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GENERAL EDITOR’S FOREWORD

The present volume is one of a series on physics and mathematics, for 
the upper forms at school and the first year at the university. The 
books have been written by a team of experienced teachers at the 
Royal Military College of Science, and the series therefore forms an 
integrated course of study.

In preparing their manuscripts the writers have been mainly guided 
by the examination syllabuses of London University, the Joint Board 
of Oxford and Cambridge and the Joint Matriculation Board, but 
they have also taken a broad view of their tasks and have endeavoured 
to produce works which aim to give a student that solid foundation 
without which it is impossible to proceed to higher studies. The books 
are suitable either for class teaching or self study; there are many 
illustrative examples and large collections of problems for solution 
taken, in the main, from recent examination papers.

It is a truism too often forgotten in teaching that knowledge is 
acquired by a student only when his interest is aroused and maintained. 
The student must not only be shown how a class of problems in mathe­
matics is solved but, within limits, why a particular method works 
and in physics, why a technique is especially well adapted for some 
particular measurement. Throughout the series special emphasis has 
been laid on illustrations which may be expected to appeal to the 
experience of the student in matters of daily life, so that his studies 
are related to what he sees, feels and knows of the world around him. 
Treated in this way, science ceases to be an arid abstraction and becomes 
vivid and real to the inquiring mind.

The books have therefore been written, not only to ensure the 
passing of examinations, but as a preparation for the exciting world 
which lies ahead of the reader. They incorporate many of the sug­
gestions which have been made in recent years by other teachers and, 
it is hoped, will bring some new points of view into the classroom and 
the study. Last, but by no means least, they have been written by a 
team working together, so that the exchange of ideas has been constant 
and vigorous. It is to be hoped that the result is a series which is 
adequate for all examinations at this level and yet broad enough to 
satisfy the intellectual needs of teachers and students alike.

O. G. Sutton





PREFACE TO THE FOURTH EDITION
The chief alteration to this edition is the introduction of a short account 
of matrices (Chapter 22) following that on complex numbers. The use of 
matrices in scientific work has grown rapidly in recent years and some 
knowledge of the subject is likely to be required in Advanced Level 
work in the future

C.J.T.

PREFACE TO THE THIRD EDITION
In preparing this edition, the opportunity has been taken to amend 
the text so that the units used are those of the Système International 
d’Unités (SI). This system, in which the basic units of length, mass 
and time are the metre, kilogramme and second, has many advantages ; 
its use by schools, universities and industry is being actively encouraged 
and it is, in the words of the Royal Society Conference of Editors on 
Metrication in Scientific Journals, “destined to become the universal 
currency of science and commerce”.

C.J.T.

PREFACE TO THE SECOND EDITION
Some extra material has been included in this edition to take account 
of recent (and forthcoming) changes in the requirements of the major 
examination boards. In particular, I have inserted sections on the 
determination of linear laws from experimental data and on elementary 
three-dimensional coordinate geometry and I have added a chapter on 
complex numbers. I have also taken the opportunity of making a 
number of minor alterations where these have been required.

C.J.T.



PREFACE
The needs of those taking Pure Mathematics at Advanced Level in 
the recently introduced General Certificates of Education have set the 
standard for this book. The contents should also prove suitable for 
candidates preparing themselves for the Intermediate Examination of 
London University, the Qualifying Examination for the Mechanical 
Science Tripos at the University of Cambridge and for several of the 
examinations set by the Civil Service Commission.

The starting point is the Ordinary Level for the General Certificates 
and I have included in a single volume the appropriate parts of Algebra, 
Trigonometry, Calculus and Geometry. With so wide a field of study, 
the order in which the subjects appear is not necessarily the order in 
which they should be read. I believe that an early start should be 
made with the Calculus and the chapters on this subject may well be 
studied concurrently with those on Algebra and Trigonometry. I have 
included a large number of worked examples and graded the exercises 
in a way which will, I hope, make the book equally suitable for class 
or private study.

In preparing this book, I have made great use of the reports of the 
Teaching Committees of the Mathematical Association. In particular, 
I have found their recent reports on the Teaching of Trigonometry and 
Calculus quite invaluable and I wish to acknowledge my debt to them. 
Only very occasionally have I differed from their recommendations 
and here, of course, I bear full responsibility.

Among nearly 1600 examples and exercises, I have included a large 
number taken from recent papers set by the various examining bodies. 
My thanks are due to the Senate of the University of London, the 
Oxford and Cambridge Schools Examination Board, the Joint Matricu­
lation Board of the Universities of Manchester, Liverpool, Leeds, 
Sheffield and Birmingham and the Syndics of the Cambridge University 
Press for permission to use their questions. My thanks are also due to 
many friends and colleagues who read the manuscript and offered 
constructive criticism. I am particularly grateful to Dr. E. T. Davies, 
Professor of Mathematics, University of Southampton, Dr. D. R. 
Dickinson, Senior Mathematics Master, Bristol Grammar School, Mr. 
F. L. Heywood, Senior Mathematics Master, Manchester Grammar 
School and Mr. H. K. Prout, Head of the Department of Mathematics, 
Royal Naval College, Dartmouth, all of whom made most useful 
suggestions when the book was in its first draft.

C. J. T ranter
Royal Military College o f  Science,

Shrivenham.
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CHAPTER I

THE THEORY OF QUADRATIC EQUATIONS. 
MISCELLANEOUS EQUATIONS '

1.1. The roots of a quadratic equation
The general quadratic equation can be written

ax2 + bx + c = 0, (1.1)
where a, b and c are numerical coefficients and x is the quantity to 
be found. Dividing by a and transposing the term not containing x 
to the right hand side

, b cx* + -x  = ---- .a a

The left hand side can be made into the perfect square \ x + Ja)
by adding a term b2/(4a2). If therefore such a term is added to each 
side

( b \ 2 b2 c
V* 2a) 4a2 a

b2 — 4ac
4 ?

Taking the square root of each side
h = J(b 2 -  4ac) 
2a ~ 2 a

giving the two roots
— b ±  sj(b2 — 4ac) 

* “  2 a
( 1.2)

If b2 > 4ac the two roots are real and different, if b2 = 4ac the 
roots are real and both equal to —b/(2a). If b2 < 4ac the expression 
under the square root sign is negative and, since there is no real 
quantity whose square is negative, the roots are in this case said to 
be imaginary.

The formula (1.2) is quite general and can always be used to obtain 
the roots of a quadratic equation. If, however, factors of the left hand 
side of the equation ax2 + bx + c = 0 can be found, the roots are 
more easily obtained by setting each of the factors in turn equal to 
zero and solving the resulting simple equations. This process is 
illustrated in the first example below.

13
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Example 1. Solve the equations (a) 2x2 + 5x — 12 = 0, (b) x2 + 11 = lx.
The left hand side of equation (a) has factors (2x -  3)(x + 4) so that the 
equation can be written .

(2x -  3)(x + 4) = 0.
Hence either 2x — 3 = 0 giving x = 3/2, or x + 4 = 0 giving x = -  4.
For equation (b \a  = 1, b = — 7, c = 11 and formula (1.2) gives

7 ± V(72 -  4(1X11)} 7 ± J 5  7 ±2-236
X “  2 2 2 ’ 

giving x  = 4-618 or 2-382.
Example 2. Find the value of k so that the equation 4x2 — 8x + k = 0 shall have 

equal roots.
Here a = 4, b = -  8, c = k. The condition for equal roots (b2 = 4ac) gives 

( —8)2 = 4(4)(fc) or 16k = 64, giving k — 4.
Example 3. Prove that the roots of the equation

(p -  q -  r)x2 + px + q + r = 0 

are real if p, q and r are real.
The condition for real roots (b2 > 4ac) is here that 

p1 > 4(p -  q -  r)(q + r),
i.e., that p2 -  4p(q + r) + 4{q + r)2 > 0,
or (p -  2{q + r)}2 > 0.
This is always true for the left hand side is the square of a real quantity and 
therefore cannot be negative.

Example 4. If x is real, show that the expression y = (x2 + x + l)/(x + 1) can 
have no real value between — 3 and 1. (L.U.)
Rearranging as a quadratic in x,

(x + l)y = x2 + x + 1

giving x2 + (1 -  y)x + 1 -  y = 0.
For x to be real (1 — y)2 ^  4(1 — y),
or, (1 -  y )(-3  -  y) > 0
Changing the signs, for x to be real

(y -  l)(y + 3) ^  0.
If y lies between -  3 and 1, y + 3 > 0, and y — 1 < 0 giving (y -  l)(y + 3) < 0 
and the above inequality is not satisfied. Hence there is no real value between 
— 3 and 1.

1.2. The sum and product of the roots of a quadratic equation
The general quadratic equation

ax2 +  bx +  c =  0  (1.1)
can be written as

2 b c 
x 2 +  -x  +  -  =  0. 

a a (1-3)
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If its roots are a and fi the left hand side of the equation can be written 
as the product of two factors (x — a)(x — fi) and thus the equation 
can be written

(x -  a) (x -  P) = 0,
or, x2 — (a + ff)x + ct.fi = 0. (1.4)
Since equations (1.3) and (1.4) are identical

b _  coefficient of x in equation (1.1)
** a coefficient of x2 in equation (1.1)’

R _  c _  coefficient independent of x in equation (1.1) 
p a coefficient of x2 in equation (1.1)

The formulae (1.5) enable the values of the sum and product of the 
roots to be written down in terms of the coefficients in the given 
equation.

Example 5. Find the relation between a, b and c if one root of the equation 
ax2 + bx + c = 0 is three times the other.
Let the roots be a and 3a. Then formulae (1.5) give

4a = —b/a and 3a2 = c/a.
Substituting a = — fc/(4a) from the first of these relations in the second

c 
a

giving 3b2 = 16oc as the required relation.

Example 6. I f a, P are the roots of the equation x2 — px + q = 0,form the equation 
whose roots are a/p2 and P/a2-
From (1.5), a + P — p, aP = q. (1.6)

The sum of the roots of the required equation = — +
a3 + p3 

<x2p2
Now,

a3 + P2 = (a + P)(a2 -  txP + p1) = (a + P) {(a + P)2 -  3ap)
= p{p2 -  3q), using (1.6).

pip2 — 3 q)
Hence the sum of the roots of the required equation = ------------ , since

a2p2 = q2 from the second of (1.6).

The product of the roots of the required equation = ^  ^  = — = -.

From (1.5), when the coefficient of x2 is unity,
the coefficient of x = — the sum of the roots,
the coefficient independent of x = the product of the roots.
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Hence the required equation is

X̂ P (P - M X + U  0,

q1x 1 -  p(p2 -  3q)x + q = 0.

EXERCISES 1 (a)
Solve the equations, (i) 8x2 — 2x — 3 =  0, (ii) 5x2 -f 10 =  17x.
Show that the equation kx(l — x) =  1 has no real roots if 0 <  k < 4. (L.U.) 
Find the range of values of x for which

(x -  l)20« 9
^ 2'

(L.U.)
x -  2

Find the relation between p, q and r if one root of the equation px2 + qx +' 
r =  0 is double the other.
If a, f} are the roots of the quadratic equation ax2 +  bx +  c =  0, obtain 
the equation whose roots are 1/a3 and l//?3.

It in the above equation a/?2 = 1, prove that a3 +  c3 + abc =  0. (L.U.) 
In the equation ax2 + bx + c = 0, one root is the square of the other. 
Without- solving the equation, prove that c(a — 6)3 =  a(c — b)3. (L.U.)

1.3. Miscellaneous equations involving one unknown
The solution of certain types of equation can sometimes be made 

to depend on that of the ordinary quadratic equation. Some of the 
artifices employed in such solutions are illustrated in the examples 
which follow.

Example 7. Solve the equation 3 — x) — J(7 + x) = ^/( 16 + 2x). (L.U.)
When, as here, one side of an equation contains a single term involving a 
square root, this can be removed by squaring both sides. If the terms in the 
resulting equation be transposed so that any radical term remaining is again 
by itself, this can be removed by squaring again.
Applying this process to the equation given here, squaring both sides gives

3 -  x -  2^1(3 *  x)(7 + x)} + 7 + x = 16 + 2x, 
which, on rearrangement and division by 2, gives

3 + x = -V « 3  -  x)(7 + x)}.
Squaring again we have

(3 + x)2 = (3 -  x)(7 + x), 
leading to the ordinary quadratic equation

2x2 + lOx - 1 2  = 0.
After division by 2, this can be written

(x + 6)(x — 1) = 0,
with roots x = 6 and x = 1.
Only one of these roots (x = — 6) satisfies the given equation. The other 
value (x = 1) does not satisfy the equation for solution but satisfies

V(3 -  x) + J(7  + x) = V(16 + 2x),
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in which the radical terms on the left are separated by a plus instead of a 
minus sign. If the same process is applied to this equation it will be found 
to lead to the same quadratic l x 1 + lOx — 12 = 0 as before. Hence, in 
solving equations of this type it is essential to check the values found in the 
actual equation given. In the case of the equation given here the required 
solution is x = — 6.

Example 8. Solve the equation x2 + 3x — 2 = 8/(x2 + 3x).
Write y = x2 + 3x and we obtain

y -  2 = 8/y,
or, y2 — 2y — 8 = 0.
This gives (y -  4)(y + 2) = 0, so that y = 4 or -2 .
Since y = x2 + 3x, y = 4 gives the quadratic x2 + 3x — 4 = 0, or (x + 4)
(x -  1)=0 with roots x=  1, —4. The other value (y= -2 ) gives x2 + 3x + 2 = 0
or (x + 2)(x + 1) = 0 with roots x = - 1 , - 2 .  Hence the roots of the original
equation are —1, —2, —4 and 1-,

1.4. Simultaneous equations
It is assumed that the student is familiar with the solution of pairs 

of equations such as 3x + 4y = 7, 2x — y = 1, in which both equations 
are of the first degree. Here we shall consider pairs of equations in 
which at least one is of a higher degree than the first and where the 
solution can be made to depend on that of a quadratic equation. Few 
fixed rules can be laid down but some of the methods available are 
illustrated in the examples below.

Example 9. Solve the pair of equations xy = 10, 3x + 2y = 16.
When one of the equations is of the first degree, either unknown is easily 
expressed in terms of the other. Substitution in the second equation then 
results in a single equation in one unknown.

For the pair given here, the second equation gives y = 8 — ^x.

Substituting in the first equation

which, after multiplication by 2 and slight rearrangement, can be written

or.
3x2 -  16x + 20 = 0, 

(3x -  10)(x -  2) = 0.

Thus x = —, and since y = 8 — -x, the corresponding value of y is 3; or 

x = 2 and y = 5.
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Example 10. Solve the pair of equations x1 + 4xy + y1 = 13, l x 1 + 3xy = 8.
When the two equations are of the same degree in x  and y and when the 
separate terms involving the unknowns are all of this degree, the solution can be 
obtained by writing y = mx and proceeding as follows.
With y = mx, the two equations become

The value of x can now be obtained by substitution in one of equations 
(1.7). Choosing the second of (1.7) here as it is rather simpler than the first, 
m — 2 gives

or, x2 = 1 so that x = ±  1. Since y = mx and m = 2, the corresponding 
values of y are ±  2.
The second value — 9/8 for m gives similarly

leading to a negative value for x 2. There are thus no real solutions correspond­
ing to this value of m.

so that m = 2 or —9/8.

x2{2 + (3X2)} = 8,

EXERCISES 1 (b)

1. Find t from the equation t — 1-324y/t — 2-896 =  0.
2. Solve V(x + 6) -  J(x  +  3) =  V(2x +  5). (L.U.)

12
3. Solve the equation x2 +  2x +  ~

4. Solve the simultaneous equations, 2x — y =  5, x2 +  xy =  2.
5. Solve the equations x2 + y2 =  5, xy =  2.
6. Solve the simultaneous equations,

(L.U.)

x — y =  3.

1.5. The square root of (a +  y / b )

Simultaneous equations of a type considered in the last section
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appear in the calculation of the square root of the quantity a + 
in which a is a rational and yjb an irrational quantity. Before proceeding 
to this calculation we consider two important results in‘connection 
with such quantities.

Firstly, the square root of a rational quantity cannot be partly rational 
and partly irrational.

To prove this, let c be a rational quantity and suppose it is possible 
that

V c =  P +  V«>
p being rational and yjq irrational. Squaring

c = p2 + q + 2 pyjq,

leading to J q  = - — ^

this requires that an irrational quantity should be equal to a rational 
one, and is impossible.

Secondly, if p + yjq = a + Jb, where p and a are both rational 
and yjq, y/b are both irrational, then p = a and q = b.

If p is not equal to a, let p = a + a. Then
a + a + yjq = a + yjb,

giving yjb = a. + -Jq.
This, by our first result, is impossible, so- that p = a. It then follows 
immediately that q = b.

To calculate the square root of a + y/b we suppose that
V(fl +  Vb) = ±(V* + Vt)-

Squaring both sides,
a + y/b = x + 2y/{xy) + y.

Using the second of the above results, we have
x  + y = a,

2 v W )  = Vfc-
The second of these can be written 4xy — b and we have therefore 
only to solve the simultaneous equations

x + y = a,
4 xy = b

in order to find x, y and hence yjx and y/y.

1] S QUARE  R O O T  O F  (a + yjb)

Example 11. Find the square root of 14 + 6 j5 . (L.U.)
Let V(14 + 6y/5) = ±Q x  + fy).
Squaring, 14 + 6 /̂5 = x + 2 f(xy )  + y.
Hence x + y = 14, 2>/(x.y) = 6 /̂5.
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The second equation gives yj(xy) = 3^/5 or xy = 45. From the first equation 
we have y = 14 — x and substitution in xy — 45 gives the quadratic equation

x(14 -  x) = 45.
This can be written

x2 -  14x + 4 5 - 0 ,
or, (x -  9)(x -  5) = 0.
Hence x = 9 or 5, and, from x + y = 14, the corresponding values of y are 
5 and 9. The required square root is therefore ±(^9  + .^5) or ±(3 + J5). 
It makes no difference to the final result whether we take the solution x = 9, 
y = 5, or the alternative one x = 5, y = 9.

N o te . In finding the square root o f a — J b  the original assum ption  
is m odified to ^/{a -  j b )  =  +  (y/x — Jy).

EXERCISES 1 (c)

1. Find the square root of 5 +  2^/6.
2. Express the square root of 18 — 12^/2 in the form sjx — y/y where x and y

are rational. (L.U.)
3. Find the square root of a + i> + J{2ab +  b2).
4. Find rational numbers a and b such that

3 + V2 = (a + V 2 )(6  -  J 2 )2. (O.C.)

EXERCISES 1 (d)

1. Show that for all real values of y, the expression

3y2 -  2y -  1 
y2 + y + 2

always lies between — 4/7 and 4.
2. Find the range of values of x for which

x(* ~  2)
x +  6

> 2. (L.U.)

3. Find the values of 2 for which the equation

10x2 +  4x +  1 =  22x(2 -  x)

has equal roots. (L.U.)
4. Find, in its simplest rational form, the equation whose roots are

W  ±  V5)- (L.U.)
5. Show that the roots of the equation 2bx2 +  2(a +  b)x +  3a =  2b are real 

when a and b are real.
If one root of .this equation is double the other, prove that either a = 2b 

or 4a = lib . (L.U.)
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6.

7.

8.

9.

10.

11.

12.

13.

14.
15.
16. 
17.

18.

19.

20.

EXERCI SES

If the roots of the equation x2 + bx + c = 0 are a, /? and the roots of the 
equation x2 +  Xbx +  X2c =  0 are y, Ô show that the equation whose roots 
are ay +  Pô and ixô +  Py is

x2 — Xb2x +  2 X2c(b2 — 2c) =  0.

Show that the roots of this equation are always real. (L.U.)
The roots of the quadratic equation x2 — px +  q =  0 are a and /?. Determine 
the equation having the roots a2 +  /T 2 and p2 +  a"2, expressing the 
coefficients in terms of p and q. Prove further that if p and q are both real, 
then this equation can have equal roots only if p = 0 or p2 =  4q. (L.U.)
Prove that the roots of the equation

(k 4- 3)x2 +  (6 — 2k)x +  k — 1 =  0

are real if, and only if, k is not greater than 3/2. Find the values of k if one 
root is six times the other. (L.U.)
If the equation a2x2 +  6abx + ac + 8b2 =  0 has equal roots, prove that 
the roots of the equation ac(x +  l)2 =  4b2x are also equal. (L.U.)
For what values of X has the equation x2 — 3x + 2 =  X(2x — 5) two equal 
roots?
The roots of the equation x2 + ax + b — 0 are a, p. Find the equation 
whose roots are pa +  qP,pP +  q<x. If the original equation is x2 — 4x — 5 = 0 
find the values of p/q in order that the new equation shall have one zero 
root.
Form the equation whose roots are the cubes of the roots of the equation 
x2 — 3x +  4 =  0, without solving the equation, giving the numerical values 
of the coefficients of the new equation. (L.U.)
Show that if the equations x2 + bx + c =  0, x2 + px + q =  0 have a 
common root, then (c — q)2 =  (b — p)(cp — bq). (L.U.)
Solve the equation (3x2 + 2x)2 +  8 =  9(3x2 + 2x).
Solve the equation ^/(x — 5) +  2 =  yj(x +  7).
Solve the equation v/(3x + 4) — J ( x  — 3) =  3. (L.U.)
Solve the simultaneous equations,

1 l x
1, -----------+  -  = 3. (L.U.)

3(y + 1 ) 2
x
4" y + 1

Solve the simultaneous equations, x +  y =  6, x2y2 +  2xy — 35 = 0.
(L.U.)

Solve the simultaneous equations,

5
2 x2 + 2y2 =  9.

Solve the simultaneous equations,

— =1 ,  x +  y =  2a.  
y + a x + a

(L.U.)
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21. Find u and v from the equations,

1 2------H--------
u +  v u — V = 8,

1
6'

22. If

23.

1 1 3
—x y 4

find the values of the product xy and hence solve the given equations 
completely. (L.U.)
If a, b, c,d are rational numbers and if neither b nor d is a perfect square, 
prove that the product (a +  y]b)(c +  Jd) can be a rational number only if

£
a Jb' (L.U.)

24. Express

1 + ^3
(73—V

in the form a + b jc , where a, b, c are rational. (L.U.)
25. By putting z =  x +  x~ *, solve the equation

2x4 -  9x3 + 14x* -  9x +  2 =  0. (L.U.)



CHAPTER 2

INDICES AND LOGARITHMS. THE REMAINDER 
THEOREM. THE PRINCIPLE OF UNDETERMINED 

COEFFICIENTS. PARTIAL FRACTIONS

2.1. The fundamental laws for positive integral indices
When a quantity a is multiplied by itself any number of times the 

product is called a power of a. Thus a x a is the second power of a 
and is written a2. The number expressing the power is called the index. 
Thus the index of a2 is the number 2. Generalising, we have the defini­
tion that if m is a positive integer, cF denotes the product of m factors 
each equal to a. We give below three fundamental laws for the com­
bination of indices. In all cases the indices m and n are assumed to be 
positive integers, and in (ii) we assume that m > n.

(i) am x  a" = am + m. (2.1) 
By definition, cF = a .a .a . . .  to m factors and a" = a .a .a . . .  to n

factors. Hence cF x a" — a .a .a . . .  to (m + n) factors, = a m+", by 
definition.

(ii) am + a" = am" .  (2.2) 
From the definitions of cF and a",

_ .  cF a .a .a . . .  to m factorsa -T- a = -¡r — ------------------ ,—-—i f  a .a .a . . .  to n factors
= a .a .a . . . to (m — n) factors = cF~n.

(iii) (amr  = amm (2.3)
(am)n = (F .a"1 .am . ..  to n factors

= (a.a.a  . . .  to m factors)(a .a .a . . .  to m factors)...  
the bracketed terms being repeated n times, so that

(a")" = a .a .a  . . .  to mn factors = cFn.

2.2. Fractional, zero and negative indices
It is convenient to have available fractional, zero and negative 

indices and for one set of laws to apply in all cases. However, the 
definition of o'" as the product of m factors each equal to a is clearly 
meaningless except when m is a positive integer. We introduce 
fractional and negative indices by determining their meaning when 
the first fundamental law cF x a" = am+n is true. It is then possible 
to show that with the interpretations arrived at on this basis the other 
two laws of § 2.1 remain valid.

23
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The interpretation of aplq, p and q being positive integers
Since the first rule o f  § 2.1 is to be true, apl9 x aplq =  a2plq. Similarly 

aplq x aplq x aplq =  a2plq x aplq =  a3p/q and so on. H ence  

aplq x aplq x aplq. . .  to q factors =  aqplq =  ap.
This im plies that (aplq)q =  ap, and taking the qth root

apiq =  «JaP' (2.4)

i.e., that aplq is the qth root o f  ap.

The interpretation of a0
Since am x a" =  am+" is to be true for all values of m and n we can 

take m = 0 and hence
a0 x a” =  a",

giving a0 =  a" ja" =  1 , (2.5)
i.e., any quantity with zero index is equivalent to unity.

The interpretation of a "
The rule am x an =  am+" is to hold for all m, n and we can therefore 

take m = —n. The rule then gives
a~" x a" =  a~" + " =  a0 =  1,

giving, a~n =  l/a", (2.6)
showing that a~" is the reciprocal of a".

With these interpretations it remains to show that the two laws 
am a" =  am~" and (am)n =  amn remain true for all values of m and n. 
To prove the first we have

am -h a" =  am x - n 
a"

=  am x a ", since a " means 1/a",
=  am ", by the fundamental law.

To show that (am)" — am" for all m and n we take the value of m 
to be unrestricted and consider in turn the cases in which n is a positive 
integer, a positive fraction and any negative quantity. For any m and 
positive integral n,

(am)" — d". d". am ...  to n factors
_ ^m+m+m+ n terms __ Qmn

For any m and n =  p/q where p, q are positive integers, 
(am)" = (am)p,q. Now the qth power of (am)plq is {(am)p/q }q or (am)p. This 
is amp. Hence we have, on taking the qth root

(am)plq =  qJ a mp =  amp!q.
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Finally, for unrestricted m and n any negative quantity, we replace 
n by —L  Then

(am)n = {cry* 1 _  1 

(am)A “  amX
Hence, with the interpretation of fractional, zero and negative 

indices given in equations (2.4), (2.5) and (2.6) the three fundamental 
laws for combination of indices given in (2.1), (2.2) and (2.3) remain 
valid.

Example 1. Express with positive indices, (i)
2t r y
7c-“V

voc and evaluate

2b~3x2 2x2c* U(y-')
7 c - V  ~ 76V2' (1,) V(y2) =

(r=(/©'=©‘ I
1

,.<73 + 2/3-

Example 2. Show that (xy)" = x"y" for all values of n.
If n is a positive integer, (xy)" = x y .x y .x y . .. to n factors. This can be written 
as the product

(x.x.x . ..  to n factors) x (y.y.y ... to n factors)
which is x"y".
If n is a positive fraction, say p/q where p and q are positive integers, the qth 
power of (xy),’,,

= {(xy)plq!’ = (xy)" = x"yr = ( x ^ ' T
Taking the </th root, (xy)'’'’ = x'’/,y'’/,•
If n is any negative quantity, say — X.

(xy)" = (xy)'-1 = —i-j = -4-j (xy) x y

1.

2.

3.

4.

5.

6.

EXERCISES 2(a)

Express with positive integers (i) 6 ' 3x -2 4x, (ii) 4N/y 3 x x ly112-
( o\ - 1/3

27/
Simplify (x4yz ' 3)2 x , / ( x '  5y 2z) -f- (xz)7/2.

rp — (1^
Prove that (a — a~')(a*13 + a " 213) =  — =-¡73—•

Evaluate

Simplify

y *
x/x -  y 

3(2"+1) -  4(2”' ' )

x 3/2 4- xy 
xy -  y3

■>” < I _  -)”

(L.U.)

(L.U.)
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2.3. The theory of logarithms
The logarithm of a positive quantity N  to a given base a is defined 

as the index of the power to which the base a must be raised* to make 
it equal the given quantity N. Thus

ax = N, (2.7)
when x is the logarithm of N  to the base a.
x is written x =  loga N  (2.8)
and the two formulae (2.7), (2.8) are equivalent statements expressing 
the relationship between x, a and N.

If we substitute for x from (2.8) in (2.7) we have
alo,"v = N, (2.9)

a result which is often useful.
If we set x = 0 in (2.7) we have N  = a° = 1. The equivalent formula

(2.8) gives in this case
log, 1 = 0, (2.10)

so that the logarithm of unity is zero. If we put x = 1 in (2.7) N  — a 
and formula (2.8) then gives

logaa = l ,  (2.11)
or, the logarithm of the base itself is unity.

To find the logarithm of the product of two positive numbers M 
and N, we have, using (2.9),

M N  =  ak’s" M .a ll’s"A =  aloS"‘u+lo*-‘v 

Hence, by the definition of a logarithm,
loga M N = loga M + loga N, (2.12)

showing that the logarithm of a product of two positive numbers is the 
sum of the logarithms of the separate numbers. Similarly 

loga M N P  = loga M + loga N  + loga P, 
and so on for products of more factors.

For the logarithm of a quotient of two positive quantities M  and 
N. equation (2.9) gives

M  — a g* — J°f. .W - log,, \
N ~  a1*’»*"

showing that
M

loga— = logaM -  loga N, (2.13)

i.e., the logarithm of a quotient is the difference between the logarithm
of the numerator and that of the denominator.
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The logarithm of a positive quantity raised to a power can be found 
similarly. Thus, again from (2.9),

M p =  (a'0*-M)p =  ap,og- M ,
giving loga M p =  p loga M. (2.14)
If, in (2.14) we write p — 1/r,

log,, Ai1/r = -  loga M. (2.15)

Thus the logarithm of the pth power of a positive quantity is p times the 
logarithm of the quantity, (2.14), and the logarithm of the rth root of 
a positive quantity is 1/r times the logarithm o f the quantity, (2.15).

Example 3. Prove that log,, N  = x log N.
logj)

Let x = logjJV so that bx = N. Taking logarithms to base a, 
log„(b') = log, N, 

giving, x  log,6 = log,, N

or, __ 1_
log. b

x log, N.

The result proved here is of importance in that it relates logarithms to different 
bases. It shows that to transform logarithms from base a to base b we have 
to multiply by the quantity l/(log, b).

Example 4. Prove that 2 log, (a + b) = 2 log, a + log, (j +  ~  + “î )  

2 log, (a + b) =  log, (a + b)1 = log, (a1 + Tab + b1)

= log.
2b

+ a

= log,a2 + log,(l + y  + ^y) 

= 2 log, a + log,(l + ^  + ¿ ï)

(L.U.)

2.4. Common logarithms
The logarithms used in everyday calculations are those with base

10. Such logarithms are referred to as common logarithms and the base 
is often omitted in written work. Thus log 24 is generally taken to 
mean log10 24. The student is assumed to be familiar with their use 
in arithmetical work and only very few examples will be given in this 
section. Examples involving the use of common logarithms occur 
throughout the book, particularly in the chapters on Trigonometry.



28 P U R E  MA T H E M A T I C S r-

Example 5. Calculate log 5 and log 0-125 given that log 2 — 0-3010.

log 5 = log = log 10 -  log 2 = 1 -  log 2, since log 10 = 1 (by 2.11), 

= 1 -  0-3010 = 0-6990.

log 0-125 = log J = log 1 — log 8 = -  3 log 2, since log 1 = 0 (by 2.10), 

= —0-9030 = 1-0970, the last form meaning — 1 + 0-0970.

Example 6. Given that log 3 = 0-4771, find the number of digits in the integral part 
o fQ  3)8».

log (V3)8’ = —  log 3 = y  X 0-4771 = 21-23 . ..

Thus 10 has to be raised to rather more than the twenty-first power to give 
(vT)89 and this quantity will therefore contain 22 digits in its integral part.

2.5. Equations in which the unknown occurs as an index
When the unknown quantity in an equation occurs as an index, the 

laws of combination of indices and the use of logarithms usually 
enable the solution to be found. Some of the artifices used are illus­
trated in the following examples.
Example 7. Solve the equation 2X‘ = 16* 1. (L.U.)

Since 16 = 2*, the equation can be written
2*2 — = 24x~*

Hence x2 = 4x -  4, or x2 — 4x + 4 = 0,
giving, (x — 2)2 = 0, so that x = 2.

Example 8. Find x from the equation 32x = 5*+ '. 
Taking logarithms,

so that 
Hence

-  logS 
2 log 3 — log 5
0-6990
0-2552 2-74.

2x log 3 = (x + 1) log 5, 
(2 log 3 -  log 5)x = log 5.

0 6990
2 x 0-4771 -  0-6990

Example 9. Solve the equation 5ix — 5Jt+ ' + 4  = 0. 
This can be written

(5X)2 -  5(5*) + 4 = 0,
which in factor form is

(5* -  1)(5* -  4) = 0.
Hence either 5* = 1 leading to x = 0 [by (2.5)], 
or 5* = 4. Taking logarithms this gives

x log 5 = log 4,

No. log

06990 ¡•8445
0-2552 ¡•4068

X 0-4377

No. log

0-6021
—:-------

1-7797
0-6990 1-8445

_____■i--------
' ¡-9352

x log 4 
log 5

06021 = 0861. 0-6990

so that



EXERCISES 2 (b)

1. If a =  log,, c, b =  log,, a, c =  log„ b, prove that ahc =  1. (L.U.)
2. Without using tables, show that

lo g 7 2 7  + lo g 7 8  -  log7125 3 „  i n
log 6 — log 5 1  ' ' 0

3. If log, 10-24 =  2, find x. (L.U.)
4. Using logarithms, evaluate the following:

(i) log25 3-142; (ii) (Q.E.)

5. Solve the equations
(a) log (x2 +  2x) =  0-9031, (b) (2-4)* =  0-59. (L.U.)

6. Find x from the equation 3* — 3~x = 6-832.
7. Solve the equation 22x+s — 32(2*) + 1 = 0 .
8. Solve the simultaneous equations 2x+y = 6y, 3* =  6(2’’).
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2.6. The remainder theorem
The polynomial expression

c0x" + c,xn_1 + c2x"~2 + . ..  + cn_ lx  + c„, (2.16)
can be written
c0(x" -  an) +  c ,(x B- 1 -  an~l) +  c2(x"“ 2 -  a"“ 2) +  . . .  +  cB_ t(x -  a)

+ c0cf + Cta"-1 + c2a"-2 + . .. + c„_,a + c„. (2.17)
Since, as can be verified by actual multiplication, 
x” — d ” =  (x — a)(x” _1 -+ a x " " 2 +  a2xm~i  +  . . .  +  am~2x +  
each of the terms in the first line of the expression (2.17) is divisible 
by x — a. Hence we can write 
C0X n +  CiX"-1  +  c2x"~2 +  . . .  +  c„_ !X +  cn
= a multiple of (x — a) + c0a" + c1a,,_1 + c2a"-2 -+ ... + cn_1a + cn.
Hence, the remainder when a polynomial expression is divided by (x — a) 
is obtained by writing a for x in the given expression. This result is 
known as the remainder theorem and it enables the remainder to be 
found without having to perform the division.

An alternative proof of the remainder theorem can be given as 
follows. Let P(x) denote a polynomial expression in x, let Q(x) be 
the quotient when P(x) is divided by (x — a) and let R be the remainder. 
Then, for all values of x,

P(x) = (x -  a)Q(x) + R,
and R is independent of x. Putting x = a we have

P(a) =  R,
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since the first term on the right hand side vanishes because of the 
factor (x — a). Hence the remainder is obtained by writing a for x in 
the given expression.

An immediate and important consequence of the remainder theorem 
is that if a polynomial expression in x vanishes for a certain value a 
of x, then (x — a) is a factor of the expression.

Example 10. Find the value of k if the remainder when the polynomial 2x* + lex3 — 
1 lx2 + 4x + 12 is divided by (x — 3) is 60. (L.U.)
By the remainder theorem, the remainder after division i>y (x — 3) is obtained 
by writing x = 3 in the expression 2x4 + lex3 — Ux! + 4x + 12. The 
remainder is therefore

2(3)* + Ac(3)3 -  11(3)2 + 4(3) + 12, 
or, 162 + 271c -  99 + 12 + 12.
This reduces to 271c + 87, and setting it equal to 60 we have

27 k + 87 = 60.
giving !c = — 1.

Example 11. Factorise a2[b -  c) + b2(c — a) + c2(a — b). (L.U.)
If we set a = b the given expression vanishes; in other words, there is no 
remainder when the expression is divided by (a — b). Hence (a — b) is a factor. 
Similarly (b -  c) and (c -  a) are factors.
The given expression is of the third degree so that, beside (a -  b), (b -  c), 
(c -  ai there can be no further factor involving a,b or c. There may, however, 
be a numerical factor so we write

a2(b — c) + b2(c — a) + c2(a — b) = N{a — b)(b — c)(c -  a),
where N is the numerical factor. To determine N we can give a, b and c any 
values we find convenient. Choosing a = 0, b = 1, c = 2 the left hand side 
becomes - 2  while the right hand side is IN. Thus IN  = — 2 giving N = — 1 
and the required factors are

— (a — b)(b -  c)(c -  a).

2.7. The principle of undetermined coefficients 
We start by showing that if a polynomial expression of degree n in 

v vanishes for more than n different values of x, the coefficients of 
each power of x must be zero. We write

P(x) = c0x" + CjX"-1 + c2x " '2 + . . .  + c„_jX + cn, 
and suppose that P(x) = 0 when x equals each of the unequal values 
x,, v2, • otn. Then (x — a t), (x — a2), ..., (x — a j  are all factors of 
P(x) and we can write

P(x) =  c0(x -  a,)(x -  ot2) . . .  (x -  an).
Let p be another value of x which makes P(x) vanish, then

C»(P — Xi)(P — ol2) .. .{P — a„) = 0,



and since none o f  the factors (/? — a j ,  (fi — a2), vanish,
c0 must vanish. The expression P(x) now reduces to

P(x) =  c 1xn~ 1 +  c2x"~2, +  . . .  +  c„_ tx  +  c„,.
and since this vanishes for m ore than n values o f  x  we can show  
similarly that Cj =  0. In a sim ilar way we can show that each o f the 
coefficients c2, c3, . . c„ m ust also vanish.

We can now  show  that if two polynom ials o f  degree n in x are equal 
for more than n values o f  x, they are equal for all values o f  x. If we 
suppose that the two expressions

C0x" + c ^ " -1 +  C2xn~2 +  . . .  +  C„_jX +  c„, 
d0xn +  d 1xn~ l + d2xn~2 +  . . .  +  d„_tx + dn, 

are equal for m ore than n values o f  x, then the polynom ial
(c0 -  d0)xn +  (c1 -  d 1)xn~ 1 +  . . .  +  (c„_! -  d „ _ jx  +  c „ -  dn, 

vanishes for m ore than n values o f  x  and therefore all the coefficients 
must be zero. H ence

c0 -  d0 =  0, Cj -  d t =  0 , . .  ,  c„_! -  dn_ j =  0, c„ ~ dn =  0, 
leading to

C0 =  C1 =  ^l> • • •; Cn- 1 =  ^n-  c„ =  d„.

The two expressions are thus identical and therefore equal for all 
values o f x. H ence we have established the im portant result that if 
two polynomial expressions in x are equal for all values of x we may 
equate the coefficients of the like powers of x.

The result rem ains valid if the two expressions are not o f  the same 
degree. For exam ple if one is o f  degree n and the other o f  degree 
n — 1 we should have

C0Xn +  CjX"-1  +  C2X n~ 2 +  . . . +  C„_jX +  c„
=  d 1xn~ 1 +  d2x”~2 +  . . .  +  dn_!  x +  d„

and hence

Co =  c i =  c2 — d2, . . c„_! =  j, cn - dn.
The result given above is often called the principle of undetermined 

coefficients and it has im portant applications. Som e exam ples o f  its 
use are given below .

Example 12. Find constants a, b, c such that
2x2 — 9x + 14 = a(x — l)(x — 2) + b(x — 1) + c. (L.U.)

The sign = is used to denote equality between two expressions for all values 
of the variable involved. When two expressions are separated by such a sign we 
can equate the coefficients of like powers of the variable. Here we have

2x2 -  9x + 14 = a(x2 -  3x + 2) + b(x -  1) + c 
= ax2 — (3a — b)x + 2 a — b + c.
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Equating the coefficients of x2, x and the term independent of x in turn 
gives

a = 2, 3a — b = 9, 2a — b + c = 14.
Substituting a = 2 in the second equation we have 6 — b = 9 giving b = — 3 
and substituting a = 2, b = - 3  in the third equation, 4 + 3 + c = 14 leading
to c = 7.

Example 13. Find the relation between q and r so that x3 + 3px2 + qx + r shall 
he a perfect cube for all values of x.
Let x3 + 3 px2 + qx + r = {x + a)1

= x3 + 3 ax2 + 3a2x + a3.
Equating the coefficients of x and the term independent of x, 3a2 = q, a3 = r.
Cnbing the first, squaring the second and dividing we have

27a6 _  q3 
a6

giving qi = 27r2 as the required relation between q and r.

EXERCISES 2 (c)

1. Find the values of p and q so that (x +  1) and (x — 2) shall be factors of 
x3 + px2 +  2x +  q. What is then the third factor?

2. Use the remainder theorem to find the factors of
(a -  b f + ( b -  c)3 +  (c -  a)3.

3. Find the values of A and p if the expression
3x4 +  ax3 +  12x2 + fix + 4

is (i) exactly divisible by (x — 1) and (ii) leaves remainder 18 when divided 
by (x +  2).

4. Find the values of a and b in terms of n in
(x — rt +  l)3 — (x -  n)3 = 3x2 + ax + b 

for all values of x. (L.U.)
5. Find the values of A, B and C if the expression

Ax(x — 2)(x +  3) +  Bx(x — 2) +  Cx(x +  3) +  (x — 2)(x +  3) 
has a constant value for all values of x. (L.U.)

6. If 4x3 + kx2 + px +  2 is divisible by x2 +  A2, prove that kp =  8.

2.8. Partial fractions
The student will already be familiar with the process of simplifying 

a group of fractions separated by addition or subtraction signs into 
a single fraction. For instance the expression

1 1 _  2x
x -  2 + x + 2 x2 +  4

can be simplified to give the single fraction 16x/(x4 — 16) in which 
the denominator is the lowest common denominator of the separate
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fractions. It is often desirable, for instance in expansions and in the 
integral calculus (chapters 3 and 13), to be able to perform the reverse 
process. In other words, we require to be able to split up a single 
fraction whose denominator has factors into two or more partial 
fractions.

This reverse process, the resolution into partial fractions, depends 
on the following simple rules :—

(i) If the degree of the numerator of the given fraction is equal tc 
or greater than that of the denominator, divide the numerator b> 
the denominator until a remainder is obtained which is of lowei 
degree than the denominator.

(ii) To every linear factor like (x — a) in the denominator there 
corresponds a partial fraction of the form A/(x — a).

(iii) To every repeated linear factor like (x — a)2 in the denominatoi 
there corresponds two partial fractions of the form A/(x — a) anc 
B/(x -  a)2. Similarly for factors like (x -  a)3 we have three partia 
fractions A/(x — a), B/(x — a)2 and C/(x — a)3 and so on.

(iv) To every quadratic factor like x2 + ax + b there corresponds i 
partial fraction (Cx + D)/(x2 + ax + b). Repeated quadratic 
factors require additional partial fractions as in (iii) above. Thus 
a factor (x2 + ax + b)2 would require partial fraction; 
(Cx + D)/(x2 + ax + b) and (Ex + F)/(x2 + ax + b)2.

The application of these rules is illustrated in examples 14 to 1' 
below.

Example 14. Resolve into partial fractions 5/(x2 + x — 6).
The factors of x2 + x — 6 being (x + 3)(x — 2) we assume that

5 _  A B _  A(x -  2) + B(x + 3)
x2 + x — 6 x + 3 + x — 2 (x + 3)(x — 2)

The denominators of the expressions on the left and right being the same, 
the numerators must be the same. Hence we have

A(x -  2) + B(x + 3) =  5. (2.18)
A and B can be found from this identity by applying the principle of undeter­
mined coefficients. Thus, equating the coefficients of x and the term not 
containing x, we have

.4 + 8 = 0 and -2/1 + 38 = 5.
The solution of this pair of simultaneous equations i s /4= — 1,8 = 1. Another 
and, in the case of linear factors such as we have here, rather simpler method 
of determining A and 8 from the identity (2.18) is to give x suitable numerical 
values so that A and 8 can be found separately. Thus by putting x = 2 in 
(2.18) we have (2 + 3)8 = 5, giving 8 = 1 and by putting x = —3, we have 
( - 3  — 2)A = 5, giving A = — 1.

___ 5____ = _ 1 _______ 1 _
x2 + x — 6 x — 2 x + 3Hence
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Example 15. Separate
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; into partial fractions.(x -  "l)(x + 2)2
Here, because of the repeated factor (x + 2\ the correct assumption is

9 A B C
(x -  l)(x + 2)2 ~  x -  1 + x + 2 + (x + 2)2

_  A(x + 2)2 + B(x -  l)(x + 2) + C(x -  1)
(x -  l)(x + 2)1

This identity requires that

A(x + 2)2 + B(x -  l)(x + 2) + C(x -  1) = 9.
A can be found immediately by taking x = 1. Thus (1 + 2)2A = 9 giving
A = 1. To find C, take x = —2 and we have ( — 2 — 1)C = 9 leading to
C = —3. To find B we can equate the coefficients of, say, x2. This gives
A + B = 0 so that, as A = 1, B = — 1. Hence

_____ 9_____ = _ J _______ 1_______ 3
(x -  l)(x + 2)2 _  x -  1 x + 2 (x + 2)2'

Example 16. Resolve 16x/(x4 — 16) into partial fractions.
The factors of the denominator are (x -  2\ (x + 2) and (x2 + 4). In view of 
rule (iv) and the quadratic factor (x2 + 4), we assume

16x _  A B Cx + D
= 7 ^ 1  + 7 + 1  + X2 + 4
_  A(x + 2)(x2 + 4) + B(x -  2)(x2 + 4) + (Cx + D)(x -  2)(x + 2) 

(x -  2)(x + 2)(x2 + 4)
This requires that

A(x + 2)(x2 + 4) + S(x -  2)(x2 + 4) + (Cx + D)(x -  2)(x + 2) = 16x. 
Putting x = 2,

(2 + 2)(22 + 4)A = 16 x 2,
giving 32/4 = 32 or A = 1.
Putting x = -  2,

( - 2  -  2) {( —2)2 + 4}B = 16 x (-2), 
giving — 32B = — 32 or B — 1.
Equating coefficients of x3, A + B + C = 0, or, since A = B = 1, C = —2; 
and equating coefficients of the term independent of x, SA — SB — 4D = 0, 
which with A = B = 1, gives D = 0.

Hence 16x _  1 1 2x
x4 -  16 = x^ 2  + 7 + 1  ~ x2 + 4'

Example 17. Separate x3/(x2 — 3x + 2) into partial fractions.
In all our examples so far, the numerator of the given fraction has been of 
lower degree than the denominator. Here the numerator is of the third while 
the denominator is of the second degree. Dividing x2 -  3x + 2 into x3 we 
find that the quotient is x + 3 and that the remainder is 7x — 6. Hence

x2 -  3x + 2 = x + 3 + lx
x2 — 3x + 2’
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We now proceed to separate (7x -  6)/(jc2 -  3x + 2) into two partial fractions 
as in Example 14. Thus we assume that

7x -  6 A B _ A(x -  1) + B(x -  2)
x2 — 3x + 2 ~  x — 2 + x -  1 -  (x -  2)(x_— 1) ' '

Hence A(x — 1) + B(x — 2) = 7x — 6.
Setting x = 1 we find that B = — 1 and taking x = 2 leads to A = 8. Finally 
we therefore have

x3 8 1= x + 3 +

Resolve into partial fractions 

1.

2.

3.

4.

x2 -  3x + 2 x -  2 x -  T

EXERCISES 2(d)

5(x +  1)
5.

10 -  l lx
25 -  x2 (x -  4)(x2 +  1)'

X3
6.

3x3 +  x
X2 + X -  2’

OO1

X2
7. 2x2 — l lx  +  5

(x + l )3 (x2 +  2x -  5)(x -
x2 + x + 1

8. 2y +  1
x2 + 2x + r (y + l)2(y -  2)'

3)

EXERCISES 2(e)

1. Simplify the expression 5 x 43" +1 — 20 x 82".
2. If a =  2, b =  3 show that (a362c3)2,/(iC ?6 ~4c6) =  144^/2c9.
3. Simplify 92n+2 x 62”' 3 (35" x 6 x 4"~2).

82/3 +  43/2
4. Evaluate (i) Ja>x>/b2 L L „ 

(») 4/ _6 .. - 1 when 6 =  3.163'4 ’ 1 ’ t ja 6 x *]b
5. If log0 n = x and log,, n = y, where n =j= 1, prove that

x -  y = logt c -  logt a 
x  + y  log„ c +  logb d

Verify this result, without using any tables, when a =  4, 6 =  2, c =  8, 
n = 4096. f (L.U.)

6. Using logarithm tables evaluate (i) (0 0371)772, (ii) log4 0-65. (Q E.)
7. If log„ (1 + ! ) = / ,  log„ (1 + -¡L) = m and loga (l + ji)  = n, show that

(L.U.)log„(l +  wo) =  I -  m -  n.
8. Find x from the equation 9X — 12(34) +  27 =  0.
9. Solve the equation 4 ' +  2 =  3 x 2’ .

10. If y =  a + bx" is satisfied by the values

(L.U.)
(L.U.)

X = 1 2 4

y = 7 10 15

show that n =  log2 (5/3) and deduce the values of a and 6. (L.U.)
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(L.U.)11.
12.

13.

14.

15.

16. 

17.

36

18.

19.

20.

21.

22.

23.

24.

25.

If 2 log8 N  =  p, log2 2N  =  q, q — p =  4, find N.
If x =  log0 (be), y  =  log,, (ca) and z =  log, (ab) prove that 

x +  y +  z =  xyz  -  2.
Find the values of a and b if the expression 2x3 — 15x2 +  ax + b is divisible 
both by x — 4 and by 2x — 1. (O.C.)
A polynomial expression P(x), when divided by (x — 1) leaves a remainder 
3 and, when divided by (x — 2) leaves a remainder 1. Show that when 
divided by (x — l)(x — 2) it leaves a remainder — 2x +  5. (O.C.)
Express a*(b — c) +  b*(c — a) + c*(a — b) as the product of four factors.

(L.U.)
If x 3 =  a(x +  l)(x +  2)(x +  3) +  b(x +  l)(x +  2) +  c(x + 1) +  d, find the 
numerical values of a, b, c and d. (L.U.)
Show that x 2 +  6x — 10 can be expressed in the form

(x — a)(x — P) + 2(x — a) +  3x
in two different ways and find the values of a and /? in each case. (L.U.) 
Find a and b so that

x4 -  7x3 +  17x2 -  17x +  6 = (x -  l)2(x2 +  ax +  b).
Hence find all the factors of the quartic expression.
Find the value of c if the expression

2x2 + xy  -  6y2 + 4x + y + c 
can be expressed as the product of two linear factors.
Use the principle of undetermined coefficients to find the square root of 
the expression x4 +  4x3 +  8x 2 +  8x +  4.

Sx +  3
Separate —------ --y—------ -into partial fractions.

K (x +  l)2(2x + 1) y

Express
x 2 — x — 1 .

in partial fractions.

Express
5x3 +  2x2 +  5x .

1 in partial fractions.

1 + x 2

(Q.E.)

(Q.E.)Express in partial fractions 7—  - -  ---- ,,
F (1 +  x)(l x 3)

Use the remainder theorem to find the three factors of x4 +  3x2 — 4 and 
hence resolve

2x3 -  x 2 -  7x -  14 
x4 +  3x2 — 4

into partial fractions.



CHAPTER 3

ARITHMETICAL AND GEOMETRICAL PROGRESSIONS. 
PERMUTATIONS AND COMBINATIONS.

THE BINOMIAL THEOREM

3.1. Series
A set of numbers each of which can be obtained from some definite 

law is called a series or progression. Each of the numbers forming the 
set is called a term of the series. Thus the sets

(i) 1, 3, 5 ,1 ,...,
(ii) 1,2, 4, 8, . . . ,
(iü) l 2, 22, 32, 42, ...,

are all series. In the first set, each number is obtained by adding 2 to 
the preceding one, in the second each term is twice the preceding one 
and in the third each number is the square of successive integers. It is 
possible to give a formula for the general or nth term of each of the 
above series. Thus for (i) the nth term is 2n — 1, for (ii) it is 2"_1 and 
for (iii) it is n2. If an expression for the nth term of a series is known 
it is possible to write down successive terms by giving successive

integral values to n Thus the series whose nth term is (l + -J
is one whose terms are 2, f, ff, f f f , . . . ,  these being the values obtained 
by putting n = 1, 2, 3, 4, . ..  in the formula for the nth term.

Series play a very important part in mathematical analysis; in this 
chapter we shall be concerned with a few of the simpler ones.

3.2. The arithmetical progression
A series in which each term is obtained from the preceding one by 

adding (or subtracting) a constant quantity is called an arithmetical 
progression (A.P.). Thus the series

1, 3, 5 ,1 ,...,
a, a + d, a + 2d, a + 3d,...

are arithmetical progressions. The difference between each term and 
the preceding one is called the common difference. When three quantities 
are in arithmetical progression the middle one is called the arithmetic 
mean of the other two. Thus a is the arithmetic mean between a -  d 
and a + d.

In the series
a, a + d, a + 2d, a + 3d,..., (3.1)

the coefficient of d in any term is one less than the number of the
37
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term in the series. Thus a + 3d is the fourth term. If then the series 
consists of n terms and / denotes the last or nth term

l = a + (n -  l)d. (3.2)
To obtain the sum s„ of n terms of the series (3.1) we have 

sn = a + (a + d) + (a + 2d) + . . .  + (/ — 2d) + (/ — d) /, 
for if l is the last term, the next to last will be l — d and the preceding 
one will be / — 2d and so on. If now we write the series in the reverse 
order

s„ = / + (/ -  d) + (/ -  2d) + . . .  + (a + 2d) + (a + d) + a.
Adding and noticing that the sums of terms in corresponding positions 
are all a + / we have

2s„ = (a + 1) + (a + l) + (a + l) + . .A o n terms,
= n(a + /).

Hence

= \ a  + /), (3.3)

or, using (3.2),

s„ = ^{2a + (n -  1 )d}. (3.4)
Example 1. Insert seven arithmetic means between 2 and 26.

It is always possible to insert any number of terms between two given 
quantities such that the resulting series shall be an arithmetical progression. 
Terms inserted in this way are called arithmetic means, an extension of the 
meaning of an arithmetic mean between two given quantities.
Including the first and last terms, the number of terms will here be nine, so 
we have to find an arithmetical progression of nine terms of which the first 
is 2 and the last is 26. Let d be the common difference. Then

26 = 9th term = 2 + 8d,
so that d — 3. The second term is therefore 2 + 3 or 5, the third 2 + 6 or 8 
and so on. Hence the required means are 5, 8, 11, 14, 17, 20 and 23.

Example 2. Find three numbers in arithmetical progression such that their sum is 
27 and their product is 504.
Let the three numbers in arithmetical progression be a — d, a and a + d. 
Then the sum of the numbers is 3a and since this is 27, a = 9. Their product is
(a -  d)a(a + d) or a(a2 — d2). Hence

a(a2 -  d2) = 504,
and since a = 9, 81 — d2 = 504/9 = 56, leading to d1 = 25 and d = ±  5. 
Hence the required numbers are 9, 9 + 5, i.e., 4,9 and 14.

Example 3. The first term of an arithmetical progression is 25 and the third term is 
19. Find the number of terms in the progression if its sum is 82.
Here a = 25, a + 2d = 19, so that 2d = 19 — a = 19 — 25 = —6 giving
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d = -3 . With s„ = 82, formula (3.4) for the sum of n terms of the series gives

82 = ^{50 + (n — 1)( —3)}2 •
as the equation for the number of terms (n). This reduces to the quadratic 
equation

3n2 — 53n + 164 = 0, 
or (n — 4)(3n — 41) = 0.
Hence n =  4 o r n  = ^ =  13f. The fractional result means that the sum of 13 
terms will be greater than 82 and that of 14 terms will be less than 82.

3.3. The geometrical progression
A series in which each term is obtained from the preceding one by 

multiplying (or dividing) by a constant quantity is called a geometrical 
progression (G.P.). Examples are

1, 2, 4 ,8 ,..., 
a, ar, ar2, ar3, . . .

The ratio between each term and the preceding one is called the 
common ratio. When three quantities are in geometrical progression 
the middle one is called the geometric mean between the other two. 
Thus a is the geometric mean between a/r and ar.

In the series,
a, ar, ar2, ar3, ..., (3.5)

the index of r in any term is one less than the number of the term in 
the series. Thus ar3 is the fourth term. The last or nth term of the 
series is given by

/ = ar”~l. (3.6)
To obtain the sum s„ of n terms of the series (3.5) we have

„FI — 2 + or"-1s„ = a + ar + ar* + . ..  + ar"
Multiplying throughout by r

rs„ = ar + ar2 + ar3 -f . . .  + ar"~1 + ar".
If we subtract, all the terms on the right hand side except a and ar" 
cancel in pairs. Hence sn — rs„ = a — ar", leading to

a(1 -  r")s„ = 1 -  r
(3.7)

Example 4. Insert three geometric means between 162 and 1250.
As with arithmetical progressions, it is possible to insert any number of terms 
between two given quantities such that the resulting series shall be a geo­
metrical progression. Such terms are referred to as geometric means, an 
extension of a geometric mean between two given quantities. Here, including 
the first and last terms, the number of terms will be five, so we have to find a



40 P UR E  M A T H E M A T I C S

geometrical progression of five terms of which the first is 162 and the last is 
1250. Let r be the common ratio. Then

a

1250 = 5th term = 162r4.
Hence r4 = 1250/162 = 625/81, so that r — +5/3. The second term is there­
fore (±5/3) x 162 or ±270, the third is (±5/3)2 x 162 or 450 and the fourth 
is (±5/3)3 x 162 or ±750.

Example 5. Find three numbers in geometrical progression such that their sum is 39 
and their product is 729.
Let the required numbers be a/r, a and ar. Then their product is a3 and hence 
a3 = 729 giving a = 9. Since the sum is 39, we have

? + 9 + 9r = 39,r
so that 9r2 — 30r + 9 = 0. This can be written 3r2 -  lOr + 3 = 0 or 
(3r -  l)(r -  3) = 0, giving r = 1/3 or 3. The required numbers are therefore 
9/3, 9 and 9 x 3, or 3, 9 and 27.

Example 6. Find the sum of ten terms of the geometrical series 2, — 4, 8, ...
Here the first term is 2 and the common ratio is —2. Hence in the formula 
(3.7), a = 2, r = — 2, n = 10. Hence the required sum

2(1 _  ( —21101
= — x —  ( Z 2)~  = - 3 « 2 )10 -  U = —l(1024 — 1) = -682. 

EXERCISES 3 (a)

1. Write down the first three and the 8th term of the series whose nth terms 
are:—

(i) 4n — 5, (ii) 3" '1, (iii) ( — 1)".
2. Show that the arithmetic and geometric means between the two quantities 

a, b are respectively j(a +  b) and Ĵ(ab).
3. Find the sum of ten terms of an arithmetical progression of which the first 

term is 60 and the last is — 104.
4. If the first, third and sixth terms of an arithmetical progression are in 

geometrical progression, find the common ratio of the geometrical pro­
gression.

5. The sum of the last three terms of a geometrical progression having n terms
is 1024 times the sum of the first three terms of the progression. If the third 
term is 5, find the last term. (L.U.)

6. Find two numbers whose arithmetic mean is 39 and geometric mean 15.
(L.U.)

7. Prove that the series log a, log (ar), log (ar2) ,.. . .  is an arithmetical progression 
whose sum to n terms is log (a2r"~ ').

8. The second and third terms of a geometrical progression are 24 and 
12(6 +  1) respectively. Find b if the sqm of the first three terms of the 
progression is 76.
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3.4. Simple and compound interest
If a sum of money P  (the principal) is invested at simple interest of 

r per cent, per annum, the am ount A (principal plus interest) after n 
years is given by

nr \
= p ( l  + 100/ ’

(3.8)

for the interest for one year is P r /100 and for n years nPr/100. The 
various amounts after one, two, three, . . .  years therefore form an 
arithmetical progression.

If, on the other hand, the same principal is invested at compound 
interest of r per cent, per annum, the interest being added annually,

the amount after one year is P  1̂ +  and this is the principal for

the second year. Hence after two years the am ount is

and so on. Thus after n years the amount will be given by

A = p{\

In this case the amounts after one, two, three, . . .  years form a 
geometrical progression.

If, with compound interest the interest is added half yearly, the 
interest is half as much as when added yearly but it is added twice as 
often. Hence in this case

(3.9)

= p ( i + ^ V
2 0 0 /

(3.10)

and similarly for cases where the interest is added at other intervals.
Suppose we wish to find the present value (V) of a given sum (S) 

due n years hence. Then V is the sum put out to interest at the present 
time which in n years will am ount to S. Thus at simple interest

giving,

S = 

V

+ ,£ )•

1 +
nr

TÔÔ

(3.11)

and at compound interest (added yearly),

s  = r

giving,

1 + Too)’

v  = s (} + l k V
(3.12)
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Example 7. Find the amount at the end of 10 years when £400 is invested at 4 per 
cent, compound interest, (i) the interest being added annually and (ii) the interest 
being added twice a year.
Here P = 400, r = 4, n = 10 and from (3.9), (3.10) we have

(i) interest added annually, amount = P^l + =

(ii) interest added twice a year, amount = P^l + ~  400(11

400(104)'°

£591-7.

02)2° 

= £594-4.

Example 8. Find what sum a man has to invest on his fortieth birthday so that he 
may be able to draw out a lump sum of £2000 on his sixtieth birthday, the 
investment being made at 5 per cent, per annum compound interest.
Let V = sum required. Then V has to amount to £2000 in 20 years.

2000
i.e., V = 2000(l-05)_20 = — — = £753-3.

2*655

3.5. T he convergence o f  th t geom etric series

Consider the geometrical progression l + |  +  j  +  £ +  .-- If we 
stop at the third term the sum is If and this is less than 2 by the third 
term f. Similarly the sum of four terms is which differs from 2 by 
the fourth term Similarly wherever we stop the sum is less than 2 
by precisely the last term added. Thus the sum of this series never 
exceeds 2, never reaches 2 but may be made as near to 2 as we please 
by taking a sufficient number of terms. The value 2 is called the limit 
of the sum of this series. Series for which such a limit exists are said to 
be convergent.

Consider now the general geometrical progression 
a + ar +  ar2 + ...

By (3.7) the sum to n terms, denoted by s„, is given by 
_  a(l — r") _  a ar"

S" 1 — r 1 — r 1 — f
Suppose r lies between 0 and I. Then r" decreases as n increases and, 
since it cannot be negative, it must tend to some positive limit /. Since 
r"+1 =  r.r", r"+1 and r" are both ultimately equal to / and we have 
/ =  rl, showing, since r is not equal to unity, that / must be zero. In a 
similar way, if r lies between — 1 and 0, we can show that the limiting 
value of r" is also zero. Thus the value of the term ar"/(l — r) becomes 
nearer and nearer to zero as n increases and the limit of the sum of 
the progression, denoted by s is, for — 1 <  r <  1, given by

a
1 -  rs = (3.13)
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for we may make s„ as near to a/( 1 — r) as we please by making n 
sufficiently large. We say that the geometric series whose first term is a 
and common ratio r converges when — 1 <  r  <  1 and the limit of the 
sum is a/( 1 — r).

There is no limit of the sum of a geometrical progression whose 
common ratio lies outside the range — 1 to 1. For instance the sum 
of the progression 1 +  2 +  4 . . .  gets more and more unmanageable 
as more terms are taken. Each term in fact exceeds the sum of all the 
preceding ones. The series is in this case said to be divergent.

Rather loose expressions are sometimes used in connection with 
convergent series. Thus the limit of the sum is sometimes called “the 
sum to infinity” and a convergent geometrical progression is some­
times referred to as an “infinite” geometrical progression. It is pre­
ferable to avoid the words infinity and infinite as far as possible.

Example 9. The limit of the sum of a convergent geometrical progression is k and 
the limit of the sum of the squares of its terms is l. Find the first term and the 
common ratio of the progression.
Let the first term be a and the common ratio r. Then by (3.13) k = a/{ 1 — r).
For the series comprised of the squares of these terms the first term is a1 and 
the common ratio r2. Hence l = a2/( 1 — r2). Squaring the expression for k 
and dividing by that for / we have

The series inside the square brackets is a convergent geometrical progression 
with first term unity and common ratio -/r. By (3.13) the limit of it-- sum is 
1/(1 — -¡\j) or Hence the value of

3.6. Series involving the natural numbers
The positive integers 1, 2, 3, . . .  are often referred to as the natural 

numbers. They form an arithmetical progression with first term and 
common difference unity and the sum of the first n natural numbers 
is therefore given by

k 2 1 -  r 2 1 + r

T  ~  (1 -  r)2 ~  1 -  f

Solving for r, we find r = (k2 — I)/(k2 + t). 
Substituting this value of r in the expression for k,

Example 10. Evaluate 0-6 as a fraction.
0-6 means -ft + -joo + two + • • ■ and this can be written

2
(3.14)



The sum of the squares of the first n natural numbers can be found 
by starting from the identity

n3 -  (n -  l)3 s  3n2 -  3n + 1.
Changing n successively into (n — 1), (n — 2), . . 2 ,  1, we have 

(« -  l)3 -  (n -  2)3 =  3(n -  l)2 -  3(n -  1) +  1,
(n -  2)3 -  (n -  3)3 =  3(n -  2)2 -  3(n -  2) +  1,

23 -  l 3 =  3.22 -  3.2 +  1, 
l 3 -  03 =  3.12 -  3.1 +  1.

By addition and noticing that apart from n3 and 03 all the terms on 
the left hand side cancel in pairs,
n3 = 3{12 + 22 + . . .  + (n -  l )2 + n2}

— 3 {1 + 2 + ... + (n — 1) + «} +  n. 
If we denote the sum of l 2 +  22 +  . . .  +  n2 by S 2, this gives 

n3 =  3 S 2 — 3S j +  n.
Using the value of S l given in (3.14) we have

3S2 = n3 + ^n(n + 1) -  n = ^(2n2 + 3n '+ 1),

or, S, -  +  ‘>(2n +  (3.15)
6

The sums of the cubes and higher powers of the natural numbers 
can be found in a similar way but the process gets more and more 
tedious.
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Example 11. Find the sum of n terms of the series 1.2 + 2 . 3 +  3.4 + . ..
The nth term is n(n + 1) and by writing this as (n2 + n), the sum of the series 
is the sum of the squares of the first n natural numbers plus the sum of these 
numbers. Hence the required sum

= %n(n + l)(2n + 1) + {ntn + 1)

= + i ) ^ L + i  + ,  gfr.+J H "  + 2>.

EXERCISES 3 (b)

1. In how many years will a sum of money double itself (a) at 5 per cent, simple 
interest, (b) at 5 per cent, compound interest?

2. A man arranges to purchase a house, valued now at £ 1000, by paying £500
in ten years’ time and spreading the remaining payments in 10 equal annual 
instalments of iX,  the first being paid now. If compound interest on all 
outstanding amounts is payable at 4 per cent, per annum, calculate the value 
of X. (L.U.)
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3.

4.

5.

Prove that the geometrical progression,

1 + 2x
3 +  x1 + + ..

is convergent for all values of x and find the limit of its sum. (L.U.)
Show that there are two geometrical progressions in which the second term 
is —4/3 and the sum of the first three terms is 28/9. Show also that one of 
these progressions is convergent and, in this case, find the limit of its sum.

(L.U.)
Find the first term and the common ratio of a convergent geometrical 
progression in which (i) the limit of the sum is 4 and (ii) the limit of the sum 
of the series formed by the cubes of the terms of the geometrical progression 
is'192.

a a6. When does the series a +  ------- +  —--------r* +  . . .  converge and what is then1 +  a (1 +  a)2
the limit of its sum?

7. Starting from the identity
(2n +  l )4 -  (2/i -  l )4 =  64n3 +  16zi,

show that the sum of the cubes of the first n natural numbers is equal to the 
square of the sum of these numbers.

8. The first, second, third and nth terms of a series are 4, —3, —16 and 
{an2 +  bn + c) respectively. Find a, b, c and the sum of n terms of the series.

3.7. Permutations and combinations
Suppose we have four objects denoted by A, B, C and D and we 

select groups of two. Possible selections are AB, AC, AD, BC, BD and 
CD. Each selection is called a combination and it is possible to make 
six different combinations from four objects taken two at a time. If, 
however, we are concerned with the arrangements of the four objects 
taken two at a time we can do this in twelve different ways, viz.,

AB, AC, AD, BC, BD, CD, 
and BA, CA, DA, CB, DB, DC.
Each arrangement is called a permutation and it is possible to make 
twelve different permutations from four objects taken two at a time. 
Thus in forming combinations we are concerned only with the number 
of things each selection contains whereas in forming permutations we 
are concerned with the order of the component objects as well.

A formula giving the number of permutations which can be made 
from n unlike things taken r at a time can be obtained as follows. We 
have to fill up r places from n things. The first place can be filled in 
n ways for we have n things at our disposal. When it has been filled 
the second place can be filled in (n — 1) ways for now we have only 
(n -  1) things available to fill it. Each way of filling the first place
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may be associated with each way of filling the second, so that the 
first two places may be filled in n(n — 1) different ways. Proceeding 
in this way the first three places can be filled in n(n -  1 )(n -> 2) ways 
and all the r places can therefore be filled in

n(n -  l)(n — 2) .. .(n  — r + 1)
ways. A convenient notation for the number of permutations of n 
things taken r at a time is "Pr and we therefore have

"P, = n(n -  l)(n -  2 )... (n -  r + 1), (3.16)
the number of factors being r (the number in the suffix of the symbol 
nPr). Putting r = n we have for the number of permutations of n things 
taken all at a time (or the number of ways of arranging n things among 
themselves)

"Pn = n(n -  l)(n — 2)... 3.2.1,
there now being n factors. The product n(n — l)(n — 2)... 3.2.1 is 
called “factorial n" and written (n)!, or sometimes, |n.

To find the number of combinations which can be made from n 
unlike things taken r at a time, let "Cr (a notation similar to that for 
the number of permutations) be the required number. Then each of 
these "Cr combinations consists of a group of r things. These can be 
arranged among themselves in (r)! ways. Hence the product of "C, and 
(r)! is the number of arrangements of n things taken r at a time, so that

"Cr x (r)! = nPr
= n(n — 1 )(n — 2 ) .. .(n  — r + 1).

Hence nr _  -  !)(« -  2) . . .  (n -  r + 1)
(0 !

(3.17)

An alternative form of (3.17) can be obtained by multiplying numerator 
and denominator by (n — r)l Since (n — r)! = (rt — r)(n — r — 1)... 
3.2.1 the numerator will now contain all the numbers n, (n — 1), 
(rt — 2), down to unity and will therefore be (n)!.

Hence nr (")!
r (r) !(/! — /•) !' (3.18)

Example 12. Find how many different numbers can be made by using four out of 
the nine digits 1, 2, 3,..., 9.
The required number is the number of permutations of nine things taken four 
at a time and is therefore

9P4 = 9 x 8 x 7 x 6 =  3024.

Example 13. In how many ways can an escort of four soldiers be chosen from nine 
soldiers and in how many of these escorts will a particular soldier be included?

(L.U.)
The required number is the number of selections which can be made from
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nine things taken four at a time..This is 9C4 which by (3.17) is
9 x 8 x 7 x 6 _ - — : 126.4 x 3 x 2 x 1

When a particular soldier is always to be included, we have to find tile number 
of ways in which selections for the other three places in the escort can be made 
from the remaining eight men. This is SC3 or

8 x 7 x 6
3 x 2 x 1

The method of the last part of example 13 can be employed to 
obtain a formula which we shall use later in this chapter (page 50). 
Suppose we have (n + 1) objects: the number of combinations of 
these objects taken r at a time such that a particular object is always 
excluded is "Cr for we have to select from only n objects. The number 
of combinations of the objects taken r at a time such that a particular 
object is always included is "Cr_1 for we have to select from only n 
objects for the remaining (r — 1) places in a selection. Since the object 
must be either included or excluded, the sum is the total number of 
combinations of (n + 1) objects taken r at a time or "+1Cr. Hence

"+1Cr = "Cr + nCr_ 1. (3.19)
So far we have based our work on the assumption that the objects 

of which arrangements have been made or from which selections have 
been taken are all dissimilar. Formulae for the number of permutations 
or combinations when the objects are not all unlike are rather com­
plicated. Such cases are best treated on their merits and we consider 
the following as an example.

To find the number of arrangements of n things taken all at a time 
when p are exactly alike of one kind and q are exactly alike of another 
kind, let x be the required number of permutations. Then if the p like 
objects were replaced by p unlike objects different from any of the 
rest, from any one of the x arrangements we could form (p)\ new per­
mutations without altering the position of any of the remaining 
objects. If then this change were made in each of the x arrangements, 
we should obtain x x (p)! permutations. Similarly if the q like objects 
were replaced by q unlike ones, the number of permutations would be 
x x (p)! x (q)\. But the objects are now all different and can be 
arranged among themselves in (n)! ways. Hence

giving,

x x (p)! x (<j)! = (n)!, 
x =  <">! (3.20)

(P)!fo)!
Similarly the number of arrangements of n things taken all at a time 
when p are alike of one kind, q alike of a second kind and r alike of 
a third kind and so on is

(»)!
(p) ! (<?)!(»•)! • • •’

(3.21)
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Example 14. How many different arrangements of letters can be made by using all 
the letters of the word contact? In how many of these arrangements are the 
vowels separated? (L.U.)
Here we have seven letters including two c’s and two t’s. The required humber 
of arrangements by (3.20) is

(7)! 7 x 6 x 5 x 4 x 3 x 2 x 1
(2)7(2)! “  2 x 1 x 2 = 1260.

If we treat the vowels o, a as one letter, the number of arrangements with the 
vowels together is

2(6)! 2 x 6 x 5 x 4 x 3 x 2 x l  
(2)7(2)! = 2 x 1 x 2 x 1 = 360,

the multiplier 2 being introduced in the numerator to allow for the two possible 
arrangements ao, oa of the vowels among themselves. The number of arrange­
ments with the vowels separated is the difference, 1260 — 360 or 900.

Sometimes the number of permutations of n things taken r at a time 
is required when each thing may be repeated any number of times (up 
to r) in any arrangement. Here the first place may be filled in n ways 
and, when it has been filled, the second place may also be filled in 
n ways for we are able, if we wish, to use the same thing again. Thus 
the first two places can be filled in n x n or n2 ways. Similarly the 
first three places can be filled in n x n x n or n3 ways and so on. The 
total number of arrangements is therefore nr.
Example 15. How many entries must be made in a football pool consisting of twelve 

matches to ensure a correct forecast?
The result of each match may be win, lose or draw so that the forecast of the 
first match can be made in three ways. The result of the second game can 
similarly be entered in three ways so that a correct forecast of the first two 
matches will require 32 entries. For the first three matches 33 entries will be 
required and so on. Hence for all twelve matches the required number of 
entries will be 312 or 531441.

3.8. Probability or chance
Suppose any one of m + n events is just as likely to happen as any 

other and that one event is certain to happen. Then if m of the events 
are considered favourable and n unfavourable the probability or 
chance of a favourable event is said to be m/(m + n). For example, in 
tossing a coin, heads or tails are equally likely and either a head or 
tail must occur. The chance of throwing a head is therefore 1/2. 
Similarly the chance of throwing a two with a six-sided die is 1/6 for 
only the two is favourable, any one of the numbers one to six is equally 
likely and one number must occur. The phrase “just as likely to 
happen” in the above definition is open to criticism but the general 
sense is clear. Thus the belief that a coin will be equally likely to fall 
heads or tails is generally accepted in the absence of any distinct proof 
to the contrary.
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If the probability of an event happening is p and of its not happening 
is q, we have from the above.

nq = ------- •m + n
Probabilities can therefore, range 

between 0 and 1, 0 indicating impossibility and 1 certainty. Some­
times percentages are used, a one per cent, chance means a chance of 
one in a hundred. If the chances for and against an event are p and 
q, the odds against an event happening are q to p. Thus odds of 5 to 2 
against an event implies that the chance of the event happening is 
2/7 and of it not happening is 5/7.
Example 16. What is the chance that a hand of thirteen cards dealt from a pack shall 

contain only red cards?
The total number of possible hands is 52C13 and the total number of favourable 
hands is 26C13 for in this case selections of 13 have to be made from the 26 
red cards. The required chance is therefore

m
P =  --------- ,m + n

Thus p + q = 1 and q = 1 — p.

26C 13/ 52Ct3 = 1/61055
approximately.

If the chance of one event happening is p and that of another in­
dependent event happening is p' the chance of both happening is pp'. 
The chance of the first happening and not the second is p( 1 — p'), 
that of the second happening and not the first is p'(l — p) and the 
chance of neither happening is (1 — p)(l — p'). These results follow 
directly from the definition of probability. For example the chance of 
throwing a six with one die is 1/6, the chance of two sixes when two 
dice are thrown is 1/36. The chance of one six only from two dice is

1 y i  i f  y i - 1 2  
6  *  6  ' 6  *  6  36 »

and the chance of no sixes is 25/36.
EXERCISES 3(c)

1. In how many ways can a team of eleven be picked from fifteen possible 
players?

2. How many different arrangements can be made by taking (i) five, (ii) all the 
letters of the word special?

3. How many numbers between 2000 and 3000 can be made from the digits 
7, 3, 2, 5?

4. In how many ways can five books be distributed to four readers when each 
reader can have all the books?

5. How many numbers each of four digits can be formed from the digits 1, 2,
3, 4 when each digit can be repeated four times? Calculate the sum of all 
these numbers. (L.U.)

6. There are 10 articles, 2 of which are alike and the rest all different. In how
many ways can a selection of 5 articles be made? (L.U.)



50 P UR E  M A T H E M A T I C S [3

7. A signaller has six flags, of which one is blue, two are white and three are
red. He sends messages by hoisting flags on a flagpole, the message being 
conveyed by the order in which the colours are arranged. Find how many 
different messages he can send (i) by using exactly six flags, (n) by using 
exactly five flags. (L.U.)

8. What are the odds against drawing three black balls from a bag containing 
four white and five black balls?

9. Find the chance of throwing head and tail alternately with three successive 
tosses of a coin.

3.9. The binomial theorem for a positive integral index
By actual multiplication, we can show that 

(1 + x)2 = 1 + 2x + x2,
(1 + x)3 = 1 + 3x + 3x2 + x3,
(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4.

In the expressions for these powers of (1 + x) we observe that:—
(i) the indices of x increase by unity as we go term by term from left 

to right, the index of the last term being the same as the power to 
which (1 + x) is raised,

(ii) the first term and the coefficient of x in the last term are both unity 
and those of the other terms are 2Cl in the expression for (1 + x)2, 
3Ci and 3C2 in that for (1 + x)3 and 4C1; 4C2, 4C3 in that for 
(1 + x)4.

This suggests that the result for any positive integral power n of 
(1 + x) will be

(1 + x)" = 1 + "C,x + "C2x 2 + ...  + nCrxr + . ..  + x". (3.22) 
Assuming that this result is valid, multiplication by (1 + x) and 
collection of the terms in like powers of x gives 
(1 + x)"+1 = 1 + (nC1 + l)x + ("C2 + nCx)x2 + ...

+ (nCr + "Cr_ 1)xr + ...  + x"+1. 
Since nCl + 1 = n + 1 = n+lCi and n+1Cr = "Cr + nCr_u a result 
already established in (3.19), this can be written 
(i + x)"+1 = 1 + "+ lCxx + n+ lC2x2 + ...  + ”+ ‘C X

+ . ..  + xn+1. (3.23)
Hence if the assumption made in (3.22) is true for a positive integral 

index n, (3.23) shows that it is also true when n is increased to n + 1. 
But we know the assumption to be true for n = 2, 3 and 4, so that 
we infer that it is also true for n = 5 and therefore for n = 6 and so 
on. Hence the result is true for any positive integer n.

Often the coefficients in (3.22) are abbreviated by omitting the n: 
with this notation we should have

( I t  x)n = 1 -f CjX + C2x 2 -T . ..  T Crxr + . . .  + x”, (3.24)
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where the coefficient of xr is given by
n(n -  l)(n -  2)...(n  -  r + 1)
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(3.25)

The first and last terms are sometimes written as C0 and C„, so that 
C0 and C„ are both unity and Cr is then always the coefficient of xr 
in the expansion. The result established here is known as the binomial 
theorem as it gives the expansion (a series of n + 1 terms) for the nth 
power of the binomial expression (1 + x). The method used here in 
establishing the theorem is known as a proof by induction and is a 
very powerful method in many branches of pure mathematics.

If we require the expansion of (a + x)", we have

(a + x f  = a" (l + ,

and, writing x/a in place of x in (3.24),
. _  X _ X2 _ xr x"\(o + x) -  a (l + C j- + C2̂  + ■■■ + c r— + ...  + —J

= a” + C,«"“ *x + C1an~2x 1 +  ...
+ Cran~'xr + . . .  + x". (3.26) 

The numerical coefficients in the binomial expansion are given by 
the following table (Pascal's arithmetical triangle) :—

Power Coefficients
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Apart from the first and last coefficients which are unity, any entry 
in the table is given by adding together the one immediately above it 
and the next entry on the left. Thus the entry 15 in the sixth line is 
the sum of 10 and 5 and so on. The coefficients in the expansion of 
(1 + x)1 are therefore immediately obtained from the last line of the 
table as 1, 7, 21, 35, 35, 21, 7 and 1 and once these are available, those 
for (1 + x)8 can be obtained similarly.

Example 17. Expand (x + 3>>)6 by the binomial theorem and apply the expansion to 
evaluate (103)6 correct to five places of decimals. (L.U.)
Writing x for a, 3y for x and taking n = 6, (3.26) gives

(x + 3.V)6 = x6 + 6x-’(3y) + !5x4(3>f + 20.v’(3y)3 + 15x2(3>>)4
+ 6x(3y)5 + (3y)6.
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the coefficients being taken from Pascal’s triangle [or calculated from (3.25)]. 
This gives

(x + 3 y)6 = x6 + 18x5y + 135x4y2 + 540x3y3 + 1215x2y4
+ 1458xy5 + 729y6.

Taking x = 1, y = 10" 2, x + 3y = 103 and hence
(103)6 = 1 + 18 x 10" 2 + 135 x 10' 4 + 540 x 10" 6 + 1215 x 10" 8

+ 1458 x 10" 10 + 729 x 10" 12 
= 10000000 + 01800000 + 00135000 + 00005400

+ 0 0000122 + 0 0000001 + ...
= 1 1940523 = 1 19405 (to five places).

Example 18. Expand (1 — fx — x2)5 in ascending powers of x as far as the term 
in x4.
Writing - fx ( l  + |x) in place of x in (3.24) and taking the coefficients from 
Pascal’s triangle,
(1 -  |x  -  x2)5 = (1 -  §x(l + §x)}5
= 1 + 5( —§x)(l + fx) + 10( —§x)2(l + §x)2 + 1(X—fx)3(l + fx)3 

+ 5(—|x)4(l + |x )4 + . ..
The last term in the expansion need not be included as it involves x3 and higher 
powers only. Simplifying and retaining only terms which involve x4 and lower 
powers we have
(1 -  fx -  x2)5 = 1 -  3/x(l + fx) + ^ x 2(l + fx + fx2)

-  3 ^x 3(l + 2x + ...) + + . . . )  + ••.
= 1 -  ^ x  + ( - 5  + fftx2 + (30 -  ^ x 3

+ ( io - ifi  + W)*4 + --- 
= 1 -  ¥ x  + ¥ x 2 -  ¥ x 3 -  w *4 + • • •

Example 19. Find the term independent of x in the expansion of (2x + 1/x2)12 in 
descending powers of x and find the greatest term in the expansion when x = §.

I V 2 (LU)We can write (2x + 1/x2)12 as 212x 1211 + J , so the term independent of
/ 1 V2

x is 212x12 times the term in x 12 in the expansion of ^1 + ^ 5  I . This is

l2C4(i) or
12 x 11 x 10 x 9 1

1 x 2 x 3 x 4 24x 12
495i.e. 4 12, and multiplying by 212x12, the required term is 495 x 28 or 126720.

2 * / 1 V2
Let Tr be the rth term in the expansion of II + I ■ Then

T, = ‘ and Tr+l = ‘^ ( ¿ }  Hence

Tr+i l lC, 1 1 2 - r + l  1
Tr ~  12C,_, 2x3 — r ’ 2(2/3)3

27
16
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when x  = 2/3 all the factors in the expressions for ,2Cr and 12Cr_, cancelling 
except the last in numerator and denominator.
Thus the (r + l)th term is greater than the rth so long as

i.e., so long as 351 > 43r. The largest value of r consistent with this inequality 
is eight so the greatest term is the ninth.

Example 20. I f  C, denotes the coefficient of xf in the expansion of (1 + x)", n being 
a positive integer, prove that

C0 -  C, + C2 -  . ..  4- ( -  1)"C„ = 0,
Co + Cj + C2 + . ..  + C„ = 2", 

and deduce that, if n is even
2 C0 + C, + 2C2 + C3 + 2C4 + C5 + . ..  + 2C„ = 3 .2 '*1.

We have
C0 + C,x + C2x2 + . . .  + C„x" = (1 + x)". (3.27)

Putting x = -1 ,
C0 -  C, + C2 + ...  + ( -  iyc„ = (1 -  1)" = 0, (3.28)

the coefficients of the various C’s being ±1 according as their suffices are 
even or odd.
Putting x = 1 in (3.27),

C0 + C, + C2 + . ..  + C„ = (1 + 1)" = 2". (3.29)
Multiplying (3.29) by 3/2, (3.28) by 1/2 and adding

2C0 + C, + 2C2 + . . .  + 2 C„ = f.2* = 3 .2 -* , 
the coefficient of C„ in (3.28) being +1, since n is even.

3.10. The binomial theorem when n  is not a positive integer
When n is fractional or negative, it can be shown (but tne proof is 

outside the range of the present book) that the series

1 + nx + n(n — 1) 2 n(n — l)(n — 2)~x + + (3.30)
(2)! ~ ' (3)!

is convergent if - 1  < x < 1 and that the limit of its sum is (1 + x)". 
This result is known as the binomial theorem for a fractional or 
negative index. The points of difference between it and the theorem 
for a positive integral index are:—

n(n ~  1)
(2)!

xz +(i) for positive integral n, the series 1 + nx +

terminates at the term in x" and its sum is (1 + x)" for all values 
of x,

(ii) for fractional or negative n, the series does not terminate, it is 
convergent and has (1 + x f  as the limit of its sum only when
-  1 < x < 1.



The following particular cases are worth noting. Putting n = — 1 in 
(3.30) we deduce that the series

1 — x + x 2 — x3 + ...

converges for — 1 < x < 1 and the limit of its sum is  ̂ Changing 

x to — x we see that the series
1 + x + x2 + x3 + . . .

converges for - 1  < x < 1 and that the limit of its sum is —̂.1 -  x
These two series are geometrical progressions with first terms unity 
and common ratios + x respectively and the limits of their sums as 
given here agree with those obtained from (3.13). Putting n = — 2 
and changing x to — x in (3.30) we find that the series

1 + 2x + 3x2 + 4x3 + ...

converges for — 1 < x < 1 and the limit of its sum is ——-—rj.(1 -  x)2
Finally writing n = \  in (3.30), the series

1 + \x  — £x2 + i^x3
converges for — 1 < x < 1 and the limit of its sum is yj( 1 + x).
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Example 21. Expand
1 + x

(1 + x)(l + x2) in ascending powers of x as far as the term

Resolving the given expression into partial fractions, we find
7 + x ____ 3  4 -  3x

(1 + x)(l + x2) _  1 + x + 1 + x2
= 3(1 + x ) - ‘ + (4 -  3x)(l + x2) - 1
= 3(1 — x + x2 -  x3 + x4 — ...)

