6) (b) P (X = 4) (c) $P(X \le 2)$ [Ans: (a) 0.00549 (b) 0.157 (c) 0.503] - 4. An unbiased die is thrown seven times. Find the probability of throwing at least 5 sixes [Ans: 0.002] - 5. A fair coin is tossed six times. Find the probability of throwing at least four heads [Ans: 0.344] # | 6. In a test, there are ten multiple choice questions. For each, there is a choice of four answers | vers, | |---|--------------------| | a tiel is correct A shident guesses choir | • | | (a) Find the probability that he gets more than seven correct (b) Find the probability that he gets more than seven correct (c) Find the probability that he gets more than seven correct | finda | | (b) If he needs to obtain over nail thanks to plast the | , ring th | | probability that he passes the test | | | f_{Ans} : (a) 0.000416 (b) 0.0197 1 | | | 7. The probability that it will be a fine day is 0.4. Find the | | | (a) Expected number of fine days in a WCCK | | | (E) The standard deviation in the work [Ans: (a) 2.8 (b) 1.3 1 | | | 8. The probability of a football team winning a match is 0.75. If the team has five matches | i to play | | find the probability that it will win at least three of these matches | | | [Ans: 0.8965] | • | | 9. Of 1000 patients who visited a health center, 250 of them were diagnosed of malaria. I | fa | | sample of 5 was drawn at random from the patients, what is the probability that | | | (i) 2 of the patients had malaria | | | (ii) 4 of the patients did not have malaria [Ans: (i) 0.2637 (ii) 0.3955] | | | 10. In a large city, one person in five is left handed. Find the probability that in a random sa | mple of | | 10 people; | | | (a) exactly three will be left handed | | | (b) more than a half are left handed [Ans: (i)0.2013 (ii) 0.0064] | | | • ' | | | II. A man's chance of hitting a target with each of his shots is $\frac{1}{5}$. | | | (a) If he has to fire five shots, calculate the probability that; | | | (i) Exactly 3 shots hit the target | | | (ii) At least two shots hit the target | | | (b) Given that he has 20 shots to fire, determine the mean number and variance of his shifthe target. [Ans: (a) (i) 0.0512 (ii) 0.2627 (b) 4, 3.2] | ots.at | | 12. The probability that a student guesses the answer correctly to a multiple choice question | is ¹ If | | a quiz has 15 multiple choice questions, determine the probability that a student guesses | 4 ' 11 | | correctly the answers to | | | (i) Exactly six questions | | | (ii) At most three questions | | | (iii) Between three and eight questions [Ans: (i) 0.0917 (ii) 0.4613 (iii) 0.5213 | _ | | 13. It was found out that 20% of a sample of chicken recovered from a rare disease after treat |] | | In a random sample of 5 of such treated chicken, find the probability that; | ment. | | (i) There is more than one that recovered, | | | (ii) Either 3 or 4 recovered | | | (iii) Less than A recovered. [Ans: (i) 0.2627 (ii) 0.0567 (iii) 0.000 | | | (iii) Less than 4 recovered [Ans: (i) 0.2627 (ii) 0.0567 (iii) 0.9933 | | | | | ### CHAPTER 19: NORMAL DISTRIBUTION The normal distribution is one of the most important distributions in statistics. Many measured quantities in natural sciences follow a normal distribution and under certain circumstances, it is also a useful approximation to the binomial distribution The normal variable X is continuous and its probability density function f(x) depends on its mean μ and the standard deviation, where $$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}; \quad -\infty \le x \le \infty$$ This is very complicated and has been included just for reference. You would not be expected to memorize it To describe the distribution, write $X \sim N(\mu, \sigma^2)$ Note that the description gives the variance σ^2 , rather than the standard deviation, σ The normal distribution curve has the following features; - It is bell shaped - \succ It is symmetrical about the mean, μ - ➤ It extends from -∞ to ∞ - > The total area under the curve is 1 - \triangleright The maximum value of f(x) is $\frac{1}{\sigma\sqrt{2\pi}}$ #### Finding probabilities THE PROPERTY OF THE PARTY TH and the second the contract of o ومروجين أأناف الأرابي جراف The probability that X lies between a and b is written $P(a \le X \le b)$. To find the probabilities, you need to find the area under the normal curve between a and b One way of finding areas is to integrate but since the normal function is complicated and very difficult to integrate, tables are used instead. ### The standard normal tables In order to use the same set of tables for all possible values of
μ and σ^2 , the variable X is standardised so that the mean is 0 and the standard deviation is 1. Note that the variance is the square of the standard deviation hence the variance is also 1. This standard normal variable is called Z and $Z \sim N(0, 1)$ Using the standard normal tables for any random variable Standardize X, where $X \sim N(\mu, \sigma^2)$ - \triangleright Subtract the mean μ - \triangleright Then divide by the standard deviation, σ , to obtain $$Z = \frac{x - \mu}{\sigma} \quad \text{where} \quad Z \sim N(0, 1)$$ #### **Examples** 1. The lengths of metal strips produced by a machine are normally distributed with mean length of 150 cm and standard deviation of 10 cm. Find the probability that the length of a randomly selected strip is shorter than 165 cm. #### Solution Let X be the length in centimeters of a metal strip $$\mu = 150$$, $\sigma = 10$, $X \sim N(150, 10^2)$ You need to find the probability that the length of is shorter than 165 cm i.e. P(X < 165) To be able to use the standard normal tables, standardize the X- variable by subtracting the mean, 150 and then dividing by the standard deviation, 10 X becomes $$\frac{X-150}{10} = Z$$ $P(X < 165) = P(Z < \frac{165-150}{10})$ $= P(Z < 1.5)$ $$P(Z < 1.5) = 0.5 + P(0 < Z < 1.5)$$ = 0.5 + 0.4332 = 0.9332 Therefore the probability that the length is shorter than 165 cm is 0.9332 - 2. The time taken by the milk man to deliver to Kampala Market Street is normally distributed with a mean of 12 minutes and standard deviation of 2 minutes. He delivers milk every day. Estimate the number of days during the year when he takes - (a) Longer than 17 minutes - (b) Less than 10 minutes - (c) Between 9 and 13 minutes #### Solution Let S be the time in minutes, taken to deliver milk to Market Street $N \sim N(12, 2^2)$ Standardizing X using $$Z = \frac{X-\mu}{\sigma}$$ i.e $\frac{X-12}{2}$ $$P(X > 17) = P(Z > \frac{17-12}{2})$$ $$P(X > Y) = P(Z > 2.5)$$ $$P(Z > 2.5) = 0.5 - P(0 < Z < 2.5)$$ = 0.5 - 0.4938 = 0.0062 To find the number of days, multiply by 365 $$365 \times 0.0062 = 2.263 \approx 2$$ On 2 days in the year, he takes longer than 17 minutes (b) $$P(X < 10) = P(Z < \frac{10-12}{2})$$ = $P(Z < -1)$ $$P(Z < -1) = 0.5 - P(0 < Z < -1)$$ = 0.5 - 0.3413 = 0.1587 Now $$365 \times 0.1587 = 57.92 \approx 58$$ On 58 days in the year, he takes less than 10 minutes (c) $$P(9 < X < 13) = P(\frac{9-12}{2} < Z < \frac{13-12}{2})$$ = $P(-1.5 < Z < 0.5)$ $$P(-1.5 < Z < 0.5) = P(-1.5 < Z < 0) + P(0 < Z < 0.5)$$ = 0.1915 + 0.4332 = 0.6247 Now $$365 \times 0.6247 = 228.01 \approx 228$$ On 228 days in the year, he takes between 9 and 13 minutes 3. A product sold in packets whose masses are normally distributed with a mean of 1.42 kg and a standard deviation of 0.025 kg (a) Find the probability that the mass of a packet selected at random lies between (b) Estimate the number of packets in an output of 5000, whose mass is less than 1.35 kg #### Solution Let X be the mass in kilograms of a packet $$X \sim N(1.42, 0.025^2)$$ (a) $$P(1.37 < X < 1.42) = P(\frac{1.37 - 1.42}{0.025} < Z < \frac{1.45 - 1.42}{0.025})$$ = $P(-2 < X < 1.2)$ $$P(-2 < X < 1.2) = P(0 < Z < -2) + P(0 < Z < 1.2)$$ = 0.4772 + 0.3849 = 0.8621 (b) $$P(X < 1.35) = P(Z < \frac{1.35 - 1.42}{0.025})$$ = $P(Z < -2.8)$ $$P(Z < -2.8) = 0.5 - P(0 < Z < -2.8)$$ = 0.5 - 0.4974 = 0.0026 Since there are 5000 packets, multiply the probability by 5000 $$5000 \times 0.0026 = 13$$ Therefore 13 packets have a mass less than 1.35 kg 4. A machine used for filling bags with ground coffee, can be set to dispense any required mean weight of coffee in the bag can be modeled by a normal distribution with a mean of 128g and standard deviation of 1.95g per bag. Calculate the percentage of bags that contain less than 125g. #### Solution X is the weight in grams of coffee in the bag from the machine $$X \sim N(128, 1.95^2)$$ 45 $$P(X < 125) = P(Z < \frac{125 - 128}{1.95})$$ = $P(Z < -1.538)$ $$P(Z < -1.538) = 0.5 - P(0 < Z < -1.538)$$ $$= 0.5 - 0.4938 = 0.062$$ Percentage of bags that contain less than $125g = 0.062 \times 100 = 6.2\%$ 5. The distribution of the masses of adult husky dogs may be modeled by the normal distribution with mean 37 kg and standard deviation of 5 kg. Calculate the probability that an adult husky dog has a mass greater than 30 kg. #### Solution Let X be the mass in kg of a husky dog $$X \sim N(37, 5^2)$$ $$P(X > 30) = P(Z > \frac{30-37}{5})$$ = $P(Z > -1.4)$ $$P(Z > -1.4) = 0.5 + P(0 < Z < -1.4)$$ $$= 0.5 + 0.4192$$ $$= 0.9192$$ 6. The marks of 500 candidates in an examination are normally distributed with a mean of 45 marks and standard deviation of 20 marks. Given that the pass mark is 41, estimate the number of candidates who passed the examination. #### **Solution** Let X be the examination mark scored by a candidate $$X \sim N(45, 20^2)$$. $$P(X > 41) = P(Z > \frac{41-45}{20})$$ $$= P(Z > -0.$$ $$P(Z > -0.2) = 0.5 + P(0 < Z < -0.2)$$ = 0.5 + 0.0793 = 0.5793 Since there are 500 candidates, to find the number of candidates who pass; multiply the probability by 500 $500 \times 0.5793 = 289.65 \approx 290$ Therefore 290 candidates passed the examination - 7. A continuous random variable X is denoted by N(15, 16). Find the probability that - (i) X is less than 10 - (ii) X lies between 14 and 18 #### Solution In this case, we need to find the mean and standard deviation. Comparing with $N(\mu, \sigma^2)$ $$\mu = 15$$ and $\sigma^2 = 16 \Rightarrow \sigma = \sqrt{16} = 4$ We can now standardize using $Z = \frac{x-\mu}{z}$ (i) $$P(X < 10) = P(Z < \frac{10-15}{4})$$ $$P(Z < -1.25 = 0.5 - P(-1.25 < Z < 0))$$ = 0.5 - 0.3944 = 0.1056 (ii) $$P(14 < X < 18) = P(\frac{14-15}{4} < Z < \frac{18-15}{4})$$ = $P(-0.2 < Z < 0.75)$ $$P(-0.2 < Z < 0.75) = P(-0.2 < Z < 0) + P(0 < Z < 0.75)$$ = 0.0793 + 0.2734 = 0.3527 #### Trial questions - 1. The masses of packages from a particular machine are normally distributed with a mean of 200g and standard deviation 2g. Find the probability that a randomly selected package from the machine weighs - (a) Less than 197g - (b) More than 200.5g - (c) Between 198.5g and 199.5g [Ans: (a) 0.0668 (b) 0.4013 (c) 0.1747 - 2. The heights of boys at a particular age follow a normal distribution with mean 150.3 and variance 25 cm. Find the probability that a boy chosen at random from his age group has a height - (a) Less than 153 cm - (b) More than 158 cm - (c) Between 150 cm and 158 cm [Ans: (a) 0.7054 (b) 0.0618 (c) 0.4621] - 3. The random variable X is distributed normally such that $X \sim N(50, 20)$. Find P(X > 60.3) (b) P(X < 59.8) [Ans: (a) 0.0106 (b) 0.9857] 4. The masses of a certain type of cabbage are normally distributed with a mean of 1000g and standard deviation of 150g. In a batch of 800 cabbages, estimate how many have a mass between 750g and 1290g' [Ans: 740] ### | 5. | The lifetime of a certain make of electric bulbs is known to be normally distributed with a mean life of 2000 hours and standard deviation of 120 hours. Estimate the probability that the life of | |----|--| | | such a bulb will be: | (a) greater than 2150 hours ¥ - (b) greater than 1910 hours - (c) between 1850 hours and 2090 hours [Ans: (a) 0.1056 (b) 0.7734 (c) 0.6678] - 6. The manufacturers of a new model of a car state that, when travelling at 56 miles per hour, the petrol consumption has a mean value of 32.4 miles per gallon with standard deviation of 1.4 miles per gallon. Assuming a normal distribution, calculate the probability that a randomly chosen car of that model will have petrol consumption greater than 30 miles per gallon when travelling at 56 miles per hour. [Ans: 0.957] - 7. The processing time of a newly manufactured product is normally distributed with mean 110.5 minutes and standard deviation 12 minutes. Find the probability that the product is processed between 108 and 119 minutes [Ans: 0.3429] - 8. In an orange plantation, the weights of oranges are normally distributed with a mean of 210g and variance 30g. Find the percentage of oranges that; - (i) weigh between 201g and 221g - weigh 197g and below [Ans: (i) 0.9276 (ii) 0.0088] - 9. The time taken by Sam to pray is normally distributed with a mean of 24 minutes and a standard deviation of 4 minutes - (a) If he prays every day, find the probability that his prayers take - (i) more than 34 minutes - (ii) at most 20 minutes - (b) in 1000 days, estimate the number of days in which he prays between 34 and 36 minutes. [Ans: (a)(i) 0.0062 (ii) 0.1587 (b) 5] - 10. The marks obtained in an aptitude test are normally distributed with mean 54 and standard deviation 14.2. Determine the probability that an examinee scored - between 60 and 70 marks (i) - [Ans: (i) 0.2063 (ii) 0.3379] (ii) at least 40 marks - 11. The marks obtained by UACE candidates were found to be normally distributed with mean 50 and standard deviation 10 - Determine the percentage of candidates who obtained more than 70 marks (i) - What percentage of the candidates obtained between 40 and 60 marks? (ii) - What is the probability that a candidate selected at random from those who scored well (iii) above the average, scored more than 65? [Ans: (i) 2.28% (ii) 68.3% (iii) 0.0688,] 2. The mean lifetime of a certain make of dry cells is 150 days and standard deviation 32 days. Their duration is normally distributed. ... where the same and (a) Find the probability that the cells will last between 125 and 210 days (b) If there are 300 dry cells, calculate how many will need replacement after 225 days. # - 13. A certain type of sweet potatoes has a mass which is normally distributed with mean 1.0 kg and A certain type of sweet potatoes has a mass which are potatoes, estimate how many will have a standard deviation 0.15 kg. In a lorry load of 800 of these potatoes,