+ (4 -  3x)(l -  x2 + x4 -  x6 +•...) 
= 7 -  6x -  x2 + 7x4 + ...,

the series being convergent if — 1 < x < 1.

Example 22. Use the binomial theorem to find 105) to four places of decimals. 
7(1-05) = (1 + 0-05)1,2 = 1 + i  X 0-05 -  £ x (0 05)2 + ^  x (0-05)3 -  . ..

=  1 + 0 025 -  0-000313 + 0-000008 -  ...
= 1-0247 (to four places).

EXERCISES 3(d)

1. If x is so small that x 3 and higher powers can be neglected, show that 
(1 -  |x ) 5(2 +  3x)6 =  64 +  96x -  720x2. (L.U.)
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2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

EXERCI SES

Find, by the binomial theorem, the coefficient of x8 in the expansion of 
(3 — 5x2)* in ascending powers of x. (Q.E.)
Write down and simplify the term independent of x in the expansion of

^3x2 — . Which is the numerically greatest term in this expansion when

x = |?  (L.U.)
In the binomial expansion, of (1 +  x)"+1, n being an integer greater than 
two, the coefficient of x4 is six times the coefficient of x 2 in the expansion 
of (1 + x)" 'D eterm in e the value of n. (L.U.)
If "Cr denotes the coefficient of xr in the expansion of (1 +  x)", prove that 
"Cr + 2("C,+ 1) +  "Cr+2 =  "+2Cr+2- (L.U.)
Find the value of n for which the coefficients of x, x2 and x3 in the expansion 
of (1 +  x)" are in arithmetical progression. (L.U.)
Express 2x3/(l +  x2)(l — x)2 as a sum of three partial fractions; and obtain 
an expansion, in ascending powers of x, of this expression as far as the term 
involving x 7. (Q E.)
Use the binomial theorem to evaluate 0-902'2 correct to four significant 
figures. Check the result by using logarithms. (Q E.)

EXERCISES 3(e)

Find the sum of the terms from the (n +  l)th to the mth term inclusive of 
an arithmetical progression whose first term is a and whose second term 
is b. If m =  13, n =  3 and the sum is 12a, find the ratio b:a. (L.U.)
If a~l, b~l, c~\  d~l are in arithmetical progression, prove that 
b = 2ac/(a + c) and find b/d in terms of a and c. (L.U.)
Three unequal numbers a, b, c are such that 1/a, 1 /b, 1/c are in arithmetical 
progression and a, c, b are in geometrical progression. Prove that b, a, c 
are in arithmetical progression. (L.U.)
S is the sum of n terms of a geometrical progression, P is the product of 
the n terms and R is the sum of the reciprocals of the terms. Prove that 
(S/R)" =  P2.
The amplitude of the first oscillation of a pendulum is 15°. If the amplitude 
of each succeeding oscillation is 0-89 of the amplitude of the preceding 
oscillation, find after how many oscillations the amplitude will first be less 
than 1°. (L.U.)
£1000 is borrowed at 5 per cent, compound interest. Two-thirds of the 
amount then owing is paid back at the end of each year. How much will 
have been paid back at the end of five years?
The sum of £2000 is borrowed from a building society at 4 per cent, per 
annum compound interest, and the capital and interest is repaid by 20 
annual payments of £A. Find A and the sum which would pay off the 
balance after 10 such payments. (L.U.)
If a geometrical progression with common ratio (1 -I- c)/(t — c) is con­
vergent, prove that c must be negative, but that it is otherwise unrestricted.
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Two such progressions, one with c =  c2 and the other with c =  c2, each 
have their first terms unity. If S t and S2 are the corresponding limits to 
their sums, show that

S l — S2 = (cj — c2)/2c ,c2.
Hence deduce that S, >  S2 when c, is less than c2 numerically. (L.U.)

9. The first term of a geometrical progression is 7 and its common ratio is 5. 
Find how many terms of the progression must be taken in order that the 
sum may differ from the limit of its sum by less than 0-01.

10. Show by induction that the sum of the cubes of the first n positive integers
is in2(n +  l )2 and deduce that the sum of the cubes of the n +  1 odd 
integers from 1 to (2n +  1) inclusive is (n +  l)2(2n2 +  4n +  1). (L.U.)

11. If « consecutive terms are taken from an arithmetical progression of 
common difference 2, show that

3(nS„ -  s„2) =  n2(n2 -  1),
where s„ is the sum of the n terms and S„ is the sum of their squares. (L.U.)

12. A typical car registration number contains three letters of the alphabet and 
three of the digits 0, 1, 2, . .. ,  9. How many such numbers can be formed?

(L.U.)
13. In how many ways can a party of five people be selected from six men and 

four women so that there are always more men than women in the party?
14. Using all the digits 1, 2, 3, 4, 5, 6 how many arrangements can be made 

(i) beginning with an even digit, (ii) beginning and ending with an even digit?
15. Two straight lines intersect at O. Points A ,, A 2, ... ,  A„ are taken on one 

line and points B,, B2, ..., B„ on the other. Prove that the number of triangles 
that can be drawn with three of the points for vertices is

(i) n2(n — 1), if the point O is not to be used,
(ii) n3, if the point 0  may be used. (L.U.)

16. In a hand of twelve cards, five are red and seven black. If two cards are 
selected at random, find the odds against them both being black.

17. The odds against a student solving a certain problem are 4 to 3 and the 
odds in favour of a second student solving the same problem are 7 to 5. 
Find the chance that the problem will be solved if both students attempt it.

18. Prove that in the binomial expansion of (1 +  0-03)12 the rth term is less
than one-tenth of the (r — l)th term if r >  4. (L.U.)

19. If the coefficients of xr_1, xr, x,+ 1 in the binomial expansion of (1 + xf 
are in arithmetical progression, prove that

n2 -  n(4r +  1) +  4r2 -  2 =  0.

Find three consecutive coefficients of the expansion of (1 -1- x )14 which 
form an arithmetical progression. (L.U.)

20. In the expansion of (1 +  ax + 2x2)6 in powers of x, the coefficients of x2
and x 11 are 27 and —192 respectively. Find a and the coefficients of x3 
and x 10. (L.U.)

21. If Cr is the coefficient of xf in the expansion of (1 +  x)", n being a positive
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integer, prove that

and that
C0 + C! +  C2 +  . . .  +  C„ =  2",

22.

23.

24.

25.

C0 +  2C, +  3C2 +  . . .  +  (n +  1)C„ =  (n +  2)2"- *. (L.U.)
By using the identity (1 -  x2)" =  (1 — x)"(l + x)", or otherwise, prove that, 
if n is a positive integer and C, is the coefficient of xr in the expansion of 
(1 +  x)", then

1 -  c,2 + c22 -  ... + (-irc„2 =0
if n is odd but is equal to (— l)'l/2-n--  ^  ¡fn ¡s

2 .4 ...  n even. (L.U.)

^/(i -f" 3x — 4x2)
Expand —— —— ^  2— - in ascending powers of x as far as the term in x3,

assuming that the value of x is such that the expansion converges. 
Express

5x +  x 2 
( T 1 x)(l -  x 2) 

in the form of partial fractions.
Prove that, when the function is expanded as a series in descending 

powers of x, the coefficient of x~" is 3« — 1 +  (—1)". (Q.E.)
Show that, if x is so small that x4 and higher powers of x can be neglected, 
then

M --*  >W-£Hr (N.U.)



CHAPTER 4

TRIGONOMETRICAL RATIOS FOR ANY ANGLE. 
GRAPHS OF TRIGONOMETRICAL RATIOS.. 

TRIGONOMETRICAL EQUATIONS

4.1. Introduction
The student is assumed to be familiar with the idea of circular 

measure and the definitions of the trigonometrical ratios for acute 
angles. Thus we take for granted that

x degrees = 7ix/180 radians. (4.1)
Also if x, y and r are respectively the base, height and hypotenuse of 
the right-angled triangle ABC in which the angle BCA is a right angle 
and the angle ABC is denoted by 9 (Fig. 1), then

and
sin 9 = y/r, cos 9 = x/r, tan 0 = y/x,

cosec 9 = sec 9 = —*-7,, cot 9 = —sin 9 cos 9 tan 9
Immediate and important consequences of these definitions are

y y/r sin 9tan 9 = -  = = ------x x/r cos a
and, since by Pythagoras’ theorem, x 1 + y2 = r2, 

sin2 9 + cos2 9 = - —~V-X- = L

(4.2)

(4.3)

(4.4)

(4.5)

Also,
v2 „2 , „2

1 + tan2 9 = 1 + ^  = 1

and

1 + cot2 9 = 1 + -7- =x2 y2 + x2 r2

x2 cos2 9 

1

= sec2 9, (4.6)

y 2 sin2 9 = cosec2 9. (4.7)

5X
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These relations enable all the trigonometrical ratios to be found 
when one is given and are often very useful in casting expressions 
involving the trigonometrical ratios into alternative forms!

Example 1. I f  sin 8 = 1/3 find the values of all the other trigonometrical ratios. 
The relation (4.5) gives cos2 0 = 1 — (1/3)2 = 8/9, so that

cost? = 2^2/3.

From (4.4), tan 0 = 1/3
2J2/3 2 J Ï

Formulae (4.3) then give cosec 8 = 3, sec 8 = 3/2^2, cot 8 = 2s/2.

Example 2. Show that sin3 0 -  cos3 6 = (sin 6 — cos 8)(\ + sin8 cos 0).
sin3 0 — cos3 0 = (sin 0 -  cos t?)(sin2 0 + sin 8 cos 0 + cos2 0) 

= (sin 8 -  cos 0)(l + sin 8 cos 0), 
using relation (4.5) in the second factor on the right.

4.2. The trigonometrical ratios for the general angle
Suppose a radius OP, starting from a standard initial position OX, 

is rotated in an anti-clockwise direction. It sweeps out angles which 
are conventionally termed positive angles and these may be of any 
magnitude. Thus the angle shown in Fig. 2 is 240' (240^/180 or 
4tt/3 radians). The same position will be reached by OP after rotations 
240° + 360°, 240° + 720° or 240° + any integral multiple of 360°. 
We should speak of these angles as being of magnitudes 600° (or 
107r/3 radians), 960° (or 16tt/3 radians) and 240° + n x 360° [or 
(6n + 4)7r/3 radians] respectively.

Angles generated when OP rotates in a clockwise direction are 
called negative angles: that shown in Fig. 3 is an angle of —240'.

Taking O as origin, two perpendicular lines X'OX, YOY  as axes 
and OP of length r, let the abscissa and ordinate of the point P with 
respect to these axes be x and y. The axes divide the diagram into 
four quadrants XOY, YOX', X'OY' and Y'OX: these are referred to 
as the first, second, third and fourth quadrants respectively. The usual
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sign conventions used in elementary graphical work* are taken to apply 
to the coordinates x and y of the point P. Thus when P is in the first 
quadrant x and y are both positive, when P is in the second quadrant

Fit,. 4

x is negative and y positive, when P is in the third quadrant x and y 
are both negative and when P is in the fourth quadrant x  is positive 
and y negative, r is taken to be positive for all positions of the line OP.

The trigonometrical ratios for angles XOP of any magnitude are 
defined in precisely the same way as for acute angles: thus

sin 9 = y/r, cos 9 = x/r. tan 9 = y/x.
and

cosec 9 = sin 0’ sec 9 = 1
cos 9’ cot 9 = 1

tan ff

(4.8)

(4.9)

but the appropriate signs are attached to x and y according to the position 
of the point P. Hence for angles in which OP lies in the first quadrant, 
since all of x, y and r are positive, the sine, cosine and tangent will be 
positive. For angles in which OP lies in the second quadrant, since x 
is negative, y and r positive, the sine is positive, cosine and tangent 
negative. For angles in which OP is in the third quadrant we can 
similarly deduce that the sine and cosine are both negative but the 
tangent is positive, while for the fourth quadrant the sine and tangent 
will be negative and the cosine positive. The diagram below shows 
which of the ratios are positive in each quadrant and may be useful 
as an aid to memory.

Sine All

Tangent Cosine

* See S 14.1.
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4.3. The trigonometrical ratios o f some related angles
Some useful relations connecting the trigonometrical ratios 

certain related angles can be obtained as follows.

Fig. 5

of

X

In Fig. 5 the radii OP, OP' correspond respectively to angles 9 and 
— 9. It is clear that the abscissae of P and P' are the same and that 
their ordinates are the same in magnitude but opposite in sign. In 
other words, changing from — 9 to + 6 is equivalent to reflecting OP' 
in the axis X'OX  and this changes the sign of y but leaves x  unaltered. 
Hence, using (4.8),

sin ( — 9) = — sin 9, cos (— 9) = cos 9, (4.10)
and, by division,

tan( — 9) = —tan 9. (4.11)
In Fig. 6, POP' is a diameter of the circle centre O. The angles XOP, 

XOP' are respectively 9 and 180° + 9. The addition of 180° to 9 is 
equivalent to reflecting OP through O. This changes the signs of both 
x and y. Hence

sin (180° + 9) = — sin0, cos (180° + 9) = — cos#, (4.12) 
and, by division,

tan (180° + 9) = tan 9. (4.13)
Changing the sign of 9 in (4.12), (4.13) and using the results of (4.10), 
(4.11) we have

sin (180° — 9) = — sin( — 9) = sin#, T 
cos(180° — 9) =  —cos( — 9) =  — cos#, > (4.14)
tan (180° — 9) = tan( — 9) = —tan 9. J 

In Fig. 7, the angle XOP is 9 and XOP' is 90° + 9. The addition 
of 90° to the angle is equivalent to measuring 9 from the axis Y'OY



62 P U R E  M A T H E M A T I C S [4

instead of from X'OX. The ordinate of F  is therefore the same as 
the abscissa of P and the abscissa of F  is minus the ordinate of P. 
Hence, if x, y are the coordinates of P,

Fig. 7

sin (90° + 9) = x/r = cos 9, cos (90° + 9) = —y/r=  -  sin 9, (4.15) 
and, by division,

tan (90° + #) = — cot 9. (4.16)
Changing the sign of 9 in (4.15), (4.16) and using the results of (4.10), 
(4.11),

sin (90° — 9) = cos (— 9) = cos 9,
cos (90° -  0) = -  sin ( -  9) = sin 9, ^ (4.17)
tan (90° — 9) =/ cot 9. J

The trigonometrical ratios for angles 270° ± 9 are obtained by the 
addition of 180° in those for 90° ± 9. Thus, using (4.15) and (4.12) 
we have
sin (270° + 9) = sin {180° + (90° + 6»)} 'l

= -s in  (90° + 9) = - c o s 9, I „ 
cos (270° + 9) = cos {180° + (90° + 9)} |

= — cos (90° + 9) = sin 9, J
and, by division,

tan (270° + 9) = -c o t 9. (4.19)
Changing the sign of 9 and using (4.10), (4.11)

sin (270° — 9) = — cos (— 9) = — cos 9, 'j
cos (270° — 9) = sin (— 9) = — sin 9, >• (4.20)
tan (270° — 9) = — cot ( -  9) = cot 9. J

Finally, the addition of 360° (or any integral multiple thereof) does
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not alter the position of P. Hence we can drop the 360° and
sin (360 + 9) = sin 9, cos (360° + 9) = cos 9, (4.21)
sin (360c — 9) = sin (— 9) = — sin 9, \  ‘
cos (360° -  9) = cos ( -  9) = cos 9, J ( ’

and the results for tan (360° ± 9) can be obtained by division.
It should be noted that for angles —9, 180° ± 9, 360° + 9, sines 

remain sines and cosines remain cosines. For 90° ± 9, 270° ± 9, sines 
become cosines and cosines become sines.
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Example 3. Express sin 135°, tan 140°, sin 1220° and cos ( — 840°) in terms of the 
trigonometrical ratios of positive acute angles.

sin 135° = sin (180° — 45°) = sin 45°. 
tan 140° = tan (180° — 40°) = —tan 40°. 

sin 1220° = sin (3 x 360° + 140°) = sin 140°
= sin (180° -  40°) = sin 40°.

cos (-840°) = cos 840° = cos (2 x 360° + 120°) = cos 120°
= cos (180° — 60°) = —cos 60°.

EXERCISES 4 (a)

1. If 6 is an acute angle and sin 6 = 1/4, find the values of the other trigono­
metrical ratios.

2. If tan 0 =  3/4, find possible values for sin 0 and cos 0.
3. If cos 6 = — 3/5, find the values of sin 6 and tan 9 when 6 is in (i) the second

and (ii) the third quadrant.
4. Show that tan 0 +  cot 6 =  sec 6 cosec 6 and that

(sin 0 +  cos 0)(cot 0 +  tan 6) =  sec 0 +  cosec 0.
5. Prove that tan2 A — sin2 A =  sin4 A sec2 A.
6. Prove that

sin 0 1 +  cos 9 _  2
1 +  cos 9 sin 9 sin ff

7. Prove that sin 330° cos 390° — cos 570° sin 510° =  0.
8. Show that sin (270° -  9) -  sin (270° +  0) =  cos 9 +  cos (180° + 6).

4.4. The graphs of the trigonometrical ratios for acute angles
The graph of sin# can be constructed as follows. Take points 

P j ,  P2, P 3, . . .  on a circle of unit radius and draw a line marked off 
in degrees (or radians) in prolongation of the initial line CX (Fig. 8). 
If we then plot a point Qx such that its abscissa ONx is equal to the 
number of degrees (or radians) in the angle XCPx and its ordinate 
QxN x is equal to the height of Px above CX, Qx will lie on the graph 
of sin 9. Other points Q2, Q3, ■■■ can be plotted similarly. The graph
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commences at zero and rises to unity when 0 reaches 90°. A rough 
table of values of sin 6 could be made by measuring the heights of 
P„ P2, P3, • • ■ above CX and recording these heights against the 
corresponding angles XCP ,, XCP2, XCP3, ...

Since, from (4.17), cos 6 = sin (90° — 6), the values taken by the 
cosine as the angle increases from 0° to 90° will be the same as those

Fi<i. 8
taken by the sine as the angle decreases from 90° to 0°. The graph 
of cos 6 for acute angles is shown in Fig. 9.

To construct the graph of tan 6 we draw a base line CX of unit 
length and mark off a line in degrees (or radians) in prolongation of 
CX. Points Pu P2, P3, ... are taken on the line X Y  (perpendicular

to CX) as shown in Fig. 10. If we then plot a point Q1 such that its 
abscissa ONt is equal to the number of degrees (or radians) in the 
angle XCP , and its ordinate is equal to P1X, the point Qt will lie 
on the graph of tan 6. Other points Q2, Q3, . ..  can be plotted 
similarly. The graph commences at zero and rises faster and faster 
as the angle approaches 90°. Again, a rough table of values of tan 6 
could be made by measuring PlX, P2X, P3X, . ..  and recording these 
lengths against the corresponding angles XC Pl; XCP2, XCP3, ...

Tables of the trigonometrical ratios for angles between 0° and 90° 
more accurate than could be obtained by measurement as indicated
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above are available. Details of their construction are beyond the 
scope of the present book but the student will be expected to be able 
to use the information contained in such tables.

Fig . 10

Accurate values of the ratios for certain angles such as 45° and 60° 
can be obtained from the isosceles right-angled triangle and the 
equilateral triangle as follows. In Fig. 11, ABC is an isosceles triangle 
right-angled at C : the angle at B (and at A) is 45°. If CB, CA are each

taken to be of unit length, the hypotenuse AB will, by Pythagoras’ 
theorem, be of length 72. Hence

sin 45° = ACjAB = 1A/2, cos 45° = BC/AB =  1/72,1 .. . . .
tan 45° = AC/BC — 1. \ ( Z i )

In Fig. 12, ABC is an equilateral triangle each of whose sides is 
taken to be of length 2. The perpendicular from A to BC will bisect 
it at D. Hence ABD is a right-angled triangle of hypotenuse 2, base 1 
and height, by Pythagoras’ theorem, yj(22 — l 2) or y/3. Therefore, 
since the angle ABC is 60°,
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sin60° = AD/AB = ^3/2, cos60° = BD/AB = 1/2, ) ,. . . .
tan 60° = AD/BD = ^3. J K ’

The trigonometrical ratios for 30° can also be obtained from the 
triangle ABD of Fig. 12, using AD as its base and BD as its height, 
for the angle DAB is 30°. In this way we find

sin 30° = BD/AB = 1/2, cos 30° = AD/AB = ^3/2, \
tan 30° = BD/AD = 1/^3. J

The following table may be a useful aid to memory for these results:—

- - ------------------  [4

e sin2 0 cos2 9 tan2 0
0° 0 1 0

30° 1/4 3/4 1/3
45° 1/2 1/2 1
60° 3/4 1/4 3
90° 1 0 00

The cosecant, secant and cotangent of these angles follow directly 
from (4.3). For example,

sec 60° 1
cos 60° =  2.

4.5. The graphs of the trigonometrical ratios for the general angle
The results of §§ 4.3, 4.4 enable us to calculate the trigonometrical 

ratios of any angle from a table of the ratios for acute angles. Thus 
cos 170° = cos(180° -  10°) = -c o s  10° = -0-9848, 

sin 1220° = sin (3 x 360° + 140°) = sin 140° = sin (180° -  40°)
= sin 40° = 0-6428,

sin (-663°) = -s in  663° = -s in  (2 x 360° -  57°)
= sin 57° = 0-8387.

To draw the graph of sin# for any angle we have (4.15), 
sin (90° -f #) = cos # so that the graph for sin # for values of 8 between 
90° and 180° is the same as that of cos# for # between 0° and 90°. 
Also from (4.12), sin(180° + #) = —sin# so the graph for # between 
180° and 360° is the same as that for # between 0° and 180° but is 
on the other side of the #-axis. Since sin (360° + #) = sin # the graph 
repeats itself after 360° and again after 720° and so on. Finally, since, 
(4.10), sin( —#) = —sin#, the graph for negative # can be obtained 
from that for positive # by reflection in the origin. The graph is shown 
by the full curve of Fig. 13.
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Since, from (4.17), cos# = sin(90° — #), the graph of cos# can be 
obtained by displacing the graph of sin # to the left by 90°. This is 
shown dotted in Fig. 13.

For the graph of tan#, we have by (4.11), ta n (-# )  = - ta n # , so 
the graph for —90° < # < 0 is obtained from Fig. 10 by reflection in 
the origin. Also from (4.13), tan (180° + #) = tan#, so the graph for 
# between 90° and 270° is the same as that for # between — 90° and 
90° and so on. The full graph is shown in Fig. 14.

14. Graph of tan 0

The graphs of the trigonometrical ratios show their periodic nature. 
Each ratio repeats itself after a certain interval (called the period). 
The trigonometrical ratios are examples of periodic functions: the 
periods of sin # and cos # are both 360° (or 2n radians) while that of 
tan # is 180° (or n radians). The magnitude of sin # and cos # is always 
between ± 1 : half of this range of variation (i.e., unity) is called the 
amplitude.

The fundamental relation, sin2 # + cos2 # = 1, proved in §4.1 for 
acute angles remains true for all values of #. For, as we have seen
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in §4.3, the addition or subtraction of any multiple of 90° can at 
worst change a sine into a cosine or vice versa and lead to an alteration 
in sign. But sin2 8 4- cos2 8 only involves a sine and a cpsine and 
variations in sign are unimportant as both terms are squared. Hence 
the relation remains valid for all values of 8. Similar arguments can 
be applied to show that the relations 1 + tan2 8 = sec2 8 and 
1 + cot2 8 = cosec2 8 remain true for all values of 8.

Example 4. Draw the graph of y = sin (2x + 2rr/3) from x = 0 to x =  In. Use your 
graph to find the positive values o f x which satisfy the equation 
x = 5 sin (2x + 2jt/3). (L.U.)
Working in radians, using tables and the relations of § 4.3, we can plot the 
graph shown in Fig. 15.

Plotting the graph of y = x/S on the same diagram, we find that the graphs 
intersect at three points A, B, C given by x = 0-48, 2-34 and 3-30 (approx.). 
These are the required positive values of x which satisfy the equation 
x = 5 sin (2x + 2rt/3).

EXERCISES 4(b)

1. Use tables to find the values of
(i) sin212°, (ii) co s(-110°), (iii) tan 1145°, (iv) sec 1327°.

2. If 90° <  A <  180° and sin A — 0-6, use tables to find the values of sin 2A
and cos 2A. (O.C.)

3. Find the pairs of angles between 0° and 180° which satisfy the equations
sin (x +  y) =  0-5, sin (x — y) =  —0-5. (L.U.)

4. If x is in degrees, draw on the same diagram the graphs of sin 2x and 1 — cos x
for values of x between 0° and 180°. Hence find an acute angle which satisfies 
the equation sin 2x =  1 — cos x. (O.C.)

5. By plotting tan x between 0 and n/2, show that the equation tan x =  2x
has a positive root less than rt/2 and find this root. Without any further 
exact plotting show that the equation has roots lying just short of 2it/2, 

57t/2, etc. (O.C.)
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6. Draw the graph of y = sin x + |  sin 3x for values of x between 0° and 180°. 
Hence find positive values of x less than 180° which satisfy the equation
sin x +  3 sin 3x — |  =  0. (O.C.)«

4.6. The solution of trigonometrical equations
Trigonometrical equations differ from algebraic equations in that 

they often have an unlimited number of solutions. Some equations 
can only be solved by graphical methods (see, for instance, Example 4, 
page 68). In such cases it is usually best to rearrange the equation 
so that the simplest trigonometrical graph is drawn. Thus in solving 
the equation x = 5 sin (2x + 2n/3) it is preferable to plot graphs of 
y — sin (2x + 27r/3) and y = x/5 rather than y = 5 sin (2x + ln/3) and
y =  x.

4] T R I G O N O M E T R I C A L  E Q U A T I O N S

Fig. 16

When a theoretical solution of a trigonometrical equation can be 
obtained, the equation can often be reduced to one of the forms 
sin 6 = c, cos 6 = c or tan 6 = c, where c is a numerical quantity. We 
now consider the solution of these three equations.

The simplest to deal with is tan 0 = c and we commence with this 
equation. Angles satisfying this equation are given by the abscissae 
of the points of intersection of the graph of y = tan 8 with a line 
parallel to the 0-axis and at distance c from it. Suppose that (Fig. 16) 
A, B, C, ..., B', C', . ..  are the points of intersection of the graph 
y = tan 0 with this line. The abscissae of all such points satisfy the 
equation tan 6 = c. Suppose one of these abscissae (for convenience 
the smallest numerical one is usually selected) is a°. This then is the 
abscissa of A. The abscissa of B is 180° + a°, that of C is 360° + a0, 
and so on for points to the right, while the abscissae of B\ C', ...  are 
—180° + a0, — 360c + a° and so on. All these results can be included 
in the formula (n x 180° + a°) where n is any positive or negative 
integer or zero. If a were quoted in radians instead of degrees we 
should write the formula (nn + a). Hence the general solution of the



70 P U R E  M A T H E M A T I C S [4

equation tan 8 = c is
(n x 180 + a) degrees or (nn + a) radians, 

where a is any solution of the equation, but generally taken for con­
venience to be the smallest numerical solution. As an example the 
general solution of the equation tan 8 = 1 is, since tan 45° = 1,

(n x 180 + 45) degrees or (n + radians.
If we deal with the solution of cos 8 =  c in the same way, Fig. 17 

applies. It should first be noted that since cos 8 always lies between 
±  1, there will be no solutions to an equation of this type for which

c is numerically greater than unity. Taking the smallest solution a° 
as the abscissa of the point A, other solutions given by the abscissae 
of points B, C, . ..  and B', C’, . ..  are 360° -  at°, 360° + a°, ... 
and -  a°, — 360° + a°, . ..  These are all included in the formula 
(n x 360° + a°). Thus the general solution of the equation cos 8 = c 
when - 1  < c < 1 is

(n x 360 ±  a) degrees or (Inn ±  a) radians,
Where n is any positive or negative integer or zero and a is any solution 
of the equation. As an example the general solution of the equation 
cos 8 = 1/2, since cos 60° = 1/2, is

F ig. 18

For the equation  sin 0 =  c, we again suppose th a t — 1 <  c <  1 and
Fig. 18 applies. T aking the sm allest so lu tion  a° as the abscissa of the
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point A, other solutions, given by the abscissae of points B, C, D, ... 
and B', C , . . .  are 180° -  a°, 360° + a°, 540° -  a0, . ..  and -  180° -  ct°,
-  360° + a°,...  The general formula including all these is n x 180° + 
(— l)"a°. Hence the general solution of the equation sin 6 = 'c when
— 1 < c < 1 is

(n x 180 + (— l)"a) degrees or (nn + (— l)na) radians, 
where again n is any positive or negative integer or zero and a is any 
solution of the equation. For example, the general solution of the 
equation sin 6 — 1/^/2 is, since sin 45° = 1/^/2,

(n x 180 + ( — 1)" x 45) degrees or radians.

Taking n = 0, 1, 2, 3, . ..  solutions are 45°, 135°, 405°, 495°, . ..  while 
n — — 1, —2, —3, ... gives the solutions —225°, —315°, —585°, ... 

To sum up, if a radians is one solution of the equation
(i) sin 6 = c, (— 1 <c<  1), the general solution is nn + (— lya, j

(ii) cos 9 = c, ( -  1 < c < 1), the general solution is 2nn ±  a, r(4.26)
(iii) tarn 6 — c, the general solution is rm + a, J
where n is any positive or negative integer or zero, and corresponding 
expressions for the solutions in degrees.

Many trigonometrical equations can be reduced to one of these 
forms and the general solution can then be written down. Examples 
are given below and further examples will be found in Chapter 5, 
page 83.

Example 5. Find all the angles less than four right angles which satisfy the equation 
2 cos2 # = 1 + sin 6. (L.U.)
Since cos2 9 = 1  — sin2 9, the equation can be written

2 - 2  sin2 9 = 1 + sin 9, or 2 sin2 9 + sin 9 — 1 = 0.
This is equivalent to (2sin# -  1)(sin9 + 1) = 0. Hence either sin# = 1/2 
giving # = n x 180° + (— 1)" x 30°; angles between 0° and 360° included in 
this are those for n = 0, n = 1, i.e. 30° and 150°; or sin # = —1 giving 
# = n x 180° + (—1)"( — 90°); the only angle between 0° and 360° in this is 
that for n = 1, i.e. 270°. Hence the required angles are 30°, 150° and 270°.

Example 6. Find all the angles which satisfy the equation 4 sec2 9 = 3 tan 9 + 5 .
(L.U.)

Since sec2 # = 1 + tan2 9, the equation can be written
4 + 4 tan2 # = 3 tan 9 + 5, or 4 tan2 # -  3 tan # -  1 = 0.

This is equivalent to (tan # — 1)(4 tan 9 + 1) =  0. One set of solutions 
corresponds to tan # = 1 and is # = n x 180° + 45°. The other corresponds 
to tan # = —1/4. From tables, the angle whose tangent is —0-25 is —14° 2', so 
that another set of solutions is given by

# = n x 180° -  14° 2'.
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Example 7. Find all the angles between 0° and 360° which satisfy the equation 
sin 20 = cos 30. (L.U.)
Since cos 30 = sin (90° — 30), we have sin 20 = sin (90° — 30) so that the 
general solution is 20 = n x 180° + ( — 1)" x (90° -  30). Putting n = 6, 2, 4, 6 
and 8 respectively gives

(i) 20 = 90° -  30 or 0 = 18°,
(ii) 20 = 360° + 90° -  30 leading to 0 = 90°,

(iii) 20 = 720° + 90° -  30 leading to 0 = 162°,
(iv) 20 = 1080° + 90° -  30 giving 0 = 234°, 

and (v) 20 = 1440° + 90° -  30 giving 0 = 306°.
Higher even values of n lead to values of 0 greater than 360° while odd positive 
values and negative even values of n all lead to negative values of 0. The value 
n — — 1, gives 20 = —180° — 90° + 30 leading to 0 = 270° and values like 
n = — 3, — 5, etc., give angles in excess of 360°. Hence the required angles are 
18°, 90°, 162°, 234°, 270° and 306°.

Example 8. Find the general value of 0, in degrees, which satisfies simultaneously the 
equations tan 0 = J3 , sec 0 = — 2. (L.U.)
If tan 0 = ^/3, the general solution is 0 = n x 180° + 60°; if sec0 = —2, 
cos0 = —1/2 and 0 = 2n x 180° + 120°. Solutions of the first equation are 
therefore —480°, — 300°, —120°, 60°, 240°, 420°, 600°, etc, while those of the 
second are -480°, -240°, -120°, 120°, 240°, 480°, 600°, 840°, etc. Values 
simultaneously satisfying the two equations are therefore —480°, —120°, 240°, 
600°, etc, all of which are included in the formula n x 360° + 240°.

EXERCISES 4 (c)

1. Find all the values o f 0 which satisfy the equation
2 tan 6 +  3 sec 0 = 4  cos 0. (L.U.)

2. Find the values o f x  between 0° and 360° satisfying the equation
10 sin2 x  +  10 sin x cos x — cos2 x  =  2. (L.U.)

3. Find the values o f A and B  between 0° and 180° which satisfy the equations
A — B  =  12° 18', cos (A + B) = 0-4457. (L.U.)

4. Give the general solution (in radians) o f the equation
cos (0 — tr/4) =  sin 20.

5. Find the general solution o f the equation 10 sec2 0 — 3 = 1 7  tan 0.
6 . What is the most general value o f 0 which satisfies both the equations 

tan 0 =  l/yjl and sin 0  =  —1/ 2 ?

EXERCISES 4 (d)
a2 — b2

1. If sin 0 =  —5-----r ,̂ find the values o f cos 0 and tan 0.a2 +  b2
2. Find the value of

sin2 A coseci^ -  AJ -  cot2i ^  — A J cos A. (L.U.)
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3.

4.
5.

6.

7.

8.

9.

10. 

11.

12.

13.

14.

15.

16.

17.

18.

19.
20 .

If 0 is an angle in the first quadrant and tan # =  t, express all the other 
trigonometrical ratios in terms o f t.
Find the values o f cos 3360°, cosec ( —840°). . (L.U.)
Prove the identity

(1 +  secx  +  ta n x )(l +  cosec x +  co tx )
=  2(1 +  tan x -f cot x  +  sec x  +  cosec x), 

and verify this result when x  =  nj4. (L.U.)

If tan2 a — 2 tan2 fi = 1, find the possible ratios o f cos a to cos p. (L.U.)

If sec 0 — cos 0 = a and cosec 0 — sin 0 = b, prove that 
a2b2(a2 +  b2 + 3) =  1.

Prove that 

Show that

cot a +  tan /? 
cot P  +  tan a

cot a tan p.

cos 0 — 1 

sec # +  tan #
cos 0 +  1 

sec 6 — tan 0 =  2(1 +  tan#).

Prove that
1 +  sin 0 

co s#
c o s#

1 — sin #
=  sec # +  tan #.

If x  cos # +  y sin # =  a and x sin # — y  cos # =  b, prove that

tan # =  k* and x 2 +  y2 = a2 + b2. (L.U.)ax — by
If tan # +  sin # =  x and tan # -  sin # =  y, prove that

(x2 — y2)2 = 16xy. (L.U.)
Plot on the same diagram the graphs of cos 2# and tan (40° — #) between 
0 = —20° and # =  60°. Hence find two approximate solutions of the 
equation cos 2# cot (40° — #) =  1.
Sketch the graph of y =  (7i/2) sin2 x  and use your graph to solve the equation 
2x = it sin2 x. (O.C.)
Find graphically the values of x between 0° and 180° which satisfy the 
equation sin x =  3 cos2 x. (O.C.)
Draw on the same diagram the graphs of 4 sin (x +  30°) and 2 +  tan x 
for values o f  x  from 0° to 360°. From your graphs obtain the solutions, 
within this range, o f the equation 4 sin (x +  30°) — tan x =  2. (L.U.)
Draw the graph o f y = 2 sin (x +  n/4) between x  =  —n and x — n. By 
drawing another graph, using the same scales and axes, solve approximately 
the equation 4x 2 +  16 sin2 (x +  rt/4) =  it2. (L.U.)
Find all the angles between 0° and 360° which satisfy the equation 
6  sin2 x  +  5 cos x — 1.
Find the general solution of the equation tan 3# =  cot 20.
Find the general values o f x  satisfying the equation 

4 cos x +  5 =  6  sin2 x.



21. Assuming r is positive, find r and a value of 6 between —180° and 180° 
to satisfy the equations r cos 6 = — 4, r sin 6 = 2-5.

22. Find all the angles between 0° and 360° which satisfy the equation
3 tan3 6 —3 tan2 0 = tan 6 — 1.

23. Find the general solution of the equation
(2 tan x — l )2 =  3(sec2 x — 2).

24. Find the general solution of the equation tan x tan 4x =  1.
25. Find the values of x, in radians, between 0 and 2n, which satisfy the equation

6 tan2 x — 4 sin2 x =  1. (L.U.)
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CHAPTER 5

ADDITION THEOREMS. MULTIPLE AND SUB­
MULTIPLE ANGLES. FURTHER TRIGONOMETRICAL 

EQUATIONS. THE INVERSE NOTATION.
SMALL ANGLES

5.1. The addition theorems for the sine and cosine 
We now consider formulae expressing the trigonometrical ratios of 

the sum of two angles in terms of the trigonometrical ratios of the 
separate angles. Such formulae are known as addition theorems and 
we start by deriving them for a restricted range of angles. Generalisa­
tion of the results to cover all angles can be made but the process is 
rather troublesome: a compact general method of derivation of the 
formulae making use of a result in coordinate geometry is available 
and this is given in Chapter 14, page 262.

Formulae for sin (A + B) and cos (A + B) for cases in which the 
angle (A -l- B) is acute can be obtained from Fig. 19. Here the angle 
AOB is A, the angle BOC is B, P is any point on OC and PM, PN are 
perpendicular to the lines OA, OB respectively. NH  and NK  are

Fig. 19

perpendiculars from the point N on to OA, PM  respectively. Since 
PM, PN are perpendicular to the arms OA, OB respectively of the 
angle AOB, the angle MPN  is A. From the right-angled triangle 
MPO,

OP sin (A + B) = MP = MK  + KP
= P N  + KP, (5.1)

since MHNK is a rectangle by construction. The right-angled triangle 
OHN gives HN = ON sin A, and the right-angled triangle ONP gives 
ON = OP cos B. Hence HN  = OP sin A cos B. Also, from the right-

75
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angled triangle PKN, KP — PN  cos A, while the triangle ONP gives 
PN = OP sin B. Thus KP = OP cos A sin B. Substituting for HN, KP 
in (5.1) and dividing both sides by OP, we have

sin (A + B) = sin A cos B + cos A sin B. (5.2)
The corresponding formula for cos (A + B) is obtained similarly; 

thus, from Fig. 19,
OP cos (A + B) = OM = OH -  HM  

= OH — NK.
Also OH = ON cos A and ON = OP cos B so that OH = OP cos A cos B. 
NK = PN sin A and PN  = OP sin B, giving NK  = OP sin A sin B. 
Substitution and division by OP leads to

cos (A + B) = cos A cos B — sin A sin B. (5.3)
The formulae for sin (A + B), cos (A + B) given in (5.2), (5.3) are

c

Fig. 20

the fundamental addition theorems. They have been derived only for 
the case in which the angle (A + B) is acute and Fig. 19 applies. For 
the case in which A and B are both acute but in which their sum 
(A + B) is obtuse, we should work from Fig. 20. The lettering has the 
same significance as in Fig. 19 but now M  lies on AO produced. We 
now have, from the triangle MPO

MP = OP sin MOP = OP sin (180° — A — B).
Since sin (180° — ff) = sin 0, this can still be written

OP sin (A + B) = MP = MK  + KP =  HN + KP, (5.4) 
and we obtain (5.2) in exactly the same way as before. The formula 
for cos (A + B) can be similarly extended to cases in which (A + B) 
is obtuse

The theorems can be extended to cases in which one of the angles, 
say A', lies between 90° and 180° as follows. Let A' = 90° + A, so 
that A is acute. Then since sin A' = sin (90° + A) = cos A and 
cos A' - cos (90° + A) = — sin A,
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sin (A' + B) = sin (90° + A + B)
= cos (A + B)
— cos A cos B — sin A sin B,

since A and B are both acute,
= sin A  cos B + cos A  sin B.

Similarly,
cos (A' + B) = cos (90° + A + B)

= — sin {A + B)
= — sin A cos B — cos A sin B 
= cos A  cos B — sin A  sin B.

Thus both the addition theorems are true when A  lies between one 
and two right angles. A similar argument holds if B is increased by 
90°. Hence the theorems are true for any angles between 0° and 180°. 
The argument can be extended to show that the theorems are valid 
for angles of any magnitude but the full proof becomes rather long. 
As stated previously, a much shorter proof for general angles can be 
given when an elementary result in coordinate geometry is available 
(see Chapter 14, page 262): for the present we shall take the theorems 
as applying to angles of any size.

By writing — B for B in the theorems, we have, using (4.10), the 
two results,

sin (A -  B) = sin A cos ( -  B) + cos A sin (— B)
= sin A cos B — cos A sin B, (5.5)

and
cos {A — B) =  cos A cos (—B) — sin A sin (— B) 

= cos A cos B + sin A sin B.

Example 1. Show that cos 15° = ^2^J2 ^

cos 15° = cos (45° — 30°)
= cos 45° cos 30° + sin 45° sin 30°

1 V3 1 1 V3 + 1
y/ 2 ~ 2 72 '2  2̂ /2

(5.6)

Example 2. Use the addition formula to show that cos (90° + A) = —sin A.
cos (90° + A) = cos 90° cos A — sin 90° sin A 

= — sin A,
since cos 90° = 0, sin 90° = 1.

5.2. The addition theorem for the tangent
By division, the addition theorems for the sine and cosine give

tan (A + B) = sin (A + B) 
cos (A + B)
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_  sin A cos B + cos A sin B 
cos A cos B — sin A sin B 

_  tan A + tan B 
1 — tan A tan B’

dividing numerator and denominator by cos A cos B.
Writing — B in place of B,

(5.7)

tan (A — B) = tan A + tan (— B)
1 — tan A tan (— B) 
tan A — tan B 
1 + tan A tan B (5.8)

Example 3. Show that tan (45° + A) =  ----- ——.
1 — tan A

. . . .  tan 45° + tan Atan (45° + A) = ---------- —------ -1 -  tan 45 tan A
1 + tan A 
1 — tan A’

since tan 45° = 1.

EXERCISES 5(a)

1. Show that cos (a +  ¡¡) cos (a — ff) = cos2 a — sin2 /?.

2. Prove that cot (A +  B) =  —■
cot A +  cot B

3. Show that

sin (A +  B + C) — cos A cos B cos C(tan A +  tan B
+  tan C — tan A tan B  tan C)

and deduce that, if A, B, C are the angles o f a triangle, then
cot A cot B  +  cot B  cot C +  cot C cot A = 1. (L.U.)

4. Show that a sin x + b cos x = ^J(a2 +  b2) sin (x +  ct) where tan a =  b/a.
5. If k cos 0 =  cos (0 — a), show that tan 0 =  k cosec a — cot a.
6. Prove that

sin (A — B) sin (jB — C) sin (C — A)
cos A cos B  cos B  cos C cos C cos A

5.3. Multiple angles
By writing B = A in the three addition formulae (5.2), (5.3) and 

(5.7) we obtain expressions for the sine, cosine and tangent of 2A in 
terms of the trigonometrical ratios of A. Thus, from (5.2)

sin (A A- A) = sin A cos A + cos A sin A, 
sin 2A = 2 sin A cos A.or, (5.9)
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The addition formula for the cosine, (5.3), gives similarly
cos 2A = cos2 A — sin2 A. (5.10)

By writing sin2 A = 1 — cos2 A, this can be written in the alternative 
form

cos 2A = 2 cos2 ,4 — 1, (5.11)
and by writing cos2 4  = 1 — sin2 A in (5.10), yet another equivalent 
form is

cos 2A = 1 — 2 sin2 A. (5.12)
Sometimes, particularly in the integral calculus, it is necessary to 
express sin2 A and cos2 A in terms of cos 2A. This can be done by 
rearranging the last two formulae to give

cos2 A = j{ 1 + cos 2A) and sin2 A = j( l  — cos 24). (5.13)
By writing B =  4  in the addition formula for the tangent (5.7) we 

have
„ . 2 tan 4  ,, . ..tan 24 =  ---- -— j- j . (5.14)1 — tan2 4

Expressions for the trigonometrical ratios of 34 can be obtained as 
follows. By writing B = 24 in (5.2) we have

sin 34 = sin (4 + 24)
= sin 4  cos 24 + cos 4  sin 24.

Substituting cos 24 = 1 — 2 sin2 4, sin 24 = 2 sin 4  cos 4  gives 
sin 34 = sin 4(1 — 2 sin2 4) + 2 sin 4  cos2 4, 

and, writing cos2 4  = 1 — sin2 4  we have, after slight reduction,
sin 34 = 3 sin 4  — 4 sin3 4. (5.15)

A similar process applied to the addition formula for the cosine, (5.3), 
gives

cos 34 = cos (4 + 24)
= cos 4  cos 24 — sin 4  sin 24 
= cos 4  (2 cos2 4  — 1) — 2 sin2 4  cos 4 
= cos 4  (2 cos2 4  — 1) — 2 (1 — cos2 4) cos 4 
= 4 cos3 4  — 3 cos 4.

Proceeding similarly from (5.7), we have 
tan 34 = tan (4 + 24)

_  tan 4  + tan 24 
1 — tan 4  tan 24

tan 4  +

1 — tan 4

2 tan 4  
1 — tan2 4  
/  2 tan 4  V 
vl — tan2 4 /

(5.16)



80 P U R E  M A T H E M A T I C S [5

using (5.14). After reduction this gives

tan 3 A = 3 tan A — tan3 A 
1 — 3 tan2 A (5.17)

5.4. Submultiple angles
By writing A = x/2 in the formulae of the last section we have, 

from (5.9),
sin x = 2 sin \x  cos jx, 

from (5.10), (5.11) and (5.12),
cos x = cos2 jx  — sin2 \x  

= 2 cos2 jx  — 1 ►
= 1 — 2 sin2 fx,

and from (5.14),

(5.18)

(5.19)

tan x 2 tan jx  
1 — tan2 jx (5.20)

These formulae enable us to express the sine, cosine and tangent 
of an angle in terms of the tangent of the half angle. If we write

t — tan |x , (5.21)
(5.20) gives immediately

tan x = 2f/(l -  t2). (5.22)
Formula (5.18) can be written

sin x = 2 tan ̂ x cos2 fx 
_ 2 tan ̂ x 

sec2 \x
_  2 tan 2“X _  2t

1 + tan2|x  ~ 1 + t2'
Also, from (5.19),

(5.23)

COS X = cos2 jx(l — tan2 jx)
1 — tan2yx 

sec2 jx
_  1 -  tan2 ^x _  1 -  t2 

1 + tan2|x  1 + t2' (5.24)

The three formulae
21 1 -  r2 21

sin x = y - j - p  cos x = tan x (5.25)

where t = tan |x  are useful in the solution of a certain type of 
trigonometrical equation (see p. 84). They also have other important 
applications.
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Example 4. Prove that C—- ~  — C0S ^  = 2 (cos 26 — cos 46). (L.U.)
cos 0 cos 20

cos 10 cos 60 _  4 cos3 0 — 3 cos 0 4 cos3 26 — 3 cos 20
cos 0 cos 20 cos 0. cos 20

= 4 cos2 0 — 3 -  (4 cos2 20 -  3)
= 4 (cos2 0 — cos2 20)
= 2 {(1 + cos 20) — (1 + cos 40)} = 2(cos2 0 — cos 40).

Example 5. I f tan 6 = 4/3 and if 0° < 0 < 360°, /¡nd, without tables, the possible 
values of tan \6  and sin \0.
Let t = tan|0, then 4/3 = tan0 = 2t/(l — r2), giving 4 -  4i2 = 61 or 
2r2 + 3t — 2 = 0. This gives (2r — l)(f + 2) = 0 leading to t = 1/2 or -  2, and 
these are the required values of tan \0.
To find sin \6, we have

t = tan \6  = sin 0̂ sec ̂ 0 = sin \0(\ + tan2 ^0)1'2, 
so that sin \6  = t/^Ji 1 + r2). With t = 1/2 this gives

sin 40 = (l/2)/V(l + 1/4) = 1/V5;
and with t = -2 , sin ^0 = — 2/,/(l + 4) = — 2/(±v/5) = 2/v/5 if 0 is to be less 
than 360° and therefore ^0 less than 180°.

EXERCISES 5 (b)

1. If tan2 a — 2 tan2 /? =  1, prove that cos 2a 4- sin2 /? =  0.
2. If t = tan {0, express the square root of

(1 +  sin 0)(3 sin 6 +  4 cos 0 + 5 )
in terms of t.

3. If sin 30 =  p and sin2 0 =  |  -  q, prove that p2 +  16q3 = 12q2.
4. Prove that 2 c o t\A  +  tan + =  tan A  cot2 ¿A.
5. If 2 cos 0 =  x + 1/x, show that 2 cos 30 =  x 3 +  1/x3.

1 ~  x
6. If sec A -  tan A = x, prove that tan \A  =  ------- .

1 +  x

5.5. The factor formulae
The addition formulae for the sine and cosine can be used to express 

sums and differences of sines and cosines as products. Starting from 
the addition formulae

sin (A + B) = sin A cos B + cos A sin B, 
sin (A — B) = sin A cos B — cos A sin B,

addition leads to
2 sin A cos B = sin (A + B) + sin {A — B), (5.26)

and subtraction gives
2 cos A sin B = sin (A + B) — sin (A  — B).

(L.U.)

(L.U.)
(L.U.)
(L.U.)
(L.U.)

(L.U.)

(5.27)
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Similarly the addition formulae for the cosine
cos (A + B) = cos A cos B — sin A sin B, 
cos (A — B) = cos A cos B + sin A sin B, 

give 2 cos A cos B = cos (A + B) + cos (A — B), (5.28)
and — 2 sin A sin B = cos (A + B) — cos (A — B). (5.29)
These four formulae express products as sums.

By writing A + B = C, A -  B = D, so that A = j(C  + D) and 
B = j(C — D) these formulae become

• sin C + sin D — 2 sin j(C + D) cos ̂ (C — D),J i l l  V  T o u t  1 /  X . 0 1 X 1  2 v ' “'' I 1 / /  v \ J O  2 V ' - / 1 / ) )

sin C — sin D = 2 cos |(C + D) sin \(C  — D),
cos C + cos D = 2 cos |(C  + Z>) cos |<C — D),
cos C — cos D = — 2 sin j(C + D) sin j(C — D).

(5.30)

These formulae, which express sums as products, are of great use and 
are often called the factor formulae. It is useful to remember the results 
in words; e.g., the sum of the sines of two angles is equal to twice the 
sine of half the sum of the angles multiplied by the cosine of half the 
difference of the angles and so on. The minus sign in the last formula 
should be noted.
_ . ,  „ , sin 3/1 sin 6A + sin A sin 2AExample 6. Prove that — —-----—---------------- -— = tan 5A.sin 3 A cos 6A + sin A cos 2A

Using (5.29) and (5.26),
sin 3A sin 6A + sin A sin 2A
sin 3/1 cos 6/4 + sin A cos 2A

_ -ico s9 /4  + £cos(-3/4) -  ^cos3/4 + |c o s (- /4 )
i  sin 9/4 + \  sin (-3/4) +  ̂sin 3/4 +  ̂sin ( — A)

cos A — cos 9A
- sin A + sin 9 A

-  2 sin )(A + 9/4) sin -  9/4) 
2 cos $(A + 9A) sin )(9A -  A)

sin 5A sin 4A
---- - —- = tan 5/4.cos 5/4 sin 4A

, using (5.30),

Example 7. Without using tables, prove that cos 165° + sin 165° = cos 135°. 
By the last of the factor formulae (5.30),

cos 165° -  cos 135° = -2sin^(165° + 1350)sin|(165° -  135°) 
= —2 sin 150° sin 15°
= —2 sin (180° -  150°) sin (180° -  15°)
= — 2 sin'30° sin 165°
= —sin 165°,

since sin 30° = 1/2. Hence cos 165° + sin 165° = cos 135°.

5.6. Further trigonometrical equations
The formulae of the last section enable certain trigonometrical
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equations to be reduced to equations of the form sin 0 — c, cos 0 = c 
or tan 8 = c, the general solution of which is known (Chapter 4, 
page 71). The following examples illustrate the methods.
Example 8. Find all the values of 0 which satisfy the equation 

cos p0 + cos (p + 2)0 = cos 0.
Using the third of the factor formulae, the equation can be written 

2 cos (p + 1)0 cos 0 = cos 0, 
or, cos0{2 cos(p + 1)0 — 1 ) = 0.

Hence either cos0 = 0, giving 0 = ^2n ± ^ r  or cos (p + 1)0 = ^

giving (p + 1)0 = ^2n ± i.e., 0 = ~ ^ ( 2n ±

Example 9. Find the general solution of the equation 2 sin 3x sin x =  1.
By formula (5.29), the equation can be written

— cos 4x + cos 2x = 1,
and using the formula 2 cos2 2x — 1 = cos 4x, we have

— 2 cos2 2x + cos 2x = 0 or cos 2x(2 cos 2x — 1) = 0,
so that either cos2x = 0 giving 2x = (2n±lfp t, i.e., x = (n ± i)x ; or 
cos 2x =  ̂giving 2x = (2n ± \)n, i.e., x = (n ±  %)n.

5.7. The equation a  cos 0  +  b  sin 6  =  c

The equation a cos 0 + b sin 6 = c in which a, b and c are supposed 
known numerical quantities, often occurs in practical applications. 
There are various methods of solution: here we shall consider two. 

In the first method, we divide by J(a2 + b2) and obtain
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b

a
F ig . 21

7 W T W ) C° s9 + V(u2 + b2) Sin6 = V(a2 + b2)
If we introduce an angle y whose tangent is b/a, a glance at Fig. 21 

shows that a/^Jia1 + b2) is cos y and b/J(a2 + b2) is sin y. Hence the 
equation can be written

c
7(«2 + b2)’

cos 6 cos y + sin 8 sin y =



or, c" (<,- ’,) - v/ ( / + t»)-
The equation has now been reduced to one of the standard forms 
whose general solution is known. Hence a general value of 9 — y can 
be written down and, since y is a known angle, 9 can be found. For 
real solutions to exist it is necessary for c to be numerically less than 
yj(a2 + b2). More precise details of the method of solution can be 
obtained from Example 10 below.

The second method makes use of the formulae (5.25), i.e., if t = tan j9  
then
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sin 9 = 2t
T + ~P

cos 9 = 1 -  t2
T T 1 2'

Substitution in tb'* given equation a cos 9 + b sin 9 = c and multiplica­
tion throughout by 1 + t2, gives

a(l -  t2) + 2bt =  c(l +  t2), 
or, (a + c)t2 — 2 bt — (a — c) =  0.
This quadratic equation gives two values of t (or tan \9) from which 
general values of 9 can be derived. Again precise details will be found 
in Example 10 where the equation is solved by both methods.

Example 10. Find the general solution oj the equation 2 cos 0 — sin 0 = 1.
Method (i) Dividing by 7 (2 2 + (— l)2} or y/5 we have 

2 „ 1 . „ 1 
7 5  CO« 7 5  Sm(? = 75-

Taking tan y — —1/2 so that, front tables, y -  —26“ 34', 2/75, —1/75 are 
respectively the cosine and sine of this angle and we have

cos 0 cos (— 26° 34') + sin 9 sin (— 26° 34') = 1/75,
or, cos (0 + 26° 34') = 1/75 = 0-4472.
Now the angle whose cosine is 0-4472 is 63° 26', so using the general solution 
given in (4.26),

6 + 26° 34' = n x 360° ± 63° 26'.
The positive sign on the right leads to the solutions 

0 = n x 360° + 36° 52',
while the negative sign gives 6 = n x 360° — 90°.

Method (ii) Writing sin 0 =  2i(l + tJ), cos 6 =  (1 — i2)/(l + t2), where 
t = tan ̂ 0, and multiplying throughout by 1 + t2, we have

2(1 -  t2) -  2r = 1 + t2, 
or, 3t2 + 2t — 1 =  0.
This can be written (t + l)(3t — 1) = 0. The root i = — 1 gives tan \0  = — 1, 
so that = n x 180° — 45° and 0 = n x 360° — 90°. The root t = 1/3 leads 
to tan = ), = n x 180° + 18° 26' and 6 — n x 360° + 36° 52' as before.



EXERCISES 5 (c)

1. Prove that sin A sin (60° — A) sin (60° +  A). =  £ sin 3A. (L.U.)
2. If A  +  B +  C =  180°, prove that

sin A  + sin B + sin C =  4 cos \A  cos \B  cos jC. (Q.E.)
3. If cos A — cos B =  p and sin A — sin B = q, express cos (A — B) and

sin {A +  B) in terms of p and q. (L.U.)
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4. Find all the angles between 0° and 360° which satisfy the equation
cos 0 +  sin 30 =  cos 26.

5. Find the general solution of the equation
sin 0 — sin 26 = sin 40 — sin 36.

6. Use the appropriate factor theorem to find the general value of x satisfying 
the equation cos px +  cos qx =  0.

7. Find all the angles between 0° and 360° which satisfy the equation
cos x + 7 sin x =  5.

8. Find the value of 6 less than 360° which satisfies the equation
3 cos 6 — 4 sin 6 =  5.

5.8. The inverse notation
If sin 9 = x  where x  is a given quantity numerically less than unity 

we know that 6 can be any one of a whole series of angles. Thus if 
sin 9 = 1/2, 6 = nit + (— l)"(?r/6) and 9 is “many-valued”. The inverse 
notation 9 = sin-1 x is used to denote the angle whose sine is x  and

the numerically smallest angle satisfying the relation x  = sin 9 is chosen 
as the principal value. Here and in what follows we shall deal only 
with principal values and understand the statement 9 = sin~1x to 
mean that 9 is the angle lying between — ir/2 and n/2 radians whose sine 
is x. The statement 9 = sin"1 x is read as 9 equals the inverse sine of
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x (or sine minus one x) and an alternative notation, more commonly 
used on the Continent, is 9 = arc sin x.

The graph of 9 = sin “ 1 x is, on this understanding, easily seen to 
be that part of the graph x = sin 9 given by — n/2 < 9 < n/2 with the 
x-axis horizontal and the 0-axis vertical. This is shown in Fig. 22.

In a similar way, 9 = cos-1 x will be taken to denote the smallest 
angle whose cosine is x. Since the cosine takes the same values for 
negative as for the corresponding positive angles and we require a 
notation which gives an unique value to 6 when x is given, we conven­
tionally take 9 to be the angle lying between 0 and n radians whose cosine

is x. For example, cos- 1 ^  and cos- 1 ( — ^ ) = The graph

of 9 = cos - 1 x is easily derived from that of x = cos 9 and is shown 
in Fig. 23.

Fig. 24

The inverse tangent is similarly defined but since, unlike the sine 
and cosine, the tangent can take all values, x is quite unrestricted in 
value. 9 — tan-1 x is taken to mean that 9 is the smallest angle whose 
tangent is x  and 9 lies between — n/2 and n/2 radians. Thus
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tan-1 (1) = tt/4 and tan-1 (—1) = — tt/4. The graph of 0 = tan"1* 
is given in Fig. 24.

The inverse cosecant, secant and cotangent are similarly Refined. 
In order that they may be single-valued, we choose cosec - 1 x to denote 
the angle between —n¡2 and n/2 whose cosecant is x while sec- I x 
and cot-1 x are taken to mean the angles lying between 0 and n 
radians whose secant and cotangent respectively are x.

It follows from these definitions that 
sin (sin- 1 x) = x, cos (cos- 1 x) = x, tan (tan- 1 x) = x, etc. (5.31)
and these relations will be found useful in some of the examples and
exercises given below Care should be taken to avoid confusion 
between the inverse sine, cosine, etc. of x and the reciprocals of sin x,

cosx, etc. The latter should always be written — or cosec x, —-—sin x cos x
or sec x, etc.

The general solutions of the three equations sin 9 = c, cos 9 = c, 
and tan 9 = c given in (4.26) can be compactly expressed in this inverse 
notation. Thus if

(i) sin 9 = c, (— 1 < c < 1), 9 = nn + (— 1)" sin- 1 c,
(ii) cos 9 = c, (— 1 < c < 1), 9 — 2nn ±  cos- 1 c, r  (5.32)
(iii) tan 9 — c, 9 = mi + tan- 1 c. J
Example 11. Show that

(a) cos~1 ( — x) = n — cos~ 1 x, (b) sin~l ( —x) = —sin~‘ x.
(a) (i) Suppose that x is positive and let 8 = cos- 1 x. Then 8 lies between 0 and 

n/2 and x = cos 8. Hence
— x = —cos8 = cos(n ~ 8), 

giving cos-1 ( — x) = n — 8 = n — cos-1 x.
(ii) If x is negative, let x = - y  so that y is positive. Then cos-1 (-> )
= n -  cos - 1 y by (i) above. Hence

cos- 1 x = n — cos-1 ( —x) 
and slight rearrangement gives

cos-1 ( — x) — it -  cos-1 x.
(iii) If x is neither positive nor negative, it must be Kto. Hence cos - 1 ( — x)
= cos" 1 (0) = it/2 and cos- 1 x = cos- 1 (0) = n/2, so that

n — cos- 1 x = n — \n  = = cos- 1 ( —x).
Hence cos - 1 ( —x) = n -  cos" ' v for all values of x (provided, of course, 
that x is not numerically greater than unity).

(h) The identity sin " 1 ( -  x) = -  sin " 1 x can be established in a similar way and 
is left as an exercise for the student.

Example 12. Show that cos~' x + sin~ 1 x = n/2.
(i) l et x be positive and let 8 = cos-1 x. Then 8 lies between 0 and n/2, and

5]
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x = cos ft Hence

x = cos ft — sin (^7t — ft),
giving sin' 1 x = — ft = \n  — cos" 1 x, '
and the required result follows.
(ii) Let x be negative and let x = — y so that y is positive. By (i) above, 
cos' 1 y + sin' 1 y = n/2 giving cos' 1 ( -x )  + sin“ 1 ( -x )  = a/2. But, by 
Example 11,

cos' 1 ( —x) = n — cos' 1 x and sin' 1 ( -x )  = - s in ' 1 x,
so that

n — cos' 1 x — sin' 1 x = n/2, 
giving cos' 1 x + sin' 1 x = n/2.
(iii) If x is neither positive nor negative, it must be zero. Hence

cos' 1 x = cos' 1 (0) = n/2 and sin' 1 x = sin' 1 (0) = 0, 
giving cos' 1 x + sin“ 1 x = n/2.
Hence the identity cos' 1 x + sin“ 1 x = n/2 is valid for all values of 
x ( - l  < x < 1).

Example 13. Show that tan~1 (1/3) + sin~1 (1/75) = n/4.
Let a = tan ' 1 (1/3X fi = sin' 1 (1/^/5), so that tan a = 1/3 and sin ft = 1/^/5. 
Hence ft is the angle shown in the right-angled triangle (Fig. 25) in which the

height is 1 and the hypotenuse is JS. The base is — 1) or 2 and we. deduce 
that tan ft = 1/2. Hence

t a n '1 (1/3) + sin' 1 (1/^/5) = a + ft
= tan ' 1 (tan (a + /S)}, by (5.31),
= tana+jan^)

U — tan a tan ft)

= tan 1 (1) = n/4.

EXERCISES 5(d)
1. Evaluate sin' 1 (1/72), cos' 1 (-73/2), sec' 1 2 and cot' 1 (73).
2. Show that tan' 1 (-x) = - ta n ' 1 x.
3. Prove that tan' 1 x + cot' 1 x = n/2.
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4.

5.

6.

7.

8.

Prove that 2 sin 1 =  sin 1

Show that cos - 1 (ff) +  2 tan - 1 (̂ ) =  sin - 1 (j).
If all the angles are acute, show that

cos-1  x +  cos-1  y =  cos-1  [xy — ^{(1  — x2)(l — y2)}].
Show that there is a positive value of x which satisfies the equation 
tan- 1 (2x +  1) +  tan- 1 (2x — 1) =  tan- 1 2, and find this value.
By drawing the graphs of y =  tan x and y =  2x show that the smallest 
positive root of the equation tan - 1 2x =  x is the circular measure of an 
angle of about 67°.

5.9. Small angles
If we plot on the same diagram the graphs of sin 0, 0 and tan 6

Fig. 26
for values of 0 in radians a figure like Fig. 26 results. It is apparent 
that for 0 < 6 < n/2,

sin 0 < 0 < tan 0, (5.33)
and that these three quantities are approximately equal to one another 
for small values of the angle 0.

Fig. 27
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These inequalities and approximations can also be inferred from 
Fig. 27 in which the chord PQ subtends an acute angle 9 at the centre O 
of a circle of radius r. The tangent to the circle at P meets OQ pro­
duced at T. If OX is the bisector of the angle POQ it will bisect the 
base of the isosceles triangle POQ at right angles at X. Hence 
OX = r cos ¿9, PQ = 2PX = 2r sin \9  and the area of the triangle 
POQ = \PQ.OX  = j(2r sin \9 .r  cos \d) = j r 2 sin 6. The area of the 
sector POQ is 5r2 0 (where 0 is in radians) and since OPT is a right 
angle, PT  = r tan 0 and the area of the triangle OTP

= ±O P.PT= ir2 tan 8.
From the figure,
area of triangle POQ < area of sector POQ < area of triangle POT, 
or, \r 2 sin 0 < \r 2 0 < jr2 tan 0,
which, on division by jr 2 give

sin 0 < 0 < tan 0.
It is also clear that the areas of the three figures considered approach 
equality as the angle 6 diminishes.

Dividing the inequalities (5.33) by sin 0 we find 1 < 0/sin 0 < 1/cos 0, 
and this can be written 1 > (sin 0)/0 > cos 0. This in turn can be 
written

0 < 1 - sin 0
~ i r < 1 — cos 0.

Since 1 — cos 0 = 2 sin2 j0  and since sin 0 < 0, sin k0 will be less than 
\0  so we have I — cos 9 < 2(\9)2 or 1 — cos 9 < j92. Hence

0 < 1 - sin 9 < t f 2,

and 1 — (sin 9)/9 can therefore be made as small as we please by making 
9 sufficiently small. Another way of expressing this is to write

sin 9

where e is a quantity which we may make as small as we please by 
taking 9 to be sufficiently small. Still another way of expressing the 
same thing is to say that the limit of (sin 9)/9 as 9 tends to zero is 
unity or, symbolically

lim. = 1. (5.34)

We also infer from the foregoing that when 9 is small, sin 9 is 
approximately equal to 9 (in radians). Also, since cos 0 = 1 —2 sin2 \0  
and since sin \9  is approximately equal to \9, an approximate value 
of cos 9 when 9 is small will be 1 — 2%9)2 or 1 — \92. A coarser
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approximation will be cos 0 = 1  for small 9. As examples, consider 
the values given by these approximations when the angle is 4°. The 
radian measure of 4° is 0 0698 so that the approximation sin 0 = 6 
gives sin 4° = 00698, while the approximation cos 9 = 1 — J02 gives 
cos 4° = 1 — j(0 00487) =  0-9976. Both of these values are correct to 
four decimal places.

5]

Example 14. The elevations of the top Q of a flagstaff PQ from three distant points 
A. B,C which are in a horizontal line with P are 9, 29 and 39 respectively. Prove 
that AB = 2BC approximately. (L.U.)
The three right-angled triangles CPQ, BPQ, APQ give

F ig . 28
Since the points A, B, C are all far from P, the angles 9, 29,29 will all be small. 
The cosines can therefore be replaced approximately by unity and the sines by 
the angles in radian measure. Hence we can write approximately

C P __1 _  E£ £E-A_ a —  —
QP ~ 2ff Q P + Q P ~ 29 “  QP + QP + Q P ~ 9'

Subtracting the first of these relations from the second and the second from the 
third we shall have approximately

b c  d
QP ~ 29 39 ~  69 QP ~ 9 29 ~  29'

By division we then have AB/BC = 3, approximately.

Example 15. Find an approximate value of the acute angle which satisfies the equation
sin 9 = 0-52.

Since sin 9 is nearly equal to 0-5, 9 must be nearly n/6 radians. Let 6 — ^ (
6

where t is therefore small. Then
_ (n \  . i t  n .0-52 = sin I -  + 1 1 = sin -  cos t + cos -  sin t.

\6 / 6 6

Since sin (7r/6) = 1/2, cos (n/6) = f2 /2 , and, because f is small, cost = 1,
sin t = t approximately, we have
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giving 

Hence t
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£ = - j -  x 002 = 00231. 
v 3

00231 radians or 1° 19' approximately and 6 = 31° 19'.

1.
2.

3.

4.

5.

6.

1.
2.

3.
4.
5.

6.

7.
8.

9.

10.

EXERCISES 5 (e)

Find an acute angle which approximately satisfies the equation sin 0 =  0-48.
The diameter of the bull’s eye of a certain target is 0-0254 m. At what distance 
will it subtend an angle of 30 minutes?
In a right-angled triangle ABC, C is the right angle, the side BC — a and the 
side AC =  b. Show that the angle ABC lies between b/yj(al +  b2) and 
b/a radians.
Assuming that sin 6 =  6 — kO3, where k is a numerical constant, is a sufficient 
approximation to the value of sin 0 when 6 is a small angle, use the formula 
sin W =  3 sin 6 — 4 sin3 6 to show that k =  1/6. (This result gives, of course, 
a better approximation than sin 6 =  6.)
Prove that the perimeter of a regular polygon of n sides inscribed in a circle 
of radius R is 2nR sin (njn) and use the approximation of Exercise 4 above 
to find the difference between this perimeter and the circumference of the 
circle when R =  30 m, ti =  200.
Prove that if 0 < 6  < n/2, sin 8 > 0 — $03.

EXERCISES 5 ( / )

Prove that tan (45° +  0) — tan (45° — 0) =  2 tan 20.
If tan a =  a/(a +  1) and tan /? =  l/(2a +  1) find the smallest value of the 
angle a +  fi.
Show that sin (a + P) sin (a — fJ) =  sin2 a — sin2 fi.
Express tan {A +  B +  Q  in terms of tan A, tan B and tan C.
Prove that

sin a sin fi 
cos a +  cos P

a p  2 tan -  tan ~ ______2 2

1 — tan2 -  tan2 -
2 2

(Q.E.)

Prove the identity
(sin 2a — sin 2P) tan (a +  P) = 2(sin2 a — sin2 P). (L.U.)

If tan =  cosec x — sin x, prove that tan2 |x  =  — 2 ±  j5 .  (L.U.)
If sin 0 + sin 20 = a and cos 6 + cos 20 - b, prove that

(a2 +  b2){a2 + b2 -  3) =  2b. (L.U.)
Prove that

tan a +  tan (60° +  a) +  tan (120° +  a) =  3 tan 3a. (L.U.)
Prove that

sin3 A +  sin3 (120° + A) + sin3 (240° + A) = —f  sin 3/4. (L.U.)
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11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21 .

22.

23.

24.
25.

Establish the identity
sin 0 +  sin (0 +  a) +  sin (0 +  2a) +  sin (0 +  3a)

=  4 sin ^0 +  cos a cos (L.U.)

Prove that
sin 3x +  2 sin 5x sin2 x +  sin lx  =  cos x(sin 6x +  sin 4x). (L.U.)

Prove that

2 cot 2/4 cot |/4
cos A 1 +  cos A 

1 — cos A cos A
(L.U.)

Find all the angles between 0° and 180° (inclusive) which satisfy the 
equation cos x — cos 7x =  sin 4x. (L.U.)
Solve the equation 10 sin2 0 — 5 sin 20 =  4, giving the values of 0 between 
0° and 360°. (L.U.)
Solve the equation 2 sin 0 +  3 cos 0 =  — 1, stating all solutions for the 
range 0 < 0 <  In. (Q.E.)
Solve completely the equation sin 30 cos 30 — cos2 20 + \ = 0. (L.U.)
Find a pair of angles lying between 0° and 180° and satisfying the equations
sin A +  sin B =  0-95, A -  B = 120°. (L.U.)
Find all the angles between 0° and 360° satisfying the equation
sin 2 0 — 2 cos 20 =  sin 0 — 2 cos 0 +  2. (L.U.)
If tan 0 =  A tan (A — 0), show that

(A — 1) sin A =  (A +  1) sin (20 — A).
Hence, or otherwise, find the values of 0 between 0° and 360° which satisfy 
the equation tan 0 = 2  tan (60° — 0). (L.U.)
Find two values of 0 less than n/2 satisfying the equation 

8 sec 0 — 4 tan 0 =  7.
Write down the general solution of the equation. (L.U.)
Prove that

4 tan 1 (j) -  tan 1 (5^ )  =

Prove that
cot- 1 (5) =  cot" 1 (3) +  cos" 1 (j).

Find x from the equation tan ' 1 2x + tan" 1 3x = n/A.
If 0 is an acute angle such that cos 0 =  1 — x, where x is so small that 
x2 is negligible compared with unity, prove that cos 20 =  1 — 4x and 
cos 30 =  1 — 9x approximately. (L.U.)



CHAPTER 6

RELATIONS BETWEEN THE SIDES AND ANGLES 
OF A TRIANGLE. THE SOLUTION OF TRIANGLES. 

HEIGHTS AND DISTANCES

6.1. Notation
A triangle has six parts or elements—three sides and three angles. 

If A, B' and C are used to denote the angles of the triangle, it is con­
ventional to denote the sides opposite these angles by the corresponding 
small letters a, b and c respectively (Fig. 29).

c

The sides of a triangle are independent of one another except for 
the fact that the sum of any two of them must be greater than the 
third. The angles, however, are not independent. Since the sum of 
the angles of any triangle is 180°, the third angle is known if two angles 
are given. There are thus five independent elements in a triangle, 
three sides and two angles. Later in this chapter we shall see that if 
three elements of a triangle, one at least of which is a side, are known, 
the other three can be found. The process of calculating the unknown 
elements of a triangle when three of its elements are given is termed 
the solution of the triangle.

The early part of this chapter is devoted to the derivation of 
relations between the sides and angles of a triangle. In the later 
sections, the arrangement of the computations involved in the numerical 
solution of triangles is discussed and examples are given of some prac­
tical applications to problems in heights and distances.

6.2. The sine formula
Let 0  be the centre of the circle circumscribing the triangle ABC. 

Join BO and produce it to meet the circle again at D. Join DC. 
Figs. 30, 31 apply respectively when the angle A of the triangle ABC 
is acute or.obtuse. In both diagrams, the angle BCD, being the angle 
in a semi-circle, is a right angle. In Fig. 30, the angle BDC is equal 
to the angle BAC in the same segment, while in Fig. 31, the angle BDC 
is equal to the supplement of BAC, since the points B, A, C and D

94
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are concyclic. If R is the radius of the circumcircle so that BD = 2R, 
the right-angled triangle BCD gives,

in Fig. 30, BC = 2R sin A,
in Fig. 31, BC = 2R sin (180° -  A) = 2R sin A.

Hence in both cases, since BC = a, a = 2R sin A.
By joining AD instead of DC we could prove similarly that 

c = 2R sin C. By starting our construction from C, instead of B, we

could show in the same way that b = 2R sin B. These three results
can be displayed in the formula

a b c ..
- —T = - r - 5 = 2 R, (6.1)sin A sin B sin C

a result usually known as the sine formula. In certain cases (see for 
instance, page 105) this formula enables the solution of a triangle to 
be carried out and it also enables the radius R of the circumcircle of 
a given triangle to be found.

6.3. The cosine formula

CA, or CA produced, of the triangle ABC. The first diagram applies 
when the angle A is acute, the second when A is obtuse. In each figure 
the right-angled triangle DAB gives

BD = c sin A.
In Fig. 32, DA = c cos A and CD = CA — DA = b — c cos A. 
In Fig. 33, AD = c cos DÂB = c cos (180° — A) = — c cos A
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and CD = CA + AD = b — c cos A.
Applying Pythagoras’ theorem to the right-angled triangle DCB in 
either figure,

CB2 = CD2 + BD2, 
or, a2 -- {b -  c cos A)2 + c2 sin2 A

= b2 — 2be cos A + c2 (cos2 A + sin2 A), 
which, using the identity sin2 A + cos2 A = 1, gives

a2 = b2 + c2 — 2bccosA. (6.2)
The two similar formulae

b2 = c2 + a2 — 2ca cos B, 
c2 = a2 + b2 — 2ab cos C,

can be similarly derived. These are the cosine formulae and are useful 
in the solution of triangles when at least two sides are given (see 
page 109).
Example 1. In a triangle ABC, prove that a2 = (fc — c)2 + 4be sin2 \A  and hence

that a = (6 — c) sec if) where tan <j> = (L.U.)
b — c

Since cos A = 1 — 2 sin2 jA, the cosine formula
a2 = b2 + c2 — 2be cos A

gives
a2 = b2 + c2 — 2bc(l — 2sin2 /̂4) 

= (b -  c)2 + 4bc sin2 $A.
Using the given expression for tan <f>, this can be written

a2 = (b -  c)2 + (b — c)2 tan2 
= (b — c)2 (1 + tan2 <f>)
= (b — c)2 sec2 0,

leading to a = (b — c)sec</>.

Example 2. Prove that in any triangle ABC, sin (A -  B) 
sin (A + B) (L.U.)

From the sine formula, a = 2R sin A,b = 2R sin B, c = 2R sin C, so that after 
dividing numerator and denominator by 4R1,

a2 — b1 _  sin2 A — sin2 B sin2 A — sin2 B 
c2 sin2 C sin2 (A + B)

since C = 180° — A — B and hence
sin C = sin (180° — A — B) = sin (A + B).

This can be written
a2 -  b2 _  (sin A + sin B)(sin A -  sin B)

C2 sin2 (A + B)
_  2sin)(A + B) cos \{ A — B) 2 cos)(A + B) sin j(A — B) 

2 sin KA + B) cos ){A + B) sin (A + B)
using (5.30) and (5.9).
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This simplifies to
a2 -  b2 2 sin — B) cos %{A — B) sin (A — B) 

sin (A + B)

2.

3.

c2 sin (A + B)
EXERCISES 6 (a)

1. With the usual notation for a triangle ABC, prove that
a cos A + b cos B = c cos (A — B). (L.U.)

With the usual notation for a triangle ABC, show that c2 can be expressed 
in the form

(a + 6)2(1 — k2 cos2 jC), 
and obtain the value of k2.
Prove that in a triangle ABC with circumcircle of radius R, 

a cos A + b cos B + c cos C = 4R sin A sin B sin C.
4. If, in a triangle ABC, ab = c2, prove that

cos (A — B) + cos C + cos 2C = 1.
5. With the usual notation for a triangle ABC, prove that

(b +  c) tan jA  -  (b — c) cot \A  — 2b cot B.
6. Prove, in the usual notation for a triangle, that if

b + c c + a a + b 
T T  = 12 = 13 ’

then,
sin A sin B sin C . cos A cos B cos C

and ^  = - ^  =  - 25-

(L.U.)
6.4. The area of a triangle

Let A denote the area of the triangle ABC and, in. Fig. 34, let BD

be the perpendicular from B on to AC. Then since BD c sin A
~2 U L  sili /l. (6.3)

In the same way we could show that A =  jca  sin B or %ab sin C.
a \abc

A =  jC A . BD =  t be sin A.

By writing (6.3) in the form 

formula (6.1) as
sin A -, we could rewrite the sine

sin A sin B
c „ „ abc—■—y, = 2R =  sın C 2A

(6.4)
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To find an expression for the area of a triangle in terms of the sides 
alone, we have from (6.3),

2be sin A = 4A,
and from the cosine formula (6.2),

2be cos A = b2 + c2 — a2.
Squaring and adding, and using sin2 A + cos2 A =  1, these give 

4b2c2 = 16A2 + (b2 + c2 — a2)2, 
so that A2 = 7g{(4h2c2 — (b2 + c2 -  a2)2}

= 75(2 be + b2 + c2 — a2)(2bc — b2 — c2 + a2)
= i6{(b + c)2 -  a2}{a2 -  (b -  c)2}
= i%(b + c + a)(b + c — a)(a — b + c)(a + b — c).

If we write
2 s = a + b + c, (6.5)

so that s is half the perimeter of the triangle, this can be written 
A2 = ^5.2s.(2s -  2a)(2s -  2b)(2s -  2c), 

or, A = y/{s(s — a)(s — b)(s — c)}. (6.6)

Example 3. The sides of a triangle are in arithmetical progression and its area is 3/5ths 
that, of an equilateral triangle of the same perimeter. Prove that its sides are in 
the ratio 3:5:7.
Let the sides of the triangle bex — d, x, x + d. If Zs is its perimeter, 2s = 3x. 
From (6.6) the square of its area

- ? ( r — 4
For the equilateral triangle of the same perimeter each side will be x and the 
square of its area

3x/3x \ /3 x  \ / 3 x  \  3x4
= TVT _ /  \T  _ 7  \T  ~ XJ = T6'

Hence |x 2(ix2 -  d1) = ^  x ^ x 4,
giving ¿x2 -  d2 -  t̂ x2.
Thus d2 = (i -  ito)«2 = i^fex2,
so that d = 4x/10 = 2x/5. Hence the sides of the triangle are (x — 2x/5), 
x and (x + 2x/5) or 3x/5, x, 7x/5, which are in the ratio 3:5:7.

6.5. The radius of the inscribed circle
Let /  be the centre of the inscribed circle and D, E, F the points 

of contact of the circle with the sides BC, CA, AB of the triangle ABC. 
Then
area triangle BIC + area triangle CIA + area triangle AIB

= area triangle ABC = A.
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If r is the radius of the inscribed circle, the heights of the triangles
4

BIC, CIA, AIB are each r and their bases are respectively a, b and c. 
Hence

|r a  + jrb + jrc = A, 
or since j(a + b + c) = s,

rs = A,
giving r = A/s. (6.7)
This formula, together with (6.6) enables the radius of the inscribed 
circle to be found in terms of the three sides of the triangle.

Alternative expressions for r can be found as follows. Since AI 
bisects the angle CAB, the angles AFI, IEA are right angles and 
AI is common, the triangles AFI, IEA are congruent and AE = AF. 
Hence

2 AE = AE + AF
and similarly 2BD = BD + BF,

2 CD = CD + CE.
By addition

2 AE + 2 {BD + CD) = AE + AF + BD + BF + CD + CE 
or 2AE + 2BC = perimeter of the triangle ABC.
Hence 2 AE + 2 a = 2s,
giving AE = s — a.
In the right-angled triangle IEA, the angle EA1 is \A  and since
IE = r.

giving r = (s — a) tan ¿A.
Similarly we can show that r = (s — b) tan ¿B, r = (s — c) tan jC, and, 
combining these with (6.7), we have
r = (s — a) tan \A  = (s — b) tan \B  = (s — c) tan \C  = A/s. (6.8)

Yet another expression for r can be obtained by starting from the 
relation (see Fig. 35), BD + DC = BC = a. Now the angle DBI is
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jB  and the angle DCl is \C, so that the right-angled triangles DBI, 
DCI give

DB — rcot^B, DC = rcot jC.
Hence r{cot^B -f cot|C} = a.
This can be written

(cos\B  cosjCl _
[sin \B  + sin jCJ a’

giving
r{sinjC cos|B  + cos^Csin^B} = asin^Bsin^C, 

or, r sin |(B + C) = a sin \B  sin jC.
Since A + B + C = 180°,

¿(B + C) = 90° -  $A, 
sin j(B + C) = sin (90° — | A) = cos %A.

Also, from the sine formula (6.1),
a = 2R sin A = 4R sin\A  cos\A.

Hence
r cos jA  = 4B sin\A  cos\A  sin jB  sin ^C, 

giving, r = 4B sin\A  sin \B  sin \C. (6.9)

6.6. The radii o f the escribed circles
Let I ! be the centre of the escribed circle touching BC internally at

A

D, and AB, AC externally at Fu E t respectively. Let the radius of this 
circle be r t. Then, Fig. 36,
area triangle B ItA + area triangle Cl ¡A — area triangle B /XC

= area triangle ABC = A. 
The heights of the triangles B/,T, C/j/4, B/,C are each r t and their 
bases are respectively c, b and a. Hence

jr ,c  + \ r tb -  j r {a = A, 
j r t(c + b — a) = A.or,
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Since 2s = a + b + c, c + b — a = 2s — 2a, and therefore
rj(s — a) = A.

A *
Hence r, = -------, (6.10)s — a
and we can derive similar formulae r2 = A/(s — b), r3 =  A/(s — c) for 
the radii of the escribed circles opposite B and C respectively.

Since, from (6.7), A = rs, this can be written
rs
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and use of (6.8) for r then gives
rt = s tanj/l. (6.11)

Similarly we can show that r2 = s tan \B  and r3 = s tan \C.

Example 4. In a triangle ABC, r„  r2, r3 respectively denote the radii of the three 
escribed circles. Prove that r2r3 + r3rI + r ,r2 = s2, where 2s = a + b + c.

(L.U.)
Since r2 — A/(s — b), r3 — A/(s — c), r2r3 = A 2/(s — i>)(s — c). But 
A2 = s(s — a)(s — b){s — c) so that r2r3 = s(s — a). Similarly

Hence
r3r, = s(s — b) and r ,r2 = s(s — c).

r2r3 + '■3''! + r j i  = s(s -  a) + sis -  b) + s(s -  c) 
= s(3s — a — b — c)
- s(3s — 2s) = s2.

EXERCISES 6 (b)
1. If E is the middle point of the side CA of the triangle ABC  and if A is the 

area of the triangle, prove that
BC2 -  BA2 „cot AEB = ----- —-----. (L.U.)4A

2. If A is the area and R  the radius of the circumcircle of the triangle ABC, 
prove that cos A + cos (B — Q  = 2A/aR.

3. If A is the area and r, r lt r2, r3 are respectively the radii of the inscribed and 
the three escribed circles of a triangle, prove that A = (rr1r2r3)1/2.

4. If r, r„ r2, r3 are respectively the radii of the inscribed and the three escribed
circles of a triangle and if R  is the radius of the circumcircle, prove that 
r3 + r2 + r3 -  r = 4R. (L.U.)

5. If r u r2, r3 are respectively the radii of the three escribed circles of a triangle 
ABC and if R  is the radius of the circumcircle, prove that

rx = 4R sin \A  cos \B  cos |C, r2 = 4R  cos\A  sin $B cos \C, 
r3 = AR cos \A  cos \B  sin %C.

6. Hr, rlt r2, r3 are respectively the radii of the inscribed and the three escribed 
circles of a triangle ABC, prove that

r lr2r3 = r3 cot2 cot2 cot2 %C. (L.U.)
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6.7. Formulae for the angles of a triangle in terms of the sides 
By rearranging the cosine formula

a2 = b2 + c2 — 2be cos A
in the form

cos A = (b2 + c2 -  a2)/2bc,
we can express the angle A in terms of the sides of a triangle. This 
formula is not, however, well suited to computation by logarithms 
and we develop alternative formulae as follows.

From the formula (6.8) we have
tan \A  =  r/(s — a).

Using (6.7), r — A/s, so that

<612>
and using the expression (6.6) giving the area in terms of the sides, 
we have

ta n iA = V M  ~ <0(* ~ b)(s ~ c))
2 s(s -  a) ’

- y{4 r^}- <6-13>
The corresponding formulae

- V fW }
can be similarly derived.

If in (6.12) we use the formula A = jbcsinX instead of (6.6) we
have

. , .  be sin A be sm {A cos\Atan jA  = —-------- = ------ r-s-----,
2s(s -  a) s(s — a)

giving

or, (6.14)

Multiplication of (6.13) and (6.14) gives

(6.15)

and, of course, there are form ulae corresponding to  (6.14), (6.15) for
the angles B  and  C.
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Example S. Prove that in a triangle ABC,

-  cos2 -A  + 7 cos2 -B  + -  cos2 -C  = a 2 b 2 c 2
(a + b + c)2 

4abc
From (6.14) and the two similar formulae,

-  cos2 \A  4—  cos2 iB  -1—  cos2 |C  =
s(s — a) + s(s -  b) + s(s -  c) 

abc
3s2 — s(a + b + c)

abc
3s2 -  2s2 

abc
s2 (a + b + c)2

abc 4abc
6.8. The tangent formula

We now derive another set of formulae which are useful in the 
numerical solution of triangles. Starting from the sine formula (6.1), 
b = 2R sin B, c = 2R sin C, and after division of numerator and 
denominator by 2R, we have

b — c _  sin B — sin C 
b + c sin B + sin C

_  2 cos %(B + C) sin — C) 
2 sin ̂ (B + C) cos j(B — C) 

= cot \{B 4- C) tan \(B — C).

and since ^ B  + C) = 90° -  \A , this can be written

Hence

tan (6.16)

The two corresponding formulae

tan j

can be similarly derived.
Example 6. Prove that in any triangle ABC,

Working as in § 6.8, we have
b — c sin B — sin C

sin A
sin B — sin C 
sin (B + C) '

a
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since A - 180° — B — C. This can be written
b — c _  2 cos + C) sin KB — C)

a 2 sin KB + C) cos KB + C) ‘
_  sin KB -  C) _ sin KB -  C) 

sin KB + C) cos {A '
since KB + C) = 90° — \A. The result follows immediately after multiplication 
by cosf/4.

EXERCISES 6 (c)
1. With the usual notation for a triangle ABC, show that

2 .
sin A — —,/{s(s — a)(s — 6)(s — c)}.

2. Prove that in any triangle ABC,
(a + b + c)(tan ¿/l +  tan jB) =  2c cot \C.

3. Show that in a triangle ABC,
b + c =  a cos K-B — C) cosec\A .

4. Show that in a triangle ABC, if2s = a + b + c,
1 — tan jA  tan \B  — (L.U.)

s
5. Assuming the cosine formula for a triangle ABC, prove that

6. If in a triangle ABC,

tanfl= (|“ )tan im­

prove that a = (b — c) cos jA  sec 9.

(L.U.)

(L.U.)

6.9. Summary of formulae for the triangle
The more important relations between the sides, angles and area of 

a triangle and the radii of its associated circles are here collected for 
reference.

If R is the radius of the circumcircle, r that of the inscribed circle, 
rv r2 and r3 the radii of the three escribed circles, A the area of the 
triangle and 2s = a + b + c, then

2 R = abc
sin A sin B sin C 2A ’

a2 = b2 + c2 — 2be cos A,
A = -  a)(s -  b)(s -  c)},

tan |(B  -  C) =  ( ^ ~ )  cot \A ,

(6.4)

(6.2)

(6.6)

(6.13)

(6.16)
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r = A/s = (s — a) tan = (s — b) tan jB  = (s — c) tan \C, (6.8)

r, = ——— = stan^A, (6.10, 6.11)
s — a

and similar relations for r2, r3.

6.10. The numerical solution of triangles
When three elements of a triangle, one at least of which is a side, 

aré given the other three can be found. The sine and cosine formulae
(6.4), (6.2) are all that are required to effect the calculation but some 
improvement in the numerical work involved can be made in certain 
cases by using the half angle formula (6.13) or the tangent formula
(6.16). However, we shall start by giving examples in which only the 
sine and cosine formulae are employed.

It is advisable to set out the computational work in a systematic 
manner and to employ checks whenever possible. Some suggested 
lay-outs are shown in the examples given in the following paragraphs.

6.11. Examples of the use of the sine formula
(i) One side and two angles given

In this case the remaining angle can be found immediately from the 
fact that the sum of the angles of a triangle is 180°. Suppose the given 
side is c, then since the angle C is known, the diameter 2R of the 
circumcircle can be found from

The remaining sides a and b can then be calculated from 
a = 2R sin A, b = 2R sin B,

the angles A and B being known. The adaptation of the method to 
the case where either of the sides a or b is given instead of c should 
cause no difficulty.

Example 7. Solve the triangle in which
c = 26-83 m, A = 80° 30',

C = 180° — (A + B)
= 180° -  (80° 30' + 40° 12')
= 180° -  120° 42 = 59° 18'.

2R = c/sin C = 26-83/sin 59° 18'. 
a = 2R sin A = 2R sin 80° 30'. 
b = 2R sin B = 2R sin 40° 12'.

The required solution is therefore 
C = 59° 18', 
a = 3-77 m, 
b = 2014 m.

B = 40° 12'.
No. log.

26-83 
sin 50° 18'

1-4286
Î-9344

2 R
sin 80° 30'

1-4942 
1-9940

a = 30-77 1-4882
2 R

sin 40° 12'
1-4942
1-8099

b = 20-14 1-3041
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F ig. 37
(ii) Two sides and the non-included angle given (the ambiguous case)

To fix ideas, we shall take b, c as the given sides and B as the given 
angle. The angle C can be found from the sine formula in the form

. „ c sin Bsin C = — r— • (6.17)

Various possibilities may arise.
(a) The side b may be sufficiently small for b < c sin B. This would 

require sin C to be greater than unity and no triangle will exist 
with the given values of b, c and B. This is illustrated in Fig. 38.

(b) The given values b, c and B may be such that b = c sin B. In this 
case, sin C =  1 and C = 90°. Here the triangle is right-angled at 
C (Fig. 39). Since, when one angle of a triangle is a right angle the 
other two are necessarily acute, this case can only occur when 
B < 90°.

(c) When b, c and B arc such that b > c sin B, sin C < 1 and there 
will be two values of C (less than 180°) which can satisfy equation
(6.17). One of these values of C, say C„ will be acute and the other, 
C2, will be obtuse. We now have to enquire if both these values 
give possible solutions.

If B is obtuse, then it is the only obtuse angle of the triangle and the 
angle C2 must be excluded as a possible solution.
If B is acute, values of C greater than 90° are not immediately excluded. 
If, however, b > c, such values are excluded on the grounds that the 
angle C would then be greater than the angle B and the greater angle
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would be opposite the lesser side. 
For the case B < 90°, b < c, both 
values C„ C2 of C are possible 
(Fig. 40). This case gives rise to two 
possible triangles ABCU ABC2 and is 
often called the ambiguous case.

To sum up, when the sides b, c and 
the angle B of a triangle are given, we 
have to consider the following cases.
(a) b < c sin B. There is no solution.

(b) b = c sin B. There is one solution and the triangle is right-angled 
at C.

(c) b > c sin B. If B ^  90°, there is one solution and C is the acute 
angle derived from equation (6.17). If B < 90° and b > c, there 
is one solution and C is the acute angle derived from (6.17). If 
B < 90° and b < c, there are two possible triangles ABCly ABC2, 
the angles C„ C2 being respectively the acute and obtuse angles 
satisfying equation (6.17).

A

Once C has been found, the remaining angle and side are then 
found as in Example 7. In the ambiguous case there will be two values 
au a2 of the side a to be found corresponding to the two values A ly 
A2 deduced for the angle A. Some numerical examples follow.
Example 8. Is there a triangle in which b = 5, c = 7 and B 

the triangle.
The value of C is given by

c sin B 7 sin 48° 35'
smC = — -  = ------ 5------

This leads to a value of log sin C of 0 0212 and 
hence sin C = 105. Since this is greater than unity, 
there is no possible triangle with the given sides 
and angle.

= 48° 35' ? I f so, solve

No. log.
7 0 8451

sin 48" 35' ¡•8751
0-7202

5 06990

sin C 00212

Example 9. Solve the triangle in which b = 5-6, c = 70 and B = 53° 8'.
Here

. _ 7 sin 53“ 8'
MnC=— *6—

This gives log sin C = 0, sin C = 1 and C = 90°. 
The remaining angle A is given by

A = 180° -  (B + C)
= 180° -  (53° 8' + 90°) 
= 36° 52'.

For the side a, we have

a = —-.sin A sin C sin 90' .sin 36° 52'

= 7 sin 36° 52' = 4-2.
The solution is therefore A — 36° 52', C = 90°,

No. log.
7

sin 53° 8'
0-8451
¡9031

56
0-7482
0-7482

sin C 0-0000

7
sin 36° 52'

0-8451
¡•7781

a = 4-200 0-6232

a = 4-2.
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Example 10. Solve the triangle in which b = 24-93 m, c = 1210 m, B = 122° 51'.
Here

. _ 12-1 sin 122° 51' 12-1 sin 57° 9'sin C = -------------------= ----------------- .24-93 24-93 ’
since sin 122° 51' = sin (180° -  122° 51').

No. loga
12-10 

sin 57° 9'
1-0828
Ï-9244

Hence log sin C = 1-6105, giving C = 24°4', an 
obtuse value for C being impossible as B is greater 
than 90°. 24-93

1-0072
1-3967

A = 180° -  (B + C) sin C ¡■6105
= 180° -  (122° 51' + 24° 4') 
=  33° 5'.

12-10 
sin 33° 5'

1 0828 
Ï-7371

c . . a = ——- s in  A sm C sin 24° 4'
0-8199
Î-6105

-  .sin 33° 5' 16-20 a = 16-20 1-2094
sin 24° 4'

The solution is therefore
A = 33° 5', C = 24° 4', a = 16-20 m.

ample 11. Solve completely the triangle in which b = 2-718, c =  3-142, B = 54° 18.
(L.U.)

Here

sin C = 3142 sin 54° 18' 
2-718

Hence log sin C = 1-9725 giving C i = 69° 5T and 
C2 = 180° -  69° 51' = 110° 9', since this is the 
ambiguous case in which B < 90° and b < c. If 
we denote the angles BAC„ BAC2 respectively by 
Aj and A2 we have

No. log.
3-142 

sin 54° 18'
0-4972
Ï-9096

2-718
0-4068
0-4343

sin C i-9725
3-142 

sin 55° 51'
0-4972
Î-9178

sin 69° 51'
0-4150
Ï-9725

a, = 2-770 0-4425
3-142 

sin 15° 33'
0-4972 
Ï -4283

sin 110° 9'
I 9255 
Ï-9725

a2 = 0-8974 Ï 9530

(i) A, = 180° -  (54° 18' + 69° 51') = 180° -  124° 9' = 55° 51'.

3-142 sin 55° 51'
By the sine rule, if BC, = a„

c
sin C, sin A, = : sin 69° 51' = 2-770,



6 ] USE O F  T H E  C O S I N E  F O R M U L A 109

and
(ii) A2 = 180° -  (54° 18' + 110° 9') = 180° -  164° 27' = 15° 33', so that if 

BC2 = a2,
c 3142 sin 15° 33'

a2 = ——— sin A2 = -----:— —  = 0-897.sin C2
The required solution is therefore,

sin 110° 9'

A = 55° 51', C = 69° 51', a = 2-770, 
A = 15° 33', C = 110° 9', a = 0-897.

6.12. Examples of the use of the cosine formula
(i) Two sides and the included angle given 

Suppose for example that the two sides b, c and the included angle A 
are given. The side a can be calculated from the cosine formula

a2 = b2 + c2 — 2be cos A,
tables of squares and square roots being useful in the arithmetical 
work. The remaining angles B and C can then be found from the 
sine rule arranged as

sin B = b sin A 
a and sin C = c sin A 

a
Since all the sides are known, any question of the values of the angles B 
and C is settled by taking angles which are in the same order of magni­
tude as the sides opposite them. Alternatively, once one of the angles 
B or C has been found from the sine formula, since A is given, the 
other can be found from the fact that the sum of the angles is 180°.
Example 12. Solve the triangle in which b = 10*67 m, c — 2 \1  m, A — 44° 46'.

a1 = b1 + c1 — 2be cos A
= (10-67)2 + (21-7)2 -  2 (10-67)(21-7) cos 44° 46'
= 584 8 -  328-8 = 256-0. 

a = 160 m.
b sin A 10-67 sin 44° 46'

Hence, Jog sin B = 1-6718. Since the 
angle B, being opposite the smallest 
side, is necessarily acute, this gives 
B = 28° 1'.
C = 180° -  (A + B)

= 180° -  (44° 46' + 28° 1')
= 180° -  72° 47' = 107° 13'.

The required solution is therefore,
B = 28° 1', C = 107° 13', a =  160 m.

No. log.

b1 = (10-67)2 
c2 = (21-7)2

113-9
470-9

b2 + c 2 548-8

2b = 2 x 10-67
c

cos A

21-34
21-7

cos 44° 46'

1-3292
1-3365
1-8512

2bc cos A 328-8 2-5169

b
sin A

10-67
sin 44° 46'

10282
1-8477

a 160
0- 8759
1- 2041

sin B Ï-6718
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(ii) Three sides given
When all three sides are given, the angles can be found from the 

cosine formula arranged in the form *
b2 + c2 — a2 

A = ------2be----- '
with corresponding formulae for cos B and cos C. Alternatively, one 
of the angles can be found in this way and the other two found from 
thesine formula.
Example 13. Solve the triangle in which a = 16m, b = 10-67 m, c — 21-7 m.

(10-67)2 + (21-7)2 -  (160)2 
2(10-67) (21 7)

A = 44° 46'.
B and C then follow as in Example 12.

No. log.
b2 = (I0-67)2 
c2 = (21-7)2

113-9
470-9

b2 + c2 
a2 = (160)2

584-8
256-0

b2 + c2 — a2 328-8

2li = 2 x  10 67 
c

21-34
21-7

1-3292
1-3365

2 be 2-6657

b2 + c2 -  a2 
2 be ,

328-8 2-5169
2-6657

cos A 1-8512

EXERCISES 6 (d) 
Solve the triangles in which:—

1. c = 15 6 m. B = 34° 20', C =  62° 9'.
2. a = 0-5 m, b = 0-7 m A =  62°.
3. a = 17 00 m, b = 21-42 m, B = ST  34'.
4. b =  107-2 m, c =  76-69 m, B = 102° 25'.
5. b = 15-6 m, c =  12-3 m, C = 34° 20'.
6. a = 7 00 m, b =  3 59 m, C =  47°.
7. a = 0-17 m, 6 =  0-11 m, c =  0T0 m.
8. Find the third side and the radius of the ci 

which a =  6-324, b =  8-222, C =  64° 32'.

6.13. Example of the use of the tangent rule
As shown in the last paragraph, when two sides and the included 

angle are given a triangle can be solved by using the cosine formula 
to find the remaining side and then the sine formula for the remaining 
angles. The cosine formula is not, however, well suited to work with 
logarithms. Unless the given sides are two-figure numbers and there­



fore easy to square, it is best to use the tangent formula to deal with 
this case.

Suppose the sides b, c and the angle A are given. Then the tangent 
formula (6.16)

tan -  C) = c ° t K

enables j(B -  Q  to be found. Since j(B  + C) = 90° — jA , we can 
then find B and C by addition and subtraction. The remaining side a 
is then found from the sine formula.
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Example 14. Solve the triangle in which b = 10-67 m, c = 21-7 m, A = 44° 46'. 
Here b < c and it is best to rewrite the tangent formula as

Hence

Hence

tan ^(C

tan^C

- C - 3 )c o t-A .

21-7 -  10-67B) ----------------- cot 22° 23’ 21-7+10-67
11-03
32-37 cot 22° 23'.

HC -  B) = 39° 37'.
Also,

f(C + B) = 90° -  {A
= 90° -  22° 23' = 67° 37'.

By addition and subtraction,
C = 107° 14', B = 28°.

21-7 sin 44° 46'a = ——-  sin A = : sin C
21-7 sin 44° 46'

sin 107° 14'

= 16-0.sin 72° 46'
Hence the required solution is

B = 28°, C = 107° 14', a = 16-0 m.

No. log.
11-03

cot 22° 23'
1-0426
0-3853

32-37
1-4279
1-5101

tan HC -  B) ¡•9178
21-7

sin 44° 46'
1-3365 
T-8477

sin 72° 46'
1-1842 
i -9801

a 1-2041

6.14. Alternative methods of solution of triangle with three sides given
The cosine formula, rearranged so that the angles are expressed 

in terms of the sides, is again not well suited to work with logarithms. 
If all three angles are to be found it is probably best to use formula 
(6.13),

and the two similar formulae for B and C. To save repetition in the 
logarithmic work, this can be written
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■“ iA=r h  7f " ̂ : b)is ~ I . <6is)
with corresponding expressions for B and C. The logarithm of the 
expression under the square root sign has only to be worked out once 
and the log tangents of the half angles then follow by subtracting 
log (s -  a), log (s -  b) and log (s -  c).

Alternatively, the angles could be calculated from (6.14) or (6.15),

- W M .
or from

sin A = 2A/be

= ~ aHs -  fcHs ~ c))>

a formula which is easily deduced from (6.4) and (6.6).

Example 15. Solve the triangle in which a = 16, b = 10-67, c = 21-7.
We first find s from the formula

2s = a + 6 + c.
Then form (s — a), (s — b), 
(s -  c).
A check is provided from 
(s — a) + (s — b) + (s -  c) = s. 
We then find

log {(s -  a)(s -  b)(s -  c)/s) 
by adding the logarithms of 
(s — a), (s — b), (s — c) and 
subtracting that of s. The 
logarithm of the square root 
of this quantity follows by 
division by two, and the angles 
are found from (6.18) and two 
similar formulae. From the 
working on the right we find
|/4 = 22° 24', A = 44° 48',
1B = 14° r ,  B = 28° 2',
|C  = 53° 36', C = 107° 12'.
There is a final check that the
sum of the angles should be 
180°. As there is a possible 
error of at least half a minute 
in each angle due to the use of 
four-figure tables, the slight 
differences between the angles 
found here and those in 
Examples 12 and 13 and the 
slight difference of A + B + C 
from 180° is not surprising.

No. log.

a 16
b 10-67
c 21-7

2s = sum 48-37
5 24-19

s — a 8-19 0-9133
s — b 13-52 1 1310
s -  c 2-49 0-3962

(s -  a)(s -  b)(s -  c) 2-4405
s 24-19 1-3836

(s — a)(s -  b)(s — c)/s 1-0569

n/ { ( s -  a)(s -  b)(s -  c)/s) 0-5285
5 — Q 0-9133

tan \A 1-6152

sJUs -  a)(s -  b)(s -  c)/s} 0-5285
s — b 1-1310

tan \B 1-3975

s j{(s -  u)(s -  b)(s -  c)/s} 0-5285
5 — C 0-3962

tan {C 0-1323
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EXERCISES 6(e)

1. Calculate the remaining angles of a triangle in which two sides are 13-45 m, 
54-31 m and the included angle is 67° 24'.

2. Find the angles of a triangle whose sides are 10-4, 12-8 and 17-6 m.
3. In a triangle a =  4-832 m, b = 2-186 m, A — B =  34° 16'. Solve the triangle.
4. In a triangle ABC, b = 6-27, c = 4-32, A = 51°. Calculate the angles B and 

C and the length of the internal bisector BD of the angle ABC. (L.U.)
5. The sides a, ft, c of a triangle are respectively (k2 + k + 1), (2k +  1) and 

(k2 — 1) where k > 1. Show that the angle A is 120°.
6. Find the area of a triangle having sides of length 322-2 m, 644-7 m and

432-1 m. (Q.E.)

6.15. Heights and distances
In the work of the surveyor and in navigation, elementary trigono­

metry finds an important application. It is often possible by measuring 
certain distances and angles to calculate other distances and angles 
which cannot be measured directly. Such calculations are usually 
simply practical applications of the formulae relating to the sides and 
angles of a triangle. We give below a few typical examples explaining 
the few technical terms used in this type of work as they occur.

Example 16. The angle of elevation of the top of a vertical tower from a point A is a. 
From a point B, in a direct line between A and the foot of the tower and at distance 
d from A, the angle of elevation to the top of the tower is /?. Find the height of the 
tower.
The angle of elevation of the top T of the tower from A is the angle the line 
AT makes with the horizontal through A and the foot of the tower. If the 
level of T had been below that of A we should speak of this angle as the angle 
of depression.

T

t

T

In the diagram, TT' is the tower, T being the top and T' the foot. ABT' is 
horizontal, TT' vertical, the angle AT'T  is a right angle, the distance AB is 
d and the angles of elevation a, /? of T from A and B are as shown.
Applying the sine formula to the triangle ABT, since the external angle T'BT
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is equal to the sum of the angles TAB, BTA and therefore the angle BTA is 
P -  a, we have
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TB
sin a

giving TB = -7

sin (P — a)’ 
d sin a

sin (P -  a)'
The right-angled triangle TBT' now gives for the height of the tower

T V  = TB sin /?
_ d sin a sin ft 

sin (p -  a) '
Thus, by measuring two angles and one distance, this formula will enable the 
height of an inaccessible object to be found.

Example 17. The angle of elevation of the top T of a vertical tower from a point A 
is a. B is a second point on the same level as A and the foot of T  of the tower. 
B is not in the straight line joining A and the foot of the tower and the distance 
AB is c. The angles TAB, TBA are measured and found to be y and S respectively. 
Derive a formula giving the height of the tower in terms of a, y, S and c.

Fig 4.1
From the triangle ABT,

A T ____ c
sin <5 sin ATB

Since the angle ATB is 180° — y —  <5, this gives
csin<5¿j- —______

sin {y + S)
The right-angled triangle ATT, gives

TT' = AT  sin a,
_ c sin a sin S 

sin (y + <5)’
when the expression for AT is substituted.

Example 18. A and B are two posts on one edge of a straight canal and C is a post on 
the opposite edge; AB = 110 m, the angle CAB = 43° 20' and the angle 
CBA = 65° 52'. Find the width of the canal to the nearest metre.
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Eli.. 44

The angle ACB = 180 -  43 20' -  65 52'
= 180 -  109 12' = 70° 48'.

From the triangle ABC
AC _ 110 sin 65 52' 

sin 70 48
If CD is perpendicular to AB. the right-angled 
triangle ADC gives

CD = AC sin 43 20
110 sin 65 52 sin 43 20' 

sin 70 48

N u ' log

1 It) J 1)414
Mn 54 ¡■4603
M i l  43 20 i 8365

1 8382
m u  70 48 ¡ 4751

CD  = 72 96 1 8631

= 73 m

EXERCISES 6 ( / )
I.

2.

3

4.

An aeroplane is observed at the same instant from three stations A. B. C 
in a horizontal straight line but not in a vertical plane through the aeroplane. 
If AB =  BC = c and the angles o f elevation from A. B. C are respectively 
t, fi, y prove that the height o f the aeroplane is

cn/2
(cot^ » + cot* y - 2 cot^ /0 l i ’

An aeroplane is observed simultaneously from two points .4 and B. at the 
same level. A being at a distance c due north of B. From A (he bearing of 
the aeroplane is 0 east of south at an elevation i and from B  the bearing is

4> east of north. Show that the aeroplane is at a height and
sin (0 + <f>)

find its elevation from B. (L.U.l
A vertical rectangular hoarding 2-4 m long and 3 m high, is held in position 
by four equal stay ropes, two attached to each top corner, the bottom end 
of each rope being fixed to a point in the ground. If these four points are the 
vertices o f a square o f side 3-6 m, calculate the length of each stay and its 
inclination to the horizontal. (L.U.)
The base A of a vertical tower AB. of height h. and the base .Y of a vertical 
flagpole X Y. of height H. are on level ground, and H > h. The angles of 
elevation of V from A and B  are i and fi respectively. Prove that 

H = h sin t cos ft cosec ( » - / / )
Taking h = 40 m. > -  30 and // -  10 . find the angle of elevation of 

B from X. giving your answer to the nearest tenth of a degree. (O.C.)
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A straight path rises at an angle 0 to the horizontal; O, P and Q are three 
points on the path, P being higher than 0, and Q higher than P ; the distance 
OP is x ft. At Q there is a vertical pole QR, the height of R above Q being h 
ft. Prove that, if QR subtends angles a and fi at O and P respectively, then

h = x sin a sin fi
sin (fi — a) cos ff 

Prove also that the height of R above the level of O is 
x sin fi sin (a +  6)

(O.C.)sin (fi -  a)
6. A tripod consists of three rods AB, AC and AD which are 100 m, 100 m and

125 m long respectively. The ends B, C and D of the three legs stand on a 
horizontal plane; D is equidistant from B and C and 50 m from the line 
BC. Find the height of the apex A above the ground, given that the angle 
BAC is 25°. (Q.E.)

7. A, B, C are three towns: B is 10 kilometres from A in a. direction 47° E. of
N .; C is 17 kilometres from B in a direction 20° N. of W. Calculate the 
distance and direction of A from C. (O.C.)

8. A horizontal tunnel AB is bored through a ridge in a direction perpendicular 
to the line of the ridge, and a path goes from A to B over the ridge. Show 
that if / is the length of the tunnel, and a, /? are the inclination of the two 
portions of the path to the horizontal, the height of the ridge above the 
tunnel is

/ sin a. sin fi 
sin (a +  fi)'

What is the length of the path if / =  1000 m, a = 10° and fi — 7j°? (O.C.)

EXERCISES 6 (g)

1. Assuming that, in any triangle ABC,
sin A sin B sin C

a b c

2.

, a + b — c . , , „
prove that ----- :-----= tan jA tan \B.a +  b + c 2 2
Calculate the value of c for the triangle in which

a + b =  18-5 m, A = 72° 14', B =  45° 42'. 
If in any triangle ABC

sin 0 = V ( f c c )
b + c cos jA,

(O.C.)

prove that (b +  c) cos 0 =  a.
For the case b = 123, c =  41-2, A = 40° 50', find the value of sin 6 and 

hence the value of a. (L.U.)
3. In a triangle ABC, perpendiculars from the vertices to the opposite sides 

are AD, BE, CF. Find the angles of the triangle DEF in terms of those of
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the triangle ABC  and prove that the perimeter of the triangle DEF is

a cos A + b cos B + c cos C. (L U.)
4. Prove that in a triangle ABC,

a2 + b2 + c2 =  2(be cos A + ca cos B + ab cos C).

5.

6 .

In a triangle ABC, X  is the mid-point of the side BC. Prove that
2b sin C

and that

sin A X B  = 

sin X Â C  —

J & b 1 +  2c2 -  a2)’ 
a sin C

V(2b2 + 2c2 -  a2)'

The area of a triangle is 336 m2, the sum of the three sides is 84 m and 
one side is 28 m. Calculate the lengths of the other two sides. (L.U.)

7. The angle A of a triangle ABC  is 60° and the area of the triangle is equal 
to that of an equilateral triangle with sides of length x. Show that
b2 + c2 -  a2 = x 2.

8. In the triangle ABC  the incentre and circumcentre are at the same distance 
from the side BC. Prove that

4 sin %A sin \B  sin =  cos A,
and deduce that cos B + cos C =  1. (L.U.)

9. The radii of the incircle and circumcircle of the triangle ABC  are r, R 
respectively. Prove that the area of the triangle ABC  is 

r2 cot {A  cot \B  cot \C .
If the tangents at A, B, C to the circumcircle meet in D, E, F, prove that 
the area of the triangle DEF is

R 2 tan A tan B tan C. (L.U.)

10. Prove that the area of a triangle ABC  is 2R 2 sin A sin B sin C where R is 
the radius of the circumcircle.

If r is the radius of the circle inscribed in the triangle ABC, and if DEF 
is the triangle formed by joining the points of contact of the inscribed 
circle with the sides, prove that
(i) the area of the triangle DEF is 2r2 cos \A  cos \B  cos \C  ;

(ii) the radius of the circle inscribed in the triangle DEF is
2 r cos\A  cos \B  cos \C  ( LU)

cosj.4 +  cos {B + cos^C'

11. O is the centre and R the radius of the circle circumscribing the triangle 
ABC. AO, BO and CO meet the opposite sides in L, M, N  respectively. 
Show that

(i)
Jr b sin C

AL ~ cos (B -  C)’

(ii) AL + BM  + CN
2
R (L.U.)
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12. In any triangle ABC  prove that
b — c _  — C)

a cos jA
The inscribed circle of the triangle ABC  touches BC at E and one of the 
escribed circles touches BC at F. If 6 >  c, prove that BE = s — b and 
EF — b — c, where 2s =  a +  b +  c.

If A = 36° 42', a = 4-32 and EF  =  1-67, calculate the lengths of b and c.
(L.U.)

13. In the triangle ABC, prove that c cos j(A  — B) = (a + b) sin |C .
If the sum of the lengths of two sides of a triangle is 21, the length of the 

third side is 15 and the angle opposite the third side is 52°, solve the triangle 
completely. (L.U.)

14. If 2s =  a + b + c, show that the area of the triangle ABC  is given by 
s2 tan |/4 tan \B  tan jC .

Find the angles and area of a triangle whose sides are 4T3, 3-28 and 
I -67 metres.

15. In a triangle ABC, prove that
a2 + b2 — c2tan B cot C = -=-----------5.
a2 -  b2 + c2

16. Find the difference between the areas of the two possible triangles ABC
in which A = 29° 13', a =  51-47 m, b =  102-3 m. (Q.E.)

17. In a triangle ABC, a =  18-9 m, b = 12-2 m, A — B =  37°. Find the values
of A and c. (L.U.)

18. The sum of two sides of a triangle is 0-337 m and the included angle is 
56° 24'. Calculate the remaining angles when the third side is 0-163 m.

(L.U.)
19. Find all the sides and angles of a triangle ABC  of which the area is 1008 m2 

and in which a = 65 m, b + c =  97 m.
20. The sides AB, AC  of a triangle ABC  are equal to one another. The per­

pendicular from A on to BC  is 4 m and that from B on to AC  is 2 m. Find 
the angle ABC  and the area of the triangle.

21. A, B ,C  and D are four landmarks on the same horizontal level. B  is 4 km
N. 31° E. from A; C is 6 km S. 10° 15' E. from B; D is 3 km E. from C. 
Calculate the distance and bearing of D from A. (L.U.)

22. From a point A, due south-east of a tower, the elevation of the top of the 
tower is observed to be 32°. From A the observer walks in a straight line 
100° west of north for 320 m and finds that he is then due south-west of 
the tower. Assuming that the foot of the tower and the line of the observer’s 
walk are in the same horizontal plane, find the height of the tower.

23. From a point A a beacon on a mountain is observed on a bearing 64° 6'
east of north and at an angle of elevation of 10° 12'. From another point, 
at a distance of exactly 5 kilometres from A  and at the same level, the 
bearing of the beacon is 30° 45' east of north and its elevation is 6° 18'. 
Find the height of the beacon above A. (Q.E.)



24. Two towers A and B on a level plain subtend an angle of 90° at an 
observer’s eye. The observer walks directly towards B a distance of 630 m 
and then finds the angle subtended to be 143° 24'. Find the distance of the 
tower A from each position of the observer.

25. At a point in the horizontal plane through the base of a circular tower, the 
elevation of the top of the tower is fi and the elevation of the highest point 
of a flagstaff which stands on the top of the tower in the centre is y. At a 
point a ft nearer the tower, the highest point of the flagstaff is just visible 
above the edge of the tower at an elevation a. Prove that the height of the 
flagstaff is

a sin2 <x sin (y — fi) cosec (a — f!) cosec (a — y).
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CHAPTER 7

INTRODUCTION TO THE IDEAS OF THE 
DIFFERENTIAL CALCULUS

7.1. Functions and functional notation
When two variable quantities x and y are so related that the value 

of one quantity y depends on the value of the other x, then y is said 
to be a function of x. The relation containing the two variable quan­
tities may be a simple formula such as y = 4x2 + x + 2 or y = sin x, 
or the relation may be expressed by means of a graph. Sometimes 
the graph relating two variable quantities is available but it may be 
impossible (or very difficult) to express the relationship by a formula. 
For example, a recording barometer gives a record showing the atmo­
spheric pressure p plotted against the time t—the record displays p as 
a function of t but it is not generally possible to express p in terms of 
t by a formula.

A means of expressing that y is a function of x when the formula 
connecting the two variable quantities is not known or when we are 
dealing with a general rather than a particular function of x is to write 
y = /(x), y = (j>(x) or y = F(x). This notation does not mean that 
y is /  multiplied by x but is simply an abbreviation for the words 
“function of x”. The different letters f  <j>, F, ... are used to denote 
dilferent functions.

If y = f{x) and we wish to specify y for a given value of x, say 
x = 3, we write the result as /(3). For example, if/(x) = 4x2 + x + 2, 
/(3) = 4 x 32 + 3 + 2 = 41 and this is the value of y when x = 3. 
Similarly, if <£(x) = sin x, 4>(n/4) = sin n/4 — 1/^/2.

Functions such as we have considered above are termed explicit 
functions. The variable quantity x is called the independent variable. 
The second variable y, whose value depends on that given to x, is 
referred to as the dependent variable.

Sometimes the relation between two variable quantities x and y is 
given in a form such as

x2 + y2 = 2x, or x + y + cos y = 4; 
these are called implicit functions. In the first example given above 
we could solve for y and obtain

y = yf(2x -  x2),
and in this form, y is an explicit function of x. In the second example 
it is not possible to find y explicitly as a function of x. We shall be 
concerned in this book chiefly with explicit functions.
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A function like y = x2 is a single-valued function of x—since, to 
a given value of x, say x = 4, there corresponds one and only one value 
of y (y — 42 = 16). On the other hand, a function like y =a N/x *s a 
two-valued function—for a given value of x, say x = 4, there are two 
values y = ±2 which satisfy the given relation. In general, if to a 
given value of x there corresponds more than one value of y, y is said 
to be a multi- or many-valued function of x.

7.2. The gradient of a curve
It is often helpful to depict the variation of a function by means 

of its graph. Suppose, to fix ideas, we consider the simple explicit 
function y = x2. The graph is easily drawn and is shown in Fig. 45.

We notice that as x increases from zero through positive values, y 
increases. The reverse is true when x increases to zero from negative 
values. We could describe the changes in y as x increases by saying 
that y decreases so long as x < 0 and that y increases when x > 0.

If Xj, y, are the abscissa and ordinate of a point P and x2, y2 those 
of a point Q, the change in the value of y as x changes from x, to x2 
is y2 -  y t. The average rate of change of y as x changes from x, to 
x2 is defined as

yi ~  yi
x2 — Xi

and from the figure this is seen to be the tangent of the angle QPR, 
PR being parallel to the x-axis. This quantity is referred to as the 
slope of the chord PQ. It may help to make matters clearer to take 
variables s and t instead of x and y, s being the distance moved by a 
body in time t. Instead of the graph y = x2, we should have the “space- 
time” graph s = t2. The average rate of change of distance as t changes
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from t l to t2 would be (s2 — s,)/(r2 — t t) and this is simply the average 
speed of the body in the time interval (t2 — fj).

Let us now consider a numerical example. Take the simple function 
y = x2 whose graph is shown in Fig. 45 and take the abscissa of the 
point P to be = 2. The ordinate of P is y 2 = 22 = 4. If we take the 
abscissa of the point Q to be x 2 = 3, its ordinate y2 = 32 = 9. The 
tangent of the angle QPR, or the slope of the chord PQ, is

9 - 4  ,

If we take another point Qv nearer to P than Q, say one whose abscissa 
is 2-4, its ordinate will be 2-42 or 5-76 and the slope of the chord PQi 
will be

5-76
2-4 -  2 = 4-4.

Taking other points Q2, Q3, Q4, ... each one nearer to P than the 
preceding one and taking, for example, their abscissae to be 2-2, 2-1, 
2 05, .. .  the slopes of the chords PQ2, PQ3, PQ4, ..., calculated in the 
same way, are 4-2, 4-1, 4-05,...

When we join the point P to points Q, Qt, Q2, Q3, Q4, . . .  as the 
latter approach nearer and nearer to P, the slopes of the chords PQ, 
PQU PQ2, PQ3, PQa, . ..  decrease and the calculated values of these 
slopes suggest that they are approaching a limiting value which might 
well be of magnitude 4. The same is suggested by Fig. 46 which is a 
magnified version of part of the curve of Fig. 45.

To decide if the slopes of the various chords do in fact approach 
a limit as the point Q approaches P and to find the value of this limit, 
let the abscissa of Q be 2 + h. The ordinate of Q is (2 + h)2 and the
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slope of the chord PQ is
(2 + h)2 -  22 h(4 + h)
(2 + h) - 2  h +

As Q approaches P, the value of h becomes smaller and smaller and it 
is apparent that the limiting value, as h decreases to zero, of the slope 
of the chord PQ is 4. In other words, we can find the abscissa (2 + h) 
of a point Q so that the slope of the chord PQ differs from 4 by as 
little as we please. For example, if we wish to find a point Q such 
that the slope of the chord PQ is 4 0001, we have to take the abscissa 
of Q to be 2 0001. The line through P with slope 4 is the limiting 
position of the chord PQ as Q approaches P and is the tangent to the 
curve at P. The slope of this tangent line is defined as the gradient 
of the curve at the point P.

7.3. The increment notation
A convenient notation for a small increase, or increment, in the 

value of a variable x is the symbol Sx called “delta x”. This notation 
does not mean S multiplied by x but dx = x l — x  where x t differs 
from x by a small quantity. When y is a function of x, the symbol dy 
is used to denote the change in the value of y corresponding to a 
change dx in the value of the independent variable x. In Fig. 47,

7] I N C R E M E N T  N O T A T I O N

Fig. 47

P is a point on the graph of a function y = /(x) whose abscissa and 
ordinate are x and y respectively and Q is a neighbouring point on 
the graph with coordinates x + <5x and y + ôy. N  and M  are the 
projections of the points P and Q on the x-axis, and PR is drawn 
parallel to NM. Then ON = x, PN  = y, OM = x + ôx, QM = y + ôy. 
It follows that QR = QM — RM  =  QM — PN = y + ôy — y = ôy 
and that PR = NM — OM — ON = x + Sx — x  = ôx. The average 
rate of change of y as x changes to x + ôx is measured by the tangent 
of the angle QPR and this is clearly equal to the ratio ôy/<5x. The
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gradient of the curve at the point P, or the slope of the tangent to the 
curve at the point P is the limiting value of the ratio Sy/Sx as Sx 
approaches zero.

As an example of the use of this notation, let us find the gradient 
of the curve y = x2 at the point P whose coordinates are (x, y). At 
the point P we have

y = x2,
and at the neighbouring point Q whose coordinates are (x + Sx,y + Sy), 

y + 5y = (x + Sx)2.
By subtraction,

Sy = (x + Sx)2 — x 2 = (2x + Sx)Sx,

and ^  = 2x + Sx.Sx
As Sx approaches zero, a convenient notation for which is “as 
Sx -* 0”, it is clear that this ratio approaches the limiting value 2x. 
The gradient of the curve y = x2 at the point (x, y), or the slope of the 
tangent to the curve at this point, is therefore 2x. At the point where 
x = 2, this result gives the gradient of the curve to be 4 as found in 
the last section.

[7

EXERCISES 7 (a)

1. Iff(x) =  2x2 +  x — 1, find the values o f/(2 ),/(0 ) and/ ( — 1).
2. If F(t) =  2i2 +  3t — 2, find the values of F(j) and F (—j). What values of 

t make F(t) =  0?
3. If <¡>(6) =  |  — sin 6, find the values of 4>{0) and <i>{n/2). What values of 0 

make <j>(0) =  0?
4. Express y explicitly in terms of x when

(i) x2 +  4y2 =  x, (ii) xy +  y1 =  x2.
5. The distance s metres travelled by a body in time t seconds is given by the 

formula s =  2f2 +  2t. Find the average speeds of the body in time intervals 
of i ,  *, i  and -¡'g seconds from the commencement of its motion.

6. P and Q are neighbouring points on the curve y =  2(x — x2). P is the point 
(x, y) and Q the point (x + ôx, y + ôÿ). Find the value of the ratio ôy/ôx 
and determine the gradient of the curve at the point P.

7. Find the gradient of the curve y =  x3 at the point whose abscissa is x.

7.4. Differentiation from first principles. The differential coefficient
The process of calculating the ratio of the incremental change in 

a function y of x to the incremental change in x, that is of determining 
an expression for Sy/Sx, and then finding the limiting value of this
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ratio as 8x approaches zero, is known as differentiation from first 
principles. The limit found in this way is generally denoted by the

Alternative notations for the differential coefficient of a function 
/(x) of x are

and alternative terms for this quantity are the derivative or derived 
function. The process of differentiation is that of finding the gradient 
of the curve representing the function under consideration and the 
differential coefficient or derivative is the slope of the tangent to the 
curve at a given point.

Consider as an example the function y = 5x2. To differentiate this 
function from first principles we have

and, since the limiting value as Sx -* 0 of the expression on the right 
is lOx,

Thus, if y = 5x2, the differential coefficient of y with respect to x is 
lOx. Alternatively we could express the result as

Dxf(x), ^ / ( x ) ,  and /'(x),

y = Sx2,
y + ôy = 5(x + <5x)2.

By subtraction,

Hence

ôy = 5 {(x + Sx)2 — x 2} = 5(2x + ôx)ôx. 

^  = 5(2x + <Sx) = lOx + 5<Sx,

-j-(5x2) =  lOx,

or, if/ (x) = 5x2, /'(x) = lOx.
For a general function y = /(x), we should have

(7.1)

7.5. The differential coefficient of x ", ft a positive integer
If y = x", then

y + ôy = (x + ôxy,
and, by subtraction,

ôy = (x + ôxY — x".
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Since n is assumed to be a positive integer, (x + Sx)n can be expanded 
in a terminating series by the binomial theorem and we have

Sy = x" + nxn~ ‘(<5x) + ^ j ^ x ”- 2(Sx)2 + . ..  + (¿x)" -  x"

= nxn~1(Sx) + n~ ~ ^ x"~2(Sx)2 + . ..  + {Sxf.
!

Division by Sx gives

^  = nx“- 1 + ^ - ^ x - ^ x )  + . . .  + (¿x)""1

Since all the terms on the right except the first contain Sx raised to 
a positive index, the limit of this expression as Sx approaches zero is 
nx"- 1 and we have the result that if

y = x", ^  = «7c"_1 (7.2)

The same result holds when n is negative or fractional but we shall 
delay a proof of this until pp. 141,142.

7.6. The differential coefficients of sin x  and cos x
If we take y = sin x, then

y + Sy = sin (x + <Sx),
and, by subtraction,

Sy — sin (x + <5x) — sin x 
= 2 cos (x +  j <5x) sin \  Sx,

by formula (5.30). Division by Sx and a slight rearrangement gives
Sy / . l e v  /sin|<5x\
* - “ (x + i w ( - p r }

Now, from (5.34), as Sx -*• 0, (sin j  Sx)/(j Sx) tends to unity, and 
cos (x + |  <5x) tends to cos x, so that if

dyy = sm x, Tx COS X.

Similarly if y = cos x, y + Sy = cos (x + Sx) and 
Sy = cos(x + Sx) — cos x. 

This can be written in the form
Sy /’sin^<5x\
s - - s".(x + '^)(T&r>

and the limit of Sy/Sx as Sx tends to zero is now
dy = 
dxy = cos x,

(7.3)

— sin x.

sinx. Hence if 

(7.4)
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Example 1. Differentiate from first principles, x3 + x2.
Let y = x3 + x2, then y + Sy = (x + ¿x)3 + (x + <5x)2.
By subtraction,

Sy = (x + <5x)3 — x3 + (x + ¿x)2 — x2
= 3x2(«5x) + 3x(<5x)2 + (<5x)3 + 2x(<5x) + (<5x)2.

Hence ~  = 3x2 + 3x(<5x) + (<5x)2 + 2x + Sx,Sx
and the limit of this as Sx tends to zero is 3x2 + 2x. Hence the derivative of
x3 + x2 is 3x2 + 2x.

It should be noted that the differential coefficient of this function is the 
sum of the separate differential coefficients of x3 and x2. This is a special 
case of a general result that the differential coefficient of the sum (or difference) 
of two functions is the sum (or difference) of their separate differential 
coefficients (see § 8.2).

7] D I F F E R E N T I A T I O N  O F  SIN x  A N D  COS x

Example 2. Differentiate 1/x2 from first principles.
Here we let y = 1/x2, so that y + Sy = l/(x + <5x)2.

Hence

Thus

, 1 1 
y ~  (x + <5x)2 x2 

_  x2 -  (x + ¿x)2 
x2(x + <5x)2 

_  — 2x(<$x) -  (dx)2 
x2(x + Sx)2 

Sy _  — 2x — (<5x)
<5x x2(x + <5x)2’

and the limit as Sx -* 0 is — 2x/x*. Thus the derivative of 1/x2 is — 2/x3. It 
should be noted that this can be expressed by saying that the derivative of

x " 2 is -  2x~3. Hence the result that if y = x", ^  = nx"~', proved for positive

integral n, holds when n = — 2.

Example 3. Differentiate 3x2 + cos 2x from first principles.
Let y = 3x2 + cos 2x, so that y + Sy = 3(x + Sx)2 + cos 2(x + <5x).
Then, by subtraction,

Sy = 3 {(x + <5x)2 -  x2} + cos 2(x + <5x) — cos 2x 
= 3(2x + Sx) Sx — 2 sin (2x + <5x) sin Sx.

Thus ^  = 3(2x + <5x) — 2 sin (2x + <5x).

and, taking the limit as Sx tends to zero, we have 
dy
— = 6x — 2 sin 2x. ax

Notice that this result is the sum of the differential coefficients of 3x2 and cos 2x 
and that the differential coefficient of 3x2 is 3 times the differential coefficient 
of x2.
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EXERCISES 7 (b)

Differentiate from first principles:—
1. 5x3. 3. l/(2x2). 5. cos 3x.
2. x* — x2. 4. sin 2x. 6. x +  sin x.

7.7. The differential coefficient as a rate measurer
Suppose that a body moves a distance s in time t and that s is a 

function of t given by s = f(t). We have already seen that if s, s1 are 
the distances moved in times t, t, respectively, the average speed of 
the body over the time interval — t) is (st — s)/(t1 — t), or in the 
incremental notation, Ss/St. The limit of this quantity as St approaches 
zero is ds/dt. This is the rate of change of distance with respect to time 
and is the instantaneous speed of the body at time t.

Similarly if a body is moving in a straight line with velocity v, the 
rate of change of velocity with respect to time is dv/dt and this is the 
acceleration of the body at the instant considered. In general, if a 
variable quantity y is a function of another variable x, the differential 
coefficient dy/dx can be regarded as giving not only the gradient of 
the graph of the function but also the rate of increase of y with respect 
to x. The sign convention adopted is that the function is increasing 
where its differential coefficient is positive and decreasing where its 
differential coefficient is negative.
Example 4. A body moves in a straight line a distance s metres in t seconds and 

s = t3. Find the velocity and acceleration of the body after 3 seconds.

Velocity, v = — = 311. dt 
dvAcceleration = — = 6t.dt

Putting t = 3, the velocity and acceleration after 3 seconds are respectively 
27 m/s and 18 m/s2.

Example 5. The diameter of an expanding smoke ring at time t is proportional to t1.
I f  the diameter is 0 06 m after 6 seconds, at what rate is it then changing ?
If D is the diameter, D = kt1 where k is a constant. Since D = 0 06 when 
t = 6, 0 06 = 36k so that k = 1/600 and D = t2/600.

The rate of change of D = ^  = m/s.

When t = 6, the rate of change of D is therefore 0 02 m/s.

7.8. Approximations
If y = /(x) and if Sx, 6y are respectively the increment in x and 

the corresponding increment in y, the limiting value of the ratio 
Sy/Sx when Sx approaches zero is, by definition, dy/dx or f \x ) .  Hence 
we can write
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where a is a quantity which tends to zero as 6x tends to zero. This 
can be written

dy = {/'(*) + o}8x,
and as 3x approaches zero, the second term on the right becomes more 
and more insignificant compared with the first. Hence we may use 
the equation

&y ^  /'(*) <5* (7.5)
as an approximate formula to find the effect on the value of a function 
of a small change in the value of the independent variable.

Example 6. I f  y = x3, find the approximate percentage increase in y due to an 
increase of 0-1 per cent, in x.
Here
and

Hence

fix )  = x3, /'(x) = 3x2 

Sy = 3x2 ¿x.
Sy 3x2 ôx <5x

— "3 J >y x x
dividing by the equal quantities y and x3. Now Sx/x is the ratio of the change 
in x to x and the percentage change in x is therefore 100<5x/x. Similarly the 
percentage change in y is 100 Sy/y and we can write

percentage change in y = 3 x percentage change in x.
The percentage change in x being 01, the approximate change in y is therefore 
0-3 per cent.

Example 7. Find the approximate error made in calculating the area of a triangle in 
which two of the sides are accurately measured as 018 m and 0-25 m, while the 
included angle is measured as 60°, but is \° wrong.
Taking the given sides as b, c and the included angle as A, the area A is given 
by A = {be sin A. If A is in error by SA, the area will be in error by ¿A where

¿A = {b e (sin A) 6A = {be cos A SA. dA
Now b = 018, c = 0-25, A — 60° = jt/3 rad., SA = = n/360 rad., so that

... . 018 x 0-25 xcosn/3 n 5n 3
M = . ----------- j ----------- X360 = l 6 X l°  m -

EXERCISES 7 (c)

1. A body moves in a straight line so that the distance moved s metres is 
given in terms of the time t seconds by s = t3 — t2. Find an expression for 
the velocity of the body at time t and find the times at which the body is 
at rest.

2. The velocity v m/s at time t seconds of a body moving in a straight line 
is proportional to t*. Find the acceleration of the body when t =  2 seconds 
if its velocity is then 16 m/s.



3. After t seconds, the area A m2 of an ink stain is given by A = 10_4(t + t3). 
Find the rate at which the area is increasing after 2 seconds.

4. If the side of a square can be measured accurately to 0T mm, .what is the 
possible error in the area of a square whose side is measured to be 200 mm?

5. Find the approximate percentage change in the square of a quantity when 
the quantity itself changes by 01 per cent. Hence calculate an approximate 
value for (10O1)2.

6. Find the increase in the area of a circle when its radius changes from 5 m 
to 51 m.
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EXERCISES 7 (d)
1. If/(x) = 3x2 + sin x, find the values of f(0),f(n/2) and f ( —n).
2. If 4x3y — 2x4 + 3xy = 0, express y explicitly in terms of x and find the 

value of y when x = 2.
3. If /(x) = ax2 + bx + c where a, b, c are constants, find an expression for 

f(x  + 1).
4. /(x) denotes an expression of the third degree in x. If/ ( — 1) = 6,/(0) = 9, 

/(2) = 19, /(3) = 11, find the expression for/(x).
5. If/(x) = log x, show that:—

(i) f(ab) = f(a) + f(b),
(ii) f(a/b) = f(a) -  f(b).

6. P is the point (x, y) and Q the point (x + Sx,y + Sy) on the graph of 
y = Ĵx. Show that

8y _ 1
<5x yj(x + Sx) + y/x’

and hence find the gradient of the curve at the point P.
7. Find the slope of the curve y = ax2 + bx + c, where a, b, c are constants,

at a point whose abscissa is x. At what point is the tangent to the curve 
parallel to the x-axis?

8. Calculate the gradient of the curve y = — x3 + 4x2 — 3x at each of the
points where it crosses the axis of x. (L.U.)

9. Show that the gradient of the curve y = — 1 + 3x — (x2/4) when x = 2 is
double that when x = 4. Find also the abscissa of the point on the curve 
at which the gradient is — 1. (O.C.)

10. An expression of the second degree is denoted by/(x). If/(1) = 7,/(2) = 23, 
/(3) = 17, find the gradient of the graph of /(x) at x = 2. (O.C.)

11. Find the value of the constant c so that the tangent at the origin of 
coordinates to the curve y = x(c — x2) makes an angle of 45° with the 
x-axis.

12. For what values of x is the tangent to the curve
y = |x 3 + {x2

equally inclined to the two coordinate axes?
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13. Differentiate from first principles:—
(i) 4x2 +  x, (ii) 1/x.

14. Differentiate from first principles:—
(i) sin ax, where a is a constant,

(ii) | c o s 2x.
15. Obtain from first principles the differential coefficient of l/(x +  2) with

respect to x. (L.U.)
16. If/(x) =  3x2 +  sin x, find f ’(x). What is the value of/'(0)?
17. An excavator removes V cubic metres of soil in t minutes, where

V =  0-42f—000047t2

At what rate is the soil being removed after 20 minutes? (L.U.)
18. Find the gradients of the curve y =  x 3 +  24x2 +  192x at the points where 

(i) x =  2, (ii) x =  4.
19. If the distance s travelled by a particle in time t is given by

s = ut + ^ai2,
where u and a are constants, show that the velocity at time t is u +  at and 
that the acceleration is constant.

20. The distance s m which a body has travelled in t seconds is given by 
s = j t 2 — t. Find when the body is at rest and the acceleration at that time.

21. Assuming that the path traced out by a mortar bomb is given by the 
equation y =  4x — (x2/3-2), the x- and y-axes being horizontal and vertical 
lines through the point of projection, find the angle of projection of the 
bomb.

22. A particle moves along a straight line in such a manner that its distance
x from a fixed point in the line at time t is given by x =  cos t. Prove that 
its velocity is equal to — 1 — x2) and that its acceleration is — x.

23. A point moves along a straight line and, at the end of t seconds, its distance 
(s) from a fixed point in the line is given by

s =  t3 -  9t2 +  24t -  18.
Show that the velocity vanishes for two values of t and the acceleration 
for one value of t. Find also the value of the velocity when the acceleration 
vanishes and the values of the acceleration when the velocity vanishes.

(O.C.)
24. The distance moved in a straight line by a particle in t seconds is St3. Show

that v, the velocity, and / ,  the acceleration, are connected by the relation 
/ 2 =  60u. (O.C.)

25. A body moves in a straight line so that the distance travelled s metres in 
time t seconds is given by s =  8f2 +  3f. Find the approximate space 
travelled during -¡̂  seconds after 5 seconds of motion and deduce the 
average velocity in that interval of time.

7] EXERCI SES



CHAPTER 8

TECHNICAL PROCESSES IN THE DIFFERENTIAL 
CALCULUS

8.1. Introduction
In the last chapter, where an attempt was made to introduce the 

basic ideas of the differential calculus, examples were chosen which 
involved only very simple functions. The differential coefficients of 
more complicated functions can be found from first principles in the 
same way but the labour involved in some cases is considerable. 
Fortunately certain general theorems can be set up and these, together 
with the differential coefficients of quite a small number of standard 
functions, enable the differential coefficients of more complicated 
functions to be found readily.

It is the object of this chapter to deal with the technical processes 
involved in finding the differential coefficients of functions which can 
be considered as sums or differences, products or quotients, etc., of 
simpler functions. The student should work through a large number 
of examples on differentiation until he is thoroughly familiar with these 
processes.

8.2. The differentiation of a sum
(a) Let y = u + C, where u is a given function of x and C is a constant. 
Then, if x increases to x + Sx, u increases to u + Su and y increases 
to y + Sy, so that

y + dy =  u + Su + C.
By subtraction, Sy = Su, and division by Sx gives

Sy _  Su 
Sx Sx

In the limit as Sx tends to zero, we have
dy _  du 
dx dx

Thus an additive constant disappears on differentiation.
(b) Let y = u + v, where u and v are given functions of x. If x increases 
to x + Sx, u and v increase to u + Su and v + Sv respectively and y 
increases to y + Sy. Hence

y + Sy = u + Su + v + Sv,

Sy = Su + Sv. 
132

and by subtraction



D I F F E R E N T I A T I O N  O F  A P R O D U C T 1338]
Dividing by Sx and proceeding to the limit as Sx tends to zero we 
have

dy _  du dv
dx dx dx’ (8. 1)

showing that the differential coefficient of a sum of two functions is the 
sum of the differential coefficients of the separate functions. It is clear 
that the plus sign can be replaced throughout by a minus sign and 
that the differential coefficient of the difference of two functions is the 
difference of the differential coefficients of the separate functions.
(c) If y = u 4- v + w, where w is a third function of x, we can write 
this as y = (u + v) + w, and application of the preceding result gives

dy d , , dw
Tx = d ^ u + v) + d i

d u + d v + dw 
dx dx dx' (8.2)

In this way we can show, step by step, that the differential coefficient 
of the sum of any finite number of functions is the sum of the differential 
coefficients of the separate functions.
Example 1. Find the differential coefficient of the function

Xs -  x* + x2 -  x + 3.
Since the differential coefficient of x" is nx*~ application of the above rules 
gives for the differential coefficient, 5x4 — 4x3 + 2x — 1.

8.3. The differentiation of a product
(a) Let y = Cu, where u is a function of x and C is a constant. Then

y + Sy = C(u + S u),
where dy, Su are the increments in y and u respectively corresponding 
to an increment ¿x in x. By subtraction we find Sy = C Su, and 
division by t5x gives

Sy = c Su 
Sx Sx

In the limit as Sx tends to zero, we have
dy du
dx dx’ (8.3)

and the differential coefficient of a constant multiplied by a function of 
x is equal to the constant multiplied by the differential coefficient of the 
function.
(b) Let y = uv, where u and v are given functions of x. If Sy, Su, Sv
are the increments in y, u and v respectively corresponding to  an
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increment ôx in x,
y + ôy = (u + ¿u)(t> + év)

=  U V  +  V Ô U  +  U Ô V  +  ÔU  ÔV.

By subtraction,
ôy = v ôu + u ôv 4- ôu ôv. 

A slight rearrangement and division by ôx gives
ôy
ôx

ôu . . .ôv
S i  + (u +

As Sx tends to zero, Su tends to zero and du/dx, Sv/dx, Sy/dx tend

respectively to ^  and Hence ax ax ax
dy _  du dv 
dx l>dx + Udx' (8.4)

showing that the differential coefficient of the product of two functions 
of x is equal to the second function multiplied by the differential coefficient 
of the first plus the first function multiplied by the differential coefficient 
of the second.

(c) The differential coefficient of y = uvw where w is a third function 
of x can be found as follows. If we divide the left-hand side of (8.4) 
by y and the right-hand side by uv( = y) we can express the result in 
the form

1 dy _  1 du l dv 
y dx udx v dx

If now we apply this result to y = (uv)w we have
1 dy I d  1 dw
~~r~ — — j ~(m̂ ) H—  y dx uv dx w dx

But, by (8.4),
d . , du dv
7im) ~ vdx + Udx’

so that
1 dy _  1 /  du dv\ l dw
y dx uv \ dx + Udx ) + w dx

1 du l dv 1 dw
udx v dx w dx

Multiplication by y, or uvw, then gives
dy du dv dw -r- = vw ~  + uw—  + uv—.—. dx dx dx dx
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For a more general function y =  uvw .
dy du dv—— — vw. 
dx dx + uw.

we can obtain similarly 
dw+ uv . ..  -j-, dx dx

(8.5)

so that the derivative can be obtained by differentiating each function 
separately multiplying by the remaining functions and adding the results.

Example 2. Find the differential coefficients o/(i) 6x* and (ii) —— .

(i) The differential coefficient of 6x4 is 6 times the differential coefficient 
of x4 and so is 6 x 4x3, or 24x3.

(ii) The differential coefficient of is one-quarter of the differential

coefficient of sin x and is therefore — f4

dy
Example 3. Find — if (i) y = x sin x, (ii) y = x sin x cos x. 

(i) By (8.4),
dy d, 2. id—■ = sin x~-{x2) + x —(sin x) 
dx dx dx

— 2x sin x + x2 cos x.

(Ü) By (8.5),

^  = sin x cos x-^-(x) + x cos x - f  sin x) + x sin x^-(cos x) dx dx dx dx
= sin x cos x + x cos x.cos x + x sin x( —sin x) 
= sin x cos x + x(cos2 x -  sin2 x).

EXERCISES 8 (a) 

Differentiate the following functions of x  :—
1. 4x3 --  sin x +  2. 6. X3 cos X.
2. 10 sin x cos x. 7. (3x +  2)3.
3. sin x — x 3 cos x. 8. x 2 sin x cos x.
4. x(l -- x). 9. cos2 X.
5. (1 + x2)(l -  2x2). 10. 10x* — sin2 x +  x cos x.

8.4. The differentiation of a quotient
Suppose that y = u/v where u and v are given functions of x. Then 

u = yv and application of the rule for differentiating the product yv 
gives
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dySolving for we have dx
<h_
dx

1 du
V dx

Since y = u/v, y/v = u/v2, and hence,

or,

dy .
dx

dy
dx

1 du
v dx 
du

”d x _U dx

y dv 
v dx

u dv 
v2 dx’ 
dv

(8.6)

Thus the differential coefficient of the quotient of two functions of x is 
equal to the denominator times the differential coefficient of the numerator 
minus the numerator times the differential coefficient of the denominator 
all divided by the square of the denominator.
Example 4. Find when (i) y = ----- -, (ii) y = * .dx I + x x

(i) Using (8.6),

dy
dx

(! + xl—(1 -  x) (1 -  + x)

(1 + x)2
(1 + x ) ( - l ) - ( l  -  jc)(1)

(ii) Again using (8.6),
(1 + x)2 (1 + x)2

dy
dx

d dx—-(sin x) — sin x—-(x) dx dx

x cos x — sin x

8.5. The differential coefficients of tan or, cot x, cosec x  and sec x
The differential coefficients of tan x, cot x, cosec x and sec x can 

be derived from those of sin x and cos x and the rule for differentiating 
a quotient. Thus

d d /sin x\

cos x-^Tsin x) — sin x-^-(cos x) dx dx
cos2 x

cos x(cos x) — sin x( — sin x) 
cos2 x

cos2 x + sin2 x 
cos2 x

cos2 x = sec x. (8.7)
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d , . d /cos x \
~-(COtx)  =  ~j (  :-------- )dx dx \sin x j

sin x—r-(cos x) — cos x-^-(sin x) dx dx
sin2 x

— sin2 x — cos2 x 
sin2 x

Also
-r-j— = — cosec2 X. sin x

"{cosec x)

sm x^-(l) dx 1 .-f-(sin x) dx

(8.8)

sin2 x
sinx.(O) — (l)cosx

sin2 x 
cosx------ -— = — cosec x cot x.
sin2 x

(8.9)

It is left as an exercise for the student to show in the same way that
d ,-¡—(see x) = sec x tan x. dx

EXERCISES 8 (b)
Differentiate the following functions with respect to x :—

1.
X 6.

sin x — cos x
x2 +  1 sin x +  cos x

2.
2 -  x 7 X
1 +  2x' 
1 -  3x2 8.

tan x' 

sec2 x.3.
2 +  4x2'

4. (3 -  2x2r 2. 9.
sin x

1 +  tan x’

5.
1 +  sin x 
1 — sin x

10. cot2 X.

8.6. Differentiation of a function of a function
A function like y = (x + 3)2 is a function of a function for (x + 3) 

is a function of x and (x + 3)2 is a function of (x + 3). Other examples
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are sin ax, tan(x3), etc. The object of this section is to establish a 
very simple rule for the rapid determination of the differential 
coefficients of such functions.

The differential coefficient of a function like our first example can, 
of course, be found by first squaring out the right-hand side and 
differentiating term by term. Thus

y = (x + 3)2 
= x2 + 6x + 9.

~  = 2x + 6 = 2(x + 3). ax
It should be observed that the result is exactly the same as if we had 
treated (x + 3) as if it were x and used the standard result for the 
differential coefficient of x2. Similarly if y = (x + a)3, where a is a 
constant,

y = (x + a)3
= x3 + 3ax2 + 3 a2x + a3.

= 3x2 + 6ax + 3a2. ax
= 3(x2 + 2ax + a2) = 3(x + a)2,

and again the result is the same as if we had treated (x + a) as if it were 
x and used the standard result for the differential coefficient of x3. 

Now consider y = (2x + 3)2. Working as before
y = 4x2 + 12x + 9,

~  = 8x + 12 = 4(2x + 3), ax
so that the result is not now 2(2x + 3) but twice this. A rough 
explanation is that whereas (x + 3) changes at the same rate as x, 
(2x + 3) changes twice as fast. Similarly if y = (cx + d)2, where c 
and d are constants,

y = c2x 2 + 2 cdx + d2,

= 2c2x + led = 2c(cx + d)

and we observe that the result is the same as if we had treated (cx + d) 
as if it were x, used the standard result for the differential coefficient 
of x2 and then multiplied by c, the differential coefficient of cx + d. 

This suggests that if y is a function of u where u is a function of x,

the formula giving ^  might well be

dy _  dy du 
dx du X dx (8 . 10 )



8] F U N C T I O N  O F  A F U N C T I O N 139

= 1,

dy du~  x — = 2u x 1 = 2(x + 3). du dx

= 1,

Applied to some of the examples already given this would give:-
(a) y = (x + 3)2, or y = u2 where u — x  + 3.

dy .  du
du ~ 2u’ dx
dy 
dx

(b) y = (x + a)3, or y = u3 where u — x + a.

d±  = lu2 -  du ’ dx

x £  -  * 1 -  3(* + „)■dx du dx
(c) y = (cx + d)2, or y = u2 where u = cx + d.

dy du
T x

dy_ 
dx

A strict proof of the important formula (8.10) is rather beyond the 
scope of the present book. The following, although it assumes a result 
not already proved, must suffice. If y is a function of u and u is a 
function of x, let 5u be the increment in u corresponding to an 
increment dx in x, and let dy be the increment in y corresponding to 
the increment du in u. Then, provided du ^  0,

dy 
dx

and, assuming that the limit of a product is the product of the limits, 
this gives

dy _  dy du 
dx du X dx

= c,

dy dux — = 2u x c = 2c(cx + d). du dx

dy du 
du X dx

(8.10)

dy dy du . . . . . . .  . . dy dy , dusince -p-, -f-, — are respectively the limiting values of -f-, anddx du dx r  j e ¿x du dx
as ¿x tends to zero.

This formula is a most important one and the student should work 
through many examples of its use. At first it is probably best to 
introduce the auxiliary variable u as in the examples below but with 
practice this soon becomes unnecessary and the results can be written 
down at once.
Example 5. Find ~  when (i) y = (1 — 3x2)5, (ii) y = ^

(i) Let u = 1 — 3x2, so that y — u>. Then
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du
dx = — 6x and dy

du = 5 u*.

Hence dy dy du 4 . ,  .
Tx = Tu X Tx = 5u * {~ 6x)

=  -30.XU4 =  — 30x(l -  3x2)4.
.... , 1 + 2x ,(u) Let u = -■ — so that y = u .

Here -~ = 2u, but to find ^  we have to apply the rule (8.6) for differentiating
a quotient. This gives

Hence

du
dx

(1 + x)^ (l + 2x) -  (1 + 2x)^(l + x) 

(1 + x)2
(1 + x)(2) -  (1 + 2x)(l) 1

d + *) (1 + x)2
dy _  dy du
dx du dx

= 2u x
(1 + x)2

= 4 t ? ) 1
2(1 + 2x) 

(1 + x)2 (1 + x)3'

Example 6.„ fW(0jj* (4t - ̂ }. m i c a s '  (20 -  i)}.
du(i) Let u = 4t — n/5, so that — = 4. Thendt

4  (sin (4t -  7z/5) } = ^(sin u) = -^(sin u) x ^  dt ¡It du dt
= cos u x 4 = 4 cos (4r — n/5).

(ii) Let y = cos4 (29 — n/5) and let u = 29 — n/5. Then y = cos4 u. This is still 
a function of a function and we now let cos u — v.

Then y = u4 and ~  = 4n3. By (8.10), dv
d y d y d v  , .~r = — x — = 4i>3 x ( -  sin u), du dv du
. <tvsince u = cos u and so — = —sin u.

du

Also dy dy du
d0 ~ du X d0 = ~ * « * * * l  

dusince u = 26 — n(5> so that — = 2.du
Replacing the values u = 29 — n/5, » - cos u = cos (29 — n/5), we have 

dy 
ddI = — 8 cos3 (26 — sin ^29 —
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d y
Find — when :— 

d x

1. y  =  (4x -  5)3.
2. y  =  (x2 +  3x)5.
3. y  =  sin 2(x — a), a  constant.
4. y  — tan 2x.

5. y  =  sec 3x.

6. y  =  tan2 (3x + 1).
7. y  — sin3 (2 — x).
8. y  =  x2 (1 — x)2.
9. y  =  sin3 x sin 3x.

1 +  sin2 x
10. y  =  

.  ilu
1 — sin2 x'

11. If u =  sin" 6  cos" 0, find the value of — if m  and n are positive integers.
d u

12. Find the differential coefficient of s with respect to t if s =  sin2 (a/i) and 
a is a constant.

13. If m is a positive integer, find the differential coefficients with respect to 
x of:—

(i) sinmx, (ii) sin (x"), (iii) sin (cos x).
dy

14. If y =  (tan x +  sec x f , where m is a positive integer, show that —  =  m y  sec x.

15. Show that the differential coefficient with respect to x of
tan x(l +  2 sec2 x) — 3x sec2 x

is 6 sec2 x tan x(tanx — x). Hence show that, if x is a positive acute angle, 
this differential coefficient is positive.

8.7. The differential coefficient of x* when n is negative or fractional
It was shown in the last chapter (§ 7.5) that, if n is a positive integer, 

the differential coefficient with respect to x of x" is nx"~l. The rules 
established in §§ 8.4, 8.6 for differentiating a quotient and a function 
of a function enable us to show that the same result is true when n is 
negative or fractional.
(a) Let n be a negative integer and let n = — m so that m is a positive 
integer. Then if y = x", we have

By the rule for differentiating a quotient, since m is a positive integer 
and therefore the differential coefficient of x" is m x " '1, we have 

dy _  x* x O -  1 x mx" " 1 
dx X 5 "

— m — mx — m — 1

since n = —m.
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(b) Let n = p/q where p and q are integers. There is no loss of generality 
in assuming that q is positive. Then, if y -  x", we have

y = xplq = (xilq)p.
Put x ilq = u, then y = up and x = uq, so that

dx
du = quq 1

by the result already established.
The rule for differentiating a function of a function can be written 

in the form
dy _  dy dx 
du dx X du

PUP~1 = % X quq~l■
so that 

giving dy
dx q

Since « = x llq, this can be written
P,

= V “«.

dx q

— Ex(p/i)-1

- nx" \
since n — p/q.

Hence ^-fx") = nx" 1 for all rational values of n. dx

Example 7- Find when (i) y = ^x -  , (ii) y =

(i) Let u = x -  3/x2 = x -  3x~2. Then y = u2 and 
du
Tx

dy dy du
dx du dx

dy ,  
du = 2u' =  1 — 3( —2)x" 1 + 6/x3

Hence

= 2u(l + 6/x3)
= 2(x -  3/x2)(l + 6/x3).

(ii) Let u = (1 + x)/(l -  x). Then y = J u  = u112 and

— = iu ~ 112 = du 2 2/JtS
and, by the rule for the differential coefficient of a quotient. 

du 1 — x + (1 + x) 2 
Tx ~  (1 -  x)2 “  (1 -  x)2'
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Hence dy
dx

dy du__- X _
du dx

1 2
2yju (1 -  x)2

1
(1 -  x)2

(1 + x)1/2(l -  x)3'2'

EXERCISES 8 (d)
Differentiate with respect to x :■—

2. (2 -  5x3r 2.
3. V(l+x).

. dv7. If y = yj(\ + sin x), show that ~

8. If V =
1 + sin x\ 
1 — sin x/’show that dy

dx

4. 1/7(1 + x).

5. (1 -  x)7(l + x2).
6. sin (Vx).

I7 (f -  sin x).

____ 1
1 — sin x

8.8. Differentiation of inverse functions
If in Fig. 48, PT is the tangent at the point P to the curve repre-

senting the function y = f(x), and if PT  makes an angle y/ with the 
x-axis,

. «ytan \v = —. dx
If the equation y = f(x) is written in the form x = g(y), the curve of 
Fig. 48 also represents this function. If PT  makes an angle <j> with
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the y-axis, we have
, dx tan <p = —. dy

But, from the figure, </> + y/ = 90°, so that <f> =.90° — y/, and
1

so that

tan <(> = tan (90° — y/) = cot y/ =

dx = jdy_ 
dy f dx

tan y/’

(8.11)

An analytical proof of formula (8.11) would run as follows. If 
y = f(x) and x is the inverse function given by x  = g(y), we have

y  = f l d ( y ) l
Differentiating this with respect to y as a function of a function

i = f '[ g ( y ) \ 9 '( y ) ,
or, since x  = g(y),

1 =f\x).g'{y).
Hence g'(y) = 1 /f'(x), and this can be written

d x = .ldy_ 
dy /  dx

8.9. The differential coefficients of tan 1 x  and sin 1 x
If y = tan " 1 x, we have x = tan y and

~r~ = sec2 y dy
= 1 + tan2 y 
— 1 +  x2.

Hence, using (8.11),
dy _  tdx 1 
dx !  dy 1 + x 2' 

Similarly, if y = sin ~1 x, x = sin y and

(8.12)

giving

dx
~r~ = cos y dy

= 7(1  ~  sin2 y)
= 7 (i -  x2),

dy _  Jdx _  1
dx ~ I d y ~  7(1 ~ x2)'

(8.13)

The differential coefficients of the other inverse trigonometrical 
functions can be found in the same way and are left as exercises for 
the student.
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If y = sec 1 x, x = sec y, so that

Hence

tlx— = sec > tan y = sec >^/(sec2 y — 1) = x j i x 2 -  1).

dy = . /d x  = 1
dx j  dy x^/(x2 -  1)'

Example 9. I fy  = cos 1 show that dy
dx

2
1 + x2'

Let u = 1 - x 2 
1 + x2’

so that y - cos u, or a =  cos y.

Also,

But

du
dy

— sin y = - , / ( !  -  cos2 y) = — ̂ /(l -  u2)

-y {‘ - ( n v / 1
du = d n  — x2\  
dx <ix\l + x v

lx
1 + x2'

(1 -f x2)( —2x) — (1 — x2)(2x) 
(1 + x2)2

— 4x
_  (1 + x2)2

dy _ d y  du _  f  j'du\ du
dx d u X dx \  /  dy) dx

_  (1 + x2) -4 x
2x X (1 + x2)2

_ 2 
1 + x2’

EXERCISES 8 (e)

1. Show that -^-(cot~1 x) =  — -—-—5.dx 1 +■ x2

2. If a is a constant, show that icos- 1 -  ̂  = -----rry~-----=r-d x \  a)  y/(a2 -  x2)

3. Show that -^-{cosec- 1 x) = ------—l -----— .dx Xy/ix2 -  1)

4. If y — tan- 1 (  —  show that - ———j.\1 -  xV  dx 1 +  x 2
5. Differentiate x sin - 1 x with respect to x.

6. If y =  (sin- 1 x)/,/(I — x2), show that (1 — x2) ^  — xy =  1.
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8.10. Differentiation of implicit functions
So far we have established rules for finding the differential coefficients 

of explicit functions only. When the dependent variable y is- not given 
explicitly in terms of the independent variable x it is not necessary, 
nor indeed is it usually possible, to solve for y in terms of x.

Suppose, for example, that y is given implicitly in terms of x by 
the equation

x2 + y2 = 2x. (8.14)
Since y2 is a function of y and y is a function of x, the rule for differ­
entiating a function of a function (8.10) gives

- i l f )  = i d y 1)
dy ~ dy

dx d y dx = 2ydx
Hence differentiating each term of equation (8.14) with respect to x 
we have

2x + 2y-j- -  dx 2,

giving dy
dx

1 — x

In this example we can first solve equation (8.14) for y to give
y = 7(2* -  x2),

and then find dy/dx from the equations y = yju where u = 2x — x2. 
This procedure would give

dy _  1 du _
du 2 y/u’ dx X‘

and then, dy
dx

dy du 1 ,-j- x — = — r (2 -  2x) du dx 2 y/uy
1 — x _ 1 — x

Vu y
as before, but this method is more laborious.

As an example of a case where it is not possible to express y explicitly 
in terms of x, consider the equation

x + y + cosy = 4. (8.15)
The differential coefficients of y and cos y with respect to x are respec- 

dy dytively -j- and —sin y ~ ,  so term by term differentiation of (8.15) gives

1 + dy
dx - sm y*y

dx = 0,

dy _  1
dx sin y — 1

leading to
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Example 10. Find dy/dx when (i) yjx + ^Jy = 2, (ti) xmy" = const. 
(i) ,/x  + ,/y  = 2, so that

giving

1 1 dy
2^/x + 2 y/ydx 

dy = 
dx

0,

(ii) x”y” = const., and the rule for the differentiation of a product gives

mx"-1/  + x T . n y " ~ -  0, 
dx

so that dy
dx

mxm V my
nx’nx”y" 1

8.11. List of standard forms
The differential coefficients of certain standard functions and the 

rules for differentiation established in this chapter are most important. 
They are here collected for easy reference. In all cases C denotes a 
constant and u, v are functions of x. 

d , . du dv
+  ", * T x + ¡5-

& c ‘ ) - d x

du dv
'Tx + '% -

- ( - )  = d x \ v )

d y  _ d y
d x

du
d x

dv
%

v 
du

du X d x

d x
dy

m
d x

= l
Idy
dx'

= 0.

- H x ”) =  nx"-1.
d x

-^-(tan x) = sec2 x. 
d x

J^fcosec x) = — cosec x cot x.

d .  . _i . 1
S '”  *> “  7 < n r? > -

i(COS*)

èco,)t)

=  C O S  X .

= — sinx.

= — cosec2 x.

= sec x tan x. 

1-¡-{tan 1 x) = .------ j.dx 1 +  x2
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8.12. Higher derivatives
If y be a function of x, the differential coefficient will itself be a 

function of x. The result of differentiating dy/dx with respect to x 
is called the second differential coefficient of y with respect to x  or the 
second derivative. Proceeding further, the differential coefficient of the 
second derivative is called the third differential coefficient or third 
derivative and so on.

A conventional notation for the first, second, third, . ..  and nth 
differential coefficients of y with respect to x is

dy d2y d3y d"y 
dx dx2’ dx3’ ' ’ ’’ dxn'

If y is a function of x given by y = /(x), the notation
/ 'W ,/" W ,/ '" (x ) , . . . , / (">(xX

is also sometimes used for the first, second, third, ..., nth derivatives.
There are but few cases in which the general expression for the nth 

derivative of a function can be found. Here we shall be concerned
only with the first few differential coefficients and shall not attempt 
to discuss the general derivative.

d2y d3yExample 11. Find and when (*) y = x , {ii) y = cos 2x.

«  d£  = iox®, dxI  = 90x8, A
dx3

720x7.

dy d2y d3y
(ii) — = -  2 sin 2x, -r-j = —4 cos 2x, - n  = 8 sin 2x. dx dxi dx3

d2yExample 12. Find when (i) y = x2(l — x)2, (ii) y = x sin x.

(i) y - x2(l -  x)2 = x2 — 2x3 + x4,

~  = 2x -  6x2 + 4x3, dx
A
dx2 = 2 - 12x + 12x2.

(ii) y = x sin x.
dy = sin x + x cos x, 
dx

—r—= = cos x + cos x -  x sin x = 2 cos x — x sin x. 
dx2

EXERCISES 8 ( / )

Find dy/dx when :—
1. x 3y2 -  x  = 0.
2. y2 — sin 2x = 4.
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3.
4.
5.

6.

7.

8.

1.

2.
3.
4.

5.

6.

7.

8. 

9.

x2 + xy +  y2 = a2, (a constant).
Find dr/dd when r2 cos 0 — const.
If y =  tan x, show that

=  2 tan x + 2 tan3 x.

Show that
d3(UV) d3U d2UdV A U d 2V ird3V

dx3 dx3 + dx2 dx +  dx dx2 +  dx3’
where U and V are functions of x. (Q.E.)

d2
Evaluate ^ j { ( l  +  4x +  x2) sin x}. (Q.E.)

If y =  (cos x)/x, prove that
d2y 2 dy
d ?  + xTx + y = °- (L.U.)

EXERCISES 8 {g)

Find (i) y-  (!** -  fx 2 +  5), (ii) 4  (313/2 -  I t1'2 +  61), ax dt

(iii) j e (0-2 - 4 6 - 2'2).

Find dy/dx when (i) y =  cos x +  x sin x, (ii) y =  (3x — l)(x — 3). 
Find dd/dt when (i) 6 =  sin t sin 3t, (ii) 6 =  t2 sin - 1 1. 
Differentiate with respect to x :—
(i) (2 -  x2)cosx  +  2xsin x , (ii) (1 — l/x )tanx .

Find ® ix **2*1 ~ 3x^ (ii) 0082
Find dy/dx when

X3 + x x3/2 I -  J x
1 v = ttt' 11 y = ttk175- r - nr/?

Differentiate with respect to x :—

(i)
x -  1
x2 — 4’ 

Find dy/dx when :—

(ii) (* - 2)(v 4). (iii)
x -  3 1 +  x

(O.C.)
(L.U.)

(i) y
x

sin x’
(ii) y =

tan x
(iii) y =

sin x
2 + 3 cos x’

Differentiate the following functions with respect to x and simplify the 
resulting functions as far as possible.

(i) x*tannx, (ii)
cos(x2 +  1) 
sin(x2 — 1)'

(QE.)



P U R E  M A T H E M A T I C S

10.

11.
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If y is a function of x, find the differential coefficients with respect to x o f:— 
(i) xy2, (ii) (3y +  l)2, (iii) x/y, (iv) y/x.

Differentiate with respect to x :—
(i) (x2 -  x)6, (ii) cos (2 -  3x), (iii) x2 sin 2x. (L.U.)

12. Find

13. (i) If y = tan x +  4 tan3 x, show that ^  =  sec4 x.
ax

(ii) If y =  sin" 1 (cos x), show that ^  =  — 1.

14. Find the value o f:—

(i| ¿ {“ " (“ i)}'
15. Find dd/dt when:—

(i) 9 =  cos-1  (1 — 2t2), (ii) 6 =  sin- 1  (2t3 — 1).
16. Differentiate with respect to x :—

(i) cos (1/x), (ii) tan(x2), (iii) sin- 1  +  (Q.E.)

17. Show that x =  {g sin 6jit)/4(6g — 36n2) satisfies the relation
d2x a
-^ 2  + 6gx =  |  sin 6nt. (Q.E.)

18. If a and fi are constants, show that the derivative with respect to x of each 
of the functions

is {(a — x)(x — P) )~ 1/2.

19. If y =  sin - 1 (3x — 4x3), show that ^/(l — x2) ^  =  3.

20. If u = 62 +  (sin"1 0)2 -  26^(1 -  02) sin"1 0, show that

s/ ( l - 6 2' ^  = 402sm -19.

21. Find dy/dx when y3 — 3yx2 +  2x3 =  0.
22. If y2 — 2>>v/(l +  x2) +  x 2 =  0, show that

dy x
dx J (l  +  x2)'
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23. Find dy/dx when y is given b y:—
(i) y2 + x 2 =  4x + 1, (ii) 4y2 +  xy — 3x2 =  0.

24. Find dy/dx when y is given b y:—
(i) x2 sin y — y cos x =  0, (ii) x cos y — y2 sin x =  0.

25. Find the slope of the tangent to the curve
xy3 — 2x 2y2 +  x4 — 1 =  0 

at the point where x =  1, y =  2.

8] EXERCI SES

26. Find d2y/dx2 when:—
x2

(i) y =  x 3 sinx, (ii) y — x tan“ 1 x, (iii) y =  ^

27. If y =  tan2 x, prove that

§  =  2(1 +  y)(l +  3 y).

w. sin x - t dy . d2y . ,
28. If y =  — 5 - , find —  and - r - y , and prove that

x 2 dx dx2

2^1
dx2 ' "dx

-2̂  +  4 x ^  +  (x2 +  2)y =  0.

29. If y =  (tan 1 x)2, prove that

T x{{1 + = r h ? '
30. Show that if u =  tan - 1 6, then

(1 + 6 W 2 + 20Te = a

(O.C.)

(L.U.)



CHAPTER 9

SOME APPLICATIONS OF THE DIFFERENTIAL 
CALCULUS t

9.1. Introduction
We have seen in Chapter 7 that the derivative is a measure of the 

slope of the tangent to the curve representing a function. The process 
of differentiation has therefore the geometrical application of finding 
the slope of a tangent to a curve but we shall delay giving examples 
of this application until we discuss the methods of coordinate geometry 
(Chapters 16, 17).

Other important applications already discussed are the use of the 
derivative as a rate measurer and in finding velocities and accelerations 
in dynamical problems. More eleaborate examples can be given now 
that the technical processes of differentiation have been studied. 
Further uses of the differential calculus occur in finding maximum 
and minimum values, and in curve tracing. These applications are 
discussed in the paragraphs which follow.

9.2. Some examples of the derivative as a rate measurer
We give below two examples in which the methods of the last 

chapter can be used in solving problems on rates of change.
Example 1. The volume of a solid cube increases uniformly at k3 cubic metres per 

second. Find an expression for the rate of increase of its surface-area when the 
area of a face is b2 square metres.
If x is the length of an edge of the cube at time t, the volume V is given by 
V = x3. Differentiating with respect to t, we have

dV dx
— = 3 x —. dt dt

But dV/dt is the rate of increase of volume and this is k3, so that

giving dx_k*_
dt “  3x2'

The surface-area S of the cube is 6x2, so that the rate of increase of surface-area 
at time t is

dS dx
— = 12x—. dt dt

Substituting for dx/dt we find
dS , ,  k3 4Jc3— = 12x x -—r = ----.
dt 3x2

152
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When the area of a face is b*,x = b and the required rate of increase of surface- 
area at this instant is obtained by writing x = b in the expression for dS/dt, 
giving 4fc3/b.

Example 2. A hollow circular cone with vertical angle 90° and height 0-36 m is inverted 
and filled with water. This water begins to leak away through a small hole in the 
vertex. I f  the level of the water begins to sink at the rate of 0 01 metres in 120 
seconds, and the water continues to leak away at the same rate, at what rate is 
the level sinking when the water is 0-24 m from the top? (The volume of a cone 
is one-third the area of the base limes the height.)
Let (Fig. 49) the height of the water at time t be h, and let the volume of the 
water then be V. Then, V = jrtr2h, where r is the radius of the water surface.

Since the semi-vertical angle of the cone is 45°, it is clear that r = h, so that 
r = h, so that

V =
By the rule for differentiating a function of a function,

d V d V  dh 
dt dh * dt

= (9.1)

Since the level of the water is decreasing at the rate of (0-01/120) m/s when 
the cone is full, i.e. when h = 0-36 m,

dV
dt n x (0-36)2 x m3/s

(a negative sign meaning a negative rate of increase or a rate of decrease). 
dVidt remains constant at this value. When the water is 0-24 m from the top, 
h = 0-36-0-24 = 0-12 m, and substitution in (9.1) gives

so that

/ A  l i t î  v U ln x (0-36) x -J2Q :

dh = _(M)1 /0 36\2 
dt 120 TO 12

7tx (0-12)2J ,

: -7-5x10-*,

showing that the water is sinking at 0-75 mm/s at this instant.

9.3. Some dynamical applications
We have already seen (§ 7.7) that if a body, moving in a straight 

line, has travelled a distance s and acquired a velocity v in time t.
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then
ds

V=zdt’
and its acceleration (a) at time t is given by

dva = dt

(9.2)

(9.3)

Alternative expressions for the acceleration can be found as follows. 
Firstly, combining (9.2) and (9.3),

_  d (ds\ _  d2s
a dt\dt) dt2' (9-4)

Secondly, since v is a function of s and s is a function of t,
dv dv ds dv dva = - r  = -T-x — = — x v = v~r. dt ds dt ds ds (9.5)

Thus the acceleration may be expressed in any one of the three 
equivalent forms

dv d2s dv
Ti' d ? ’

In mechanical applications, differential coefficients with respect to 
the time are often denoted by dots placed above the dependent variable. 
Thus ds/dt, d2s/dt2, dv/dt are denoted by s, s and v respectively. In 
this notation, equations (9.2), (9.3) and (9.4) would be written

v =  s, a — v, a = s.

Example 3. The distance s moved in a straight line by a particle in time t is given 
by s = at2 + bt + c, where a, b and c are constants. I f  v is the velocity of the 
particle at time t, show that 4a(s — c) = v2 — b2. (L.U.)
In the notation just given,

v = s = 2at + b,
so that

4a(s — c) = 4d(ai2 + bt + c — c) = 4a(at2 + bt)
= 4a2f2 + 4abt — (2at + b)2 — b2 
= v1 -  b2.

Example 4. I f  the velocity of a body varies inversely as the square root of the distance, 
prove that the acceleration varies as the fourth power of the velocity.
Denoting the distance travelled by s, the velocity and acceleration by v and 
a we have,

v = —r, where k is a constant. 
n/s

u dv _  k 
d̂S y/s
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k2 k2 v4 v4
“  “  2?  ~  “  Y 'k *  = ~ 2k2'

since y/s = k/v, and we have established the result required. .