estimate how many will have a mass between 0.85 and 1.5 kg [Ans: 673] - 14. For a normal distribution with mean 5 and standard deviation 3, find [Ans: (i) 0.476 (ii) 0.447] - (ii) $P(X \le 4.6)$ - (i) r(A = 5.10) (ii) r(A = 3.00) with mean 67.6 kg and standard deviation 15. The weights of army recruits form a normal distribution with mean 67.6 kg and standard deviation 6.2 kg. At most how many can be expected to weigh more than 79 kg if there are 1000 recruits? - 16. The heights of college students are normally distributed with mean 164 cm and standard deviation 7.2 cm. Calculate the probability that the mean height of the students will - exceed 168 cm (i) - lie between 162 and 166 cm [Ans: (i) 0.2891 (ii) 0.2188 (ii) - 17. The life time of a certain make of battery is normally distributed with an average life of 30 months and a standard deviation of 6 months. What percentage of these batteries can be expected to last [Ans: 68.3%] from 24 months to 36 months? - 18. A random variable X is normally distributed with mean 40 and standard deviation 5. Determine the probability that X lies between 43 and 54 [Ans: 0.2716] - , 19. The masses of women in a certain town are normally distributed with mean 69.8 kg and standard deviation 6.2 kg. If 1000 women are selected, how many will be expected to weigh more than 80 kg? [Ans: 50] - 20. The weights of 10000 cattle on a commercial farm are normally distributed with mean of 115 kg and standard deviation of 3kg. - If one of the cattle was selected at random from the farm, find the probability that its weight would lie between 115kg and 118kg - Find how many cattle would weigh between 109 kg and 121 kg. (ii) [Ans: (i) 0.3413 (ii) 954 ## CHAPTER 20: LINEAR MOTION Linear motion refers to motion in a straight line Distance travelled. Distance travelled = speed \times time $$S = V \times t$$ The gradient of the displacement time graph represents velocity $$Gradient = \frac{\Delta S}{\Delta T} = Velocity (ms^{-1})$$ #### Velocity This is the measure of the speed at which the body travels in a given direction. The area under the velocity time graph represents displacement and the gradient of the velocity time graph represents acceleration. $$Gradient = \frac{\Delta V}{\Delta T}$$ But acceleration = $$\frac{change\ in\ velocity}{time\ taken\ to\ change} = \frac{\Delta V}{\Delta T}$$ $$a = \frac{\Delta V}{\Delta T}$$ Note: Acceleration is the rate of change of velocity and negative acceleration means retardation or deceleration ### Example of a velocity time graph - > The body starts at t = 0, from rest (i.e. with zero velocity). From O to A, the velocity increases The body starts at t = 0, from rest (i.e. with zero velocity). Steadily until it reaches 10m/s at time t = 5s. Since OA is a straight line, the acceleration is uniform or constant and equal to $\frac{10}{5} = 2ms^{-2}$. At A, acceleration ceases. - From A to B, the body travels with uniform/constant velocity of $10ms^{-1}$ - > From B to C, the velocity decreases steadily and the body comes to rest again and it has a uniform retardation of $\frac{10}{5} = 2ms^{-2}$ - > Average speed = total distance covered total place taken ### The equations of linear motion There are three equations of linear motions which are expressed in terms of initial velocity, final velocity, displacement/ distance, time and acceleration. The students are only required to memorize these equations and apply them to solve problems related to linear motion. Their derivation is not important at this stage. Equation 1: $$V = U + at$$ Equation 2: $$S = Ut + \frac{1}{2}at^2$$ Equation 3: $$V^2 = U^2 + 2aS$$ #### Example 1. A car starts from rest, accelerates at $0.8ms^{-2}$ for 10s and then continues at a steady speed for a further 20s. Draw a velocity time graph and find the total distance travelled. #### Solution $$U = 0$$, $t = 10s$, $a = 0.8ms^{-2}$, $v = ?$, $S = ?$ From $$V = U + at$$ $$V = 0 + 0.8 \times 10 = 8ms^{-1}$$ Total distance covered = Area under the graph = Area A + Area B $$= \frac{1}{2} \times 10 \times 8 + 20 \times 8$$ $$= 40 + 160 = 200 \text{ m}$$ $$= 40 + 160 = 200 \, n$$ #### Example 2 A car starts from rest, accelerating at $1ms^{-1}$ for 10s. It then continues at a steady speed for a further 20s and decelerates to rest in 5s. Find (i) the distance travelled in metres (ii) average speed in ms^{-1} (iii) time taken to cover half the distance. #### Solution (i) $$U = 0, a = 1ms^{-2}, t = 10s, V = ?$$ $$V = 0 + 10 \times 1 = 10 ms^{-1}$$ Advanced Level Subsidiary Mathematics by Kawuma Fahad Total distance covered = area under the graph = Area A + Area B + Area C = $$\frac{1}{2} \times 10 \times 10 + 20 \times 10 + \frac{1}{2} \times 5 \times 10$$ = $50 + 200 + 25 = 275 m$ (ii) Average speed = $$\frac{total\ distance\ covered}{total\ yime\ taken} = \frac{275}{35} = 7.857 ms^{-1}$$ (ii) Average speed = $$\frac{total\ distance\ covered}{total\ yime\ taken} = \frac{275}{35} = 7.857ms^{-1}$$ (iii) Half the distance = $\frac{1}{2} \times 275 = 137.5$ Time taken = $\frac{distance}{average\ speed} = \frac{137.5}{7.857} = 17.5s$ #### Example 3 A body decelerating at $0.8ms^{-2}$ passes a certain point with a speed of $30ms^{-1}$. Find its velocity after \sim 10s and the distance covered in that time. Solution Solution $$a = -0.8ms^{-2}, \quad U = 30ms^{-1}, t = 10s, \quad V = ?, S = ?$$ Using the first equation of motion; $$V = U + at$$ $$V = U + at$$ $V = 30 + (-0.8)(10) = 30 - 8 = 22ms^{-1}$ Now using the third equation of motion $$V^{2} = U^{2} + 2aS$$ $$22^{2} = 30^{36} + 2 \times (-0.8S)$$ $$484 = 900 - 1.6S$$ $$1.6S = 416$$ $$S = \frac{416}{1.6} = 260 \text{ m}$$ A particle moving along a straight line with uniform acceleration covers the first two consecutive distances of 100m and 140m in the time intervals of 20s and 40s respectively. Calculate the; - Acceleration and initial velocity of the particle (i) - Total time taken before it comes to rest (ii) #### Solution Let the initial velocity and acceleration be U and a respectively Total distance = 240m Using the 2nd equation of motion; $S = Ut + \frac{1}{2}at^2$ $$100 = 20U + \frac{1}{2}a(20)^{2}$$ $$100 = 20U + 200a \dots \dots (i)$$ Similarly; $$240 = 60U + \frac{1}{2}a(60)^{2}$$ $$240 = 60U + 1800a....(ii)$$ Solving eqn (i) and eqn (ii) gives; 9(i) - (ii); $$660 = 120U$$... $$U = \frac{660}{120} = 5.5ms^{-1}$$ Now substituting for U in eqn (i) gives; $$100 = 110 + 200a$$ $$-10 = 200a$$ $$a = -\frac{10}{200} = -0.05ms^{-2}$$ Note: the negative sign indicates deceleration #### Example 5 A particle is moving in a straight line with a constant velocity of $60ms^{-1}$ for 3s. Then there is a constant acceleration of $-3ms^{-2}$ for 5s. - (a) Draw a velocity time graph for its motion - (b) Find the distance it has travelled. (a) For $$U = 60ms^{-1}$$, $t = 5a$, $a = -3ms^{-2}$ $V = U + at = 60 + (-3)(5) = 45ms^{-1}$ (b) Total distance covered = area under the graph = Area A + Area B + Area C = $$(3 \times 60) + (5 \times 45) + \frac{1}{2} \times 5 \times 15$$ = $180 + 225 + 37.5 = 442.5 m$ # Advanced Lengl Subsidiary Mathematics by Kawama Eahad 2nd Edition : #### Example 6 A particle starts from rest, moving with a constant acceleration of 1.5ms⁻² for 12 seconds. For the next A partial proceduration is $\frac{1}{6}ms^{-2}$ and for the last 10s, it decelerates uniformly to rest. - Sketch a velocity time graph for the particle's motion Find the distance travelled by the particle (ii) - Calculate the average velocity of its motion. (iii) ### Solution (i) First acceleration $$a = 1.5ms^{-2}$$ $$U = 0$$ $$V = U + at$$ $$V = 0 + 1.5 \times 12 = 90$$ second acceleration $$U = 90ms^{-1}, V = ?$$ $$a = \frac{1}{6}$$ $$t = 48s$$ $$V = 90 + \frac{1}{8} \times 48 = 96$$ $$=$$ Area A + Area B + Area C + Area D $$= \frac{1}{2} \times 12 \times 90 + 48 \times 90 + \frac{1}{2} \times 48 \times 6 + \frac{1}{2} \times 10 \times 96$$ $$= 540 + 4320 + 144 + 480 = 5484 \, m$$ Average speed = $$\frac{total\ distance\ covered}{total\ time\ taken} = \frac{5484}{70} = 78.34 ms^{-1}$$ #### Example 7 (iii) A particle starts form rest, moving with a constant acceleration of 1.5ms⁻² for 30s. For the next 60s, the acceleration is 0.3ms⁻². For the rest 25s, it decelerates uniformly to rest. - (i) Sketch the velocity time graph for the motion of the particle - (ii) Find the acceleration of the particle during the rest period of the journey. - (iii) Determine the total distance travelled by the particle - (iv) The a average speed for the whole journey #### Solution $$a = 1.5 ms^{-2}$$ $$t = 30s$$ $$U = 0$$ $$V = 0 + 1.5 \times 30 = 45 \, ms^{-1}$$ $$a = 0.3 ms^{-2}$$ $$t = 60s$$ $$U = 45ms^{-1}$$ $$V = 45 + 0.3 \times 60 = 63 ms^{-1}$$ ## Advanced Level Subsidiary: Mathematics, by Kawuma, Eahad http://www. (ii) $$U = 63ms^{-1}$$, $V = 0$, $t = 25s$ $\alpha = \frac{v - u}{t} = \frac{0 - 63}{25} = -2.52ms^{-2}$ - (iii) Total distance covered = area under the graph = Area A + Area B + Area C + Area D = $\frac{1}{2} \times 30 \times 45 + 60 \times 45 + \frac{1}{2} \times 60 \times 18 + \frac{1}{2} \times 25 \times 63$ - (iv) Average speed = $\frac{total\ distance\ covered}{total\ time\ taken} = \frac{4702.5}{115} = 4702.5\ m$ #### Example 8 The table below shows the velocity of a particle during the course of its motion | t(s) | 0_ | 5 | 10 | 15 | 20 · | 25 | 30 | |--------------|----|---|----|----|------|----|----| | $V(ms^{-1})$ | 0 | 4 | 8 | 8 | 8 | 7 | 6 | Plot a graph of velocity against time and use it to find - (i) The retardation of the body during the last 10s - (ii) The total distance travelled by the body - (iii) Describe the condition of the particle during the period 10s to 20s 54 34 34 5 7 Solution (i) Retardation $$=\frac{6-7}{30-25} = -\frac{1}{5} = -0.2 ms^{-2}$$ (ii) Total distance covered = area under the graph $$=$$ Area A + Area B + Area C + Area D $$= Area A + Area B + Area C + Area D$$ $$= \frac{1}{2} \times 10 \times 8 + 10 \times 8 + \frac{1}{2} \times 10 \times 2 + 10 \times
6$$ $$= 40 + 80 + 10 + 60 = 190 \text{ m}$$ th a constant velocity of $8ms^{-1}$ $$= 40 + 80 + 10 + 60 = 190 m$$ ii) The particle travels with a constant velocity of 8ms⁻¹ Trial questions 1. A particle travelling with an acceleration of 0.7 ms⁻² passes a point O with speed 5 ms⁻¹. How long will it take to cover a distance of 250 m from? What will its speed be at this time? (Ans: 20s, 20ms⁻¹) 2. If particle passes a certain point with speed 5ms⁻¹ and is accelerating at 3 ms⁻². How far will it travel in the next 25s? How long will it take to travel 44 m from the start? 3. A car starting from rest moves with a constant acceleration of x ms⁻² for 10s and travels with constant velocity for a further 10s and then retards at 2x ms⁻² to come to rest 300m from its starting point. Find the (Ans: $x = \frac{12}{7}$ hint: sketch a v-t graph) value of x 4. A motorist starting a car from rest accelerates uniformly to a speed of Vms-1 in 10s. He maintains this speed for another 50s and then applies brakes and decelerates uniformly to rest. His deceleration is numerically equal to twice the acceleration (i) Sketch a velocity time graph (ii) Calculate the time during which the deceleration takes place (iii) Given that the total distance covered is 575m, calculate the value of V (iv) Calculate the initial acceleration [Ans: (ii) 5 s (iii) 10 ms⁻¹ (iv) 1 ms⁻²] 5. Four points A, B, C and D lie on a straight road such that BC and CD are 448 cm and 576 cm 5. Four points A, B, C and D lie on a straight road such that Bo and T and A to D at 8s intervals with respectively. A cat moving along this road covers each of these distances from A to D at 8s intervals with a constant acceleration Find (i) the constant acceleration . (ii) Its speed at A to D (iii) The distance AB. 6. A motorist accelerates uniformly from rest at a rate of a ms⁻² for 10s and then travels at a constant speed for 20s and slows down to rest at a constant retardation of 2a ms⁻². If the total distance is 550 m. (i) Sketch the velocity time graph for the motion of the motorist (ii) Find the value of a [Ans: 2 ms⁻²] (iii) Find the maximum speed attained by the motorist [Ans: 20 ms⁻¹] 7. A body starts from rest and accelerates at 3ms⁻² for 4s. It then travels with a maximum velocity for a further 3s and it finally to rest with a uniform retardation after another 5s. By sketching a velocity time graph. Find the average velocity for the whole journey. [Ans: 7.5 ms⁻¹] 8. A car travels along a straight road between two trading centres P and Q. The car starts from rest at P and accelerates at 2.5ms⁻² until it reaches a speed of 40ms⁻¹. It then travels at this steady speed for distance of 3,120m and then decelerates at 4ms⁻² to come to rest at Q. (a) Sketch a velocity time graph for the motion of the car (b) Determine the (i) Total time taken for the car to move from P to Q (ii) Distance from P to O (iii) Average speed of the car [Ans: 104 s, 3640 m, 35 ms⁻¹] 9. A body moves a long a straight line uniformly increasing its velocity from 2ms⁻¹ to 18ms⁻¹ in a time interval of 10s. Find the acceleration of the body during this time and the distance travelled. (Ans: 1.6ms⁻², 100m) 10. The table below shows the velocity of a particle during the course of its motion | 210 0010 11 0110 1110 | | , | a partie | 10 Guii | - B + | | |------------------------------|---|----|----------|---------|-------|----| | Time(s) | 0 | 5 | 10 | 20 | 30 | 60 | | Velocity (ms ⁻¹) | 0 | 10 | 20 | 20 | 20 | 0 | Plot a a graph of velocity against time and use it to find the Acceleration in the first 10s (i) (ii) Total distance covered Describe the motion of the particle during the period t = 10s, t = 30s [Ans: 2ms⁻², 800 m, constant] 11. A cyclist starting from rest accelerates uniformly until he reaches his maximum speed of 12ms⁻². He continues at this steady speed for next 2.4 km. He then applies brakes and decelerates to rest at a rate numerically equal to four times that of his acceleration. Sketch a velocity time graph. Given that the total distance travelled by the cyclist is 2.52km, calculate. (i) The time during which the acceleration takes place (Ans: 4 s) (ii) The distance over which deceleration takes place (24 m) (iii) The total time for which the cyclist is in motion (240 s) MARARA LIES R. A. F. ### CHAPTER 21: RESULTANT AND COMPONENTS OF FORCES ### Resultant of two forces The resultant R of two forces P and Q is that single force which could completely take the place of the two forces. The resultant R must have the same effect as the forces P and Q. When only parallel forces are involved. It is easy to find the resultant. For example | the forces | ould be replaced by 8 N | |------------|------------------------------| | the forces | 3 N could be replaced by 2 N | Resolving a force; components The component of the force F in any given direction is the measure of the effect of the force F in that direction. Consider s force F acting at an angle θ to the x-axis as shown below. Let AB represent the force F and the angle BXO = 90° , AX and AY represent the horizontal and vertical components of F, along the x and y axes respectively. $=\cos\theta$ $AX = AB \cos \theta$ $AX = F \cos \theta$ $AY = AB\cos(90^{\circ} - \theta)$ $AY = F \sin \theta$ Hence the components are $F \cos \theta$ and $F \sin \theta$ along the x and y axes respectively Note: The rule for finding components may be stated as; The component of force in any direction is the product of the magnitude of the force and the cosine of the angle between the force and the required direction i.e. $F \cos \theta$ and $F \cos (90^{\circ} - \theta)$ THE RESERVE OF THE PARTY STORY and a something another the something probability to object the Park Britain marca Walin Talas #### Example 1 Find the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the direction of the components of the given forces in the components of the given forces in the components of the given forces in the components of the given forces in forc - The x-axis (i) - (ii) the y-axis (a) #### Solution - Component along the x-axis = $5 \cos 35^0 = 4.10 N$ Component along the y-axis = $5\cos(90^{\circ} - 35^{\circ}) = 5\sin 35^{\circ} = 2.87N$ (i) (ii) - (b) - Component along the x-axis = $20 \cos 15^0 = 19.3 N$ (i) - Component along the y-axis = $20 \sin 15^0 = 5.18 N$ (ii) (c) - Component along the x-axis = $-10 \cos 42^{\circ} = -7.43 N$ - Component along the y-axis = $10 \sin 42^0 = 6.69 N$ (ii) #### Example 2 Find the sum of the components of the given factors in the direction of - (i) The x-axis - (ii) the y-axis (a) #### Solution (i) Resolving along the x-axis $10\cos 40^{\circ} - 20\cos 70^{\circ} = 7.66 - 6.84 = 0.82 N$ Resolving along the y-axis (ii) $10\sin 40^{0} + 20\sin 70^{0} = 6.43 + 18.79 = 25.22 N$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition? - (i) Resolving along the x-axis $6 \cos 30^{\circ} + 10 \cos 45^{\circ} = 5.20 + 7.07 = 12.27 N$ - (ii) Resolving along the y-axis $4 + 6 \sin 30^{\circ} - 10 \sin 45^{\circ} = 4 + 3 - 7.07 = -0.07N$ Note: when summing up components of forces, due regard should be given to the directions of the components. Again if x and y are the magnitude of the perpendicular components of force AB, the magnitude of AB, known as the resultant force is given by; F = $$\sqrt{x^2 + y^2}$$ and the direction is given by $\tan \theta = \frac{\sum x}{\sum y}$. #### Example 3 Find the resultant of the forces shown in the figure below #### Solution Resolving, | Force,F | Horizontally(→) 4 cos 0 = 4 | vertically (1) $\frac{1}{10000000000000000000000000000000000$ | (i) | |---------|-----------------------------|---|-----| | 6 | 6 cos 60 = 3 | $6\sin 60 = 3\sqrt{3}$ | | | 2 | $2\cos 60 = 1$ | $2\sin 60 = \sqrt{3}$ | 50 | | 3 | $3\sqrt{3}\cos 90=0$ | $-3\sqrt{3}\sin 90 = -3\sqrt{3}$ | | | · · | $\sum_{x} = 6$ | $\Sigma_y = \sqrt{3}$ | | $\sum x$ and $\sum y$ are the summations of the horizontal and vertical components of the resultant force. If F is the resultant force, then, esultant force, then, $$R = \sqrt{x^2 + y^2} = \sqrt{6^2 + (\sqrt{3})^2} = 6.24N$$ Since force is a vector quantity, we also have to find its direction Advanced Level Subsidiary Mathematics by Kayuma Fahad 2nd Edition . $$\tan \theta = \frac{\sum x}{\sum y} = \frac{\sqrt{3}}{6} \Rightarrow \theta = 16.1^{\circ}$$ Therefore, the resultant force is 6.24N and makes an angle of 16.1° to the horizontal #### Example 4 In the figure forces of 4N, 6N and 2.83N act on a particle O. - (i) Find the resultant force, - (ii) Find the acceleration of the particle if it has a mass 2kg #### **Solution** ### (i) Resolving, | Force, F
4
2.83
6 | Horizontally(\rightarrow)
- 4 cos 60 = -2
2.83 cos 45 = 2
6 cos 30 = $3\sqrt{3}$
$\sum_{x} = 3\sqrt{3}$ | .· | vertically (1) - $4 \sin 60 = -3.5$ 2.83 $\sin 45 = 2$ 3 $\sin 30 = -3$ $\sum_{y} = -4.5$ | |----------------------------|---|----|--| |----------------------------
---|----|--| Resultant = $$\sqrt{\sum x^2 + \sum y^2} = \sqrt{(3\sqrt{3})^2 + (-4.5)^2} = 6.88 \text{ N}$$ $$\tan \theta = \frac{\Sigma x}{\Sigma y} = \frac{4.5}{3\sqrt{3}} \Rightarrow \theta = 40.9^{\circ}$$ Therefore the resultant force is 6.88N and is 40.90 below the horizontal (ii) Force = $$mass \times acceleration$$ $$\Rightarrow$$ 6.88 = 2 α $$\therefore \alpha = 3.44 \text{ms}^{-2}$$ #### Example 5 Find the magnitude and the direction of the resultant force #### Solution Resultant force horizontally = $$2\sqrt{2}\cos 45^{\circ} - 6\cos 30^{\circ} - 4\cos 60^{\circ}$$ = $2 - 5.20 - 2 = -5.20 N$ Resultant force vertically = $$2\sqrt{2} \sin 45^{\circ} - 6 \sin 30^{\circ} - 4 \sin 60^{\circ}$$ = $2 - 3 - 3.464 = -4.464$ Resultant force, $$R = \sqrt{(-5.20)^2 + (-4.464)^2} = \sqrt{46.97} = 6.85 N$$. #### Example 6 Find the magnitude and the direction of the resultant force of the given forces below Solution Resultant force horizontally = $$8\sqrt{3}\cos 30^{\circ} - 3\sqrt{2}\cos 45^{\circ} = 8\sqrt{3} \times \frac{\sqrt{3}}{2} - 3\sqrt{2} \times \frac{\sqrt{2}}{2}$$ $$= 12 - 3 = 9 N$$ Resultant force vertically = $$8\sqrt{3} \sin 30^{\circ} + 3\sqrt{2} \sin 45^{\circ} - 2\sqrt{3}$$ = $8\sqrt{3} \times \frac{1}{2} + 3\sqrt{2} \times \frac{\sqrt{2}}{2} - 2\sqrt{3}$ $$= (2\sqrt{3} + 3)N$$ $$R^2 = 9^2 + (2\sqrt{3} + 3)^2 = 81 + 41.78 = 122.78$$ $R = \sqrt{122.78} = 11.1 \, N$ and the direction is at an angle α to x-axis, where $$\tan \alpha = \frac{(2\sqrt{3}+3)}{9} = 0.718$$ $$\alpha = \tan^{-1} 0.718 = 35.69^{0}$$ $$\alpha = \tan^{-1} 0.718 = 35.69^{\circ}$$ Therefore the resultant force is 11.1 N at an angle of 35.690 above the x-axis #### Example 7 Two forces of 7 N and 24 N act away from the point A and make an angle of 90° with each other. Find the magnitude and direction of their resultant. #### Solution First make a sketch $$R^2 = 7^2 + 24^2$$ $$R = \sqrt{625} = 25 N$$ $$\tan\alpha = \frac{7}{24}$$ $$\alpha = \tan^{-1}(\frac{7}{24}) = 16.26^{\circ}$$ The resultant force is 25 N making an angle of 16.260 with the 24 N force #### Example 8 ABCD is a rectangle. Forces of 9 N, 8 N and 3 N act along the lines DC, CB and BA respectively, in the directions as indicated by the order of the letters. Find the magnitude of the resultant and the angle it makes with DC. ## Advanced Level Subsidiary Mathematics by Kayama Fahadan 2nd Edition a #### Solution First draw a diagram showing the forces Resolving parallel to DC gives horizontal component = 9 - 3 = 6 NResolving parallel to BC gives vertical component = 8 N $$R^2 = 6^2 + 8^2 = 36 + 64 = 100$$ $$R = \sqrt{100} = 10 N$$ Draw a diagram to show the two components The direction is given by; $\tan \alpha = \frac{8}{6}$ $$\alpha = \tan^{-1}\left(\frac{8}{6}\right) = 53.13^{\circ}$$ The resultant is 10 N making an angle of 53.13° with DC #### Example 9 Forces of magnitudes 1N, 4N, 3N, 2N and PN act on a particle as shown below If the particle is in equilibrium, find the values of P and θ #### Solution | At equilibrium; vertically Resultant upward force = resultant downward force Resultant upward fores $$4 \sin 30^{0} + \sin 80^{0} = 2 + P \sin \theta$$ $$\sin 30^{\circ} + \sin 60^{\circ} - 2$$ $$P \sin \theta = 4 \sin 30^{\circ} + \sin 80^{\circ} - 2$$ $$P \sin \theta = 2 + 0.985 - 2$$ Similarly, horizontally, Components to the R.H.S = components to the L.H.S $$3 + 4\cos 30^{0} = \cos 80^{0} + P\cos \theta$$ $P\cos \theta = 3 + 4\cos 30^{0} - \cos 80^{0}$ $P\cos \theta = 3 + 3.464 - 0.174$ $P\cos \theta = 6.29 \dots (ii)$ Now dividing eqn (i) by eqn (ii) gives; $$\frac{eqn(i)}{eqn(ii)}, \frac{P \sin \theta}{P \cos \theta} = \frac{0.985}{6.29}$$ $$\tan \theta = 0.157$$ $$\theta = \tan^{-1} 0.157 = 8.9^{\circ}$$ Substitution for θ in eqn (i); $P \sin \theta = 0.985$ $P = \frac{0.985}{\sin 8.90} = 6.4 N$ Note: Alternatively, the reader can use the fact that the resultant of the components of the forces in any direction is zero at equilibrium i.e. $\sum x = 0$ and $\sum y = 0$ #### Trial questions - 1. ABCD is a rectangle. Forces $6\sqrt{3}$ N, 2 N and $4\sqrt{3}$ act along AB, CB and CD respectively, in the direction indicated by the order of the letters. Find the magnitude of the resultant and the angle it makes with AB [Ans: 4 N, 30°] - 2. ABCD is a rectangle. Forces of 8N, 4N, 10N and 2N act along AB, CB, CD and AD respectively in the directions indicated by the order of the letters. Find the magnitude and direction of the resultant force [Ans: 2.83N, 45° with BA] - 3. ABCD is a rectangle. Forces of 3N, 4N and 1N act along AB, BC and DC respectively in the directions indicated by the order of the letters. Find the magnitude of the resultant and the angle it makes with AB. [Ans: 5.66 N, 450] - 4. Four forces of magnitude 2N, 4N, 3N and 4N act at a point in the directions whose bearings are 000°, 060°, 180°, 270° respectively. Calculate the magnitude of the resultant force [Ans: 1.49N] - 5. Each of the following diagrams shows a number of forces. Calculate the magnitude of their resultant. 6. Find the magnitude and direction of the forces given in the diagrams below # Advanced Level Subsidiary Mathematics by Kawuma Fahad : 2nd Edition [Ans: $(a)15.6 N, 33.7^{\circ}$ $(b) 5N, 90^{\circ}$] 7. ABCD is a square. Forces of 4N, 3N, 2N and 5N act along the sides AB, BC, CD and AD respectively in the directions indicated by the letters. Calculate the magnitude of the resultant and the angle it makes with AB [Ans: 8.2N, 76°] ### **CHAPTER 22: FRICTION** The frictional force is the force that acts to oppose the relative motion of two bodies in contact i.e. if one pushes the block on the table with a small force P, the frictional force F comes in to operation and opposes the possible movement. Coefficient of friction The magnitude of maximum frictional force is proportional to the normal reaction R. The friction constant is called the coefficient of friction, μ , for two surfaces in contact. $$F_{max} = \mu R$$ For a perfectly smooth, $\mu = 0$ Consider a block of mass M kg resting on a horizontal table and a horizontal force P N is applied. $$R = Mg$$ $F = \mu Mg$ where g = acceleration due to gravity #### Example 1 Calculate the maximum frictional force which can act when a block of mass 2 kg rests on a rough horizontal surface if the coefficient of friction is (a) 0.7 (b) 0.2 #### Solution (a) There is no motion perpendicular to the plane Resolving vertically; R = 2g $$R=2\times 9.8=19.6N$$ $$F_{max} = \mu R = 0.7 \times 19.6 = 13.72N$$ (b) "Similarly, as before; Figure 1. 1 C $$F_{max} = \mu R = 0.2 \times 19.6 = 3.92N$$ #### Example 2 A block of mass 5 kg rests on a rough horizontal plane, the coefficient of friction between the block and plane being 0.6. Calculate the frictional force acting on the block when a horizontal force P is applied to the block and the magnitude of P is ### Advanced Lengt Substillary Mathematics by Kolyana-Eabody has 2nd Edition (a) 12N (b) 28N (c) 36 N. Also calculate the magnitude of any acceleration which may occur. There is no motion perpendicular to the plane Resolve vertically; $R = 5g = 5 \times 9.8 = 49 N$ The frictional force will act in the direction opposite to that in which the force P acts. The maximum value of frictional force is nR $$\mu R = 0.6 \times 49 = 29.4 \, N_{\odot}$$ (a) If P = 12N, then P is less than μR , so there is no motion Friction force, F = P F = 12N (b) If P = 28N, then again P is less than μR and there is no motion Friction force, F = P = 28N (c) If P = 36N, then P is greater than the maximum value of frictional force, which is 29.4 N. Frictional force acting = 29.4N, which does not prevent motion. The block will move and the maximum value of μR will be maintained. Using F = ma, the equation of motion is; $$P - \mu R = ma$$ 36 - 29.4 = 5a $a = 1.32 ms^{-2}$ #### Applied force not horizontal When a force on the block of mass M kg is inclined at an angle θ above the horizontal, this has two effects; (i) The component of P in the vertical direction decreases the magnitude of the normal reaction R the graph of the company of the contract the 医多种性乳腺性皮肤皮肤性 经收益 医大克夫氏征 (ii) Only the component of P in a horizontal direction is tending to move the block ### - Advanced Level Subsidiary Mathematics by Kawuma Fahad \(\text{No.2nd Edition} \). Resolving vertically; $R + P \sin \theta = Mg$ $$R = Mg - P\sin\theta \qquad \dots \dots (i)$$ Resolving horizontally; $P \cos \theta = F = \mu R \dots (ii)$ #### Example 1 A 10kg truck lies on a horizontal floor. The coefficient of friction between the truck and the floor is $\frac{\sqrt{3}}{4}$. Calculate the magnitude of force P which is necessary pull the truck horizontally (ii) at 30° above the horizontal #### Solution (a) In the position of limiting equilibrium, $P_1 = F$ $$P_1 = \mu R$$ $$P_1 = \frac{\sqrt{3}}{4} \times 10g = \frac{\sqrt{3}}{4} \times 10 \times 9.8 = 42.43 N$$ For motion to take place, the applied force must exceed 42.43 N (b) Resolving vertically; $$R + P \sin 30^{\circ} = 10g$$ $R = 98 - P \sin 30^{\circ}$ $$R = 98 - \frac{P}{2}$$ In the position of limiting equilibrium; $$P\cos 30^0 = \mu R$$ $$P \times \frac{\sqrt{3}}{2} = \mu \left(98 - \frac{P}{2} \right)$$ Advanced Level Subsidiary Mathematics by Karrunia Faliad W. Vice 2nd Edition's $$P \times \frac{\sqrt{3}}{2} = 98\mu - \frac{\sqrt{3}}{4} \times \frac{P}{2}$$ $$\frac{\sqrt{3}}{2}P + \frac{\sqrt{3}}{8}P = \frac{\sqrt{3}}{2} \times 98$$ $$P(5\sqrt{3}) = 2\sqrt{3} \times 98$$ $$P = 39.2 N$$ Example 2 A box of mass 50 kg is to be pushed along a rough floor by a force acting at the centre of its top surface. The force is at an angle of 60° to the horizontal. If the coefficient of friction is 0.25, calculate the least force which will move the