EXERCISES 9 (a)

1. A conical vessel has a vertical angle of 60°. If liquid is poured in at a rate of 
2 x 1 0 " 5 m3/s, find the rate at which the level is rising when the depth of 
liquid in the vessel is 0-05 m.

2. The radius of a sphere is r, the area of its surface is 4nr2, and its volume is 
f w 3; if, when the radius of the sphere is 21 m, it is increasing at the rate of 
0-01 m/s, find the rates at which the surface and volume are increasing at 
the same time.

3. The inner and outer radii of a cylindrical tube of constant length change in 
such a way that the volume of the material forming the tube remains constant. 
Find the rate of increase of the outer radius at the instant when the radii 
are 003 m and 005 m and the rate of increase of the inner radius is 0-5 mm/s.

4. The displacement x at time f of a moving particle is given by
x =  a sin 2i +  b cos 2t,

where a and b are constants. If v is the speed at time t, prove that 
o =  2V(a2 +  b2 -  x2). (L.U.)

5. If the velocity of a body varies as the square of the distance travelled, show 
that the acceleration of the body varies as the cube of the distance.

6. s is the distance moved and v the velocity acquired by a body moving in a 
straight line at time t. If (i) v =  u + f  t, (ii) v2 =  u2 +  2/s, where u and /  
are constants, show that in each case the acceleration of the body is /

9.4. Maximum and minimum
Suppose the graph of y = f(x)  is as shown in Fig. 50. Points such 

as A, B, C are called turning points. As x  increases, the values taken 
by y increase until the point A is reached, decrease from A to B, 
increase again from B to C and then decrease. At A, B and C. y is 
neither increasing nor decreasing.
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Sometimes the points A, B and C are referred to as points of 
maximum or minimum values, maxima at A and C and minimum at 
B. It should be noted that a maximum or minimum value is the 
greatest or least value in the neighbourhood, but it need not be the 
absolutely greatest or least value. For example, there are points on 
the left of the curve of Fig. 50 for which the values of y are less than 
the “minimum value” at B and there are points on the right where 
the values are greater than the maximum value at A. Again in Fig. 51, 
which shows the graph of y = 2x2 — x4, there are maximum values

where x = ±  1 and these are also greatest values, but the minimum 
value at x = 0 is not a least value, for there are points on the curve 
with smaller values of y than that at 0 .

We have already seen that where the value of the derivative is 
positive, the function itself is increasing and where it is negative, it 
is decreasing. This is illustrated geometrically in Figs. 52, 53 which 
show the graphs of functions which increase and decrease respectively 
as the independent variable increases. In the first diagram, the tangent 
at a representative point P makes an acute angle y  with the x-axis; 
since the tangent of an acute angle is positive and since, by definition, 
dy/dx = tan y  the derivative will be positive. In the second diagram, 
the angle y  is obtuse, and since such angles have negative tangents,
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the derivative will be negative. At points like A, B or C in Figs. 50 or 
51, the tangents to the curves will be parallel to the x-axis. At such 
points, the tangent will make a zero angle with the x-axis and we 
shall have

Returning to Fig. 50, shown again in Fig. 54, the signs of the deriva­
tive have now been marked in. Immediately to the left of the point A, 
the function is increasing and its derivative is positive. At point A,

the function is neither increasing nor decreasing and the derivative 
is zero. Immediately to the right of point A, the function is decreasing 
and so has a negative derivative, and so on. We can formulate the 
following rules for determining the position of turning points and 
distinguishing between maximum and minimum values:—
(a) At a turning point, dy/dx = 0.
(b) At a point giving a maximum value, dy/dx changes from positive 

to negative as x takes values just less and just greater respectively 
than the value at the turning point.

(c) At a point giving a minimum value, dy/dx changes from negative 
to positive as x takes values just less and just greater respectively 
than the value at the turning point.

£xample 5. Find the turning point on the curve y = x2 — 2x and determine whether 
it is a point of maximum or minimum y.

Here dy
dx = 2x- 2,

and dy/dx vanishes when 2x — 2 = 0, i.e., when x = 1. Hence the point x = 1, 
y = (1)J -  2(1) = -1  is a turning point on the curve. For x = 0-9 (a value a 
little less than the value x = 1 at the turning point),

dy
•T *  2 x 0*9 -  2 -  -0 2 . dx



For x = H  (a value a little greater than x  = 1), 
dy
y  = 2 x 1 - 1 - 2 =  +0-2. dx

The derivative therefore changes from negative to positive, so the point x = 1, 
y = -  1 gives a point of minimum y. The graph of y = x1 — 2x is shown in 
Fig. 55.
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An alternative method of discrimination between maximum and 
minimum values can be obtained as follows. If we plot on the same 
diagram the graphs of y = f(x) and y = f'(x) (the derived function),

we shall obtain a diagram such as that shown in Fig. 56. For points 
to the left of the maximum value at A, /(x) is increasing and f'(x) 
is positive, for points between A and the minimum value at B ,f(x) 
is decreasing and /'(x) is negative, and for points to the right of B, 
f(x) is again increasing and f'(x) is positive. The derived function 
f'(x) is zero for values of x corresponding to the points A and B. 
Considering the graph y = /'(x), we see that for a value of x corres­
ponding to the point A, f'(x) is decreasing and therefore has a negative 
derivative. Thus at point A, /"(x) (or d2y/dx2) is negative. Similarly 
at point B,/'(x) is increasing and its derivative/"(x) is positive. Hence
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at turning points giving maximum values
d2y
dx2 < 0,

and at turning points giving minimum values
d2y
dx‘ >  0.

Applied to Example 5, y = x 2 — 2x, dy/dx = 2x — 2 and there is a 
turning point where 2x — 2 = 0, i.e., where x  = 1. For this curve

d2y
dx‘ =  2,

and, this being positive, the turning point is one giving a minimum 
value to y. This method is further illustrated in the following example.

Example 6. Find the maximum and minimum ordinates of the curve y = x2(x + 1). 
y = x2(x + 1) = x3 + x2.

~  = 3x2 + 2x, = 6x + 2.dx dx*
dy/dx vanishes when 3x2 + 2x = 0, i.e., when x = 0 and when x = -2/3. 
When x = 0, d2y/dx2 = 2; this being positive, x = 0 gives a minimum value 
to y, the minimum ordinate being y = 0.
Whenx - —2/3, d2y/dx2 = 6( — 2/3) + 2 = - 2 ;  this being negative, x = —2/3 
gives a maximum ordinate of

(— 2/3)2 (— 2/3 + 1), or 4/27.

EXERCISES 9 (b)
1. Find the values of x for which the expression (x — 2)(x — 3)2 has maximum 

and minimum values and discriminate between them.
2. If y =  (x -  2)(x +  l)2, find the maximum and minimum values of y, stating 

which is which.
3. Find the maximum and minimum values of the expression

3x
(x -  l)(x -  4)'

4. Find the maximum and minimum values of the function
(x -  l)(x — 2)/x

and illustrate your result by drawing the graph of the function between
x = — 3 and x =  3.

5. Find the maximum and minimum values of the function 2 sin f +  cos 21 

and discriminate between them.
6. Show that the function x3 — 6x2 +  18x +  5 increases with x for all values 

of x. Find the value of the function when the rate of increase is least.
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9.5. Applications to practical problems
Many practical problems can be solved by the method of the last 

section. It sometimes happens that the quantity whose maximum 
or minimum value is sought appears at first to be a function of more 
than one variable. In such cases it is often possible, by means of 
geometrical or other relations between the variables, to eliminate all 
but one of these variables. Once the quantity has been expressed in 
terms of a single variable, the procedure is identical to that given in 
the previous section. We differentiate with respect to the single 
variable remaining and the values which make the derivative vanish 
include those giving maximum and minimum values to the quantity 
under discussion. In many cases it is unnecessary to examine the 
changes in sign of the derivative (or the sign of the second derivative, 
if that method is used) to discriminate between maximum and mini­
mum values, for it is often possible to see at once on physical grounds 
whether the solution leads to a maximum or minimum. Some 
illustrative examples follow.

Example 7. Find the height of the right circular cylinder of greatest volume which 
can be cut from a sphere of radius a. (L.U.)

In Fig. 57, 0  is the centre of the sphere and ABCD is a plane section of the 
cylinder through its axis. If X  is the mid-point of the generator BC of the 
cylinder and if the radius and height of the cylinder are respectively r and h, 
the right-angled triangle BOX gives

r2 + ih 1 = a2. (9.6)
The volume V of the cylinder* is given by

V = nr2h.

Since, from (9.6),
r2 = a2 -  ih 2,
V =  rthia2 —  i h 2) =  n)a2h — i h 3),

the volume is now expressed in terms of the single variable h. V is a maximum

See §20.5.
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or minimum when dV/dh = 0, i.e., when
7t(a2 -  Jh2) = 0

or when h = la/yj'i.
This value of h does in fact give a maximum value for the volume < f the cylinder 
since

d2V 
dh2 —  -nh = — ̂ Jhita,

which is a negative quantity.
Example 8. A despatch rider is in open country at a distance of 6 kilometres from 

the nearest point P of a straight road. He wishes to proceed as quickly as possible 
to a point Q on the road 20 kilometres from P. I f  his maximum speed, across 
country, is 40 kilometres per how and, along the road, 50 kilometres per hour, 
find at what distance from P he should strike the road. (L.U.)
In Fig. 58, the rider starts from a point A and strikes the road at a point B, 
x kilometres along the road from P. Then AP = 6, PB = x, PQ = 20, 
BQ = PQ — PB = 20 — x kilometres.

A

Since the angle APB is a right angle,
AB = ^/(36 + x2) kilometres.

Along AB, the rider’s speed is 40 km/h and along BQ it is 50 km/h, so that 
the times taken to traverse AB and BQ are respectively

V(36 + x2)
40 and 20 -  x 

50 hours.

The total time T  for the journey is therefore given by
V(36 + x2) 20 - x

40 50 ’
and for the journey to be accomplished as quickly as possible, this must be 
a minimum, or dT/dx = 0. Now

dT 1 2x 1
dx ~ 40 * 2^(36 + x2) 50'

This vanishes when ^(36 + x2)= 5x/4, i.e., when 36 + x2 = 25x2/16 or when 
9x2/16 = 36, giving 3x/4 = 6 or x = 8 kilometres.

Example 9. A straight line AB has its ends on two fixed perpendicular lines OX, OY 
and passes through a fixed point C whose distances from the fixed lines are a, b. 
Find the position of AB which makes the triangle AOB of minimum area and 
calculate that minimum area. (L.U.)
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Draw CD, CE perpendicular respectively to OX and OY. Let AB make an 
angle 0 with OX. Then

AD = a cot 0, BE = b tan 0. *
The area of the triangle AOB is the sum of the areas of the rectangle ODCE 
and the two triangles DAC, ECB.

Hence if A is the area of the triangle AOB,
A = ab + \acoX0.a + \b .b tzn 0

= ab + \a2 cot 0 + }62 tan 0. (9.7)
This is a minimum when i\;d 0  = 0, i.e., when

-  \a2 cosec2 0 + jb 2 sec2 0 = 0, 
or when tan 0 = a/b.
The value of the minimum area is obtained by substituting the value of 0 
given above in (9.7), giving

A,,,,,, = ab + \a 2(b/a) + \b 2(a/b)
=  la b .

EXERCISES 9(c)

1. An open cylindrical vessel is to be constructed from a given amount of
uniform thin material. Show that it contains the greatest possible volume 
when its height is equal to the radius of its base. (O.C.)

2. A piece of wire, which forms the circumference of a circle of 012 m radius,
is cut and bent so as to form two new circles. Find the radius of each circle 
in order that the sum of the areas of the two circles shall be as small as 
possible. (O.C.)

3. Square pieces are cut out of a square sheet of metal as shown in the figure, 
and the remainder is folded about the dotted lines so as to form an open

Fiu. 60
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box. If the length of the edge of the square sheet is 0T8 m, find the maximum 
volume of the box.

4. A cylindrical tin canister without a lid is made of sheet metal. If S is the 
area of the sheet used, without waste, V the volume of the canister and r 
the radius of the cross-section, prove that

2V = Sr — nr3.
If S is given, prove that the volume of the canister is greatest when the ratio 
of the height to the diameter is 1:2. (L.U.)

5. ABCD is a square ploughed field of side 132 metres, with a path along its
perimeter. A man can walk at 8 km/h along the path, but only at 5 km/h 
across the field. He starts from A along AB, leaves AB  at a point P, and 
walks straight from P to C. Find the distance of P from A, if the time taken 
is the least possible. (L.U.)

6. An isosceles triangle of vertical angle 26 is inscribed in a circle of radius a.
Show that the area of the triangle is 4a2 sin 6 cos3 6 and hence that the area 
is a maximum when the triangle is equilateral. (L.U.)

7. The sum of the perimeters of two rectangles is 1-98 m. The ratio of length to 
breadth is 3:2 for one rectangle and 4:3 for the other. Find the minimum 
value for the sum of their areas.

8. A piece of wire 01 m long is cut into two parts one of which is bent into 
a circle, and the other into a square. If the sum of the areas of the circle 
and of the square is to be a minimum, find the radius of the circle. (Q.E.)

9.6. Points of inflexion
Consider the function y = (x — l)3(12x2 — 9x -  43). By the rule 

for differentiating a product,

^  = 3(x -  l)2(12x2 -  9x -  43) + (x -  l)3(24x -  9)

= (3(x -  l)2{12x2 -  9x -  43 + (x -  l)(8x -  3)}
= 3(x -  l)2{20x2 -  20x -  40}
= 60(x -  l)2(x + l)(x -  2).

Hence dy/dx vanishes when x = — 1, x = 1 and x = 2. When 
x < - 1, dy/dx is positive, when x lies between — 1 and 1, dy/dx is 
negative, when x lies between 1 and 2, dy/dx is negative and when 
x > 2, dy/dx is positive. Since dy/dx changes sign from positive to 
negative as x increases through x = — 1, x = —1 gives a maximum 
value and since dy/dx changes from negative to positive as x passes 
through x = 2, x = 2 gives a minimum value to y. Although dy/dx 
vanishes when x = 1, dy/dx does not change sign as x passes through 
this value and, although the tangent to the curve is parallel to the 
x-axis at x = 1, this point is neither a maximum nor a minimum. Such 
a point is called a point of inflexion: a rough graph of the function is 
shown in Fig. 61 and the tangents at and adjacent to the critical points 
A, B and C are shown in the subsidiary diagrams.
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As we pass through the point of inflexion B, the derivative changes 
from negative, through zero, to negative again. A graph of the deriva­
tive would therefore show a maximum at B and another method of 
finding points of inflexion would be to seek maximum (or minimum) 
values of the derivative. Thus, at a point of inflexion at which the 
tangent to the curve is parallel to the x-axis both

dy „ , d2"= 0 and = 0,dx ~ “““ dx2
and the second derivative changes sign as we pass through the critical 
point.

At a point of inflexion, the curve “crosses its tangent” and such 
points can, of course, occur when the tangent is not parallel to the 
x-axis. At such points the second derivative can be shown to vanish 
but the first derivative is, of course, not itself zero. It is beyond the 
scope of the present book to consider these points in further detail 
and we simply state the rule that the second derivative changes sign as 
we pass through and vanishes at a point of inflexion.

To sum up the results of the last three sections we have :—
dy
dx = 0, positive ; minimum value for y.d2y 

dx2 
d2y
~ 2  negative ; maximum value for y.

d2y d2y
— = 0, ^ 2  changing sign, point of inflexion.

Example 10. Find the turning points and point of inflexion on the curve 
y = x5 -  5x4 + 5x3 -  1.

Here,

= 5x4 -  20.x3 + 15x2 = 5x2(x2 -  4x + 3) dx
= 5x2(x -  l)(x -  3),

d*y
dx\  = 20x3 -  60x2 + 30x = 10x(2x2 -  6x + 3).
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Hence the first derivative vanishes when x = 0, 1 and 3. When x = 0, the 
second derivative vanishes, when x = 1, the second derivative is —10, and when 
x = 3 it is 90. Hence x = 1 gives a maximum, x = 3 gives a minimum. Since 
the second derivative is negative for small negative values of x, positive for 
small positive values of x and zero at x = 0, there is a point of inflexion for 
this value of x. Since the first derivative also vanishes when x = 0, the tangent 
to the curve is parallel to the x-axis at the point of inflexion.

9.7. Curve sketching
It is often useful to be able to make a rough sketch of a curve without

going to the labour of actually plotting a large number of points on
it. The following procedure, either wholly or in part, should enable a
good idea of the shape of a curve to be obtained.

(i) Determine if the curve is symmetrical about either or both axes 
of coordinates. Symmetry about the x-axis occurs if the equation 
contains only even powers of y and about the y-axis if the equation 
contains only even powers of x.

(ii) Determine if there is symmetry about the origin. Such symmetry 
occurs when a change in the sign of x causes a change in the sign 
of y without altering its numerical value.

(iii) Seek values of x which make y2 negative and therefore y imaginary. 
No real points occur on the curve for such values of x.

(iv) Find where the curve crosses the axes of coordinates. The curve 
cuts the x-axis at points for which y = 0 and it cuts the y-axis 
where x = 0. It passes through the origin if y = 0 when x = 0.

(v) Find values of x (if any) which make y very large and values of 
y (if any) which make x very large.

(vi) If the curve passes through the origin, its behaviour in this neigh­
bourhood can sometimes be decided by studying the value of the 
ratio y/x. If this ratio is small the curve keeps close to the x-axis 
near the origin, if y/x is nearly unity, the direction of the curve 
bisects the angle between the axes, while if y/x is large the curve 
keeps near the y-axis. An alternative and better method is to 
study the value of the derivative dy/dx near the origin. Since this 
quantity measures the slope of the tangent to the curve, a small 
value means that the curve lies near the x-axis, a large value that 
it lies near the y-axis, while a value near unity means that the 
tangent at the origin approximately bisects the angle between the 
axes.

(vii) Find turning points and points of inflexion (if any) by the methods 
of this chapter.

Some illustrative examples follow.
Example II. Sketch the curve y = x* — 6x2 + 8x + 10.

Since odd values of x and y occur, there is no symmetry about the coordinate 
axes. A change in sign of x alters the value of y so that there is no symmetry 
about the origin. Points exist on the curve for all values of x. The curve crosses,
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the y-axis where y = 10. It is not convenient to find quickly the points at 
which the curve crosses the x-axis for this requires the solution of a quartic 
equation. The curve does not pass through the origin. When x is large, the 
dominant term is x* and this is positive whatever the sign of x. Hence y is 
large and positive when x is large and positive or large and negative.

Hence turning points or points of inflexion occur when x = 1 and x = -  2.

When x — 1, the second derivative vanishes and changes sign, so x = 1 gives 
a point of inflexion where the tangent is parallel to the x-axis. When x = 1, 
the value of y is easily found to be 13. When x = — 2, the second derivative is 
positive, so that x = — 2 gives a minimum value to y, the value of y at this 
point being -14. A rough sketch of the curve is shown in Fig. 62.

Example 12. Sketch the curve y1 — x3.
Since only even powers of y occur, the curve is symmetrical about the x-axis. 
It is not symmetrical about the y-axis for an odd power of x occurs in the

= 4x3 -  12x + 8 dx
= 4(x -  l)2(x + 2).

y

X

Fig. 62

y

o x

F ig . 63
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equation. When x is negative, y2 is negative and there are no real points of 
the curve for such values of x. The curve passes through the origin and since 
its equation can be written in the form (y/x)2 = x, the ratio y/x is small when 
x is small. The curve therefore lies close to the x-axis near the origin. As x 
becomes large so does y. A sketch is given in Fig. 63.

EXERCISES 9 (d)
1. Find the values of x at the points of inflexion (if any) of the curve 

y =  3x4 — 4x 3 +  1.
2. For what values o f x  are there points o f inflexion on the curve y =  x +  sin x 

at which the tangent is parallel to the x-axis?
3. Discuss the nature of the points on the curve

y =  3x4 — 8x 3 -  24x2 +  96x 
at which the tangent to the curve is parallel to the x-axis.

4. Give a rough sketch of the curve a2y = 4 x 2(3a — 4x), where a is constant.
(L.U.)

5. Sketch the graph of the curve y 2 =  x(5 — x)2. (L.U.)
6 . Find (i) the slopes o f the tangents to the curve whose equation is 

y2 =  x 2(l — x 2) at the points where x =  0  and x  =  1, and (ii) the values of 
x at the turning points o f the curve. Sketch the curve. (O.C.)

EXERCISES 9 (e)
1. A vessel is constructed so that the volume of water contained in it is

^ ( x 3 +  24x2 +  192x),

when the depth is x. What is the rate of increase of volume per unit increase 
of x  when (i) x  =  2, (ii) x  =  4? How many times faster does the surface rise 
when x =  2 than when x =  4, if water is poured in at a constant rate? (O.C.)

2. If the volume of a cone remains constant while the radius of its base is
increasing at the rate of 1 per cent, per second, find the percentage rate 
per second at which its height is diminishing. (O.C.)

3. A trough 3 m long has its cross-section in the form of an isosceles triangle. 
The depth of the trough is 0-2 m and it is 0 2 5  m wide at the top. If water 
runs into it at the steady rate o f 6  x 1 0 ' 4 m 3/s at what rate is the surface 
rising when the depth o f water is 0 1  m?

4. A body moves in a straight line so that its distance s m from a fixed point 
O  at time t  seconds is given by

s =  (t -  2)2(21 -  7).
Find when the body passes through O and the velocity and acceleration 
each time it passes. Find also the minimum value of the velocity.

5. The velocity v m/s o f a particle which has travelled a distance s metres 
from a fixed point is given by v2 =  16s. Find the acceleration of the particle.
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6 . Find the values o f x and y  at the turning point of the curve
ay =  bx2 + cx,

where a, b and c are positive constants. Is the turning point a1 maximum 
or minimum?

7. Find the values o f x at the turning points of the curve

_  x1 -  x + 1 

y ~ x2 +  x +  1

State which is a maximum and which a minimum.
8 . Show that maximum and minimum values of cos3 x sin x occur when 

sin2 x =  1/4.
9. Show that the minimum value of a sec 9 — b tan 0 is ,,J(a1 — b2).

10. Determine thé value o f x  for which the positive square root o f
2 "±i

x" — X "

is a maximum ; n is a constant greater than unity. (Q.E.)

11. A prism of square section contains 64 cubic metres of clay, the side of the 
square being x metres. Express the length of the prism in terms o f x and 
find the total area of its faces.

Show that the total area is a minimum when the prism is a cube.
12. A piece of wire of length I is cut into two portions of lengths x and (/ — x).

Each portion is then cut into twelve equal parts which are soldered together 
so as to form the edges of a cube. Find an expression for the sum of the 
volumes o f the two cubes so formed. What is the least value of the sum 
of the volumes? (O.C.)

13. Find the height o f the right circular cone of maximum volume, the sum 
of the height and radius of the base being 0 T2 m.

14. Post Office regulations restrict parcels to a maximum length o f 107 m and 
a maximum girth o f T83 m. Find the maximum permissible volume o f a 
rectangular parcel.

Find also the length o f the longest thin rod which can be packed inside a 
parcel o f maximum permissible volume.

15. The point A is 7 kilometres due north o f a point B. One man starts from A 
and walks due east at the rate o f  3 km/h. Simultaneously a second man 
starts from B  and walks due north at the rate o f  4 km/h. Find the rate 
at which the distance between them is increasing when they are 15 kilo­
metres apart. Find also the minimum distance between them.

16. A water tank with an open top and square horizontal cross-section is to 
contain 1 cubic metre. Find the cost o f lining the tank with sheet lead at 
£037j  per square metre when that cost is the least possible.

17. In a triangle ABC, the angles B  and C are equal. Prove that the maximum 
value of cos A +  cos B  is 9/8.

18. Find the dimensions of the rectangle of greatest area which can be inscribed 
in a circle o f radius r.
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19. Given that the stiffness of a beam of rectangular cross-section varies
directly as its breadth and as the cube of its depth, find the breadth of the 
stiffest beam of rectangular cross-section which can be cut from a cylindrical 
log of diameter 0-6 m. (Q.E.)

20. Find the quantity which, when added to the square of its reciprocal, gives 
a minimum sum.

21. Find the maximum and minimum value o f y when
y =  x 3 — 4x2 — 3x +  1.

Find also the value of x at the point o f inflexion. (Q.E.)
22. Find the abscissa o f the point o f inflexion on the curve

y =  ax3 +  bx2 + cx + d, 
where a, b, c and d are constants.

23. Sketch the curve (a — x)y2 = (a +  x)x2, where a is constant.
24. If a is a constant, trace the curve x2y — 4a2(2a — y).
25. Sketch the graph o f y = x/(x2 +  1), finding the maximum and minimum 

values o f y.
Prove that the graph lies entirely within the region bounded by the 

lines y =  ±  j. (L.U.)

9] EXERCI SES



CHAPTER 10

INTRODUCTION TO THE IDEAS OF THE 
INTEGRAL CALCULUS

10.1. The nature of the fundamental problem of the integral calculus
The preceding chapters on the differential calculus have been con­

cerned with the rate of variation of various known functions. The 
integral calculus is concerned with the inverse problem— if the rate of 
variation of a function is known, what is the function itself? In symbols, 
we have -to find a function y of x when the derivative dy/dx is known,
i.e., we have to find y from the equation

£  = 4>(x), (10.1)

where <£(x) is a known function of x.

As an example, suppose we know that the velocity at time t of a 
particle moving in a straight line is (u + at) where u and a are constants, 
and we wish to find an expression for the distance s travelled by the 
particle in this time. Since the velocity is expressed by ds/dt, we have 
to find s from the equation

$  = u + at. (10.2)dt
This entails finding a function of t whose derivative with respect to 
f is (u + at). An inspired guess will lead to the result s = ut + ja t2 
for the derivative of this expression is u + at. This, however, is not 
the only solution to our problem. The function s = ut -I- ja t2 + C, 
where C is any constant whatever, has the same derivative and the 
general solution of equation (10.2) is

s = ut + ja t2 + C. (10.3)

The conventional way of writing the solution of equation (10.1) is

y=j</>(x)dx, (10.4)

and y  is called the indefinite integral of <t>(x) with respect to x. The 
origin of this notation will be explained later (§ 10.5); at present we 
shall merely regard it as a means of expressing y when the derivative 
of y with respect to x is <f>(x). In this notation the solution of equation 
(10.2) would be written

s = (u + at)dt,

170
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and this indefinite integral we have seen in (10.3) to be ut + $at2 + C, 
where C is an arbitrary constant.

There is a distinction between direct and inverse operations in 
mathematics. Differentiation is a direct operation and can be per­
formed according to definite rules to give an unambiguous result. An 
inverse operation is of the nature of a question. The operation of 
integration, i.e., of finding the indefinite integral, asks what function 
when differentiated will produce an assigned result? We have seen 
in the example given in (10.2) and (10.3) that if there is one answer 
there are an infinite number owing to the presence of the arbitrary 
constant C. To discover under what circumstances there is an answer 
is beyond the scope of the present book. We shall simply state here 
that there is an answer, i.e., the indefinite integral exists, for a large 
class of functions and in this and the subsequent chapter we shall 
discuss methods for finding it.

10.2. Standard forms
There are no infallible rules by which the indefinite integralj <p(x)dx of any given function <j>(x) can be found. Integration being

an inverse operation, we can only be guided by the results of the direct 
operation of differentiation. Moreover, although the indefinite integral 
exists for a large class of functions, it may not be capable of expression 
in terms of functions normally employed in mathematics. An example 
of a comparatively simple function where this is the case is

and such instances can be extended indefinitely.
A first list of integrals is easily obtained from the list of standard 

forms for the derivative given on page 147. On inversion, each of these 
will give an indefinite integral. The student should become thoroughly 
familiar with this list which is fundamental.

(except when n = — 1).
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u , ,^ (co t x) = — cosec x, cosec2 xd x  = —cot x + C. 

dxd , . , 1 r dx . "
4 * m  x ) ~ 3 < r r ? t  * + cV(i -  *’t
-^-(tan- 1 x) = *dx 1 + x2

f dx tan 1 x + C.

In each case C denotes an arbitrary constant.
By differentiating with respect to x the results given on the right 

of the above list by use of the standard derivatives on the left it will 
be seen that the result in each case is the function (the integrand)

included within the sign j". ..  dx. Thus, since

( *n+l , r ) = (n + 1)*" = - 
An + 1 /  n + 1

d_
dx\

then

And since 

then

ix" dx n + 1 + C.

^ (ta n  x + C) = sec2 x,

x" dx is

J sec2 xd x  = tan x + C,

and so on. It should be noted that the result given for 

invalid for n=  —1 : the integral J x ~ 1 dx will be discussed later

dx
(§ 13.4). It should also be noted that

dx
X2) J 1 + x2 

are conventional ways of writing integrals which should strictly be 
written

J:
1

VO -  *2)'
dx  and 1

1 + x idx.

Since the differential coefficient of the sum (or difference) of two 
functions is the sum (or difference) of the differential coefficients of 
the separate functions, it follows conversely that the indefinite integral 
of the sum (or difference) of two functions is the sum (or difference) of 
the indefinite integrals o f the separate functions. Thus

{</>(*) ± X(x)}dx = 4>(x)dx ± J/(x)dx, (10.5)
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and this result can be generalised to cover any finite number of 
functions.

Again, since the differential coefficient of a constant multiplied by 
a function is equal to the constant multiplied by the differential 
coefficient of the function, it follows conversely that the indefinite 
integral of a constant multiplied by a function is equal to the constant 
multiplied by the indefinite integral of the function. In symbols, if a 
is a constant,

The standard integrals given in this section and the rules expressed 
symbolically in (10.5) and (10.6) enable the integrals of quite a large 
number of functions to be written down. Some examples follow.

It should be noted that the integral is first expressed as the sum of three
separate integrals and that j" 2dx = 2 J  dx = 2 1 x° dx = 2x. Also that the
three arbitrary constants from the three separate integrals can be combined 
into a single arbitrary constant C.

Example 2. Integrate (2x — l )3 with respect to x.
Since {2x -  l )3 = 8x3 — 12x2 + 6x — 1, we can write

( 10 .6)

Example 1. Evaluate j" ^x2 + 2 + —¡jdx.x2 + 2 + ? W

= 2x* -  4x3 + 3x2 -  x + C.

Example 3. Evaluate I (20 + sin 0)dO.

— 2 . - —  cos 6 + C 

= Ô2 — cos 0 + C.

Example 4. Find j  ^  ^ jdt.
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Since (t4 + 1 )/t2 can be written t2 + 1/t2, we have

= j V  + U2)dt = J t 2dr + J  r 2dt

t3 „ t3 1 „= _ _ f . + c = T - 7 + c.

EXERCISES 10(a)
Integrate the following functions with respect to x

x2 + 11. x4/3. 5.

2. 3/x2. 6.

3. (1 + x)2. 7.

/  1\24. (*+ ;) 8.

(L.U.)

6. sin x + cos x.
17. 2 sec2 x + 1 + x2' 

3 _  1^2 ,

Evaluate the following indefinite integrals:—
^  fax~2 + bx~l + c 

J x-3

12. J (20 + cos 0)de.

9. J(3r2 -  t + l)dt. 

io'

dx.

13. By using the relation sec2 0 = 1  + tan2 6, find the value of J tan2 6 dd. In 
a similar manner show that

jcot2 8 dd = C — 6 — cot 0.

14. Use the relation cos x = 2 cos2 $x — 1 to evaluate Jcos2 §x dx.

15. If (1 + x2̂  = 1, find the general value of y.

10.3. Some geometrical and dynamical applications
The problem of finding a function which has a known differential 

coefficient has many geometrical and dynamical applications. The 
indefinite integral gives a general solution to this problem but often 
a particular solution is required which satisfies some geometrical or 
physical condition obtaining in the specific problem under discussion. 
Such a condition enables the particular solution to be selected from 
the general solution by fixing the value of the arbitrary constant in 
the indefinite integral.

Some illustrative examples are given below.



Example 5. At a point on a curve the product of the slope of the curve and the square 
of the abscissa of the point is 2. I f the curve passes through the point x = 1, 
y = — 1, find its equation. (L.U.)
The slope of the curve at the point whose coordinates are x and y is' dy/dx 
so that

10] GE O ME T R I C A L  AND D YNAMI CAL  A P P L I C A T I O N S  I

xJ! r  -  2-dx

Hence dy 2 
dx X2’

and y =  f l d x  =

where C is an arbitrary constant. The equation y — —2/x + C gives, for 
different values of C, a family of curves in each of which the product of the 
slope and the square of the abscissa at a point is 2. The particular curve which 
passes through the point x = 1, y = - 1  is obtained by selecting from this 
family that curve which passes through the point in question. Since y = - 1  
when x = l

- 1  = -2 /1  + C,
so that C =  1 and the required equation is y = 1 — 2/x. 

dy
Example 6. I f -j^ = ax + 2, where a is constant, express y as a function of x, given

d2y
that j  = 6 and that y = 4 when x = 0.

Differentiating the given expression for dy/dx we have
d'y _

(L.U.)

dx2

and hence a = 6. Therefore
dy
dx = 6x + 2,

and - f (6x + 2 )dx = 3x2 + 2x + C.

The constant C is found from the condition that y = 4 when x = 0, so that 
C = 4 and y = 3x1 + 2x + 4.

Example 7. A particle starts from rest with acceleration (30 — 6t) m/s2 at time t. 
When and where will it come to rest again?
Since acceleration is rate of change of velocity, if v is the velocity at time t,

Hence v = j  (30 -  6t)dt -  30r -  3t2 + C,

where C is an arbitrary constant.
Since the particle starts from rest, v = 0 when t = 0, so that C = 0. Thus 
v = 301 -  312 -  3t(10 — r). The body is at rest when v = 0 and this occurs
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when t = 0 (the beginning of the motion) and again when f = 10 seconds. If 
s is the distance travelled in t seconds,

ds , j— = v = 30t — 312. dt

Hence s = j" (30f — 3t2)dt = 15t2 — £3 + C‘,

where C' is another arbitrary constant. Here s is the distance travelled from 
the starting point so that s = 0 when t = 0 and therefore C' = 0. Thus 
s = 15t2 -  t3 = r2(15 — t) and when t = 10, the time when the particle is 
again at rest, the distance travelled will be 102(15 — 10) or 500 m.

EXERCISES 10(b)

1.

2.

3.

4.

5.

6.

dy
The gradient of a curve at any point is given by —  =  2x — 1. If the curve

passes through the point x = 1, y =  1, find the equation of the curve. (L.U.) 
Find the equation of the curve whose gradient is 1 — 2x2 and which passes 
through the point x =  0, y =  1. (L.U.)
A curve passes through the origin of coordinates and its gradient is 2x — x2/2 
at the point whose abscissa is x. Find the ordinate of the curve when x =  2.

(O.C.)
A particle is moving along a straight line with acceleration (2 +  3t) m/s2 
at time t seconds. At zero time its distance from the origin is 5 m; at time 
t =  1 its velocity is 10 m/s. Where is it at time t =  1?
A particle moves on a straight line OA and at time t it is distant x from O, 
x being taken positive when the point is on the same side of O as A. Write 
down expressions for the velocity v and acceleration /  of the particle at 
time t.

Find the distance x at time t if /  =  48t — 24, given also that u =  6 and 
x =  — 1 when t — 0.

Show that the particle is stationary at O when t =  1/2. (O.C.)
At time t the velocity of a particle moving in a straight line is increasing at 
the rate (4t +  3/t3). When t =  1, the velocity is 10 and at that time the 
particle is at distance 4 from the origin. Where is the particle 2 seconds 
later and what is its velocity then?

10.4. Calculation of an area as a limit of a sum
As a preliminary to a second interpretation of integration we give 

below an example of the calculation of an area as the limit of a sum.
If the graph of y = 1 + x be plotted, the graph is seen to be a straight 

line and a diagram as shown in Fig. 64 results. Consider the trapezium 
AOBC included between the graph, the x-axis and ordinates OA, Bp  
at x = 0 and x = 10 respectively. The base of the trapezium is 10 units, 
OA — 1, BC =  11, the mean height of the trapezium is 6 and its area 
A is therefore 60 units of area.
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The area A might also be calculated as follows. Divide the area 
into n strips of equal width 10/n by lines parallel to the y-axis. Suppose 
the rth strip is PNMQ. Since for the first strip PN lies along OA, 
for the second strip PN is at distance 10/n from the y-axis, for the 
third strip PN  is distant 2(10/n) from the y-axis and so on, the distance 
of PN from the y-axis for the rth strip will be (r — l)(10/n). Similarly 
the distance of QM from the y-axis for the rth strip will be r(10/n). 
Thus for the strip shown in the figure, the x-coordinate of P is 
(r -  l)(10/n), and since P lies on the graph of y = 1 + x, the ordinate 
PN will be given by

n n n

Similarly the length QM is given by
_ , ,  , lOr
QM =  1 +  — .n

(10.7)

( 10.8)

By drawing PR perpendicular to QM and QS perpendicular to PN, 
it can be inferred that the area of the trapezium is greater than the 
area of n rectangles like PNMR and that it is less than the area of 
n rectangles like SNMQ. Since the base of the rectangles is 10/n,

. . 10 /, 10 10r\ 10area rectangle PNMR = — (1 --------\- —  I = -----n \  n n /  n

. . VKT. . n  10/, 10r\ 10 lOOrarea rectangle SNMQ = — 11 -(----- 1 = — -|----- .
n \  n /  n n2

100
+

lOOr
-2 ’

The sum of the n rectangles of which PNMR is typical is therefore
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/10 _ 100 100\  (10  _ 100 200\
\n  n1 + n2 /  '  n n2 n2 '

no  100 300\

n o  io o \ „  , ,= ------^2~J(l + l +  l +  - t o n  terms)

- +
10Ô 100n\
„2 + „2 / n n /

H----2~( 1 + 2 + 3 + . . .  + ri)
n

= /10 _  100\ 100 n(l +  n)
\n  n2 / + n2 ' 2

= 10- a  + M _ t l )  = 60 - j 2.
n n n

Similarly the sum of the n rectangles of which SNMQ is typical can 
be found to be 60 + 50/n, and we have

60 — — < / l < 6 0  + —. (10.9)n n
By taking n =  10, i.e., by dividing OB into 10 equal parts, we have

55 < A < 65,
while if we take 100 strips (n = 100),

59-5 < A < 60-5.
By using 1000 strips, we should find that A lies between 59-95 and 
60 05 and equation (10-9) shows that A lies between 60 — e and 60 + e 
where e can be made as small as we please by taking n sufficiently 
large.

It should be noted that as the number n of rectangles such as 
PNMR and SNMQ increases, their widths (10/n) decrease and the 
area can be estimated with greater precision. The area is in fact the 
limit to which the sum of the areas of the rectangles approaches as 
their number increases and their width decreases.

10.5. The integral as a sum
The procedure outlined in § 10.4 could be used to find the area 

below a curve like y = 1 + x 2 but the summations involved would be 
more complicated. We apply below a similar procedure to the more 
general curve y = 4>(x) and are led to the idea of an integral being 
regarded as the limit of a sum.

To simplify matters we consider the function y = </>(x) as one which 
is positive and increasing as x  increases from x = a to x — b. In 
Fig. 65, OU = a, OV = b and a < b. We wish to investigate the area 
AUVB.
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PNMQ is one of the n strips into which the area is divided in the 
manner of § 10.4 and we take ON = x, PN  = y, NM  = Sx. It is 
assumed that the area CONP bounded by the axes, the ordinate PN 
and the curve y = <p(x) is some function A(x) of x. When x increases 
to x + Sx, the area CONP increases to the area COMQ and this we 
take to be A(x) + SA(x). The area PNMQ is, by subtraction, SA(x). 
The area of the rectangle PNMR is ySx, and since QM = y + Sy, 
the area of the rectangle SNMQ is (y + Sy)Sx. It can be inferred from 
the figure that

area PNMR < area PNMQ < area SNMQ, 
or, yS x  < SA(x) < (y + Sy)Sx. (10.10)
Employing the symbol £ to denote the summation of n such strips, 
we have

Zy<5x < area AUVB < Z(y + Sy)Sx. (10.11)
Suppose we draw AF parallel to the x-axis and construct the 

rectangle DEFB of Fig. 65 to be of width Sx. The difference between 
the two sums Z y Sx and Z (y + Sy)Sx (or the difference between the 
sums of rectangles like SNMQ and PNMR) can be seen, by sliding 
rectangles like SPRQ parallel to the x-axis until QR lies along BV, 
to be equal to the area of the rectangle DEFB. This area is BF.Sx, 
and since Sx = UV/n, the difference Z (Sy Sx) between the two sums 
is (BF. UV)/n and this can be made arbitrarily small by taking n large 
enough. Thus Z (Sy Sx) tends to zero with Sx and if Zy Sx tends to a 
limit then Z (y + Sy)Sx tends to the same limit. In this case the area 
AUVB lies between sums which have the same limit, and it follows 
that

area AUVB = lim. Zy<5x.
d x - * 0

This limit is denoted by ydx and is called the definite integral of y
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with respect to x taken over the range from x = a to x = b. The letters 
a and b, called the lower and upper limits of integration, indicate the 
range in x from UA to VB over which the summation is made. The
symbol is a specialised form of S, the sign of summation used in
earlier times.

The definite integral so defined is independent of the idea of 
differentiation. Except in very simple cases such as that given in 
§ 10.4, it is not practicable to use it as a means of determining an area 
because of the awkward summations involved. We can, however, 
connect this definition of the integral with the definition of the indefinite 
integral (the inverse of the derivative) given in § 10.1 and a practicable 
method of calculation of area is then available.

To do so, we return to the inequalities of (10.10) which, after 
division by <5x, give

y  <
¿A(x)

dx < y + Sy.

Assuming* that Sy tends to zero with Sx, this shows that

y
dA
dx (10.12)

y is therefore the derivative of A(x) and hence A{x) is the indefinite 
integral of y. Now /l(x) measures the area CONP, and from Fig. 65,

area AUVB = area COVB -  area COUA = A(b) -  A(a).

Hence £ydx  = lim. Ey<5x = area AUVB
» x - 0

= A(b) -  A(a), (10.13)
where A(x) denotes the indefinite integral of y with respect to x as 
defined in § 10.1.

The argument given above is for a curve in which y is positive and 
increasing with x. When y decreases as x increases, the inequalities 
are reversed but it is still true that SAjSx lies between y and y + Sy 
and (10.13) still applies. If y increases while x increases from a to k 
and decreases while x increases from k to b, the integral or area can be 
found in two parts and these can then be summed. It is also assumed

above that y is positive; when y is negative Z y Sx and 
negative (see § 12.2).

* For the functions used in this book Sy always tends to zero with Sx for the values 
of x under discussion. The student should be warned, however, that this is not always 
the case and equation (10.12) does not then remain valid.
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10.6. The example of $ 10.4 solved by integration
The area bounded by y = 1 + x, the x-axis and ordinates at x = 0, 

x = 10 is, by (10.13),

1 0]

where A{x) = indefinite integral of (1 + x) with respect to x, 
= x + j x 2 + C. ,4(10) is therefore 10 + ¿(102) + C = 60 + C and 
A(0) is simply C, so that in Fig. 64,

This example shows that in evaluating an area or a definite integral, 
the arbitrary constant of the indefinite integral may be omitted. If

b
the notation is used to denote the difference A{b) — A(a), a

convenient way of setting out the working of this example would be

The connection between the limit of a sum and integration has 
therefore enabled lengthy summation processes to be avoided. In the 
present example, this may not be a matter of great importance for the 
area of a trapezium can be otherwise calculated. Nevertheless when 
we pass to areas bounded by curves, formulae for the area are not 
generally known, summation processes similar to those of § 10.4 
become very complicated and integration provides a simple means of 
effecting the calculations.
10.7. Illustrative examples of definite integrals and calculation of area 

In this section a few examples are given illustrating a method for 
setting out the calculations involved in evaluating a definite integral. 
Some applications of the definite integral to the calculation of area 
are also given.

>4(10) -  >1(0),

area AOBC = ,4(10) -  ,4(0) = 60 + C -  C 
= 60 units.

a

0
= 10 + ^102 — 0 — 0 = 60 units.

(L.U.)

If /  denotes the definite integral,
la
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_ a3 (2a)3 a3 a3 _  17a2
2a + 3a + a 3 a 6

Example 9. Evaluate ( L .U . )

x — 1 1
Writing the integrand —^ — in the form x ---- j  and denoting the integral
by I,

(x -  x~ 2)dx

-g-u;
22 1 l2— + - -  — - 1  = 1. 2 2 2

.1
Example 10. Evaluate (i) I sin x dx, (ii) I —J o J o 1 +  x 2

r*" r  t * «
(i)i) J" sin x dx = j—cosxj = —cos {n + cos 0 = 1.

1  TTx2 = [tan * x] 0 = tan ‘(1) ~ tan~' (°) = */4-(ii)

Example 11. Calculate the area between the x-axis and the curve y = x(x — 4).
(L.U.)

A rough sketch of the curve shows that the area required (shown shaded in 
Fig. 66) is

L"-J!-r.
x(x — 4 )dx 

(x2 — 4 x)dx
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2

(the negative sign occurs because the area lies below the x-axis, see also § 12.2).

Example 12. The gradient of a curve at the point whose abscissa is x is 1 + jx 2 
and the curve passes through the point x = 1, y = 0. Find the equation of the 
curve and the area bounded by it, the x-axis and the ordinates x = 1. x = 3.

(L.U.)

We are given ~  = 1 + \ x 2. Hence 
dx

f
y = I (1 + |x 2)dx = x  + — + C,

where C is a constant. Since y = 0 when x = 1, 0 = 1 + -  + C, giving

7 x2 7
C =  —  and the equation of the curve is y = -— I- x — -.6 b o

The area required =

2 1 __ 1__ 1_ 7
6 24 2 + 6 ~

EXERCISES 10(c)

Evaluate the following definite integrals :—

1. (1 +  x2)dx.
Jo

5.
W O - * 2)'

2. J M ' - ? ) ' ' *
r2

(L.U.) 6. j*  sec2 6 d6.

3. x(l +  x3)dx. 

f4

(L.U.) 7. tan2 6 dd.

f*/3
4. I x(x — l)(x — 2)dx. 8. (sin \ t  +  cos jt) dt.

J 0
9. Find the area of the space bounded by the curve y =  1 +  lOx — 2x2, the 

x-axis and the ordinates for which x =  1 and x =  5. (O.C.)
10. Find the area included by that part o f the curve

y =  x 3 — 6x 2 +  l l x  — 6,
which lies between x = 1 and x =  2. (O.C.)

11. Find the area enclosed by the x-axis and that part of the curve
y =  5x — 6 — x2 for which y is positive. (O.C.)
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12. The gradient of a curve is 6x — 3x2. If the curve passes through the origin
find its equation and show that it cuts the x-axis again where x =  3. Find 
also the area bounded by the curve and the x-axis. < (L.U.)

13. An ordinate is drawn to the curve y =  x(l — x2) through the point
x =  1 +  p where p is positive. Find p so that the area between the x-axis 
and the curve for x between 1 and (1 + p) may equal in absolute magnitude 
the area between the x-axis and the curve for x between 0 and 1. (L.U.)

14. The curve y =  l l x  — 24 — x 2 cuts the x-axis at points A, B and PN  is 
the greatest positive ordinate. Show that 2P N .A B  equals three times the 
area of that portion of the curve which lies in the first quadrant. (L.U.)

10.8. Volumes of figures of revolution
Another simple application of the definite integral occurs in the 

calculation of the volume formed by the rotation of a plane curve 
about an axis. Fig. 67 shows part of the curve y = <p(x) (again for 
simplicity shown as positive and increasing with x). That part of the 
curve between ordinates at x = a and x = b is rotated about the 
x-axis and we wish to find the volume of the solid so formed.

As in § 10.5, PNMQ is one of the n strips into which the area 
AUVB is divided and ON = x, PN = y, NM  = Sx. The volume

formed by the rotation about the x-axis of the strip PNMQ will be 
greater than the volume formed by the rotation of the rectangle 
PNMR and less than that formed by the rotation of the rectangle 
SNMQ. The body formed by the rotation of the rectangle PNMR 
will be a right circular cylinder* of radius PN  =  y and length 
NM = ¿x and therefore of volume ny1 Sx. Similarly the volume

* See § 20.5.
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formed by the rotation of the rectangle SNMQ will be n(y + Sy)2 Sx, 
for the radius of this cylinder is QM = y + Sy. If we take the volume 
formed by the rotation about the x-axis of the area CONP tp be V(x), 
that formed by the rotation of COMQ will be V(x) + SV(x) and, by 
subtraction, the volume formed by the rotation of PNMQ will be 
5V(x). Hence

ny2 dx < SV(x) < n(y + Sy)2 Sx.
The summation of n such strips shows that £ ny2 Sx < volume (V) 

formed by rotation of area AUVB < £ n(y + Sy)2 Sx, and an argu­
ment similar to that used in § 10.5 leads to

V = lim. £  ny2 Sx
ô x  — 0

(10.14)

Again the reasoning has been given for a curve in which y increases 
with x. Arguments similar to those given at the end of § 10.5 will 
enable this restriction to be removed.

Example 13. The portion of the curve xy = 8 from x = 2 to x = 2 to x = 4 is 
rotated about the x-axis: find the volume generated. (L.U.)
Here y = 8/x and the required volume is given by

V = n j  y2dx = n J  (8/x)2 dx

= =M7t m
= (Ait{ — i  + = 16?! units.

Example 14. Find the volume of a right circular cone of height h and semi-vertical 
angle a.
The graph of y = tan a is (Fig. 68) a straight line through the origin O making

an angle a with the x-axis. The rotation of this line about the x-axis will 
generate a right circular cone of semi-vertical angle a. The volume of such a
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cone of height h is, by (10.14), given by

V  = (x tan a)2 dx

-  n tan2 dx = 7t tan2 a
h

0
= $nh3 tan2 a.

EXERCISES 10(d)

1. Find the volume generated when the area enclosed by the x-axis and the
curve y =  3x2 — x3 is rotated about the x-axis. (L.U.)

2. Find the volume generated when the area enclosed between the curve 
y =  x3/16, the x-axis and the ordinate at x =  2 revolves about the x-axis.

3. Draw a graph of the curve y2 =  x(5 — x)2. If the loop of the curve is rotated
about the x-axis, find the volume generated. (L.U.)

4. Show by an argument similar to that given in § 10.8, that the volume 
generated when a portion of a curve between y = c and y = d is rotated

about the y-axis is nJ* x 2 dy.

The curve y2 = 4x, contained between the axes and the point where 
x =  1, y =  2 is revolved about (a) the x-axis, (b) the y-axis. Find the difference 
between the volumes of the solids so formed. (L.U.)

5. The part of the curve x2y =  x4 +  3 between the ordinates x =  1 and x =  2
is rotated about the x-axis. Calculate the volume generated. (L.U.)

6. Find the volume of the solid formed by the rotation of the curve y =  cos jx 
from x =  0 to x =  n about the x-axis.

EXERCISES 10(e)

1. Evaluate (i) J3x(2x2 +  5x — 4)dx, (ii) J(1 — x)2̂ /x dx.

2. Find the indefinite integrals with respect to x o f:—
(i) (3x -  4)2, (ii) (3 +  x)(x -  1).

3. If a is a constant show that

4. By using the addition formula for sin (x +  a), show that

sin (x +  a)dx — — cos (x +  a) + C,
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where a is a constant. Show, in a similar way, that 

jcos (x +  a )d x  =  sin (x +  a.) +  C.

5. Use the relation cos 6  =  1 — 2 sin2 \ 6  to evaluate j"sin2 \ 6  d6.

6 .

1.
8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

A curve passes through the point where x =  0 and y  =  1 and its gradient 
at any point is f  +  x — | x 2. Find the equation of the curve and the area 
enclosed by the curve, the x-axis and the ordinates x =  1, x =  3. (L.U.)
If 6  =  2 when t  =  n / 3  and if dO/dt — sin t, express 6  in terms of t.
The gradient of a curve which passes through the point x =  3, y  =  1 is 
given by d y / d x  =  x2 — 4x +  3. Find the equation of the curve and the area 
enclosed by the curve, the maximum and minimum ordinates and the 
x-axis. (L.U.)
The velocity (v) of a particle is given by 

d (v 2) 
d x

■ =  -  18x,

and v =  4 m/s when x =  1 metre. Find the velocity when x =  0 and the 
greatest value reached by x during the motion.

d2y
Integrate the equation £ /^ —j  =  M  — W x,  where E , I ,  M  and W  are 

constants.
Given that both d y / d x  and y  — 0, when x =  0, determine the value of 

d y /d x  and y  at the point x =  1. (Q.E.)
Evaluate the definite integrals:—

(i) j ’ ( x  +  i ) 2 dx, (*» [  ( x 2 +  ~ )  d x .  (L.U.)

Evaluate

(i) f (1 — J x ) 1 d x ,  (ii) j* (cos x 4 sin x )d x .
Jo J

Find the value o f:—

(L.U.)

If y  =  x3, evaluate y d x  +  x d y .
Jo Jo

For what values of a does (x +  ])dx =  2 J"  sec2 x dx?

The equation of a curve is of the form y  =  a x 2 +  b x  +  c. It meets the 
x-axis where x =  — 1 and x =  3: also y =  12 when x =  1. Find the equation 
of the curve and the area between it and the x-axis. (L.U.)

Find the area in the first quadrant bounded by the curve a2y =  4x2(3a — 4x) 
and the x-axis. (L.U.)
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18. For the curve y = 2x3 — 3x2 — 12x + 25, find the area enclosed beween
the curve, the x-axis and the ordinates at the maximum and minimum 
points. , (Q.E.)

19. Find the area between the curve y2 =  4x3, the x-axis and the ordinate at 
x = 4. If the ordinate at x =  c halves this area, find the value of c.

20. From the point where x =  6, y =  27 on the curve 8y =  x3, perpendiculars
are drawn to the axes of coordinates. Show that the rectangle formed by 
these perpendiculars with the axes is divided by the curve into portions the 
areas of which are in the ratio 1:3. (O.C.)

21. A vessel for holding flowers is of the shape formed by the revolution of the 
curve 10y2 =  4x about the y-axis. Its height is 0-2 m. Find its volume.

22. Liquid in a cylindrical can of radius r which is rotating rapidly about its 
axis is bounded by the surface formed by rotating the curve y2 =  4ax 
about the x-axis (the x-axis of the curve coincides with the axis of the 
cylinder and the origin is at the centre of the base of the can). The liquid 
just clears the centre of the base of the can and just does not overflow. 
Find an expression for the height of the can and also the volume of the 
liquid in terms of r and a.

23. Show that the volume generated by the revolution about the x-axis of the 
area included between that axis and the curve cy = (x — a)(x — b) is

it (a — b)s 
30' c2 '

24. Find the volume generated when the loop of the curve 3x2 =  y(3 — y)2 
revolves about the y-axis.

25. The part of the curve y =  ,/(20x — x2) between x = 0 and x = 10 is a
quadrant of a circle. The arc of the curve from the origin to a point P whose 
abscissa is a is revolved about the x-axis. If the volume of the bowl thus 
obtained is one-half of the bowl obtained by revolving the whole quadrant, 
show that 30a2 — a3 = 1000. (N.U.)



CHAPTER 11

SOME METHODS OF INTEGRATION

11.1. Introduction
In the introduction to the basic ideas of the integral calculus in 

the last chapter, examples were chosen which involved only a few 
simple integrals : these were obtained as the inverses of the differential 
coefficients given in the standard list on p. 147. The scope of the 
integral calculus will, of course, be extended when other integrals can 
be determined and it is the object of the present chapter to indicate 
methods which help in this direction.

The student will gradually realise that although he can usually 
expect to be able to find the derivative of any function, there are many 
functions which he cannot integrate. In certain cases this may arise 
from a lack of experience or ingenuity but in others it will result from 
the fact that many functions cannot be integrated in terms of functions 
which are familiar to the student at this stage of his knowledge of 
mathematics.

A systematic study of methods of integration is most important 
and the student should not regard integration as a purely tentative 
process. Nevertheless it does require a certain maturity of judgment 
to decide whether to apply a standard method or to rely on some 
special device in a particular case and the studeht will be well advised 
to work through many examples in his early work. The exercises 
given at the ends of the various sections of this chapter will usually 
be on the methods given in the preceding sections : the set at the end 
of the chapter is not arranged in any definite order and the student 
will have to decide for himself what standard method or special device 
he is going to adopt.

The methods of integration given in this chapter are by no means 
all that are available. There are methods which depend on a know­

ledge of Jx  ~1 dx which are delayed until this integral is discussed in

Chapter 13, and there are many other methods which are beyond the 
scope of this book.

11.2. Generalisation of the list of standard integrals
Suppose the differential coefficient of f(x)  with respect to x is f '( x \  

then the definition of the indefinite integral gives

( 11. 1)

189
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where C is an arbitrary constant. The rule for the differentiation of a 
function of a function (§ 8.6) shows that, if a and b are constants, the 
differential coefficient with respect to x of f(ax + b) is af'(ax + b). 
Hence

j f '(a x  + b)dx = i / (a x  + b) + C. (11.2)

A comparison of (11.1) and (11.2) enables the integral of a function of 
(ax + b) to be written down when the integral of the same function 
of x is known. We can in fact say that if the integral of a function of 
x is known, the integral of the same function of (ax + b) is o f the same 
form but it is divided by a. For the special case of a — 1, we have the 
rule that the addition of a constant to x makes no difference in the form 
of the integral.

As an example of the first of these important rules,

J(2x + 3)3 dx = ¿<2x + 3)4 + C,

for the integral of x3 is ^x4 and so the integral of (2x + 3)3 will be 
¿(2x + 3)4 divided by 2, the coefficient of x in (2x + 3). Other examples 
are

J(x + l )2 dx = $(x + l)3 + C,

{(1 -  x)3 dx = - i ( l  -  x)4 + C,

f dx = _  1 , rJ (2x + 3)2 2(2x + 3) ^
These rules enable the following revised and more general list of 

integrals to be drawn up and it is this list that the student should 
try to memorise. In the list a and b are constants and C is the arbitrary 
constant of integration.

1«(ax + b f dx  = + ^ — + C, except when n =  — 1.(n + l)a
1 .cos axdx = -  sin ax + C 

J a

axdx  = -  tan ax + C. a
f dx

x2)
= sin 1 — f- C

■ s

■ I

■ h

sin axdx = ---- cos ax + C,a

cosec2 axdx = — -  cot ax + C,

dx
T~+l? = -  tan" x + C.

The above integrals all follow directly from those given in § 10.2 
except the last two which are derived as follows. Since
yj(a2 -  X 2 )  = aV( 1 -  (x/a)2},
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and

M E T H O D S  O F  I N T E G R A T I O N  

dx

191

r d x  _  i  r  ____d
JV(a2 -  x1) ~ a JV *1 - (x/a)2}

r ^  = i f _  J a2 + x i a2 J 1

1 1 . . , x
-  ■ 7TT\ sm -a (1/a) a 

dx

1 -  + C = sin~1 -  + C, a

+ (x/a)2
J _ ___
a2'( 1/a)

1 . xtan 1 -  + C = -  tan 1 -1
a + C.

It should be carefully noted that the rules given in this section 
apply only when x  is replaced by (ax + b), i.e., by an expression linear 
(of the first degree) in x. They do not apply to integrals like

j"(x2 + 4)2 dx or j* sin 2x3 dx where x is replaced by expressions of

degrees other than the first in x. It is also important to be careful 
not to omit the dividing factor a, a common mistake when the process 
of integration is first begun. It is perhaps as well in the early stages 
to check the correctness of an integration by differentiating the 
expression obtained. This should, of course, give back the function 
which was to be integrated (the integrand).

One other point may be noticed here. Earlier in this section we 
found that, apart from the arbitrary constant,

j*(x + l )2 dx = |(x  + l)3;

if we find this integral by first squaring (x + 1), we have 

j*(x + l )2 dx = j"(x2 + 2x + 1 )dx 

=  ^ X 3 +  X 2  +  X .

This can be written |(x 3 + 3x2 + 3x + 1) — or j(x + 1;<3 -  j, and 
the two results differ by 1/3. This apparent discrepancy can be removed 
by including the quantity —1/3 in the arbitrary constant which so 
far we have omitted. The arbitrary constants in the expressions 
obtained by the two methods will differ by 1/3 but all the terms 
containing x will be identical. Expressions for indefinite integrals 
obtained by different methods often differ at first sight: provided no 
error has been made it will be found, on examination, that all terms 
containing the variable are identical and the results differ only by 
a constant.

Example 1. Evaluate 1
V(* + 3>

+ dx. (L.U.)
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The given integral

i= {(x + 3)“ 1,2 + (x + 2)'l2}dx

= \ 2(x + 3)1'2 + i(x + 3)3/2l  
L -"o

=  2y/4 + tV(4)3 -  2 7 3  -  §7(3)3

= 4 + -  273 -  2V'3 = ^  -  473.

Example 2. Evaluate I (cos x + 2 cos 2x)dx. * 0
The integral

(L.U.)

r 2 t t= ^sin x + -  sin 2x J 

= sin j  + sin n -  sin (0) -  sin (0) = 1.

Example 3. Find the value of dx
4x + 13'

Since x2 -  4x + 13 = x2 -  4x + 4 + 9 = (x -  2)2 + 32, we have
s

dx I dx

(L.U.)

L 4x + 13 -J.32 + (x -  2)2

= ^{tan 1 0  -  tan 1 (0)} = ^ tan ‘‘f.
The method used above of expressing x2 — 4x + 13 as the sum of the square 
of a linear expression in x and a constant should be noticed. Integrals involving 
quadratic denominators without factors can often be made in this way to

depend on the integral — 2 When the denominator can be expressed

as the product of linear factors, separation into partial fraction can be used to 
f dxmake the integral depend on I-------, but a discussion of this case must waitJ x + a

until Chapter 13. In a similar way some integrals can be made to depend on

f _ * ? __J -  * J)
EXERCISES 11(a)

Integrate the following expressions with respect to x :—
1. (2 -  x)3. 3. (2x -  1)~3.

1
V (5 *  -  7)'

2.. (1 -  x)10. 4.
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Evaluate the following definite integrals:—

5. J*,S sin -  20j dO. 6. j”'/4 cos I t  dt.

7. Integrate with respect to x :—
(i) cos 2x — sin 2x, (ii) sec2 (2x — 1). 

f2/3 du
8. Evaluate

11] M E T H O D S  OF I N T E G R A T I O N

9.

10.

J o 4 +  9u2'

Integrate the following expressions with respect to x :—
1 . . 1

V(4 -  *2>
1

x 2 +  x +  T

11.

n

7(5  +  4x -  x2)' 
1

3x2 — 4x -t- 7'

(L.U.)

11.3. The integration of products of sines and cosines 
The product of two sines, two cosines or a sine and a cosine may 

be integrated by first expressing the product as a sum by means of 
the trignometrical identities (§ 5.5),

2 sin A sin B = cos (A — B) — cos (A + B),
2 cos A cos B = cos (,4 — B) + cos (A + B), >- (11.3)
2 sin A cos B = sin (A — B) + sin {A + B). J

Thus,

Jsin mx sin nx dx = i  J  {cos (m — n)x — cos (m + n)x}dx 

sin (m — n)x sin (m + n)x
+ C,

J '

2 (m — n) 2 (m + n)

cos mx cos nx dx =  ̂J* {cos (m — n)x + cos (m + n)x}dx 

sin (m — n)x sin {m + n)x
+ + C,2 (m — n) 2{m + n)

j"sin mx cos nx dx =  ̂J* {sin (m — n)x + sin (m + n)x }dx 

cos (m — w)x cos (m + n)x
2(m -  n) 2(m + n) +  C.

It is not recommended that these last three integrals should be 
memorised—it is better to remember the method and apply it to 
specific examples.



194 P U R E  M A T H E M A T I C S [11

Example 4. Integrate cos 3x cos 2x with respect to x.

j* cos 3x cos 2x dx =  -  J (cos x + cos 5x)dx

1 1 c= -  sm x + — sin Sx + C.

f«/ 2
Example 5. Evaluate 1 sin 2x cos x dx.

J o

i
*/2 j /»*/ 2

sin 2x cos x dx = -  j  (sin x + sin 3x)dx

i r  1 , v /2 2■ -  -c o sx  - -co s3 x | = -. 
2L 3 Jo  3

(L.U.)

The integrals of sin2 mx, cos2 mx can be found from the double­
angle formulae

sin2 mx = U1 — cos 2mx), 
cos2 mx = |(1 + cos 2mx),

which can be deduced by writing A = B = mx in the first two of 
equations (11.3) and which have been given also in equations (5.11) 
and (5.12). Again it is best to apply these identities to the particular 
example under discussion rather than to attempt to remember the 
general integrals.

/•it/4
Example 6. Evaluate I cos2 x dx. (L.U.)

Jo

cos2 x dx 1 r /4
- l  (1 + cos 2 x)dx

IT 1 . „ J ’/4
2 L + 2 Sm 2*] o

sin2 2xdx.

j  j » * / 2

I sin2 2 xd x  = -  I (1 — cos 4 x)dxJo 2j 0

= 2L ~ 4 Sm4xJn = 4'

(L.U.)

EXERCISES 11 (b)
Evaluate the following integrals:—

2 sin2 x dx. 2. | cos2 (x — a)dx.
o Jo
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k/2
3. I (2 cos2# + 3 sin20)i/0.

J o
ç«/2

4. (2 cos2 0 +  3 sin 30)d6.
J o
|*jï/3

5. 2 sin 3x cos x dx.

r»/2
7. sin x  cos x  dx.

o
/.3«/8

8 sin 30 cos 0 dd.

s- 1 .
* tr/4

b 1 » Sl
sin x cos x dx.

sin
J o

i:
çn/2

9. (sin 3x +  sin x cos x)dx.
J o

10. J 2 sin mO sin n6 dO, where m and n 

are integers and m =/= n.

11.4. Integration by change of variable 
A very powerful method of integration is that of changing the 

independent variable, or, as it is sometimes called, integration by sub­
stitution. It will be seen from the derivation of equation (11.7) below 
that this method is the converse of the method of differentiating a 
function of a function (§ 8.6).

Suppose .we wish to change the variable from x to t in the indefinite 
integral

(11.4)i(p(x)dx.

By the definition of the integral

dI m   ̂
dx =

(11.5)

and, if x is a given function of t, the rule for the differentiation of a 
function of a function (8.10) gives

dl _  dl dx
dt dx dt'

Substitution of dl/dx from (11.5) leads to
dl , dx 
dt ~ * <X)'W

and hence, if we again use the definition of an integral,
,  f j ./ \ d x j  
1 =

Equations (11.4), (11.6) together give the important result 

jV(x)dx = |</>(x)^dt.

The following are important cases:—

(i) Suppose we wish to find j* <p(ax 4- b)dx where a and b are constants.

( 11.6)

(11.7)



196 P U R E  M A T H E M A T I C S

Write ax + b = t so that a(dx/dt) = 1 and dx/dt = 1/a. Then (11.7) 
gives

j(j>(ax + b)dx = J  (f)(t).^dt

a symbolic expression of the important rule of § 11.2.

(ii) Integrals of the form J  <f>(x2)x dx can often be found by using the

substitution x2 = t. In this case, 2x(dx/dt) = 1, giving dx/dt = l/(2x), 
and from (11.7)

j$(x2)x dx = ^4>{t).x.~dt

■iJ*
so that \(/)(x2)xdx can be determined when ) 4>(t)dt is known.

The presence of the “extra x” in J</>(x2)x dx should be noted. 

It is this term which enables the integral to be reduced to the

simpler form -  J <f>(t)dt. If the “extra x” were absent, the corres­

ponding result would be

jV(x2)dx = ^ |<^>(t)r1/2 dt,

and this is not usually a specially helpful transformation.
Example 8. Integrate x ,/(l + x2) with respect to x.

By writing x2 = t, we find as above that

J  x V ( l  +  x2)dx =  ^  J nA 1 +  0 *

Example 9

2 3/2
=  $(1 +  X 2 ) 3 ' 2  + C,

when we replace t by x2 after the integration, 
x dx. Find J  - + x*

Using the same substitution x2 = t,
f xdx 1 f dt .
J i T ^ ^ j T T T 5 ^ 18" < + c

= i  tan“ 1 x2 + C.
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For other types of integral, the choice of a successful substitution 
is a matter of some judgment. It is only possible here to give a few 
hints and examples.
(a) If the integrand contains (a2 — x2), the substitutions x  = a sin t or 
x = cos t are often helpful.

For example let us put x = a sin t to evaluate the integral
• 1

/ =  . a- — j-. If x = asint, d x /d t = a cos t, and (11.7) gives
J V(fl ~  * )

/  = f i, ,---- ' .aco std t = f l .d t  = t + C,J y j {a r -  a  sin2 t) J
for y j(a2 — a2 sin2 t) = a cos t. Since x = a sin f, t = sin - 1 (x/a) and 
we therefore have

. x _
sin -  + C,a

(11.8)

as given in the list of § 11.2.
If we had determined this integral by means of the substitution 

x = a cos t, we should have had dx/dt = — a sin t, and by (11.7)

j v V  -  a2
-A — a sin t)dt

- J -
l)dt = -  t + C.

•*2 cos2 t f
Replacing t by its value cos-1 (x/a), the final result would have been

j* dx
J J ia 2 -  x2)

— cos 1 -  + C. a (11.9)

The apparent discrepancy between the two results (11.8) and (11.9) 
is explained by the relation cos-1 x + sin-1 x = obtained in 
Example 12 of Chapter 5. Using this, the value of the integral given 
in (11.9) can be written sin-1 (x/a) — jn  + C' and agreement with
(11.8) can be secured by writing C = C' — \n. This is another example 
of indefinite integrals obtained by different methods differing by a 
constant quantity.
(ib) When (a2 + x2) occurs in the integrand, the substitution 
x = a tan t is indicated. With this substitution dx/dt = a sec2 t and

f ¿x
a2 + a2 tan2 t -  a2 sec2 t so that, using it to evaluate I ^ 2 for

example,
dx
T ^ 2 J  a2 sec2 t . a sec2 t dt

= -  + C = -  tan 1 -  + C, a a a
for t = tan 1 (x/a).
(c) Products of the type sin” x cos" x where m and n are positive
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integers and one at least of them is odd can be integrated by the 
following devices. If n is odd, n — 1 will be even and cos" “ 1 x is 
expressed in terms of sin x by means of cos2 x =  1 — siir2 x : then 
we use sin x = t. If m is odd, sinm_ 1 x can be expressed in terms of cos x 
by means of sin2 x = 1 — cos2 x and then the substitution cos x = i 
used. Some examples follow.

Example 10. Find j* sin3 x cos x dx

Here the powers of the sine and cosine are both odd, so either of the above 
methods can be used. Choosing the first (it is preferable here), write sin x = t, 
so that cos x{dx/dt) = 1 and dx/dt = sec x. Using (11.7) we therefore have

j"sin3 x cos x dx = j" r3,cos x.sec xdt = j" t3 dt 

= Jr1 + C = i  sin* x + C.

Example 11. Integrate cos5 x with respect to x.
Here it is essential to use the first method for cos5 x is a particular case of 
the product sin" x cos" x with m = 0 (even) and n = 5 (odd). We write sin x = t, 
and therefore, as in Example 10, dx/dt = sec x. cos5 x is written as cos4 x . cos x, 
or (1 — sin2 x)2.cos x, so that

j"(1 -  sin2 x)2 .cos x dx 

j" (1 — t2)2.cosx.sec xdt

j (1 -  t2)2 dt

|  (1 -  I t1 + t*)dt

= t -  f t3 + i t 5 + C 
= sin x — f  sin3 x + |  sin5 x + C.

Example 12. Find j" sin3 x cos2 x dx. (Q.E.)

Here the sine is raised to an odd power so we set cos x = t. This gives 
— sin x/dx/dt) = 1 and dx/dt = — cosec x. sin3 x is written as 
(1 — cos2 x) sin x and hence

J  sin3 x cos2 x dx -  j" (1 — cos2 x) sin x cos2 x dx

= J  (1 -  i2)s in x .t2.( — cosecx)dt 

= -  |  (t2 -  t*)dt = - j t 3 + i t 5 + C.

— -  } COS3 X  +  ̂COS5 X  + C.

j" cos5 x dx =
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(d) There are many other substitutions which, with (11.7), are effective 
in particular cases. For example, even positive integral powers of 
sec x may be integrated by writing t = tan x and those of cosec x 
by using t = cot x. Examples will be found among the exercises. As 
previously stated, the choice of a correct substitution is not always 
evident and often depends on judgment and experience: in some of 
the exercises hints are given.

11.5. Definite integrals by change of variable 
In the evaluation of a definite integral when the integration is 

performed by changing the variable, two methods are available. In 
the first, the indefinite integral is found and expressed in the original 
variable and then the limits are inserted: in the second (and usually 
preferable) method, everything, including the limits, is expressed in 
terms of the new variable. Both methods are used in the first example 
below: the second method only is shown in the remaining examples.

Example 13. Evaluate sin3 x dx.

Method 1. First find J sin3 x dx, by writing

cos x = t, sin3 x = sin x(l — cos3 x).
Then — sin x{dx/dt) = 1, and dx/dt = —cosec x. Therefore

j"sin3 x dx = j" sinx(l — cos2 x)(— cosec x)dt = —j" (1 — t2)dt

-  -  t + f t3 = -  COS X +  ̂COS3 X.
Hence

i
«/2 r -] «/* 1 2

sin3 x dx = Ĵ — cos x + ^ cos3 xj = 1 -  -  =

Method 2. Using the substitution cos x = t, the indefinite integral can as

before be reduced to — J*<1 -  t2)dt. At the lower limit of the given definite

integral x = 0, so that since cos x = t, the lower limit of the integral in t will 
be given by t — cos 0 = 1 .  Similarly, since x = tt/2 at the upper limit of the 
integral in x, the upper limit of the transformed integral will be t = cos (tt/2) = 0. 
Hence

j" * 2 sin3 x <fx = - j ° ( l  -  t2)dt = -  3' 3] °  = 1 ■

as before.

Example 14. Evaluate j x dx
\/(l -  x2)

j- by means of the substitution x = sin t.
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If x = sin t, dxjdt — cos t. When x — 0, sin t = 0 and t =  0, when x = 1, 
sin t = 1 and t = n/2, so that the lower and upper limits of the integral in t 
are respectively 0 and n/2. Hence

f' xdx _ f
Jo V<! ~ *2) ~ Ji

=1

sint
o y / ( l - s i n 2 t) 
k/2

sin t dt 

[ —cos t]* J =

cos tdt.

f*/4Example 15. Evaluate I sec4 x dx.

Put t = tan x so that sec2 x(dx/dt) = 1 and dx/dt = cos2 x. When x = 0, 
t = tan 0 = 0 and when x = n)4, t = tan(rc/4) = 1. Hence

pnfA /»*/4|**/4 /•*/*
J sec* xd x  = I sec2 x sec2 x dx

- f (1 + tan2 x) sec2 x dx

= I (1 + t2)sec2 x.cos2 xdt

= r  ( i + t ^ t

EXERCISES 11(c)

Integrate the following functions with respect to x :— 
1. xcos(x2 -  1).

1 (~3 + 8)4 (Hillt> PUt *3 + 8 = 0-

3. -4-  cos yjx (Hint, put yjx -- t).
\ x

4. sin x cos4 x.
5. sin3 2x.

x — 1
6 ^(1 -  9x2) *Hint’ put 3x =  sin ^

7. --+ ^  (Hint, put x4 = 0-

8. V (4 -x 2).
Evaluate the following definite integrals:—

9. f x ^  + x2* .
J n

(L.U.)
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10.

11.

12.

13.

14.

15.

16.

<■«/3
sin2 x cos x dx.

f' 4x dx 
Jo(2 ~  x 2)312

[ x j ( a 2 -  x 2)dx.
J 0
f*/2 cos9d9 .... . . .
I ------- r-5-7, (Hint, put sin 9 =  t).
J (l 1 +  sin2 6 K

[ yj(a2 -  x 2)dx..
J 0 
«•«/*

tan2 0 sec2 0 dO (Hint, put tan 9 =  t).
J -*/■»
r /2 cos x dx
Jo V(s in x )

(O.C.)

11.6. Integration by parts
A useful method of integration, known as “integration by parts”, 

results from the inverse of the formula (8.4) for the differential 
coefficient of the product uv of two functions u and v of x. This is

du
^dx

dv
+ uTx'

which, with the fundamental definition of the integral, gives
[ (  du dv\

-  J ( " s + * T * r -uv

This can be written
f d u ;  f d V j

m - ] ' T / x + i  “Jxdx■
which can be transposed into

f u p x  = u v - (1U0)

The integral on the right-hand side of (11.10) is often easier to 
evaluate than the one on the left. Some judgment must be used in the 
choice of u and v when employing this method which is particularly 
useful when one of the functions is an inverse trigonometrical function. 
In this case this function should be taken as the “u” in the integral 
on the left of (11.10) for then du/dx in the integral on the right becomes 
a fairly simple algebraical function. This and some other devices 
useful in this method of integration are illustrated in Examples 16-19 
below.
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Example 16. Integrate x tan 1 x with respect to x.

Take u = tan 1 x, — = x,dx = x, so that — = ------- * and u = i x 2.dx 1 + x2 2
Then (11.10) gives

and this is Kx -  tan 1 x). Replacing this in (11.11) we have

J  x tan 1 x dx = Jfx2 tan ' 1 x -  J(x -  tan 1 x) + C 

= i(x2 + l) ta n " ‘ x -  ix  + C.

Example 17. Find J x cos x dx.

If we take u as cos x and dv/dx as x, du/dx = — sin x and v = $x2, so that the 

integral on the right of (11.10) is J  ^x2 sin x dx and this is more complicated 

than the original integral.
If, however, we take u = x, dv/dx = cosx, du/dx = 1, u = sinx, and (11.10) 
gives

Example 18. Find j  sin2 x dx by the method of integration by parts.

Although integration^ by parts is not the best method for finding J sin2 x dx,

the working below illustrates a device which is sometimes useful.
Take u =  sin x, dv/dx = sin x, so that du/dx = cos x ,v =  —cos x.
Then (11.10) gives

ix cos x dx = x sin x —J  sin x dx

= x sin x + cos x + C.

Since cos2 x = 1 — sin2 x, this can be written
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giving, when the last term on the right is transposed to the left, 

2 J" sin2 x dx = — J sin 2x + j" dx

-- sin 2 x + x + C.

Thus J sin2 x dx = * — i  sin 2x + C',2 4
where C '(= iC ) is an arbitrary constant.

Example 19. Findj x2 sin x dx. (Q.E.)

Take u = x2, dv/dx = sinx, so that du/dx = 2x, v = —cosx. Then by (11.10),

i dx = —x 2 cos ; I -  cos x). 2x dx

= — x2 cos x + 2 J x cos x dx.

Thus, one application of the rule of integration by parts has connected the 
integral of x2 sin x with that of x cos x. As in Example 17, a second application 
of the rule gives

sin x dxJ x cos x dx = x sin x — J
and hence

j" x2 sin xd x  = — x2 cos x + 2x sin x — 2 j" sin x dx.

Two applications of the rule have therefore related J x2 sin xdx  to J sin x dx, 

a known integral, and finally

Jx2 sin x dx — -  x2 cos x + 2x sin x + 2 cos x + C.

In a similar way, if n is a positive integer, J  x” sin x dx can be related to 

j"x*~ 2 sin x dx and this latter integral can similarly be related to j" x"~* sin x dx

and so on. We shall finally be left with either j* x sin x dx or J  sin x dx to find

in order to determine completely the original integral. Both these integrals can 
in fact be found and integration performed in this way is known as integration 
by successive reduction. It is a method of considerable importance but it is 
beyond the scope of this book to pursue it except in very simple special cases 
such as the example considered above.

In using the method of integration by parts to evaluate a definite 
integral, the limits of integration can be inserted as the working pro-

ceeds. Thus if we require
p t/2

irC Jo X
cos x dx and perform the integration
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as in Example 17 above, the working could be set out
/•n/2 r  -i*/2 (■*/ 2

x cos x dx = x sin x — sin x dx

-h — i:
- I - L

EXERCISES 11 (d)

Find the following by the method of integration by parts:—

1. Jx sin x dx. 4. j"sin~1 x dx.

2. Jcos2 x dx.

3. Jsin x cos x dx.

7. If Vn = Jx" cos x dx and V„ =  Jx" sin x dx, show that 

l/„ =  x* sinx — nl^_„

,  f x sin 1 x . 
5-

6. I x 2 cos x dx. 
J 0

V. =  — x" cos x +  nU,
8. Evaluate

f «/2

4
X ^ C O S ^ T i J x ^  (li)' /  cos 1 X  cfe

0 Jo

(Q.E.)

11.7. Approximate methods of integration 

If the value of the definite integral j* f(x)dx  is required and we are

unable to find a function whose derivative is /(x), methods of approxi­
mation can be used. There are several methods available.

Since j" f(x)dx  measures the area bounded by the curve y =  f(x),

the x-axis and ordinates at x = a ,x — b, probably the simplest method 
is to draw the curve on squared paper and to estimate the area by 
counting the squares enclosed. This is often laborious and, unless a 
very large-scale drawing is used, not very accurate.

Another method is to divide the area into a number of strips and 
replace each of these by a trapezium. In Fig. 69, the area PABQ is to 
be found and the area has been split into strips by dividing AB into 
six equal parts and erecting ordinates y lt y2, ..., y5 at each point of 
subdivision. y0 and y6 are used to denote the ordinates at x = a and
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x =  b. If C and D are respectively the points of intersection of the 
ordinate y l with the curve and the x-axis, it is clear from the enlarged 
diagram shown in Fig. 70 that the area of the trapezium PADC is 
slightly greater than the area bounded by the arc PC of the curve and

the lines PA, AD, DC, and that the area of the trapezium could be 
used as an approximation to the area below the arc PC of the curve. 
Now the mean height of the trapezium is %(y0 + y^) and if we denote 
AD by h, its area is ¿h(y0 + yx). Treating the other strips of Fig. 69 
in the same way and summing we see that the area PABQ is 
approximately equal to

iHy0 +  T i)  +  +  y2) +  i % 2  +  j>3) +  • • • +  iHys  +  y6)
or,

+ t6) + Ti + y2 + y* + y* + Ts). 
and since AB = b — a and we have used six strips, h = fyb — a).
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In the same way, using n strips, we should find that the area PABQ 

or j* ydx  is approximately equal to

M i ( y 0 +  yJ  +  T i +  y 2 +  ••• +  y„-2 +  j ' . - i ) ,  ( H - i 2 )
where now h = (b — a)jn. The formula (11.12) can be expressed by 
saying that if the range of integration (b — a) is divided into n equal 
parts each of width h = (b — a)/n, called the interval, and ordinates are 
erected at x = a, x  = b and at each point of sub-division, then

f / dx interval x (half the sum of the first and last ordinates
+ the sum of the remaining ordinates). 

This is known as the trapezoidal rule for approximate integration. 
It is clear that the approximation improves as the number of strips is 
increased (or as the interval is decreased). It will also be clear that 
the rule overestimates the integral when y = f(x)  is a curve of the 
shape shown in Fig. 69. In other cases, for example when the curve 
y = f(x)  is of the shape shown in Fig. 71, it will underestimate the 
integral.

The above method of replacing each piece of the curve y = f(x) 
by a straight line is not usually the one most economical in labour. 
If great accuracy is required a very large number of ordinates are 
needed. A better method is obtained when an arc of the curve 
y = Ax2 + Bx + C is used to replace an arc of the given curve
y = / ( * ) •

Suppose in Fig. 72 that LMN  is an arc of the curve y — f(x) inter­
secting the y-axis at M  and that LL', NN' are ordinates at x = —h, 
x = h. Let LL' = y0, MO = y u NN' = y2. Since the equation 
y = Ax2 + Bx + C contains three constants the curve represented by 
this equation can be made to pass through three given points. If we 
take these points to be L, M  and N  and if h is not too large, it is to
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be expected that the area below this curve will be a good approximation 
to the area below the curve LM N  shown in the diagram. Hence

f(x)dx (Ax2 + Bx + C)dx'L
= |^ 4 x 3 4- jB x 2 + Cxj

= %Ah3 + 2Ch. (11.13)
If the curve y = Ax2 + Bx + C passes through L, M  and N, since 
y = To when x = —h, y = yt when x = 0 and y = y2 when x = h, 

y0 = Ah2 — Bh + C,
Ti =
y2 = Ah2 + Bh + C.

The addition of the first and last of these relations gives 
To + yi = 2Ah2 + 2 c, 

and since from the middle relation, C = y lt
2Ah2 = To + y2 ~  2t i- 

Substituting for Ah2 and C in (11.13) we have 
rh h

f(x)dx = ^(to + y2 ~  2Ti) + 2hytr.
=  jO 'o  +  4t i  +  y2)- (11.14)

This formula gives an approximation to the area of a strip of 
width 2h when an arc of the curve y = /(x ) is replaced by an arc of 
T = Ax2 + Bx + C which passes through three points on the given 
curve whose successive abscissae differ by h. If this formula is applied 
to Fig. 69, the addition of three such strips gives

j: ydx — area PABQ

h h h
•jO’o + 4Ti + y 2) + 3CV2 + 4Ta + yd  + 3OU + 4Ts + To)

=  3 ^ 0  +  y6 +  4(Ti +  y 3 +  Ts) +  2 (y2 +  t J } -  

In a similar way, if we divide the area into an even number 2n of 

strips, we find that j* ydx  is approximately equal to

j { y 0 +  y2n +  4(t i  +  t 3 +  y$ +  •••  +  y2 „ - i )

+  2(T2 + T4 +  • • ■ + T2it-2)}> (11-15)
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where h = (b — a)/2n. This formula, which is known as Simpson's 
rule, can be expressed thus:— if the range of integration (b — a) 
is divided into an even number 2n of equal parts each qf width 
h = (h — a)/2n, called the interval, and ordinates are erected at x = a, 
x = b and at each point of sub-division, then

I y dx = \  x interval x (the sum of first and last ordinates 
J “ + four times the sum of all the odd ordinates

+ twice the sum of the remaining even ordinates).
Both the trapezoidal rule (11.12) and Simpson’s rule (11.15) can 

be used to evaluate definite integrals when the integrand is given by 
a numerical table or by a mathematical formula. If the integrand is 
given as a formula, a table giving values of the function (the ordinates 
y) at equal intervals of x  has first to be calculated. Two examples are 
given below. In the first, the integrand is only given numerically; the 
second, in which the integrand is 4/(1 + x2), has been chosen so that 
the approximate results can be compared with the known exact 
answer.

[11

Example 20. A Junction y of x is given by the following table:—

X 0 01 0-2 0-3 0-4 0-5 0-6

y 0-0000 0-0499 0-0995 0-1483 0-1960 0-2423 0-2867

/•0-6
Find 1 ydxby  both the trapezoidal and Simpson’s rules. 

J o
The working can be arranged as follows:—

X
First and last 

ordinates
Odd

ordinates
Remaining even 

ordinates'

0-0 00000
0-1 0-0499
0-2 0-0995
0-3 0-1483
0-4 0-1960
0-5 0-2423
0-6 0-2867

Sums 0-2867 0-4405 0-2955

The interval h =  0-1, and the sum of the ordinates omitting the first and last 
= 0-4405 + 0-2955 = 0-7360.
Hence the trapezoidal rule (11.12) gives

ydx  =  01() x 0-2867 + 0-7360) =  0 08794.
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Simpson’s rule (11.15) gives

f° % dx = °—(0-2867 + 4 x 0-4405 + 2 x 0-2955) = 0-08799.

Thus to four places of decimals, the values of the definite integral by the two 
methods are respectively 0-0879 and 0-0880. If the graph of y against x be 
drawn it will be found that the curve is of the shape shown in Fig. 71 and 
therefore the result 0-0879 obtained by the trapezoidal rule must be expected to 
be a little low.

Example 21. Use the trapezoidal and Simpson's rules with five ordinates to find 
Ç1 4 dx

approximate values for | -— -j. Compare your results with the exact value of
the integral.