box #### Solution Let the force be P Resolving vertically; $$R + P \sin 60^0 = 50g$$ $$R = 50g - P\sin 60^{\circ}$$ Resolving horizontally; $$P\cos 60^0 = \mu R$$ $$P\cos 60^{\circ} = 0.25(50g - P\sin 60^{\circ})$$ $$\frac{P}{2} = 12.5g - P \times \frac{\sqrt{3}}{2} \times \frac{1}{4}$$ $$\frac{P}{2} + \frac{\sqrt{3}}{8}P = 12.5 \times 9.8$$ $$P\left(\frac{1}{2} + \frac{\sqrt{3}}{8}\right) = 122.5$$ $$P(4+\sqrt{3})=8\times122.5$$ $$P(4 + \sqrt{3}) = 8 \times 122.5$$ $$P = \frac{980}{4 + \sqrt{3}} = 170.97 N$$ A particle of mass 2 kg rests on a rough horizontal ground. The coefficient of friction between the particle and the ground is $\frac{1}{2}$. Find the magnitude of a force P acting upwards on the particle at 30° to the horizontal which will just move the particle. Resolving vertically: $$R + P \sin 30^{0} = 2g$$ $$R = 2g - P \sin 30^{0}$$ Resolving horizontally: $$P\cos 30^{0} = \mu R$$ $$P\cos 30^{0} = \frac{1}{2}(2g - P\sin 30^{0})$$ $$2P \times \frac{\sqrt{3}}{2} = 2g - P \times \frac{1}{2}$$ $$P\sqrt{3} + 0.5P = 19.6$$ $$2.232P = 19.6$$ $$P = \frac{19.6}{2.232} = 8.78 N$$ #### Example 4 A parcel of mass 10 kg rests on a lorry. When the lorry is accelerating at 1.5 ms⁻¹, the parcel is on the point of sliding backwards. What is the coefficient of friction between the parcel and the lorry? #### Solution Vertically; R = 10g From; $$F = 10 \times 1.5 = 15$$ $\mu R = 15$ $\mu \times 10g = 15$ $\mu \times 10g = 15$ $\mu = \frac{15^{10} - 10^{10} + 10^{10}}{10 \times 9.8} = 0.153$ #### 16 Rough inclined plane Consider a body of mass M kg resting on a plane which is inclined at an angle θ to the horizontal. Resolving at right angles to the plane; $$R = Mg\cos\theta$$ # Advanced Level Subsidiary Mathematics by Kawania Eduad - 2nd Edition The component $Mg \sin \theta$ accting down the plane will cause motion unless the frictional force, F acting up the plane balances it. $$M$$ equillibrium; $F = Mg \sin \theta$ $$F_{max} = \mu R$$ $$F = \mu M g \cos \theta = M g \sin \theta$$ $$\mu = \tan \theta$$ ### Example 1 A body of mass 6 kg rests in limiting equillibrium on a rough plane inclined at 30° to the horizontal. Find the coefficient of friction between the body and the plane. ### <u>Solution</u> Since the body is on the point of moving down the plane, the friction force acts up the plane Resolving at right angles to the plane; $$R = 6g\cos 30^{\circ}$$ Resolving parallel to the surface of the plane; 6g sin 30° = $$\mu R$$ 6g sin 30° = $\mu \times$ 6g cos 30° $$\mu = \frac{6g \sin 30°}{6g \cos 30°} = 0.577$$ A mass of 10 kg is placed on a plane inclined at an angle of 30° to the horizontal. What force parallel to the plane is required to - hold the mass at rest (i) - make the mass move steadily up the plane with an acceleration of 2ms-1 coefficient of friction between the mass and the plane is 0.4 (ii) Solution The Assert Control of the Control of the Section of the Section of the Control C (a) As the block is just held at rest, it is on the verge of slipping down, hence friction force $F = \mu R$ acts upwards along the plane. Resolving at right angles to the plane; ## Advanced Level Subsidiary Mathematics by Kawuma Fahadwiches 2nd Edition, $$R = 10g\cos 30^{\circ}$$ · Resolving parallel to the plane; $$P + \mu R = 10g \sin 30^{\circ}$$ $$P + 0.4(10g\cos 30^{\circ}) = 10g\sin 30^{\circ}$$ $$P = 10g \sin 30^{0} - 4g \cos 30^{0}$$ $$P = 49 - 33.95 = 15.5 N$$ (b) If the mass is moving steadily up the plane, the friction force, $F = \mu R$ acts down the plane Resolving at right angles to the plane; $$R = 10g\cos 30^{0}$$ Resolving parallel to the plane; $$P - (10g \sin 30^{\circ} + \mu R) = 10 \times 2$$ $$P - (10g\sin 30^0 + 0.4 \times 10g\cos 30^0) = 20$$ $$P - (49 + 33.25) = 20$$ $$P = 20 + 82.35 = 102.35 N$$ ### với biển việto Lungian đột day (1994) Example 3 A parcel of mass 2 kg is placed on a rough plane which is inclined at 45° to the horizontal. The coefficient of friction between the parcel and the plane is 0.25. Find the force that must be applied in the direction parallel to the plane so that; - (i) The parcel is just prevented from sliding down the plane - (ii) The parcel moves up the plane with an acceleration of 1.5 ms⁻². - (iii) If it is prevented from sliding down the plane, find the frictional force that acts up the plane. - (i) Let the force be P $$R \stackrel{\text{def}}{=} 2g \cos 45^{\circ}$$ Parallel to the plane; $$P + \mu R = 2g \sin 45^{\circ}$$ $$P + 0.25(2g\cos 45^{\circ}) = 29\sin 45^{\circ}$$ ## Advanced Level Subsidiary Mathematics by Kayuma Fahad 12 2nd Edition $$P = 2g \sin 45^{\circ} - 0.5g \cos 45^{\circ}$$ $$P = 10.39 N$$ On the point of moving up the plane, the friction force acrs down the plane (ii) Parallel to the plane; $$R = 2g\cos 45^{\circ}$$ Along the plane; $$P = 2g \sin 45^{\circ} + \mu R$$ $$P = 2g\sin 45^{\circ} + 0.25(2g\cos 45^{\circ})$$ $$P = 2 \times 9.81 \times \sin 45^{\circ} + 0.5 \times 9.81 \times \cos 45^{\circ}$$ $$P = 13.86 + 3.46 = 17.32 N$$ (iii) If the parcel moves up the plane; Then Resultant force, F = mass × acceleration Resultant force up the plane = $P - (2g \sin 45^{\circ} + \mu R)$ $$P - (2g \sin 45^{\circ} + 0.25 \times 2g \cos 45^{\circ}) = 2 \times 1.5$$ $$P - (13.86 + 3.46) = 3$$ $$P = 3 + 17.32 = 20.32 N$$ Trial questions - 1. If a force of 10N is just sufficient to move a mass of 2kg resting on a rough horizontal table, find the [Ans: 0.51] coefficient of friction - 2. A block of mass 10kg is placed on an inclined plane at an angle of 30° to the horizontal where the coefficient of friction between the plane and the surface is 0.5. Find the surface is 0.5. Find - (a) The force required to make the block move up the plane of the last of the section where the - (b) Keep the block at rest - (b) Keep the block at rest (c) Acceleration of the block down the plane (d) Acceleration of the block down the plane [Ans: (a) 91.4 N (b) 6.6 N (c) 0.66 ms^{-2}], where the state A Committee of the property of a To be my say got in got - 3. A block of mass 5 kg placed on an inclined plane of angle 600 to the horizontal is just at rest. Find the force parallel to the plane required to push the block up the plane Continue of the 1 [Ans: 98 N] - 4. A box of mass 20kg starts from rest and slides down a slope inclined at 30° to the horizontal. If the coefficient of friction is 0.4, find the acceleration of the box. [Ans: __] - 5. A particle is placed on a rough plane inclined at an angle, θ to the horizontal, where $\tan \theta = \frac{3}{4}$. The coefficient of friction between the plane and the particle is 0.5. The particle is rest under the action of a force F applied in an upward direction parallel to the plane. - (a) Calculate the value of F when the particle is about to move down the plane - (b) Calculate the value of F when the particle is about to move up the plane. - [Ans: (a) 2 N (b) 10 N] # CHAPTER 23: NEWTON'S LAWS OF MOTION A change in the state of motion of a body is caused by a force acting on the body otherwise. ### Body at rest If forces act on a body and does not move, the forces must balance. Hence if a number of forces act on a body and it remains at rest, the resultant force in any direction must be zero. ### Example 1 Λ body is at rest when subjected to the forces shown below. Find x and y ### Solution The horizontal forces must balance $$X = 50 + 10 = 60 N$$ The vertical forces must also balance $$Y + 10 = 50$$ $$Y = 40 N$$ ### A body in motion A body can only change its velocity i.e increase its speed, slow down or change direction if a resultant force acts upon it. Thus if a body is moving with a constant velocity, there can be no resultant force acting on it. ### AND CONTRACTOR OF THE PARTY Example 2 A body moves horizontally at a constant speed of 5ms⁻¹ and is subjected to the forces shown. Find P and S. $$S + S = 2000 N$$ $2S = 2000 \Rightarrow S = 1000 N$ Since the horizontal velocity is contant; P = 300 N # Advanced Level Subsidiary Mathematics by Kayuma Fahad www. 2012 Edition Second law: Second law can be summarised by the equation F = ma, where F is the resultant force on the hody, in is the mass of the body and a is the accleration of the body produced in the direction of the pplied force or resultant force. Example 3 A body of mass 8 kg is acted upon by a force of 10N. Find its acceleration Find the resultant force that would give a body of mass 200 g an acceleration of 10ms⁻¹. $m = 200g = \frac{200}{1000} = 0.2 kg$ Using E = ma $$F = 0.2 \times 10 = 2N$$ The force is 2N Example 5 A horizontal force of 0.6N acts on a body of mass 0.3 kg. There is a resistance of 0.15 N opposing the first force. What acceleration will be produced? and the second of o Net force = 0.6 - 0.15 = 0.45 N The acceleration will take place in the direction of the resultant force $$F = ma$$ $$0.45 = 0.3a$$ $$a = \frac{0.45}{0.3} = 1.5 \, ms^{-2}$$ A car of mass 500 kg moves along a level road with an acceleration of 2ms⁻². If it is exerting a forward force of 1100 N, what resistance is the car experiencing? ### Solution ### Example 7 A van of mass 2 tonnes moves along a level road against a resistance of 700N. If its engine is exerting a forward force of 2200N, find the acceleration of the van. ### Solution - $Mass = 2 \times 1000 = 2000 \text{kg}$ Net force = $$Ma$$ Net force = $2200 - 700 = 1500 N$ $1500 = 2000a$ ### Example 8 A box of mass 5 kg is lowered vertically by a rope. Find the force in the rope when the box is lowered with an acceleration of 4ms⁻². $Mass\ of\ box = 5\ kg$ weight of box = 5g N Resultant vertical force = (5g - T) down wards Advanced Level Subsidiary Mathematics by Kawana Eahad 2nd Edition $$5g - T = 5 \times 4$$ $5 \times 9.8 - T = 20$ $T = 49 - 20 = 29$ A pack of bricks of mass 100 kg is hoisted up the side of the house. Find the force in the lifting rope when the bricks are lifted with an the bricks are lifted with an accelertaion of 0.25 ms². Mass of bicks = 100kg Weight of bricks = 100g N
The resultant upward force = (T - 100g) [since motion is upward] $$T - 100g = 100 \times 0.25$$ $T = 100g + 25 = 100 \times 9.8 + 25 = 1005 \text{ N}$ ## Newton's third law If two bodies are in contact, actually touching or connected by a string, rope or rod. They will have an effect on each other. Newton's third law states that if two bodies A and B are in contact, A will exert a force on B and B will exert an equal but opposite force on A i.e. equal in magnitude but directed in the opposite sense along the same line. 1. Consider a box of mass M kg resting on a horizontal floor The box exerts a force on the floor and the floor reacts by exerting an equal but opposite force R 2. Consider a car pulling a caravan The pull of the car is transmitted through the tie rod to the caravan but the caravan equally pulls the car backwards. 3. Consider two masses suspended by a string over a frictionless (smooth) pulley ... Advanced Level Subsidiary Mathematics by Kayuma Fahad 2nd Edition. The string transmits a tension which pulls A upwards when considering A but pulls B upwards when considering B ### CONNECTED PARTICLES ### Case 1 Consider a body of mass 3 kg at rest on a smooth horizontal table. This body is connected by a light string which passes over a smooth pulley at the edge of the table to another body of mass 2 kg hanging freely. The 3 kg mass will not move in a vertical direction, so the vertical forces acting on it must balance. $R = 3g_{\text{Max}} \cdot \mathcal{C}_{\text{Max}} \mathcal{C}_{\text{Ma$ The horizontal force acting on the 3 kg mass is T, Using F = ma gives the equation of motion as; $$T=3a\(i)$$ The 2 kg mass moves vertically downwards Using F = ma gives the equation of motion as; $$2g - T = 2a \dots \dots \dots (ii)$$ Solving the two equations (i) and (ii) simultaneously i.e (i) + (ii) $$2g = 3a + 2a$$ $a = \frac{2}{5}g = \frac{2}{5} \times 9.8 = 3.92 \text{ ms}^{-2}$ Substituting for a into equation (i) $$T = 3 \times 3.92 = 11.76 \cdot N$$ ### Case 2 Particles of mass 4kg and 2 kg are connected by a light string over a smooth fixed pulley. The particles hang freely and are released from rest. Find the acceleration of the two particles and the tension in the string. Let the acceleration be a and the tension in the string be T ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition Using F = ma For $$2kg : T - 2g = 2a \dots (i)$$ For 4kg: $$4g - T = 4a \dots (ii)$$ Adding equations (i) and (ii) gives; $$2g = 6a$$ $$a = \frac{1}{3}g = \frac{1}{3} \times 9.8 = 3.27 ms^{-2}$$ Substituting for a in equation (i); $$T = 2a + 2g$$ $$T = 2(3.27) + 2(9.8) = 26.13 N$$ A light inextensible string is placed over a smooth pulley. To the ends of the string are attached masses of 2 kg (A) and 1 kg (B) and both parts of the string are vertical. With what acceleration does the system. move? What is the reaction at the axle of the pulley? The 1 kg mass accelerates upwards as the 2kg mass accelerates downwards (1) 1 kg mass accelerates upwards as the 2kg mass accelerates downwards (1) 1 kg mass accelerates upwards as the 2kg mass accelerates downwards (1) 1 kg mass accelerates upwards acce For mass A, since acceleration is downwards; $2g - T = 2a \dots (i)$ # Advanced Level Subsidiary Mathematics by Kawuma Eahas For mass B, acceleration is upwards; $T - g = a \cdot \dots (ii)$ For the pulley, since it has no acceleration; R = 2T(iii) Now solving equations (i) and (ii) for a and T Eqn (i) + (ii) $$g = 3a$$ $a = \frac{1}{3}g = \frac{1}{3} \times 9.8 = 3.27 ms^{-2}$ From equation (ii); T = a + g $$= 3.27 + 9.8 = 13.1 N$$ From (iii); R = 2T $R = 2 \times 13.1 = 26.2 \text{ N}$ Therefore the reaction at the axle of the pulley is 26.2 N ### Case 3: A body A rests on a smooth horizontal table. Two bodies of mass 2 kg and 10 kg, hanging freely are attached to Λ by strings which pass over smooth pulleys at the edges of the table. The strings are taut. When the system is released from rest, it accelerates at $2 ms^{-2}$. Find the mass of A Let the mass of A be M kg. The tensions in the two strings will be different; Let them be T_1 and T_2 . Using F = ma gives; For 2 kg mass: $$T_2 - 2g = 4$$(i) For A: $$T_1 - T_2 = 2M$$(ii) For 10 kg mass; $10g - T_1 = 20$ (iii Adding equations (i), (ii) and (iii) gives; $$8g = 2M + 24$$ $2M = 54.4$ $$^{\circ}2M = 54.4$$ $$M = 27.2$$ The mass of the body A is 27.2 kg ### Case 4 Consider three masses A, B and C connected by light inextensible strings as shown in the figure below where B is held on a rough horizontal plane whose coefficient of friction is 0.6. The pulleys are smooth. when B is released, what will be the acceleration of the masses? The forces that act on the masses can be shown in the diagrams below $$4g - T_1 = 4a \dots \dots (i)$$ $F = \mu R$ (as B moves) and acts against the motion \cdot $$R = 3g$$ $\Rightarrow F = 0.6 \times 3g = 1.8g$ $T_1 - (T_2 + F) = 3a \dots (ii)$ $T_2 - g = a \dots (iii)$ From (i) $$T_1 = 4g - 4a$$. From (iii) $$T_2 = g + a$$ Substituting for T_1 and T_2 gives; $$4g - 4a - (g + a + 1.8g) = 3a$$ Which simplifies to; 1.2 g = 8a $$a = \frac{1.2}{8} g = \frac{1.2}{8} \times 9.8 = 1.47 \text{ ms}^{-2}$$ Note: it is necessary to decide in certain problems in which direction the friction is going to act. ### Case 5 The bodies shown are connected by a light string which passes over a smooth pulley. The 1 kg mass moves upwards while the 3 kg mass moves downwards. Calculate the tension T, the normal reaction, R and the acceleration, a. ### Solution Applying F = ma in the vertical direction for the 1 kg mass gives; $$T - g = a \dots \dots \dots (l)$$ Applying F .. ma down the plane for the 3 kg mass gives; $$38 \sin 45^{\circ} - T = 3a$$ Adding equations (i) and (ii) $$\frac{3\sqrt{2}}{2}g - g = 4a$$ $$1.1213g = 4a$$ 1.1213g = 4a $$a = \frac{1.1213}{4} \times 9.8 = 2.747 ms^{-2}$$ Substituting for a in equation (i); $$T = g + 2.747 = 9.8 + 2.747 = 12.547 \text{ N}$$ To get the normal reaction, we resolve at right angles to the surface of the plane, for the 3kg mass (note that in this direction, there is no acceleration) $$R = 3g\cos 45^{\circ} = 20.79 N$$ ### Trial questions 1. A block of mass 1 kg rests in equilibrium on a rough horizontal table under the action of a force P which acts at an angle of 30° to the horizontal as shown in the diagram below. Given that the magnitude of P is 2.53 N, calculate ' ' - The normal exerted by the table on the block (i) - The friction force on the block (ii) Given that the block is about to slip, calculate the coefficient of friction $$[\mathsf{Ans:}\,(i)~8.54~N~~(ii)~2.19~N~;~0.26~]$$ - 2. A light inextensible string passes over a smooth fixed pulley and carries freely hanging masses of 800g and 600g at the ends. Find the acceleration of the system and the force on the pulley. [Ans: 1.4 ms⁻², 13.44N] - 3. A car of mass 900kg tows a caravan of mass 700kg along a level road. The engine of the car exerts a forward force of 2.4 kN and there is no resistance to motion - 4. A car of mass 900kg tows a trailer of mass 600kg by means of a rigid tow bar. The car experiences a resistance of 200N and the trailer a resistance of 300N. If the car engine exerts a forward force of 3 kN, find the tension in the tow bar and the acceleration of the system [Ans: 1300 N, 1.67 ms⁻² 1 - 5. Each of the following diagram shows two freely hanging masses connected by a light inextensible sting passing over a smooth fixed pulley. For each system, find the - Acceleration of the masses. (i) - Magnitude of the tension T₁ (ii) - Magnitude of the reaction T2 (iii) ## Advanced Level Subsidiary Mathematics by Kawung Fahad ... 2nd Edition [Ans: (a) (i) 4.2 ms^{-2} (ii) 28 N (iii) 56 N (b) (i) 0 (ii) 49 N (iii) 98 N (c) (i) 2.8 ms^{-2} (ii) 6.3 N (iii) 12.6 N] - 6. A body of mass 65g lies on a smooth horizontal table. A light inextensible string runs from this body, over a smooth fixed pulley at the edge of the table to a body of mass 5g hanging freely, with the string taut, the system is released from rest. Find - (a) the acceleration of the system - (b) The tension in the string - (c) the distance moved by the 5g mass in the first 2 seconds of motion : [Ans: (a) 0.7 ms^{-2} (b) 0.0455 N (c) 1.4 m]. 7. Find the acceleration and tensions in the strings for the following systems [Ans: (a) 1.4 ms^{-2} , 44.8 N, 58.8 N (b) 1.4 ms^{-2} , 16.8 N, 11.2 N] and the same of the proof to the first of the contract # CHAPTER 24: WORK, ENERGY AND POWER Work is defined as the product of the force, F and the distance, S moved in the direction of force. $$F \longrightarrow S$$ $$W = F \times S$$ The unit of work is Joules (J) Work done against gravity In order to raise a mass m kg vertically at a constant speed, a force mg N must be applied vertically upwards to the mass. In raising the mass a distance, S metres, the work done against gravity will be given by; Work done against gravity = mgS where g is the acceleration due to gravity Find the work done against gravity when an object of mass 3.5kg is raised through a vertical distance of 6m Solution . Vertical force required, $F = 3.5g = 3.5 \times 9.8 = 34.3 N$ and S = 6m work done = $F \times S = 34.3 \times 6 = 205.8 J$ The work done against gravity is 205.8 J ### General motion at constant speed In order to move a body at a constant speed, a force equal in magnitude to the forces of resistance acting on the body has to be applied to the body. grant of the edition was other to a triber. Example 1 A block of wood is pulled a distance of 4m across a horizontal surface against resistances totaling to 7.5 N. If the block moves at a constant velocity, find the work done against the resistances. Advanced Level Subsidiary Mathematics by Kanning Eduad ... 2nd Edition ### **Solution** Let the pulling force be F Resolving horizontally; F = 7.5N Work done against resistances = force ×
horizontal distance moved $$= 7.5 \times 4 = 30$$ The work done against the resistances is 30J Example 2 A horizontal force pulls a body of 2.25 kg a distance of 8m across a rough horizontal surface, coefficient of friction is $\frac{1}{3}$. The body moves with a constant velocity and the only resisting force is that due to friction. Find the work done against friction. ### Solution The friction force is μR Resolve vertically; $R = 2.25g = 2.25 \times 9.8 = 18$ Work done against friction = $\mu R \times distance \ moved$ $$= \frac{1}{3} \times 18 \times 8 = 58.8 J$$ The work done against friction is 58.8 J Work done against gravity and friction When a body is pulled at a uniform speed up the surface of a rough inclined plane, work is done both against gravity and against the frictional force which is acting on the body due to the contact with the The most bloom property of the most rough surface of the plane. A rough surface is inclined at $\tan^{-1}(\frac{7}{24})$ to the horizontal. A body of mass 5kg lies on the surface and is pulled at a uniform speed, a distance of 0.75 in up the surface by a force acting along the line of greatest slope. The coefficient of friction between the body and the surface is $\frac{5}{12}$. Find; Commence of the second - (i) the work done against gravity - (ii) the work done against friction ## Advanced Level Subsidiary Mathematics by Kayuma Eahad ### <u>Salution</u> $$\theta = \tan^{-1}(\frac{7}{24}) \Rightarrow \tan\theta = \frac{7}{24}$$ Using the Pythagoras theorem and the right angled triangle $$\sin\theta = \frac{7}{25} \quad and \cos\theta = \frac{24}{25}$$ (i) Work done against gravity = $$force \times vertical \ distance \ moved$$ Since $$\sin \theta = \frac{h}{0.75}$$ Vertical distance moved, $$h = 0.75 \sin \theta = 0.75 \times \frac{7}{25} = 0.21 m$$ Work done against gravity = $5g \times 0.21 = 5 \times 9.8 \times 0.21 = 10.291$ Work done against gravity = $$5g \times 0.21 = 5 \times 9.8 \times 0.21 = 10.29J$$ $$R = 5g\cos\theta = 5 \times 9.8 \times \frac{24}{25} = 47.04$$ Example 11.7 But frictional force = $$\mu R = \frac{5}{12} \times 47.04 = 19.6 N$$ Work done against friction = $$19.6 \times 0.75 = 14.7 \text{ J}$$ ### Trial questions - 1. Find the work done against gravity when a body of mass 5 kg is raised through a vertical distance of 2m [Ans: 98 J] - 2. Find the work done against gravity when a body of mass 1 kg is raised through a vertical distance of 3m [Ans: 29,4] - A body of mass 10 kg is pulled a distance of 20 m across a horizontal surface against resistances totaling to 40 N. If the body moves with uniform velocity, find the work done against the resistances [Ans: 800J] - A surface is inclined at $tan^{-1}(\frac{3}{4})$ to the horizontal. A body of mass 50 kg lies on the surface and is pulled at a uniform speed, a distance of 5m up a line of greatest slope against resistances totaling to 50 - Work done against gravity (i) - Work done against the resistances [Ans: (i) 1960 J (ii) 250J] (ii) # Advanced Level Subsidiary Mathematics by Kawuma Fahad :: 2nd Edition . the energy of a body is a measure of the capacity which the body has to do work. When a force does work body, it changes the energy of a body. Energy can exist in a number of different forms, but we shall ensider two main types; kinetic energy and potential energy ## Kinetic energy The kinetic energy of a body is that energy which it possesses by virtue of its motion. When a force does nork on a body so as to increase its speed, then work done is the measure of the increase in the kinetic The quantity $\frac{mv^2}{2}$ is defined as the kinetic energy of a mass m moving with a velocity v. A body at rest therefore has zero kinetic energy. ### Example 1 Find the kinetic energy of a particle of mass 0.25kg moving with a speed of 6ms ### Solution Kinetic energy = $$\frac{1}{2}mv^2$$ = $\frac{1}{2} \times 0.25 \times 6^2 = 4.5 \text{ J}$ The kinetic energy of the particle is 4.5 J A body of mass 4kg decreases its kinetic energy by 32 J. If it initially had a speed of 5ms⁻¹, find its final speed. general companies to the second desire and and the second of o ### Solution initial kinetic energy = $$\frac{1}{2}mv^2 = \frac{1}{2} \times 4 \times 5^2 = 50 J$$ Final kinetic energy = 50 - 32 = 18J Let the final speed be $$V_{s}$$. Then $\frac{1}{2}(4)V^2 = 18$. $V^2 = 9$. $V = 3ms^{-1}$ The final speed of the body is 3ms⁻¹ ## Example 3 A cricket ball of mass 400g moving at 3ms⁻¹ and a golf ball of mass 100 g have equal kinetic energies. Find the speed at which the golf ball is moving ### Solution Kinetic energy of cricket ball = $$\frac{1}{2}mv^2 = \frac{1}{2} \times 0.4 \times 3^2 = 1.8$$ J Kinetic energy of golf ball = $$\frac{1}{2} \times 0.1V^2$$ But kinetic energy of golf ball = kinetic energy of cricket ball $$\frac{1}{2} \times 0.1V^2 = 1.8$$ $$0.1V^2 = 1.8 \times 2$$ $$V^7 = \frac{3.6}{0.1} = 36$$ $$V = \sqrt{36} = 6ms^{-1}$$ The golf ball is moving at 6ms-1 The potential energy of a body is that energy it possesses by virtue of its position. When a body of mass m kg is raised vertically through a distance of h metres, the work done against gravity is mgh joules. The work done against gravity is the measure of the increase in the potential energy of the body i.e. the capacity of the body to do work is increased. Example 1 Find the potential energy of a child of mass 48 kg when ascending a vertical distance of 2 m. $Potential\ energy = mgh$ $$= 48 \times 9.8 \times 2 = 94.08 J$$ The potential energy is 94.08 J Example 2 Find the potential energy gained by a ball of mass 0.075 kg at a distance of 32 m above the ground. ### Solution . . . Potential energy = mgh $$= 0.075 \times 9.8 \times 32 = 23.52$$ The potential energy is $23.52 \, \mathrm{J}$ ### Trial questions Find the potential energy given by; - (i) A body of mass 5 kg raised through a vertical distance of 10m - (ii) A man of mass 60 kg ascending a vertical distance of 5m - A body of mass 20 kg above a vertical distance of 2m from the ground. [Ans: (i) 490 J (ii) 2940 J (iii) 392 J] ### The principle of conservation of energy Suppose we have a situation involving a moving body in which (a) There is no work done against friction, and the transfer of the same of the same (b) Gravity is the only external force which does work on the body (or against which the body has to do The total mechanical energy possessed by the body will then be the total of its kinetic energy and its potential energy and by the principle of conservation of energy, this will be constant i.e. Total energy = kinetic energy (K.E) + potential energy (P.E) Or total energy in the initial state = total energy in the final state ### Example 1 The point A is vertically below the point B. A particle of mass 0.1 kg is projected from point A vertically upwards with a speed of 21 ms⁻¹ and passes point B with a speed of 7 ms⁻¹ # eldegueral Level Substitions Mathedratics by Kaivaina Ealandes 22. 2011 Edition: giod the distance from A to B. We shall choose to measure the P.E from the level of A. Let the distance from A to B be h metres. $$K.E = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.1 \times 21^2 = 22.05f$$ P.E = 0 J since h = 0 at A Total energy ≈ K.E + P. E ≈ 22.05 J At B; $$K.E = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.1 \times 7^2 = 2.45 J$$ $$P.E = mgh = 0.1 \times 9.8 \times h = 0.98h$$ Total energy = K.E + P.E = (2.45 + 0.98h) J But from the principle of conservation of energy, total energy at A = total energy at B $$\Rightarrow 2.45 + 0.98h = 22.05$$ $$0.98h = 22.05 - 2.45$$ $$0.98h = 19.6$$ $$h = \frac{19.6}{0.90} = 20 \, m$$ The distance from A to B is 20m The point A is 4 metres vertically above the point B. A body of mass 0.2 kg is projected from A vertically downwards with a speed of 3 ms⁻¹. Find the speed of the body when it reaches B. ं व के वें , स्कृति कोर्स कराई की किसी Constain to many good the The control of a control of the state of the control of the state t e de la granda de la companya de la companya de la companya de la companya de la companya de la companya de la ### **Solution** At A: $$K.E = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.2 \times 3^2 = 0.9$$ $$P.E = mgh = 0.2 \times 9.8 \times 4 = 7.84$$ Total energy at A = 0.9 + 7.84 = 8.74 J At B; $$K.E = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.2V^2 = 0.1V^2$$ $$E = 0$$ Total energy = $0.1V^2$ Using the principle of conservation of energy; $0.1V^2 = 8.74$ $V^2 = 87.4$ $$v^2 = 87.4$$ $$V = \sqrt{87.4} = 9.35 \, ms^{-1}$$ The speed of the body is 9.35 ms^{-1} when it reaches B ## Trial questions - 1. A body of mass 6kg is released from rest and it falls freely under gravity. Find the distance it has fallen when its speed is 7 ms⁻¹. - 2. A body of mass 20 kg is projected vertically downwards from a point A with speed 4 ms⁻¹. The body passes through a point B, 5m below A. Find the speed of the body at B. # 3. A body of mass 5 kg is released from rest and falls freely under gravity. Find its speed when it has fallen a distance of 10m [Ans: 1. 2.5 m 2. 10.68 ms⁻¹ 3.14 ms⁻¹] Power is a measure of the rate at which work is being done. If I joule of work is done in 1 second, the rate of working is 1 Watt (W). Thus the unit of power is Watts (W) of working is 1 Watt (W). Thus the unit of power is Watts (W) Power = $$\frac{\text{work done}}{\text{time taken}} = \frac{\text{Force} \times \text{distance}}{\text{time taken}} = \text{force} \times \frac{\text{distance}}{\text{time taken}} = \text{force} \times \frac{\text{velocity}}{\text{time taken}}$$ Find the work done by a force of 6N in moving a body from A to B where AB = 10 m and also the average rate at which the force is working if it takes 5 seconds to move the body from A to B. ### Solution Work done = $force \times distance$ $$= 6 \times 10 = 60 J$$ Rate of working/ power = $\frac{work \ done}{time \ taken} = \frac{60}{5} = 12W$ The force does 60J of work and its average rate of working is 12 Watts Find the rate at which work is being