+ x-1

X 1 + x1
Ordinates y = 4/(1 + x2)

First and last 
ordinates

Odd
ordinates

Remaining even 
ordinates

0-00 1-0000 4-0000
0-25 1-0625 3-7647
0-50 1-2500 3-2000
0-75 1-5625 2-5600
1-00 2-0000 2-0000

Sums 6-0000 6-3247 3-2000

Here the interval h = 0-25, and the sum of the ordinates omitting the first 
and last = 6-3247 + 3-2000 = 9-5247.
Hence, by the trapezoidal rule

” 4 dx
o 1 + x2 =. 0-25(i x 6-0000 + 9-5247) = 3-1312.

By Simpson’s rule,
f1 4 dx
Jo I +  x 2

0-25
=. (6-0000 + 4 x 6-3247 + 2 x 3-2000) = 3 1416.

The exact value of the integral is

4 f 2 = 4 [tan- 1 xl = 4(n/4) = n = 3-14159 ...,
Jo 1 +  x  1_ Jo

so that the result obtained by Simpson’s rule is correct to the fourth place of 
decimals. To obtain similar accurcy with the trapezoidal rule more ordinates, 
and therefore more labour, would be necessary.

EXERCISES 11 (e)
<•10

1. Use the trapezoidal and Simpson’s rules to evaluate y d x  when y  is 

given in terms of x by the following tab le :—

X 9-0 9-25 95 9-75 10-0

0-1111 0-1081 0-1053 0-1026 0-1000
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2. Use eleven ordinates and Simpson's rule to find an approximate value of

3. Equidistant ordinates of a curve are 1-0, 0-6667, 0-5, 0-4 and 0-333. Estimate 
the area bounded by the curve, the x-axis and the extreme ordinates which 
are at x =  0 and x =  2.

4. The ordinates of a curve y  — f ( x )  are given by the table

X 0 1 2 3 4 5 6

y o  ’ 2 2-5 2-3 2 1-7 1-5

5.

Use Simpson’s rule to estimate the volume generated when the area bounded 
by this curve and the ordinates at x =  0, x =  6 revolves about the x-axis.
Use Simpson’s rule and eleven ordinates to obtain an approximate value of 

r l >2 d x
the definite integral - r - -------Compare your result with the exact value

J o V'l ~  x )
of the integral.

3

4.

5

11

EXERCISES 11 ( / )  

Find the following indefinite integrals:—

1. J 2x(x2 -  3)2 d x .  (L.U.) 6. f d x

2. j" tan x sec2 x d x .  (L.U.) 7. 

x d x

2x2 +  2x +  5'
d x

J V<4 -  *‘>

• l ,  *

(Hint, put x =  2 tan i).

(L.U.)

x2 +  2x +  5’
f cos3 
J sin

6d0
e

J * V ( 4 + x2)

8. J(sec2 0 — 1) sec2 0 dO.

(Q.E.) 9. J  sin (x — rc/3) cos (x +  n/3)dx.

10. Jx^/ix + 2)dx (Hint, put x + 2 = f2).

Evaluate me following definite integrals

sin 5x cos x d x .  

d x
■ i

11 { . ( S x W

13. J* sin30d0.

14. J sin3 040.

r */2

j sin5 x cos2 x dx .
J 0

« i /4

(L.U.) 16. J  (0 +  cos 0) sin 0 dO.

x  d x(L.U.) 17.

18

19

(2 +  x2)2'
"/2 sec2 0 dO 

4  +  tan2 f f

f
■ f

(•*/ 2
J x sin2 x d x .

20. x3(n2 — x2)3/2 dx.15.
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21. By writing x =  a cos2 6 + b sin2 0 show that
I* dx
J„(x -  a)ll2(b -  x)112 = 7t.

r*/2 p2
22. If j x sin x dx =  J (ax2 +  2x)dx, find the value of a.

23. Find substitutions to show that each of the integrals

li) f .u  
(■*/*

is equal to sin2 6 dB.
Jo

24. Use Simpson’s rule and seven ordinates to find the area bounded by the 
curve xy = 12, the x-axis and ordinates at x =  1 and x =  4.

25. The coordinates of a curve are given in the table below. Find the area 
between the curve and the x-axis.

:2dx 
+ x 2)2 and (ii)

e'A/2 

111  : • dx
Va -  x2)

X 0 5 10 15 20 25 30 35 40 45 50

y 0 10 18 20 19 20 17 7 3 1 0

(Q.E.)



CHAPTER 12

SOME APPLICATIONS OF THE INTEGRAL CALCULUS

12.1. Introduction
A few geometrical and dynamical applications of the integral 

calculus were given in Chapter 10. More elaborate examples of these 
applications can be undertaken now that the student has studied some 
methods of integration. Further applications of integration are 
discussed in this chapter. These occur in finding mean values, centres 
of mass, moments of inertia, lengths of arcs and areas of surfaces of 
revolution.

12.2. Further examples of the calculation of area
Equation (10.13) gives the area bounded by the curve y = /(x) the

x-axis and ordinates x =' a, x  = b as J* y dx. If the curve lies below

the x-axis, y is negative and the area obtained from the definite integral 
appears as a negative quantity (see Example 11 of Chapter 10). If 
therefore we require the total area enclosed by a curve which crosses 
the x-axis at points between the two abscissae in which we are inter­
ested, we appeal to a diagram and divide the range of integration 
into appropriate sub-ranges. Typical cases of this procedure are given 
in Examples 1 and 2 below.

Example 1. Find the whole area enclosed by the curve y = sin x and the x-axis 
between x  = 0 and x = lit.
A sketch of the curve is shown in Fig. 73 and it is clear that 

area OAB =1* sin x dx - cos xj 

= -  cos n + cos 0 = 2, 

area BCD = j" sin x dx = cos xj

= — cos 2n + cos n = — 2.
The area required is therefore 4 units, and the working could have been set out 

whole area = J* sin x dx — J  sin x dx

= £ — cosxj -  j^-cosxj =4 .

If the range of integration had not been sub-divided at x = n, the result

212
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would have been
« ,  r  -12«

area = 1 sin xd x  = I — cos x  I = — cos lit + cos 0

and although this is a correct value of the definite integral j* 

not a correct interpretation in terms of area.

= 0,
C
sin xdx, it is

Example 2. Find the area enclosed by the curve y = x(x — l)(x — 2) and the x-axis 
between x = 0 and x =  4.
A rough graph of the curve (Fig. 74) shows that the area required is 

j* ydx  — y dx +

= + (4 -  8 + 4 -  i +  l - l ) + 64 -  64 + 16 -  4 + 8 -  4

= 16-5 units.

In all our examples so far, the x-axis has been a bounding line of the 
area. Sometimes the area enclosed between two different curves is 
required and in such cases the result may be obtained as the difference 
between two areas each bounded partly by the x-axis. A typical 
example follows.
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Example 3. Find the area bounded by the curves y2 = 4x and x 2 = 4y.
In Fig. 75, the curve y2 = 4x is shown by a full line and the curve x2 = 4y 
by a dotted line. The two curves intersect at the origin O and at the.point B 
where x = 4. The required area is OA'BA and this is clearly the difference 
between the two areas OCBA and OCBA’, BC being the ordinate at x = 4.

Fig. 75

For the curve y2 = 4x ,y  = 2yjx and

area OCBA = J* 2yjx dx = ^ Ĵ x3/2j  = ~  units.

For the curve x2 = 4y, y =  x2/4 so that

area OCBA' -  ^ -d x  = -^r[x3l  = ^  units.
Jo 4 12L Jo  3

32 16 16
The required area OA'BA = —----- — = — units.

12.3. Calculation of volumes
Suppose the area of a section of a solid body by a plane perpendicular 

to the x-axis at a distance x from the origin is a function S(x) of x. 
The volume dV of the element between planes at distances x and 
x + ¿x from the origin lies between S(x)<5x and S(x + <5x)<5x.* Follow­
ing the method of § 10.5 we therefore have, for the volume V of the 
solid,

V = lim. I  S(x)<5x = f  S(x)dx, (12.1)

where a and b are the end values of x for the solid under discussion.
For equation (12.1) to apply, it is not necessary for the solid to be 

a figure of revolution about the x-axis. If it is such a solid, S(x) is 
replaced by ny1 where y = /(x )  is the generating curve. In this case,

See §20.2.
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V = n ^ y 2dx,

as given in equation (10.14). Volumes of solids of revolution generated 
by the rotation about the x-axis of the area enclosed between two 
intersecting curves can be found as the difference of two other volumes 
in a similar way to that shown in Example 3 above. The second 
example below illustrates the procedure.

Example 4 . The top and bottom of a large cistern are horizontal rectangles whose 
longer and shorter sides are respectively parallel. The top rectangle measures 
16 m by 10 m and the bottom rectangle 9 m by 6 m. The sides of the cistern are 
plane and the vertical depth is 8 m. Find an expression for the area of a horizontal 
cross-section at a vertical height of x m from the bottom. Find, by integration, 
the volume of the cistern. (L.U.)
In Fig. 76, ABCD is a side elevation with AD = 16 m, BC = 9 m and ABEF 
is an end elevation with AF = 10 m, BE = 6 m. X Y  is the longer side and 
XZ  the shorter side of the rectangular cross-section at height x m from the

B  9 C 8  6 E

SIDE ELEVATION END ELEVATION
F ig . 76

bottom of the cylinder. BP and CS are vertical lines through B and C respec­
tively intersecting the lines AD, X Y  at P,S and Q,R as shown. From the first 
diagram it is clear that AP = SD and hence 2AP = 16 — 9 giving AP — 3-5 m. 
Also, from the similar triangles XBQ, ABP,

XQ AP XQ 3 5 
BQ ~ BP or ~  ~ T ’

so that XQ = 7x/16. Also XQ = RY, so that X Y  = 2XQ + QR giving

* y = ( ir  + 9) m-
Working in precisely the same way from the second diagram we find that 

x z  = ( ^  + 6)  m

The area Six) of the horizontal cross-section at height x m is therefore given by

S(x) =  X Y . X Z  -  ( y  + ») (^  +  6)

(lx 1 39x \—- + —-— I- 54) square metres.
16 4 /
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The volume of the cistern

Example 5. The area included between the parts of the two curves 
x 2 + y2 = 1 and 4x2 + y2 = 4

for which y is positibe is rotated about the x-axis. Find the volume of the solid 
thus formed. (O.C.)
A sketch of the curves shows that the first (full line) meets the x-axis at A and 
B (abscissae -  1 and 1 respectively) and the y-axis at C (y =  1), while the 
second curve (dotted line) passes through A and B and meets the y-axis at 
D(y = 2).

The required volume is therefore the difference in volumes of the solids formed 
by rotating the areas ABD, ABC about the x-axis. For the curve ABD, 
4x2 + y2 = 4 giving y2 = 4(1 — x2), while for ABC, x 2 + y2 = 1 giving 
y2 = 1 — x2. Hence the volume required

= a j 1 4(1 -  x 2)dx - x j ‘ (1 -  x2)dx = 3* J  (1 -  x2)dx 

= in  jx — y l  = 4ir units.

EXERCISES 12(a)

1. Find the area enclosed by the curve y =  4x — x2, the x-axis and ordinates 
at x =  0 and x =  6.

2. Find the area bounded by y2 =  16x and y =  3x.
3. Find the area between the curves a7y - x8 and a7x =  y8. (L.U.)
4. Find the area enclosed by the line y =  2 and the curve y =  x(3 — x). (L.U.)
5. The area enclosed by the two curves y2 =  x 3 and y2 =  8(x — I)3 is rotated

about the axis of x. Find the volume of the solid thus formed. (O.C.)
6. The area enclosed by the curves y =  2 + x2, y =  3 +  x 2 and ordinates at 

x = 0, x =  a is rotated about the x-axis. Find the volume of the solid so 
formed.
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7. Water is poured into a hemispherical bowl whose axis is vertical and radius 
is a. Show that at the instant when the depth measured from the water's 
surface to the lowest point of the bowl is x, the area of the water’s surface 
is given by *

Find, by integration, the volume of the water at this instant.
8. A regular pyramid has a square of side a for its base and its height is h. 

Show that the area of a plane section at depth x below the vertex is (ax/h)2. 
Prove also that the volume of the pyramid is a2h/3.

12.4. Mean values
Let y be a function <f>(x) of x and suppose that the range from x — a 

to x = b is divided into n equal sub-ranges each of width Sx. Let 
y u y2, y3, ..., y„ be the values of y at the middle points of each sub­
range. The arithmetic mean of these rt values of y is

and, since nSx = b — a, this can be written

Cvi +  y% + y* + ■ • • +  y«&x
b — a

If as n -» oo or Sx -* 0, the expression has a limiting value, the limit
is

and this is called the “mean value” of y over the range (b — a).
Figure 78 shows the curve y = <f>(x) and PA, QB are ordinates at 

x = a and x = b. If we construct on AB a rectangle of area equal to 
that enclosed by the curve, the x-axis and PA, QB, its height H  will

S(x) =  nx(2a — x).

( 12.2)b -  a

A B i XO
j c - a

Fig. 78
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be given by
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H(b -  a) = j y dx.

|' y dx
Hence H = ------- ,b — a
which is the mean value of y over the range (b — a). Thus in the 
geometrical representation, the mean value is the altitude of the 
rectangle on base (b— a) whose area is equal to that included between 
the curve y = <t>(x\ the extreme ordinates and the x-axis.

Example 6. Find the mean value of sin 6 over the range 0 to n. 
The required mean value

_il sin 9 dd

n  —  0 0-637.

Som etim es a quantity w hose mean value is required can be expressed 
in terms of one or other o f m ore than one variable. In such cases it is 
important to state which is the variable w hose range is sub-divided in 
calculating the mean. Exam ple 7 is an illustrative example.

Example 7. A body has an initial velocity of 80 m/s and it is subjected to a retardation 
of 32 m/s2. Find the mean value of the velocity of the body during its forward 
motion.
If u is the velocity at time t we have dv/dt = — 32, so that

o = J" ( — 32)dr = — 32f + C,

where C is a constant. But v = 80 when t = 0, so that C = 80 and
v = 80 -  321.

Forward motion ceases when v = 0, i.e., when t = 80/32 ■= 2-5 seconds, and 
hence the mean velocity with respect to time

f  vdt f  (80 — 32t)dt 
J o  Jo

2-5 2-5
i r i 25 2= —  |80r -  16t2J = -  (200 100) = 40 m/s.

In the above we have worked in terms of the time t. Alternatively we could 
have worked in terms of the distance s moved by the body. Instead of using 
dv/dt we could have used vdr/ds or

for the acceleration. In this case
d

ds 4
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so that i«2 = — 32s + C',
and, since v = 80 when s = 0, C' — 3200. Hence 

v2 = 6400 -  64s,
and forward motion ceases when s = 6400/64 = 100 m. Thus the mean velocity 
with respect to space is

1 ( M O O

TooJ„ V<«00 -  6 4 * ,
o <*100

- lo o L

= 4 i l 0 0 0  = 53 3 m/s. 100 3

EXERCISES 12 (b)
1. Find the mean value of sin2 <f> for values of <f> between 0 and n.
2. The pressure p and volume v of a quantity of steam are related by the law 

p v '2 = 500. Find the mean pressure as the volume of steam increases from 
3 to 8.

3. Find the mean height of the curve y2 = 2x between x = 1 and x =  3.
4. Find the mean value of x sin x as x varies from 0 to n.
5. The quantities v, s, t are connected by the relations

v = n f ( a 2 -  s2), s = a sin nt.
Show that the mean value of v considered as a function of t between t = 0 
and t = n/ln  is (2an)/n. (O.C.)

6. A stone is projected vertically upwards with velocity u and, on its upward 
journey, its retardation is g (constant). Show that the mean values of its 
velocity on the upward journey are (i) with respect to time, ju, (ii) with 
respect to space, |u.

12.5. Centres of mass
Let m,, m 2, m 3, . . .  denote the masses of a system of particles 

situated at points Pu P2, P3, ... whose abscissae are x 1; x 2, x 3, ... 
The forces acting on the particles are proportional to mlt m2, m3, ... 
and they act through the centre of the earth’s gravitational field. If 
the particles are distributed over a region whose linear dimensions are 
small compared with the distance to the centre of the gravitational 
field, the directions of the forces can be considered as being parallel. 
The resultant of the force system is a single force proportional to 
(m, + m2 + m3 + ...) acting at a point whose abscissa x is given by 

(ra, + m2 + m3 + .. .)x = mix l + m2x 2 + m3x 3 + ..., (12.3) 
and the point at which this resultant acts is known as the centre of 
mass or centre of gravity.
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Writing mt + m2 + m3 + . ..  = M, the total mass of the system, 
and mjX! + m2x 2 + m3x3 + . . .  = N, sometimes called the x-moment 
or first moment with respect to x of the system, equation (12.3) can 
be written

Mx = JV, (12.4)
where M =  Xm and N  = £  mx, (12.5)
the sign £ denoting summation over all the masses of the system.

To obtain an extension from a system of particles to a continuous 
body, i.t is natural to replace the particles by elements of the body 
and to use limiting sums (i.e., integrals) in place of summations.

Consider first a rod of length / situated along the x-axis and with 
one end at the origin. Let the line-density of the rod at a point of 
abscissa x be p ; this may be a function of x and, for simplicity, we 
shall here consider that p increases (or at least does not decrease) 
with x. If SM is the mass of the element of the rod for points whose 
abscissae lie between x and x + Sx,

pSx  ^  SM ^  (p + Sp)Sx.
Following the method of § 10.5, these inequalities lead to

dM

[12

and the total mass M  of the rod is therefore given by

M  = J* pdx. (12.6)

The x-moment SN of this element lies between xp Sx and 
(x + Sx)(p + Sp)Sx, for lower and upper bounds for x are x and 
x + ¿x, and for the mass the bounds are p Sx and (p + Sp)Sx. Hence

xp Sx < SN < (x + Sx){p + Sp)Sx
leading to

dN
l i  = xp'

and, for the total x-moment of the rod,

N  = J* pxdx. (12.7)

The abscissa x of the centre of mass of the rod is given by (12.4), viz.
x = N/M, (12.8)

but now the values M  = I pdx, N  = I xpdx  for the rod replace
Jo Jo

those given in (12.5) for the particle system.
For the case of a rod of uniform density, p is independent of x and
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can therefore be taken outside the signs of integration in (12.6X (12.7). 
Hence, in this case,

M = p I dx = pi, N  — p\ xd x  = %pl2, 
Jo Jo

and (12.8) gives x = \l, showing that the centre of mass of a uniform 
rod is at its mid-point.

Now consider a lamina AUVB (Fig. 79) bounded by the curve 
y = <f>(x), the x-axis and ordinates at x = a and x = b. For simplicity 
we shall here take the surface-density p to be uniform but the analysis 
is easily modified when the surface-density varies from point to point 
of the lamina. The total mass M  of the lamina is simply p times its 
area, so that

M
* l

ydx. (12.9)

PNMQ is a typical element bounded by ordinates PN, QM at abscissae 
x and 'x + ¿x. PR and QS are drawn parallel to the x-axis to intersect 
QM and PN respectively in R and S. The x-moment SNX of the element 
lies between xpy Sx and (x + 5x)p(y + Sy)Sx for py Sx and p(y -I- Sy)Sx 
are respectively the masses of the rectangles PNMR and SNMQ. 
Hence

xpy Sx < SNX < (x + Sx)p(y + Sy)Sx, 
leading in the usual way to

dNx 
~dx =

The total x-moment Nx of the whole lamina is therefore given by
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since p is here assumed to be constant.
The mass of the rectangle PNMR  is pyôx  and its centre of mass 

is at a distance \y  from Ox. The corresponding quantities for the 
rectangle SNMQ are p{y + ôy)Sx and |(y + Ôy). Hence the mass of 
the element PNMQ lies between py ôx and p{y + ôy)Sx and the height 
of its centre of mass between \y  and |(y + ôy). If SNy is the y-moment 
of the element

\ypy ôx < ôNy < {(y + ôy)p(y + ôy)ôx,
, .. t dN  j 2leading to = \py .

The total y-moment N y for the whole lamina is thus given by

N y ( 12. 11)

If x, y are respectively the abscissa and ordinate of the centre of 
mass of the lamina, equations equivalent to (12.4) give

Mx = N x, My = N y, (12.12)
where M, N„ N y are given by (12.9), (12.10) and (12.11). Solving (12.12) 
for x, y and inserting the expressions for M, N x, N y, we find that the 
coordinates of the centre of mass of the lamina AUVB (Fig. 79) are 
given by

* rb
xydx \  I y2 dx

X = 4------ , y = ------ • (12.13)
y dx y dx

J  a  J  a

Finally consider a solid body of uniform volume-density p. If the 
area of a cross-section by a plane perpendicular to the x-axis at distance 
x from the origin is S(x) and if the solid is bounded by planes per­
pendicular to the x-axis at distances a and b from the origin, the volume

of the solid is (see § 12.3) and its total mass M  is given by

M = p
rà

S(x)dx.
a

(12.14)

If SN is the x-moment of the element bounded by planes distant x 
and x + Sx from the origin,

xpS(x)dx < SN < (x + <5x)S(x + Sx)Sx,

giving dN ,
s  =  xpS(x)‘
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The total x-moment for the whole solid is therefore given by

12] C E N T R E S  O F  MASS

(12.15)N = p j  xS(x)dx.

The abscissa x of the centre of mass is then given by
Mx = N  (12.16)

where M  and N  are given by (12.14), (12.15).
In the case of the solid of revolution formed by the rotation about 

the x-axis of the area bounded by the curve y = 4>(x), the x-axis and 
ordinates at x = a, x = b,

S(x) = Try2.
The expressions for M  and N  become

M = np [ y2 dx, N = np j* xy2 dx,
J  a J  a

and (12.16) gives in this case,

j* xy2 dx
x = (12.17)

y2 dx

Example 8. The density of a rod AB varies as the distance from the end A. Find the 
position of the centre of mass of the rod if its total length is 2 m.
If we take the rod to lie along the x-axis with the end A at the origin, the 
density p at a point with abscissa x is lex where k is constant. The total mass 
M of the rod is given by

Af = j* pdx = Ic J  xdx  = lcj|x2J  = 2k.

The x-moment N is given by

N

The abscissa of the centre of mass is therefore
.  _  AT _  (8!c/3) _  4 
X ~ M ~ 2k ~  3’

so that the centre of mass is 1-333 m from the end A.

Example 9. Find the coordinates of the centre of mass of the lamina of uniform density 
bounded by the curve y = (1 — x)3, the x-axis and ordinates for which x = 0 
and x = 1. (O.C.)
If /) is the surface density, the total mass M of the lamina is given by

M = P f ydx = p f (1 — x)3 dx 
Jo Jo

-  - f  ( 1  ~  * ) 4 T  _p
L 4 Jo 4
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The x-moment N r is

N , = p f  xydx = p f x(l — x)3 dx 
Jo Jo

= p f (x -  3x2 + 3x3 -  x*)dx 
J o
[x2 , 3x4 X 5 ! 1  p

= + - r - y J 0 = 2ô-
For the y-moment, N^

N , = y \ l y2dx = y [ l ( \ - x f d x  
Jo Jo

The coordinates x, y of the centre of mass are therefore given by

Example 10. Find the position of the centre of gravity of a solid right circular cone 
of uniform density.
As in Example 14 of Chapter 10, the cone can be regarded as the solid formed 
by the rotation of the line y = x tan a about the x-axis for values of x from 
0 to h,a being the semi-vertical angle and h the height of the cone.
The application of formula (12.17) gives, for the distance x of the centre of 
gravity from the vertex of the cone.

x(x tan a)2 dx 1 x3 dx
J 0 J 0
fk r*

(x tan a)2 dx x2 dx
J 0 J 0
r  1 *
[x‘/4

0 3 h
r  i * _  4>
[x3/3

0
and, from symmetry, the centre of gravity lies on the axis of the cone.

EXERCISES 12(c)
1. The density of a rod varies as the square of the distance from one end. If 

the length of the rod is l, find the distance of the centre of mass from this end.
2. From the point P where x = 18, y = 12 on the curve y2 = 8x, PN is drawn

perpendicular to the x-axis: find the distances from the axes of the centre 
of mass of a lamina of uniform density bounded by PN, the x-axis and the 
curve. (O.C.)
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3. Find the position of the centre of mass of a lamina of uniform density 
bounded by the curve y2 =  x 3, the x-axis and ordinates at x =  1 and x — 4.

4. Find the abscissa x of the centre of mass of a lamina of uniform density 
bounded by the curve y =  1 +  lOx — 2x2, the x-axis and ordinates for 
which x =  1 and x =  5.

Verify that
x = (Vi +  12 y2 +  SyjVCVi + 4y2 +  y3), 

where y„ y2, y3 are the ordinates of the curve at x =  1, 3 and 5. (O.C.)
5. Find the volume cut-off from the solid obtained by rotating the curve 

y2 =  4ax about the x-axis by a plane at distance 5a from the origin.
If the solid is of uniform density, find also the position of the centre of 

gravity of this part of the solid. (O.C.)
6. Find the position of the centre of gravity of the solid within the surfaces

formed by the revolution of the curve y =  x4 and the straight line y =  6 
about the axis of y. (O.C.)

12] M O M E N T S  O F  IN ERT IA

12.6. Moments of inertia
Let mu m2, m3, ...  denote the masses of a system of particles situated 

at points Pj, P2, P3, . ..  whose perpendicular distances from a given 
straight line are r2, r2, r3, ... Then the sum of the products of each 
mass and the square of its distance from the given line is called the 
moment of inertia of the system with respect to the given line. This 
moment, sometimes also called the second moment, is conveniently 
denoted by /, so that

/  = m^ 2 + m2r2 + m3r3 + ...
If we imagine the total mass M( = m2 + m2 + m3 + .:.) of the system 
to be concentrated at a point at distance k from the given line such 
that this single mass has the same moment of inertia about the given 
line as the particle system,

Mk2 = /  = m,^ 2 -(- m2r2 + m3r3 -(- . ..  (12.18)
The distance k, calculated from this equation, is known as the radius 
of gyration about the given line.

As in the last section, an extension from a system of particles to 
a continuous body is obtained by replacing the particles by elements of 
the body and using integrals in place of summations. We give below 
a few examples of the application of the integral calculus to the calcula­
tion of moments of inertia but the scope of this book does not admit 
an exhaustive treatment.

Let a rod of length / be situated along the x-axis with one end at 
the origin and let its line-density at a point of abscissa x be p, here 
considered to be a non-decreasing function of x. The moment of 
inertia SI about the y-axis of the element of the rod between points
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with abscissae x and x + Sx satisfies the inequalities
x2pSx < SI < (x + Sx)2(p + Sp)Sx,

. dl 2so that — = x p.ax
The total moment of inertia J is therefore given by

Since, from (12.6), the total 

its radius of gyration (/c),

In the case of a uniform 
the signs of integration, so

J = j* px2 dx. (12.19)

mass M  of the rod is given by M  = f p dx,
Jo

from the equation Mk2 = 1, is given by

px2 dx
Jok2 =

fJ 0p dx
(12.20)

rod, p is constant and can be taken outside 
that

k2 = ( 12.21)

Now consider the lamina AUVB of Fig. 79. If the lamina is supposed 
to be of uniform density, the moment of inertia SIy about the y-axis 
of the typical element PNMQ satisfies

• x 2py Sx < SIy < (x + Sx)2p(y + Sy)Sx.
u  dly 2Hence -r1 = x p y ,dx
and the total moment of inertia Iy is given by

- ' S .
x 2y dx. (12.22)

The mass of the rectangle PNMR is py Sx and its radius of gyration 
(from equation (12.21)) is y/yj’i. Its moment of inertia about the 
.v-axis is py Sx x (y/^J3)2 or \p y3 Sx. Similarly the moment of inertia 
about Ox of the rectangle SNMQ is \p(y + <5y)3 Sx. Hence, if 81 x is 
the moment of inertia about the x-axis of the element PNMQ,

%py3 Sx < SIx < %p{y + Sy)3 Sx,

leading to
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and (12.23)
a

From (12.9), the mass M of the lamina is given by M =

and, if kx, ky denote the radii of gyration with respect to the x- and 
¿’-axes, (12.22) and (12.23) give

For a circular lamina of uniform surface-density p, the moment of 
inertia about an axis OP through its centre 0  and perpendicular to its 
plane can be found by considering the ring element bounded by circles

of radii r and r + Sr shown shaded in Fig. 80. The mass of the ring 
is approximately 2npr Sr and all points within the ring lie at distances 
from the axis OP of between r and r + Sr. Hence if SI is the moment 
of inertia of the elementary ring

Since the total mass M  of the ring is npa2, this can be written I  =  jM a2.
This result can be used to find the moment of inertia (/) about 

its" axis of symmetry of the solid formed by the revolution about the 
x-axis of the area bounded by the curve y = <£(x), the x-axis and 
ordinates at x — a, x = b. It is left as an exercise to the reader to 
show that, if p is the (uniform) volume-density of the solid

y 3 dx x2y dx
Ü____  /, 2 _  Ja (12.24)

Fig. 80

r2(2npr Sr) < SI < (r + Sr)2(2npr Sr).

Hence

and, if a is the radius of the lamina,
»a

I = 2np r3 dr = \npa*
o

(12.25)
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Example 11. The line-density of a rod varies as the distance from one end. Find its 
radius of gyration about an axis through this end perpendicular to the rod.
If the rod lies along the x-axis with one end at the origin, the* line-density 
p = Xx where X is a constant. If / is the length of the rod, the radius of gyration 
k is given by (12.20) as

and k = /A/2.

k2 1 > 1  

i / ' "  J1

Xx3dx

Xxdx

£
2’

Example 12. A lamina of mass M is of uniform surface-density p and is in the form 
oj a right-angled triangle of base b and height h. Show that the moment of inertia 
about the base is ¿Mh2.
The lamina (see Fig. 81) can be considered as the area bounded by the line 
y = hx/b, the x-axis and an ordinate at x = b. By (12.23), the moment of inertia

about its base (the x-axis) is

sP i* y3 dx = ip  P  (hx/b)3 dx

But the area of the lamina is jhb, hence M = \phb, and the moment of inertia 
can be written i(iphb).h2 or %Mh2.

Example 13. Show that the moment of inertia of a uniform solid right circular cone 
whose radius of base is r and mass M is -feMr2.
As in Example 14 of Chapter 10, the cone can be regarded as the solid formed 
by the rotation of the line y = x tan a about the x-axis for values of x from 0 
to h, a being the semi-vertical angle and h the height of the cone.
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From (12.25) the moment of inertia 1 about the axis of symmetry is given by

1. Find the moment of inertia of a rod in which the line-density varies as the 
square of the distance from one end about an axis through that end 
perpendicular to the rod.

2. Find the moment of inertia about the y-axis of the lamina (surface-density p) 
bounded by the curve ay — x(a — x) and the x-axis.

3. Find the moment of inertia of a uniform rectangular lamina of sides a and b 
about an axis parallel to the sides a and distant %b, f¿> from them respectively.

4. Find the moment of inertia of a uniform lamina in the form of an isosceles 
triangle of height h about a line through its vertex parallel to its base.

5. Find the square of the radius of gyration about its axis of symmetry of the 
solid (of uniform density) obtained by rotating about the x-axis the area 
between the curve y2 =  ax and an ordinate at x =  a.

6. A uniform solid is formed by the rotation of a rectangle of sides a and b 
about a line in its plane distant d (> jb) from its centre and parallel to the 
sides a. Find the square of the radius of gyration about the axis of symmetry 
of the solid so formed.

>2.7. Length of arc
Fig. 82 shows the arc of a curve y = <p(x) whose end points A and 

B have abscissae x = a and x  — b. The tangent to the curve at a 
point P makes an angle y/ with the x-axis and, for simplicity, we shall 
only consider here arcs for which y/ is acute and increasing with x. 
Suppose Pi. Pi. • • •> Pn- 1 are points on the curve with abscissae 
x !, x2, ..., xn_j and let the tangents at these points make angles 
Wu Vi* ■■■’ Vh- i with the x-axis. If we consider the typical element 
of arc between Pr and Pr+ ^ and if y/' represents the angle between the 
line joining Pn Pr+1 and the x-axis, the right-angled triangle P,MPr+1 
of the subsidiary diagram shows that

Now y/' is greater than the angle y/r at Pr and less than the angle y/ r+, 
at Pr+l and it follows that APt + PtP2 + . . .  + P „ -tB lies between 
I(xr+1 -  xr) sec y/r and Z (xr+, -  xr) sec y/r+ v As the number of

where p is the volume-density of the cone.
Since the volume of the cone is (Example 14, Chapter 10) jxA3 tan2 a,

M = {nph3 tan2 a.
By division, 1/M = -fch1 tan2 a,
giving /  = 5̂ Air2, for r = h tan a.

EXERCISES 12(d)

PrPr+i =  (*r+i -  xr) sec y/'.
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points Pt, P2> • • •» P„_ j between A and B increases, each of these 
quantities approaches the same limit Jsec y/ dx. Since

sec2 y/ = l + tan2 y/ and tan y/ =  dy/dx, 
the length of arc, which is defined to be this limit, is given by

arc-4B"l!y{1+©!K ( 12.26)

Example 14. Find the length of the arc of the curve 6xy =  3 +■ x* between the points 
whose abscissae are 1 and. 4.
Here y =  (3 +  x*)/6x — l/(2x) + x3/6 and hence 

dy 1 ' 2
dx

1 xr 
2x2 + 2 '

+ ® 1— (t - s )’
, x* 1 1

+ 4 2 + 4x4

Therefore

-5(*, + 2 + ?)

- IK * 1* ? ) ] ’

2
= 10J.

and



12.8. Areas of surfaces of revolution
Consider first the frustum of a right circular cone.* If similar and 

similarly situated polygons of n sides are inscribed within the circular 
ends, by joining corresponding vertices PQ, P'Q' we obtain a series of 
n trapezia of which PP'Q'Q is typical (Fig. 83). If M  and N  are the 
mid-points of the sides PP', QQ'

area PP'Q'Q = $(PP' + QQ')MN.
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F ig. 83
As the number n of sides of the polygons increases, the surface area 
of the solid formed by the trapezia tends to a limit which is defined 
as the surface area of the conical frustum. The sum of the areas of 
the trapezia is

^(sum of perimeters of the polygons)MN, 
and since the perimeters of the polygons tend to the circumferences 
of the end circles of the frustum and M N  tends to the limit PQ, the 
surface area of the frustum

=^(sum of circumferences of circular ends) x PQ 
= mean circumference of the frustum x its slant height.

Now consider the solid formed by the rotation of the area bounded 
by the curve y = <j>(x), the x-axis and ordinates at x = a, x  = b about 
the x-axis. Let P and Q be of abscissae x and x+<Jx. If PQ be joined 
by a straight line, the rotation of this line will form a frustum of a 
cone of mean circumference 27t(y+|<5y) and slant height PQ. The 
slant height PQ (as in § 12.7) will lie between S x  sec y/ and 
<5x sec {y/ + Sy/) where y/ is the angle between the tangent to the curve 
y = <f>(x) at P and the x-axis. Thus if SA is the area of the conical 
frustum generated by the rotation of the line PQ

2 n(y + |  Sy) Sx sec y/ <  SA <  2 n (y  4-  ̂Sy)Sx sec (y/ + 5y/).

The surface area A of the solid of revolution is defined as the limit to 
which the sum of such areas tends as Sx tends to zero.

See Chapters 19 and 20 for the necessary definitions.
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Hence —  = 2 n y  sec y/,

and the total area of the curve is given by

y  sec y/ dx .

Since sec2 y/ = \ +  tan2 y/ =  1 + (dy/dx)1, this can be recast into the 
form

= 2nL

A 2 n  J*” y j {  1 + (d y /d x )2 }dx. (12.27)

Example 15. Find the area of the surface formed by the rotation of the curve y1 =  4x 
about the x-axis, from the origin to x =  3.
Here y — 2y/x, dy/dx =  1/^/x, so that

area required =  2n f  Z j x . j { l  + (\/y/x )1}dx 
Jo

= Ait f  y/{X + 1 )dx 
Jo

=  4a[|(x  +  1 ) - ] ;

= y  |4 V 2  _ 1 3/2j

_  56«
3 '

EXERCISES 12(e)

1. Find the length of the arc of the curve y2 =  8x3 between x = 1 and x =  3.
2. Find the length o f the arc o f the curve x1 +  y2 =  r2 between x =  0  and 

x =  r (this curve is a quadrant of a circle o f radius r, see § 16.1).
3. Find the length o f the arc of the curve x 2/3 +  y2/i =  4  between x =  0  and 

x =  8.
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4. Find the surface area of the solid generated by the rotation about the x-axis 
of the area bounded by the curve y = J(r2 — x2), the x-axis and ordinates
at x =  0, x =  r.

5. Find the area of the surface formed by the revolution about the x-axis of 
that part of the curve x2/3 +  y2/3 =  4 which lies between x =  0 and x =  8.

(Hint, the integral expressing the area can be evaluated by writing
x2'3 =  t.)

6. The curve 3y =  (3 — x) Ĵx between x =  0 and x =  3 rotates about the 
x-axis. Find the surface area of the solid so formed.

EXERCISES 12 ( / )

1. Sketch the curve y =  x(3 — x) for values of x between —2 and +5. Find 
the area contained between the curve, the x-axis and ordinates at x =  0
and x =  5. Explain why this area is not j* x(3 — x)dx.

2. Find the area enclosed between the two curves y2 =  x and x 2 =  8y.
(L.U.)

3. Find the area enclosed between the two curves y2 =  8(6 — x) and y2 =  12x.
4. Find the area of the segment cut off from the curve y2 =  4ax by the line

y = x. Find also the volume of the solid obtained by rotating this segment 
about the x-axis. (L.U.)

3. The curve y =  1 +  cos x is rotated about the axis of x  Find the volume 
contained by the surface of revolution and the planes x =  +n/2 and 
x =  -n/2. (Q.E.)

6. The capping of a stone pillar is a solid with every horizontal cross-section
a square. The centres of these squares lie on a vertical axis and their comers 
lie on the surface of a sphere of radius 0-1 m whose centre is on the axis, 
0-05 m above the plane base of the solid. Calculate the volume of the 
capping. (L.U.)

7. Find the mean value of sin (nip +  a) over the ranges:—
(i) <f> — — ix/n lo <f> = 2mn — (a/n),

(ii) tj> = — a/n to <t> = (n/2n) — (<x/n), 
where m and n are positive integers.

8. The horizontal range R of a stone projected with velocity V at angle a to 
the horizontal is given by

R = (V2/g) sin 2a,
where g is a constant. Show that the mean range for all angles of projection 
from 0° to 90° is 2V2/ng.

9. Show that, if a is a positive constant, the mean ordinate of that part of the 
curve y = ax — x2 which lies in the first quadrant is two-thirds of the 
maximum ordinate.

10. A number n is divided at random into two parts. Show that the mean value 
of the products of these parts is n2/6.

12] EXERCIS ES
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

[ 1 2

Find the position of the centre of mass of a lamina of uniform density 
bounded by the coordinate axes and that part of the curve 
(x2/a2) +  (y2/b2) =  1 which lies in the first quadrant. ,
Find the position of the centre of mass of a lamina of uniform density 
bounded by the curve y =  a sin (xja) and the x-axis between x =  0 and 
x = an.
Find the area of the loop of the curve y2 =  4x2(l — x). Find also the position 
of the centre of mass of a uniform lamina bounded by this loop. (Hint, 
put 1 -  x =  t2 to evaluate the integrals.)
Find the position of the centre of gravity of the solid (of uniform density) 
formed by the rotation of the curve x2 +  y2 =  a2 from x =  0 to x =  a 
about the x-axis.
A solid of uniform density is formed by rotating the portion of the curve 
y — x2 — 3x which is cut off by the x-axis about that axis. Find the position 
of its centre of gravity.
Find the moment of inertia about one of its sides of a square lamina of 
uniform density p and side a.
Find the square of the radius of gyration about the x-axis of a lamina of 
uniform density bounded by the curve y =  sin x and the x-axis from 
X =  0 tO  X =  71.

Show that the moment of inertia about the x-axis of a uniform lamina of 
mass Af bounded by the curve y2 =  4ax, the x-axis and an ordinate at 
x =  a is jMa2.
A uniform solid is formed by rotating the curve x 2 +  y2 =  a2 from 
x =  — a to x =  a about the x-axis. Show that the square of the radius of 
gyration about the axis of symmetry of the solid is 2a2/5.
The surface-density of a circular lamina of radius a varies as the distance 
from the centre. If the total mass of the lamina is M, find its moment of 
inertia about an axis through its centre and perpendicular to its plane.
Find the length of the arc of the curve x 2 -I- y1 — a2 between points where 
x = a cos a and x =  a cos p.
The slope of a curve at a point whose abscissa is x is 2N/(x +  x2). Find the 
length of the arc of the curve from x =  1 to x =  10.
Find the length of the arc of the curve x 2/3 — y2/3 =  a2/3 for points between 
x = a and x =  b.

(Hint, put x 2/3 =  t to evaluate the integral.)
Find the area of the surface formed by the revolution of the curve 
9y2 =  x(3 — x)2 from x =  0 to x =  3 about the x-axis.
Find the area of the surface generated by the revolution about the x-axis 
of that part of the curve y =  x3 which lies between x =  0 and x =  1.



CHAPTER 13

13.1. Introduction
In reading Chapters 10 and 11 the student will probably wonder 

why the result
f x"+1x"dx = - --- r T CJ n + 1

is invalid when n = — 1 and will have noticed that a discussion of 

J x -1 dx was postponed. We commence the present chapter by con­

sidering this integral and then show how it leads to two functions of 
great importance in mathematics (and in some of its applications to 
physics and mechanics). Once this integral has been established, many 
more functions can be integrated and the gaps in § 11.2 can be filled in.

13.2. The area below the curve y  = l/x
Fig. 85 shows the graph of y = l/x for positive values of x. Suppose 

we wish to find the area enclosed by the curve, the x-axis and ordinates

THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS

at x = 1 and x = t. It can be inferred from the diagram that the area,

or the definite integral J  x _1 dx, exists. The area or integral could

in fact be found approximately by counting squares or by using one 
of the approximate methods of integration given in §11.7, and the

235
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student who has worked Exercise 11 (e), 2 will have carried out this 
procedure for the case of t — 2.

We can write

— = area AN MB, x (13.1)

and it should be clear that as t increases the ordinate BM  moves to 
the right and the area and integral are increasing functions of t. The 
curve y =  1/x is (see § 17.17) a hyperbola and a convenient notation 
for the area bounded by the curve, the x-axis and ordinates at x = 1 
and x = t is hyp(r). With this notation, equation (13.1) can be 
rewritten

f, dx
x = area AN MB = hyp (i). (13.2)

It should be noticed at this stage that when t = 1, the ordinates AN, 
BM  coincide and the area AN MB vanishes so that

hyp (1) = 0. (13.3)
A graph of hyp (i) calculated by giving t various values and per­

forming the integration by one of the approximate methods would 
appear, for values of t greater than unity, as shown in Fig. 86.

So far we have only discussed and shown in Fig. 86 values of hyp (t) 
when t is greater than unity. Values when t lies between zero and 
unity can be found as follows. If 0 < t < 1, then (1/f) > 1 and

- © - r s
Now change the variable in this integral from x to z where x = 1/z 
by the method of §11.5. The limits of integration correspond to 
values of z of 1 and t, and, since (dx/dz) = —(1/z2), the integral can 
be written

r /  1 \ dz
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This is — hyp (t) and we have the important result that

h y p ( |)  = -hyp(i). . (13.4)

This formula enables the graph of hyp(i) to be completed for values 
of t  between zero and unity. For example, if t  = 2, formula (13.4) 
gives hyp (1/2)= — hyp(2)= —0-69 approximately, if we read off 
hyp (2) from Fig. 86. Other values of hyp (£) for the range 0 < t  < 1 
can be found in the same way and a completed graph of the function 
is shown in Fig. 87.

13.3. Some important properties o f the function hyp (/)

From the definition hyp (t) =  J  x~ 1 d x  it should be clear that

¡5 <hyp«» -  f

and this result can also be inferred from the diagram shown in Fig. 88. 
This shows the curve y  = 1/x and A N ,  B M ,  C P  are ordinates at 
x = 1, x = t  and x = t  + S t. B D , C E  are drawn parallel to the x-axis 
to meet C P  and B M  at D  and E  respectively. The figure shows that 
the area B M P C  lies between the areas of the rectangles E M P C  and 
B M P D .  Since B M  = 1/r, C P  = l/(t + S t)  and M P  = S t ,  this can be 
expressed as

< area B M P C  < - .  (13.5)
t  +  S t  t

Since hyp (t) = area A N  M B  and hyp (t + S t)  = area A N P C ,  we have, 
by subtraction,

hyp ( t  + S t)  — hyp (i) = area A N  P C  — area A N  M B  
= area B M P C . (13.6)
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Combining (13.5), (13.6) and dividing by St, we have 
1 hyp (t -f St) — hyp (t) 1

t + St St t ’
showing that

Um fhyp(t + St) — hyp (t)~| 1
tt —o 1 & 3

or, j t {hyp(t)} = (13.7)

Using (13.7) and the formula for the differentiation of a function 
of a function, if c is a constant,

5 { b y p ( « ) ) - i x c - i .

Hence I t{hyp (ci) _ hyp (t)> = y ~ 7 = °>

showing that hyp (cr) — hyp (t) = constant.
The value of the constant can be found by putting t = 1, and since 
from (13.3) hyp (1) = 0, the constant is hyp (c). Hence

hyp (cr) -  hyp (r) = hyp (c). (13.8)
Writing c = a, t = b in (13.8) we have

hyp (ab) = hyp (a) +  hyp (b). (13.9)
Similarly putting c = a/b, t‘ = b, we can show that

hyp (T) =  hyp (a) -  hyp (b). (13.10)
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One other property of the function is required. Writing t — a" in
(13.2),

dxhyp (a") =  ] ; - .

Changing the variable in the integral by the substitution x = u", the 
limits of integration become 1 and a, and since (dxjdu) = nuH~ \

= nhyp(a). (13.11)
13.4. The logarithmic function

The properties
hyp (ab) = hyp (a) +  hyp (b),

hyp GD=hyp _ hyp
hyp (a") = n hyp (a), 

and hyp (1) = 0,
of the function hyp(f) suggest that there is a connection with the 
logarithmic function. That hyp(t) is not exactly the same as log10£ 
can be seen from the graph of Fig. 87 and a table of common logarithms. 
Thus the graph gives hyp (2) and hyp (3) as approximately 0-69 and 
11 while a table of logarithms shows that logi02 = 0-301 and 
log10 3 = 0-477.

The details of the connection between the “hyp” and logarithmic 
functions can be established as follows. From the graph of Fig. 87 
it may be inferred that there is a value of t (which we shall denote 
by e) which makes the value of hyp (t) unity: the graph shows that 
the value of e is about 2-7. Hence

hyp (e) = 1,
and writing a = e, n = x  in (13.11),

hyp (ex) - x hyp (e) = x.
Putting e* = y, this gives hyp (y) = x and a combination of these two 
equations shows that

y = e hypl,). (13.12)
Thus hyp (y) is the power to which the number e must be raised to 
make it equal to y, and hence, by the definition of a logarithm, the 
“hyp” function is the logarithm to base e, or

hyp (y) s  log* y.
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The logarithm to base e is called a natural or Napierian logarithm 
and an alternative notation for logey is Iny, the “n” signifying the 
word “natural”.

A summary of the contents of the first four sections of this chapter 
is contained in the two important results

¿ ( l o g . * ) - ! ,  03 13)
and its inverse,

CdxJ— = log,x + C. (13.14)

The variable in these results has for convenience been here written 
as x  and it should be noted that the function log, x  has been defined 
for positive values of x  only. The identity between the “hyp” and 
logarithmic functions means that the graph of Fig. 87 gives also a graph 
of the logarithmic function. The relation (13.13) shows that the slope 
of the curve is very gentle when the independent variable is very large 
and that it is very steep when the variable is very small.

[13

Example 1. Show that common and natural logarithms are connected by the relation 
logio* = l°9eX x logl0e.
This follows immediately from Example 3 of Chapter 2 (page 27 by writing 
N  = x, a = 10, b = e.

Example 2. Differentiate logt sec x with respect to x and hence find J  tan x dx.
If y = log, sec x, we can write

y = log. f— ) =\cos x) log, 1 — log, cos x — log, cos x,

since log, 1 -  0. Writing u = cosx, the result (13.13) and the formula for 
differentiating a function of a function gives

dy dy du
dx du X dx

d d
= X dx008**

1 sm x= ----x -  sin x = ------- = tan x.u cosx

Since — (log, sec x) = tan x, the inverse relation is dx

j" tan x dx = log, sec x + C.

EXERCISES 13(a)

1. Differentiate with respect to x :—
(i) x2 log, x, (ii) log,(l/x).
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2. Differentiate x(log, x — 1) with respect to x and hence find J log, x dx.

3. Taking e = 2-718, use the result of Example 1 of this Chapter, via.
l°gio x = log, x x log10 e,

to draw the graph of y = log, (x + 3) between x = -  2-5 and x = 3. With 
the same axes and scales draw the graph of 5y = x3 and use these graphs 
to solve approximately the equation

(x + 3)5 = e*3. (L.U.)
4. Differentiate with respect to x :—

(0 lo8«y( (Q-E-)> (ii) log, (cosec x + cot x). (L.U.)

5.

6.

Find dy/dx when y = log, {x + ^(x2 +1)}, and hence evaluate
Ivd

(L.U.)
A submarine telegraph cable consists of a copper core with a concentric 
sheath of nonconducting material. The ratio of the radius of the core to the 
thickness of the sheath is x and it is known that the speed of signalling is 
equal to kx2 log, (1/x), where k is a constant.

Show that the greatest speed of signalling is reached in a cable for which 
x = l/yje.

13.5. The exponential function

If x =  log, t, (13.15)
x is given uniquely for positive values of t. It may be inferred from 
the graph of Fig. 87 that for any assigned value of x, there is one and 
only one value of t and that value is positive. We may regard t as 
a function of x and this function is single-valued and everywhere 
positive. We could write t as antilog, (x) but it is more usual to write 
the inverse relation to (13.15) in the form

t = e*, (13.16)
or, in a notation which is particularly useful when x is replaced by 
a complicated expression,

t = exp (x). (13.17)
t is called the exponential function of x and this function is of great 
importance in mathematics and its application to physical science.

The graph of the function t = e* can be obtained from that of 
x = log, t by interchanging the axes of Fig. 87. This is shown in 
Fig. 89. The function t — e~x has many physical applications and 
its graph is easily obtained from that of e* for e~x = l/e*. A sketch 
of the graph of e~x for positive values of x is shown in Fig. 90.

The exponential function can be expressed in the form of a limit
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as follows. Since
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d f, , 1

Fig. 89
it follows that as h tends to zero

^{loge(r + h) -  lc>ge t}

tends to 1/t. Putting t = 1, since logc l.=  0, we have that

l  loge (1 + h)
tends to unity as h tends to zero. Writing h = x/n, this can be expressed 
by

showing that

► 1 as n -» oo, 

-> x as h -> oo.
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This can be written in the alternative form

e* as n oo

or. «■ “  ( '  + (13.18)

13.6. Differentiation and integration of ex
If y — e?, then x = log, y and (13.13) gives

dx 1 1 
dy y e*'

Since from (8.11), & -  l / ( | )

we have ^  = ex,dx
giving the important result that

(13.19)

This shows that the slope of the curve y = e* at a point whose abscissa 
is x is equal to the ordinate at this point.

The formula for the differential coefficient of a function of a function 
then gives, if a is a constant

(13.20)

and the inverse relation is

j e “x dx = le™ + C. (13.21)

Suppose now that a is a positive constant and that y = a*. Then 
log, y = log, (ax) = x log, a, so that

y =

It follows from (13.20) that

=(log,a)(e* l08*a)
= y log, a
= axlog, a. (13.22)

Example 3. I f  y = xe ‘ show that ^  + '¿j- + y = dx dx 0. (LU.)
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By the formula for the differential coefficient of a product

dy d ,  . _ 
Tx = d t x )e '■ + x-j-(e~*) -  e~* — xe" ax

Hence

giving

=
dx1 dx

dx2 dx

(13.23)

(13.24)

The required result follows immediately from the addition of (13.23), (13.24).

Example 4. Show that elo»*J'=  x and that e ' 2log' J,= 1/x2.
If y = e,og' i  then log. y  = log, x.log,e = log, x, since log, e = 1. 
Hence y =  x.
If 2 = e_2lo8' x, then

log. z = —2Iog,x.log,e = -21og ,x  = log,(l/x2) 
so that 2 =  1/x2.

EXERCISES 13(h)
1. Differentiate with respect to x :—

(i) elx sin 3x, (ii) e“*.
, d*y dv

2. If y = e 2x cos 4x, prove that + 4-̂ - + 20y = 0.

3. If y = x"e“ , show that ̂  — ay = —. (L.U.)dx x
4. If y = e* sin x, show that

^  = 72.e* sin (x + x/4), 0  = 2«* sin (x + n/2). (O.C.)

3. Evaluate the following definite integrals:—

(i) \ e~3*dx, (ii) P (e* — e~x)2 dx, (iii) f (x — l)e* dx. (L.U.) 
Jo Jo Jo

6. Show that the length of arc of the curve 2y = e* + e~x from x = 0 to 
x = a is Ke* -  O -

7. Find the following by the method of integration by parts:—

(i) JxV dx, (ii) J  e* cos x dx.

8. Find the maximum ordinate of the curve y = xe~x, and draw a rough sketch 
of the curve.

d x13.7. Some integrals depending on j* x  1 

Now that the integral

x -1  d x  =  lo g ,x  +  C (13.25)
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is available, some methods of integration which were omitted from 
the discussion of Chapter 11 can be given. We first note that an 
important extension of the integral occurs when x is replaced by the 
linear expression ( a x  +  b ) where a  and b  are constants. By (11.2), 
this is

in which the numerator of the integrand is the derivative with respect 
to x of the denominator. To evaluate this integral write f ( x )  = t, so 
that f ' ( x ) . ( d x / d t )  = 1 and (d x / d t ) =  1 / f ' ( x ) .  The rule (11.7) for integra­
tion by change of variable then gives

Hence the in te g r a l  o f  a  f r a c t io n  in  w h ic h  th e  n u m e r a to r  is  th e  d i f fe r e n tia l  
c o e ff ic ie n t  o f  th e  d e n o m in a to r  is  s im p ly  lo g e (d e n o m in a to r ).

The important rule of (13.28) enables the integrals of certain 
trigonometrical functions to be written down. Thus

(13.26)

and for the particular case of a  = 1, this reduces to

(13.27)

Now consider the integral

= log. t  +  C  
= log./(x) + C. (13.28)

■dx = — log. cos x -I- C. (13.29)

Similarly J  cot x d x

^ (s in  x ) d x

sin x
= log. sin x + C. (13.30)
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| cosec x dx
J sin x

dx

f j [ dxcosec x dx = ——J J sin x

- i

-J :

- f

2 sin ¿x cos ¿x 
dx

2 tan |x  cos2 \x  
1 sec2 ix dxtan^x

tan^x
dx

= loge tan ¿x + C.
The integral of sec x can then be found by noting that 

cos x =  sin (%n + x),

J"sec x dx = J cosec (¿71 + x)dx

= loge tan (¿7t + ¿x) + C,

so that

[13

(13.31)

(13.32)
by using (13.31) and (11.2).

Some other instances of the important result (13.28) will be found 
in the following examples.

Example 5. Evaluate
J I

1 x2dx
o-x3 + 1

Since ^ { x J +  1) = 3x2, the integral can be written

1
3 J

dx

-±[tofc(*»+l)]‘

¡log. 2,

since log, 1 = 0.

(L.U.)

_ . ,  r- j  fExample 6. Find I-*---- --------.
J x1 + 2x + 2

The derivative with respect to x of the denominator is 2.x + 2, and if we write 
the numerator as 2(2x + 2) + 1, the integral can be .expressed-as the sum

f (2x + 2)dx f  dx
J x2 + 2x + 2 + J x2 + 2x + 2'
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The first integral is 2 log. (x2 + x + 2) and the second integral can be written as

The integration of rational algebraical fractions (i.e., fractions in 
which the numerator and denominator contain only positive integral 
powers of the variable and constant coefficients) can often be made 
to depend on the integral

We consider below a few of the simpler cases. In all cases, if the degree 
of the numerator is equal to or greater than that of the denominator, 
the numerator must first be divided by the denominator until the 
remainder is of lower degree than the denominator.
(a) Let the denominator be of the first degree. In this case the 
remainder after the division will be independent of the variable and 
the integral will be given as a sum of terms involving powers of the 
variable and a logarithmic term.

or by § 11.2, tan 1 (x + 1). Hence finally

I = 2 log, (x2 + 2x + 2) + tan 1 (x + 1) + C.

(13.33)

Example 7. Find

By division of x3 by (x — 1) we find
x3 1------- = x2 + x + 1 + -------,

X  -  1 x -  1
the quotient being x2 + x + 1 and the remainder unity. 
Hence

= i* 3 + i* 2 + x + log,(x -  1) + C.

Example 8. Integrate -------- with respect to x.

Here the division process gives
3 — 2x _  2
2x — 1 ~  + 2x -  T

so that

= - x  + 2.*log,(2x -  1) + C 
= — x + log,(2x -  1) + C.
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(b) Let the denominator be of the second degree and let it break up 
into a pair of linear factors. In this case, we can split the integrand 
by resolving it into partial fractions and each partial fraction can be 
integrated by (13.33).

r dxThus to find I ^ ------j  we first write the integrand as
A B

a — x a + x’
where A, B are two constants to be found. The usual method (§ 2.8) 
for resolution into partial fractions then gives as the identity from 
which A and B are to be determined

A{a + x) + B(a -  x) = 1.
By letting x = + a in turn we find

A - B - l
so that

f dx _  [* dx
J  ai -  x2 2a J  a — ;

Id  

1 f dx
x 2a J a +  x 

= “  ¿ loge(a ~ x) + ¿ log‘(a + x) + C

Example 9,‘ Find
x3dx

x“ + x -  20'
Here the numerator of the integrand is of higher degree than the denominator, 
and division until a remainder of lower degree is obtained shows that

^3
: = x — 1 +

21x -  20
x 2 + x -  20 x2 + x -  20

The last term on the right is resolved into partial fractions by writing 
21x -  20 = A B 

xJ + x — 2 0 " x + 5 +  x — 4’ 
so that the identity for the determination of A and B is 

A(x -  4) + B(x + 5) = 21x -  20.
By letting x = -  5 and 4 respectively we find that

Hence
9 9

= -X" -  X + 125
x + 5 9 J x —i4

64.9 log.(x +  5) + —  log.(x -  4) +  C.
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(c) When the denominator is of higher degree than the second, the 
method of resolution into partial fractions is still often useful. A few 
instances will be found among the example and exercises which follow 
but a complete discussion is outside the scope of this book.
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f  dxExample 10. Find I  ------, , , ,  ,---- - .J(x -  l)2(x2 + 1)
Let, according to the usual rules for resolution into partial fractions,

1 A B Cx + D
(x -  l)2(x2 + 1) “  x -  1 + (x -  l)2 + x2 + r  

then d(x -  l)(x2 + 1) + B(x2 + 1) + (Cx + D)(x -  I)2 3  1.
By letting x = 1, we find B = 1/2. Equating the coefficients of x2 and the terms 
independent of x gives respectively

— A + B — 2C + D = 0 and — 4  +  B +  D — 1.
Subtraction of these two relations then gives 2C = 1 or C = 1/2. A comparison 
of the coefficients of x3, shows that A + C = 0, so that A — — C = —1/2. 
Finally, putting A = —1/2, B =  1/2 in the relation —A + B + D = 1 shows 
that D — 0.
Hence
r dx 1 dx 1 f dx 1 f  x dx
J (x -  l)2(x2 + 1) ~  2 x -  1 + 2 J(x -  l)2 + 2J x2 + 1

= -  ^ l°g .(■* -  1) ~  -_-yj + + 1) + C,

the last integral being evaluated by writing
1 f x dx 1 f  (2x) dx
2 J x1 + 1 ~  4  J x2 +  1

1
4

^ J + 1)
I x2 + 1

dx.

The method of integration by parts is often useful in cases where 
the integrand contains the function loge x. If this function is taken as 
the “u” in formula (11.10), i.e.

I- -  »  -

then du/dx in the integral on the right is simply 1/x and this integral 
can then often be found easily. As a simple example, the integral

I'log, x dx can be found by taking 

u = log, x, dv
dx 1,



250 P U R E  M A T H E M A T I C S [13

and we have
1'log, xd x  = x  log, dx

= x  log, x — J dx 

= x loge x — x + C.
Another example which depends on the work of this section is 

given below.

Example jl. Find j  tan ‘ xdx.

By writing u = tan-1 x, dv/dx = 1, so that du/dx = 1/(1 + x2) and v =  x, in 
the formula for integration by parts, we have

j"tan 1 xdx = x tan ~1 x İt t i?■dx.

= x tan ■ J; A &  + 1
2 J x2 + 1 dx

= x tan" 1 x -  \  log, (x2 + 1) + C.

EXERCISES 13(c)

Evaluate the following indefinite and definite integrals

4.

I t
x dx
+ x 2
(6x 2 +  x — l)dx
:3 + X2 -  2x + 3' 

'10 31 + 1
y

j :

j * + *

3t2 +  2r 

r dx.

dt. 7.

ix 2 + a2

'e* — e~
e? +  e * 

sec2 x

dx.

dx.

I

13  +  4 tan x

J t log, t 
r (8t -  3 )dt

J 2 t2 +  2 t  +  r

Integrate the following with respect to x :—
X

13.
6x

2x -  3' (x +  l)(x -  2)-
2x + 3

14.
x 3 +  2

x + 2 ' x 2 — r
X3

15.
4x + 3

4 -  2x' (x -  3)2’
5 16.

7x +  5
x2 + x — 6' (x -  3)(x2 +  4)'



13] L O G A R I T H M I C  D I F F E R E N T I A T I O N 251

Evaluate the following definite integrals 
dx

v - f . i **•0(x +  l)(x +  2)
Use the method of integration by parts to find the following integrals:—

19. J x2 log, x dx. 22. J x log, (x + 4)dx.

20. j"x2 tan_I xdx. 23.
f log, x dx
J (x + l)2'

21. j*xsec2 xdx. (Q.E.) 24. j" sec2 x log, tan x dx.

13.8. Logarithmic differentiation
When a function consists of a number of factors it is often convenient 

to take the logarithm before differentiating. Thus, suppose that
= “ l»2“3•••

vlv2v3 . . . '
where u„ u2, u3, . . vu v2, v3, . . .  are functions of x. We have

!<)& y = log, + log, u2 +  log, u3 + ...
~  log, vt -  log, p2 -  log, v3 -  . ..

so that
1 dy _  1 dui 1 du2 1 du.
ydx dx +  u2 dx + u3 dx +

1 dv, 1 dv.1 dvx
vx dx v2 dx v3 dx

A similar method can be applied to find the differential coefficient 
of the function

y =  uv,
where u and v are functions of x. Taking the logarithm we have

log, y = v log, u,

so that 1 dy dv , v du
= ~T~ l°8euydx dx udx

Example 12. Find the differential coefficients with respect to x of

«W C -ê-3- < * > - ' ■
From (i), log, y = i  log, (1 + x) -  ± log, (1 -  x),

1 ^ 1  1 1 
ydx ~  2(1 + x) + 2(1 -  x) ~  1 -  x2'so that
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Hence dy = y
dx 1 — x2

1
(1 -  x2)

1
~  (1 -  x)3,2(l +  x)1/2' 

From (ii), log, y =  x log, x, so that

ldy
- - = l + l o g . x ,

using the usual formula for the differentiation of the product x log, x. 

dy
Hence —  =  y(l + log, x) =  x*(l + log, x).

13.9. Successive approximations and Maclaurin’s series 
Consider first the function 1/(1 — x) for values of x less than unity. 

It is easy to verify by ordinary algebraical processes that
1

1 -  x 
1

1 -  x 
1

1 -  x

1 + x
1 -  x’

1 +  x + 1 -  x’

1 + X  + X 2 4- -J------ ,
1 — x

and so on. Hence
1, 1 + x, 1 + x + x2, ...

are successive approximations to the function 1/(1 — x) for the 
respective errors are

1 -  x’ 1 -  x’ 1 -  x’ '
and, for values of x less than unity, these errors become progressively 
smaller. It should be noted that the successive approximations

1, 1 + x, 1 + x + x2, . ..
are all equal for x = 0. From (1 + x) onwards, they all have the same 
first derivative at x = 0; from (1 + x + x2) onwards, they all have 
the same second derivative for this value of x and so on.

This suggests the following method of approximating to a function
f(x). Let

/(x) = a0 + OjX + a2x 1 + a3x3 + . . .  + anx".
Choose a0, au a2, a3, ..., a„ so that for a certain value of x, say x = 0, 
the function/(x) and its first n derivatives (assumed to exist) are the
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same as the values at x = 0 of the polynomial and its first n derivatives. 
By this procedure, the polynomial may well be a successively better 
approximation to the function as the number (n + 1) of terms in the 
polynomial increases.

The first n derivatives of the polynomial are 
at + 2a2x  + 3a3x2 +  . . .  + myc"-1,

la 2 +  6a3x + . ..  + n(n — l)a„x"-2,
6a3 + . ..  + n(n — l)(n — 2)anxn~3,

and so on. At x = 0, the values of the polynomial and its first n 
derivatives are

a0, iJj, 2a2, 6a3, ..., (n)! aH.
Equating these to the values at x  = 0 off(x)  and its first n derivatives, 
we find

a0 = / (  0), a3 = i f " ( 0),
a, = / m  .......................

a2 = i / ' ' ( 0), aB = ^ / ‘">(0).

Thus we may expect to be able to write

fix )  N/(0) + x/'(0) + + £ f'" (0 )  + . . .  + ~ / <B,(0). (13.34)

The above procedure is only satisfactory if (i) /(x) and its first 
n derivatives all exist and are continuous at x = 0, and (ii) the difference 
between /(x) and the polynomial on the right of (13.34) decreases as 
n increases. Thus the method would fail entirely for the case/(x) = 1/x, 
for none of f(x) nor its derivatives exist at x = 0. The method would 
fail also for the case f(x )  = 1/(1 — x) when x > 1 since, for such values 
of x, the errors in the polynomial representations would increase as 
the number of terms in them increased.

In the example /(x) = 1/(1 — x) it was easy to calculate the errors 
of the approximations at each stage. It is not so easy to do this for 
the general function /(x). It is, in fact, beyond the scope of the present 
book to attempt to do more than point out that there are many func­
tions f{x) for which fix )  and all its derivatives exist and are continuous 
at x = 0 and for which the series

/ ( 0) + xf'i0) + ~ / " ( 0) + . . .  + ^ y / (n)(0) + ■ • •

converges. Under such conditions / (x) is the limit of the sum of this 
series and we can write

fix )  = /(0) + x/'(0) + ^  / ”(0) + ... + — / ‘"»(O) + ..., (13.35)
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the series on the right of (13.35) being known as Maclaurin's series 
for f(x).

13.10. Series for ex and log, (1 + x)
As examples of the expansion of functions in their Maclaurin’s 

series we consider here the series for e* and loge (1 + x).

Firstly, iff(x) = ex, since ^(e*) =

m  =  /'(X) =  /''(X) =  . . .  =  /<">(x) =  . . .  =  **, 
and / ( 0) = / '( 0) = /" (0) = . . .  = /<">(0) = . . .  = e° = 1.
Hence (13.35) gives

c X=1  + x + IT + i .  + --- + W  + -  (13-36)
It is clear that e* and all its derivatives exist and are continuous at 
x = 0 and it can be shown (but we shall not attempt to do so here) 
that the difference between e* and the first (n + 1) terms of the series 
of (13.36) tends to zero as n -» oo for all values of x. The series of 
(13.36) is therefore a valid representation of the function e* for all x.

The above series for e* is known as the exponential series and has 
many useful applications. Here we shall consider only its use in 
evaluating e* numerically as a function of x. For example, if x = 1, 
we have

, , 1 1 1 1 1e — 1 + ! + _  + _  + _  + _  + - + . . .

= 10000 + 10000 + 0-5000 + 01667 + 0-0417 + 0-0083 
+ 0-0014 + 0-0002 + ...

= 2-718 ...
To obtain similar accuracy, for values of x less than unity less terms 
of the series would be required, but for larger values of x it would be 
necessary to retain more terms.

Now take /(x) = loge(l + x) so that /(0) = log* 1 = 0. Then

'w - r h  t w -
/ ' V(x)

and

3!
(1 + x)4’

* f"(x)  =  ^
(1 + x)2’ } [ > (1 +  x)3’

( - i r ‘( n -  1)!/ (”>(x) =
(1 + x f

/'(0) = 1, f" (0) = -  1, /'"(0) = 2, /  (0) = - 3 ! , . . .
/ <n)(0) = (—l)"_1(n — 1)! 

Maclaurin’s series for loge(l + x) is therefore
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Again log, (1 + x) and all its derivatives exist and are continuous at 
x = 0 but it can be shown that the above expansion is valid in the 
sense that the difference between loge (1 + x) and the first n terms of 
its series tends to zero as n -> oo only when — 1 < x <  1.

The reader may wonder why we have given a series for loge (1 + x) 
rather than for log, x. The reason is that log, x and its derivatives do 
not exist at x = 0 and log, x cannot therefore be represented by a 
series in ascending powers of x.

The logarithmic series (13.37) is only useful for calculating natural 
logarithms for small values of x; in fact, the series is not valid when 
x > 1 and even for values of x approaching unity many terms would 
have to be retained to obtain reasonable accuracy. Some algebraical 
manipulation of the series can, however, permit the logarithms of 
larger numbers to be calculated and a typical example is given below.
Example 13. I f  the absolute magnitude of x is greater than unity, show that

If x is greater than unity, x can be replaced by 1/x and — 1/x in the series 
(13.37) so that

and use this series to calculate logt 2 to three places of decimals. 
We can write

Putting x = 3, we have

giving log, 2 = 2(0-3333 + 0-0124 + 0-0008 + ...) = 0-693 . ..

EXERCISES 13(d)

Use the method of logarithmic differentiation to find dy/dx when:—
1. y =  (1 -  2x)(l -  4x)(l -  6x). 3. y =  10*.

4. y = (log, x)L
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Assuming the expansions given below are convergent, show that :— 
x 3 x 5

5. sinx =  x — — + — —

,  X2 X46. c o s x =  1

7. tan (x + ff) — tan 9 + x sec2 6 + x2 sec2 0 tan 0 + ...

8. Show that-(e + -J = 1 + - + - + - + .

9. If a is so small that its cube and higher powers may be neglected find the 
values of the constants A, B and C so that

ex+a = A? + Be*+i* + Ce*+i*.
10. Show that log, (2 + 3x) = log, 2 + fx — fx2 + |x 3 — ..., and state the 

limits between which x must lie for the expansion to be valid.
11. By writing 1 + x + x2 = (1 — x3)/(l — x) show that, if — 1 < x < 1, 

log, (1 + x + x2) = x + ^x2 -  fx3 + ¿x4 + |x 5 -  fx6 + ...
12. If 2, fi are the roots of the quadratic equation x2 — px + q = 0, show that 

for suitable values of x,
log,(1 + px + qx2) = (2 + P)x -  (̂A2 + fi2)x2 + {̂A3 + fi3)x3 -  ...

EXERCISES 13(e)

1.

2.

3.

4.

5.

6.

7.

8.

Find dy/dx when:—
(i) y =  log, tan x, (ii) y =  log, (sec x +  tan x). (L.U.)

Find the maximum value of (log, x)/x.
Differentiate the following with respect to x :—

0) log, (ii) log, (7 (x  +  1) +  V(x -  1)}.

If y =  cos (log, x), prove that
dy

x‘d j  + xTx + y 0.

If y =  (e2x — l)/(e2x +1 ) ,  show that

x

Evaluate the following:—

(i) J ê3* + — —̂̂ dx, (ii) J (e~2* + 2 tan x)dx.

If y = exp (tan- 1 x), show that
d2y dy

(, + ^  + (2̂ 1̂  = a
Show that if a and fi are suitably chosen, y =  e“  cos fix satisfies the
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9.

10.

11.

12.

13.

14.

15.

16.

17.

18. 

19.

20.

equation

and find a, fi in terms of A and B.
If iff is the angle of inclination to the x-axis of the tangent at a point of the 
curve y =  j(e* +  e~x), show that

(i) y — sec y/, (ii) x =  log, (tan y> +  sec y/).
The arc of the curve y ~ e*12 +  e~xl2 from x =  —2 to x =  2 rotates about 
the x-axis. Find the-area of the surface so generated.
Integrate the following with respect to x :—

Show that 
f xdx

(i)

1

e + e
(>>)

+ é*'
xe +  e*

) 2 x ^ - x  + 1 "  i l0g' (2x2 "  ^  ^  V 7
Integrate the following with respect to x :—

, v 1 _. /  4x — 1 \
x +  1) +  2 T 7 tan

+ c.

(i)

Evaluate the following:

(i)

x +  1 
x + 2’ (ii)

x 2 -  3x + 1
x +  1

»Hrrrbi» ta,ip
(2t +  l)di 
+  212 -  3t'

Integrate the following with respect to x : 
1 -  3x2

(i)

Find the following:—
3x (ii)

1

(i)

Evaluate :—
«J

(x2 -  l)2’

(lOx2 +  13x +  9 )dx 
(x -  2)(2x +  l )2 '

2 tdt
>(1 +  i2)(3 +  t2)'

Find the area enclosed by the curve (1 +  3x +  2x2)y =  1, the x-axis and 
ordinates at x =  0 and x =  5.
Sketch the curve y2(x + a) + x(x — a) =  0, where a is a positive constant, 
and show that y is a maximum or a minimum when x =  + 0^/2 — a. 
Prove that the volume enclosed by rotating about the axis of x the part of 
the curve which lies between x =  0 and x =  a is ;ra2(l-5 — 2 log, 2). (Q.E.)
Show that 4

(i) j  6 sec2 6d0 =  -  -  -  log, 2,

(ii) j (x -  l )2 log, x dx =  § log, 2 —
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21. Find dy/dx when

(i) > = V ( i -* » )• (“)>- = 51+sin2x- . (Q E.)
22. Show that

^{sec x tan" x) =  sec x {n tan"- 1 x + (n + 1) tan"+1 x}.

Use this result to show that if y =  sec x,
d2y ,  d3y

=  sec x(l +  2 tan2 x), =  sec x(5 tan x +  6 tan3 x),

= sec x(5 + 28 tan2 x +  24 tan4 x).

Hence show that the first three terms of Maclaurin’s series for sec x are 
given by

x 2 5x4
sec X =  1 +  y  +  —  +  . . .

23. Find the coefficient of x5 in the expansion of r"/(-l +  2x2) in ascending
powers of x. (Q E.)

24. In the equation x 2 + 2 =  e2, X is a small quantity whose third and higher 
powers may be neglected; prove that

(i) x =  e. e 2 + 2,
(ii) x = e(l — {X + | 22).

25. Find the coefficient of x" in the expansion of

in ascending powers of x; it can be assumed that x lies within the range 
for which the expansion is convergent.



CHAPTER 14

COORDINATES. LENGTHS OF LINES. AREAS OF 
TRIANGLES. LOCI. INTERSECTION OF CURVES

14 .1. S ystem s o f  coordinates
In elementary graphical work, it is customary to specify the position 

of a point P in a plane by its perpendicular distances OM, MP from 
two fixed perpendicular lines Oy, Ox (Fig. 91). The lines Ox, Oy are

called the axes, 0  the origin and the distances OM, MP are referred 
to as the abscissa and ordinate of the point P. A convenient method 
of referring shortly to the position of a point whose abscissa is x  and 
ordinate y is to say that the point has coordinates x and y and to use 
the symbol (x, y) to designate the position of such a point.

The student is assumed to be familiar with the usual sign conven­
tions used in graphical work. Briefly these are as follows—for points 
to the right of the axis Oy the abscissa is positive and for points to the 
left of Oy the abscissa is negative, while the ordinate is positive or

259
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negative according as the point is above or below the axis Ox. Thus, 
in Fig. 92, the points Ply P2, P3, P4 would be denoted by (5,2), (—2,3), 
( -  3, -1 )  and (3 ,-2 ) respectively.

The above method of specifying the position of a point in a plane 
by its distances from two straight lines (the axes) was first introduced 
by the philosopher Des Cartes. It is not essential for the axes to be 
mutually perpendicular as in Figs. 91, 92, but it is often convenient to 
use, and in this book we shall only deal with, axes at right angles. 
Such a system of coordinates is known as the Cartesian system and, 
when the axes are at right angles to one another as in Fig. 91, x  and y 
are referred to as the.rectangular Cartesian coordinates of the point P. 
Other coordinate systems, for example that outlined below, exist but 
the Cartesian system is by far the most important.

Another method of specifying the position of a point in a plane 
is by its polar coordinates. Suppose that 0  is a fixed point, called 
the origin or pole, and Ox is a fixed line, called the initial line. Then

in Fig. 93, the position of a point P is known when the angle xOP (=  6) 
and the length OP (=r) are given. The two quantities r and 0 are 
called the polar coordinates of P and the position of P is conveniently 
denoted in this system of coordinates by the symbol (r, 0).

14.2. The relation between Cartesian and polar coordinates
Suppose that the rectangular Cartesian coordinates of a point P 

are (x, y) and that its polar coordinates are (r, 6). Then, from Fig. 94,
x = OM — r cos0,1 114 11
y - MP = r sin 0, J

Fig. 94
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and x, y can be found when r, 0 are given. Conversely, if x, y are given, 
we have

r2 = x2 + y2, 
tan 0 — y/x. (14.2)

Equations (14.2) do not determine r, 0 uniquely, for r  = ± * J ( x 2 + y2) 
and 0 can take an indefinite number of different values. To obtain 
an unique correspondence, we take r = + y j ( x 2 + y2) and determine 
0 as the angle which lies between —n and +7t satisfying the two 
equations cos 0 = x / r ,  sin 0 =  y/r.

F T f l f  1. Find (i) the Cartesian coordinates of the point whose polar coordinates 
are (5, n/4) and (it) the polar coordinates of the point whose Cartesian coordinates 
are (— 1,1).
(i) r =  5, B =  ji/4, so that

x =  5 cos (a/4) =  5/V2 =  3-536, 
y =  5 sin (tt/4) =  5/^2 =  3-536.

(ii) x = — 1, y =  1, so that
r =  V(1J +  l 2) =  V2 -  1-414, 

cos 0 =  -1/^ /2, sin 6 =  1/^/2 giving 6 =  3tt/4.

14.3. The distance between two points with given rectangular co­
ordinates

Let Plt P2 be the two given points and let their coordinates be 
respectively (x1; y j ,  (x2, y2). Draw (Fig. 95) PtM ly P2M 2 perpendicular 
to Ox, and draw P2R parallel to Ox to meet P2M t in R. Then

P2R = M2M, = OMi — 0 M 2 =  x 2 — x2, 
and RPi = M XPX -  M tR = M tPt -  M 2P2 =  yx -  y2.
From the right-angled triangle P2RPU

PtPi = s/(P2R2 + RPi2)
=  y / { ( X i  ~  x 2)2 +  CVi — y2)2 }. (14.3)

Fig. 95
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The proof of formula (14.3) has been given only for the case in 
which the coordinates of both the points are all positive. ^Vhen due 
regard is paid to the usual sign conventions for the coordinates, it will 
be found to remain true for any positions of the two given points.

Example 2. Find the distance between the points (4, —7) and (—1, 5).
By writing*, = 4, y, = -  7, x 2 = — 1, y2 = 5 in formula (14.3), or (preferably) 
working from first principles from a diagram showing the given points, it will be 
found that the required distance

= V«4 + l)2 + ( - 7  -  5)2} = yj(25 + 144) = ,/(169) = 13.

14.4. A proof of the addition formulae of trigonometry
A compact method of obtaining a formula for cos (A — B) where 

A and B are angles of any magnitude can now be given. In Fig. 96, 
diagrams are given for 90° < A < 180°,0 < B < 90° and 0 < A < 90°,

180" < B < 270° and corresponding diagrams can be constructed for 
angles of any size. If OP and OQ are each of unit length, the Cartesian 
coordinates of P are (cos A, sin A) and of Q (cos B, sin B). In both 
cases cos POQ = cos (A — B), and the cosine formula for the triangle 
POQ gives

PQ2 = OP2 + OQ2 -  20P.0Q  cos POQ 
= 1 + 1 -  2 cos (A -  B)
= 2 — 2 cos {A — B).

But, from formula (14.3) for the distance between P and Q,
PQ2 = (cos A — cos B)2 + (sin A — sin B)2 

= 2 — 2 cos A cos B — 2 sin A sin B, 
when use is made of the relations

cos2 A + sin2 ,4 = 1, cos2 B + sin2 B = 1.
Equating these values of PQ2 we have

cos (A — B) = cos A cos B + sin A sin B.
The formulae for cos (A + B), sin (A + B), sin {A — B) can then be 
deduced by replacing B by — B, 90° — B and B — 90°.
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EXERCISES 14(a)

1. Plot the points (i) whose rectangular coordinates are (2, — 3) and (—4, — 1),
(ii) whose polar coordinates are (2,2»/3) and (2, — 2n/3).

2. (i) Find the Cartesian coordinates of the points whose polar coordinates
are:—■

(a) (4, «/3), (b) (5, — «/4).
(ii) Find the polar coordinates of the points whose Cartesian coordinates 

are:—
( a ) ( U ) ,  (fc) (-5 ,1 2 ).

3. Show that the distance between two points whose polar coordinates are 
( r j .f l^ a n d ir ^ )  is

V(ri2 + r22 -  2r1r2cos(0l -  d2)}.
4. Find the distances between the following pairs of points:—

(i) (0, 0) and (a, b),
(ii) (a, 0) and (0, b),

(iii) (p +  q, q +  r) and (q + r, r +  p).
5. Find the lengths of the sides of a triangle whose vertices are the points 

(5, —6) ,(—3, —2) and (1, —3).
6. Show that the triangle whose vertices are the points (—2,2), (2,3) and 

(—1, —2) is isosceles.
7. Show that one of the angles of the triangle whose vertices are the points

(5,1), (—3,7) and (8,5) is a right angle.
8. The points A and C have coordinates (4,1) and (1,4) respectively. The point 

B is constructed by drawing AB equal and parallel to OC, where 0  is the 
origin. Find the coordinates of the point B and show that the figure OABC 
is a rhombus.

14.5. The coordinates of a point which divides the join of two given 
points in a given ratio

In Fig. 97, let P t and P2 be the points (x^yj), (x2, y2) respectively
and suppose we require to find the coordinates of a point P which
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divides the line P1P2 in the ratio ml :m2- Draw PjMx, P2M 2, PM 
perpendicular to the axis Ox and draw P tS parallel to Ox to meet 
PM, P2M 2 in R and S respectively. Then, if P is the point (x, y), 

0 M t = x lt 0 M 2 =  x 2, OM = x.
From the construction of Fig. 97 it should be clear that

PlR — M XM = OM — OM, = x — x,,
RS = M M 2 = OM2 -  OM = x2 -  x.

Since PR, P2S are parallel,
PtR PxP mi 
RS " PP2 ~ m2

so that x — Xj m i
x2 — x m2

Solving for x we find x mix 2 + m2Xx
m1 + m2

By drawing PtN ly PN, P2N 2 perpendicular to Oy, we could show in 
the same way that the ordinate of P is given by

= »̂1̂ 2 +
m1 + m 2 '

Hence the coordinates (x, y) of a point P which divides the join 
of the points P , (x,, y,) and P2(x2,y 2) internally in the ratio m, :m2 
are given by

x = mlx 2 + m2x.
+ m . (14.4)•x + nt2 ml + m2

These are called Joachimsthal’s section-formulae. As a special case, 
the coordinates of the middle point of the line joining (Xx, yt) to (x2, y2) 
a re^x , + x2) and j(yx + y2) for here m1 = m2.

If the point Q divides the line PiP2 externally in the ratio mi:m2,
i.e., if P1Q:QP2::ml :m2, its coordinates would be found in a similar 
way to be

x = m'X2 ~ ~ 2Xi, y = m^ ~  (14.5)m1 — m2 m, — m2 ’
Example 3. The vertices of a triangle are A(2,4), B( — 4, —6), C(6,0). Write down 

the coordinates of X, the mid-point of BC. Find also the coordinates of the points 
which divide AX internally and externally in the ratio 2:1.
The coordinates of the mid-point of BC are given by

x = 4(—4 + 6) = 1, y =  K -6  + 0 )=  -3 ,

m ,

so that X  is the point (1, — 3).
The coordinates of the point dividing AX  internally in the ratio 2:1 are given by

2 x 1 + 1 x 2 4 2 x ( -3 )  + 1 x 4 2
2 + 1 ~ y  y ~ 2 + 1 ~ ~ y
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The coordinates of the point dividing AX  externally in the ratio 2:1 are given 
by

2 x  1 - 1 x 2  „ 2 x ( — 3) — 1 x 4
* " ---- T—i-------y ------------------------- --»«■

14.6. The area of a triangle whose vertices have given coordinates 
In Fig. 98, let the vertices of the triangle ABC be the points 

B(x2> y2) and C(x3, y3). Draw AL, BM, CN perpendicular

to the axis Ox. Then 
area A ABC

= area trapezium ALNC + area trapezium CNMB
-  area trapezium ALMB

= $LN(LA + JVC) + $NM(NC + MB) -  \LM(LA + MB)
= Kx3 -  + y3) + *(x2 -  x3)(y3 + y2)

~  2<*2 -  + y2).
After a slight rearrangement of the right-hand side, we have 

area A^BC = i(x ,0 ;2 -  y3) + x2Cy3 -  j^) + x 3(yi -  >̂2)}. (14.6) 
By taking the point C to be at the origin 0  (x3 = y3 = 0), the area 

of the triangle OAB with vertices 0(0,0), A{xu y 1) and B(x2, y2) is 
given by

area A OAB = j(xiy2 -  x2y,). (14.7)
It should be noted that for the formula (14.6) to give a positive 

value for the area, it is necessary for the points A, B and C to be taken 
in a special order. This is such that in starting from the point A and 
proceeding round the perimeter of the triangle in the order A, B and 
C, the area of the triangle must always be on the left. In a specific 
example it is probably better to draw a rough diagram and work from 
first principles (see Example 4).

The above formula for the area of a triangle can be used to obtain 
the condition that three points shall be collinear (i.e., that they shall
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lie on the same straight line). If the three points (x1; y3), (x2, y2) and 
(x3, y3) lie on the same straight line, the area of the triangle formed 
by them vanishes and, from (14.6) the condition for collihearity is 
therefore

x i ( y *  -  y 3) + x2(y3 -  yt) + x3(y1 -  y2) = 0. (14.8)
The area of a quadrilateral (or other plane polygon) with given 

vertices can be obtained in a similar way. Perpendiculars are dropped 
from the vertices on to the axis Ox (or on to a line parallel to Ox 
through the vertex with the smallest ordinate) and the area can then 
be expressed in terms of the areas of various trapezia (or triangles). 
The resulting formula is rather complicated and again it is probably 
preferable to work from first principles (see Example 6).

Example 4. Find the area of the triangle formed by the points ( — 2,3), ( — 7,5), (3, — 5).
Denoting the points ( — 2, 3), ( — 7,5) and (3, — 5) by A, B and C, we drop 
perpendiculars AL, BM on to a line through C parallel to the axis Ox. Then,

area A ABC = area trapezium BMLA + area A ALC — area A BMC 
= i(5)(10 + 8) + i<5)(8) -  K10)(10)
= 15 units.

Alternatively, since in proceeding round the perimeter of the triangle in the 
order, A, B, C, the area of the triangle is always on the left, we could obtain 
the same result by writing x, = — 2, x2 = — 7, x3 = 3, y, = 3, y2 = 5, 
y3 = —5 in formula (14.6).

Example 5. Find the relation between x and y if the point (x, y) lies on the line joining 
the points (2, 3) and (5,4).
The condition (14.8) for collinearity of the three given points gives 

x(3 -  4) + 2(4 -  y) + 5(y -  3) = 0, 
i.e, x -  3y + 7 = 0.



Example 6. Find the area of the quadrilateral whose vertices are the points (2,1),
(3,5), ( — 3,4) and ( — 2, —2).
In Fig. 100, the four points (2,1), (3,5), ( — 3,4), ( - 2 , - 2 )  are denoted by 
A, B, C and D. Perpendiculars AL, BM, CN are dropped from A, B and C on
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to a line through D (the point with the smallest ordinate) parallel to Ox. Then
area ABCD = area trapezium CNMB — area A CND

-  area A DLA -  area trapezium ALMB 
= K<>)(6 +  7) -  K D (6) -  i(4)(3) -  K l)(3  +  7)
= 25 units.

EXERCISES 14(h)

1. Find the coordinates of the points dividing the line joining the point (7, — 5) 
to the point ( — 2, 7) internally in the ratio 5:4 and externally in the ratio 3:2.

2. Find the distance between the points (-^2,3), (3, —1): find also the co­
ordinates of the point of trisection that lies nearer to (—2,3).

3. The coordinates of the angular points A, B, C, D of a quadrilateral ABCD 
are respectively (2,5), (8, 1\ (10,3) and (0,1). E, F, G, H are the middle points 
of the sides AB, BC, CD, DA respectively. Show that the middle points of 
EG and FH coincide.

4. If x and y are the coordinates of the middle point of the line joining the 
points (2,3) and (3,4), show that x — y + 1 = 0 .

5. Find the areas of the triangles whose vertices are:—
(i) (0,4), (3 ,6) and ( - 8, - 2 ) ,

(ii) (a, c + a), (a, c) and (— a, — c — a).
6. Show that the four points (2,9), (—3,12), (—8,15) and (7,6) all lie on the 

same straight line.
7. Find the area of the quadrilateral whose angular points are (1,1), (3,5), 

( -2 ,4 )  and ( - 1 , - 5 ) .
8. Find the area of the triangle whose vertices are the points with polar 

coordinates (1, 30°), (2, 60°) and (3,90°).

14.7. The equation to a locus
If a point moves so that it always satisfies a given condition, or

conditions, the path traced out by it is called its locus. For example,
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if a point always lies on the straight line joining the points (2,3) and
(3,4) we have seen in Example 5 of this chapter that its coordinates 
(x, y) always satisfy the equation

x -  3y + 7 = 0. (14.9)
The locus of the point (x , y) is here the straight line joining the two 
given points and equation (14.9) is the equation of the locus. (It will 
be shown in the next chapter that when the locus of the moving point 
is a straight line, its equation is of the first degree in x  and y.)

Again, suppose that a point P moves in a plane so that the lines 
AP, BP joining it to two fixed points A and B in the same plane are

Fig. 101

always at right angles to each other. Then we know that P lies on 
the circumference of a circle on AB as diameter (see Fig. 101 in which 
P„ P2, P3 show three possible positions of the point P). The circum­
ference of this circle is the locus of P when its motion is restricted so 
as to fulfil the above condition.

If a point moves in a plane so as to satisfy some condition such 
as the above, it will describe in general a definite curve or locus. An 
equation can in general be found which relates the coordinates (x, y) 
of the point and this relation will be true only for points lying on 
the locus. Conversely, to every equation relating x and y there is, 
in general, a definite geometrical locus. Thus equation (14.9) above 
represents a straight line. Many other examples will occur to the 
reader who will already be familiar with the concept of an equation 
representing a curve from his previous work on graphs and curve 
sketching.

A few examples on the method of formation of the equation to a 
locus are appended.

Example 7i Find the equation to the locus of a point which is always equidistant from 
the two points (0,0) and (3,4).
In Fig. 102, O is the point (0,0) and A the point (3,4). P„ P3, P3 are three
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possible positions of a point P on the required locus. Let P{x, y) be any point

on the locus. Then
OP1 = x1 + y1,
PA2 = (x -  3)2 + (y -  4)2.

Since OP is always to be equal to PA,
x 2 + y2 = (x -  3)2 + (y -  4)2.

This equation reduces to
6x + 8y = 25,

which is the required equation to the locus of P. Oh geometrical grounds it is 
clear that the locus is the perpendicular bisector of the line joining the two 
points O, A and the equation 6x + 8y = 25 therefore represents this bisector.

Example 8. Find the equation to the locus of a point which is always at distance a from 
the origin.
If P is the point (x, y) and O is the origin

OP2 = x2 + y2.
Since OP = a, the required equation to the locus of P is

x2 + y2 = a2,
the equation representing a circle centre the origin and radius' a.

Example 9. Find the equation to the locus of a point which moves so that its distance 
from a line parallel to the axis Oy through the point (-1 ,0 )  is equal to its distance 
from the point (1,0).
In Fig. 103, AB is the line through C (-1,0) parallel to the axis Oy. S is the 
point (1, 0) and P the point (x, y). PM  is the distance of P from the line AB 
and is clearly equal to the sum of the abscissa of P and the length CO. Hence

PM  = x + 1.
Also, since P and S are respectively the points (x, y) and (1,0),

PS2 = (x -  l)2 + y2.
Since PS = PM, we therefore have

(x -  l)2 + y2 = (x + l)2, 
or y2 -  4x.
This is the required equation to the locus of P. The locus is shown dotted in



Fig. 103 and its exact shape could be obtained by plotting the graph ofy2 = 4x.
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Fig . 103

14.8. T he in tersections o f  tw o curves w hose equations are known
The coordinates of the points of intersection, or common points, 

of two curves will satisfy simultaneously the equations of both curves. 
The problem of finding the coordinates of the points of intersection 
of two curves therefore reduces to that of finding the solutions of a 
pair of simultaneous equations.

As an example, consider the points of intersection of the straight 
line x — 3y + 7 = 0 (equation (14.9)) with the curve

3x2 + 3 y2 — 18x — 20 y + 57 = 0.
The coordinates of the points of intersection are given by the solutions 
of the simultaneous equations

x — 3y + 7 = 0,
3x2 + 3y2 -  18x -  20y + 57 = 0.

Substituting the value x = 3y — 7, obtained from the first equation, 
in the second, the ordinates of the common points are given by

3(3y -  7)2 + 3y2 -  18(3y -  7) -  20y + 57 = 0.
This reduces to 3y2 — 20y + 33 = 0,
or, (3y — ll)(y — 3) = 0.
Hence y — 11/3 or 3, and from the relation x = 3y — 7, the corres­
ponding values of x are 4 and 2. Hence the required coordinates of 
the points of intersection are (4, 11/3) and (2, 3). If the graphs of the 
line and curve are plotted and the coordinates of the points of inter­
section are read from the diagram, they will be found to agree with 
these values.

Example 10. Find the length of the line joining the points of intersection of the straight 
line x -  y + 1 = 0 and the curve y = 2x2 — x + 1.
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From the first equation, y = x + 1 and substitution in the second gives for the 
determination of the abscissae of the points of intersection

x + 1 = 2x2 -  x + 1, 
or, 2x2 -  2x = 0.
This can be written x(x — 1) = 0,
so that x = 0 or I. The corresponding ordinates, found from y = x + 1, are 
therefore y = 1 and 2 and the points of intersection are therefore (0,1) and 
(1,2). The length of the line joining these points

=  v « 0 -  l)2 + ( 1  - 2 ) 2} =  V 2-

EXERCISES 14(c)

1. Find the equation to the locus of a point which moves so that its distance 
from the point (3,4) is always 5 units.

2. A and B are respectively the points (1,0) and (7,8). A point P moves so that 
the angle APB is a right angle. Find the equation to the locus of P.

3. The coordinates of the points A and B are (1,5) and (5,3). Find the equation 
to the perpendicular bisector of the line AB.

4. Find the equation to the locus of a point P such that the areas of the triangles 
PAB, PCD are equal, where A, B, C, D are the points (0,1), (0,7), (3,0), 
(5,0).

5. Find the coordinates o f the point of intersection of the two lines 2x — 3y =  5 
and 3x + y +  2 =  0.

6. Find the coordinates of the points of intersection and length of the common 
chord of the two curves y = 2x2 and y2 =  4x.

7. Find the coordinates of the common points of the line x — 2 =  0 and the 
curve x2 +  y2 — 4x — lOy + 4 =  0. Find also the coordinates of the middle 
point of the line joining the common points.

8. The equations to the sides AB, BC, CA of a plane triangle are respectively 
y =  2x + 1, x — 3y + 4 =  0 and y =  x. D is the mid-point of BC. By 
actually finding the coordinates of A, B, C and D verily that

AB2 + AC2 = 2(AD2 +  BD2).

EXERCISES 14(d)

1. Find the perimeter of the triangle whose vertices are, in polar coordinates, 
the points (0,0), (2,7t/6), (4, n/2).

2. Find the lengths of the sides of a triangle whose vertices are the points 
(2, 3), (4 ,-5 ) , ( - 3 , - 6).

3. Find the coordinates of a point equidistant from the three points (2,3), 
(4, 5), (6,1).

4. Show that the four points (—2,3), (0, — 1), (6, 7) and (8,3) are the angular 
points of a rectangle.

5. Find the coordinates of the centre of the circumscribed circle of the triangle 
whose vertices are the points ( - 2, 2), (1, —2), (1,3).



6. Find the radius of the circumscribed circle of the triangle the polar co­
ordinates of whose vertices are (0, 0), (r„ <?,), (r2, &2).

7. The line joining the points ( — 6, 8) and (8, —6) is divided intq four equal 
parts. Find the coordinates of each point of section.

8. A and B are respectively the points (5,6) and (7,2). If the line AB is produced 
to a point C such that BC =  \AB% find the coordinates of C.

9. By finding the coordinates of the middle points of the lines joining the 
middle points of pairs of opposite sides of a quadrilateral the coordinates 
of whose angular points are given, prove that the lines joining the middle 
points of the opposite sides of any quadrilateral bisect one another.

10. The polar coordinates of three points A, B and C are given in the following 
table:

0 =  7t/6, n/ 3, 37t/4,
r = 100, 100, 160.

Find the lengths of the sides and the area of the triangle ABC. (Q.E.)
11. Find the area of the triangle whose vertices are the points (2,1), (3, —2). 

and ( - 4 , - 1 ) .
12. Find the area of the quadrilateral 'whose vertices are the points (1,1), 

(2,3), (3,3) and (4,1).
13. A is the point (2,3) and B is the point (0, — 1). The angle BAC is a right

angle and BC is 5 units in length. Find the coordinates of the two possible 
positions of C. (L.U.)

14. A and B are the points ( — 3,2), (5 ,8) respectively. Find the equation to the
locus of a point P which moves so that PA2 — PB2 =  50. (O.C.)

15. Find the equation to the locus of a point which moves so that its distance 
from the point (a,0) is always equal to four times its distance from the 
y-axis.

16. A point moves so that the sum of the squares of its distances from the two 
fixed points (a, 0) and ( — a, 0) is constant and equal to 2c2. Show that the 
equation to its locus is

x 2 +  y2 =  c2 — a2.
17. The coordinates of two of the vertices of a plane triangle are (3,2) and 

(5,6). Find the locus of the third vertex if the area of the triangle is 12 units.
18. The coordinates of points A, B are respectively (2,5) and (5,8). P is a point

such that AP =  2BP. Find the equation to the locus of P. (O.C.)
19. Find the equation to the perpendicular bisector of the line joining the two

points (4,1) and (— 2, 3). (O.C.)
20. A variable point P moves so that the square of its distance from the origin 

is equal to the area of the triangle PAB where A and B are the points (13,0) 
and (0,1). Find the equation to the locus of P.

21. Find the lengths of the sides of the triangle formed by the three straight 
lines x — 4y =  6, 3x — 2y + 1 =  0 and x +  y =  2.

22. Find the coordinates of the middle point of the line joining the common
points of the line 2x — 3y + 8 =  0 and the curve y2 =  8x. (O.C.)
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23. Find the values of a and b if the straight lines ax +  Sy =  7 and 4x +  by = 5
intersect at the point (2, — 1). If the lines meet the x-axis at A and B, find 
the length of AB. # (O.C.)

24. Show that the coordinates of the common point of the line y =  mx +  a/m 
and the curve y2 =  4ax are (a/m2, 2a/m).

25. Show that the length of the line joining the common points of the line 
y — mx + c and the curve y2 — 4x is

- i ( l  +  m2)*]! — me)*. m
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CHAPTER 15

THE COORDINATE GEOMETRY OF THE STRAIGHT
LINE

15.1. An equation of the first degree in x  and y  represents a straight
line

The most general equation of the first degree in x  and y is
Ax + By + C =  0, (15.1)

where A, B and C are constants. Let />i(x1,) '1), P 2(x2, y2), P3(x3,y 3) 
be any three points lying on the locus represented by the equation
(15.1). Since P, lies on the locus, its coordinates (xt, y^) must satisfy 
equation (15.1) and hence

A xt + Byt + C = 0.
Similarly A x2 + By2 + C = 0,
and Ax 3 + By3 + C = 0.
Subtracting the second of these equations from the first and the third 
from the second we obtain

A(xt -  x2) + B(yl -  y2) = 0 
and A(x2 -  x3) + B(y2 -  y3) = 0.
By equating the values of the ratio A/B obtained from these two 
equations we have

y 1 -  y2 = _  A = y2 -  y3
x l — x 2 B x 2 — x 3

giving (x, -  x2)(y2 -  y3) = (x2 -  x3)(y, -  y2).
This can be rearranged as

x i (y2 -  Ta) +  ^2(^3 -  y i ) +  x i( y i  -  y 2) =  0.
From formula (14.6) we see that the area of the triangle formed by 

the three points P t, P2 and P3 is zero. Since the points P u  P2, P3 
are any three points on the locus represented by equation (15.1), the 
locus must be a straight line; for a curved line could not be such that 
the area of the triangle formed by joining any three points on it should 
be zero.

15.2. The equation to a straight line which is parallel to one of the
coordinate axes

In Fig. 104, let AB be a line parallel to the axis Oy. Let AB meet 
the axis Ox in C and let OC = c. Let P be any point on the line AB 
and let its coordinates be (x, y).

274



15] SP E C IA L  F O R M S  O F  E Q U A T I O N  TO L IN E 275

Since the abscissa of the point P is always c, we have
x = c.

This relation is true for every point on the line AB and for no other 
point. The relation x  = c is therefore the equation to the line.

Similarly the equation to a line parallel to the axis Ox and at 
distance d from it is

y = d.
The coordinate axes are special cases of these lines for which c = d = 0. 
The equation of the axis Ox is therefore y = 0 and that of the axis 
Oy is x = 0.

15.3. Special forms of the equation to a straight line 
It is often useful to be able to write the general equation

Ax + By + C = 0
of a straight line in a form in which the constants A, B, C, or rather 
the ratios of two of them to the third, are related to some geometrical 
properties of the line. Such properties might be the slope of the line 
and the coordinates of a point on it, the intercepts it makes on the 
coordinate axes and so on. Special forms of the equation to a line 
in terms of various properties possessed by it are developed in the 
paragraphs which follow.

(a) The equation to a line in terms of its slope and its intercept on the 
y-axis

Let the line have slope m and make an intercept c on the y-axis. 
Then in Fig. 105 where CP is the line, CR is parallel to the axis Ox 
and PP' is parallel to the axis Oy, tan 0 = m and the coordinates of 
the point C are (0, c).

If P be any point on the line CP with coordinates (x, y), the figure 
shows that

CR = OP' = x,
PR = PP' -  RP' = PP' — OC = y ~ c,
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Hence y = mx + c (15.2)
is the relation between the coordinates of any point (x, y) on CP and 
this is the required equation to the line in terms of its slope m and 
intercept c.

By writing the general equation Ax + By + C =  0 in the form
A C

y ~ ~  Hx ~ H’
and comparing it with (15.2) we see that the ratios A/B, C/B of the 
constants in the general equation can be expressed in terms of the 
slope m of the line and its intercept c on the y-axis by

A C-  = -  m, -  =  -  c. (15.3)

For the line of slope m passing through the origin of coordinates 
0, c = 0 and the equation to such a line is

y = mx.
(b) The equation to a line in terms of its slope and the coordinates of a 

point on it
The equation to any line of slope m is, from (15.2),

y = mx + c.
If the point whose coordinates are (xt, yt) lies on the line, these values 
of x and y will satisfy the above equation so that

yj = mxj + c.
By subtraction we have

y -  yi = m(x -  x,) (15.4)
as the equation to the line of slope m which passes through the point
Ui.yi)-
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Example 1. Find the equation to the straight line which passes through the point 
(1,2) and makes an angle of 45° with the x-axis.
Here m =  tan 45° =  1, x , =  1, y , =  2 and the required equation is ,

y -  2 = (i)(x -  l),
or, x -  y +  1 -  0.
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(c) The equation to a line passing through two given points
If one of the given points has coordinates (Xl ^ )  the equation to 

a line passing through it is (equation (15.4)) 
y -  y 1 = n^x ~  x t).

If the second given point has coordinates (x2, y2) and the above line 
passes through it, its equation will be satisfied by y = y2, x = x2. 
Hence

y2 -  y l =  m(x2 -  x,).
By division, we have

* ~ *i = y - y i

* 2  -  * t  yi -  yi (15.5)

as the required equation to the line passing through the two points
(Xi,yi),(x2,y 2).

Example 2. If  B and C are respectively the points ( — 1, — 3) and (5, — 1) find the 
equation to the line BC.
From (15.5) the required equation is

x - ( - l )  y - ( - 3)
5 — (— 1) — 1 — (— 3)’

x +  1 y +  3 
6 “  2 ’

giving x — 3y = 8.

(d) The equation to a line in terms of its intercepts on the coordinate axes 
Let the line AB (Fig. 106) make intercepts of lengths a and b on the 

coordinate axes Ox, Oy respectively. Then the line passes through

F ig. 106



P U R E  M A T H E M A T I C S278 [15

the points (a, 0) and (0, b) and formula (15.5) gives for its equation
x — a y — 0 
0 -  a ~ b - f f

This, by cross multiplication, gives
bx — ab = —ay,

or, after division by ab and a slight rearrangement,

The general equation Ax + By + C = 0 can be written

(15.6)

-  *  -  +  - > L -  =  i  
(-C /A ) + (-C /B )

and a comparison with equation (15.6) shows that ■ the line 
Ax + By + C = 0 makes intercepts on the coordinate axes of 
-C IA  and -C /B .

(e) The equation to a line in terms o f the length of the perpendicular from 
the origin and the angle this perpendicular makes with the x-axis 

In Fig. 107, let the line cut the coordinate axes in A and B, let p 
be the length of the perpendicular OP drawn from the origin O on

to AB and let OP make an angle a with the axis Ox. Then the right- 
angled triangle OAP gives

OA p sec a,
and, since the angle BOP is 90° — a, the right-angled triangle BOP 
gives

OB = p sec (90° — a) = p cosec a.
The line AB therefore makes intercepts p sec a and p cosec a on the



279

coordinate axes and, from (15.6), its equation is
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or,
p sec a p co sec a 

x cos a + y  sin a =  p. (15.7)
In working problems on the straight line, a correct choice of the 

form of the equation to the line can often reduce the algebraical work. 
We conclude this section with some illustrative examples.

Example 3. Two parallel lines AP, BQ pass through the points A(5,0) and B( — 5,0) 
respectively. Find the slope of these lines if they meet the line 4x + 3y = 25 in 
points P and Q such that the distance PQ is 5 units. (L.U.)
Let the slope of the parallel lines AP, BQ be m. Then, by (15.4), the equations 
of AP, BQ are respectively y = m(x — 5) and y = m(x + 5). The coordinates 
of P, the point of intersection of AP and the line 4x + 3y = 25, are given by 
the values of x and y which satisfy the simultaneous equations

y = m(x — 5),
4x + 3y = 25.

Substitution of y from the first equation in the second gives 
4x + 3m(x -  5) = 25

25 + 15m
glving X = T T lm -'
Since y = m(x — 5) the ordinate of the point P is

The coordinates of Q are similarly found from the solution of the simultaneous 
equations y = m(x + 5), 4x + 3y = 25 to be

and the coordinates of P are therefore

(
The distance PQ is therefore given by

/ 25 + 15m _  25 -  15m 5m _  45m V
\  4 + 3m 4 + 3 m 4 + 3m 4 + 3 m)

2500m2
(4 + 3m)2'

Since PQ = 5, we therefore have, for the determination of the slope m,
2500m2 

(4 + 3m)2
giving
or,

91m2 -  24m -  16 =  0, 
(7m -  4)(13m + 4) = 0.

Hence the required values of the slope are 4/7 or —4/13.
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Example 4. I f  O is the origin, A the point (8,0) and B the point (0,6), find the coordinates 
of the points P and Q, where the line 3x + 2y = c meets OA and AB respectively. 
I f  the area of the triangle OPQ is one-half that of the triangle OAB,find the value 
ofc. * (L.U.)
The line OA is the x-axis and its equation is y = 0. The coordinates of P are 
therefore given by the solution of the simultaneous equations y = 0 ,3x + 2y = c. 
Hence P is the point (c/3,0).
The line AB makes intercepts of 8 and 6 units on the coordinate axes and, 
from (15.6), its equation is

= 1,

or 3x + 4y = 24.
The coordinates of Q are given by the solution of the simultaneous equations 
3x + 4y = 24 and 3x + 2y = c. These are easily found to be

x =

Since, from (14.7), the area of the triangle formed by the points (0,0), (x,,y,), 
{x2, y2) is i(x,y2 — x2y,X the area of the triangle OPQ is given by

The area of the triangle OAB is that of a right-angled triangle of base 8 and 
height 6 and hence is 24 units. If A OPQ = i  A OAB,

or, c1 — 24c + 144 = 0,
giving (c — 12)2 = 0 or c = 12.

Example 5. Find the length of the perpendicular from the origin on to the straight 
line passing through the two points (6,4) and (9,8).
By (15.5) the line through the two given points is 

x — 6 y — 4 
9 - 6  = 8 - 4 ’

or, 4x — 3y = 12.
This can be compared with the form x cos a + y sin a = p by dividing through 
by V(42 + 32) or 5, for 4/5 and -3 /5  can be taken as the cosine and sine 
respectively of the angle tan ' 1 (— 3/4). Thus if a = tan ' 1 (— 3/4) we can write 
the equation of the line as

x cos a + y sin a = 12/5,
showing that the required length of the perpendicular from the origin is 12/5. 

EXERCISES 15(a)

1. Find the equation to the straight line which:—
(i) cuts off an intercept of 3 units from the negative y-axis and makes an 

angle of 120° with the x-axis,
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(ii) makes intercepts of — 5 and 3 respectively on the axes of x and y,
(iii) passes through the two points (—2,3) and (4, —6).

2. Find the slope of the straight line cutting off intercepts of —3 and 4 from 
the axes of x and y respectively.

3. Find (i) the intercepts on the axes of coordinates, (ii) the slope and (iii) the 
perpendicular distance from the origin, of the line 5x — 12y =  65.

4. Find the coordinates of the point of intersection P of the two straight lines 
4x + 3y =  7, 3x — 4y =  — 1. Find also the equation to the line joining P 
to the point (— 2,3).

5. Find the distance between the two parallel straight lines
2x +  y =  4 and 4x + 2y =  2.

6. Find the equation to the straight line passing through the point of inter­
section of the two lines 2x + 3y =  4 and 3x — 2y =  5 and also through 
the point of intersection of 3x — 4y =  7 and 2x + 5y = 2.

1. Find the equation to a straight line which passes through the point (3,5) 
and makes equal intercepts on the coordinate axes.

8. Find the equation to a straight line .which passes through the point (4,4) 
and forms with the coordinate axes in the fourth quadrant a triangle whose 
area is 4 units.

9. A straight line AB cuts the coordinate axes at A and B and OA.OB =  c1 
where O is the origin. If AB is parallel to the line x cos a +  y sin a — p, 
find its equation.

10. Find the condition that the straight line (x/a) +  (y/b) = 1 should lie at unit 
distance from the origin.

11. Find the equations to the diagonals of the parallelogram whose sides have 
the equations:—

3x -)- y =  1, 3y =  5x +  3,
3x + y =  15, 3 y = 5 x — 11. (L.U.)

12. The straight line y =  m(x — 2a) through a fixed point (2a, 0) meets the
lines x =  a and y =  b in P and Q respectively. If O is the origin and A the 
point (a, 0), find the equations to the lines OP, AQ and the coordinates of 
their point of intersection R. If m varies, show that the locus of the point 
R is the straight line 2bx — ay = ab. (L.U.)

15.4. The angle between two straight lines
In Fig. 108, let the equations to the two straight lines AB, CD, 

intersecting at P be respectively y =  m,x + c, and y = m2x + c2. 
Then if AB, CD make angles 0lt 02 with the axis Ox as shown,

tan = m{, tan 02 = m2. (15.8)

Since the external angle PBO of the triangle PDB is equal to the sum 
of the interior angles PDB and BPD, the angle APC between the lines
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angle A PC = angle BPD
= angle PBO — angle PDB
= 0t -  e2.

(15

Hence
tan APC = tan (Ol — 02)

_  tan 01 -  tan 02
1 + tan dl tan d2 
m, — m2
1 + mim2

when use is made of the relations (15.8). The angle between the two 
lines y = mlx + cl, y = m2x + c2 is therefore

tan i ~ ™2 \
\1 + mtm2) ' (15.9)

It should be noted that if the quantity in brackets in (15.9) is positive, 
it is the tangent of the acute angle between the lines (the angle APC 
of Fig. 108); if this quantity is negative, it is the tangent of the obtuse 
angle (the angle DP A).

If we require the angle between the two straight lines
A^x + B ly -f- Cj = 0,
A2x + B2y + C2 — 0,

their respective slopes m1? m2 are, from (15.3), given by

;n, = - A i
771, =  -s r

Substitution in (15.9) and a slight reduction shows that the angle 
between the two lines is

tan i /  A2B i A i B2 N 
\ A jA2 + B iB2) (15.10)
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Finally, if the two lines are given in the form
xcosa + ysina = p t, 
x cos p + y sin /? = p2, 

we know that the perpendiculars from the origin on the two lines 
make angles a and /? respectively with the x-axis. The angle between 
the lines is clearly equal to the angle (or its supplement) between the 
perpendiculars, so that the required angle is, in this case, either fi — <x 
or n — (P — a).

15] A N G L E  B E T W E E N  TW O LINES

Example 6. Find the angles between the following pairs of lines:—
(i) y = 2.x + 5 and 3x + y = 7,

(ii) 3x — y + 7 = 0 and x — 3}' + 8 = 0.
(i) The slope m, of the first line is 2 and by writing the equation to second line in 
the form y = -  3x + 7 we see that its slope m2 = — 3.
Hence, from (15.9) the angle between the lines is given by

tan

- tan

J 2  —( —3)1
l l  + 2(-3)J

1 ( - D  = 135°.
(ii) Comparing the given lines with A ,x  + B,y + C, = 0,
A2x + B2y + C2 = 0, A, = 3, B, = -1 , A2 = 1, B2 = -3 , so that by (15.10) 
the required angle is

tan

= tan"

,/(!)(— 1)
U3)(1) + (
( 4

a

(3M-3)1
— I) (— 3) J

= 53“ 8'.

Example 7. Find the equations to the lines through the point (2, 3) which make angles 
of 45 with the line x -  2y = 1. (L.U.)
In Fig. 109, P is the point (2, 3) and AB the line ,x — 2y = 1. This can be written 
y = ).x -  ] and its slope is therefore 1/2.

It is clear from the diagram that there are two possible lines PM, PN which 
make angles of 45 with AB, and the tangents of these angles are respectively
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tan 45° = 1 and tan 135° = — 1. Hence, if m is the slope of PM, (15.9) gives
■ m -  (1/2)

1 + (m/2)’
or m = 3. Similarly if m' is the slope of PN,

. ~ (1/2)
1 + (m'/2)’

or m' = —1/3.
The required lines are therefore those which pass through the point (2,3) and 
have slopes 3 and —1/3. By (15.4) the equations are

y -  3 = 3(x — 2) or 3x — y = 3, 
and y — 3 = —̂ (x — 2) or x + 3y = 11.

15.5. Conditions for parallelism and perpendicularity
If the two lines y = m2x + clf y = m2x + c2 are parallel, they have 

the same slope and hence
m, = m2. (15.11)

If the lines are given by A tx  + Bty + Ct = 0, A 2x + B2y + C2 = 0, 
their slopes are —A J B 1 and —A2/B2 and in this case the condition 
for parallelism becomes

i i  = (15 12)B2 y ’
If the two straight lines y = m2x + clt y = m2x  + c2 are perpen­

dicular, the angle between them is 90°. Since the tangent of an angle 
of 90° is infinite, formula (15.9) shows that 1 + mlm2 = 0. Hence the 
condition for perpendicularity is

= — 1, (15.13)
i.e., the product of the slopes of two perpendicular straight lines is — 1. 
This is a most important result—it can be expressed in a slightly 
different way by saying that if the slope of a given line is m, the slope 
of a line perpendicular to it is — 1 /m.

In a similar way, by using formula (15.10) we can deduce that the 
condition for perpendicularity of the two lines A tx + B1y + Cl = 0, 
A2x + B2y + C2 = 0 is

A xA2 + BlB2 = 0. (15.14)

Example 8. Find the equation to the straight line which passes through the point 
( -  2,3) and is parallel to the line 7x — y — 6 = 0.
The equation to the given line can be written y = 7x — 6 so that its slope is 7. 
The equation to the required line will therefore be that to a line with slope 7 
which passes through the point (— 2,3). This is

y -  3 = 7(x + 2) or 7x -  y + 17 = 0.



Example 9. The coordinates of three points are A(l, 2), B( — 1, —3), C(5, —1). Find 
the equation to BC and the equation to the line through A perpendicular to BC.

(L.U.)
The equation to BC is '

x + 1 y  + 3 
5 + 1 “  - 1  + 3’

i.e., x -  3y = 8.
The slope of this line is 1/3, so that the slope of a line perpendicular to it is 
— 3. Thus we require the equation to a line of slope — 3 which passes through 
the point (1,2). This is

y -  2 = — 3(x -  1) or 3x + y = 5.

EXERCISES 15(h)

1. At what angle are the lines whose equations are ax +  by +  c =  0 and
(a — b)x +  (a +  b)y +  d =  0 inclined to each other? (L.U.)

2. The vertices of a triangle are the points A( 1,4), B(5,1), C(— 1, — 1). Find
the equations to its sides and the values of tan B, tan C. (L U.)

3. Find the equations to the straight lines passing through the point (3, — 2) 
and making angles of 60° with the line ^/3x +  y  =  1.

4. The base of an isosceles triangle lies along the line 3x +  2y =  2 and one 
of the equal sides lies along y =  2x. Find the equation to the other equal 
side if it too passes through the origin.

5. Write down the equation to the straight line which:
(i) is parallel to the y-axis and passes through the point (2,3),

(ii) is parallel to the line 4x +  3y +  8 =  0 and passes through the point
(2 ,-3 ) ,

(iii) is perpendicular to the line 4x +  3y +  8 =  0 and passes through the 
origin.

6. A triangle ABC is formed by the lines 3x — 4y +  3 =  0 (AB), x +  y — 3 =  0
(BC) and 4x — 3y — 5 =  0 (AC). Find the equation to the straight line 
through C perpendicular to AB. (L-U.)

7. Find the equation to the join of the points (1,2) and (3,4). Find also the
coordinates of the middle point of the join and hence write down the 
equation to the perpendicular bisector of the join. (L.U.)

8. P, Q, R are three points with coordinates (1,0), (2, —4), ( - 5 , - 2 )  respec­
tively. Determine

(i) the equation to the line through P perpendicular to QR,
(ii) the equation to the line through Q perpendicular to PR,

(iii) the coordinates of the point of intersection of these lines. (L.U.)
9. Find the coordinates of the point of intersection of the perpendiculars from 

the vertices to the opposite sides of a triangle whose sides have equations 
x — 3y =  0 ,4x — y = 0 and x +  y =  20.

10. Prove that the straight line joining any two of the four points 
(am^a/mi), (am2,a/m2), (flm3,a/m3), (amt,a/mA) 

is perpendicular to the straight line joining the other two if m,m2m3m̂  =  — 1.
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15.6. The perpendicular distance of a point from a straight line
In Fig. 110, AB is the straight line Ax + By + C = 0 meeting the 

coordinate axes in A and B. P is the point (h, k), PQ is perpendicular 
to AB and we require to find a formula for the distance PQ = p.

Two cases, as shown in Figs, (a) and (b), arise according as P is or is 
not on the same side of the line AB as the origin. PN, PM are drawn 
perpendicular to the axes Ox, Oy respectively.

The equation to the line AB can be written in the form

----------1------—  = 1-C /A  -  CfB ’
showing that it makes intercepts on the coordinate axes given by

OA = —C/A, OB = —C/B.
From the right-angled triangle OAB we have 

AB = V(CM2 + OB2) = {{-C/A)2 + (— C/B)2}
= CyJ(A2 + B2)/AB.

Since PM = h, PN = k, PQ = p,

area

area

area

area

A OAP = ¿OA. PN = 

A BOP = \OB .PM  = 

A BP A = \AB.PQ  = 

A OAB = ¿OA. OB =

_  Ck 
2A'

_  Ch 
2B’

CpJ(A2 + B2) 
2AB 

C2 
2 AB'

From Fig. 110(a), 
area A OAP + area A BOP + area A BP A — area A OAB, 

Ck Ch CpJ(A2 + B2) C2 
2A 2B + 2AB ~ 2AB’so that
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Solving for p we find
Ah + Bk + C 

P= J (A 2 + B2) '
From Fig. 110 (b), we should haye 

area A OAP + area A BOP -  area A area BP A = area A CMB.
This would lead in a similar way to

Ah + Bk + C 
p ~  ~  JtA*  + b !> '

To sum up, the perpendicular distance of the point P(h, k) from the 
straight line Ax + By + C =  0 is given by

, Ah + Bk + C 
±  VC42 + B V

(15.15)

It is usual to quote only the magnitude of the distance irrespective of 
sign: if the positive root of (A2 + B2) is always taken, a difference 
in sign in the distances of two points calculated from (15.15) without 
the alternative signs would indicate that the two points are on opposite 
sides of the given line. The formula is best remembered by observing 
that the numerator is obtained by writing the coordinates of the given 
point in the left-hand side of the equation to the line and the denomin­
ator is the square root of the sum of the squares of the coefficients of 
x and y in the equation.

Example 10. Find the distance of the points (2, — 1) and (1,1 )from the line 3x + 4y = 6. 
Writing the line in the standard form 3x + 4y — 6 = 0, the distance of the 
point (2, -  1) is given by

3(2) + 4(—1) — 6 4
V W  + W2} 5'

The distance of the point (1,1) from the line is
3 ( 1 )+ 4 ( 1 ) - 6  1
V((3)2 + (4)2} 5'

Thus the required distances would usually be quoted as 4/5 and 1/5 respectively: 
the calculated results show that the two points are on opposite sides of the 
line as can be seen from a plot of the given line and points.

15.7. The equations to the bisectors of the angles between two given 
lines

In Fig. I l l  the given lines
A^x + Bxy + Cj = 0, A2x + B2y + C2 = 0 

are shown as AB and CD, the point of intersection being R. If P is 
a point (x, y) on the bisector of the angle ARC, P will be equidistant 
from both lines and lie on opposite sides of the two lines from the
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origin. Hence from (15.15), the coordinates (x, y) of P will satisfy 
A xx  + B^y + Cj _ A2x +  B2y + C2 

V ( V  + B 2) ~ ~  J (A 22 + B22) • *

If Q is the point (x, y) on the bisector of the angle ARD, Q will be 
equidistant from both lines and will lie on the same sides of the lines 
as the origin. Hence the coordinates (x, y) of Q will satisfy

A ,x  + B ,y  +  C, A2x + B2y + C2 
v W  + B 2) ~ J U S  + B 2) •

The equations to the bisectors of the angles between the two lines 
j4jX -f- B1y + C1 = 0, A2x + B2y + C2 = 0 can therefore be written

A 2x +  B ty +  C x
J { A 2 + B 2) = + A2x +  B2y + C2

2 + B 2)
(15.16)

Example 11. Write down the equations to the bisectors of the angles between the 
lines 3x + 4y = 12 and 4x — 3y — 6.
Writing the equations to the lines in the standard forms

3x + 4y — 12 = 0 and 4x — 3y — 6 = 0,
the required equations to the bisectors are

3x + 4y — 12 , 4x — 3y — 6
V«3)2 + (4)2} = *  V«4)2 + ( -3 )2>

These reduce to x — 7y + 6 = 0 and 7x + y — 18 = 0.

EXERCISES 15(c)

1. (i) Find the distance of the point (2,3) from the line 5x — 12y + 39 =  0. 
(ii) Find the distance of the point (2,1) from the line 3x +  2y =  8 and

explain the result.
2. Find the distance of the point (h, k) from the line x cos a +  y sin a =  p.

(O.C.)
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3. Show that the point (1,1) is equidistant from the lines 3x +  4y  =  12,
5x -  12y  +  20 =  0, 4x -  3y =  6.

By drawing a rough figure, decide whether the point is the ceijtre of the 
inscribed or one of the escribed circles of the triangle formed by the above 
lines. (O.C.)

4. Find the equation to the straight line which lies mid-way between the point
(2, — 1) and the line 3x — 2 y  +  5 =  0. (O.C.)

5. Find the equation to the locus of a point which moves so that its perpendicular 
distance from the line 4x — 3y =  7 is twice its perpendicular distance from 
the line 5x + 12y =  8.

6. Find the equations to the bisectors of the angles between the lines
4x + 3y =  7 and 24x +  7y  =  31.

7. Find the equations to the six bisectors of the angles between the lines
x +  7y =  3, 17x — 7y +  3 =  0, x — y +  1 = 0  and show that three of them 
pass through the point (1,1). (O.C.)

8. Q is the foot of the perpendicular from the point P(h, k) on to a line RS 
whose equation is 4 x  +  B y  +  C =  0. Find the equations to the bisectors 
of the angles between the lines PQ and RS.

15.8. The equation to a straight line passing through the point of 
intersection of two given straight lines

Suppose the two given straight lines are represented by the equa­
tions A tx + Bly + Ct = 0, A 2x -I- B2y + C2 = 0 and let P be the 
point of intersection of these two lines. Consider the equation

AjX + B,y + C 1 + X(A2x + B2y + C2) = 0, (15.17)
where X  is an arbitrary constant. The equation (15.17) represents 
some straight line for it is of the first degree in x and y. Further, the 
equation is satisfied by the coordinates of the common point of the 
two given lines since these coordinates simultaneously satisfy the 
equations ^ x  + B ^  + C ^ O  and A 2x + B2y + C2 = 0. Hence 
equation (15.17) represents a straight line passing through the point 
of intersection of the given lines.

The method used above of deducing the equation to a line passing 
through the common point of two other lines is an example of a device 
of great use in coordinate geometry and should be studied with care. 
That there is an infinity of lines passing through the common point 
will be clear on geometrical grounds: it is also apparent from equation
(15.17) in which the constant X is quite arbitrary.

It will generally be required to find the equation to a line which, 
besides passing through the point of intersection of two given lines, 
satisfies a second condition such as passing through a second given 
point or having a given slope. This further condition will enable us 
to fix the value of X  and to pick out from the infinity of lines that one 
which fulfils all the required conditions. Some illustrative examples 
follow.
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Example 12. Find the equation to the line which passes through the point (3,2) and 
the point of intersection of the lines 2x + 3y — 1 = 0 and 3x — Ay — 6 = 0. 
Any line through the point of intersection of the given lines is 

lx  + 3y — 1 + 2(3x -  4y -  6) = 0.
If this line passes through the point (3,2),

2(3) + 3(2) -  1 + 2(3(3) -  4(2) -  6} = 0, 
or, 52 = 11. Writing 2 = 11/5 in the equation we have

2x + 3y — 1 + (ll/5)(3x -  4y -  6) = 0, 
or, 43x — 29y = 71 as the required result.

Example 13. Find the equation to the tine through the intersection of the lines 
3x — 2y + 14 = 0, x + y = 6 and perpendicular to the line 5x — 6y = 0.
Writing the equation to the second given line in the standard form x + y -  6 = 0, 
the equation to any line through the intersection of the two given lines is

3x — 2y + 14 + 2(x + y — 6) = 0
or, (3 + 2)x -  (2 -  2)y + 14 -  62 = 0.
The slope of this line is (3 + 2)/(2 — 2) and the slope of the line 5x — 6y = 0 is 
5/6. Hence for the lines to be perpendicular

leading to 2 = 27. Inserting this value of 2, the required equation is 
(3 + 27)x -  (2 -  27)y + 14 -  6(27) = 0, 

or, 30x + 25y = 148.

15.9. The equation to a pair of straight lines
Consider the equation

3x2 -  4xy  + y2 = 0. (15.18)
This can be written

(x -  y)(3x -  y) = 0,
and the equation is satisfied by the coordinates of all points which 
make either x — y = 0 or 3x — y  = 0. In other words the equation 
is satisfied by the coordinates of points lying on either of the straight 
lines y  = x or y  = 3x. Hence equation (15.18) represents two straight 
lines which pass through the origin and are inclined at angles of 45° 
and tan - 1 3 respectively to the x-axis.

Consider now the more general equation
ax2 + 2 hxy + by2 = 0. (15.19)

Multiplying it by a, it can be written in the form
(a2x2 + lahxy + h2y2) — (h2 — ab)y2 = 0 

or, {(ax + by) + y^jih2 — ab)} {(ax + hy) -  y^(h2 -  ab)} = 0.
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(15.20)

Thus the equation represents the two straight lines 
ax + {h + yj(h2 — ab)}y = 0,' 
ax + {h — sj(h2 -  ab)}y = 0,.

each of which passes through the origin: for equation (15.19) is satis­
fied by the coordinates of all the points which lie on the first of the 
lines given by (15.20) and also by those of all the points which lie on 
the second line.

It should be noted that the two lines given by (15.20) are real and 
different if h2 > ab, they are real and coincident if h2 — ab and they 
are imaginary if h2 < ab.

The angle between the two lines represented by equation (15.19) 
can be found as follows. Suppose the separate equations of the two 
lines are y = m,x and y = m2x. Then equation (15.19) must be 
equivalent to

(y -  mjx)(y -  m2x) = 0 
or, mxm2x 2 — (m  ̂ + m2)xy + y2 = 0.
Comparing this with equation (15.19),

m.m1™2 m, + m2 1
Va 2h

so that m1m2 = a/b, m1 + m2 = — 2h/b.
By formula (15.9), the angle between the two lines is given by

-  rh2tan -i ( mi ~  m2 \  
\1 + m .m j

Since (m, — m2)2 = (m, + m2)2 — 4mim2
= (4h2/b2) -  (4a/b) 
— 4(h2 — ab)/b2,

the required angle is

tan

or,

l 1 + (a/b)
ta n - J - 2# 2 - ^

a b )/b j

, . , • (15.21){ a + b J
Since the tangent of an angle of 90° is infinite, formula (15.21) shows 

that the two straight lines given by the equation
ax2 + 2hxy + by2 = 0

are perpendicular if a + b = 0. (15.22)
The general equation of the second degree

ax2 + 2hxy + by2 + 2gx -I- 2fy + c = 0 (15.23)
which contains terms in x, y and a constant as well as the second degree
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terms of the left-hand side of equation (15.19) can, in certain circum­
stances, represent two straight lines. It will do so if the expression 
on the left can be broken into two factors, each of the fijst degree. 
It is, however, rather beyond the scope of the present book to obtain 
the necessary relation between the constants a, b, c , f g , h  in equation 
(15.23) for this equation to represent two straight lines and we restrict 
the discussion to pairs of lines which pass through the origin.

Example 14. Calculate the acute angle between the pair of straight lines represented 
by the equation 3x1 2 3 4 5 6 7 8 -  10xy + ly 2 = 0. (L.U.)
Working from first principles, the equation can be written in the form

(x -  y)(3x -  ly) = 0,
showing that the equation represents two lines through the origin of slopes 1 
and 3/7. By (15.9), the angle between them is

Alternatively, since here a = 3, 2h = — 10, b = 7, formula (15.21) gives the 
required angle as

1. Two lines pass through the point of intersection of the lines 2x +  4y = 1, 
x + 3y = 2. The first line passes through the point (2,1) and the second is 
parallel to the line x — 2y + 3 =  0. Find the equations to the two lines.

2. Find the equations to the two lines which pass through the point of inter­
section of the lines x + y = 2, 2x — 3y +  1 =  0 and are at unit distance 
from the origin.

3. The sides AB, AC of a triangle are the lines y  =  0 and 3x +  y =  3. B is the 
point (5,0) and C the point (3, —6). Find
(i) the equation to the line joining A to the middle point of BC,

(ii) the equation to the line through A perpendicular to BC.
4. Find the equation to a line which cuts off equal intercepts from the coordinate 

axes and passes through the point of intersection of the lines 5x +  y = 1 
and 3x — 4y +  1 =  0.

5. Find the equation to a straight line passing through the point of intersection 
of the lines 2x — y =  8, 4x +  y  =  10 and also through the point of inter­
section of 2x — 3y =  4, 4x +  y =  3.

6. Find the angle between the two straight lines 2x2 — Ix y  +  3y 2 =  0.
7. Show that the two straight lines x 2 — 2xv  sec 0 + y 2 = Q make an angle 6 

with one another.
8. What two straight lines are represented by the equation

as before.

EXERCISES 15(d)

4x2 — 24xy + l l y 2 =  0?
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Show that the equation to the bisectors of the angles between these two 
lines can be written 12x2 — I x y  — 12y2 =  0.

15.10. The determination of linear laws from experimental data'
Relations between two varying quantities, such as the pressure and 

temperature of a given mass of air, can be shown graphically by plotting 
the results of experiments on squared paper. It is often possible to 
deduce formulae connecting the variable quantities from such results 
and formulae so derived are said to be empirical, this term meaning 
that the formulae depend on experiment.

If the points plotted from the experimental results lie approximately 
along a straight line, it is known from § 15.1 that the relation between 
the variables involved (say x  and y) will be linear, that is, of the first 
degree. In such cases the relation can be assumed to be of the form

y = mx + c (15.24)
where m and c are constants. Further, the values of m and c can be 
deduced from the slope of the line and the length of the intercept 
made by it on the y-axis, or by substituting in equation (15.24) the 
coordinates (as read off from the graph) of two points on the line. 
The details are shown in Example 15 below.
Example 15. In a certain experiment carried out at constant pressure, the volumes

v cm3 of gas at temperatures 9°C are given by the following table:—

# 10 21 33 50 65

v 103-7 107-7 112-0 118-4 123 9

Show that the approximate relation between v and 6 is v = 100 + 0-367# and 
find the volume of gas when the temperature is 30°C.
The graph (Fig. 112) shows a plot of the given values of temperature and 
volume. This plot should be on as large a scale as possible and, if such a graph 
is looked at carefully, it will be found that the points do not lie exactly on a 
straight line but that it is possible to draw a line from which none of the points 
deviates greatly. In drawing the line, care should be taken to ensure that the 
plotted points are evenly distributed about it, some being above and some 
below. This can be done conveniently by moving a stretched thread or a 
transparent scale with a fine line etched on its lower surface and taking care 
that the points do not deviate systematically from the thread or line. In this 
example the points do lie very close to a straight line and we can assume that 
v and 0 obey a law of the form v = mO + c. Reading from the graph, it can be 
seen that a rise in temperature of 70°C is accompanied by a rise of 
125-7 — 100 = 25-7 cm3 in volume; the slope of the line is therefore given by 
m = 25-7/70 = 0-367. It can also be seen that the intercept made by the line 
on the e-axis is 100 so that c =  100 and the relation between v and 9 is 
e = 0-3679 + 100. Alternatively, reading off the coordinates of two points A 
and B (chosen to be well spaced to minimise errors in reading from the graph) 
we find that A is the point (0,100) and B is (70,125-7). Substituting these values 
in the equation v = m9 + c, we have

100 = c, 125-7 = 70# + c



294 P U R E  M A T H E M A T I C S [15
and this pair of equations gives m = 0-367, c =  100. Finally, substituting 6 =  30 
in the relation found

v =  100 + 0-367 x 30 = 111 cm3.

It is worth noticing that if a law of the form y — mx" +  c (where 
the value of the i*tdex n is known) is thought to be true, this can be 
checked by seeing if a plot of y against x" yields a straight line. If it 
does, the values of the constants m and c can be deduced as before. 
An example in which the value of n is not known is given in Example 
17.

Example 16. Measurements of the coefficient of friction p of steel tyres on a rail at 
speeds of V gave the following results:—

V 30 38 49 55 60

ft 0-066 0-051 0-041 0-036 0-033

Show that these results follow approximately a law of the form V =  (m//r) + c 
and find the values of m and c.
We are here seeking to establish a linear relation between V and the reciprocal 
of p. so we first form the following table of 1 fii and the corresponding values 
of V

W 15 0 19-6 24-4 27-8 300

V 30 38 49 55 60
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and these values are plotted in Fig. 113.

Since the graph is a straight line, the law relating V and l/p is of the form 
V = (m/n) + c where m is the slope of the line and c is the intercept made on 
the F-axis. The latter is clearly zero and the former is 60/30 = 2.

Measurements of two related sets of physical quantities frequently 
obey a “power” law of the form y = Cx" where the multiplier C and 
the index n are constants. This relation can be written

log y = log C + n log x
and the linear relationship between log y and log x  shows that the graph 
of these quantities is a straight line of slope n which makes an intercept 
of length log C on the axis of log y. As it is possible, by using a stretched 
string or a transparent scale, to decide if a set of points do or do not 
lie along a straight line, the graph of log y against log x will show if 
the given values of the measurements x and y do or do not obey a power 
law of the form y = Cx". If they do, the values of n and log C are 
easily deduced from the graph and an example is given below.
Example 17. The following table shows some values of 6 obtained experimentally for 

the given values oft —

t 5 9 16 20 25

0 0-45 060 0-80 0-89 1 00

By plotting log 0 against log t show that, allowing for small errors of observation, 
there is probably a relation between 0 and t of the form 6 = C f  and find 
approximate values for C and n. (L.U.)
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Tabulating log 8 against log t from the data

logt 0-699 0-954 1-204 1-301 1-398

log 8 -0-347 -0-222 -0-097 -0-051 0-000

it should be remembered that the logarithms of numbers less than unity are 
negative so that

log 0-45 = I 653 = -1  + 0-653 = -0-347, etc., 
and a graph of these quantities is shown in Fig. 114. This is a straight line so

that log 8 = log C + n log t and 8 = Ct". Substituting the coordinates 
(1-398,0), (0-6, — 0-399) of the points A and B we have

0 = log C + l-398n, -0-399 = log C + 0-6n.

These equations give n = 0-5 and logC = —0-699 = 1-301 so that n — \ 
and C = 0-2.
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EXERCISES 15(e)

1. In a certain experiment, the recorded values of the load P  lifted by an 
effort E  were given b y :—  •

p 100 200 300 400 500

E 5-60 8-65 11 85 14-88 1800

By plotting these results, show that E  and P  are approximately related by 
an equation of the form E  =  mP +  c and find the values of the constants 
m and c.

2. Plot the points whose coordinates are given b y :—

X 0 1 2 3 4 5 6

y -1 0 0 -7-7 -5-4 - 3  1 -0-8 15 3-8

Show that the relation between x and y is of the form y =  mx +  c and 
deduce values for the constants m and c.

3. Values o f the velocity v (metres per second) of a particle at time t seconds 
are given below :—

t 0-1 2-2 7-1 10-4 12 3

V 100-3 106-6 121-2 131-3 1369

Show that the law relating v and t is of the form v = u + at and determine 
values for the constants a and u. What was the initial velocity o f the particle? 

4. Corresponding values o f V and r are given b y :—

r 0-0 1-0 1-6 2-5 3-2

V -2-00 - 1  50 -0-72 1-13 3-12

Show that the relation between V and r is of the form V + a = pr2 and 
find values for the constants a and /?.

5. Numerical values of two variables 0 and t ape given b y :—

t 0-5 0-8 10 1-4 2-0

0 4-08 4-21 4-33 4-65 5-33

By plotting 0 against t2, show that 0 and t are approximately related by 
6 — c = at1 and find numerical values of a and c.

6. It is thought that two variables p and v are related by the formula
c

p = 7 ^ b
where b and c are constants. Show that the truth o f this can be decided by 
testing if either the graph of v against \/p or that o f pv against p is a straight 
line.



P U R E  M A T H E M A T I C S298 [15

7. The following table shows the values of a quantity p obtained experimentally 
for the given values of a quantity v :—

V 2 3 4 5

p' 3-54 1-92 1-25 0-89

Show that the relation between p and v is of the type p =  Cif where C 
and n are constants; determine approximate values for C and n.

8. The coefficient of friction p in a bearing running at a speed of V metres per 
second is given by a law of the form p = CV.  Determine the constants 
C and n by using the mean results of each of two experiments in which 
corresponding measurements were:—

Experiment 1 Experiment 2

V

P

105 I 157 
0-0018 0-0021

419
0-0036

471
0-0040

9. The luminosity /  of an electric lamp is thought to be related to the voltage 
V of the current in it by the law 1 =  kV". Test if the following measurements 
obey this law and, if they do, find k and n.

V 20 35 50 70 100 120

I 0-08 0-75 3-13 12-01 50-00 103-70

10. The values of two variables y and z are given in terms of a third variable 
x by the table

X i 4
3

5
2 6

y 1061 1-732 2-371 3-673

X 1-250 1-667 2-250 4-000

Verify that relations of the form y =  Ax" and z = mx + c apply and find 
the values of A, n, m and c. Use your results to find two values of x for 
which y =  z.

EXERCISES 15(f)

1. Find the equation to a straight line which passes through the point (3,3) 
and forms with the coordinate axes a triangle in the first quadrant of area 
18 units.

2. A(4,7) and B( — 2, — 1) are two vertices of an isosceles triangle ABC having 
a right angle at B. Find the length and equation of AB: hence write down 
the equation to BC and find the coordinates of the two positions of C.

(L.U.)
3. Find the equation to the line joining the two points (1, —5/3), (5/4, —2)
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and the equations to the two lines parallel to it and distant 2 units from it.
(L.U.)

4. Find the equations to the two straight lines which are parallel Jo the line
4x +  3y +  1 =  0 and at a distance 2 from it, and also the areas of the 
triangles which these two lines respectively make with the coordinate 
axes. (Q.E.)

5. The vertices of a triangle are >4(3,3), B( — 1, —1) and C(— 1, 5). Find the
angle made by the median from B with the side AC. (L.U.)

6. Find the equation to a line at right angles to the line (x/a) — (y/b) =  1 
through the point where it meets the x-axis.

7. Find the coordinates of the foot of the perpendicular from the point (1,0) 
upon the line y = mx + (1/m).

8. Write down the equation to the straight line passing through the two 
points (3,2), (6,6).

Find where this line is cut by each of the two straight lines drawn through 
the point (1,4) with slopes of 0-5 and — 1. What is the area of the triangle 
enclosed by these three straight lines? (Q-E.)

9. ABC is an isosceles triangle in which AB = AC ; the equations to AB and
BC are respectively 2x — y =  1 and x — 2y + 1 =  0. Prove that AC is 
parallel to the line 2x +  l ly  =  0. (O.C.)

10. A and B are the points (2,0) and (4,0) respectively: P is a variable point
whose ordinate is always positive, such that the angle APB is 45°. Show 
that P lies on the curve x 2 +  y2 — 6x — 2y +  8 =  0. (O.C.)

11. Find the equations to two straight lines which make angles of 45° with the 
straight line 4x +  3y =  21 and which pass through the point (1, —3).

(L.U.)
12. Find the coordinates of the foot of the perpendicular from the point (5,7)

on the line which joins the points (6, — 1), (1,6). (O.C.)
13. Find the equations to the lines through the point (2,0) perpendicular to

the lines x -  3y +  8 =  0, x — 4y +  15 =  0. Find also the equation to the 
line joining the feet of these perpendiculars. (O.C.)

14. Find the equations to the perpendiculars from the origin to the lines
x + y =  4, y — 2x =  5. Find also the coordinates of the comers of the 
quadrilateral so formed and its area. (O.C.)

15. The line through P ( l , l l )  perpendicular to the line joining 4(2,3) and
B ( - 4 ,6) meets AB at Q. Find the equations to AB and PQ. PQ is produced 
to R so that PQ = QR. Find the coordinates of R and prove that the area 
of the quadrilateral APBR is 45. (L.U.)

16. A triangle is formed by the three straight lines

y = mi* +  rr> y =  m2x +  A  y = m3x +  A
YYl j  7T12  W I 3

Prove that its orthocentre always lies on the line x +  a — 0.
17. Find the equation to the straight line which is such that the 

the angle between it and the straight line 2x + 5y =  18.

-  (L.U.)
x-axis bisects 

(O.C.)
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18. Prove that all points on the line l lx  — 3 y + l l = 0  are equidistant from
the lines 12x + 5y +  12 =  0 and 3x — 4y + 3 =  0. (O.C.)

19. Prove that the straight lines which join the point ( — 2,3) to (jie points 
(6,7) and (0, — 1) are perpendicular. Calculate the coordinates of the fourth 
vertex of the rectangle which has these points as three of its vertices.

20. Two perpendicular lines are drawn through the origin so as to form an 
isosceles right-angled triangle with the line lx +  my +  n =  0. Show that 
their equations are (I — m)x +  (i +  m)y =  0 and (1 +  m)x +  (m — l)y =  0.

(O.C.)
21. Find the equation to a line perpendicular to the line 3x +  4y +  5 =  0 

which passes through the point of intersection of the two lines 3x — y  =  1 
and x + y  =  3.

22. Find the equations to the diagonals of a parallelogram whose sides are the 
lines 3x — 2y = 1, 4x — 5y = 6, 3x — 2y — 2, 4x — 5y =  3.

23. Show that the angle between the lines 6x2 — xy  -  y2 =  0 is 45°.
24. Find the equation to the bisectors of the angles between the lines 

3x2 + 4xy — 5 y 2 =  0.
25. Express in a single equation the pair of perpendicular straight lines through 

the origin, one of which is the line ax + by — 0.
26. The income tax code numbers for allowances between £150 and £315 are 

shown in the following table:—

Code number (C) 60 70 80 90 100 110

Allowance (£A) 160 190 220 250 280 310

By using squared paper, verify that the law connecting C and A is 
A — 160 ,
C -  60 ~  '

Express A in terms of C and calculate A when C =  97. Also express C in 
terms of A and calculate C when A =  226. (L.U.)

27. The resistance R kg wt to the motion of a train is given in the table for 
various values of the speed V metres per second:—

R 66-8 70-6 72-4 74-3 78-5

V 20 25 27 29 33

By graphing R against V2, show that these values are consistent with the 
formula R =  A +  BV2 and find the values of A and B. (L.U.)

28. Show that the values

1-42 1-51 1-63 1-78 1-90 200

P 4-28 4-70 5-26 6-01 6-62 7-15(5)

are approximately related by the law P2 =  Aif and find values for the 
constants A and n.
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29. Quantities x and y are connected , by the relation y =  log (a +  bx) where 
a and b are constants. Plot 10’' against x from the table of values:—
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X 1 2 3 4 5 6

y 0-857 0-924 0-982 1-033 1-079 1-121

and hence find estimates for a and b. (L.U.)
30. When a quantity of air is compressed to pressure p, the corresponding 

temperature t (degrees Centigrade) is given by:—

P 10 20 40 70 80

t 146 243 362 478 509

Verify that the law T = kp", where T is the absolute temperature of the air. 
is satisfied by these data and determine the values of the constants k and n.



CHAPTER 16

THE COORDINATE GEOMETRY OF THE CIRCLE

16.1. The equation to a circle with given centre and radius
Suppose that the radius of the circle is R and that its centre is the 

point C{a,b). The circle is the locus of a point which moves so that 
its distance from the point (a, b) is always equal to R. Hence if P is 
any point (x, y) on the circle,

(x -  a)2 + (y -  b f  = R2, (16.1)
the left-hand side of this equation being the square of the distance 
between the points (x, y) and (a, b).

Equation (16.1) therefore represents a circle of radius R and centre 
the point (a, b). By writing a = b = 0, we find that the equation to a 
circle of radius R and centre the origin is

x2 + y2 = R2. (16.2)

Example 1. Write down the equation to the circle (i) with centre the origin and radius 
2 units, (¿0 with centre the point (3, — 2) and radius 3 units.
(i) The required equation is x2 + y2 = 22, or x2 + y2 — 4.

(ii) From (16.1), the equation is (x -  3)2 + (y + 2)2 = 32, which can be written 
in the form x2 + y2 — 6x + Ay + 4 = 0.

16.2. The general equation to a circle
The general equation of the second degree in x and y is

ax2 + 2hxy + by2 + 2 gx + 2/y + c = 0, (16.3)
where a, b, c, f  g, h are constants. From the way in which the equa­
tion (16.1) to a circle was formed it should be clear that the coefficients 
of x2 and y2 in its equation must be equal and there must be no term 
containing the product xy. In other words, equation (16.3) will represent 
a circle if a = b and h — 0. There is no loss of generality in taking a 
to be unity and the general equation to a circle can be written

x2 + y2 + 2gx + 2/y + c = 0. (16.4)
The radius and coordinates of the centre of the circle given by the 

general equation (16.4) can be found as follows. Writing it in the 
form

(x + g)2 + (y + f ) 2 = g2 +  f 2 -  c,
and comparing it with equation (16.1), which represents a circle of 
radius R and centre the point (a, b), we see that the radius of the circle 
given by equation (16.4) is

Vte2 + f 2 -  c)>
302

(16.5)
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and that its centre is the point
(16.6)*

Example 2. Find the radius and the coordinates of the centre of the circle 
x1 + y2 + 5x -  6y = 5.

Working from first principles, the equation can be written in the form

(x + f)2 + (y -  3)2 = 5 + ^  + 9
= V = (!)2.

showing that the point (x, y) is always at a distance of 9/2 units from the point 
( — 5/2,3). Hence the radius is 9/2 and the centre is the point ( — 5/2,3).
Alternatively, in the given equation g = 5/2, f  = - 3 ,  c =  —5 and (16.5), 
(16.6) give

radius = Vi(5/2)2 + ( -3 )2 -  (-5)} = 9/2, 
centre, ( -  5/2, -  ( -  3)) or ( -  5/2,3).

16] C I R C L E  W I T H  G I V E N  D I A M E T E R

16.3. The equation to the circle whose diameter is the join of the points
(x,,.yi) and (x2, y 2)

In Fig. 115, A and B are the points (xl5 _y,), (x2> y2) respectively and 
P is any point (x, y) on the circle. Since AB is a diameter, the angle

APB is a right angle. The slopes of AP, PB are respectively
y - y  i and y - y  2
x  — x t x — x2

Since AP, PB are perpendicular, the product of their slopes is —1, 
so that

- 1,

or, (x -  xj)(x -  x2) + (y -  y jiy  -  y2) = 0. (16.7)
This relation is satisfied by the coordinates (x, y) of any point P 

on the circle and is therefore the required equation to the circle whose 
diameter is the join of the points (xlf ytX (x2, y2).
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16.4. The equation to a circle through three given points
Suppose that the three given points are (x^y^, (x2, y2), (x3, y3). 

Let the equation to the circle through these points be .
x2 + y2 + 2 gx + 2fy + c = 0.

Then if the point (x1; _y,) lies on the circle, these coordinates must 
satisfy the equation and hence

V  + y 2 + 2 gx2 + 2fy1 + c = 0.
Similarly x22 + y22 + 20X2 + lfy2 + c = 0,
and x32 + y32 + 2 gx3 + 2fy3 + c = 0.

These three equations are sufficient to enable the constants f  g and 
c, and hence the equation to the circle, to be determined.

Example 3. Find the equation to the circle which passes through the origin and the 
points (2,0), (3 ,-1). (O.C.)
Let the required equation be

x2 + y2 + 2gx + 2fy + c = 0.
If the origin (0,0) lies on the circle, c = 0.
If the point (2,0) is on the circle

(2)2 + 2(2)0 + c = 0,
and if the point (3, — 1) is also on the circle,

(3)2 + (—1)2 + 2(3)p + 2( —l ) / + c  = 0.
Hence the equations determining/, g and c are

c = 0, 4 + 4p = 0, 10 + 6p — 2/ = 0.
Thus c = 0, g = — 1 ,/ = 2 and the required equation is 

x2 + y2 — 2x + 4y = 0.

EXERCISES 16(a)

1. Find the coordinates of the centre and radius of the circle
x2 + y 2 -  lOx + 12y = 0. (O.C.)

2. Write down the equation to the circle which:—
(i) has its centre at the point (— 5, — 6) and whose radius is 10,

(ii) has its centre at the point (a, — b) and whose radius is ^ J{a2 — b2).

3. Find the equation to the circle which has the points (0, — 1) and (2,3) as
ends of a diameter. (L.U.)

4. Find the equation to the circle which passes through the points (0,0), (3,1)
and (3,9). (O.C.)

5. Find the equation to the circle which passes through the points (5,0), (6,0)
and (8,6). (O.C.)

6. Find the equation to the diameter of the circle x2 + y2 — 6x + 2y = 15,
which, when produced, passes through the point (8, — 2). (O.C.)
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7. Find the equation to the circle whose centre lies on the line y = 3x — 7
and which passes through the points (1,1) and (2, — 1). (L.U.)

8. If 0  is the origin and P ,  Q  are the intersections of thj circle
x2 + y2 + 4x + 2y — 20 = 0 and the straight line x — 7y + 20 = 0, show 
that O P  and OQ  are perpendicular. Find the equation to the circle through 
0 , P  and Q. (L.U.)

16.5. The equation to the tangent to a circle at a given point 
Suppose that we require the equation to the tangent at the point 

(x ^ y j to the circle
x2 + y2 + 2gx + 2fy + c = 0. (16.8)

Differentiating the equation with respect to x

2 x  +  2$ c  +  2g +  2 f ^K =  °’
so that the gradient of the circle at the point (Xj, y,) is given bv

f d y \  = _  * i  +  g
\dx)x=Xi y i + f

The tangent is the line through the point (x^y,) with slope equal to 
the gradient of the curve; its equation is

y -  y  i =  - -  *l)-

This can be written
xxj + yyx + g(x -  xx) + /(y  -  yt) = x x2 + y x2. (16.9) 

Since the point (x„ yt) lies on the circle
* i2 + Ti2 + 2 gxx + 2/yj + c = 0, 

and we can replace x x2 + y 2 by —(2gxl + 2fyx + c). Hence equation
(16.9) can be written

xx i + yyx + g(x + xx) + /(y  + yt) + c = 0. (16.10)
This is the required equation to the tangent at the point (xl5 y,). 

It can be obtained from the equation (16.8) to the circle by replacing x2 
by xx„ y2 by yyx, 2x by (x + xx) and 2y by (y + y,). This is a particular 
case of a general rule which enables the equation to the tangent at 
(xi, y j  to be written down at sight for any of the curves in this and 
the next chapter.

In particular, the equation to the tangent at (x,, y j  to the circle, 
centre the origin and radius R, i.e. the circle x 2 + y2 = R2, is

xx j + yyx = R2. (16.11)

Example 4. Write down the equation to the tangent (i) at the point (1, —7) to the 
circle x1 + y2 = 50, (ii) at the point (2,1) to the circle

4x2 + 4y2 — x + 5y = 23.
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(i) The required equation is'
x(l) + y( — 7) = 50, or x — ly  = 50.

(ii) Here the required equation is
4x(2) + 4y{ 1) -  Kx + 2) + + 1) = 23,

or, 15x + 13y = 43.

16.6. The points of intersection of a straight line and circle
Here we consider the points of intersection of the straight line 

y = mx + c and the circle x2 + y2 = R2. The coordinates of the 
points of intersection of the line and circle will satisfy the simultaneous 
equations

y = mx + c, 
x 2 + y2 — R2.

Hence writing y = mx + c in the equation to the circle, the abscissae 
of the points of intersection will be given by

x2 + (mx + c)2 = R2,
or, (1 + m2)x2 + 2 mcx + c2 — R2 = 0. (16.12)
This quadratic equation has real, equal or imaginary roots according 
as

(2mc)2 -  4(1 + m2)(c2 -  R2),
is positive, zero or negative; i.e., according as c2 is less than, equal to, 
or greater than R2(l + m2).

The three possibilities are shown in Fig. 116. The three lines (a),
(b) and (c) all have slope m and make successively greater intercepts 
on the y-axis. The line (a) corresponds to a value of c2 which is less

than R2(l + m2) and it meets the circle in two real points A, B. The 
line (c), corresponding to a value of c2 which is greater than R2(l + m2),
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does not meet the circle at all, or rather, it meets the circle in two 
imaginary points. The line (h), corresponding to a value of c2 of 
R2(l + m2), meets the circle in two coincident points T ; it is the 
tangent to the circle at T.

The equation to the line (b) for which c2 = R2( I + m2) can be 
written

y = mx ±  Ry/( 1 + m2). (16.13)
These lines always touch the circle x 2 + y2 = R2. One of them is 
shown as line (b) of Fig. 116: the other is the tangent to the circle 
whose point of contact is diametrically opposite the point T.

The length of the chord intercepted by the circle on the line (a) of 
Fig. 116 can be found as follows. The abscissae of the end-points 
of the chord are given by the roots of equation (16.12). If the roots of 
this equation are denoted by x t and x2,

— 2 me c2 — R2x. + x2 = -------5, x ,x 2 = --------r .1 2 1 + m2 1 2 1 + m2
Hence

(*1 -  x2)2 = (*1 + x 2)2 -  4xtx2

= (i + m2)2 {m2c2 ~ (c2 “  R2W  + m2^

■ ( r r ^ F lR2<1 + m I)_ c ! ) -
If y2 are the ordinates of the end-points we have, since the points 
lie on the line y = mx + c,

yi — y2 = mxy + c — (mx2 + c) = m(xl — x 2).
The square of the length of the chord

= (*! -  x 2)2 + ( y ¡ -  y2)2 
= (1 + m2)(xi -  x2)2

= T T 7 ? {R2{1 + m2) ~  c2}‘
Example S. A circle, the coordinates of whose centre are both positive, touches both 

axes of coordinates. If  it also touches the line 3x — 4y + 6 = 0,find its equation 
and the coordinates of its point of contact with this line. (L.U.)
Let the required equation to the circle be x1 +  y2 + 2gx + 2fy +  c =  0. The 
circle meets the x-axis (the line y -- 0), where

x2 + 2tfx + c = 0,
and touches it if this equation has equal roots. This requires that g2 = c. 
Similarly the circle touches the y-axis iff 2 — c. Hence c = g2 = f 2, and the 
equation to the circle can be written

x2 + y2 + Igx + 2gy + g2 = 0.
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To find where the line 3x — 4y + 6 = 0 meets this circle, we write y — (3x + 6)/4 
in its equation, giving

*  + & L ^  + 2 tx  +  ™ * ± $  + f m. o
16 4

or, 25x2 + 4(9 + 14j)x + 4(9 + 12? + 4g1) = 0. (16.14)
The line touches the circle if this equation has equal roots. The condition for 
this is

16(9 + 14g f  = 4. (25). (4). (9 + 12g + 4g2).
This reduces to 2g2 — g — 3 = 0 giving g = — 1 or 3/2. The positive value is 
excluded because g must be negative if the centre ( — g, —/ )  is to lie in the 
first quadrant. Hence the required equation to the circle is obtained by using 
g = — 1 and hence is

x2 + y2 -  2x — 2y + 1 = 0.
With g = — 1, the equation (16.14) giving the abscissae of the points of inter­
section of line and circle reduces to 25x2 — 20x + 4 = 0. This has two roots 
each equal to 2/5 (we should expect equal roots for the line is a tangent). Hence 
the abscissa of the point of contact is 2/5 and, since y = (3x +  6)/4, the ordinate 
is 9/5.

Example 6. A circle, which passes through the origin, cuts off intercepts of lengths 
4 and 6 units on the positive x- and y-axes respectively. Find the equation to the 
circle, and the equations to the tangents to the circle at the points (other than 
the origin) where it cuts the axes. (L.U.)
Let the equation to the circle be x2 + y2 + 2gx + 2/y + c = 0. Since the circle 
passes through the origin, its equation is satisfied by x = 0, y = 0 and hence 
c = 0. The x-axis (the line y = 0) meets the curve where

x2 + 2gx -  0,
i.e., where x = 0 (the origin) and where x = — 2g. The second point of inter­
section is at 4 units from the origin, so that — 2g = 4 giving g = — 2. Similarly 
the y-axis (the line x = 0) meets the circle where

y2 + 2/y = 0,
and this equation must have roots zero (the origin) and 6. Hence 2/ = — 6 
giving /  = — 3. Hence the required equation to the circle is x2 + y2 — 4x — 6y =  0.
The equation to the tangent at the point (4,0) is

x(4) + y(0) -  2(x + 4) -  3(y + 0) = 0,
or, 2x — 3y = 8: the tangent at the point (0,6) is

x(0) + y(6) -  2(x + 0) -  3(y + 6) = 0,
or, 2x — 3y + 18 = 0.

EXERCISES 16(b)
1. Write down the equation to the tangent to the circle 

x2 +  y2 — 4x — 6y +  3 =  0 
at the point (5,4) and that to the tangent to

x2 + y2 -  2x — 3y + 3 = 0
at the point (1,2).
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2. (i) Write down the equation to the tangent at the origin to the circle
x 2 + y2 + 2gx + 2fy =  0.

(ii) Find the equation to the tangent at the point (3,2) to the circle 
(x -  l)2 +  {y + l)2 =  20.

3. Find the equations to those tangents to the circle x 2 + y2 = 25 which are 
parallel to the line 4x — 3y = 0.

4. Show that the line 2x — 3y + 26 =  0 is a tangent to the circle
x2 +  y2 — 4x + 6y — 104 =  0 and find the equation to the diameter 
through the point of contact. (O.C.)

5. Find the equation to the circle which has its centre at the point (2, — 1)
and touches the line 3x + y = 0. (O.C.)

6. Tangents are drawn to the circle x2 +  y2 — 6x — 4y +  9 = 0 from the
origin. If 0 is the angle between them, find the value of tan 6. (L.U.)

7. Show that y = mx is a tangent to the circle
x2 +  y2 + 2gx + 2fy +  c = 0, 

if (g +  m/)2 =  c(l +  m2).
Find the equations to the tangents from the origin to the circle 

x2 +  y2 — 6x — 3y + 9 =  0 and the coordinates of their points of contact.
(L.U.)

8. Find the length of the chord joining the points in which the straight line 
(x/a) +  (y/b) =  1 meets the circle x 2 + y 2 = R 2.

9. A circle touches the x-axis and cuts off a constant lehgth 2a from the y-axis. 
Show that the equation to the locus of its centre is the curve y2 — x2 =  a2.

10. The point (a, b) is the middle point of a chord of the circle x2 + y2 = R 2. 
Show that the equation to the chord is

ax + by = a2 +  b2.
16.7. The length of the tangent from a given external point to a circle

In Fig. 117,T is a given point with coordinates (a, b) and TQ is one 
of the tangents from T  to the circle x 2 + y2 + 2gx + 2fy + c = 0,

16] LE N G TH  OF T A N G E N T

its point of contact being Q. If C is the centre of the circle, TQ is 
perpendicular to the radius CQ and hence

TQ2 =  TC2 -  CQ2. (16.15)
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Now T  is the point (a, b), and from (16.6), C is the point (—g, —/), 
so that

TC2 = (a + g)2 + (b + f ) 2.
Also, from (16.5), the radius CQ of the circle is given by 

CQ2 = g2 + f 2 -  c.
Substitution in (16.15) then gives for the square of the length of the 
tangent

TQ2 =  (a +  g)2 +  (b  +  f ) 2 -  g2 -  f 2 +  c
= a2 + b2 + 2ga + 2f b  + c. (16.16)

Thus the square of the length of the tangent drawn to the circle from the 
point (a, b) is obtained by writing a for x and b for y in the left-hand 
side of the equation to the circle.

Example 7. Find the length of the tangent from the point (5, — 1) to the circle
(*  -  i ) 2 +  y 1 =  2t -
The given circle is one of radius 5/2 with centre C at the point ($, 0). If T is 
the point (5, -  1), see Fig. 118,

c r 2 =  (5 -  i)2 + < - 1 -  0)2 = + i =

If Q is the point of contact of the tangent from T, the angle CQT is 90° and 
hence

TQ2 = CT2 -  CQ1.
But the radius of the circle CQ is 5/2, so that

TQ2 = ¥  -  ¥  =  15,
giving TQ = 15 units.
Alternatively, the equation to the circle written in standard form is 
x2 + y2 — x — 6 = 0. Hence (16.16) gives

TQ2 =  (5)2 + (— l)2 — (5) — 6 = 15.
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16.8. Orthogonal circles
Two circles are said to be orthogonal when the tangents at their 

points of intersection are at right angles.

Fig. 119

In Fig. 119 one of the points of intersection of two orthogonal 
circles is P and O t, 0 2 are the centres of the circles. Since the tangents 
to the two circles at P are perpendicular, the radii OxP, 0 2P which are 
at right angles to the tangents, are also perpendicular. Hence the 
angle is a right angle and therefore

0 X0 2 = OxP2 + 0 2P2,
i.e., the square of the distance between the centres of two orthogonal 
circles is equal to the sum of the squares of the radii.

If the equations to the circles are
x 2 + y2 + 2 gx + 2fy + c = 0,1 (16 17)

and x2 + y2 + 2 g'x + 2f ' y  + c' = 0,3
the centres of the circles are (—g, —f)  and ( — g\ —/'). The square of 
the distance between the centres is

(~9  + 9')2 + ( ~ f  + f ’)2>
and the squares of the radii of the circles are g2 + f 2 — c and 
g'2 + f ' 2 — c'. The circles therefore cut orthogonally if

(~9  + 9')2 + ( - /  + f ?  = 92 + f 2 ~  c + g'2 + f ' 2 -  C,
i.e„ if, 2gg' + 2ff' =  c + c'. (16.18)
Example 8. Find the equation to the circle which passes through the origin and cuts 

both of the circles
x2 + y1 -  6x + 8 = 0 and x2 + y2 ~  2x -  2y = 7 orthogonally.

The equation to any circle which passes through the origin is 
x2 + y1 + 2gx + 2fy  = 0.

This circle cuts the first of the given circles orthogonally if
2g(-3) + 2/(0) = 8, i.e., i f -6 g  = 8 or g = -4/3.

It cuts the second of the given circles orthogonally if 
2 9 (-l)  + 2 / ( - l ) =  -7 .
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This gives f = i ~ g  = i  + i  = ^ ,  and the required equation to the circle is
x2 + y2 -  §x + = 0,

or, 3x2 + 3y2 -  8x + 29y = 0.

EXERCISES 16(c)
1. Find the length of the tangent drawn from the point (2,5) to the circle

x 2 + y2 -  2x — 3y = 1.
2. The length of the tangent from the point (1,1) to the circle

x 2 +  y 2 — 4x — 6y + k =  0
is 2 units. Find the value of k. (L.U.)

3. Given the three circles,
x 2 + y 2 -  16x +  60 =  0, 
x2 +  y2 — 12x + 20 =  0, 

x 2 + y 2 -  16x -  12y  + 84 =  0,
find (i) the coordinates of the point such that the lengths of the tangents 
from it to each of the three circles are equal, (ii) the length of each tangent.

(L.U.)
4. Show that the circles x2 +  y2 — 2ax.+ c2 =  0, x2 +  y2 — 2by — c2 =  0 are 

orthogonal.
5. A circle, centre C, cuts the circle x 2 +  y2 =  4 at right angles and passes

through the point (1,3). Find the equation to the locus of C. (L.U.)
6. The line x + y =  3 meets the circle x2 +  y 2 +  x — 5y +  4 =  0 at points

P, Q. Find the equations to the tangents at P, Q to the circle and the 
coordinates of their point of intersection- R. Find also the equation to the 
circle centre R which cuts the given circle orthogonally. (L.U.)

16.9. The radical axis of two circles 
The radical axis of two circles is the locus of a point which moves 

so that the lengths of the tangents drawn from it to the two circles 
are equal.

Suppose the equations to the two circles are 
x2 + y2 + 2gx + 2fy + c =  0 and x2 + y2 + 2g'x + 2f'y + c’ = 0.
The square of the length of the tangent from a point (x, y) to the first 
circle is, by (16.16), x 2 + y2 + 2gx + 2fy + c, while that of the tangent 
from the same point to the second circle is x2 + y2 + 2g’x  + 2 fy  + c'.
If the point (x, y) lies on the radical axis, these quantities are equal
so that

x 2 + y2 + 2 gx + 2fy + c = x 2 + y2 + 2 g'x + 2f y  + c' (16.19)
or, 2(g -  g')x + 2( /  -  f ' )y + c -  c' = 0. (16.20)
This is the equation to the radical axis of the two circles, and since 
it is of the first degree in x and y it is a straight line.

The equation (16.19) to the radical axis can be written in the form 
x2 + y2 + 2gx + 2fy + c — (x2 + y2 + 2g'x + 2f y  + c') = 0.
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In this form it is apparent that any point which lies on both the given 
circles lies also on the radical axis. Hence the radical axis corresponds, 
in the case of two circles which intersect in real points, to the line 
through the common points.
Example 9. Find the equation to the common chord of the two circles

x2 + y1 + lOx + 8v + 32 = 0 and x2 + y2 — 4x — 6y + 12 = 0 
and show that this line is perpendicular to the line of centres of the circles.
The equation to the common chord (or radical axis) is obtained by equating 
to zero the expression corresponding to the difference of the left-hand sides of 
the equations to the circles. In the case of the circles given here it is

14x + 14y + 20 = 0, or 7x + 7y + 10 = 0.
The coordinates of the centres of the two given circles are respectively (— 5, — 4) 
and (2, 3). The slope of the line of centres is therefore

3 - ( - 4 )  
2 - ( - 5 ) or 1

while the slope of the common chord is — 1. The product of these two slopes 
being -  1, the common chord is perpendicular to the line of centres.

16.10. The circle through the points of intersection of two given circles 
Consider the equation

x2 + y2 + 2gx + 2fy + c + X(x2 + y2 + 2g'x + 2f'y + c') = 0, (16.21)
where X is any constant. Since this is an equation of the second degree 
in which the coefficients of x2 and y2 are equal (they are both 1 + X) 
and there is no term in xy, it is the equation to a circle. Further, the 
equation is satisfied for points whose coordinates (x, y) simultaneously 
satisfy the equations

/  + /  + 29* + 2fy + c -  0.1
x 2 + y2 + 2 g’x + 2f ' y  + d  = 0.J

Such points are those which are common to the curves represented by 
equations (16.22). Hence equation (16.21) represents a circle passing 
through the points of intersection of the circles given by equations 
(16.22).

The foregoing is another example of the device mentioned in § 15.8. 
Equation (16.21) represents a family of circles, all of which pass through 
the oommon points of the circles given by (16.22). Individual circles 
of this family correspond to different values of X. Generally it will be 
required to find the equation to a circle which, besides passing through 
the intersection of two given circles, fulfils some additional condition 
such as passing through another given point or touching a given line. 
A further condition of this sort enables the value of X to be fixed for 
the particular circle required.
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Example 10. Find the equation to the circle through the origin and through the points 
of intersection of the circles

x2 + y2 — 2x — 4y -  4 = 0 and x2 + y2 + 8x — 4y + § = 0.
L.U.)

Any circle through the common points of the given circles is
x2 + y2 — 2x — 4y — 4 + 2(x2 + y2 + 8x — 4y + 6) = 0, 

or, (1 + 2)(x2 + y2) + (8/1 -  2)x -  (4/1 + 4)y + 6A -  4 = 0.
If this circle passes through the origin, its equation must be satisfied by x = 0, 
y = 0, so that

6/1 -  4 =  0
giving X = 2/3. With this value of X the equation is

(1 + §)(x2 +  y2) + ( ^  -  2)x - ( §  + 4)y =  0, 
i.e., x2 + y2 + 2x — 4y = 0.

EXERCISES 16(d)

1. Find the radical axis of the circles x2 +  y 2 +  4x +  5y =  6 and
x2 +  y1 +  5x +  4y =  9.

2. Find the equations to the common chord and the line of centres of the 
two circles

x2 +  y2 + 6x — 3y +  4 =  0 
and 2x2 +  2y2 — 3x — 9y +  2 =  0.

3. Show that the length of the common chord of the circles
x2 +  y 2 +  ax + by +  c =  0, x2 +  y 2 + bx +  ay +  c =  0 

is (i(a +  fe)2 — 4c}*.
4. Show that the circles x2 + y2 +  4x +  y  =  3, x2 +  y1 — x  — y  =  1 and 

x2 +  y 2 +  14x +  5y = 7 are co-axial (i.e., they have the same radical axis).
5. Find the equation to the circle which passes through the point (1,2) and 

through the points of intersection of the circles x2 +  y 2 +  2x +  3y =  7 and 
x2 +  y2 + 3x -  2y = 1.

6. Find the equations to the circles passing through the points of intersection 
of the circles

x 2 +  y2 — 18x — 2y +  8 =  0, 
x2 +  y2 — 26x +  6y =  24

and touching the straight line y =  10. (L.U.)

EXERCISES 16(e)

1. (i) Find the radius and coordinates of the centre of the circle
x 2 +  y2 -  2x -  6y +  6 =  0.

(ii) If the line x =  2y meets the circle x2 +  y2 — 8x +  6y — 15 =  0 at the 
points P, Q, find the coordinates of P and Q and the equation to the 
circle passing through P, Q and the point (1,1). (L.U.)
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2. Show that the locus of a point such that the square of its distance from the
point (3,4) is proportional to its distance from the line x  + y -  0, one
point on the locus being the point (1,2), is a circle and find its centre and 
radius. * (O.C.)

3. Find the equation to the circle of which the points (8, —2) and ( — 2,6) are
ends of a diameter. (O.C.)

4. Find the equation to the circle which passes through the points ( — 2,2),
(2,4), (5, — 5). Show that this circle touches the circle

lx 2 + 2y2 -  17x +  16y + 65 =  0
at the point (5, — 5). v (L.U.)

5. Show that the circle x2 +  y2 — la x  — la y  +  a2 = 0 touches the axes of
x and y.

Also find the equation to the circle which passes through the points 
(2,3), (4,5), (6,1). (Q.E.)

6. Find the equations to two circles which touch the x-axis at the origin and
also touch the line 12x +  5y =  60. (L.U.)

7. Find the coordinates of the centre and the radius of the circle
x2 + y2 — 2x — 8y + 1  — 0. Show that this circle touches the x-axis and
that the point (h, k) of contact of the other tangent from the point (3,0) 
must satisfy the condition h — 2k =  1. (L.U.)

8. A circle of radius 5 has its centre in the positive quadrant, touches the
x-axis and intercepts a chord of length 6 on the y-axis. Show that its 
equation is x2 + y2 — 8x — lOy +  16 =  0. If y =  mx is a tangent from the 
origin apart from the x-axis, find m. (L.U.)

9. Prove that the points (3/2,6), (—9/2 ,—2) lie on the circle
4x2 + 4y2 +  12x — 16y — 75 =  0, and that the tangents at these points 
are parallel. (O.C.)

10. Find the equation to the tangent at the point (3, —4) to the circle
x2 +  y2 =  25. What are the equations to the two tangents parallel to the
y-axis? Show that the first tangent intersects these two in points which 
subtend a right angle at the origin. (O.C.)

11. Find the equations to the two circles each of which touch the three circles
x2 + y2 =  4a2, x2 + 2ax +  y2 =  0, x2 — 2ax 4- y2 =  0. (Q.E.)

12. Find the equation to the circle touching the x-axis at the point (5,0) and 
passing through the point (7,4). What are the coordinates of the point on 
the circle other than (5,0), the tangent at which passes through the origin?

(L.U.)
13. Prove that the equation to the circle whose centre lies in the first quadrant,

which touches the x-axis and which passes through the points A(0,6), 
B(0,24) is x2 +  y2 — 24x — 30y 4- 144 =  0. Find also the equation to the 
other chord through the origin whose length is equal to that of the chord 
AB. (L.U.)

14. Find the coordinates of the centre and the radius of the circle
2x2 +  2y2 +  4x — 12y + 15 =  0. Find also the equation to the tangent to 
the circle which is furthest from the origin. Calculate the length of the 
chord intercepted by the circle on the line x +  y =  0. (L.U.)