done when a mass of 20kg is lifted vertically at a constant speed of 5ms⁻¹. ### Solution Work done = $force \times distance$ But for body vertically above the ground, F = weight = mg $$Force = 20 \times 9.8 = 196 N$$ Rate of doing work = $force \times velocity = 196 \times 5 = 980 W$ The rate at which work is being done is 980 W ### Trial questions - 1. What is the rate at which work must be done in lifting a mass of 500 kg vertically at a constant speed of 3ms⁻¹? - 2. What is the average rate at which work must be done in lifting a mass of 100kg a vertical distance of 5m in 7 seconds? [Ans: I. 14700W 2.700W] ## **SOLUTIONS TO UNEB 2013** ### SECTION A (40 MARKS) All questions are supposed to be attempted 1. Given that $p = \log_a(a^3y^{-2})$ and $\log_a(ay^2)$, find the value of p + q(05 marks) Solution 5 - $p + q = \log_a(a^3y^{-2}) + \log_a(ay^2)$ = $\log_a[a^3y^{-2} \times ay^2]$refer to the laws of logarithms - = $\log_a[(a^3 \times a) \times (y^{-2} \times y^2)]$collecting the like terms - $= \log_a \left[a^{(3+1)} \times y^{(-2+2)} \right] \qquad \dots \text{using the law of indices } (a^m \times a^n = a^{m+n}) \cdots$ - = $\log_a[a^4 \times y^0]$ but $y^0 = 1$ since any number power zero = 1 - = $\log_a a^4 = 4 \log_a a$ refer to the laws $\log_a a^n = n \log_a a$ and $\log_a a = 1$. - 2. The table below shows the age in years of mothers at the time they had their first child. Even to see | Age in years | 15 — | 20 - | 25 – | 30 - | 35 - | <u>40 – 45 .</u> | |-------------------|------|------|------|------|------|------------------| | Number of numbers | 2 | 14 | 29 | 43- | 33 / | 9 | Calculate the modal age of the mothers (05 marks) ### Solution The class boundaries are provided in this case and not the class limits $$Mode = L_1 + \left(\frac{\Delta_1}{\Delta_1 + \Delta_2}\right)C$$ $$\Delta_1 = 43 - 29 = 14$$ and $\Delta_2 = 43 - 33 = 10$, class width = 5 $Mode = 30 + \left(\frac{14}{14+10}\right) \times 5 = 30 + 2.917 = 32.917$ The modal age is 32.917 years 3. Find the sum of the first ten terms of the geometric progression (GP) (05 marks) ### Solution Identify the first term a and the common ration r since it is a G.P $a = 8. \ r = \frac{4}{3} = \frac{1}{3}$ $$a = 8$$, $r = \frac{4}{8} = \frac{1}{2}$ We can see that r < 1 so we use the formula $S_n = \frac{a(1-r^n)}{1-r}$ to find the sum $$S_n = \frac{8\left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}} = \frac{8\left(1 - \frac{1}{1024}\right)}{\frac{1}{2}} = \frac{8\left(\frac{1024 - 1}{1024}\right)}{\frac{1}{2}} = 8\left(\frac{1023}{1024}\right) \times \frac{2}{1}$$ $$= 16\left(\frac{1023}{1024}\right) = 15.98$$ # Advanced Level Subsidiary Mathematics by Kawama Fahad 1991 Edition 4. The table below shows the prices of items and their corresponding weights in years 2000 and 2004. | III. process | Price(Ushs) | | |--------------|--------------------------|--------------------------------| | 2000 | 2004 | Weight | | 55,000 | 60,000 | 4 | | 48,000 | 52,000 | 2 | | 16,000 | 20,000 | 1 | | | 2000
55,000
48,000 | 55,000 60,000
48,000 52,000 | Using 2000 as the base year, calculate the weighted price index for the items in 2004 ### Solution Weighted aggregate price index = $\frac{\sum P_1 W}{\sum P_2 W} \times 100$ $$= \frac{60000 \times 4 + 52000 \times 2 + 20000 \times 1}{55000 \times 4 + 46000 \times 2 + 16000 \times 1} \times 100$$ $$= \frac{364000}{332000} \times 100 = 109.64$$ ### Alternatively; Weighted average price index $$= \frac{\sum_{P_0}^{P_1} \times W}{\sum W} \times 100$$ $$= \frac{\frac{60000}{25000} \times 4 + \frac{52000}{49000} \times 2 + \frac{20000}{16000} \times 1}{4 + 2 + 1} \times 100$$ $$= \frac{4.36 + 2.17 + 1.25}{7} \times 100 = \frac{7.78}{7} \times 100 = 111.11$$ 5. Solve the differential equation $8y \frac{dy}{dx} = 9x^2$ Hence find the equation given that y = 2 and x = 1. (05 marks) $$8y \frac{Solution}{dx} = 9x^2$$ By separating the variables $$8y\ dy = 9x^2\ dx$$ $$\int 8y \, dy = \int 9x^2 \, dx \quad \dots \text{ Integrating on both sides}$$ $$\frac{8y^2}{2} = \frac{9x^3}{3} + C \qquad \text{i.e.} \text{i.$$ $$4v^2 = 3x^3 + C$$ This is a general solution and since the initial conditions are given, we can find the value of the constant C when $$x = 1$$, $y = 2$ $4(2)^2 = 3(1)^3 + C$ $16 = 3 + C \implies C = 13$ $\therefore 4y^2 = 3x^3 + 13$ is the particular solution 6. Solve the equation $\sec^2 \theta - \tan \theta = 1$ for $0^0 \le \theta \le 90^0$ (05 marks) ## Advanced Level Subsidiair. Mathematics by Kowana Fahad 11. 22. 2nd Edition 5 ### Solution $\sec^2\theta - \tan\theta = 1$ Listing the identity $\sec^2\theta = 1 + \tan^2\theta$ $$(1 + \tan^2 \theta) - \tan \theta = 1$$ $$\tan^2\theta - \tan\theta + 1 - 1 = 0$$ $$\tan^2\theta - \tan\theta = 0$$ $\tan \theta (\tan \theta - 1) = 0$ (It should be noted that we factorize not to cancel because we might not get all the required angles) Either $$\tan \theta = 0 \implies \theta = \tan^{-1} 0 = 0^{\circ}$$ Or $$\tan \theta - 1 = 0 \Rightarrow \tan \theta = 1$$ thus $\theta = \tan^{-1} 1 = 45^{\circ}$ Since the range of angles required was $0^{\circ} \le \theta \le 90^{\circ}$ i.e in the first quadrant, then For $$0^0 \le \theta \le 90^0$$, $\theta = \{0^0, 45^0\}$ 7. A bag contains 5 black pens (B) and 4 red pens (R). Two pens are picked at random, one after the other without replacement. Find the probability that both pens are of the same colour. (05 marks) P(Same color) = $$P(B_1 \cap B_2) + P(R_1 \cap R_2)$$ = $\frac{5}{9} \times \frac{4}{9} + \frac{4}{9} \times \frac{3}{8}$ = $\frac{20}{72} + \frac{12}{72} = \frac{32}{72} = \frac{4}{9}$ 8. A powered trolley in factory is moving in a straight line with a constant acceleration. It passes point A with a velocity of Ums⁻¹. It takes 8 seconds to travel 60m from a point A to point B. Finally it takes 4 seconds to travel from point B to point C. Find the value of U. (05 marks) सर्वे कार्य के के किल्का के कार्य के कार्य के किल्का के किल्का के किल्का के किल्का के किल्का के किल्का के किल् Solution Let the acceleration be a ... # Considering the motion from A to B Using the 2nd equation $$S = Ut + \frac{1}{2}at^{2}$$ $$60 = U(8) + \frac{1}{2}(a)(8)^{2}$$ $$60 = 8U + 32a$$(i) . Considering the motion from A to C $_{\rm col}$ total time -8+4=12sacceleration ma, initial velocity m U $S = Ut + \frac{1}{2}at^{2}$ $S = U(12) + \frac{1}{2}(a)(12)^{2}$ $S=12U+72\alpha\dots(U)$ But S = distance AC is not given thus it becomes complicated to obtain the value of U ## SECTION B (60 MARKS) Four questions are supposed to be attempted in this section 9. Eight candidates seeking admission to a university course sat for written and oral tests. The scores were | as shown in the table bel | ow: | | | 52 | 71 50 | |---------------------------|-----|----|----|--------------|-------| | Written(X) 55 | 54 | 35 | 62 | - 87
- 56 | 74 63 | | Oral(Y) 57 | 60 | 47 | 65 | 83 50 | | - (a) (i) Draw a scatter diagram for the data - (ii) Draw a line of best fit on your scatter diagram - (iii) Use the line of best fit to find the value of Y when X = 70 - (08 marks) - (b) Calculate Spearman's rank correlation co-efficient. Comment on your result. (07 marks) ### Solution ## Advanced Level Subsidiary Mathematics by Kawaina Fahad 2nd Edition The line of best fit should pass through the point (\bar{X}, \bar{Y}) where $\bar{X} = \frac{\sum X}{n}$ and $\bar{Y} = \frac{\sum Y}{n}$ $$\bar{X} = \frac{467}{8} = 58.4$$ and $Y = \frac{505}{8} = 63.1$ the line of best fit passes through (58.4, 63.1) leaving equal number of points below and above the line From the graph, it is estimated that when X = 70, Y = 71 | Written(X) | Oral (Y) | R_X | R_{Y} | $d = R_X - R_Y$ | d ² | |------------|----------|-------|---------|-----------------|----------------| | 55 | 57 | 4 | 6 | 2 | 4 . | | 54 | 60 | 5 | 5 | 0 | 0 | | 35 | 47 | 8 | 8 | 0 | 0 | | 62 . | 65 | 3 | 3 | 0 | 0 | | 87 | 83 | 1 | 1 | 0 | 0 | | 53 | 56 | 6 | 7 | -1 | 1 | | 71 | 74 | 2 | 2 | 0 | 0 . | | 50 | 63 | 7 | 4 | 3 | 9 | | 1 ~~ | 1 | | | 1 | $\sum d^2 = 1$ | Spear man's rank correlation coefficient, $\rho = 1 - \frac{6\sum d^2}{n(n^2-1)}$ $$=1-\frac{6\times14}{8(8^2-1)}=1-\frac{84}{8(63)}=1-\frac{84}{504}=1-0.167=0.833$$ Comment: There is a high positive correlation between the two tests Sketch the curvey = $5 + 4x - x^2$ (10 marks) Find the area enclosed between the curve and the x-axis from x = -1 to x = 5 ### Solution (a) The requirements to sketch a curve are; find the intercepts i.e. where the curve cuts the axes and . the turning point and its nature i.e. where $\frac{dy}{dx} = 0$ ### Intercepts when $$x = 0$$, $y = 5 + 4(0) - (0)^2 = 5$ $$\Rightarrow$$ (0,5) is the y – intercept when $y = 0.5 + 4x - x^2 = 0$ [This is a quadratic equation which needs to be factorized] Multiplying $5 \times -1 = -5$, factors of -5 which give us a sum of 4 are 5 and -1 Thus $$5 + 5x - x - x^2 = 0$$ $5(1+x) - x(1+x) = 0$ $$(1+x)(5-x)=0$$ Either $1 + x = 0 \Rightarrow x = -1$ or $5 - x = 0 \Rightarrow x = 5$ Thus (-1, 0) and (5, 0) are the x – intercepts ### Turning point $$y = 5 + 4x - x^2$$ $$\frac{dy}{dx} = 4 - 2x$$ $\frac{dy}{dx} = 4 - 2x$ For turning points, $\frac{dy}{dx} = 0 \implies 4 - 2x = 0$ which gives x = 2 Now we need to find the y- value corresponding to the x-value obtained above when $$x = 2$$, $y = 5 + 4(2) - (2)^2 = 5 + 8 - 4 = 9$ Thus (2, 9) is the turning point Nature of the turning point | <u>ie turnling polist</u> | | . <u></u> _ | , | |---------------------------|----|-------------|----------| | | T, | 2 | <u> </u> | | Cinn of dy | 1 | 0 | - ' | | Sign of $\frac{dy}{dx}$ | | | | | 1 | | | | | | | <u></u> | | Thus (2, 9) is a maximum turning point Alternatively we can find the nature of the turning point using the second derivative From $$\frac{dy}{dx} = 4 - 2x$$ $$\frac{d^2y}{dx^2} = -2$$ Since $\frac{d^2y}{dx^2} < 0$, it is a maximum turning point Note that a student is required to use one of the two methods not both in an exam # 11. The table
below shows the number of bags of sugar sold by a certain wholesale shop from the year 2019 to 2012. ₂₀₀9 to 2012. | Year | т | <u> </u> | + DOTED | | |------------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | | 151 | QU. | ARTER | 4 ¹¹ | | 2009
2010
2011
2012 | 192
300
342
424 | 280
360
420
480 | 320
380
430
510 | 260
270
320
412 | (a) Calculate the four-point moving averages for the data (06 marks) - (b) (i) on the same axes, plot the original data and the four-point moving averages (05 marks) - (ii) Comment on the trend of the number of bags of sugar sold over the (01 mark) four-year period (iii) Use your graph to estimate the number of bags to be sold in the first quarter of 2013. first quarter of 2013. $$\frac{\text{Solution}}{M_1} = \frac{\frac{192+280+320+260}{4} = 263}{4} = 263$$ $$M_2 = \frac{\frac{280+320+260+300}{4} = 290}{4} = 290$$ $$M_3 = \frac{\frac{320+260+300+360}{4} = 310}{4} = 325$$ $$M_4 = \frac{\frac{260+300+360+380}{4} = 325}{4} = 325$$ $$M_5 = \frac{\frac{300+360+380+270}{4} = 327.5}{4} = 327.5$$ $$M_6 = \frac{\frac{360+380+270+342}{4} = 338}{4} = 338$$ $$M_{11} = \frac{\frac{420+430+320+424}{4} = 398.5}{4} = 413.5$$ $$M_{12} = \frac{\frac{320+424+480+510}{4} = 433.5}{4}$$ $$M_{13} = \frac{\frac{424+480+510+412}{4} = 456.5}{4}$$ - (ii) There is a general increase in the number of bags of sugar sold over the given period - (iii) Let the number of bags to be sold in the first quarter of 2013 be xFrom the graph, we can estimate the 14th moving average $M_{14} = 460$ $$\frac{480+510+412+x}{4} = 460$$ $$1402 + x = 4 \times 460$$ $$x = 1840 - 1402 = 438$$ The number of bags to be sold would be 438 - 12. The points P and Q have position vectors OP = -2i 5j and OQ = i 2j respectively. R is a point such that $OR = OP + \lambda PQ$ - (a) Find the; - (i) value of OP. OQ - (ii) angle between the two vectors OP and OQ (07 marks) ## Advanced Level Subsidiair, Mathematics, by Kawana: Eahad 2nd Edition Determine e vector PQ $\frac{v}{(0)}$ vector OR in terms of λ $_{\text{(iii)}}$ value of λ for which OR is perpendicular to PO (08 marks) $$OP = -2i - 5j = \begin{pmatrix} -2 \\ -5 \end{pmatrix}$$ $$OQ = i - 2j = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$ (a) (i) $$OP.OQ = \begin{pmatrix} -2 \\ -5 \end{pmatrix}. \begin{pmatrix} 1 \\ -2 \end{pmatrix} = (-2 \times 1) + (-5 \times -2) = -2 - 10 = -12$$ (ii) Let the angle be θ $$OP. OQ = |OP||OQ|\cos\theta$$ $$|OP| = \sqrt{(-2)^2 + (-5)^2} = \sqrt{4 + 25} = \sqrt{29}$$ $$|OQ| = \sqrt{(1)^2 + (-2)^2} = \sqrt{1 + 4} = \sqrt{5}$$ $$-12 = \sqrt{29} \times \sqrt{5}\cos\theta$$ $$\cos\theta = \frac{-12}{\sqrt{29} \times \sqrt{5}} = -0.9965$$ $$\theta = \cos^{-1}(-0.9965) = 175.24^{\circ}$$ The angle between the two vectors OP and OQ is 175.240 (b) (i) $$PQ = OQ - OP = \begin{pmatrix} 1 \\ -2 \end{pmatrix} - \begin{pmatrix} -2 \\ -5 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$ (ii) $$OR = OP + \lambda PQ = \begin{pmatrix} -2 \\ -5 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 + 3\lambda \\ -5 + 3\lambda \end{pmatrix}$$ (iii) The dot product of perpendicular vectors is zero i.e OR.OQ = 0 - 13. A bakery produces loaves of bread whose weight is normally distributed with mean 1000 g and standard deviation 40 g - (a) Find the probability that a randomly selected loaf has a weight of utmost 1020 g. (07 marks) - (b) Assuming that the bakery makes 10500 loaves, find the approximate number of loaves with a weight (08 marks) greater than 950 g. ### Solution Let X be the random variable weight of loaves of bread $$X \sim N(1000, 40^2)$$ (a) Utmost 1020 g means a value that does not exceed 1020 i.e. it must be below or equal to. $$P(X \le 1020) = P\left(Z \le \frac{1020 - 1000}{40}\right) = P\left(Z \le \frac{20}{40}\right) = P(Z \le 0.5)$$ # Advanced Level Subsidiary Mathematics by Kareuma Fahad 22 Edition $$P(Z \le 0.5) = 0.5 - P(0.5 \le Z \le 0)$$ = 0.5 - 0.1915 = 0.3085 The probability that a loaf has a weight of utmost 1020 g is 0.3085 (b) $$P(X > 950) = P\left(Z > \frac{950 - 1000}{40}\right) = P\left(Z > -\frac{50}{40}\right) = P(Z > -1.25)$$ $$P(Z > -1.25) = 0.5 + P(-1.25 < Z < 0) = 0.5 \div 0.3944 = 0.8944$$ Approximate number of loaves = $10500 \times 0.8944 = 9391.2 \approx 9391$ The number of loaves with a weight greater than 950 g is 9391 14.(a) The diagram below shows three forces FN, 4N and 8N acting on a particle If the forces are in equilibrium, find the value of (i) θ (ii) F (05 marks) (b) In the rectangle ABCD, AB = 4m and BC = 3m. Forces of magnitudes 3N, 10N, 4N, 6N and 5N act in the directions of the letters AB, BC, CD, DA and AC respectively. Taking AB as horizontal find the magnitude of the resultant force. (09 marks) # Advanced Level Subsidiair. Mathematics by Kawaina Fahad A. A. 2nd Edition . (a) Solution | Force | T | | |---------------|--------------------------|-----------------| | F | Horizontally | Vertically | | 4 | $F\cos\theta \leftarrow$ | $F \sin \theta$ | | 8 | 4 cos 30 → | 4 sin 30 1 | | For forces in | 0 | 8 ↓ | For forces in equilibrium, sum of upward forces = sum of downward forces $$F\sin\theta + 4\sin 30^{\circ} = 8$$ $$F\sin\theta = 8 - 4\sin 30^{\circ}$$ $$F\sin\theta = 6 \dots \dots \dots \dots (i)$$ Similarly; horizontally; $$F\cos\theta = 4\cos 30^{\circ}$$ $$F\cos\theta = 3.464 \dots \dots \dots (ii)$$ Dividing eqn (i) by eqn (ii) $$\frac{F\sin\theta}{F\cos\theta} = \frac{6}{3,464}$$ $$\tan \theta = 1.732$$ $$\theta = \tan^{-1} 1.732 = 60^{\circ}$$ (ii) Using $$F \cos \theta = 3.464$$ $$F = \frac{3.464}{\cos 60^{\circ}} = 6.928 \, N$$ $$AC = \sqrt{4^2 + 3^2} = \sqrt{25} = 5 \ cm$$ Resultant horizontal force, $$F_x = 3 + 5\cos\theta - 4$$ $$= 3 + 5 \times \frac{4}{5} - 4 = 3 + 4 - 4 = 3N \rightarrow$$ Resultant vertical force = $$10 + 5 \sin \theta - 6$$ $$= 10 + 5 \times \frac{3}{5} - 6 = 10 + 3 - 6 = 7N \uparrow$$ Resultant horizontal force, $R = \sqrt{{F_x}^2 + {F_y}^2} = \sqrt{3^2 + 7^2} = \sqrt{58} = 7.62 \text{ N}$ # SOLUTIONS TO UNEB 2014 ## SECTION A (40 MARKS) 1. The roots of the equation $2x^2 + 4x - 1 = 0$ are α and β . Find the value of $\alpha^2 + \beta^2$ $$2x^2 + 4x - 1 = 0$$ $$x^2 + 2x - \frac{1}{2} = 0$$ on dividing throughout by 2 Sum of roots $\alpha + \beta = -2$ and product of roots $\alpha\beta = -\frac{1}{2}$ From $$(\alpha + \beta)^2 = \alpha^2 + 2\alpha\beta + \beta^2$$ It follows that $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ $$= (-2)^2 - 2\left(-\frac{1}{2}\right) = 4 + 1 = 5$$ - 2. The ninth term of an arithmetic progression (A.P) is greater than the fifth term by 6. The sum of the first twelve terms is 123. Find the: - , (a) common difference of the A.P. - (b) first term of the A.P. $$n^{th} term = a + (n-1)d$$ $$9^{th}term = a + 8d$$; $5^{th}term = a + 4d$ (a) $$9^{th}term - 5^{th}term = 6$$ $$(a + 8d) - (a + 4d) = 6$$ $a + 8d - a - 4d = 6$ $4d - 6 \Rightarrow d = \frac{6}{2} = 15$ $$a + 8d - a - 4d = 6$$ $$4d = 6 \Rightarrow d = \frac{6}{4} = 1.5$$ (b) $$S_{12} = 123$$ From $$S_n = \frac{n}{2}[2a + (n-1)d]$$ $$\frac{12}{2}[2a + 11 \times 1.5] = 123$$ $$6[2a + 16.5] = 123$$ $$2a + 16.5 = 20.5$$ $$6[2a + 16.5] = 123$$ $$2a + 16.5 = 20.5$$ $$2a = 4 \Rightarrow a = 2$$ - 3. (a) How many arrangements can be made using the letters in the word "TROTTING" - (b) In how many of these arrangements are the letters N and G next to each other ### Solution (a) TROTTING has 8 letters with 3T's Number of arrangements = $\frac{8!}{3!}$ = 6720 (b) we can take N and G as one such that they are always together TROTTI(NG) has 7 letters with 3T's Number of arrangements = $\frac{7!}{3!}$ = 840 ## Advanced Level Subsidiary Mathematics by Kayuma Fahad 2nd Edition Number of arrangements of N and G = 2! = 2Total number of arrangements = $840 \times 2 = 1680$ 4. Solve the differential equation $\frac{dy}{dx} = 2x + 5$, given that y = -1 and x = 3 Solution $$\frac{dy}{dx} = 2x + 5$$ $$dy = (2x + 5)dx$$ $$\int dy = \int (2x + 5)dx \quad \text{on integrating either sides}$$ $$y = \frac{2x^2}{2} + 5x + C$$ $$y = x^2 + 5x + C$$ when $x = 3, y = -1$ $$(-1) = (3)^2 + 5(3) + C$$ $$C = -25$$ $$\therefore y = x^2 + 5x - 25$$ - 5. A class of n students sat for a mathematics test. Given that $\sum fx = 400$, $\sum fx^2 = 6500$ and the mean $\bar{x} = 16$, where x is the mark and f is the frequency; determine the value of - (b) the standard deviation (a) Mean, $$\bar{x} = \frac{\sum fx}{n}$$ $16 = \frac{400}{n}$ $$16n = 400 \Rightarrow n = \frac{400}{16} = 25$$ (b) Standard deviation $$= \sqrt{\frac{\sum fx^2}{n} - \left(\frac{\sum fx}{n}\right)^2}$$ $= \sqrt{\frac{6500}{25} - 16^2} = \sqrt{260 - 256} = \sqrt{4} = 2$ 6. Show that $sec^2\theta + cosec^2\theta = sec^2\theta cosec^2\theta$ From $$\sec \theta = \frac{1}{\cos \theta}$$ and $\csc \theta = \frac{1}{\sin \theta}$ $$L.H.S = \sec^2 \theta + \csc^2 \theta = \frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta \sin^2 \theta}$$ $$= \frac{1}{\cos^2 \theta \sin^2 \theta} \quad \text{since } \sin^2 \theta + \cos^2 \theta = 1$$ $$= \frac{1}{\cos^2 \theta} \times \frac{1}{\sin^2 \theta} = \sec^2 \theta \csc^2 \theta = R.H.S \text{ as required}$$ - 7. In a bimodal experiment, the probability of a success for n trials is 0.6. If the mean is 7.2, find the (a) value of n - (b) probability of obtaining 7 successes ## Advanced Level Subsidiary Mathematics by Kayuma Eahad 2nd Edition ### Solution (a) $$Mean = np$$ $7.2 = 0.6n$ $n = \frac{7.2}{0.6} = 12$ (b) $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r}$ $P(X = 7) = {}^{12}C_{7}(0.6)^{7}(0.4)^{5}$ $= 0.227$ 8. A cyclist rides along a straight road from shop P to shop Q. He passes shop P with a velocity of 2 ms⁻¹ and accelerates uniformly at 1.25 ms⁻² until he attains a velocity of 12 ms⁻¹ at shop Q. Find the : (a) time taken by the cyclist to reach Q .(b)
distance PQ Solution P U = 2ms⁻¹, a = 1.25ms⁻¹ (a) using $$V = U + at$$ $12 = 2 + 1.25t$ $1.25t = 10 \Rightarrow t = \frac{10}{1.25} = 8s$ (b) Using $V^2 = U^2 + 2aS$ Alternatively; $S = ut + \frac{1}{2}at^2$ $12^2 = 2^2 + 2 \times 1.25S$ $S = 2 \times 8 + \frac{1}{2} \times 1.25 \times 8^2$ $144 = 4 + 2.5S$ $S = 16 + 40 = 56m$ $2.5S = 140 \Rightarrow S = 56m$ ### **SECTION B** 9. The table below shows the marks of 8 students in the mid-term test and end of term test in economics. | Mid-term tests (x) | 99 | [71 | 50 | 67 | 77 | 81 | 06 | 72 | |---------------------------|------|-----|-------------|----|----------|----|----|-------| | End of term test (y) | 99 . | 55 | 35 | 60 | 75 | 70 | 90 | 72 | | (a) (i) draw a gootte- di | | | | | <u> </u> | | 29 | 150 1 | - (a) (i) draw a scatter diagram for the data - (ii) on the same diagram draw a line of best fit - (iii) Use the line of best fit to find the value of y when x = 85 - (b) Calculate the spearman's rank correlation coefficient. Comment on your result Advanced Jassel Sudixtellors Mathematica In Konganostralio Landon 221 Edition ## <u>Solution</u> (n) (l) (ii) Line of best fit passes through (\bar{X}, \bar{Y}) where $\bar{X} = \frac{\sum x}{n}$ and $\bar{Y} = \frac{\sum y}{n}$ $$\bar{X} = \frac{613}{8} = 76.625 \approx 77 \text{ and } \bar{Y} = \frac{543}{8} = 67.875 \approx 68$$ Line of best fit passes through (77, 68) (iii) when x = 85, y = 84 | (b) | | | | | 72 | 81 96 72 | |----------------------|------|-----|----------|-------|---|---| | Mid-term tests (x) | 99 . | 71 | 50 | 67 | 1/ | 70 99 50 | | End of term test (y) | 99 | 55_ | 35 | 60 | 75 | 70 - 2 - 5 | | R. | 1 | 6 | 8 | 7 | 4_ | $\frac{3}{1} + \frac{2}{1} + \frac{7}{7} = \frac{7}{1}$ | | R | 1.5 | 6 | 8 | 5 | 3 | 4 1.3 7 | | D D | -0.5 | 0 | 0 | 2 | ÷ | -1 0.5 -2 | | $d = R_x - R_y$ | 0.25 | - | <u>-</u> | 1 | <u> </u> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | latt d* → | 0.23 | Įυ | v | 1 T _ | لــــــــــــــــــــــــــــــــــــــ | | $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6\times 10.5}{8(63)} = 1 - 0.125 = 0.875$$ Comment: There is a high positive correlation between the marks of the students for the two tests Comment: There is a high positive correlation between the marks of 10. (a) Given that $$A = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix}$$ and $B = \begin{pmatrix} 4 & 1 \\ 0 & -2 \end{pmatrix}$; find (i) AB (ii) BA (i) AB (ii) BA Comment on your result - (b) A family bought the following items for three successive days. The first day it bought three bunches of matooke, two kilograms of rice, five kilograms of meat and two kilograms of sugar. The second day it bought only one kilogram of sugar. The third day the family bought a bunch of matooke and two kilograms of rice. A bunch of matooke costs Shs15,000. A kilogram of rice, meat and sugar cost Shs3,300, Shs8,000 and Shs3,000 respectively. - (i) represent the family's requirements in a 3 x 4 matrix - (ii) write down the cost of each item as a column matrix - (iii)Use the matrices in b(i) and (ii) to find the family's total expenditure for the three days (a) (i) $$AB = \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 2 \times 4 + -3 \times 0 & 2 \times 1 + -3 \times -2 \\ 1 \times 4 + 1 \times 0 & 1 \times 1 + 1 \times -2 \end{pmatrix} = \begin{pmatrix} 8 & 8 \\ 4 & -1 \end{pmatrix}$$ (ii) $BA = \begin{pmatrix} 4 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 \times 2 + 1 \times 1 & 4 \times -3 + 1 \times 1 \\ 0 \times 2 + -2 \times 1 & 0 \times -3 + -2 \times 1 \end{pmatrix} = \begin{pmatrix} 9 & -11 \\ -2 & -2 \end{pmatrix}$ (ii) $$BA = \begin{pmatrix} 4 & 1 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 2 & -3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 \times 2 + 1 \times 1 & 4 \times -3 + 1 \times 1 \\ 0 \times 2 + -2 \times 1 & 0 \times -3 + -2 \times 1 \end{pmatrix} = \begin{pmatrix} 9 & -11 \\ -2 & -2 \end{pmatrix}$$ Comment: $AB \neq BA$ hence the commutative law doesn't apply for matrices (b) (i) let B - Bunch of Matooke, R - kilogram of rice, M - kilogram of meat, S - Kilogram of sugar (ii) $$\begin{array}{c} B \\ R \\ M \\ S \end{array} \begin{pmatrix} 15000 \\ 3300 \\ 8000 \\ 3000 \end{pmatrix}$$ Advanced Level Subsidiary Mathematics by Karkung Fahad ... \2nd Edition's (iii) Using matrix multiplication $$\begin{pmatrix} 3 & 2 & 5 & 2 \\ 0 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} 15000 \\ 3300 \\ 8000 \\ 3000 \end{pmatrix} = \begin{pmatrix} 3 \times 15000 + 2 \times 3300 + 5 \times 8000 + 2 \times 3000 \\ 0 \times 15000 + 0 \times 3300 + 0 \times 8000 + 1 \times 3000 \\ 1 \times 15000 + 2 \times 3300 + 0 \times 8000 + 0 \times 3000 \end{pmatrix}$$ $$= \begin{pmatrix} 45000 + 6600 + 6000 \\ 3000 \\ 15000 + 6600 \end{pmatrix} = \begin{pmatrix} 57600 \\ 3000 \\ 21600 \end{pmatrix}$$ Expenditure on the first day = 57600/= Expenditure on the second day = 3000/= Expenditure on the third day = 21600/= Total expenditure = 57600 + 3000 + 21600 = 82200/= 11 (a) the table below shows the price (U Shs) of flour and eggs in the years of 2000 and 2010 | 11 (a) the table below | r shows the price (| U Shs) of flour and age- | |--|---------------------|--------------------------| | COMMODITY | PF | RICE (UShs) | | | 2000 | 2010 | | Flour (kg) | 3000 | 5000 | | Eggs (1 tray) | 5000 | 7000 | | ************************************** | 1late | the. | Taking 2000 as the base year, calculate the: - (i) price relative of each commodity - (ii) simple aggregate price index (b) the data below shows items with their corresponding price relatives and weights Comment on your result | | tome with their correspond | Illig price | |------------------|----------------------------|-------------| | data below shows | PRICE RELATIVE | WEIGHT | | ITEM | | 172 | | Food | 120 | 160 | | Clothing | 124 | 170 | | Housing | 125 | 210 | | Transport | 135 | 140 | | Others | 104 | 1110 | | Others | - | | - (i) Find the cost of living index - (ii) Comment on your result ## **Solution** Solution (a) (i) Price relative for flour = $$\frac{5000}{3000} \times 100 = 166.67$$ $\frac{7000}{100} \times 100 = 140$ Price relative for eggs = $\frac{7000}{5000} \times 100 = 140$ (ii) Simple aggregate price index = $$\frac{\sum P_1}{\sum P_0} \times 100$$ Total price in 2010 i.e $\sum P_1 = 5000 + 7000 = 12000$ Total price in 2000 i.e. $\sum P_0 = 3000 + 5000 = 8000$ Simple aggregate price index = $\frac{12000}{8000} \times 100 = 150$ Comment: The prices of the commodities increased by 50% from 2000 to 2010 (b) | ١) | (i) | | Weight(V | /) PW | |----|-----------|----------------|---------------------------|--------------| | 1 | Item | Price index(P) | $-\frac{\sqrt{172}}{172}$ | 1 40070 | | | Food | 120 | 160 | 19840 | | | Clothing | 124 | 170 | 21250 | | | Housing | 125 | | 28350 | | | Transport | 135 | 140 | 14560 | | | Others | 104 | | 104640 | | | Σ | | 852 | 04640 122.82 | Cost of living index = weighted price index = $\frac{\sum PW}{\sum W} = \frac{104640}{852} = 122.82$ - (ii) Comment: The cost of living increased by 22.82% - 12. Given the curve $y = 3x^3 4x^2 x$ - (a) find the turning points of the curve - (b) distinguish between the nature of the turning points ### **Solution** (a) For turning points; $$\frac{dy}{dx} = 0$$ $y = 3x^3 - 4x^2 - x$ $$\frac{dy}{dx} = 9x^2 - 8x - 1$$ $$9x^2 - 8x - 1 = 0$$ $$9x^2 - 8x - 1 = 0$$ $$9x^2 - 9x + x - 1 = 0$$ $$9x(x-1) + (x-1) = 0$$ $$(x-1)(9x+1)=0$$ Either $$x - 1 = 0 \Rightarrow x = 1$$ or $9x + 1 = 0 \Rightarrow x = -\frac{1}{9}$ When $$x = 1$$, $y = 3(1)^3 - 4(1)^2 - (1) = -2$ (1,-2) is a turning point When $$x = -\frac{1}{9}$$, $y = 3\left(-\frac{1}{9}\right)^3 - 4\left(-\frac{1}{9}\right)^2 - \left(-\frac{1}{9}\right) = \frac{14}{243}$ (b) Nature of the turning points $\frac{77}{243}$ is a turning point | | x | \mathbf{L}_{1} | 1 | R | L' | $-\frac{1}{6}$ | R | |------|---------|------------------|-----------|---|----|----------------|----------| | . 일기 | sign of | · · / | . 0 | + | + | 0 | ·_ | | | | | | | | | | | | | . N | Ainimum 👚 | | | Marimum | <u> </u> | Therefore (1, -2) is a minimum turning point and $(-\frac{1}{9}, \frac{14}{243})$ is a maximum turning point ## 13. The table below shows the probability distribution of the number of Compact Discs (CDs) sold. | Number of CD's sold | ility distribu | tion of the | number | of Compac | t Discs (Ci | |-----------------------|----------------|-------------|--------|-----------|-------------| | Probability Does sold | 0 | 1 | 2 | 3 | 4 | | Probability, $P(X=x)$ | 0.05 | 0.28 | С | 0.22 | 0.99 | Determine the: - (a) value of c - (b) probability that at least 2 CD's are sold - (c) expectation E(X) - (d) standard deviation (a) $$\sum_{all \ x} P(X = x) = 1$$ $0.05 + 0.28 + c + 0.22 + 0.09 = 1$ $c + 0.64 = 1 \Rightarrow c = 0.36$ (b) $$P(X \ge 2) = P(X = 2) + P(X = 3) + P(X = 4)$$ = $c + 0.22 + 0.09$ = $0.36 + 0.22 + 0.09 = 0.67$ (c) | , | | • | | |----|--------|---------|----------------| | x | P(X=x) | xP(X=x) | $x^2 P(X = x)$ | | 0 | 0.05 | 0 | 0 | | 1 | 0.28 | 0.28 | 0.28 | | 2 | 0.36 | 0.72 | 1.44 | | 3 | 0.22 | 0.66 | 1.98 | | 4 | 0.09 | 0.36 | 1.44 | | Σ. | 1 | 2.02 | • 5.14 | Expectation $$E(X) = \sum xP(X = x) = 2.02$$ (d) standard deviation = $$\sqrt{Var(X)}$$ $$Var(X) = E(X^2) - [E(X)]^2 = 5.14 - (2.02)^2 = 1.0596$$ Standard deviation = $\sqrt{1.0596} = 1.0294$ - 14. (a) A brick of mass 750 g is dragged by a horizontal force at a uniform speed along a rough horizontal surface, through a distance of 20m. The work done against friction is 49.8J. Calculate, the coefficient of friction between the brick and the surface - (b) A truck of mass 8 tonnes has a maximum speed of 20 ms⁻¹ up an incline of $\arcsin \frac{1}{50}$ when the engine is working against