16] E X E R C I S E S
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15. Find the equations of the circles that touch the circle x2 +  y2 =  4 and the
straight lines y =  0 and x =  7. (Q.E.)

16. Verify that the circle x2 +  y 2 — 8x — l y  +  12 =  0 passes thiough the
point (2,0) and calculate the coordinates of the other points of intersection 
of the circle with the axes. Find the equation to the tangent to the circle 
at the other end of the diameter through (2,0). Calculate the length of a 
tangent to the circle from the point (9,2). (L.U.)

17. Show that the line x +  3y =  1 touches the circle
x2 +  y 2 — 3x — 3y +  2 =  0

and find the coordinates of the point of contact. Prove, by calculation, 
that the point P(3,2-5) lies outside the circle and calculate also the length 
of the tangent drawn to the circle from P. (L.U.)

18. Find the length of the tangents from the point (5, —4) to the circle 
x2 + y 2 +  8 =  2k(x +  y  — 1). If, in this equation k be given various values, 
show that all the circles so obtained have the same radical axis.

19. Find the equation to the circle which cuts orthogonally the circle 
x2 + y2 — 4x +  6y — 7 =  0, passes through the point (0,3) and touches 
the x-axis.

20. /4(3,0) and B(0,2) are two fixed points. Find the equation to the locus of a 
point P such that 2PA  =  3PB. Show that the locus is a circle passing 
through the origin and find the equation to the tangent at the origin. Show 
also that this circle cuts at right angles the circle x2 +  y2 — 3x — 2y =  0.

(L.U.)
21. Show that the circles

x2 + y2 + 4x — 2y -  11 =  0 and x2 +  y2 — 4x -  8y + 11 =  0 
intersect at right angles and find the length of their common chord. (L.U.)

22. Prove that the circles
x2 +  y2 +  2x — 8y +  8 =  0, 

x 2 +  y2 +  lOx — 2y +  22 = 0
touch one another. Find (i) the point of contact, (ii) the equation to the 
common tangent at this point, (iii) the area of the triangle enclosed by this 
common tangent, the line of centres and the y-axis. (L.U.)

23. Find the equations to two circles which pass through the point (4,1) and 
touch both the lines x =  6, y =  5. Prove that the equation to the common 
chord of the circles is x +  y =  5.

24. Find the equation to the circle passing through the point ( — 2, —6) and 
through the two points of intersection of the circles

x2 + y2 -  3x + 4y — 2 =  0 and x2 + y2 + 5x — 3y = 8.
25. Find the radius and the coordinates of the centre of a circle which passes 

through the points of intersection of the circles x2 + y2 =  4 and 
x2 + y2 — 2x — 4y + 4 =  0 and which touches the straight line x +  2y =  0.



CHAPTER 17

THE PARABOLA, ELLIPSE AND HYPERBOLA

17.1. Introduction
The equation of the second degree in x and y represents, in certain 

circumstances, a pair of straight lines or a circle. For example, if the 
equation contains only terms in x 2, y2 and xy it represents a pair of 
lines through the origin (§ 15.9), while, if the coefficients of the terms 
in x2 and y2 are equal and there is no term in xy it represents a circle 
(§ 16.2). Other curves can be represented by an equation of the second 
degree and these are the subject of the present chapter.

Consider the locus of a point P which moves so that its distance 
from a fixed point (the focus S) is always in a constant ratio (the 
eccentricity e) to its perpendicular distance from a fixed straight line 
(the directrix AB). We shall show in the sections which follow that 
the locus is given by an equation of the second degree in x and y. 
A plot of the locus reveals that its shape, which depends of course 
on the eccentricity e, changes significantly when e passes through 
unity. The locus is called a parabola when e = 1, an ellipse when 
e < 1 and a hyperbola when e > 1.

It can be shown, but we shall not attempt to do so here, that the 
parabola, ellipse and hyperbola are, like the pair of straight lines and 
circle, all sections of a right circular cone by a cutting plane. For this 
reason, the equation of the second degree is sometimes said to represent 
a conic section.

17.2. The equation to a parabola
The equation to a parabola takes its simplest form when we take 

the focus S to be the point (a, 0) and the directrix AB as the line 
x = — a. If in Fig. 120, P is the point (x, y) and PM  is drawn 
perpendicular to AB, the parabola is the curve on which the point P 
lies when it moves so that the distance PM  is always equal to the 
distance PS.

If the line AB meets the x-axis at C, C is the point (—a, 0) and PM 
is clearly the sum of the abscissa of P and the length CO. Hence 
PM = x + a, and since P and S are respectively the points (x, y) and
(o, 0 ),

PS2 = (x — a)2 + y2.
Since PS = PM, we have

(x -  a)2 + y2 = (x + a)2, 
y2 = 4ax,
317

or, (17.1)
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and this is the required equation to the parabola with focus the point 
(a, 0) and directrix the line x + a = 0.

To trace the curve, we first observe that y is imaginary when x 
is negative and there is thus no part of the curve to the left of the 
origin 0. If y be zero, so also is x, so the x-axis meets the curve only 
at the origin 0. This point is called the vertex of the parabola. If x 
be zero, y2 = 0, showing that the y-axis meets the curve in two 
coincident points at the vertex; i.e., the y-axis is the tangent to the 
parabola at its vertex. For every positive value of x, equation (17.1) 
shows that y has two equal and opposite values, so that corresponding 
to any point P on the curve there is another point P', the image of 
P in the x-axis, also on the curve. In other words, the curve possesses 
symmetry about the x-axis, and this line is often referred to as the 
axis of the parabola. Finally, as x increases in magnitude so does y 
and the general shape of the curve is as shown in the diagram.

The double ordinate LSL' (Fig. 120) drawn through the focus S 
is known as the iatus-rectum of the parabola. Since LS is the value 
of y when x =  a, equation (17.1) gives at once LS = 2a and hence the 
length of the latus-rectum of the parabola = LSL' = 2LS = 4a.

17.3. The tangent and normal to the parabola at a given point
Differentiating the equation y2 = 4ax with respect to x,

so that the gradient of the parabola at the point (xt, y j  is given by
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The tangent is the line through the point (xi,.y1) with slope equal to 
the gradient of the curve; its equation is

2a
y -  y  i = — (*  -  * i)./I

or, yyi — y 2 = 2ax — 2aXj.

Since the point (x^ y j  lies on the parabola, y 2 can be replaced Jjy 
4axj, and the equation to the tangent becomes

yy! = 2a(x + x j .  (17.2)
It should be noted that equation (17.2) can be written down by observ­
ing the general rule that the equation to the tangent at the point (xj.yJ 
is obtained from the equation to the curve by replacing y2 by yyx and 
2x by (x + xx).

The normal to a curve at any point P is the straight line which 
passes through P and is perpendicular to the tangent at P. Since 
the slope of the tangent at the point ( x ^ y j  to the parabola is 2a/yt, 
that of the normal is —y j l a  and the equation to the normal is 
therefore

y  -  y i  = -  -  xj). (17.3)

Example 1. Find the equations to the tangents and normals to the parabola y1 = 16x 
at the points (16, 16), (1, —4). The tangents intersect at the point T and the 
normals intersect at R. Prove that the line TR is parallel to the axis of the 
parabola. (O.C.)
Here 4a = 16, so that a = 4. For the point (16,16), x, = y, = 16 and equations 
(17.2), (17.3) give for the tangent and normal

16y = 8(x + 16),
and y — 16 = — -^{x — 16)
respectively. These equations can be written in the simpler forms x — 2y + 16 = 0 
and 2x + y = 48.
For the point (1, -4), x, = 1, >>! = - 4  and equations (17.2), (17.3) give, after 
a little reduction, the equation to the tangent as

2x + y + 2 = 0
and that of the normal as x — 2y = 9.
The coordinates of T  are given by solving the simultaneous equations 
x -  2y + 16 = 0, 2x + y + 2 = 0, and are found to be x = —4, y = 6. The 
coordinates of R are similarly found, from the solution of the simultaneous 
equations 2x + y = 48, x — 2y = 9, to be x = 21, y = 6. Thus both T  and 
R are at height 6 above the x-axis and the line TR is therefore parallel to the 
x-axis which is also the axis of the parabola.

17.4. The points of intersection of a straight line and parabola
The coordinates of the points of intersection of the straight line
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y = mx + c and the parabola y2 = 4ax are the values of x  and y 
which simultaneously satisfy both equations. Writing y = mx + c in 
the equation to the parabola, the abscissae of the points of intersection 
are therefore given by

(mx + c)2 = 4 ax,
or, m2x2 + 2 (me — 2 a)x + c2 = 0. (17.4)
This quadratic equation has real, equal or imaginary roots according as 

{2(mc — 2a)}2 — 4m2c2
is positive, zero or negative; i.e., according as c is less than, equal to, 
or greater than a/m.

The three possibilities can be illustrated as was done for the circle 
in Fig. 116. When c < a/m, the line intersects the parabola in two 
real points. When c > a/m, it does not meet the parabola at all, or 
rather, it meets the curve in two imaginary points. If c = a/m, the 
line touches the parabola.

Substituting c = a/m in the equation y = mx + c to the line, we 
find that the line

ay =  mx 3— , m
touches the parabola y2 = 4ax for all values of m.

(17.5)

Example 2. Find the ordinates of the points in which the line x + 2y = c meets the 
parabola y2 = lOx, and find the value of c when this line is a tangent to the 
parabola. (O.C.)
Since we here require the values of y at the points of intersection, we substitute 
x = c — 2y from the equation to the line in the equation to the parabola. The 
ordinates of the points of intersection are then given by

y2 = 10(c — 2y),
or, y2 + 20y — 10c = 0,

,  ,  .- * »  ±  VI400 +  «fc)_ _ 10 ± V{l0(10 + cl|

The line touches the parabola if this quadratic in y has equal roots. This is so 
when (20)2 = 4(— 10c), i.e., when c = — 10.

Example 3. Show that the point of intersection of two perpendicular tangents to a 
parabola lies on the directrix.
By (17.5), the line y = mx + (a/m) is a tangent to the parabola y2 = 4ax. 
Writing — 1/m in place of m, the perpendicular line y = — (x/m) — am is also a 
tangent to the parabola. By subtraction, the abscissa of the point of intersection 
of these two lines is given by

/  1\ a[ m H—  )x -l------h am = 0,
\  m/ m

i.e., by x + a = 0, and this is the equation to the directrix.



EXERCISES 17(a)

1. Find the equation to the normal to the parabola y2 =  8x at the point
(4-5, — 6). • (O.C.)

2. Find the equations to the tangents to the parabola y2 =  144x at the points
(144, 144), (9, —36), and show that they are perpendicular. Find also the 
coordinates of their point of intersection. (O.C.)

3. Find the coordinates of the points in which the line y =  8x — a meets the 
parabola y2 =  4ax. Find the equations to the tangents to the parabola at 
these points and the coordinates of their point of intersection. (L.U.)

4. Find the equation to the normal at the point P(l, 2) to the parabola y2 =  4x.
This normal meets the x-axis in G and M is the mid-point of PG. A line 
through M parallel to the y-axis meets the x-axis in N and the parabola in 
Q. Prove that QN = PG. (L.U.)

5. A point P moves so that its distance from the line y =  2 is equal to its
distance from the point x =  2, y =  4. Find the equation to the locus of P 
and the equations to the tangents through the. origin that touch the locus 
ofP. (Q.E.)

6. Find the-angles at which the parabolae y2 = ax and x 2 =  by intersect.
(Q.E.)

7. If the tangent at the point P to the parabola y2 =  4ax meets the parabola 
y2 = 4a(x -(- b) at points Q and R, prove that P is the middle point of QR.

(O.C.)
8. Prove that the normals to the parabola y2 =  4ax at its points of intersection

with the straight line 2x — 3y +  4a =  0 meet on the parabola. (O.C.)

17.5. The parametric equations to a parabola
The point (xlf y j  lies on the parabola y2 — 4ax only if the relation 

y 2 = 4ax, between its two coordinates is satisfied. It is often con­
venient to be able to write down the coordinates of a point which 
always lies on the parabola. Such a point is one with coordinates 
(at2,2at) for it is clear that if

x = at2, y = 2 at, (17.6)
then, y2 = (2at)2 = 4a(at2) = 4ax for all values of t. The equations
(17.6) are called the parametric equations to the parabola y2 = 4ax. 
They express the coordinates of a point on the curve in terms of the 
parameter t, and we shall, for brevity, refer to the point with coordinates 
(at2, 2at) as the point “f”.

The equation to the chord joining the points (at 2, 2aij), (at22, 2at2) 
on the parabola is, by equation (15.5),

x — at 2 _  y — 2att 
at22 — att2 2 at2 — 2 at2

which reduces to
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2x — (tj +  t2)y +  2 a f1t2 =  0. (17.7)
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If we write tl = t2 = t, so that the two points on the parabola coincide 
at the point (at2,2at), the chord (17.7) becomes the tangent at this 
point, and its equation reduces to

x -  ty + at2 = 0. (17.8)
Alternatively, the equation to the tangent at the point “r” can be 

found as follows. The parabola can be written
x = at2, y = 2 at, 

and the gradient at any point is
dy _  (dy/dt) _  2a _  1 
dx (dx/dt) 2 at t '

Hence the tangent is the line passing through the point (at2,2at) with 
slope 1/t and its equation is

y — 2at = |(x  — at2),

or, x — ty + at2 = 0 as in (17.8). The normal at the point “f” is the 
line through the point (at2,2at) with slope — t and its equation is 
therefore

y — 2at = —t(x — at2),
or, y + tx = 2 at + at3. (17.9)

Many problems on the parabola are best solved by using the 
parametric equations. The above equations to the chord, tangent and 
normal are very useful in such work. The student should either 
remember them or (preferably) be able to derive them quickly.

Example 4. Show that the tangents to a parabola at the extremities of a focal chord 
are at right angles to each other.
If we take the parabola as y2 = 4ax, and the extremities of the chord as the 
points "t,", “t j ”, the equation to the chord is, by (17.7),

2x -  (r, + r2)y + 2atjt2 = 0.
If the chord passes through the focus, the point (a, 0), the above equation 
shows that 2a + 2attt2 = 0, or t , t2 = — 1. But equation (17.8) shows that the 
slopes of the tangent at the extremities of the chord are 1 / t i and l/f2. Since 
t2t2 = — 1, the product of the slopes is -1  and the tangents are therefore at 
right angles to each other.

17.6. An important property of the parabola
In Fig. 121, P is the point “i” on the parabola y2 = 4ax whose 

focus is S. PT  is the tangent at P meeting the x-axis at Q. Since the 
coordinates of P and S, are respectively (at2, 2at) and (a, 0),

PS2 = (at2 — a)2 + (2 at — 0)2 = a2(t* — 2t2 + 1 + 4f2)
= a2(t2 + l)2.
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so that PS = a(t2 + 1). The equation to the tangent PT  is, from 
equation (17.8), x -  ty + at2 = 0. This meets the x-axis where

F ig . 121

x + at2 = 0, so that QO = at2. Since OS = a,
QS = QO + OS =  at2 + a = a(t2 + 1).

Hence QS = PS and the triangle QSP is isosceles. Hence 
angle PQS = angle SPQ.

If PM is drawn through P parallel to the x-axis, it follows that 
angle TPM = angle PQS = angle SPQ,

so that the lines PS and PM are equally inclined to the tangent at P. 
If PN is the normal at P, it follows immediately that the lines PS and 
PM are equally inclined to the normal at P.

This is an important property of the parabola. It means that if 
a ray of light starting from the focus S of a parabolic mirror strikes 
the mirror at P, the reflected ray, which makes an equal angle with 
the normal, will be parallel to the axis of the mirror. Since P is any 
point on the parabola, all incident rays from a source at the focus 
will be reflected as rays which are all parallel to the mirror’s axis. 
Conversely, parallel rays from a distant source striking such a mirror 
will all be reflected so as to pass through the focus. Motor-car head­
lamps, searchlights and some electric fires are often designed so as to 
make use of this property.

EXERCISES 17(b)

1. If the chord joining the points (a i,2, 2att\  (at22,2at2) on the parabola
y2 =  4ax passes through the focus (a, 0), find t2 in terms oft!. PQ is a focal 
chord and PL, QM are perpendicular to the axis of the parabola. Prove 
that PL.QM is constant. (L.U.)

2. If PQ is one of a series of parallel chords of a parabola, prove that the mid­
point of PQ always lies on a line parallel to the axis of the parabola. (L.U.)
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3. P  is the point (at2, 2at) on the parabola y2 =  4ax. From a fixed point 
Q(h, k) a line is drawn perpendicular to the tangent at P  to meet, at R, the 
parallel through P  to the x-axis. Find the equation to the locus of R. (L.U.)

4. A line from the point (2,0) perpendicular to the tangent at the point (2f2,4f) 
to the parabola y2 = 8x meets that tangent at the point (ft, k). Express ft 
and k in terms of t and deduce the equation to the locus of the foot of the 
perpendicular from the point (2,0) on to any tangent to this parabola.

(L.U.)
5. P  is the point (at^,2atj) and Q the point (at22, la t2) on the parabola

y2 = 4ax. The tangents at P  and Q intersect at R. Show that the area of 
the triangle PQR is ja 2(tl — t2)3. (L.U.)

6. P  is the point (at2,2at) on the parabola y2 =  4ax. If PN  is the perpendicular
from P  to the x-axis and M  is the point where the normal at P  meets the 
x-axis, prove that the distance MN is independent of t. (L.U.)

7. P  is a point on a parabola whose focus is S. D is the foot of the perpendicular
from P  to the directrix. Show that the tangent to the parabola at P  bisects 
the angle SPD. (L.U.)

8. The normal to the parabola y2 =  4ax at the point P(at2,2at) meets the 
axis of the parabola at G and GP is produced, beyond P, to Q so that 
GP = PQ. Show that the equation to the locus of Q is y2 =  16a(x +  2a).

(L.U.)
17.7. The equation to an ellipse

The equation to an ellipse of eccentricity e (less than unity) takes
its simplest form when we take the focus S as the point (— at, 0) and

the directrix AB as the line x = —a/e. In Fig. 122, P is the point (x, y) 
arid PM is perpendicular to AB. The ellipse is the curve on which 
P lies when it moves so that the distance PS is t times the distance 
PM.

If the directrix AB meets the x-axis at C, C is the point (—a/e, 0) 
and PM is the sum of the abscissa of P and the length CO. Hence 
PM — x + (a/t), and since P and S are respectively the points (x, y) 
and (—ae,0)

PS2 = (x + at)2 + y2.
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Since PS =  e PM,

(x +  ae)2 +  y2 = e! (x  +  i ) ! ,

or, (1 — e2)x2 +  y2 = a2(l -  e2).
This can be written

x2 _ y2 
a2 + a2( 1 —I s) ~ 1,

and writing, b2 =  a2(l - < 2), (17.10)
the equation to the ellipse becomes

x 2 y2
=  1. (17.11)

To trace the curve we observe that, since only even powers of 
x and y occur, the curve is symmetrical about both the coordinate axes. 
From this symmetry we can deduce the existence of a second focus S' 
at the point (ae, 0) and a second directrix A'B' along the line x = a/e. 
The curve cuts the x-axis where (x2/a2) = 1, i.e. in the points (±a,0) 
and it cuts the y-axis where (y2/b2) = 1, i.e., at the points (0, ±b). 
These points are denoted by H, H', K, K' in Fig. 122. By writing 
equation (17.11) in the form

y _  i _  Ta ~  1
it is clear that y2 is negative, and therefore there is no part of the curve, 
for values of x greater than a or less than — a. Similarly, there are 
no parts of the curve for which y is greater than b or less than —b. 
The general shape of the curve is shown in the diagram.

The points H, H' are called the vertices of the ellipse. The lines 
HH' and KK' are called its axes; since e < 1, equation (17.10) shows 
that b < a, and the axes HH', KK' are referred to respectively as the 
major and minor axes. The origin O is called the centre of the ellipse, 
and a chord passing through the centre is called a diameter. The 
double ordinate LSL' through the focus S is the latus-rectum and there 
will be a second latus-rectum through the second focus S'. Since LS 
is the value of y when x = — at in equation (17.11),

LS = b J l ( -  y  hV( 1 -  e2)

= b2/a,
when use is made of equation (17.10). Thus the latus-rectum is of 
length 2b2/a.
To sum up, the curve

, ?  _  i
Z2 +  U 2 -  1 (17.11)
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is an ellipse of eccentricity e, less than unity, given by
£2 =  1 -  (b2/a2). (17.12)

The foci are the points (+  at, 0), the directrices the lines x = ±  (a/t), 
the semi-axes a, b and the centre the origin of coordinates.

Example 5. Show that the sum of the focal distances of any point on an ellipse is equal 
to the length of the major axis. Deduce a simple mechanical method for 
constructing the curve.
Using Fig. 122 and the definition of the ellipse, if x is the abscissa of P,

PS = t.P M  = ^  = a + ex.

Similarly, if PM' is drawn perpendicular to the second directrix A'B',

— xj = a — ex.

The sum of the focal distances PS, PS' is therefore equal to 2a, the length of 
the major axis.
By fixing two pins at S, S' and keeping stretched by a pencil point an endless 
piece of string passing round the two pins, the pencil will describe an ellipse 
with S, S' as foci

PS = t.PM - e

17.8. The tangent and normal to the ellipse at a given point 
Differentiating the equation (17.11) to the ellipse with respect to x,

^  _  n 
a2 + b2 d x ~  U’

so that the gradient of the ellipse at a given point (x1,y 1) is given by
= _  bhci 

\d x /x=xi a2 y i
The tangent at the point (x ^ y j is the line through this point with 
slope equal to the gradient of the curve ; its equation is

b2x i
y  -  y  i = - a2y i<x -  x,),

or, h2x x 1 +  a2yy1 =  t f x f 2 -I- a2y t2.
Dividing by a2b2, and using the relation (x^ /a 2) + {y^/b2) = 1 which 
is the condition that the point (x1; y j  shall lie on the ellipse, the equa­
tion to the tangent at the point (xt, y ,) can be written

, y y i ,
a2 + b2 ~ 1 (17.13)

Again it should be noted that the equation to the tangent at the point 
(Xj, y j) can be obtained from the equation to the curve by replacing x 2, y2 
by xx1,yy i respectively.
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The normal at the point (xt, y j  is the line through this point at 
right angles to the tangent. Its slope is therefore (a2y1)/(h2x1) and 
its equation is

a2y it v
y - y ' ~  b ^ x -  x ‘)-

This can be written in the more symmetrical form
x  -  = y  -  y i
x ja 2 yilb2 '

(17.14)

Example 6. Find the equations to the tangent and normal to the ellipse 5x2 + 3y 2 = 137 
at the point in the first quadrant whose ordinate is 2.
The abscissae of points on the ellipse at which the ordinate is 2, are given by 
writing y = 2 in the equation to the ellipse. This gives 5x2 = 137 — 3(2)2, or 
x = ±  5. The point in the first quadrant with this ordinate is therefore the 
point (5,2). The equation to the ellipse can be written in the form

—  + - ^ = 1,
(137/5} (137/3)

so that a2 =  137/5 and b2 = 137/3. Equation (17.13) then gives for the tangent 
at the point (5,2),

-Jï- + A  = 1,
(137/5) (137/3)

or, 25x + 6y =  137. The normal is given by equation (17.14) as

x -  5 y -  2 
5/(137/5) ~ 2/(137/3)’

i.e., 6x — 25y + 20 = 0.

17.9. The points of intersection of a straight line and ellipse
The coordinates of the points of intersection of the straight line 

y = mx + c and the ellipse (x2/a2) + (y2/b2) = 1 are the values of 
x and y which simultaneously satisfy both equations. Writing 
y = mx + c in the equation to the ellipse, the abscissae of the points 
of intersection are therefore given by

x2 (mx + c)2 _  . 
a2 + b2

or, (a2m2 + b2)x2 + 2 a2mcx + a2(c2 — b2) = 0» (17.15)
This quadratic equation has real, equal or imaginary roots according as 

(2a2mc)2 — 4(a2m2 + b2)a2(c2 — b2) 
is positive, zero or negative; i.e., according as c2 is less, equal to or 
greater than a2m2 + b2.

Again the three possibilities can be illustrated as was done for the 
circle in Fig. 116. When c2 < a2m2 + b2, the line intersects the ellipse
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in two real points. When c2 > a2tn2 + b2, the line intersects the 
ellipse only in imaginary points. If c2 =  a2m2 + b2, the line is a 
tangent to the ellipse.

Writing c = yj(a2m2 + b2) in the equation y = mx + c to the line, 
we find that the line

y = mx + -J(a2m2 + b2), (17.16)
always touches the ellipse. Further, since the radical sign on the 
right-hand side of equation (17.16) may have either positive or negative 
signs attached to it, we see that there are two tangents to the ellipse 
having the same m. In other words, there are two tangents parallel to 
any given direction.

Example 7. Find the locus of the point of intersection of tangents to an ellipse which 
are at right angles to one another.
Taking the ellipse in the usual form (17.11), the line

y = mx + y/(a2m2 + b2),
is always a tangent. A perpendicular tangent is obtained by replacing m by 
-  1/m, and its equation is

These equations can be written

y -  mx = + b2),
my + x  = J{a2 + b2m2).

The coordinates of the point of intersection of the tangents simultaneously 
satisfy these two equations. If therefore we eliminate m between the equations 
we shall obtain the locus of the point of intersection. Squaring and adding we 
find

(1 + m2)(x2 + y2) =  a2m2 + b2 + a2 + b2m2, 
or, x 2 + y1 = a2 + b2.
The required locus is therefore a circle with centre coincident with the centre 
of the ellipse and with radius y/(a2 + 62). This circle is called the director circle.

17.10. The parametric equations to an ellipse. The eccentric angle 
As with the parabola, it is often convenient to express the coordin­

ates of any point on the ellipse in terms of one variable. It is easy to 
verify that equation (17.11) is satisfied by a point whose coordinates 
are given by

x  = a cos tj>, y = b sin <p. (17.17)
These can therefore be regarded as the parametric equations to the 
ellipse. They express the coordinates of a point on the curve in terms 
of a parameter, the angle <j>, and, for brevity, the point (a cos <f>, b sin tf>) 
is often referred to as the point
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X

F ig. 123

In Fig. 123, Q is a point on the circle whose centre coincides with 
the centre 0  of the ellipse (x 2/a2) + (y2/b2) =  1 and whose diameter 
is equal to the major axis (2a) of the ellipse. Such a circle is called the 
auxiliary circle of the ellipse. The line QP is drawn perpendicular to 
the x-axis to meet the ellipse at the point P shown. If the angle 
QOx = <p, it is clear that the coordinates of Q are (a cos <f>, a sin </>). 
The abscissa of P is equal to that of Q and so is also a cos <f>. Substitu­
tion of this value of x  in the equation to the ellipse gives the corre­
sponding value of the ordinate to be b sin <f> and hence P is the point 
(a cos </>, b sin </>). The angle <f>, defined in this way, is known as the 
eccentric angle of the point P.

To obtain the equation to the tangent to the ellipse at a point 
whose eccentric angle is <f>, we have

x = a cos <f>, y = b sin <f>,
and the gradient of the ellipse at this point is given by

The tangent is therefore the line through the point (a cos (p, b sin tj>) 
having a slope — (b/a) cot <f>. Its equation is

The normal at this point is the line through the point (a cos <p, 
b sin <p) with slope (a/b) tan <p. Its equation will therefore be

dx (dx/d<p) —a sirup a

which reduces to
X y
-  cos <p + t sin <b = 1. a b (17.18)

This reduces to
a x  sec <j> — b y  cosec <f> =  a 2 — b 2. (17.19)
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Example 8. Q is the point (a cos <j>, a sin <j>) on the auxiliary circle of the ellipse 
(x2/a2) + (y2/b2) = 1. P is the point on the ellipse with coordinates (a cos <f>, 
b sin <j>). I f  S is a focus of the ellipse show that the length of the perpendicular 
from S on to the tangent til Q to the circle is equal to SP. (L.U.)
The equation to the auxiliary circle is x2 + y2 = a2 and the equation to the 
tangent at the point (a cos <j>, a sin <j>) is xa cos </> + ya sin <j> = a2, or,

x cos <fr + y sin (¡> = a.
If S is the focus (at, 0), where t is the eccentricity of the ellipse, the length of 
the perpendicular from S on to this line is

at cos <j> — a 
,/(cos2 <b + sin2 ij>) = a(t cos <t> — 1).

The distance SP between the points (at, 0), (a cos <t>, b sin <j>) is given by 
SP2 = (at — a cos <j>)2 + (0 — b sin <j>)2 

= a2(t — cos <j>)2 + a2(l — t 2) sin2 <f>,
when use is made of the relation b1 = a2(l — t2). This, by use of the identity 
cos2 f  + sin2 <t> = 1, reduces to SP = a(t cos 4> — 1), showing that SP is equal 
to the length of the perpendicular from S on to the tangent at Q to the circle. 
A similar proof holds if we take S to be the second focus ( — at, 0).

EXERCISES 17(c)
1. Find the distance between the foci, the eccentricity and the length of the 

latus-rectum of the ellipse 3x2 + 4y2 = 12.
2. Find the equation to an ellipse whose centre is the origin, whose latus- 

rectum is 10 and whose minor axis is equal to the distance between the 
foci. The axes of the ellipse lie along the coordinate axes.

3. Find the locus of a point which moves so that the sum of its distances
from two fixed points 6 units apart is always 10 units. Your answer should 
be in the form of an equation referred to axes of symmetry. (O.C.)

4. Show that the intercepts made on the axes by the tangent at the point
(16/5,9/5) to the ellipse (x2/16) +  (y2/9) =  1 are equal. (O.C.)

5. Find the equations to those tangents to the ellipse x2 + 2y2 = 8 which
are parallel to the line y =  2x. (O.C.)

6. Find the equations to the normals at the points (6,4) and (8,3) to the
ellipse x2 + 4y2 =  100. Prove that the line joining the origin to the middle 
point of the chord joining these two points is perpendicular to the line 
joining the origin to the point of intersection of the normals. (O.C.)

7. Two diameters of an ellipse are said to be conjugate when each bisects all 
chords parallel to the other. Show that the diameters y = mx, y =  m'x of 
the ellipse (x2/a2) +  (y2/b2) =  1 are conjugate if mm' =  —b2/a2.

8. P is the point (a cos <j>, b sin </>) on the ellipse (x2/a2) +  (y2/62) = 1. The 
normal at P to the ellipse meets the x-axis at Q. Show that the locus of the 
mid-point of PQ is an ellipse whose semi-axes are (2a2 — b2)/2a and 6/2.

(O.C.)
9. Show that tangents to the ellipse (x2/a2) + (y2/62) =  1 at points whose 

eccentric angles differ by 90° meet on the ellipse (x2/a2) + (y2/b2) =  2.
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10. Show that the equation to the chord joining the two points whose eccentric 
angles are </>, 4>' on the ellipse (x2/a2) + (y2/b2) = 1 is

-  cos + <f>') + r  s‘n ̂  +  <£') =  cos ~ 4>')- a b
Deduce the equation to the tangent at the point “<j>'\

17] T H E  H Y P E R B O L A

17.11. The equation to a hyperbola
The equation to a hyperbola can be derived by a similar method 

to that used in § 17.7 to obtain the equation to an ellipse. Again (Fig. 
124) we take the focus S as the point ( — at, 0) and the directrix AB

Fig. 124

as the line x = —a/t. Since the eccentricity t is now greater than 
unity, the relative positions of the focus S and the point of intersection 
C of AB with the x-axis are interchanged—here C is nearer to the 
origin 0  than S.

If P is the point (x, y) on the curve, PM is again the sum of the 
abscissa of P and the length CO, i.e., PM — x + (a/e). The length PS 
is again given by

PS2 =  (x + at)2 + y2,
and since, by the definition of a hyperbola, P is a point such that 
PS = t.PM

(x + at)2 + y2 =  f2^x + j 'j

This can be written

or,

{t2 — l)x2 — y2 — a2(e2 — 1), 
x2 y2
a2 a2(e2 — 1)

b2 = a2(t2 — 1),Writing (17.20)
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the equation to the curve becomes
y
b2- f * =  1. . (17.21)

In tracing the curve, we first observe that its equation contains 
only even powers of x and y and it is therefore symmetrical about both 
the coordinate axes. From this symmetry we can deduce the existence 
of a second focus S' at the point (ae, 0) and a second directrix A'B' 
along the line x  = a/t. The curve cuts the x-axis where (x2/a2) — 1,
i.e., in the points (± a ,0) shown as H' and H  in Fig. 124. By writing 
x = 0 in equation (17.21), the points in which the curve cuts the 
y-axis are given by — (y2(b2) = 1, showing that such points are 
imaginary. By writing the equation in the form

it is clear that y2 is negative, and therefore there is no part of the 
curve, for values of x which lie between ±a. On the other hand, the 
equation can be written

showing that points exist on the curve for all values of y. The above 
forms of the equation to the hyperbola also show that y increases as 
x increases and vice versa. The curve consists of two portions, one 
of which extends in an infinite direction towards the positive direction 
of the x-axis, and the other in an infinite direction towards the negative 
side of the axis and is shown in the diagram.

The points H, H' are called the vertices and the line HH' the 
transverse axis of the hyperbola. The origin O is the centre and chords 
through the centre are called diameters. The double ordinate LSL' 
through the focus S is the latus-rectum and there will be a second 
latus-rectum through the second focus S'. From equation (17.21), 
since LS is the value of y when x = —ae,

LS = b -  l) = b j(e2 -  1) = £

when use is made of equation (17.20). The length of the latus-rectum 
is therefore 2b2/a.

To summarise, the curve
:__ = t
2 b2 ’

(17.21)

is a hyperbola of eccentricity e, greater than unity, given by
£ 2 =  1 +  (b 2 / a 2 ). (17.22)
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The foci are the points (±  ae, 0), the directrices the lines x =  ± (a/e), 
the transverse axis is of length 2a and the centre is the origin of 
coordinates.

Example 9. Show that the difference of the focal distances of any point on a hyperbola 
is equal to the length of the transverse axis.
Using Fig. 124 and the definition of the hyperbola, if x is the abscissa of P,

+ 7) = «  + *•
Similarly, if PM' is drawn perpendicular to the second directrix A'B',

= ix  — a.

The difference of the focal distances PS, PS' is therefore equal to 2a, the length 
of the transverse axis.

PS' = £. PM'

PS = i.PM

17.12. The tangent and normal to the hyperbola at a given point 
Differentiating the equation (17.21) to the hyperbola with respect 

to x,
2x 2 y dy
1? b2 dx 0,

so that the gradient of the hyperbola at a given point (xt, yt) is given by
fdy \ =  fr2*i 
\ d x ) x = Xi < £ y x '

The tangent at the point (x^y^  is the line through this point with 
slope equal to the gradient of the curve; its equation is

b2xM
> -  *  -  s ^ x ~

or, h2xx1 — a2yyl = b2x 2 — a2y 2.
Dividing by a2b2, and using the relation (xt2/a2) — iy ^ /b 2) = 1 which 
is the condition that the point (xl5 y j  shall lie on the hyperbola, the 
equation to the tangent at the point (x„ yt) can be written

yy l i
a2 b2 ~  1

(17.23)

Once again the equation to the tangent at the point (xt, y j  can be obtained 
from the equation to the curve by replacing x2, y2 by xxt, yyt respectively.

The normal at the point (xx, yt) is the line through this point at 
right angles to the tangent. Its slope is therefore —(a2yi)/(b2x l) and 
its equation is

y -  y  i = - — x t ).
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This can be written in the more easily memorised form
*  ~  * i  =  y  ~  T i  

*i /a2 y j { - b 2)'
(17.24)

Example 10. Write down the equations to the tangent and normal to the hyperbola 
9x2 — 4y2 = 36 at the point (4,3^/3).
The equation to the hyperbola can be written as

so that a1 — 4, b1 = 9. From (17.23) the equation to the tangent at the point 
(4,3^3) is

4* 3V3y 
4 9

or, 3x -  ,/3y = 3. Equation (17.24) gives the normal at this point as the line 
x -  4 y — 3^/3 

4/4 3V3/1-9)'
or, x + yjiy  = 13.

17.13. The points of intersection of a straight line and hyperbola
Since the equation to the hyperbola only differs from that to the 

ellipse in having — b2 in place of b2, many of the results derived for 
the ellipse can be used for the hyperbola if the sign of b2 is changed. 
For example, equations (17.23), (17.24) for the tangent and normal to 
the hyperbola at the point (xj, y t) can be obtained from the correspond­
ing results (17.13), (17.14) for the ellipse by replacing b2 by —b2.

In the same way, the analysis given in § 17.9 for the points of inter­
section of the line y = mx + c and the ellipse will apply if the sign 
of b2 is changed throughout. We shall find that the line meets the 
hyperbola in real, coincident or imaginary points according as c2 is 
greater than, equal to or less than a2m2 — b2. We shall also find that 
the line

y = mx + yj(a2m2 — b2), 
always touches the hyperbola.

Working as in Example 7, we shall find that the locus of the point 
of intersection of perpendicular tangents to the hyperbola is the circle 
x2 + y2 = a2 — b2. This circle is again called the director circle. It 
should be noticed that whereas for the ellipse b < a, there is (see 
equation (17.20)) no corresponding limitation in the case of the 
hyperbola. The radius of the director circle being ^j(a2 — b2), the 
circle is real whenever b2 < a2. If b2 = a2, the radius of the circle is 
zero and it reduces to a point circle at the origin and in this case the 
centre of the hyperbola is the only point from which perpendicular
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tangents can be drawn to .the curve. If b2 > a2, the radius of the 
director circle is imaginary and no perpendicular tangents can be 
drawn to the hyperbola. .

17] P A R A M E T R IC  E Q U A T I O N S  T O  H Y P E R B O L A

17.14. The parametric equations to a hyperbola
An ordinate of the hyperbola does not meet the auxiliary circle 

on HH' as diameter in real points (see Fig. 124). There is thus no real 
eccentric angle as in the case of the ellipse. It is, however, often useful 
to be able to express the coordinates of any point on the curve in 
terms of one variable. Since sec2 0  = 1 + tan2 0, the equations

x = a sec 0, y = b tan 0, (17.25)
may be used, for these expressions clearly satisfy the equation 
(x2/a2) — (y2/b2) = 1 to the hyperbola.

It is possible to give a geometrical definition of the angle <f> used 
above but it is not very important to do so. The parametric equations
(17.25) are, however, very useful in solving some problems and we 
shall derive the equations to the tangent and normal to the hyperbola 
at the point “0”, i.e., the point whose coordinates are given by 
equations (17.25).

From (17.25),
dx . . dy , , ,
77  = a sec 0 tan 0, -77 = b sec 0,d<p a0

so that the gradient of the hyperbola at the point (a sec 0, b tan 0) is 
given by

dy _  (dy/d<f>) _  b sec2 0 _  b sec 0
dx (dx/d<j)) a sec 0 tan 0 a tan <f>

The tangent is the line through the point (a sec 0, b tan 0) with slope 
(b sec 0)/(a tan 0). Its equation is

y — b tan 0 = b sec 0 
a tan 0(x — a sec 0),

which reduces to
x . y- s e c 0 -  f  tan 0 = 1.a b (17.26)

The normal is the line through the point (asec0, b tan 0) with 
slope -  (a tan 0)/(b sec 0). Its equation will therefore be

y — b tan 0 a tan 0
b sec 0(x — a sec 0).

This reduces to
a x  sin <() +  b y  =  (a 2 +  b 2) tan 0 . (17.27)
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Example 11. IfS , S' are the foci and P is any point on a hyperbola, show that SP, S'P 
are equally inclined to the tangent at P. (L.U.)
In Fig. 125, S is the focus ( - a t ,  0) and S' the focus (at,0) of the hyperbola.

Fig. 125

P is the point (a sec 4>, b tan <t>) and the tangent at P cuts the x-axis at the point 
T. The equation to the tangent at P is

(x sec — (y tan <t>)/b = 1,
and the abscissa of T is obtained by writing y = 0 in this equation. The abscissa
of T is therefore given by x = a/sec 4> = a cos <j>. Hence ST = ae + cos 4>, and
TS' = at — a cos </>. Hence

ST _ae  + a cos <j> e + cos tf>
TS' at — a cos ef> e — cos <j>

But we have shown in Example 9 that, if x is the abscissa of P, PS = ex + a, 
PS' = ex -  a. Here x = a sec <j>, so that

Hence

PS
PS'
SIT
TS'

ae sec <l> + a 
ae sec <j> — a 
PS 
PS"

e + cos <t> 
e — cos <!>'

and it follows from a well-known geometrical theorem that PT  bisects the 
angle SPS'.

EXERCISES 17(d)

1. Find the coordinates of the foci, the eccentricity and the length of the latus- 
rectum of the hyperbola 4x2 — 9y2 =  36.

2. The centre of a hyperbola is at the origin and its transverse axis lies along 
the x-axis. Find the equation to the hyperbola if the distance between its 
foci is equal to 4a, where 2a is the length of the transverse axis.

3. Find the equations to the tangent and normal at the point ( — 3, — 1) to the 
hyperbola x2 — 6y2 =  3.

4. Find the equations to those tangents to the hyperbola 4x2 — 9y2 = 1 which 
are parallel to the line 4y =  5x +  9.

5. Two diameters of a hyperbola are said to be conjugate when each bisects all 
chords parallel to the other. Show that the diameters y — mx, y — m'x of 
the hyperbola (x2/a2) — (y2/b2) =  1 are conjugate if mm' =  b2/a2.
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6. P is a point on the hyperbola (x2/a2) — (y2/b2) = 1 and N is the foot of the 
perpendicular from P on the x-axis. The tangent to the hyperbola at the 
point P meets the x-axis at T. Show that, if O is the origin, OT.ON =  a2.

7. Show that the coordinates of any point on the hyperbola
(x2/a2) -  (y2/b2) =  1

can be represented by 2x =  a(t 4- t~ ‘), 2y = b(t — t~1) and find the equation 
to the tangent at such a point.

8. Show that the equation to the chord joining the points (a sec tfr, b tan <£), 
(a sec <£', b tan <j>') on the hyperbola (x2/a2) — (y2/b2) =  1 is

X  V
-  cos — <£') — f  sin ̂ </> +  <l>') =  cos a b

Deduce the equation to the tangent at the point

17] A S Y M P T O T E S  OF H Y P E R B O L A

17.15. The asymptotes of a hyperbola
The abscissae of the points of intersection of the straight line 

y = mx + c and the hyperbola (x2/a2) — (y2/b2) = 1 are given by 
writing y = mx -F c in the latter equation. This gives

x2 (mx -F c)2 ,
p- p  -  I-

or, arranged as a quadratic equation in 1/x,
a2(c2 +  b2) 2a2mc , ,
—-— 5------ + ------- + a2m2 b2 = 0.

If a2m2 — b2 and a2mc are both zero, this equation in 1/x has two 
zero roots. In other words, if

m = ±b/a  and c = 0,
the line y = mx + c meets the hyperbola in two points at each of 
which 1/x is zero, i.e., the line meets the hyperbola in two points 
situated at an infinite distance from the centre of the curve.

Lines which meet a hyperbola in two points both of which are 
situated at an infinite distance, but which are not themselves altogether 
at infinity are called asymptotes. The asymptotes of the hyperbola 
(x2/a2) -  (y2/b2) = 1 are therefore the lines

y = ± ^x. (17.28)

These two lines pass through the centre of the hyperbola (the origin) 
and are equally inclined to the x-axis, the inclinations being 
± tan - 1 (b/a). They are shown as the lines LOL', MOM' in Fig. 126. 
Written as a single equation, the asymptotes (17.28) would be given by 

/  b \  ( b
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X

Fig. 126

or, after division by b2 and slight rearrangement,

= 0.a2 b
Exuaple 12. F is a point on the hyperbola (x2/a2) — (y2/b2) = 1 and the tangent at 

P meets the asymptotes at Q and Q'. Show that P is the mid-point of QQ'.
If P is the point (a sec 0, b tan <f>), the tangent at P is, from equation (17.26),

(17.29)

X V-sec <j> — ~ tan 0 = 1. a b
The asymptotes of the hyperbola are

a2 b2 U’
and the abscissae of the points Q, Q' are given by eliminating y from these two 
equations. Writing

y =

from the first equation in the second, we have
x2 (x \ 2-  cot2 01 -  sec 0 -  11 =0 .

This, using cosec2 0 = 1 +  cot2 0 and division by cot2 0, reduces to 
x2 2x
-3 -  — sec 0 + 1 = 0. a a

If the roots of this quadratic equation are x,, x2, 
x, + x2 = 2a sec 0,

and ^{x, + x2) = a sec 0 = abscissa of point P.
Similarly, by eliminating x from the equation to the tangent and that to the 
asymptotes, we shall find that half the sum of the ordinates of the points 
Q, Q‘ is equal to the ordinate of the point P. Hence P is the mid-point of QQ'.

17.16. The rectangular hyperbola
If in the hyperbola (x 2/a2) — (y2/b2) = 1, the quantities a and b 

are equal, the equations to the asymptotes are, by (17.28), y = ±x.
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The asymptotes are therefore inclined at angles of ±45° with the 
x-axis and are perpendicular to each other. The equation to the 
hyperbola can be written

x2 — y2 = a2, (17.30)
and, because of the perpendicularity of its asymptotes, it is often called 
a rectangular hyperbola. Because of the equality of a and b, this 
hyperbola is also sometimes said to be equilateral.
17.17. The equation to a rectangular hyperbola referred to its asymptotes

The equation to a rectangular hyperbola takes a very simple form 
when the axes of coordinates coincide with the asymptotes. If in

Fig. 127, P is a point on a rectangular hyperbola and the coordinates 
(X, T) of P are measured from lines OX, OY bisecting the angles 
between the two asymptotes Ox, Oy, X  and Y are related by

X 2 -  Y2 = a 2 . (17.31)
PK, PM are drawn perpendicular to OX, Ox respectively and ML, 
MN are drawn perpendicular to PK, OX as shown. Since the angle 
XOx is 45°,

OK = NK + ON = ML + ON
= PM cos 45° + OM cos 45° = (PM + OM)/J2,

and PK = PL -  KL  = PL -  MN
= PM sin 45° -  OM sin 45° = (PM -  OM)/J2.

If Ox, Oy are taken as coordinate axes, OM = x, PM = y, and 
since OK = X, PK = Y, the above results give

X = (y + x)/y/2, Y = (y — x)/j2 .
Substitution in (17.31) yields

(y + x)2 (y -  x)2 _  2 
22
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reducing to xy = a2/2.
Writing 2c2 = a2, the equation takes the very simple form

xy = c2. * (17.32)
When a rectangular hyperbola is referred to its asymptotes as axes, 

a point whose coordinates are given by
x = ct, y = c/t, (17.33)

always lies on it, for these coordinates satisfy the equation xy = c2. 
The equations (17.33) give a parametric representation to a rectangular 
hyperbola and the point given by them may be called the point “t”. 

If we differentiate equations (17.33) with respect to t 
dx _  dy _  c
d i ~ c’ ~ d t~ ~ T 2'

and the gradient of the rectangular hyperbola xy =  c2 at the point 
“f” is given by

dy _  (dy/dt) _  —c/t2 _  1
dx (dx/dt) c t2’

The tangent to the hyperbola at this point is therefore the line
c l

y  -  ~ = -  -¡¿x -  ct),

or, x + t2y = 2 ct. (17.34)
The normal is the line through the point (ct, c/t) with slope t2 and 
its equation is

y - j  = t2(x ~  cf)>

or, t2x -  y = c(t3 — 1/t). (17.35)

Example 13. Find the equation to the normal at the point (3,4) to the rectangular 
hyperbola xy = 12, and the coordinates of its second point of intersection with 
the curve. (O.C.)
Here c2 = 12 and c = 2 j3 . The parameter “t” of the point (3,4) is given by 
3 = 2yjyt, so that t = i-y/3. From (17.35) the equation to the normal is

( ^ - - V 3 { ( ^ } .
or, 3x — Ay + 7 = 0.
Let the second point of intersection of the normal be the point (2,/3r, 2,/3/i). 
Since this point lies on the line 3x — 4y + 7 = 0

6y/3t -  ^  + 7 = 0,

giving 6j(3 t2 + It -  8^/3 = 0. This can be written in the form 
(2t -  V3)(3V31 + 8) = 0,
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so that t = \  or — S/fiJi). The first value of t corresponds to the point 
(3,4), so that the coordinates of the second point of intersection are found by 
using t -  -S/(3y/3). With this value of t, the point (2 /̂3t ,2 /̂3ft) is the point 
(-16 /3 ,-9 /4).

EXERCISES 17(e)

1. A tangent to the hyperbola (x2/a2) — (y2/b2) = 1 meets the asymptotes in 
Q and Q'. If O is the centre of the hyperbola, show that the area of the triangle 
OQQ' is ab.

2. S is the focus on the positive x-axis of the hyperbola (x2/9) — (y2/4) =  I 
and y  is the foot of the perpendicular from S on that asymptote which lies 
in the first and third quadrants. Prove that Y lies on the directrix and also 
on the circle whose centre is the origin and whose radius is the semi-transverse 
axis.

3. Find the eccentricity of a rectangular hyperbola.
4. Show that the equation to the line joining the points (cf, c/t), (ct', c/t') on 

the rectangular hyperbola xy =  c2 is x +  tt’y — c(t + t'). Deduce the 
equation to the tangent at the point “t”.

5. The normal to the rectangular hyperbola xy =  8 at the point (4,2) meets 
the asymptotes at Af and N. Find the length of MN.

6. PN is the perpendicular to an asymptote from a point on a rectangular
hyperbola. Prove that the locus of the mid-point of PN is a rectangular 
hyperbola with the same axes. (O.C.)

7. TP, TQ are the tangents at two points P, Q on the rectangular hyperbola 
xy = c2. Show that the line joining the centre of the hyperbola to the point 
T bisects the chord PQ.

8. Find the locus of the mid-point of a straight line which moves so that it 
always cuts off a constant area k2 from the corner of a square.

EXERCISES 17 ( / )

1. Write down the coordinates of the focus S and the equation to the directrix 
of the parabola y2 r= 4x.

PQ is a focal chord of this parabola and PR is a chord perpendicular to 
the axis. The tangents at Q and R meet at T. Prove that ST is parallel to 
the directrix. (L.U.)

2. The tangent to the parabola x2 =  4ay at the point for which y =  at2 meets 
the axes of x and y at the points P and Q. Obtain an expression for the 
area of the triangle POQ in terms of t, O being the origin. (L.U.)

3. Find the coordinates of the point of intersection R of the tangents to the
parabola y2 =  4ax at the points P(a£,2,2a f1), Q(at22, 2at2). If the tangents 
at P, Q are inclined to one another at an angle of 45°, show that the locus 
of R is the curve y2 — x2 +  6ax + a2. (L.U.)

4. P and Q are two points on the parabola y2 = 4ax whose coordinates are
(a t2, 2at1) and (at22,2at2). O is the origin of coordinates and OP is 
perpendicular to OQ. Show that f [£2 +  4 =  0 and that the tangents to the 
curve at P and Q meet on the line x +  4a =  0. (L.U.)
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5. P  is the point (a t2, 2at) on the parabola y 2 — 4ax. N  is the foot of the 
perpendicular drawn from the origin to the tangent at P . Show that, as P  
varies, the locus of N  is the curve x (x 2 + y 2) + a y 2 = 0. _ (L.U.)

6. The normal at the point P (a t2,2 a t) to the parabola y 2 = 4ax  meets the
parabola again at the point R (a T 2,2 aT ). Prove that T  = — t — 2/f. Prove 
also that, if the normal at Q (a t12,2 a t i ) passes through R , then t { = 2/t.

(O.C.)
7. The normal at the point P(at2, 2at) to the parabola y 2 =  4ax meets the

curve again at the point Q(at'2, 2at'). Find t' in terms of t and hence, or
otherwise, prove that the lines joining the origin to P  and Q are at right 
angles if t2 =  2.

8. From a point P  on a parabola with vertex A  and focus S, the line P N  is 
drawn perpendicular to the axis AS. The tangents at A  and P  intersect at
Q. Prove that P Q 2 = A N .S P .

9. A variable chord through the focus of the parabola y 2 — 4ax  cuts the 
curve at P  and Q. The straight line joining P to the point (0,0) cuts the 
line joining Q  to the point ( — a, 0) at R . Show that the equation to the 
locus of the point R is y 2 + 8x2 + 4ax  = 0.

10. Find the equations to the tangents to the parabola y 2 = 9x which pass 
through the point (4,10).

11. Find the equations to the tangents to the curves

x 2 + y2 = 9, 4x2 + y 2 =  16

at one of the points where the curves intersect, indicating on a sketch which 
point of intersection you have chosen.

Calculate the angle at which the curves intersect. (Q.E.)
12. A B  and B C  are two rods each of length a jointed at B . A  is pivoted to a

fixed point and C  can move in a straight slot, which passes through A. P  is 
a point on B C  such that B P  = b. Find the coordinates of P  referred to A C  
as axis of x  and a perpendicular through A  to A C  as axis of y, when each 
of the angles B A C , B C A  is 0, and show that, as the rods move, P  traces out 
an ellipse whose semi-axes are (a + b) and (a — b). (O.C.)

13. Show that the tangents to the ellipse x2 + 2y 2 = 18 at the points (0, —3),
(— 72/17, —3/17) intersect on the normal at the point (4,1). (O.C.)

14. The equation to a chord of the ellipse x2 + 4y2 = 260 is x + 6y = 50.
Find the coordinates of its middle point. (O.C.)

15. The tangent at the point P(u cos <p, b sin 4>) to an ellipse centre C and
semi-axes a, b meets the major axis at T. N  is the foot of the perpendicular 
from P  to the major axis. Show that CN.CT = a 2. (O.C.)

16. S, S ' are the foci of an ellipse of semi-axes a and b. The normal at a point
P  on the ellipse meets the minor axis at G. Show that the square of the 
distance of G  from either focus is (a 2 — b2)S P .S 'P / b 2. (O.C.)

17. Find the ratio of a to b for which the ellipse (x 2/a2) + (y2/b2) = 1 and the
parabola y 2 = 4ax cut at right angles. (Q.E.)

18. The centre of a hyperbola is the origin and its transverse axis lies along
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the axis of x. If the distance between the foci is 16 and the eccentricity is 
y/2, write down the equation to the hyperbola.

19. If h and k are the intercepts on the coordinate axes of any tangent to the 
hyperbola (x2/a2) -  (y2/b2) =  1, show that

(a2/h2) -  (b2/k2) = 1.
20. The normal at any point P on the hyperbola (x2/a2) — (y2/b2) = 1 meets 

the x-axis at G. Q is a point on either asymptote such that PQ is parallel 
to the y-axis. Show that GQ is perpendicular to the asymptote on which 
Q lies.

21. P is the point (5/4,3/4) on the rectangular hyperbola x2 — y2 =  1. The 
normal at P cuts the axes of x and y at G and g respectively. Prove that, if 
0  is the origin, PG =  Pg =  PO.

22. Show that the equation to the chord joining two points (x ^ y j , (x2, y2) 
on the rectangular hyperbola xy =  c2 is

— i —  +*i + *2 y i  +  y 2
23. PP’ is a diameter of the rectangular hyperbola xy =  c2. The tangent at P 

meets lines through F  parallel to the asymptotes in Q and Q'. Prove that 
P is the middle point of QQ' and that the equation to the locus of Q is 
xy + 3c2 =  0.

24. The perpendicular from the origin to the tangent at a point P on the
rectangular hyperbola xy =  c2 meets the curve at Q and R. The chords 
PQ and PR meet the x-axis at U and V. Prove that the mid-point of UV 
is the foot of the perpendicular from P to the x-axis. (O.C.)

25. The tangent at P to the rectangular hyperbola xy =  c2 meets the lines
x -  y =  0 and x +  y =  0 at A and B, and A denotes the area of the triangle 
OAB where O is the origin. The normal at P meets the x-axis at C and the 
y-axis at D. If A! denotes the area of the triangle ODC show that 
A2A, =  8c6. (O.C.)



CHAPTER 18

SOME THEOREMS IN PURE GEOMETRY

18.1. Introduction
The student is assumed to be familiar with the usual theorems 

on angles at a point, parallel straight lines, the congruence of triangles, 
areas of triangles and simple rectilinear figures and Pythagoras’ 
theorem. Such theorems form one part of what may be called “school” 
geometry and, except in so far that they may be appealed to in the 
solution of some examples and exercises, will not be further considered 
here.

A knowledge of the usual theorems on the circle and similar tri­
angles will also be assumed. This part of the subject is also usually 
studied at the school stage but a statement of the more important 
theorems and a few revision examples may not be out of place here. 
For proofs of these theorems of elementary geometry the reader is 
referred to one of the usual texts.

The remainder of this chapter is devoted to theorems on similar 
rectilinear figures, further properties of the triangle, concurrency of 
lines and collinearity of points. It is assumed that the reader has not 
previously studied such theorems, proofs are given and rather more 
examples and exercises are provided.

18.2. Statements of some theorems on the circle
The more important theorems on the circle can be stated as 

follows:—
(a) A straight line drawn from the centre of a circle to bisect a chord, 

which is not a diameter, is at right angles to the chord.
Conversely, the perpendicular to a chord from the centre bisects 

the chord.
(b) There is one, and only one, circle which passes through three given 

points not in a straight line.
(c) Equal chords of a circle are equidistant from the centre, and the 

converse.
(d) The tangent to a circle and the radius through the point of contact 

are perpendicular to each other.
(e) The angle which an arc of a circle subtends at the centre is double 

that which it subtends at any point on the remaining part of the 
circumference.

(/) Angles in the same segment of a circle are equal, and the converse. 
(;g) The angle in a semicircle is a right angle.

344
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(h) The opposite angles of any quadrilateral inscribed in a circle are 
supplementary, and the converse.

(i) If a straight line touch a circle, and from the point of contact a 
chord be drawn, the angles which this chord makes with the tangent 
are equal to the angles in the alternate segments, and the converse.

( j)  If two chords of a circle intersect either inside or outside a circle, 
the rectangle contained by the parts of the one is equal to the 
rectangle contained by the parts of the other, and the converse.

(fc) If, from any point outside a circle, a secant and a tangent are 
drawn, the rectangle contained by the whole secant and the part 
of it outside the circle is equal to the square on the tangent, and 
the converse.

18.3. Some revision examples on the geometry of the circle 
In this section two examples on the theorems of § 18.2 are given. 

Further problems will be found in Exercises 18 (a).

Example 1. A line DE parallel to the base BC of a triangle ABC cuts AB, AC in D 
and E respectively. The circle which passes through D, and touches AC at E, 
meets AB at F. Prove that F, E, C, B lie on a circle. (L.U.)
Join EF (Fig. 128). By theorem (i) above,

angle CED = angle EFD.
Since DE is parallel to BC, the angles CED, BCA are supplementary.
Hence the angles BCA, EFD are supplementary, and, by the converse of theorem 
(h) above, the points F, E, C, B lie on a circle.

Example 2. In a triangle ABC, the side AB is greater than the side AC, and D is a 
point in AB such that AD is equal to AC; the internal bisectors of the angles 
B and C meet in I. Show that the four points B, D, I, C lie on a circle. (O.C.) 
Since AD = AC, the triangle ADC is isosceles and (Fig. 129),

B Fic. 128

C

angle ADC = angle DC A.
Since the sum of the angles of the triangle ADC is 180",

giv ing
2 angle ADC + angle CAD = 180°,

angle ADC = 90° — $A,
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A

where A = angle CAD. The angle CDB is the supplement of the angle ADC 
so that angle CDB = 180° -  (90° -  $A) = 90° + $A.
Since angle IBC = \B, angle BCI = \C, the triangle IBC gives

angle CIB = 180° -  \B  -  \C
= 180° -  |(180o -  A) = 90° + K

since A + B + C = 180°.
Hence, angle CDB = angle CIB and the converse of theorem ( /)  shows that 
the points B, D, I, C lie on a circle.

EXERCISES 18(a)

1. O is a fixed point and P  is a variable point on a fixed line l. Q is a point
on the line OP such that OP.OQ  is constant. Show that the locus of Q is a 
circle passing through O. (L.U.)

2. The points A, B, C, D lie on a circle in that order. From B perpendiculars
BX, B Y  are drawn to AD and CD respectively. Prove that the angle B Y X  
is equal to the angle BDA. (L.U.)

3. The altitudes AD, BE of a triangle ABC  meet at the point H. If AD is 
produced to meet the circumscribing circle of the triangle at K, prove that 
H K  = 2HD. Prove also that the three altitudes all pass through the point H.

(L.U.)
4. With a point A on the circumference of a circle S t as centre, a circle S2 is

described, cutting S, at B and C. A straight line through A meets at P, 
S2 at Q, and the chord BC at R. Prove that AQ2 = A P .A R . (L.U.)

5. In a triangle ABC  the angle C is greater than the angle B. The bisector of
the angle A meets the circumcircle of the triangle at E, and F, G are the feet 
of the perpendiculars from E  to AB  and AC  respectively. Prove that 
AF  =  AG = %AB +  AC) and that BF = CG = %AB -  AC). (L.U.)

6. X, Y are the points of contact of tangents drawn to a circle from an external 
point P. A straight line through P cuts the circle in the points Q and R. 
R Y  (produced where necessary) meets the circle through P, Q and Y, in the 
point K. Prove that PK  =  P Y  and that the angle K P X  = 2 angle X YR .

(L.U.)
7. AB is a diameter of a circle whose centre is C, and X  is any point on the 

circumference. P is the foot of the perpendicular drawn from X  to AB. FI
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and K are points on the circumference such that XH = XK  = XP. HK 
meets XP in M and XC in N. Prove that the points M, N, C and P lie on 
the same circle. * (L.U.)

8. A chord AB of a circle, whose centre is C, is produced to a point T, and a 
point X is taken on CT such that TC. TX = TA.TB. Prove that the angles 
AXC, BXT are equal.

18.4. Statements of some theorems on proportion and similar triangles
The more important theorems on proportion and similar triangles

can be stated as follows:—
(0 If a straight line is drawn parallel to one side of a triangle, the 

other two sides are divided proportionally, and the converse.
(m) If two triangles are equiangular their corresponding sides are 

proportional, and the converse.
(n) If two triangles have one angle of the one equal to one angle of 

the other and the sides about these equal angles proportional, the 
triangles are similar.

(o) If a perpendicular is drawn from the right angle of a right-angled 
triangle to the hypotenuse, the triangles on each side of the per­
pendicular are similar to the whole triangle and to one another.

ip) The internal bisector of an angle of a triangle divides the opposite 
side in the ratio of the sides containing the angle, and likewise the 
external bisector externally. The converse is also true.

18.5. Some revision examples on proportion and similar triangles 
Here a few worked examples on the theorems of § 18.4 are given;

some problems of this type are given in Exercises 18 (b).
Example 3. Any line parallel to Che base BC of a triangle ABC cuts AB, AC in H 

and K respectively. P is any point on a line through A parallel to BC. I f  PH,
PK produced cut BC at Q and R respectively, prove that BQ = CR. (L.U.)

Since (Fig. 130) AP, BC are parallel, the angles HAP, HBQ are equal and so 
also are the angles HPA, BQH. Hence the triangles APH, HBQ are equiangular.
By theorem (m) above,

BQ BH 
AP ~ AH
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Similarly the triangles APK, KCR are equiangular and
CR CK 
AP ~ A K

Since HK is parallel to BC, theorem (!) above shows that

and hence

BH CK 
AH ~ AK’ 
BQ CR 
AP ~  AP

leading to BQ -  CR.

Example 4. In a triangle ABC, the angle BAC is a right angle and AB = 2AC. 
AD is the perpendicular from A on to BC. Show that BD = ADC.
By theorem (o) above, the triangles (Fig. 131) ABD, ABC are similar and 
therefore

BD AB 
AD ~ AC

giving BD = 2AD.

A

Similarly, thé triangles ADC, ABC are similar, so that 
DC AC 1 
A D ~ A B ~ 2 ’

giving AD -  2DC.
Hence BD = 2AD = 2(2 DC) = 4 DC.

Example 5. ABC is a triangle, right-angled at A. AN is perpendicular to BC, BK 
bisects the angle B and meets AC at K and AN at L. Prove that

AL:LN  = CK.KA. (L.U.)
Applying theorem (p) above to the triangle ABN (Fig. 132),

AL BA 
LN ~ ~BN

Similarly, from the triangle ABC,
CK BC 
KA ~ BA
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A

Fig. 132

But theorem (o) shows that the triangles ABN, ABC are similar and therefore
BA BC 
BN ~ BA'

Hence AL : LN  = CK.KA.

EXERCISES 18(h)

1. Two circles ABP, PDC intersect at P and APD, BPC are straight lines.
Prove that, if the radius of the circle APB is twice the radius of the circle 
PDC, then the chord AB is twice the chord CD. (L.U.)

2. In a right-angled triangle ABC prove that the perpendicular AD from the 
right angle A to the hypotenuse BC is a mean proportional between the 
segments BD, DC of the hypotenuse.

A variable tangent to a given circle meets two fixed parallel tangents at 
P, Q and touches the circle at R. Prove that the rectangle PR.RQ is constant.

(L.U.)
3. Two straight lines OAB, OCD cut a circle at A, B, C, D. Through O a line is 

drawn parallel to BC to meet AD (produced) in X. Prove that OX1 =  AX. DX.
(L.U.)

4. Two circles, centres A and B, touch externally at a point C. A common
tangent touches the circles at P and Q respectively and meets AB produced 
at S. If T is the point in PQ such that PT:TQ =  PS :QS, prove that (i) the 
triangles PAT, QBT are similar, (ii) the internal bisector of the angle ATB 
passes through C. (L.U.)

5. Tangents are drawn to a circle at the points A and B, and P  is any other 
point on the circle. Prove that the product of the perpendiculars from P to 
the tangents is equal to the square of the perpendicular from P to AB.

(L.U.)
6. A triangle ABC is inscribed in a circle. Lines drawn through A parallel to

the tangents at B and C meet BC in D and E respectively. Prove that (i) 
AD =  AE, (ii) BD/CE = AB2/AC2. (L.U.)

7. Two equal circles intersect at A and B. A line through A cuts one circle at
C and the other at D, and the circle BCD cuts BA, produced if necessary, at 
T. Prove that TC/TD = AC/AD. (L.U.)

8. X is the mid-point of the base BC of a triangle ABC. The bisectors of the 
angles AXB, AXC meet AB, AC at H and K. Prove that HK is parallel to 
BC.
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18.6. Two theorems on similar rectilinear figures
Polygons which are equiangular and have their corresponding sides 

proportional are said to be similar. If also their corresponding sides 
are parallel they are said to be similarly situated (or homothetic). 
Theorem I. The ratio of the areas of similar triangles (or polygons) is 
equal to the ratio of the squares on corresponding sides.

A

P

Fie. 133
In Fig. 133, ABC, PQR are similar triangles and AD, PS are their 

altitudes. Since the angle ABD equals the angle PQS, and the angle 
BDA equals the angle QSP, both the latter being right angles, the 
triangles ABD, PQS are equiangular. Hence

A D A B B C  
PS ~ P Q ~  QR’

the last equality following from the fact that the triangles ABC, PQR 
are similar. Thus

A ABC \AD.BC BC2 
A PQR ~ | PS.QR ~ QR2

If two polygons are similar, they can be divided up into the same 
number of similar triangles and it follows that the ratio of the areas 
of similar polygons is equal to the ratio of the squares on corresponding 
sides.

Theorem 2. I f  O is any fixed point and ABCD ...  P is any polygon, 
and if points A', B', C', ..., F  are taken on OA, OB, OC, ..., OP (or 
these lines produced either way), such that

OA'/OA = OB'/OB = . . .  = OP'/OP = K
then the polygons ABCD ... P, A’B'CD' . ..  P1 are similar and similarly 
situated.

Sint* OA'/OA = OB'/OB, AB is parallel to A'B' and the triangles 
OAB, OA'B are similar. Hence

A'B' _  OA' _
AB ~ OA ~
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Corresponding sides of the two polygons are therefore proportional 
and parallel and the two polygons are therefore similar and similarly 
situated.

In Fig. 134,0  is said to be the centre of similitude of the two polygons. 
If corresponding points of the two polygons lie on the same side of 
0, the polygons are said to be directly homothetic with respect to 0  
and 0  is said to be the external centre of similitude (Fig. (a)). If 
corresponding points lie on opposite sides of O, the polygons are 
said to be inversely homothetic with respect to 0  and 0  is in this case 
called the internal centre of similitude (Fig. (b)).

Example 6. PQR is an acute-angled triangle. Show how to construct a square with 
two vertices on QR, one vertex on PQ and one vertex on PR. (L.U.)

On QR describe a square QHKR externally to the triangle (Fig. 135). Join 
PH, PK and let these lines meet QR at B and C respectively. Draw BA, CD 
perpendicular to QR to meet PQ, PR at A and D respectively. Then ABCD is the 
required square, for regarding P as a centre of similitude, ABCD is similar to 
QHKR and is therefore a square.



18.7. Some ratio and rectangle properties of the triangle and quadri­
lateral

Theorem 3. Two triangles ABC, A BC have a common base.BC. The 
line A A' joining their vertices meets the base BC at P; then 

A ABC/ A A BC = AP/A'P.
Fig. 136 shows the two cases in which A and A' lie on the same
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(< 3 .) ( ¿ )
Fig. 136

and opposite sides of the base BC.'AH, A'K  are drawn perpendicular 
to BC. Then

A ABC jA H . BC AH
A A BC ~  jA 'K . BC ~ A'K

-

~ A'P’
for the triangles APH, A'PK are similar.
Theorem 4. If A, B are two fixed points and P is a moving point such 
that the ratio PA/PB is constant, the locus of P is a circle.

In Fig. 137, AB is divided internally at C and externally at D in the 
given ratio PA/PB. Since

PA AC AD 
P B ~  C B ~  DB’

PC and PD are the internal and external bisectors of the angle APB.

Fig . 137
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Hence the angle DPC is a right angle and P therefore lies on the circle 
whose diameter is CD. This circle is called the circle of Apollonius.

Theorem 5 (Ptolemy’s theorem). I f  ABCD is a cyclic quadrilateral, then 
AB.CD + BC.DA = AC.BD.

In Fig. 138, AX  is drawn to meet BD at X  so that the angle XAD

is equal to the angle BAC. Since these angles and the angles ADX, 
ACB are equal (angles in the same segment), the triangles ADX, CBA 
are similar and

DA AC 
DX ~ B C giving BC.DA — AC.DX.

Since the angle CAD = angle CAX  + angle XAD — angle CAX 
+ angle BAC = angle BAX, and the angles in the same segment 
DCA, XBA are also equal, the triangles ADC, AXB  are similar so that

CD XB  
A C ~ M } ’

giving A B . CD — A C . XB.

By addition AB. CD + BC.DA = AC{DX + XB) = A C . BD.
Example 7. I f  P is a point on the smaller arc BC of the circumscribed circle of an 

equilateral triangle ABC, show that PB + PC = PA.
Applying Ptolemy’s theorem to the cyclic quadrilateral ABPC (Fig. 139), 

PB.CA + PC.AB = AP.BC.

A
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Since the triangle ABC is equilateral,
CA = AB = BC,

and the result follows immediately.

EXERCISES 18(c)

1. Give the steps of a purely geometrical construction for an equilateral triangle
whose area is twice the area of a given quadrilateral. (L.U.)

2. Prove that the areas of the rectangles formed by the external and internal 
bisectors, respectively, of the angles of a parallelogram are in the ratio 
(a + b)z :(a + b)2, where a, b are the lengths of the sides of the parallelogram.

3. Show how to trisect the area of a triangle by means of two lines drawn
parallel to one of the sides. (O.C)

4. A chord AB of a circle (when produced) meets the tangent at a point P to 
the circle at the point T. Show that (PA/PB)2 =  TA/TB.

5. The base BC of a triangle ABC is fixed and X, Y are the mid-points of the 
sides AB, AC respectively. If BY = 2CX and BY, CX intersect at P, show 
that, as the point A moves, the point P always lies on a circle.

6. A and B are two fixed points and P is a point such that PA/PB =  x/y, where 
the ratio x/y is constant. The circle on which P lies meets AB in X, AB 
produced in Y and O is the mid-point of AB. If AB = 2(x +  y) verify that 
(i) 2/AB = (1 /AX) +  (1 /AY) and (ii) OX.OY = OB2.

1. ABCD is a cyclic quadrilateral. The sides AB, CD are 0-06 m and 012 m 
respectively and are parallel. If the length of the diagonal BD is 0-11. m, show 
that AC = BD and that AD = BC — 0-07 m.

8. AC is a diameter of a circle and B, D are two points on the circle, one on 
either side of AC. If the angles CAD, BAC are denoted by a, /i respectively, 
use Ptolemy's theorem to show that

sin (a + fi) = cos a sin /? + sin a cos /?.

18.8. Some further properties of a triangle
The two elementary properties:—

(a) the perpendicular bisectors of the sides of a triangle are concurrent 
and their point of intersection O is equidistant from the vertices o 
the triangle,

(b) the internal bisectors of the angles of a triangle are concurrent and 
their point of intersection I is equidistant from the sides of the triangle,

should be already known. Proofs of (a) and (b) are omitted here as 
they form part of every elementary course in geometry. Property (b) 
above can be extended to include the property (c) that the internal 
bisector of one angle of a triangle is concurrent with the external bisectors 
of the other two angles and the three points of concurrence 13,1 2,1 3 are 
each equidistant from the three sides of the triangle. This too should
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be already known and again a proof is omitted here. The points 0, 
I, I v 12 and / 3 are known respectively as the circumcentre, in-centre 
and ex-centres of the triangle. Other properties of a similar character 
are considered below.
Property (</). The altitudes o f a triangle are concurrent.

In Fig. 140, AD, BE, CF are the altitudes of the triangle ABC. 
YZ, ZX  and X Y  are lines through A, B, C parallel to BC, CA and AB 
respectively. Since ZBCA is a parallelogram, ZA  = BC and since

v
X

Fig. 140

ABC Y is a parallelogram, AY = BC. Hence ZA = AY  and, since 
YZ, BC are parallel, AD is perpendicular to YZ. Thus AD is the 
perpendicular bisector of YZ. Similarly BE, CF are the perpendicular 
bisectors of ZX  and X Y  and hence, by property (a), the lines AD, 
BE, CF are concurrent.

The point H of concurrence of the altitudes AD, BE, CF is known 
as the orthocentre of the triangle ABC, and the triangle DEF is called 
the pedal triangle of the triangle ABC.

Property (e). The lines joining the vertices of a triangle to the mid­
points of the opposite sides are concurrent.

Fig. 141

In Fig. 141, A', B', C  are the mid-points of the sides BC, CA, AB 
of the triangle ABC. The lines A A’, BB' meet at the point G. Since
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CA' = jCB  and CB' = jCA, A'B' is parallel to AB and A'B' = \AB. 
Since A'B' is parallel to AB, the triangles GA'B', GAB are similar and

A G _  A’B’ _  1 
AG ~ AB ~ 2'

Thus, A'G = %GA, leading to A'G — \AA'. Hence BB' meets A A' at 
the point of trisection of AA' nearest to A'. Similarly it can be shown 
that CC' meets AA' at the same point.

The three lines AA', BB', CC' are known as the medians of the 
triangle; and the point G of concurrence of the medians is called the 
centroid of the triangle ABC. It can be shown that the point G coincides 
with the centre of mass of a triangular lamina ABC of uniform surface 
density.
Property (/). A', B', C' are the mid-points of the sides BC, CA, AB of 
a triangle ABC and D, E, F are the feet of the perpendiculars from A, 
B, C on to BC, CA, AB. H is the orthocentre of the triangle ABC and 
P, Q, R are the mid-points of HA, HB and HC. The nine points A', 
B', C', D, E, F, P, Q, R lie on a circle.

Since in Fig. 142, AP = PH and AC' = C'B, PC' is parallel to BH. 
Since A', C' are the mid-points of BC, AB respectively A'C' is parallel 
to AC. Hence the angle PC'A' is a right angle. Similarly, the angle PB'A' 
is a right angle, and the angle A'DP is given as a right angle. Hence 
the circle on A'P as diameter passes through C', B' and D. In other 
words, the points P and D lie on the circle through A', B', C'. Similarly, 
the points E, Q and F, R lie on the circle through A', B', C', and hence 
the nine points A', B', C', D, E, F, P, Q, R all lie on the same circle.

The circle through these nine points is called the nine-point circle 
and its centre N  is referred to as the nine-point centre. It should be 
noted that the nine-point circle is the circumscribed circle of the 
triangle A'B'C'. Since the sides of this triangle are each half those of 
the corresponding sides of the triangle ABC, it follows that the radius 
of the nine-point circle of the triangle ABC is \R  where P ic the radius 
of the circumscribed circle of the triangle.
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Property (g). The cireumcentre. orthocentre, centroid and nine-point 
centre of a triangle all lie on.a single straight line (the Euler line).

In Fig. 143, O and G are respectively the cireumcentre and centroid 
of the triangle ABC. A' and C' are the mid-points of BC. BA. and 
OG is produced to H so that OG = \GH. The first stage of the proof 
consists of showing that H is the orthocentre of the triangle ABC.

Let AH (produced) meet BC at D. Since G lies at the point of tri­
section of AA‘ nearest to A', A'G -  \GA and the triangles CMC, 
AGH contain equal angles A GO, AGH and the sides about these 
angles are proportional, the triangles are similar and therefore AH 
is parallel to CM'. But CM' is perpendicular to BC and hence AH is 
perpendicular to BC. It can be shown similarly that CH is perpendi­
cular to AB and hence that H is the orthocentre.

Since A O, DH are both perpendicular to BC, the perpendicular 
bisector of A'D bisects OH. Similarly, the perpendicular bisector of 
C'F bisects OH. But both A'D and C'F are chords of the nine-point 
circle and therefore the mid-point of OH is the nine-point centre N.

Property (h ). I f  P is a point on the circumcircle of a triangle ABC and 
L, M, N are the feet of the perpendiculars from P to BC, CA. AB, then 
L, M, N lie on a straight line (the Simson or pedal line of P with respect 
to the triangle ABC).
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Since (Fig. 144), the angles PMC, CLP are right angles, the points 
P, M, C, L are concyclic. Hence the angle MLP equals the angle MCP. 
Since the points P, C, A, B are concyclic, the angle MCP. equals the 
angle ABP. But the angles PNB, PLB are both right angles so that 
the points P, L, N, B are concyclic and the angles ABP, PLN  are 
supplementary. Hence

angle MLP = angle MCP = angle ABP 
=  180° -  angle PLN,

so that the sum of the angles MLP, PLN  is two right angles. Thus 
MLN  is a straight line.
Example 8. I is the in-centre, O the circumcentre and H the orthocentre of a triangle 

ABC. Prove that A I bisects the angle HAO.
In Fig. 145, A I produced meets the circumscribed circle at X. Since the angles 
XAB, CAX  are equal, so are the arcs BX, XC. Hence OX  is perpendicular to 
BC and is therefore parallel to AH.
Hence the angle H A I is equal to the angle OX I  and the latter angle is equal 
to the angle I AO as the triangle X  AO is isosceles.

F ig . 145
Example 9. H is the orthocentre and DEF the pedal triangle of a triangle ABC. 

Show that H is the in-centre of the triangle DEF.
The points B, D, H, F  (Fig. 146) are concyclic since BDH, HFB  are both right 
angles. Therefore

angle FDH  = angle FBH
= angle ABE = 90° — angle CAB.

Similarly, angle HDE = 90° — angle CAB. Hence the angles FDH, HDE  are 
equal and HD bisects the angle FDE. It can be shown similarly that HE  bisects 
the angle DEF and it follows that H  is the in-centre of the triangle DEF
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EXERCISES 18(d)

1. The vertices B, C of a triangle ABC are fixed and the vertex A moves so that
the angle BAC is constant. Show that the in-centre I of the triangle ABC 
lies on a circle passing through B and C. (L.U.)

2. In a triangle ABC, AD is perpendicular to BC and H is the orthocentre of
the triangle. AD meets the circumcircle of the triangle ABC at X. Prove 
that HD =  DX and that AD.HD = BD.DC. (L,U.)

3. O is the circumcentre and H the orthocentre of a triangle ABC. The line 
AO (produced) meets the circumcircle at L. Prove that BHCL is a 
parallelogram.

4. E, F are the feet of the perpendiculars from B, C on to the opposite sides 
of a triangle ABC. X  is the mid-point of EF and AA' is a median of the 
triangle ABC. Show that the angle XAB =  angle CAA'.

5. If H is the orthocentre of a triangle ABC, show that the triangle HBC has 
the same nine-point circle as the triangle ABC.

6. If / , ,  I2, / 3 are the centres of the three escribed circles of a triangle ABC,
prove that the nine-point circle of the triangle is the circumcircle of
the triangle ABC.

7. O, G, N, H are respectively the circumcentre, centroid, nine-point centre 
and orthocentre of a triangle. Show that

OG.GN.NH =  2:1:3 .
8. ABC is a triangle in which AB =  AC, and P, Q are the mid-points of the 

arcs AB, AC respectively of the circumcircle. Prove that the Simson lines 
of P and Q intersect at an angle of 90° — jA.

18.9. The theorems of Ceva and Menelaus 
Suppose that A, B and P, Q are pairs of points on the same or 

parallel straight lines. Then the segments AB, PQ are said to have 
the same or opposite senses according as the displacements from 
A to B and P to Q are in the same or opposite directions. It is con­
venient to take account of the sense of a line as in coordinate geometry. 
Thus if the points A, B lie on a line parallel to the x-axis, the length AB 
is said to be positive or negative according as the point B lies to the 
right or left of A.

With this convention, AB = — BA, or AB + BA — 0, and if A, X, 
B are three points in any order on a line (Fig. 147), then AB = XB — XA 
in all cases.

A X B

X A B

A 8 X

Fig. 147
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Two useful theorems on the concurrency of lines and collinearity of 
points are those due to Ceva and Menelaus. These and their converses 
are given below.

Ceva’s theorem. I f  three straight lines through the vertices A, B, C of a 
triangle ABC are concurrent at P and meet the opposite sides of the 
triangle at X, Y, Z, then

BX C Y A Z  
XC' YA Z B ~  ‘

In Fig. 148 (a), the point P lies inside the triangle ABC and in 
diagram (b), P lies outside the triangle. In diagram (a), each of the 
ratios BX/XC, CY/YA, AZ/ZB  is positive, while in diagram (b), the 
ratios BX/XC, CY/YA are negative and AZ/ZB  is positive. In either 
case, the product of the three ratios is positive.

By theorem 3, § 18.7,
in diagram (a),

BX A BP A CY  A BPC AZ  A CPA
XC ~  A CPA’ YA ~ A BP A’ ZB ~ A BPC’

in diagram (b),
BX A  BPA CY a  BPC AZ A CPA
X C ~  ACPA’ Y A ~  A BPA’ ZB ~ APBC

In either case, by multiplication,
BX C Y A Z  
XC YA' ZB ~  '

The converse of Ceva’s theorem. I f  X, Y, Z  are points on the sides 
BC, CA, AB of a triangle ABC such that

BX C Y A Z _
XC YA ZB ~ ’

then the three lines AX, BY, CZ are concurrent.



If AX, BY, CZ are not concurrent, let BY, CZ meet at P and let 
AP (produced if necessary) meet BC at X' (Fig. 149).
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Fig. 149
Then, by Ceva’s theorem,

BX' CYAZ  =
X'C'YA 'ZB ~  ’

. BX CYAZ  .
Ut’ XC YA ZB ~  ’

so that X' coincides with X  and AX, BY, CZ, are concurrent.
Menelaus’ theorem. I f  a straight line meets the sides BC, CA, AB of a 
triangle ABC at P, Q, R respectively, then 

BP C Q A R  
P C Q A ' R B ~

The straight line cuts either one side (Fig. 150 (a)) or three sides 
(Fig. 150 (b)) of the triangle ABC externally. In diagram (a) the ratio

BP/PC is negative and the ratios CQ/QA, AR/RB are both positive 
and in diagram (b) all three of these ratios are negative. The product 
of the three ratios is therefore negative in each case.

Let a, P, y be the lengths of the perpendiculars from A, B, C 
respectively on the line PQR. Then from similar triangles,
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in diagram (a),
BP__ _ f i  CQ 
P C ~  ?  QA

in diagram (b),
BP = _  fi C Q _  
PC ~ y Q A ~  

In either case, by multiplication,

l AR a
a RB ~ ? »

l AR a
»

(X RB ~

BP CQ AR 
PC QA RB

The converse of Menelaus’ theorem. If points P, Q, R are taken on the 
sides BC, CA, AB of a triangle ABC such that

B P C Q A R = ,
PC'QA' RB ~ l ’ 

then the points P, Q, R are collinear
This can be proved by a “reductio ad absurdum” method similar 

to that used in proving the converse of Ceva’s theorem. The proof is 
left as an exercise for the reader.
Example 10. Use the converse of Ceva’s theorem to prove that the medians of a 

triangle are concurrent.

Fk;. 151

If (Fig. 151) AA', BB\ CC are the medians of a triangle ABC, A', B', C  are 
the mid-points of BC, CA, AB respectively. Hence BA' = A'C, CB' = B'A, 
AC  = C'B and therefore

BA' CB' AC'
W c  Wa  c b  ~

The converse of Ceva’s theorem then shows that AA', BB and CC  are con­
current.

Example II. The tangents to the circumcircle of a triangle ABC at the vertices 
A, B, C meet the opposite sides at P, Q, R. Show that P, Q, R are collinear. 
Since the angle PAC (Fig. 152) equals the angle ABC in the alternate segment
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Fig. 152
and the angle BPA is common, the triangles PAC, ABP are similar. Hence

giving

or,

Thus

and similarly.

By multiplication.

BP AP AB
J p ~ c p ~ AC

BP AP AB2
AP CP ~ AC*

BP AB2
CP ~ AC1’
BP AB2
PC ~ AC2’

Q BC2 AR
M ~ ~ b J 2' R3 ~

BP CQ AR
PC QA RB

CA2
CB1

1,

and the converse of Menelaus' theorem shows that P, Q. R are collinear.

EXERCISES 18(e)

1. Use the converse o f Ceva’s theorem to show that the bisectors of the angles 
of a triangle are concurrent.

2. X , Y ,Z  are the points o f contact o f the inscribed circle o f a triangle ABC
with the sides BC, CA, AB  respectively. Prove that A X , B Y  and CZ are 
concurrent. (L.U.)

3. X, Y, Z  are points in the sides BC, CA, AB  respectively of a triangle ABC 
such that the lines A X , BY, C Z  are concurrent at an internal point 0. Show 
that

OY A Z B Y C Y  (L y ,
OZ ~  Â Ÿ  B Z  CZ

4. AX, BY, CZ are concurrent straight lines meeting the sides BC, CA, AB  of 
a triangle ABC  at X , Y, Z. The circumcircle o f the triangle X Y Z  meets the 
sides BC, CA, AB  again at X', Y', Z ’ respectively. Show that AX', BY' and 
CZ' are concurrent.

5. Use the converse of Menelaus’ theorem to show that the points at which 
the external bisectors o f the angles of a triangle meet the opposite sides are 
collinear.



364 P U R E  M A T H E M A T I C S  [18

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

9.

X, Y, Z  are points on the sides BC, CA, -4P of a triangle ABC. State the 
properties of X, Y ,Z  which follow from the relations

B X .C Y .A Z  ±  X C .Y A .Z B  = 0, 
distinguishing between the two cases.

A, B, C, Y, Z  being given, X t and X 2 are the points determined (as the 
point A’) by the above two relations. If BC = 4 cm and BX t = 3 cm show 
that X 1X 2 =  3 cm.
The inscribed circle o f a triangle ABC  touches the sides BC, CA, AB at 
X, Y, Z  respectively: YZ  is produced to meet BC  in P. Prove that 
BP.C P  =  B X .X C .
AA', BB', C C  are the medians of a triangle ABC. A A' meets B C ' in P and 
CP meets AB  in Q. Show that AB  =  3AQ.