resistances of 30,000 N. Calculate the maximum power of the engine. ## Solution (a) $$M = 750g = 0.75 \text{ kg}$$ Work done against friction = Friction force × distance $$49.8 = F \times 20$$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad. 2nd Edition $$F = \frac{49.8}{20} = 2.49 N$$ But friction force, $F = \mu R$ $$R = 0.75g = 0.75 \times 9.8 = 7.35 N$$ $$\Rightarrow 2.49 = 7.35\mu$$ $$\mu = \frac{2.49}{7.35} = 0.339$$ (b) $R = \frac{1}{50}$ $R = \frac{1}{50}$ $R = \frac{1}{50}$ $R = \frac{1}{50}$ At maximum speed, $$a = 0$$ $$\Rightarrow D - [30000 + 8000g \sin \theta] = 0$$ $$D = 30000 + 8000 \times 9.8 \times \frac{1}{50}$$ $$D = 30000 + 1568 = 31568 N$$ Maximum power of the engine = driving force (D) × Velocity (V) = $31568 \times 20 = 631360 W$ ## **SOLUTIONS TO UNEB 2015** SECTION A (40 MARKS) Evaluate $\frac{\log_6 216 + \log_2 64}{\log_3 243 - \log_{10} 0.1}$ $$\frac{\log_6 216 + \log_2 64}{\log_3 243 - \log_{10} 0.1} = \frac{\log_6 6^3 + \log_2 2^6}{\log_3 3^5 - \log_{10} 10^{-1}} = \frac{3\log_6 6 + 6\log_2 2}{5\log_3 3 + \log_{10} 10} = \frac{3+6}{5+1} = \frac{9}{6} = \frac{3}{2}$$ 2. The table below shows the ranks of marks awarded by Judge 1 (R_X) and Judge 2 (R_Y) to 7 choir groups A to G. | | | | | | | _ _ | | |---|-----|----------|----------|-------------|-------------|-----------------|--| | Choir | . A | В | C | D | "E' | . 1 | | | | | | | | | - | □ 7 \ | | Rank Judge 1 (R_X) | 2 | 4 | 6 | 1 | ا ج | ا | <u> </u> | | | | | | | - 6 | | 171 | | Rank Judge 2 (R_Y) | 2 | 3 | 5 | 1 | ነ | | <u> </u> | | , | | <u> </u> | <u> </u> | _ | <u> </u> | n 053/950 | led by th | Calculate Spearman's rank correlation coefficient between the marks awarded by the two judges. Comment on your result. | | | | Solution | <u>on</u> | | | | | | |---|-------------|-----------|-----------|-------------------|--------------|-------------|-------------|--------------|-----| | Choir R_X R_Y $d = R_X - R_Y$ d^2 | A 2 2 0 0 0 | B 4 3 1 1 | C 6 5 1 1 | D 1 1 0 0 | 5
6
-1 | F -3 4 -1 1 | G
7
0 | $\sum d^2 =$ | : 4 | | | | | | | | | | | | $$\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6\times 4}{7(48)} = 0.9286$$ Comment: There is a very high positive correlation between the judges 3. Solve the equation $3 \sin^2 \theta + \cos \theta + 1 = 0$ for values of θ from 0^0 to 180^0 inclusive. From $$\sin^2 \theta + \cos^2 \theta = 1$$, $\Rightarrow \sin^2 \theta = 1 - \cos^2 \theta$ $$3(1-\cos^2\theta) + \cos\theta + 1 = 0$$ $$3 - 3\cos^2\theta + \cos\theta + 1 = 0$$ $$4 - 3\cos^2\theta + \cos\theta = 0$$ $$4 - 3\cos^2\theta + \cos\theta = 0$$ $$3\cos^2\theta-\cos\theta-4=0$$ $$3\cos^{2}\theta + 3\cos\theta - 4\cos\theta - 4 = 0$$ $$3\cos\theta(\cos\theta+1)-4(\cos\theta+1)=0$$ ## $$(\cos\theta + 1)(3\cos\theta - 4) = 0$$ Either $\cos\theta + 1 = 0 \Rightarrow \cos\theta = -1$ $$\theta = \cos^{-1}(1) = 0^{0} \Rightarrow \theta = \{180^{0}\}$$ Or $3\cos\theta - 4 = 0 \Rightarrow \cos\theta = \frac{4}{3}$ $$\cos\theta = \cos^{-1}\left(\frac{4}{3}\right) \quad \{values\ do\ not\ exist\}$$ $$\Rightarrow for\ 0^{0} \le \theta \le 180^{0} = \{180^{0}\}$$ - 4. A committee of 5 people is to be formed from a group of 6 men and 7 women. - (a) Find the number of possible committees - (b) What is the probability that there are only 2 women on the committee? ### Solution (n) | Men/6 | Women/7 | Number of committees | |-------|---------|--| | 0 | 5 | 6 Co× 7 Cs = 21 | | 1. | 4 | ${}^{6}C_{1} \times {}^{7}C_{4} = 210$ | | 2 | 3 | ${}^{6}C_{2} \times {}^{7}C_{3} = 525$ | | 3 | 2 | $^{6}C_{3}\times^{7}C_{2} = 420$ | | 4 | 1 | $^{6}C_{4}x^{7}C_{1} = 105$ | | 5 | 0 | ${}^{6}C_{5} \times {}^{7}C_{0} = 6$ | | T | otal | 1287 | Number of possible committees = 1287 (b) Number of committees with two women = 525 $$P(2 \text{ women}) = \frac{525}{1287} = 0.408$$ 5. Find the gradient of the curve $y = 4x^2(3x + 2)$ at the point (1, 20) Solution $$y = 4x^{2} \times 3x + 4x^{2} \times 2 = 12x^{3} + 8x^{2}$$ $$\frac{dy}{dx} = 36x^{2} + 16x$$ $$\lambda t (1, 20), x = 1$$ $$\frac{dy}{dx} = 36(1)^2 + 16(1) = 52$$ The gradient of the curve is 52 ## Advanced Level Subsidiary Mathematics by Kawana Fahad ... 20d Edition - Three events A, B and C are such that P(A) = 0.6, P(B) = 0.8, P(B/A) = 0.45 and $P(B \cap C) = 0.28$. Find - (a) $P(A \cap B)$ - (b) P(C/B) ### Solution (a) From $$P(B/A) = \frac{P(B\cap A)}{P(A)}$$ $$P(A \cap B) = P(A) \times P(B/A)$$ = 0.6 × 0.45 = 0.27 (b) $$P(C/B) = \frac{P(C \cap B)}{P(B)} = \frac{0.28}{0.9} = 0.35$$ 7. The matrix $A = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix}$ and I is a 2×2 identity matrix. Determine the matrix B such that $A^2 + \frac{1}{2}B = I$ ### Solution $$A = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix} \qquad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ Let the matrix, $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $$A^{2} = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 2 \times 2 + 1 \times -3 & 2 \times 1 + 1 \times 0 \\ -3 \times 2 + 0 \times -3 & -3 \times 1 + 0 \times 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ -6 & -3 \end{pmatrix}$$ $$A^2 + \frac{1}{2}B = I$$ $$\begin{pmatrix} 1 & 2 \\ -6 & -3 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$\begin{pmatrix} 1 + \frac{a}{2} & 2 + \frac{b}{2} \\ -6 + \frac{c}{2} & -3 + \frac{d}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$ $$1 + \frac{a}{2} = 1 \Rightarrow a = 0$$ $$2 + \frac{b}{2} = 0 \Rightarrow b = -4$$ $$-6 + \frac{c}{2} = 0 \Rightarrow c = 12$$ $$-3 + \frac{d}{2} = 1 \Rightarrow d = -6$$ $$\therefore B = \begin{pmatrix} 0 & -4 \\ 12 & -6 \end{pmatrix}$$ # 8. A bullet of mass 50g is fired towards a stationary wooden block and enters the block when travelling horizontally with a speed of $500ms^{-1}$. The wooden block provides a constant resistance of 36,000 N. Find how far into the block the bullet will penetrate. Let the mass of the bullet be m with the velocity u and the mass of the wooden block be M. Let their velocity after collision be V. Note: In this question, the mass of the wooden block was not given and the final velocity of the wooden block and the bullet would not be calculated. ## SECTION B (60 MARKS) 9. The table below shows the number of students and the marks scored in a test | MARKS | NUMBER OF STUDENT | |---------|-------------------| | 0-4 | 10 | | 5 – 9 | 7 | | 10 - 14 | 5 | | 15 – 19 | 3 | | 20 - 24 | 7 | | 25 – 29 | 11 . | | 30 – 34 | 37 | | 35 – 39 | 20 | ## Advanced Level Subsidiary Mathematics by Kawaina Eahad : 122nd Edition - (a) (i) Draw a cumulative frequency curve (Ogive) for the data - (ii) Use the Ogive to estimate the median mark - - (b) Calculate the; - (i) mean mark - (ii) standard deviation ## **Solution** | Class | f | х | fx | fx^2 | F | Upper class boundaries | |--------------------|-----|----|----------|--------|-----|------------------------| | 0 – 4 | 10 | 2 | 20 | 40 | 10 | 4.5 | | 5 – 9 | . 7 | 7 | 49 | 343 | 17 | 9.5 | | 10 - 14 | 5 | 12 | 60 | 720 | 22 | 14.5 | | 15 – 19 | 3 | 17 | 51 | 867 | 25 | 19.5 | | 20 - 24 | 7 | 22 | 154 | 3388 | 32 | 24.5 | | 25 – 29 | 11 | 27 | 297 | 8019 | 43 | 29.5 | | $\frac{23}{30-34}$ | 37 | 32 | 1184 | 37888 | 80 | 34.5 | | | 20 | 37 | 740 | 27380 | 100 | 39.5 | | 35 – 39 | 100 | | 2555 | 78645 | | | | <u> </u> | | \ | <u> </u> | | | | (a)(i) (ii) Median = $$\left(\frac{N}{2}\right)^{th}$$ value = 50^{th} value From the graph, median =.31.5 (b)(i) Mean mark = $$\frac{\sum fx}{\sum f} = \frac{2555}{100} = 25.55$$ (ii) Standard deviation = $$\sqrt{\frac{\sum f x^2}{\sum f} - \left(\frac{\sum f x}{\sum f}\right)^2} = \sqrt{\frac{78645}{100} - (25.55)^2} = \sqrt{133.6475} = 11.56$$ - 10. The rate of decay of a radioactive material is proportional to the amount x grams of the material present at any time t. Initially there was 60 grams of the material. After 8 years the material had reduced to 15 grams. - (a) Form a differential equation for the rate of decay of the material - (b) Solve the differential equation formed in (a) above ## Advanced Level Subsidiary Mathematics by Kawuma Fahad 2nd Edition $_{(\mathcal{C})}$ Find the time taken for the material to reduce to 10 grams. ## **Solution** $$\frac{dx}{dt} \propto x$$ $$\frac{dx}{dt} = -kx$$ $$\int \frac{dx}{x} = -kdt$$ $$\int \frac{dx}{x} = \int -k dt$$ $$\ln x = -kt + C$$ $$at \ t = 0, x = x_0 \implies \ln x_0 = C$$ $$at t = 0, x = x_0 \implies \ln x_0 = 1$$ $$\ln x = -kt + \ln x_0$$ $$\ln x - \ln x_0 = -kt$$ $$\ln\left(\frac{x}{x_0}\right) = -kt$$ $$x_0 = 60, \ at \ t = 8, x = 15$$ $$\ln\left(\frac{15}{60}\right) = -k(8) \Rightarrow k = \frac{1}{8}\ln 4$$ $$\ln\left(\frac{x}{x_0}\right) = -\left(\frac{1}{8}\ln 4\right)t$$ (c) at t =?, $$x = 10$$ $\ln\left(\frac{10}{60}\right) = -\left(\frac{1}{8}\ln 4\right)t$ $t = 10.34 \text{ years}$ 11. The table below shows the prices (in Ug Shs) of some food items in January, June and December together with the corresponding weights. | P | Price (in Ug Shs) | | | | | |---------|----------------------------|---|--|--|--| | January | June | December | \ | | | | 15,000 | 13,000 | 18,000 | 4 | | | | L | 6,000 | 7,150 | 1 | | | | | 1,800 | 1,600 | 3 | | | | | 2,000 | 2,860 | 2 | | | | | January 15,000 6,500 2,000 | Price (in Ug Sharman) June 15,000 13,000 6,500 6,000 | Price (in Ug Shs) January June December 15,000 13,000 18,000 6,500 6,000 7,150 2,000 1,800 1,600 |
| | Taking January as the base month, calculate the; - (a) simple aggregate price index for June. Comment on your result. - (b) weighted aggregate index price index for December. Comment on your result. ### Solution. (a) Simple aggregate price index = $\frac{\sum P_1}{\sum P_0} \times 100$ For June, S.A.P.I = $$\frac{13000+6000+1800+2000}{15000+6500+20000+2200} \times 100 = \frac{22800}{25700} \times 100 = 88.72$$ Comment: The prices of the commodities reduced by 11.28% in June (b) Weighted aggregate price index == $\frac{\sum P_1 W}{\sum P_0 W} \times 100$ For December, W.A.P.I = $$\frac{(18000\times4)+(7150\times1)+(1600\times3)+(2860\times2)}{(15000\times4)+(6500\times1)+(2000\times3)+(2200\times2)}\times 100$$ $$=\frac{89670}{76900}\times100=116.61$$ Comment: The prices of the commodities increase by 16.61% in December. 12. The roots of the equation $2x^2 - 6x + 7 = 0$ are α and β . Determine the (a) values of $$(\alpha - \beta)^2$$ and $\frac{1}{\alpha^2 \beta} + \frac{1}{\alpha \beta^2}$ and the service of the service of (b) quadratic equation with integral coefficient whose roots are $(\alpha - \beta)^2$ and $\frac{1}{\alpha^2 \beta} + \frac{1}{\alpha \beta^2}$ ### Solution $$2\ddot{x}^2 - 6x + 7 = 0$$ $$x^2 - 3x + \frac{7}{2} = 0$$ $$\alpha + \beta = 3$$, $\alpha \beta = \frac{7}{2}$ (a) $(\alpha - \beta)^2 = (\alpha - \beta)(\alpha - \beta) = \alpha^2 - \alpha\beta - \alpha\beta + \beta^2 = \alpha^2 + \beta^2 - 2\alpha\beta$ But $$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$ $$\Rightarrow (\alpha - \beta)^2 = (\alpha + \beta)^2 - 2\alpha\beta - 2\alpha\beta = (\alpha + \beta)^2 - 4\alpha\beta$$ $$= 3^2 - 4\left(\frac{7}{2}\right) = 9 - 14 = -5$$ $$\frac{1}{\alpha^2 \beta} + \frac{1}{\alpha \beta^2} = \frac{\beta + \alpha}{\alpha^2 \beta^2} = \frac{\alpha + \beta}{(\alpha \beta)^2} = \frac{3}{\left(\frac{7}{2}\right)^2} = 3 \div \frac{49}{4} = 3 \times \frac{4}{49} = \frac{12}{49}$$ (b) Sum of roots = $-5. + \frac{12}{49} = \frac{12}{49} - 5 = -\frac{233}{49}$ Product of roots = $$-5 \times \frac{12}{49} = -\frac{60}{49}$$ $$x^2 - (sum \ of \ roots)x + product \ of \ roots = 0$$ $$x^2 - \left(-\frac{233}{49}\right)x - \frac{60}{49} = 0$$ or $49x^2 + 233x - 60 = 0$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahad ... \ 2nd Edition: 13. A continuous random variable X has a probability density function given by, $$f(x) = \begin{cases} \frac{kx}{6}, & 1 \le x \le 2, \\ 0 & \text{otherwise,} \end{cases}$$ where k is a constant - da Find - (i) the value of k - (ii) $P(X \ge 1.5)$ - (iii) the mean of X, E(X) - (b) Sketch the graph of f(x) ### Solution (a) (i) $$\int_{all \ x} f(x) \ dx = 1$$ $$\int_1^2 \frac{kx}{6} dx = 1$$ $$\frac{k}{6}\int_1^2 x\,dx=1$$ $$\frac{k}{6}\left[\frac{x^2}{2}\right]_1^2=1$$ $$\frac{k}{6}\left(2 - \frac{1}{2}\right) = 1$$ $$k = 4$$ $$k = 4$$ (ii) $$f(x) =\begin{cases} \frac{2x}{3}, & 1 \le x \le 2, \\ 0, & otherwise, \end{cases}$$ $$P(X \ge 1.5) = \int_{1.5}^{2} \frac{2x}{3} dx = \left[\frac{x^2}{3}\right]_{1.5}^{2} = \left(\frac{2^2}{3} - \frac{1.5^2}{3}\right) = \frac{4}{3} - \frac{2.25}{3} = 0.583$$ iii) Mean, $E(X) = \int_{all \ x} xf(x) dx$ $$= \int_{1}^{2} \frac{2x^2}{3} dx = \left[\frac{2x^3}{9}\right]_{1}^{2} = \left(\frac{16}{9} - \frac{2}{9}\right) = \frac{14}{9} = 1.56$$ (iii) Mean, $$E(X) = \int_{all \ x} x f(x) dx$$ $$= \int_{1}^{2} \frac{2x^{2}}{3} dx = \left[\frac{2x^{3}}{9}\right]_{1}^{2} = \left(\frac{16}{9} - \frac{2}{9}\right) = \frac{14}{9} = 1.56$$ ## Advanced Level Subsidiary Mathematics by Kawuma Fahadoo 2nd Edition, - 14. A motorist moving at $90kmh^{-1}$ decelerates uniformly to a velocity $V ms^{-1}$ in 10 seconds. He maintains this speed for 30 seconds and then decelerates uniformly to rest in 20 seconds. - (a) Sketch a velocity-time graph for the motion of the motorist - (b) Given that the total distance travelled is 800m, use your graph to calculate the value of V. - (c) Determine the two decelerations. ## Solution . $$90\frac{km}{hr} = \frac{9000}{3600} ms^{-1} = 36ms^{-1}$$ (a) (b) Total distance covered = Area under graph $$800 = \frac{1}{2}(V + 36)10 + (30 \times V) + \frac{1}{2} \times 20 \times V$$ $$800 = 5(V + 36) + 30V + 10V$$ $$800 = 5V + 90 + 30V + 10V$$ $$710 = 45V$$ $$V = \frac{710}{45} = 15.78 \, \text{ms}^{-1}$$ (c) First deceleration = $\frac{15.78-36}{10}$ Second deceleration = $$\frac{0-15.78}{20} = -0.789 ms^{-2}$$