EXERCISES 18 ( / )

Points P, Q, R are taken on the sides BC, CA, AB, respectively of a triangle 
ABC. If the circles AQR, BPR  meet again at 0 , prove that the points C, 
P, O, Q are concyclic. (L.U.)
Two circles intersect in A and A' and the common diameter meets the 
circles in B, B' and C, C' respectively. Prove that the circles circumscribing 
the triangles ABC  and AB'C' touch at A. (L.U.)
AB  is a fixed diameter of a circle and PQ is a variable chord parallel to 
AB. R is the mid-point o f PQ and X  is the foot o f the perpendicular from 
P on to AB. Show that A P 2 +  P R 2 — A X 2 is a constant.
AB  is a chord of a circle and N  is the middle point of AB. The diameter 
of the circle through N  is PQ. Prove that AQ is a tangent to the circle 
through A, P and N. (L.U.)
Two chords AC, BD of a circle intersect in E within the circle and AB, 
DC intersect in F. Prove that EF is the common chord of the" circles 
circumscribing the triangles ABE  and DCE. (L-U.)
ABC  is a triangle and the bisector of the angle BAC  meets the circumcircle 
of the triangle again at X  and BC at D. Prove that the triangles ABD and 
A X C  are similar and deduce that

A B .A C  = A D .A X  = AD2 + BD.DC. (L.U.)
A X  and BY  are parallel lines and AY, B X  intersect in P. A line through 
P parallel to X A  meets AB  in Q. Prove that

(i) A X .B Q  =  B Y.A Q ,

(ii)
1 J_  _ _1_ 

A X  + B Y ~  PQ
(L-U.)

Tis a point 0-0625 m from the centre of a circle o f radius 0 0 5  m. The tangents 
from T  touch the circle at A and B. Show that the length o f AB  is 0-06 m.

(L.U.)
The triangle ABC  is right-angled at C and O is the middle point of AB. 
If the internal and external bisectors of the angle ACB  meet AB  and AB 
produced in X  and Y, prove that OC is a tangent to the circle XCY.
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10. C is the centre of a circle, X  is any point within the circle and CX  is 
produced beyond X  to Y  so that CX .C Y  =  CA2, where A is the point of 
intersection of C X  and the circle. If P is any point on the circle, prove 
that P X :P Y  =  C X :CA.

11. AB  is a diameter of a circle and C is any point on the circumference. P, 
Q are the feet of the perpendiculars from A, B respectively on to the tangent 
at C to the circle. Show that

L\A B C  =  A A C P  +  A BQC. (L.U.)
12. Points D, E, F are taken in the sides BC, CA, AB  respectively of a triangle 

ABC  such that BD/DC =  CE/EA =  AF/FB = n/m. AD, BE meet in P; 
BE, CF meet in Q and CF, AD meet in R. Prove that the areas of the 
triangles BQC, CRA, APB  are èach equal to

nmA
n2 + nm + m2'

where A is the area of the triangle ABC. (L.U.)
13. A and B are two fixed points and P is a point which moves so that 

PA/PB  =  X (greater than unity). Show that the radius of the circle on which 
P moves is

X.AB

14. If ABCDE is a regular pentagon inscribed in a circle and P is a point on 
the minor arc of AB, show that

PA +  PD PE 
PB + PD ~  PC

15. ABCD is a cyclic quadrilateral and the bisector of the angle ABD meets
AD in E. Show that the angles ACE, DCE are unequal. (O.C.)

16. If H is the orthocentre of the triangle ABC  and L, M, N  are the points of
the circumcircle diametrically opposite to A, B, C, prove that HL, HM, 
H N  bisect BC, CA, AB  respectively. (O.C.)

17. Given two vertices and the circumcircle o f a triangle, prove that the locus 
of the orthocentre is a circle.

18. If 7 is the in-centre and I ,  the centre of the escribed circle touching AB, 
AC  externally-for a triangle ABC  and if the line A I / 1 meets the circumcircle 
of the triangle ABC  at P, show that

PI = PB = PC = P IV
19. O, G, H  are respectively the circumcentre, centroid and orthocentre of a 

triangle ABC  and A' is the mid-point of BC. Show that AH = 20A .
20. P is a point on the circumcircle o f a triangle ABC. PR is perpendicular to 

BC and cuts the circumcircle again at R. Prove that the Simson line of P  
with respect to the triangle ABC  is parallel to AR.

21. P  is a point in the plane of a triangle ABC  and the joins of P  to the vertices 
A, B. C cut the opposite sides in D, E, F respectively. Either or both the 
joins and the sides may have to be produced to give section. Show that,

18] EXERC IS ES
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22.

23.

24.

25.

wherever P may be taken,
AP BP CP „—  + — T.—  = 2,AD BE CF

so long as a negative value is given to any of these fractions if the directions 
of the segments represented by the sequence of letters in the numerator 
and denominator are opposite. Hence, or otherwise, show that, if AD = DP, 
then BP/CP =  EB/CF. (L.U.)
On the sides BC, CA, AB  of a triangle ABC lie the points P, Q, R, one on 
each side respectively. O is any point inside the triangle, and AP', BQ', 
CR' are drawn parallel to OP, OQ, OR respectively to meet BC, CA, AB 
in P', Q', R ‘ respectively. Prove that

OP OQ OR
AP' +  BQ' +  CR'

(L.U.)

P is a point in the side BC of a triangle ABC  such that PC — 2BP  and 
Q is a point in the side CA such that 2QA =  3CQ. AP  and BQ intersect in 
H and CH meets AB  in R. Show that AR  =  3RB  and that 2AH  =  9HP

(L.U.)
ABC, A 'B 'C  are two triangles such that A A', BB', C C  meet at a point 0  
If BC, B'C' meet at L, CA, C'A' meet at M  and AB, A'B' meet at N, show 
that L, M, N  are collinear. (Desargues’ theorem.)
If a straight line cuts the sides AB, BC, CD, DA of a quadrilateral at X, 
Y,Z, W  show that A X .B Y .C Z .D W  =  X B .Y C .Z D .W A .
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ELEMENTARY GEOMETRY OF THE PLANE AND 
SPHERE

t
19.1. Introduction and definitions

This chapter is concerned with the elementary geometry of the plane 
and sphere and, in particular, with the angles made by planes and 
straight lines with one another. Considerations of space necessitate a 
brief treatment and certain results which are usually given as 
“theorems” are relegated to the exercises.

The following, with most of which the reader may be already 
familiar, may be regarded as a set of preliminary definitions.

(i) A surface such that straight lines through every pair of points 
in it lie wholly in the surface is a plane.

(ii) If two planes, a straight line and plane, or two straight lines in 
the same plane have no point in common, they are said to be 
parallel.

(iii) A solid figure bounded only by plane polygons is called a poly­
hedron. The bounding polygons are faces, consecutive faces 
intersect in edges and consecutive edges meet in vertices of the 
polyhedron. Some particular cases are:—
(a) the prism, in which two faces are congruent polygons and 

the remaining faces parallelograms; the parallelepiped, in 
which all the faces are parallelograms; if every face of a 
parallelepiped is a rectangle, the figure is a rectangular 
parallelepiped or cuboid and if every face is a square it is 
a cube;

(b) the pyramid, in which one face is a polygon and all the 
remaining faces are triangles with a common vertex; a 
special case is the tetrahedron, in which all the faces are 
triangles.

Some typical examples are shown in Fig. 153 below.

Opposite edges are those which do not meet, for example, the 
edges OA, BC of the tetrahedron of Fig. 153 and the diagonals 
of a parallelepiped are the lines joining opposite vertices, i.e., the 
lines, AC’, CA', BD', B'D of the parallelepiped of the diagram. 
When the faces of a polyhedron are all congruent regular polygons 
and the numbers of edges which meet at each vertex are equal, 
the polyhedron is said to be regular.

367
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C
TRIANGULAR PRISM

B
PAR ALLE PIPED

C

TETRAHEDRON

Fig. 153

(iv) A straight line which intersects a fixed line (curved, straight, or 
made up of segments of curves and straight lines) and remains 
parallel to another fixed line generates a cylindrical surface and 
is called a generator of the surface. The space bounded by a 
cylindrical surface and two parallel planes is a cylinder, one of 
the parallel planes being the base.

(v) A straight line which intersects a fixed line (curved, straight or 
made up of segments of curves and straight lines) and passes 
through a fixed point generates a conical surface and is called a 
generator of the surface. The space bounded by a conical surface 
and a plane is a cone, the plane being the base.

(vi) The part of a prism, pyramid, cylinder or cone intercepted between 
the base and any other plane is known as a truncated prism, 
pyramid, cylinder or cone. The part of a cone or pyramid inter­
cepted between the base and a parallel plane is called a frustum.

(vii) A point which moves so that its distance from a fixed point (the 
centre) is constant lies on a spherical surface; the space inside a 
spherical surface is called a sphere.

TRUNCATED PYRAMID FR USTUM  O F CONE

F ig. 154
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19.2. Some axioms and further definitions
The following axioms are usually taken as the basis on which 

elementary solid geometry is built. .

Axiom 1. There is one straight line, and only one, passing through 
two given points.

Axiom 2. There is one plane, and only one, passing through three 
given points which are not in the same straight line.

Axiom 3. If two planes have a common point, they have also a 
common straight line.

Axiom 4. Through any point in space there is one, and only one, 
straight line parallel to a given straight line. (Playfair's 
axiom.)

It is convenient here to list some further definitions. Lines lying 
in the same plane are said to be coplanar and lines not lying in the 
same plane are called skew lines. The angle between two skew straight 
lines is defined as the angle between two coplanar lines to which they 
are respectively parallel.

19] T H E O R E M S  ON  P A R A L L E L S

Example 1. I f three planes intersect, two by two, show that their lines of intersection 
are either concurrent or parallel.
A convenient notation for working this type of problem is to denote the three 
planes by a, p, y and to use lfi, Py, ya to denote the lines of intersection of the 
planes a and P, /? and y, y and a respectively.
Since the straight lines ya and aP lie in the same plane a, they either intersect 
or are parallel. If they intersect, their common point lies on all three planes 
(it can be denoted by the point afly) and it lies on the line py. Hence the lines 
af, py, ya are concurrent. If the lines ya and ap are parallel, there is no point 
aPy and neither ya nor ap cuts Py. But aP, py both lie in the plane /? and therefore 
they are parallel. Similarly ya and Py can be shown to be parallel.

19.3. Some theorems on parallels
Theorem 1. I f  a straight line is parallel to one straight line in a plane 
it is parallel to the plane.

Suppose (Fig. 155) AB is parallel to CD in the plane EDCF. Then 
the lines AB, CD are coplanar. The planes ABCD, EDCF meet in the 
straight line CD and in no other point (unless they coincide). But as 
AB, CD are parallel, they do not meet and hence AB does not meet 
the plane EDCF unless it lies entirely in it. Thus AB is parallel to the 
plane EDCF.

It is left as an exercise for the reader to prove the converse that if 
a straight line in one plane is parallel to another plane, it is parallel 
to their line of intersection.



370 P U R E  M A T H E M A T I C S [19

F ig . 155

Theorem 2. I f  two straight lines are each parallel to a third, they are 
parallel to one another.

Suppose (Fig. 156) the lines AB, EF are both parallel to the line 
CD. Let the plane BAE cut the plane CEFD in the line EG. Since 
AB is parallel to CD, theorem 1 shows that the plane BAE is parallel 
to the line CD and that the plane DCE is parallel to the line AB. Since

F ig . 156
EG is in the plane DCE, the line EG is parallel to CD. And since EG 
is in the plane BAE, EG is parallel to AB. Hence, by Axiom 4, EG 
coincides with EF and is parallel to AB.

Theorem 3. I f  a plane cuts two parallel planes, the lines of intersection 
are parallel.

In Fig. 157, the planes a and y are parallel and are met by the plane 
P in lines a/?, py respectively. As the planes a, y are parallel, no line in 
a meets a line in y. Hence the lines aP, Py do not meet. But the lines 
ap, Py are coplanar for they both lie in the plane p. Thus a/?, Py are 
coplanar lines which do not meet and they are therefore parallel to 
each other.
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Theorem 4 . I f  two straight lines are cut by three parallel planes, their 
intercepts are proportional.

In Fig. 158, a, /?, y are three parallel planes, intersecting the lines 
ABC, DEF at A, B, C and D, E, F. The line AF meets the plane p at 
P. The plane ACF cuts the parallel planes /?, y in the parallel lines 
BP, CF respectively, so that

AB-.BC = AP'.PF.

Similarly the plane AFD cuts the parallel planes a, P in the parallel 
lines AD, PE, so that A P : PF = DE: EF 

Hence A B : BC = DE: EF

EXERCISES 19(a)

1. ABCD is a face of a cube. A plane passes through the diagonal AG of the 
cube and bisects the edge BC at L. Show that AL =  LG.

2. Show that the lines joining the vertices of a tetrahedron to the centroids of 
the opposite faces are concurrent.
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3. m and n are two fixed skew lines and A and B are two fixed points. Find
the locus of a point P which moves so that PA intersects m and PB intersects 
n. Show that one position of P is on m and one on n. (L.U.)

4. n and m are two skew lines. Show that a plane can be drawn through m 
parallel to n.

n, m and p are three straight lines, no two being coplanar. Show that a 
straight line can be drawn intersecting m and p and parallel to n. (L.U.)

5. ABCD is a tetrahedron. E, F are points in AB and CD respectively. If H, K 
are points in AC, BD such that

AE _C F  AH _ B K  _
E B ~ FD~ H C~ K D ~  ’

prove that EF and HK lie in the same plane. If EF and HK intersect in G, 
prove that HG/KG =  EG/GF =  L (L.U.)

6. I, m, n are three non-intersecting straight lines in space, no two of which are
parallel. Prove that through any point on / just one straight line can be 
drawn intersecting both m and n. If l, m,n are all parallel to a given plane 
and PQR, P'Q'R' are two straight lines meeting l in P and P\ m in Q and 
Q', n in R and R', prove that PQ/P'Q' =  QR/Q'R’. (L.U.)

19,4. Normals
If a straight line is perpendicular to every straight line in a plane, 

it is said to be normal (or perpendicular) to the plane.

Theorem 5. A straight line is normal to a plane if it is perpendicular to 
each of two intersecting straight lines in that plane.

In Fig. 159, let the line PA meet the given plane a at A and let AB, 
AC  be parallel to the two given intersecting straight lines. Let AD

Fig. 159

be parallel to any other straight line in a and draw some line in a 
through D to cut AB, AC  at B, C respectively. Produce PA to Q so 
that PA =  AQ. Since PA is perpendicular to AB, the triangles PAB, 
QBA are congruent for the angles PAB, BAQ are right angles,
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F A  =  A Q  and AB is common. Hence PB — BQ and similarly it can 
be shown that PC = CQ. Because of these equalities and since BC is 
common, the triangles PCB, BQC are congruent and hence P.D — DQ. 
The triangles PAD, QDA are congruent because PA = AQ, PD = DQ 
and AD is common, so that the angles PAD, DAQ are equal. Since 
the sum of the angles PAD, DAQ is two right angles, the angle PAD 
is therefore one right angle and we have shown that PA is perpendicular 
to any straight line in the plane i and hence is a normal to the plane.

Theorem 6. Planes which are normal to the same straight line are 
parallel to one another.

In Fig. 160, the line CD is normal to the planes a and /?. If a point 
common to the two planes exists, let it be P. Then in the triangle

F ig  160

PCD, both the angles PCD, CDP would be right angles. As this is 
impossible, the planes i, f i  have no common point and they are 
therefore parallel.

It follows as a corollary that through any point there is one and 
only one plane which is normal to a given straight line.

Exi ■pie 2. Show that straight lines whu h are normal to the same plane are parallel 
to one another.

A

B,

P

Q

x y
F ig  161

Let (Fig. I6l i  AB, PQ be perpendicular to (he plane BXYQ. BX is drawn in 
the plane BX YQ perpendicular to BQ. Then AB. BQ. PQ are all perpendicular 
to BX  and hence are coplanar. But AB, PQ are both perpendicular to BQ and 
hence they are parallel.
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Theorem 7. There is one, and only one, straight line cutting at right 
angles each of two given skew straight lines and its length is the shortest 
distance between them.

In Fig. 162, let AB, CD be the given skew lines and let DE be a 
line through some point D on CD parallel to AB. Then AB is parallel 
to the plane EDC. Through any point A on AB draw AR normal 
to the plane EDC and let the plane BAR cut CD in Q. Since AB is 
parallel to the plane EDC and AB, RQ are coplanar, AB is parallel

to. RQ. Draw PQ in the plane BAR parallel to AR to meet AB at P. 
Since PQ is parallel to AR and AR is normal to the plane EDC, PQ 
is normal to the plane EDC. Hence PQ is perpendicular to CD and 
DE. But DE is parallel to AB, so that PQ is perpendicular to CD 
and AB

To show that the common perpendicular PQ is unique, let P'Q' be 
another common perpendicular. Then P'Q' would be perpendicular 
to the plane EDC and therefore PQ, P'Q' would be parallel. This is 
impossible as AB, CD are not coplanar and hence there is one, and 
only one, common perpendicular.

As AR is perpendicular to the plane EDC, AR is perpendicular to 
CR. The triangle ACR is therefore right-angled at R and AR is less 
than the hypotenuse AC. But PARQ is a parallelogram so that 
PQ = AR and hence PQ is less than AC. Similarly we can show that 
PQ is less than the length of any other line joining AB and CD. PQ 
is therefore the shortest distance between the given skew lines.

It follows that a plane can be drawn through one of two skew lines 
parallel to the other and that the perpendicular distance of any point 
on the second line from this plane is equal to the shortest distance 
between the skew lines.

Example 3. One end of a rectangular box of length 2a is a square ABCD of edge 
a. I f  AP is a diagonal of the box, find the length of the shortest distance between 
AP and BC. (L.U.)
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From Fig. 163, it is clear that the edge BC is parallel to the plane ADP con­
taining the diagonal AP. The shortest distance between AP and BC is therefore

equal to the distance of C from the plane ADP and this is equal to the length 
of the perpendicular CX from the right angle of the triangle DCP on to DP. 
Now

DP1 = DC2 + CP2 = a2 + {2a)2 = 5a2,
and the triangles DCX, DCP are similar for they both contain a right angle 
and the angle XDC is common. Hence

CX CP CX 2a
CD = DP  g‘Vmg V  = 

a n d  the required shortest distance = CX = 2a/y/5.

It follows also that parallel planes can be drawn through two skew

lines. Use can be made of this fact to show that a tetrahedron can 
be inscribed in a parallelepiped with one edge of the tetrahedron lying 
on each face of the parallelepiped. Thus in Fig. 164, the edges of the 
tetrahedron ABCD are the diagonals AB, BC, CD, DA, BD and CA 
of the faces AB BA', BC'CB', CC'DD', AA’DD', BA’DC' and CD'AB' 
of the parallelepiped.
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In working problems on the tetrahedron, it is often useful to sketch 
in the circumscribing parallelepiped. In particular cases, concealed 
properties are often revealed by a figure such as 164 and instances of 
its use occur in Example 4 and in Exercises 19 (b), No. 6, 19 (e), Nos. 
1, 5 and 12.
Example 4. In a tetrahedron ABCD, BC is perpendicular to AD and CA is per­

pendicular to BD. Prove that AB is perpendicular to CD.
Referring to Fig. 164, it is clear that the diagonals B'C', AD of the parallelograms 
B'BC'C, AA'DD' are parallel to one another. Since BC is perpendicular to AD,
BC is perpendicular to B'C and the parallelogram B'BC'C has diagonals which 
are perpendicular to each other and it is therefore a rhombus.
Similarly, since CA is perpendicular to BD, it can be shown that the parallelo­
gram BC'DA' is also a rhombus. Hence

BB' = BC' = BA',
and the parallelogram B'BA'A is also a rhombus. It follows that its diagonals 
BA, B'A' are perpendicular and, since B'A' is parallel to CD, BA is perpendicular
to CD.

EXERCISES 19(h)

1. The triangle ABC  is right-angled at A. A point P  not lying in the plane of
ABC is equidistant from A, B and C. Prove that the line PN  joining P to 
the middle point N  of BC is perpendicular to the plane ABC. (L.U.)

2. The triangle ABC  is right-angled at A. Any point P is taken on the per­
pendicular through A  to the plane ABC, and a point Q is taken on CP (or 
CP produced) such that BQ — BC. Show that AQ = AC. (N.U.)

3. AB, CD are two skew lines equal in length and P, Q are the mid-points of 
AC, BD. Prove that PQ is less than AB.

4. OA, OB, OC are three concurrent straight lines each of which is perpendicular
to the other two. The foot of the perpendicular from 0  to the plane ABC 
is H. Prove that H  is the orthocentre of the triangle ABC. (L.U.)

5. ABCD is the square base of a pyramid, vertex V, in which AB  =  6a and
VA — VB =  VC =  VD =  5a. Prove that the shortest distance between AB  
and VC is 0^1a)/2 . (L.U.)

6. If the opposite edges of a tetrahedron are equal in pairs, show that the 
shortest distance between any pair is the join of the two mid-points. (L.U.)

7. Two equal skew straight lines AB, CD are inclined to each other at an angle 
of 60°. The shortest distance BC between the two lines is also equal in length 
to AB  and CD. Show that AD 2 = 2A B 2.

8. A square lamina ABCD, of side a, is rotated about AB  through a right angle
to take up the position ABC'D'. Show that the shortest distance between 
A C  and BD is a /J 3. (L.U.)

19.5. Orthogonal projection and dihedral angles 
The foot of the perpendicular from a point to a plane is called the

orthogonal projection of the point on the plane. When a point traces
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out a given figure, its orthogonal projection on a given plane will 
trace out a figure in this plane. This second figure is called the 
orthogonal projection of the first figure on the given plane. ,

Theorem 8. The orthogonal projection of a straight line on a plane is 
either a point or a straight line.

If the line AB is normal to the plane a (Fig. 165) (a)), its orthogonal 
projection is clearly the point C in which the line meets the plane.

w ( t> )
Fig . 165

If the line is not normal to the plane, let A, P, B (Fig. 165 (b)) be 
three points on the line AB and let A', P’, B' be their orthogonal 
projections on the plane a. Since AA', PP', BB' are all normal to the 
plane a, they are parallel to one another and therefore coplanar. 
Hence F  lies on the line of intersection of the planes A'B'BA and a. 
In other words, P' lies on the line A'B'.

It follows as a corollary that a straight line and its orthogonal 
projection are coplanar.

Theorem 9. The angle between a straight line and its orthogonal pro­
jection on a plane is less than the angle between the line and any other 
line in the plane.

In Fig. 166, A'B is the projection of the line AB on the plane a. 
BC is drawn equal in length to BA' and parallel to any line m in the 
plane a.

Fig . 166
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Since A A  is normal to the plane a, the angle CA'A is a right angle 
and is the largest angle of the triangle CA'A. Hence A A  is. less than 
AC. In the triangles ABC, ABA, B A  = BC, BA is common and A A  
is less than AC. Hence the angle ABA  is less than the angle ABC.

The angle between a straight line and its orthogonal projection on 
a plane is defined as the angle between the line and plane.

Suppose (Fig. 167) that P is any point in the line of intersection 
a /?  of two planes a and /?. PA, PB are lines’ one in each plane which 
are perpendicular to the line of intersection otfi of the two planes. 
Such lines are known as lines of greatest slope. The mutual inclination 
of the two planes a, /? is called their dihedral angle and is measured 
by the angle APB, the angle between their lines of greatest slope.
Example 5. An isosceles triangle ABC, in which AB = AC = 2BC = 2a, lying in a 

horizontal plane a, is rotated about the base BC until A is at a vertical height a 
above the plane a. Calculate the angle through which the triangle is rotated and 
the inclination of AC to the horizontal in its final position. (L.U.)
XBC is the initial and ABC the final position of the triangle (Fig. 168). D is 
the mid-point of BC, and since the triangles ABC, XBC are both isosceles,

F ig. 168
AD and XD are both perpendicular to BC. A' is the orthogonal projection of 
A on the plane XBC and, from symmetry, it lies on DX. Since AC = 2a, 
DC = \BC  = )a, and the triangle ADC is right-angled at D,

AD2 = AC2 -  DC2 = (2a)2 -  (*a)2 =

AD, DX are lines of greatest slope in the planes ABC, XBC and AA' ( = a) is 
perpendicular to the plane XBC and therefore perpendicular to A'D. Hence the 
angle through which the triangle is rotated, or the angle between the planes
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ABC and XBC, is the angle ADA', and this is given from the right-angled 
triangle ADA' by

A A' a 2
sin (ADA') = —  = - - = - m  = 0-5165,AD (fl5a/2) ^15

so that the angle ADA' = 31° 6'.
The inclination of AC to the horizontal is the angle between AC and the 
plane XBC, and this is the angle between AC and its orthogonal projection 
A C. Since A A' is normal to the plane XBC, the angle CA'A is a right angle 
and the triangle CA'A gives

sin (ACA) — A A
AC

a
2 a

l
2'

so that the angle ACA  is 30°.

Theorem 10. I f  the angle between a line AB and a plane a is 9, the length 
of the orthogonal projection of AB on a is AB cos 9.

Let (Fig. 169) A'B' be the orthogonal projection of AB on the plane

a, so that AB and A'B' are coplanar. Draw AC parallel to A'B' to 
meet BB' in C.

Then AA'B'C is a rectangle and A'B' = AC. Since AC is parallel 
to A'B', the angle BAC is equal to 9, the angle between the line AB 
and the plane a, and the right-angled triangle BAC gives

A'B' = AC = AB cos 9.
It follows as a corollary that the ratio of lengths along the same 

or parallel lines is unaltered by orthogonal projection.

Theorem 11. The area of the orthogonal projection of a plane figure of 
area A is A cos <p, where <p is the angle between the plane of the figure 
and the plane on to which it is projected.

In Fig. 170, the plane figure has been divided into strips, of which 
ABCD is typical, by lines AF, BC of greatest slope. Lines AE, CF 
are drawn parallel to the line of intersection X Y of the plane of the 
figure and the plane a on to which it is projected.

Since AE, CF are parallel to one line (the line XT) of the plane a,
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they are (theorem 1) parallel to the plane a and therefore make zero 
angles with this plane. By theorem 10, their orthogonal projections 
A'E', C'F' are respectively equal to AE and CF. Since AF, CE are 
lines of greatest slope, they each make an angle (j> with the plane a 
and their orthogonal projections are of lengths AF cos 4>, CE cos <f>. 
Hence the orthogonal projection A'F'C'E' of the rectangle AFCE is 
a rectangle of sides AE and AF cos <f> and its area is equal to 5A cos <f>, 
where 8A is the area of the rectangle AFCE.

By increasing sufficiently the number and decreasing sufficiently 
the width of the strips such as ABCD, the difference between the area 
of the given figure and the sum of that of the rectangles such as AFCE 
can be made as small as we please, and since each rectangle is dimin­
ished by projection in the ratio cos<£:l, the projected area will, by 
a limiting process, be A cos tf>.
Example 6. X Y  is the line of intersection of two planes a, fi mutually inclined at 

an angle 9. Z  is a point in the plane a such that X Z  = 1 and the angle Z X Y  = </>. 
Prove that the length of the orthogonal projection of the line XZ  on the plane 
fS is ^/(cos2 <f> + sin2 4> cos2 9).
Z' is the orthogonal projection of Z  on the plane /? (Fig. 171), and PZ, PZ' 
are lines of greatest slope in the two planes. From the right-angled triangle

Fig. 171
ZXP, XP = cos <j>, ZP = sin f ,  since X Z  = 1. The right-angled triangle Z'ZP
®'ves Z P — ZP cos 9 = sin 0 cos 9.
Finally the right-angled triangle Z'XP  gives

XZ' = J(X P 2 + Z P2) = V(cos2 <t> + sin2 <t> cos2 9).
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EXERCISES 19(c)

1. ABCD  is the floor of a room, A'B'C'D’ is the ceiling, A' being above A  and 
so on. If AB  = 5-4 m, AD =  3-6 m, A A ’ =  4-2 m, find the angle between the 
diagonal AC' and the floor of the room.

2. The three parallel edges AA', BB\ CC' of a triangular prism are each of length 
3 cm, and the ends ABC, A'B'C' of the prism are equilateral triangles of sides 
2 cm. Find the inclination of the plane BA'C  to the plane BAC.

3. One end of a rectangular box of length 2a is a square ABCD  of edge a. If
AP  is a diagonal of the box, calculate (i) the angle between AP  and the 
plane ABCD, (ii) the angle between AP  and BC. (L.U.)

4. The base ABC  of a tetrahedron OABC  is a right-angled isosceles triangle
and the length of the hypotenuse BC is 10 cm. OA = 1 2  cm, OB = OC = 1 3  
cm. Find (i) the angle between the planes OBC and ABC, (ii) the angle 
between the planes OBA and ABC. (L.U.)

5. The edges VA, VB, VC of a tetrahedron are mutually perpendicular and 
VA — a, VB =  b, VC =  c. Prove that

a2b2c2
(i) cos B AC. cos C BA. cos AC  B =  —,-----, , WL,------r r n ------ k  >w (a2 -I- b2)(b2 + c2)(c2 + a2)

(ii) the angle between the faces VBC  and ABC  is

COS~ ‘ {V(h2c2 +  c2a2 + a2b2) }
6. V is the apex of a pyramid on a square base ABCD.

VA =  VB =  VC =  VD =  013 m 
and the side of the base is 0T0 m. Find

(i) the angle between a slant face and the base,
(ii) the angle between adjacent slant faces,

(iii) the angle between opposite slant faces.
7. If A  is the area of the normal section of any prism, show that A  sec 6 is the

area of any section inclined at 8 to the normal section. A cylinder whose 
normal section is a circle of radius a is cut obliquely by a plane. Prove that 
the area of the oblique section is nab where 2b denotes the longest diameter 
of the section. (L.U.)

8. The vertices A, B, C of a plane triangle ABC  are at heights 5, 13 and 25 m 
above a horizontal plane. The orthogonal projection of the triangle ABC 
on to the horizontal plane is a triangle A'B'C' (A' being the projection of A, 
etc.) and B'C' =  16 m, C'A' =  21 m, A'B' =  15 m. Find the lengths of the 
sides of the triangle ABC  and the cosine of the angle which its plane makes 
with the horizontal.

19.6. Some geometrical properties of the sphere
Here we consider a few of the geometrical properties of the sphere.

These are all o f an elementary character and no attempt is made here
to discuss what is usually called Spherical Geometry, the geometry of
points and lines lying on the surface of a sphere.

(L.U.)

(L.U.)
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Theorem 12. Every plane section o f a sphere is a circle.
Let PQR be a section of a sphere by a plane and let 0  be the centre 

of the sphere (Fig. 172). Let N  be the foot of the normal from 0  on

to the plane PQR and join OP, NP. Then, since the angle ONP is a 
right angle,

NP2 = OP2 -  ON2.
Similarly, if Q is any other point on the boundary of the plane section, 
we can show that

NQ2 = OQ2 -  ON2,
and since OP — OQ = radius of sphere, it follows that NP  = NQ. 
Similarly all points on the intersection of the plane and sphere are 
equidistant from N  and hence lie on a circle.

Theorem 13. The curve o f intersection o f two spheres is a circle.
Let 0, O' be the centres of the two spheres and let P be any point 

on their curve of intersection (Fig. 173). Draw PN perpendicular to 
00'. Let the spheres be cut by a plane through 0, O' and P and let

Fig. 173

the semi-circles bounded by the diameters along the line 0 0 ' revolve 
about 00'. These semi-circles will generate two spheres and their 
point of intersection P will generate a circle of radius NP and centre N. 
The curve of intersection of the spheres is therefore a circle whose 
plane is perpendicular to the line of centres of the spheres.
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Theorem 14. A sphere can be drawn through four points not in the same
plane.

In Fig. 174 let A, B, C, D be the four points, let Z be tfre middle 
point of BD and let X, Y be the centres of the circles through B, C, 
D and A, B, D respectively. In the plane XYZ,  draw XW, YW 
perpendicular to XZ, YZ respectively to intersect at the point W.

Since BD is perpendicular to XZ and YZ, BD is perpendicular to the 
plane X Y Z  and therefore perpendicular to X W  and YW. Hence 
X W  is perpendicular to BD and XZ and therefore perpendicular to 
the plane BCD. Similarly YW  is perpendicular to the plane ABD.

Since Y is the centre of the circle through A, B, D, AY  =  BY  = DY, 
the angles AYW, BYW, D YW are all right angles, and VFTis common 
to all three of the triangles AYW, BYW, DYW, so that these three 
triangles are congruent and therefore AW  = BW  = DW.

Similarly it can be shown that the triangles BXW, CXW, DXW  are 
congruent and therefore BW — CW  = DW. Hence

AW  = BW  = CW = DW,
and W is the centre of a sphere through the points A, B, C, D.
Example 7. If 0  be a point outside a sphere and if two secants drawn from 0  cut the 

sphere in points A, B and C, D respectively, show that
OA.OB = OC.OD.

Since the lines OAB, OCD intersect at 0, they are coplanar and the section of 
the sphere by their plane is a circle (Fig. 175). Hence OAB, OCD are two secants

drawn from 0  to meet a circle in A, B and C, D respectively and from theorem 
U) of Chapter 18 it follows that

OA.OB = OC.OD.
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Example 8. / /  the middle points of the edges of a tetrahedron lie on a sphere, show 
that the opposite edges are at right angles to one another.
In Fig. 176, let P, Q, R, X, Y, Z  be the middle points of the edges BC, CA, AB, 
DA, DB, DC of the tetrahedron. Since X, Y are the middle points of DA, DB, 
X Y  is parallel to AB and equal to {AB. Similarly QP is parallel to and equal

to {AB. Hence X Y  and QP are parallel and equal and therefore XYPQ is a 
parallelogram. The points X, Y, P and Q are therefore coplanar and, since they 
lie on a sphere, they lie also on a circle. Hence XYPQ is a cyclic parallelogram 
and therefore it must be a rectangle. X  F is therefore perpendicular to YP. But 
we have shown that X Y is parallel to AB and we can show similarly that YP is 
parallel to DC, so that AB is perpendicular to DC. It can be shown in a similar 
way that BC is perpendicular to AD and that CA is perpendicular to BD.

EXERCISES 19 (d)
1. Two planes, inclined at 60°, intersect a sphere in equal circles of radius a.

If the circles have two common points whose distance apart is a, show that 
the radius of the sphere is (â J5)/2. (L.U.)

2. If three points A, B, C are such that the angle ABC is a right angle and
AB =  BC, prove that the locus of points at which AB and BC both subtend 
a right angle is a circle of radius AB/(2yj2). (L.U.)

3. Prove that the points of contact of tangents from a point P to a sphere 
centre O lie on a circle. If OP equals d and r is the radius of the sphere, 
calculate the radius of the circle and the distance of its plane from P. (L.U.)

4. The radii of two spheres are a and b, and the distance between their centres 
is c < (a +  b). Show that the radius r of the circle of intersection is given by

2 cr =  J{(a +  b +  c)(b + c — a)(c + a — b)(a + b — c)}.
5. A sphere rests in a horizontal circular hole of diameter 0-02 m and the lowest 

point of the sphere is 0-005 m below the plane of the hole. Find the radius of 
the sphere.

6. Show that the locus of points in space whose distances from two given 
points are in a given ratio is a sphere.

7. A and B are points on a diameter of a sphere, of radius a, at equal distances 
b from the centre. A straight line through A perpendicular to AB meets the



sphere in P. A straight line through B perpendicular to AB  and inclined to 
AP at an angle 29 meets the sphere in Q. Prove that

PQ2 = 4a2 sin2 0 + 4b2 cos2 0.  ̂ (O.C.)
8. Show that the radius of the sphere circumscribing a regular tetrahedron, 

each of whose edges is of length 2a, is j a j 6.
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19.7 Rectangular Cartesian coordinates in three dimensions
The rectangular Cartesian coordinate system described in § 14.1 can 

easily be extended so that the position of a point in space can be speci­
fied. Thus, let y'Oy and z'Oz be two perpendicular straight lines inter­
secting at an origin 0  and let x'Ox be a third straight line perpendicular 
to the plane containing the first two lines (Fig. 177). In interpreting the

z 1

Fig. 177

diagram, the lines y'Oy, z'Oz are assumed to lie in the plane of the 
paper and the line Ox to project towards the reader (x' being behind 
the paper). P' is the projection of any point P on the plane xOy and 
P'M, P’N are drawn perpendicular respectively to x'Ox, y'Oy. If

OM =  x, ON = y, PP' = z,
the position of P is specified when the three lengths x, y and z are known 
and the symbol (x, y, z) is used to denote the position of P.

The lines x'Ox, y'Oy, z'Oz are said to form a set of rectangular 
Cartesian axes, the planes xOy, yOz, zOx are called the coordinate 
planes and the lengths x, y, z are the coordinates of the point P. The 
coordinate planes divide three-dimensional space into eight parts 
called octants and the signs of the coordinates of a point are deter­
mined by the octant in which it lies (as shown by the following table)
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Oxyz Oxyz’ Oxy'z' Oxy'z Ox'yz Ox'yz' Ox'y'z' Ox'y'z
X + + + + - - - • -

y + + - - + + - -

Z + - - + + - - +

19.8. The distance between two points
Let P,Q  be two points with coordinates (xt, ylt zt), (x2, y2, z2) and 

let P\ Q' be their projections on the plane xOy (Fig. 178). The
2

coordinates of P', Q’ are (x1; y y, 0), (x2, y2, 0) and, by § 14.3, the length 
P'Q' is given by P'Q' = sJ{{xl -  x 2)2 + (y1 -  y2)2}. By drawing QR 
perpendicular to PP' it is apparent that the angle PRQ is a right angle 
and that

PQ2 = QR2 + PR2 = (Q’P )2 + PR2
= (*i -  x 2)2 + (yy -  y2)2 + (zx -  z2)2, (19.1)

since QR = Q'P' and PR = PP' — RP' - PP' — QQ' = zy — z2. For­
mula (19.1) has been derived above only when the coordinates of both 
points are all positive but, when due consideration is given to the 
sign convention described in § 19.7, it will be found to be valid for all 
positions of the given points. In particular, the distance OP of the 
point P(x1; y j, Zj) from the origin O is found by writing x2 = y2 = z2 = 0 
and we have

OP2 = x y2 + y ,2 + Zj2. (19.2)

19.9. The direction-cosines of a straight line
In Fig. 179, PQ is any straight line and OA is a straight line of unit 

length drawn parallel to PQ and passing through the origin O. The
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direction of PQ is clearly determined by the coordinates of the point 
A and, since these coordinates are the orthogonal projections of the 
unit length OA on the coordinate axes, A is the point (cos a, cos ß, cos y) 
where a, ß, y are respectively the angles xOA, yOA and zOÄ. Using 
formula (19.2) we have

cos2 a + cos2 ß + cos2 y = OA2 = 1. (19.3)

Fig. 179

The quantities / = cos a, m = cos ft, n = cos y are said to be the 
direction-cosines of the line PQ and (19.3) can be written in the form

l2 + m2 + n2 = 1 (19.4)
showing that the sum of the squares of the direction-cosines of any 
straight line is equal to unity. If the sense of the line PQ is reversed, 
OA is to be replaced by OA' where A' is the point with coordinates 
( -  cos a, -  cos /?, — cos y) and the direction-cosines of QP are there­
fore equal in magnitude but opposite in sign to those of PQ. It follows 
that the direction-cosines of the coordinate axes, described in the 
positive sense, are respectively 1, 0, 0; 0, 1, 0 and 0, 0, 1 while those 
lines in the plane xOy which bisect the angle xOy have direction- 
cosines 1/J2, ±1/J2,0.

The angle 9 between two lines with given direction-cosines can be 
found as follows. Let (Fig. 180) PQ and RS be the given lines with 
direction-cosines /,, m„ n, and l2, m2, n2 respectively and let OA, OB 
be lines of unit length through the origin O parallel to PQ and RS. 
Then the coordinates of A and B are (ll,m l,n l), (l2,m 2,n2) and, by 
equation (19.1), the length AB is given by

AB2 = (/j -  l2)2 + (m, -  m2)2 + (n, -  n2)2.
Since f 2 + mt2 + n ,2 = 1 and l22 + m22 + n22 = 1, this can be 
written

AB2 =  2 — 2 (/,i2 +  mlm2 +  n ,n 2), (19.5)
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*

F ig . 180

and application of the cosine formula to the triangle OAB in which 
OA = OB = 1 gives

AB2 = 1 + 1 —2 cos 6. (19.6)
Comparison of equations (19.5) and (19.6) then shows that the angle 0 
is given by

cos 6 = ¡¿2 + »»iW>2 + nin2 (19.7)
and it should be noted that when the given lines are perpendicular to 
each other (6 = 90°, cos 6 = 0),

IJ 2 + m1m2 + n1n2 = 0. (19.8)

Example 9. JfP and Q are points with coordinates (x„ y„ zt) and (x2, y2, z2), show 
that the direction-cosines of the line PQ are

~  * i  yi  ~  y  1 Z z  ~  * 1

r r r
where r2 = (x2 -  x,)2 + (y2 — y t)2 + (z2 — z,)2. Deduce that the angle between 
the diagonals of a cube is cos ~ 1 (1/3).
The direction-cosines of the line PQ are the cosines of the angles made by 
PQ with the coordinate axes and these are obtained by dividing the lengths 
of the orthogonal projections of the line on the axes by the length of the line. 
The orthogonal projections of PQ being of lengths x2 — x„ y2 — y,, z2 — z, 
and the length of the line PQ being given by r = ^{(x2 — x,)2 + (y2 -  y,)2 
+ (z2 — z,)2}, the required results follow. In Fig. 181, OABCDEFG is a cube of 
unit side. O and G are the points (0,0,0) and (1,1,1) so that the direction- 
cosines of the diagonal OG are

1 -  0, 1 -  0, 1 -  0 
r r r

where r2 = (1 — 0)2 + (1 — 0)2 + (1 -  0)2 = 3, that is, they are 1/-J3, 1A/3, 
l/,/3. C and F  are respectively the points (0. 1,0) and (1,0, 1) so that the
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t

Fig. 181

direction-cosines of CF are

1 -  0 0 -  1 1 -  0
r' * r' ’ r'

where (r')2 = (1 -  0)2 + (0 -  l)2 + (1 -  0)2 = 3, that is, they are 1/^3, — 1/̂ /3,
1/̂ /3. Using equation (19.7), the angle 0 between the diagonals OG and CF is 
given by

. 1 1  1 / 1 \ 1 1  1
1:08 v/3 'v/3 + V3 V V 3/  V3 V 3 3'

19.10. The equation of a plane
In Fig. 182, a plane meets the coordinate axes at points A, B, C 

and N is the foot of the perpendicular drawn from the origin O to 
the plane. If the length ON is p and if the direction-cosines of the

jr

Fiu. 182
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line ON are /, m, n, the coordinates of N  are (Ip, mp, np) and, if P is 
any point in the plane with coordinates (x, y, z), the direction-cosines 
of the line PN are (by Example 9 above)

Ip — x mp — y np — z 
r r r

where r2 = (Ip — x)2 + (mp — y)2 + (np — z)2. Since the lines ON, PN 
are at right angles to each other, equation (19.8) shows that the sum 
of the products of their direction-cosines is zero and hence that

Kip ~  x) + m(mp -  y) n(np -  z) = Q 
r r r

Since l2 + m2 + n2 — 1, this can be written in the form
lx + my + nz = p (19.9)

and this is the equation of a plane at distance p from the origin and 
whose normal has direction-cosines /, m, n.
Example 10. Find the equation of the plane making intercepts of lengths 3, 5 and 6 

on the coordinate axes.
The equation of the plane ABC of Fig. 182 is lx + my + nz = p and the lengths 
0/4, OB, OC are 3, 5, 6. Hence the coordinates of A, B, C are respectively 
(3,0,0), (0, 5,0), (0,0,6) and these coordinates satisfy the equation of the plane.
It fqllows that

3/ = p, 5m = p, 6n = p

so that / = p/3, m = p/5, n = p/6 and the equation of the plane (after division 
by p) can be written

19.11. The equations of a straight line
Since a straight line is formed by the intersection of two planes, a 

pair of equations such as
lx -I- my + nz — p, lx  + m'y + n'z = p (19.10)

is sufficient to determine it. Any set of values of x, y and z which satisfy 
these two equations simultaneously give the coordinates of a point on 
the line.

The equations of a straight line can be given in a more symmetrical 
form in terms of the coordinates (a, /?, y) of a fixed point on it together 
with the direction-cosines /, m, n of the line. Thus if P is the point 
(x, y, z) and Q the point (a, (1, y), the direction-cosines of the line QP 
are, by Example 9, given by

i = i z A  n, ^ l
r r r

where r = ^/{(x — a)2 + (y — P)2 + (z — y)2} is the distance between
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the points P and Q. These equations can be written in the form
x — a y — P z — y = rl m n

and this is a very useful form of the equations of a straight line.

(19.11)

Example 11. Find the coordinates of the point in which the line of intersection of 
the planes x — y + z = 2, 2x — y — z = 4 meets the plane x = 0. Find also 
the equations of the line of intersection in symmetrical form.
The line meets the plane x = 0 where

— y + z — 2, — y — z  = 4

and these equations give y = — 3, z = — Is o  that the required point is 
(0, -3 , -1). The direction-cosines of the normals to the given planes are 
respectively proportional to 1, — 1, 1 and 2, — 1, — 1. Each of these normals is 
perpendicular to the line of intersection of the planes so that, if l, m, n are 
proportional to the direction-cosines of the line

l — m + n =  0, 21 — m — n = 0

and these equations are satisfied if l:m:n =  2:3:1. Hence the equations of the 
line can be written in the form

x  y  + 3 z + 1 
2 -  3 "  1 '

EXERCISES 19(e)

1. Find the distance between the points A (—1,2,8) and B(l, 5,2). Find also 
the equation of the sphere with centre A  and radius AB.

2. Find the equation of a right-circular cone of semi-vertical angle 45° whose 
axis lies along the coordinate axis Oy.

3. A straight line makes angles a, ft, y with the three coordinate axes. Show that 
sin2 a + sin2 /? +  sin2 y =  2.

4. Find the angle between straight lines whose direction-cosines are respec­
tively proportional to 2, 3 ,4  and 1, 5, —2.

5. If two straight lines have direction-cosines l ly m1( n, and l2, m2, n2, show 
that the angle 6 between them is given by

sin2 # =  ( m ^  — m ^ i ) 2 +  (rqlj -  n 2l ,)2 +  (/jirq — /¡m,)2.
6. Find the direction-cosines of the normal to the plane x +  2y — 2z =  9 and 

find the lengths of the intercepts made by the plane on the coordinate axes.
7. If O is the origin of coordinates and P  is the point (2, 3, — 1), find the 

equation of the plane through P  at right angles to OP.
8. Find the equation of the plane through the point (0,1,1) normal to the line 

joining the points (1,3,4) and (2,4,6). Find also the angle between this 
plane and the plane 2x — y +  z =  6.

9. Find the distance of the point ( -  1, -  5, -1 0 )  from the point of intersection 
of the line

x -  2 
3

y + 1 z — 2
~l2~4
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with the plane x — y +■ z =  5.
10. Find the conditions that the line

x — a _ y  — P _ z -  y 
l m n

should lie in thé plane A x + By + Cz = D.

EXERCISES 19 ( / )

1. Prove that the common perpendicular to two opposite edges of a regular 
tetrahedron is inclined at an angle of 45° to each of the other four edges.

(O.C.)
2. AB and CD are two given skew lines and a third line cuts them at X  and Y.

Find, for different positions of X  and X the locus of a point Z  dividing 
XT internally in a given ratio. (L.U.)

3. A rectangular swimming bath is 15 m long and 5-4 m wide and the bottom 
slopes uniformly from a depth of 0 9 m at one end to 1 -8 m at the other. Find
(i) the length of the diagonal joining opposite bottom comers at the deep 

and shallow ends,
(ii) the angle which this diagonal makes with the diagonal of the deep end

wall which it meets. (O.C.)
4. Three edges AB, AC, AD of a cube are produced to P, Q, R  respectively 

so that AP  =  AQ = AR = 3AB/2. Show that the plane PQR is parallel to 
the plane BCD and that the section of the cube by the plane PQR is a 
regular hexagon.

5. Prove that the line joining the mid-points of one pair of adjacent edges of 
a tetrahedron is equal and parallel to the line joining the mid-points of the 
opposite pair of edges. Prove also that the lines joining the mid-points of 
opposite edges are concurrent and bisect each other.

6. If a straight line is parallel to two planes, prove that it is parallel to their 
line of intersection.

7. Each of three concurrent straight lines OA, OB, OC is perpendicular to a 
fourth line. Prove that the lines OA, OB, OC are in the same plane. (O.C.)

8. OA, OB, OC are straight lines mutually at right angles, OD is perpendicular 
to BC and OE to AD. Show that OE is perpendicular to the plane ABC.

(O.C.)
9. ABCDEF is a regular hexagon of side a and is the base of a hexagonal

pyramid, vertex V. If each of the edges VA, V B ,... ,  VF is of length 2a, show 
that the shortest distance between AB  and VE is (2v/l5a)/5. (L.U.)

10. AB  is the common perpendicular to two skew lines AC, BD making an 
angle of 9 with one another. Show that

CD1 =  A B 2 +  ,4C2 +  BD2 -  2AC.BD cos0.
11. ABCD is the floor of a rectangular room and A'B'C'D' is the ceiling, A 

being vertically above A, etc. If AB  =  10-2 m, BC =  4-8 m and AA' =  3-6 m, 
find the shortest distance between AB  and DB'.
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12. ABCD is a tetrahedron in which AD = BC = a, BD =  CA = b, CD — AB = c. 
Find the length of the shortest distance between AD  and BC.

13. PN  is a line perpendicular to a plane N A B , A, B being points in this plane 
such that AB  =  413, the angles N AB  =  63° 30', N BA  =  41° \S', PAN  = 
27° 12'. Calculate the length of the perpendicular PN  and the angle PBN.

(L.U.)
14. CM, OB, OC are adjacent edges of a cubical block of side 4 m. P, Q, R are 

the middle points of these edges. The corner O is removed by cutting through 
the plane PQR, and the other comers are treated similarly. Show that the 
inclination of any triangular face to an adjacent square face of the resulting 
solid body is 125° 16'.

15. The base of a pyramid is a square ABCD  of side 4 m. The height of 
the vertex V above the plane of the base is also 4 m and all the edges 
E4, VB, VC, VD are equal. Find the angle between the edge VA and the
•base.

16. A rectangular hoarding 3 m high and 9 m long faces due north. Calculate 
the area of its shadow on the ground when the sun is

(i) due south at an elevation of 50°,
(ii) south-west at an elevation of 30°.

17. The hypotenuse BC of a right-angled triangle ABC  lies in a horizontal 
plane and its sides AC, AB  are inclined to this plane at angles a and /? 
respectively. Show that the inclination of the plane of triangle ABC  to the 
horizontal plane is sin~1 {^/(sin2 a +  sin2 /?)).

18. Show that the diagonal of a cube is equally inclined to all the edges of 
the cube and find the angle of inclination.

19. OA, OB, OC are three mutually perpendicular lines and OA =  a, OB = b, 
OC = c. Show that the angle between the planes OBC and ABC  is

20. The corners A, B, C of a triangle in an inclined plane are at heights 6, 2
and 11 m respectively above a certain horizontal plane and the sides are 
a =  18 m, b = 16 m, c =  21 m. Find the lengths of the sides of the projected 
triangle and thence find, to three figures, the cosine of the angle between 
the two planes. (L.U.)

21. Two straight lines m, n are skew. Show that the centre of the sphere which
touches m at a given point P and n at a given point Q may be obtained as 
the intersection of three planes. (L.U.)

22. Three spheres, each of radius a, rest on the horizontal base of a cylindrical 
tin. Each sphere touches the other two and also the curved surface of the 
tin. Find the radius of the tin. If a fourth sphere, also of radius a, resting on 
the three spheres just touches the top of the tin, find the height of the tin.

(L.U.)
23. A liqueur glass of height 0125 m is of diameter 0075 m at the top and 

0 05 m at the bottom. Obtain the radius of the sphere which (a) just touches 
the bottom of the glass and the sloping sides, (b) fits into the glass exactly 
half-way down the slope.

19] E X E R C IS E S
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24. n spheres form a ring on a horizontal plane, their centres being at the
comers of a regular polygon, and each sphere touches two others. Another 
sphere touches all the spheres of the ring and rests on the same^horizontal 
plane. If r denotes the radius of a sphere of the ring and R the radius of 
the other sphere, prove that r =  4R sin2 (n/n). (L.U.)

25. Through a fixed point O at distance c from the centre of a sphere of radius 
a, three planes are drawn at right angles to one another so that all three 
planes intersect the sphere. Show that the sum of the areas of the three 
circles of intersection of the planes with the sphere is n(3a2 — c2).

26. The vertices of a triangle are the points A{ —1,2,3), B(2,1,3) and C (3,1,4). 
Find the value of cos C.

27. A plane makes intercepts OA , OB, OC of lengths a, b, c on the coordinate 
axes. Show that the area of the triangle ABC  is

•j(b2c2 +  c2a2 +  a2 62)*.
28. The equations of two straight lines are x  =  ay + b, z  =  cy +  d  and 

x =  Ay + B, z =  Cy +  D. Show that the two lines are perpendicular if 
aA + cC + 1 =  0.

29. Find the equations of the straight line passing through the point (a, /?, y) 
which is perpendicular to each of the lines

- - - - -  and x _  y _  z 
1, m 1 l2 m2 n2

30. A plane is perpendicular to each of the planes x +  y + 3z =  0, 
3x -  2y +  4z =  0 and passes through the point (1,1,1). Find
(i) the direction-cosines of the normal to the plane,

(ii) the equation of the plane. (N.U.)



CHAPTER 20

MENSURATION OF SIMPLE SOLID FIGURES

20.1. Introduction
It has been assumed (Chapter 4) that the student is familiar with 

the idea of the circular measure of an angle and we assume here that 
the following formulae in the mensuration of the circle are also 
known
(i) for a sector of a circle of radius r, in which the circular measure 

of the angle between the bounding radii is 6, the length of arc = rd 
and the area of the sector = \r20;

(ii) for a circle of radius r (the particular case of (i) above in which 
6 = 2n), the circumference = 2nr and the area = nr1.

It is assumed also that the area of a trapezium, in which a, b are 
the lengths of the parallel sides and h is the height, is known to be 
\{a + b)h. Two particular cases of this formula to be especially noted 
are:—
(i) if a = b, the trapezium is a rectangle of sides b, h and area bh,

(ii) if a = 0, the trapezium is a triangle of base b, height h and 
area \bh.

The contents of this chapter include the mensuration of the simpler 
solid figures such as the prism, pyramid, cylinder, cone and sphere. 
The methods of the calculus are used where these seem to be suitable.

20.2. The volume of a right prism
The unit of volume is the cube whose edges are of unit length. A 

rectangular parallelepiped whose edges are of lengths a, b, c can be 
subdivided into abc cubes with edges of unit length and the volume 
of such a parallelepiped is therefore abc.

A right prism is one whose end faces are congruent polygons and 
whose remaining faces are rectangles. Since any polygon can be sub­
divided into a number of triangles, such a prism can be considered 
to be composed of a number of right triangular prisms, and it is funda­
mental to obtain a formula for the volume of such a prism.

Fig. 183 shows the end elevation of a right triangular prism, AD 
being the perpendicular from A to the base BC of the triangular end 
face ABC. Suppose that the prism is cut by planes parallel to the 
rectangular face of which BC is one side and let PQ, GH be the lines 
of intersection of two such planes with the end face ABC. Through

395
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A

P, Q draws PS, QR perpendicular to GH to meet it at S and R and 
through G, H draw GF, HE perpendicular to PQ to meet it at F and
E. Let PQ, GH meet AD at L and M, and let AM = x, AL = x + Sx.

From the similar triangles AHM, ABD, AM/AD = AH/AB, and 
from the similar triangles AHG, ABC, AH/AB = HG/BC. Hence 
HG/BC = AM/AD, giving, since AM  = x,

H C - x BC
h g ~ x a d  ■

Similarly, PQ = (x + ¿x}-^.

The element of volume SV of the prism of which PQGH is the end 
elevation lies between the volumes of the rectangular parallelepipeds 
of which EFGH and PQRS are end elevations. We have therefore, if 
h is the length of the prism,

HG.M L.h < SV < PQ.ML.h.
Substituting for HG, PQ and noting that ML = Sx, these inequalities 
can be written

h .xSx  < SV < ^ - .h . ( x  + Sx)Sx,
AD AD

from which it follows by arguments similar to those used in Chapter 10 
that

dV BC , 
dx ~ AD'h X‘

The total volume V is therefore given by 
r*»BC 
Jo AD

.h.x.dx

■til; - yBC.AD.h
AD ^ Jo  

= area of end face x length.
By subdividing any right prism into its component triangular
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prisms, it follows that the volume of a right prism is equal to the product 
of its length and the area of its end face. This result has been used in 
the derivation of formula (12.1), viz., the volume V of a solid body, 
the area of whose cross-section by a plane at distance x from the origin 
is a function S(x) of x, is given by

V =
'b

S(x)dx,
a

(20.1)

where a, b are the end values of x for the solid under discussion.

20.3. The volume of an oblique prism
Fig. 184 shows an oblique prism whose end faces are of area B and 

whose altitude (measured perpendicular to the planes of the end 
faces) is h.

Taking the x-axis perpendicular to the planes of the end faces, the 
cross-section of the prism at any altitude x for which 0 < x < h is 
also of area B, and (20.1) gives for the volume V of the prism,

F = £Bdx  = Bh. (20.2)

Hence the volume of any prism is equal to the product of the area of 
the base and the altitude.

20.4. The volume of a pyramid
In Fig. 185, V is the vertex and ABCD ...  the base of a pyramid 

of which A'B'C'D' . ..  is a plane section parallel to the base. VP is the 
perpendicular from V to the plane ABCD ..., cutting the plane 
A'B'C'D'. ..  at P'. By similar triangles we have

A'B' _  VA' _  VP’
AB ~ VA ~ VP’



and then, by theorem 1 (§ 18,6),
area A'B C D '. ..  A'B'2 VP'2
area ABCD ... AB2 VP2'

V
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(20.3)
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If the origin is taken at V and the x-axis along VP, the area S(x) 
of a cross-section of the pyramid at distance VP' = x from V is given 
by (20.3) as

S(x) = p . x 2, (20.4)

where B is the area of the base ABCD ...  and h is the altitude VP 
of the prism. Substitution for S(x) in (20.1) gives for the volume V 
of the pyramid

V = * B 2 . B
dx = ip

-xY
- 3 J 0

= iBh. (20.5)
Hence the volume of a pyramid is equal to the product of one third 

the area of the base and the altitude. Since a tetrahedron is a pyramid 
with a triangular base, the same formula applies for its volume.

Example 1 A pyramid stands on a square base and its top is cut away by a plane 
parallel to the base and 0 06 m from it. I f  the area of the top of the remaining 
frustum is one-quarter of the area of the base and the volume of the frustum 
is 35 x 10 4 m3, find the length of the edge of the base. (L.U.)
In Fig. 186, VABCD is the pyramid, A'B'C'D' is the top of the frustum and 
VP is perpendicular to the plane ABCD meeting A’B'C'D’ at P'. We have shown 
in equation (20.4) that the areas of parallel sections of a pyramid are proportional 
to the squares of their distances from the vertex, so that VP'2/VP* = ratio of 
areas A'B'C'D' and ABCD = 1/4 and hence VP' = \VP. Since P'P = 006 m it 
follows that VP = 012 m. If a is the length of an edge of the square base, its area 
is a2 and the volume of the pyramids VABCD, VA'B'C'D' are respectively
3a2. VP and 3. VP' or 0 04a2 and 0005a2 when we substitute VP = 012, 
VP' = 0 06.
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V

F ig . 186

The difference in the volumes of these pyramids is the volume of the frustum 
A'B'C'D'ABCD, so that

004a2-0005a2 = 3-5 x 10“4
leading to a = 01 m.

Example 2. The base of a tetrahedron is an equilateral triangle whose sides are each 
0 08 m in length. The remaining edges of the tetrahedron are each 012 m in 
length. Calculate (/) the height, (ii) the volume, (iii) the total surface area. (L.Li.)
Let ABC be the base and V the vertex of the tetrahedron (Fig. 187). VP is 
perpendicular to the base and, from symmetry, P is the point of intersection of

V

the medians of the triangle ABC. If D is the mid-point of the edge AB, 
DC2 = AC2 -  AD2 = 00064 -  00016 = 00048,

so that DC = 0 06928 m and PC = jD C .=  0 04619 m.

From the right-angled triangle VPC,
VP2 = VC2 -  PC2 = 0 0144 -  0 0021 = 0 0123, 

so that the height VP of the tetrahedron is 0111 m.
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The volume V  of the tetrahedron is given by
V = f  area A ABC.VP = $.\.AB.DC.VP

= $x$x0-08x 006928x0111 = 1-02 x lO-4 m3.

Since E4B is an isosceles triangle, the line joining V to the mid-point D of 
AB is perpendicular to AB and the right-angled triangle VAD gives

V D 2 = V A 2 -  AD2 = 00144 -  00016 = 00128,
so that the altitude VD of the triangle VAB is 0113 m. The three sloping faces 
are triangles of base 0 08 m, height 0-113 m and therefore each is of area 
0 00452 m2. The base of the tetrahedron is a triangle of base 0 08 m, height 
0 06928 m and therefore of area 0 00277 m2. Hence the total surface area

= 0-00277 + 3x0-00452 = 0-01633 m2.

EXERCISES 20(a)

1. A rectangular swimming-bath is 15 m long and 5-4 m wide and the bottom 
slopes uniformly from a depth of 0-9 m at one end to 1-8 m at the other. 
Find the volume of the bath.

2. OA, OB, OC are adjacent edges of a cubical block of side 0 04 m. P, Q, R are 
the middle points of these edges. The corner O is removed by cutting through 
the plane PQR and the other corners are treated similarly. Find the volume 
of the remaining solid.

3. A pyramid with vertex O stands on a triangular base ABC. A plane parallel
to the base cuts the edges OA, OB, OC in A', B', C1 respectively. If OA' = OA/3, 
find the ratio of (i) the surfaces, (ii) the volumes of the pyramids OA'B'C’, 
OABC. (O.C.)

4. The three edges of a tetrahedron OABC  meeting at the vertex O have the 
same length a and make equal angles 6 with each other. Prove the following 
results:—

(i) AB = BC =  CA =  2a sin y0,
(ii) if p is the perpendicular from O to the plane ABC, then

3p2 = (1 +  2 cos ff)a2,
(iii) the volume of the tetrahedron is £a3(l — cosf?)(l +  2cos0)1/2. (L.U.)

5. A pyramid stands on a square base and every edge has the same length a. 
Prove that the length of a diagonal of the base is twice the height of the 
pyramid.

Calculate, in terms of a, (i) the volume, (ii) the total surface area, including 
the base, of the pyramid. (L.U.)

6. A right pyramid stands on a square base of side 2a, any sloping face being
inclined at 60° to the base. Through one edge of the base a plane is drawn, 
at 30° to the base, cutting the pyramid. Find the volume of the new pyramid 
formed. (L.U.)

7. The base of a tetrahedron is an equilateral triangle of side Aa^j3\ the 
remaining three edges are equal in length. A sphere of radius a touches



20] VOLUM E A N D  S U R F A C E  OF C Y L I N D E R 401

each of the four faces internally. Calculate the volume of the tetrahedron.
(L.U.)

8. The areas of the top and bottom of the frustum of a pyramid are respectively 
24 m2 and 54 m2, and their distance apart is 10 m. Find the volume of the 
frustum. (L.U.)

20.5. The volume and curved surface of a cylinder
The surface generated by a straight line which intersects the circum­

ference of a circle and which is always perpendicular to the plane of 
the circle is known as a right circular cylindrical surface. The space 
bounded by such a surface and two planes perpendicular to the 
generators is a right circular cylinder and its axis is the line joining the 
centres of its circular ends. In what follows the word cylinder will be 
used to denote briefly such a body.

x

t
h

Fig. 188

Taking the origin at the centre of the circular base and the x-axis 
perpendicular to its plane, the area of any cross-section of the cylinder 
is nr2, where r is the radius of the circular base. Hence, if the altitude 
of the cylinder is h, equation (20.1) gives for its volume V,

V =
*h

nr2 dx = nr2h, (20.6)
Jo

so that the volume of a cylinder is equal to the product of the area of its 
base and its altitude.

It has been shown in § 12.8 that the area of the curved surface of a 
frustum of a right circular cone is given by

i(sum of circumferences of the circular ends) x the slant height.
The cylinder is a special case of such a frustum in which the circum­
ference of each circular end is 2nr and the height is h, r and h being 
respectively the radius of the base and the altitude of the cylinder. 
Hence the area S of the curved surface of a cylinder is given by

S = 2 nrh. (20.7)
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Example 3. The height of a cylinder is h and the radius of its base is r. I f  V is its 
volume and A the total area of its surface, show that

2nr3 -  rA + 2V = 0. (O.C.)
»

The total area of surface is that of the curved surface and the two plane ends, 
so that

A = 2nrh 4- 2nr2.
Also V = nr2h, giving h = V/nr2. and substitution in the expression for A gives 

A = 2nr^—¿J + 2nr2,

from which the required result follows immediately.

EXERCISES 20(b)
1. Three solid spheres of radii 2a, a, a are placed inside a right circular cylinder

of radius 2a whose length is such that each sphere touches the other two 
and touches one of the plane circular ends of the cylinder. Find the volume 
of the cylinder. (L.U.)

2. The height of a cylinder is 0-21 m and its volume is 1 056 x 10"3 m 3. Find 
the area of its curved surface.

3. The axes of three cylinders are the sides of a plane triangle and each 
cylindrical surface passes through the opposite vertex of the triangle. Show 
that the curved surfaces of the three cylinders are equal in area.

4. A cylinder of height 3a is inscribed in a sphere pf radius 2a. Find the total 
surface area of the cylinder.

5. A rectangular piece of paper, 011 m by 0-06 m, is curved so as to form the 
curved surface of a cylinder. Find the volumes of the two cylinders which 
can be so formed.

6. The radius of the base and height of a cylinder are respectively r and h. 
The radius and length are increased by small amounts p and A respectively. 
Show that the volume of the cylinder is increased by

2 p  A
r + h'

of itself approximately. (O.C.)

20.6. The volume and curved surface of a cone 
The solid generated by the revolution of a right-angled triangle 

about one of the sides containing the right angle is known as a right 
circular cone. The side of the triangle about which the rotation takes 
place is the axis of the cone. In what follows we shall use the word 
cone to denote briefly such a body.

In Fig. 189, the vertex O of the cone is taken as origin and its axis 
as the axis of x. The semi-vertical angle of the cone is a and Q is the 
centre of a circular section at distance OQ = x below O. The radius 
PQ of such a section is clearly x tan a, so that the area of the section 
is 7tx2 tan2 a. If h is the height of the cone, equation (20.1) gives for
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its volume K

(20.8)
This formula can be cast into an alternative form by observing that, 
if r is the radius of the circular base of the cone,

r = h tan a, (20.9)
and, elimination of tan a. between (20.8) and (20.9), gives

V = \nr2h. (20.10)
The formula given in § 12.8 for the surface of a frustum of a cone 

can be adapted to give the surface of the complete cone by observing 
that the circumference of one of the circular ends of the frustum is, 
in this case, zero. Hence, if / is the slant height (see Fig. 189), the 
curved surface S is given by

S = nrl. (20.11)
From the diagram l = h sec a, and this, together with' (20.9), enables 
the surface area to be expressed in the alternative form

S = nh2 tan a sec a. (20.12)
Example 4. A cone of height h is cut into two portions by a plane parallel to the base. 

Find the distance of this plane from the vertex, if the product of the volumes of 
the two portions is to be a maximum. (L.U.)
Let a be the semi-vertical angle of the cone and x the distance from the vertex 
of the cutting plane. Then the volumes of the complete cone and the upper 
portion are respectively \nh3 tan2 <x and j7tx3 tan2 <x. The volumes of the two 
portions into which the cone is cut are therefore 7̂tjc3 tan2 a and \n(h3 — x 3) 
tan2 a. The product of these two volumes will be a maximum when the function 

F(x) = x3{h3 -  x3) 
is a maximum. This occurs when 

dF~  = 3h3x2 -  6x5 = 0, dx
or when, x = #i/3n/2.
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EXERCISES 20(c)
1. The altitude of a cone is equal to the circumference of its base. Find 

expressions for the volume and total surface area in terms of .the radius r 
of its base.

2. The faces of a regular tetrahedron are equilateral triangles of side a. A cone
is inscribed, having the same vertex as the tetrahedron and base the 
inscribed circle of the opposite face. Calculate the curved surface of this 
cone. (L.U.)

3. A cone of height h is inscribed in a sphere of radius R. Find an expression
for its volume. Hence show that the greatest volume of a cone which can 
be inscribed in the sphere is $nR 3. (O.C.)

4. A cone is cut into two parts of equal volume by a plane parallel to its base.
Find the ratio of the curved surface area of the part which contains the 
original vertex to the curved surface area of the other part. (L.U.)

5. The radii of the ends of a frustum of a cone are a—b and a+b  and its 
slant height is 2h. Show that:—

(i) its volume =  ^ {3 a2 +  b2) J(h2 -  b2),

(ii) its total surface area =  2n(a,2 +  2ah +  b2).
6. A bell tent consists of a conical part above and a cylindrical part near the 

ground. Show that, for a given volume and given radius of the circular 
base, the area of canvas used is a minimum when the semi-vertical angle 
of the cone is cos“  '(2/3).

7. If R, r are the radii of the larger and smaller faces respectively of the frustrum 
of a cone of height h, show that its volume is nh(R2 + Rr + r2)/3 and its 
curved surface is

n(R + r)V{h2 +  (R -  r)2}.
8. A cone is inscribed in a sphere of radius a. If the vertical angle of the cone 

is 20, prove that its volume is
§7ra3 sin2 6 cos4 0.

By putting x =  cos2 0 find the value of x, and hence the value of 0, for 
which the volume of the cone is a maximum. (L.U.)

20.7. The mensuration of the sphere
In Fig. 190, O is the centre of a sphere of radius r, OA is a vertical 

radius which is taken as the x-axis, and PQR is a horizontal circular 
section whose centre N  is at depth x below O. From the right-angled 
triangle ONP,

NP2 = OP2 -  ON2 = r2 -  x2.
Hence the area of the circular section PQR is 7t(r2 — x2), and, by
(20.1), the volume V of a frustum of the sphere bounded by parallel 
planes at depths h,k{h < k) below O is given by

V = f 7r(r2 -  x2)dx
■1 h

=  nr2(k -  h) -  ^n(k3 -  h3). (20.13)
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F ig. 190

By writing h = 0, k = r in this formula, the volume of a hemisphere 
is given by

3 nr3,
and hence the volume of a complete sphere is

\n r \  (20.14)
Formula (20.13) applies, of course, to the volume of a frustum 

whose limiting planes are on the same side of the centre of the sphere. 
If the planes be at distances h, k from the centre but on opposite sides 
of this point, the frustum can be divided into two by a plane through 
the centre. The volume of the first frustum is then

nr2(k — 0) — %7i(k3 — 03) = nr2k — %nk3,

♦
4

and the volume of the second is similarly
nr2h -  \nh3.

Hence the volume of the whole frustum is
nr2(k + h )~  \n(k3 + h3). (20.15)

The volume of a sector of a sphere can be found by dividing it 
into a cone and a spherical cap. Thus, Fig. 191, if r is the radius of 
the sphere and k is the height of the spherical cap, the height of the 
cone is clearly r — k. Since OP = r, the right-angled triangle ONP 
gives NP2 — OP2 — ON2 = r2 — (r — k)2, so that the volume of the
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conical portion is
\n{r2 -  (r -  k)2}(r -  k).

By writing k = r, h = r — k in (20.13), the volume of the? spherical 
cap is

nr2{r -  (r -  k)} -  ^r{r3 -  (r -  k)3},
and, by addition and some reduction, the volume of the sector is 
found to be

\nr2k. (20.16)
The area of the curved surface of a spherical frustum or zone of 

radius r in which the perpendicular distance between the parallel plane 
ends is h is the area of the surface of revolution obtained by rotating 
the arc of the circle x 2 + y2 = r2 included between the points for 
which x = a, x  = b, where b — a = h, about the x-axis. By equation 
(12.27) of § 12.8, the surface area S is given by

+ (dy/dx)2 }dx 

+ {y dy/dx)2 }dx.

Since x2 + y2 = r2, 2x 4- 2y(dy/dx) — 0 and

y 2 + ( j ^ )  •= y 2 + (~ * )2- = y2 + x2 = r

(20.17)

Hence (20.17) gives
S = 2n j rdx  = 2 nr(b — a)

J  a

= 2nrh, (20.18)
since b — a = h.

For a complete sphere, h = diameter = 2r and the surface area is
4tzr2. (20.19)

Example 5. A plane cuts a sphere of radius r into two segments whose curved surfaces 
are in the ratio- 3:1. Find the distance of the plane from the centre of the sphere. 
Prove that the volume of the larger segment is 9^r3/8. (L.U.)
Let x = distance of cutting plane from the centre of the sphere. Then the width 
of the two zones are respectively r + x and r — x. Hence, by (20.18),

2nrir + x) _  3 
2nr{r — x) 1

leading to x = )r.
The larger segment consists of a hemisphere and a frustum whose bounding 
planes are at distance 0 and r/2 from the centre. By (20.13), the volume is

ftrr3 + 7tr2(|r -  0) -  ^ (¿ r3 -  03),
or 9nr3/8.
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Example 6. A cylindrical hole is bored through a solid sphere of radius r, the axis of 
the cylinder coinciding with a diameter of the sphere. Prove that, if I is the length 
of the resulting hole, the volume of the remainder of the sphere is rtl3/6. (L.U.)

20] M E N S U R A T I O N  OF TH E  SP H E R E

Fig. 192 shows a section through the axis EF of the cylindrical hole. O is the 
centre of the sphere, ABCD the section of the hole and X  the mid-point of 
AB. The right-angled triangle AOX gives

OX2 = AO1 -  A X 2 = r2 - 4
so that the volume of the cylinder of which ABCD is a section is

nl

The volume of each of the spherical caps AED, CFB is given by writing k -  r, 
h = 1/2 in equation (20.13). The volume of each is therefore

Hence, the required volume remaining

= 3*r
= nl3/6.

EXERCISES 20(d)
1. Prove the equivalence of the two formulae

nh2(3R - h) J  nh(h2 +  3r2)------3-----  and -------------•

for the volume of a cap of height fc-cut from a sphere of radius R, r being the 
radius of the plane base of the cap. [Equation (20.13) may be assumed.]

(L.U.)
2. A solid sphere of radius 0-1 m is divided by a plane into two parts, the 

volume of one part being half that of the other. Find the distance of the 
plane from the centre of the sphere, correct to the nearest millimetre,

(Q-E.)
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3.

4.

5.

A spherical iron shell of outside diameter 0-356 m weighs 68 kg. Calculate 
its thickness, assuming it to be uniform, if the density of the iron is 7690 
kg/m3. (Q.E.)
A sphere is inscribed in a cone of height h and base-radius a. Show that the 
volume of the sphere is

4na3h3
3 {a + V(a2 +  h2)}3' (L.U.)

A top is in the form of a solid piece of wood so constructed that the portion 
OABC is a cone and ABCH is part of a sphere of radius a.

The cone is such that its generators OA, OB, OC, etc., are tangents to the 
sphere at A, B, C, etc. Prove that the area of the surface of the top is 

na2(l +  sin 6)1 cosec 0,
where 6 is the semi-vertical angle of the cone. (L.U.)

6. A hollow cone of height 3a and vertical angle 60° has its axis vertical and
vertex downwards. A sphere of radius 2a rests on the cone. Prove that the 
surface area of the part of the sphere within the cone is one-quarter of the 
total surface area of the sphere. (L.U.)

7. A cone of height h and a hemisphere are on the same side of their common
circular base of radius r(h > r). Prove that the area of that part of the surface 
of the hemisphere which is outside the cone is 4nr3h/(h2 +  r2). (L.U.)

8. A sphere rests in a horizontal circular hole of radius 2a and the lowest point
of the sphere is a below the plane of the hole. Calculate the area of the part 
of the surface of the sphere below the hole and the volume of this part of 
the sphere. (L.U.)

20.8. Summary of some mensuration formulae
Some of the more important formulae are here collected for easy 

reference.
Circle.
Circumference = 2 nr. 
Area = nr2.

r = radius.
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Length o f arc =  rO. d — angle between extrem e radii.
Area o f sector =  \ r 2d.

Trapezium. ‘
Area =  |(a  +  b)h. a, b the parallel sides,

Prism.
h =  altitude.

Volum e =  Bh. B =  area o f  base,

Pyramid.
h =  altitude.

Volum e =  \Bh. B =  area o f base,

Cylinder.
h =  altitude.

Volum e =  nr2h. r =  radius o f base,
Area o f  curved surface =  2nrh. 

Cone.

h =  altitude.

V olum e =  \n r2h =  \nh3 tan2 a. r =  radius o f base,
Area o f  curved surface =  nrl h =  altitude,

=  nh2 tan a sec a. l =  slant height,

Sphere.
a =  sem i-vertical angle.

Volum e =  ynr3.
Area o f surface =  4^r2.

r =  radius.

Surface o f  zon e =  2nrh. h =  height o f  zone.

EXERCISES 20(e)

1. A circle is divided by a chord into two portions whose areas are in the
ratio 2:1. Find an equation for the angle 0 subtended by the chord at the 
centre. (L.U.)

2. Two wheels of diameters 2-4 m and L8 m are in the same plane and their
centres are 2-7 m apart. Calculate the least length of the belt that will go 
round the wheels. (Q.E.)

3. AP and AQ are equal chords of a circle. If the area of the circle enclosed 
between AP and AQ is twice the area of the triangle APQ, prove that

sin 20 +  sin 0 =  0,
where 0 is the radian measure of the angle PAQ.

Determine an approximate value for 0 by drawing graphs of the two 
sides of this equation for values of 0 between tt/3 and tt/2. (L.U.)

4. Show that the volume of a regular tetrahedron whose edges are all of 
length a is (>/2a3)/12.

5. A wooden block in the form of a cube of edge 2b has each comer cut off 
by saw cuts through the middle points of the three edges in that corner.
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Prove that the total surface area of the block of wood that remains is 
b 2( 12 +  473). (L.U.)

6. O A, O B, O C  are adjacent edges of a cubical block of side a. L , .M  are the
middle points of the edges O A , O B  respectively. The tetrahedron O C L M  
is removed by cutting along the plane L M C .  Find, in terms of a, the volume 
of the solid remaining. (L.U.)

7. Show that the volume of a frustrum of a pyramid is

iMB,2 + B,B2 + B22),
where h is the height of the frustrum and B t 2, B 22 are the areas of its 
parallel ends.

8. A closed cylinder of height 3a is inscribed in a sphere of radius 2a. 
Find the area of the whole surface of the cylinder including its plane 
ends.

9. Out of a wooden cone of radius a  and height h is carved a solid composed
of a hemisphere of radius a /2 and a cylinder of the same radius, their 
circular bases coinciding and the axis of the solid coinciding with the axis 
of the cone. If the hemisphere touches the base of the cone and the rim of 
the opposite end of the cylinder lies on the curved surface of the cone, 
find the volume of the solid and express it as a fraction of the volume of 
the cone. (L.U.)

10. Show that the altitude of the cone of greatest volume which can be inscribed
in a sphere of radius a  is 4a/3. If in this cone there is now described the 
cylinder of greatest volume, show that its volume is 32/243 of the volume 
of the sphere. (L.U.)

11. The radii of the circular ends of a frustum of a cone are a  and b. If a  sphere
can be inscribed in the frustum to touch the plane ends and also to touch 
the curved surface, show that the area of the curved surface exceeds the 
area of the surface of the sphere by n(a  — b)2. (L.U.)

12. A solid sphere of radius r is divided by a plane at a distance x from its
centre. From the la rger  portion a conical hole is drilled out, the vertex of 
the cone being at the centre of the sphere and its plane base being coincident 
with the circle of division of the sphere. Find the volume of the remaining 
solid and show that, if x =  3r/5, its total surface area is equal to that of 
the original sphere. (L.U.)

13. A lead sphere of diameter 01 m is melted and cast into a solid cone. Find 
the height of the cone if the area of its curved surface is as small as possible.

(L.U.)
14. A cube stands on a plane and is enclosed by a hollow cone which also

stands on the plane. Prove that the volume of the cone is a minimum when 
the angle at its vertex is 2 tan - 1 (1/(272)}. (L.U.)

15. Two floating buoys are made, one spherical and the other in the form of
a cone. Both are 1-5 m high and the diameter of the base o f the cone is also 
1 -5 m. Calculate the ratio of the surface areas. The conical buoy is arranged 
to float with vertex upwards and base horizontal, and half the volume is 
submerged. Find the height of the vertex above the surface. (L.U.)
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16. The semi-vertical angle of a cone is t a n '1 (3/4) and the radius of its base is
r. If its curved area is 8/15 of that of a hemisphere of radius R, find the 
ratio R:r. * (L.U.)

17. Three spheres each of radius a rest on a horizontal plane with their centres
at the vertices of an equilateral triangle of side 2a. A fourth equal sphere 
rests symmetrically on top of the other three. Find the height of the highest 
point of the fourth sphere above the horizontal plane, and prove that the 
ratio of the volume of the tetrahedron whose vertices are the centres of 
the spheres to the volume of a sphere is 1 :n^/2. (L.U.)

18. The figure represents a lens which is bounded by two equal spherical 
surfaces of radius 1 -44 m, and whose maximum thickness is 0-01 m. Calculate,

20] E X E R C I S E S
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(i) the diameter of the lens, i.e., the length AB, (ii) its total surface area,
(iii) its volume. (L.U.)

19. Two spheres of radii a and b cut orthogonally. Find the area of the first 
sphere which lies outside the second.

20. The distance between the planes of two circles is A times the sum of their 
radii. Show that the surface areas of the spherical and conical zones bounded 
by them are in the ratio ^/(l +  A2): 1.

21. AB  is a diameter of a sphere and N  is a pbint on AB. Prove that the volume
of the space included between the spheres on AB. AN, N B  as diameters 
respectively is equal to half the volume of a cylinder, the radius of whose 
base is NU  and whose altitude is AB, where NU  is drawn perpendicular 
to AB  to meet the outer sphere in U. (L.U.)

22. A regular tetrahedron is inscribed in a sphere of radius R. Prove that
(i) the height of the tetrahedron is 4R/3,

(ii) the plane of the base of the tetrahedron cuts the sphere into segments
having volumes in the ratio 7:20. (L.U.)

23. A wine glass has the shape of a cone with semi-vertical angle 30° and 
vertical depth a. The glass is completely filled with liquid and a spherical 
ball is then gently lowered into the liquid until it rests in contact with the 
inner surface of the cone. Prove that the greatest overflow occurs when the 
radius of the ball is a/2.

(Assume that the ball is not completely immersed.) (L.U.)
24. A sector is cut from a piece of paper of radius r and formed into a cone of 

semi-vertical angle a. For what value of a will the volume of the cone be 
a maximum?

25. Assuming that the earth is a sphere of radius 6400 kilometres, find the area 
of the portion of it visible to an observer at an altitude of 3 kilometres.



CHAPTER 21

COMPLEX NUMBERS
«

21.1. Introduction
Equations such as x — 2 = 0, 2x — 6 = 0 are soluble in terms of 

positive integers while the equations x + 2 = 0, 2x + 6 = 0 are soluble 
only if the number system includes negative integers. Similarly equa­
tions like 5x = 17 have solutions only if the number system contains 
rational numbers of the form p/q where p and q are integers. Solutions 
of the quadratic equations x2 = 5, x2 — 4x -  1 = 0 require the 
irrational number ^ 5  while solutions of the quadratic equations 
x2 + 5 = 0, x2 — 2x + 5 = 0 require the so-called complex numbers 
and such numbers form the subject of the present chapter.

Complex numbers are introduced here by first constructing an 
algebra of ordered pairs of real numbers and, if a and b are the real 
numbers involved, the complex number is (at present) denoted by the 
symbol [a, h]. An example of an ordered pair of real numbers has, in 
fact, already been afforded by the rectangular Cartesian coordinates 
which fix the position of a point in a plane. Thus the point (2, 5) is one 
with abscissa 2 and ordinate 5 while the point (5,2) has abscissa 5 and 
ordinate 2. In the same way, although the real numbers involved need 
no geometrical significance, the complex number [a, b] differs from 
the complex number [b, a] unless a = b.

The generalisation of the number system to include complex numbers 
is analogous to the introduction of the rational numbers p/q, for these 
are also ordered pairs of numbers. The algebra of rational numbers 
is subject to the rules that if p/q and r/s are two such numbers 
then, p/q = r/s if and only if ps = qr, (p/q) + (r/q) — (p + r)/q and 
(p/q) x (r/s) = (pr/qs). Similarly the logical introduction of complex 
numbers requires the definitions of certain elementary operations 
such as equality, addition, multiplication, etc.

In contrast to the rule of equality given above for rational numbers, 
two complex numbers are said to be equal if, and only if, they are 
identical; that is

[a, b] = [c, d] if and only if a = c and b = d. (21.1) 
The meanings given to addition and subtraction are that

[a, b] ± [c, d] = [a ± c, b ±  d], (21.2)
ana, for multiplication by a real number k,

k[a, b] = [a, b]/c = [fca, kb~\. (21.3)
It is a consequence of these definitions that any complex number

4 1 2
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[a, b] can be expressed in the form
[a, b] = a [l,0 ] + b[0, 1] (21.4)

and, just as the product of two real numbers is found from a multiplica­
tion table, equation (21.4) enables the product of two complex numbers 
to be found from a multiplication table of the special complex 
numbers [1,0] and [0,1],

The cummutative, associative and distributive laws of multiplication 
are postulated to apply in the algebra of complex numbers. To link it 
with the algebra of real numbers, the special complex number [1,0] 
is made to behave like the real number unity so that multiplication by 
[1,0] leaves any number unchanged. Thus

[1,0] [0,1] = [0,1] [1,0] = [0,1] (21.5)
and

[ 1, 0 ]2 = [ 1, 0] = 1. (21.6)
It follows from (21.3) that the complex number [a, 0] behaves exactly 
like the real number a. If the other special complex number [0,1] is 
denoted by the symbol i, any complex number [a, 6] can be written, 
from equation (21.4), in the form a + bi.

The complex number [1,0] is, from (21.6), such that its square is 
unity; if the square of the other special complex number [0,1] is 
taken as — 1, we have

i2 = [0, l ] 2 = [ -1 ,0 ]  = -1 ,  (21.7)
and a genuine extension of the number system is obtained. Using 
(21.7), the product of two complex numbers is then given by

[a, 6] x [c, d] = (a + bi')(c + di)
— ac + bdi2 + (ad + bc)i
= ac — bd + (ad + bc)i 
= [ac — bd,ad + be]. (21.8)

If x is a real number, x2 — 2x + 5 = (x — l)2 + 22 > 0 and the 
equation x2 -  2x + 5 = 0 has no solution in terms of real numbers. 
If, however, x is the complex number a + bi we have, using the 
relation i2 = — 1,

(a + bi)2 — 2(a + bi) + 5 = a2 — 2a + 5 — b2 + (lab — 2 b)i 
and the quadratic equation is satisfied if

b2 = a2 — 2a + 5 and lab — lb — 0.
These simultaneous equations are satisfied by a = 1, b = ±2 so that, 
in an algebra admitting complex numbers, the quadratic equation 
x2 — 2x + 5 = 0 has solutions 1 ± 2i. The same result is obtained 
from the usual formula (1.2) for the roots of a quadratic if we also 
use the relation i2 = — 1.

21] C O M P L E X  N U M B E R S
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The foregoing definitions of equality, addition and multiplication 
for the ordered pairs [a, b], [c, d\ have been made so that the opera­
tions of an algebra using complex numbers are performed in the same 
way as in the algebra of real numbers. It is possible at this ’point to 
drop the symbol [a, b] and use the alternative a + bi, treating i as 
an ordinary number but replacing i2 by — 1 whenever it occurs.
21.2. The geometrical representation of complex numbers

It has already been pointed out that an ordered pair of real numbers 
can be used to specify the position of a point in a plane and this fact 
can be used to give a geometrical representation of a complex number. 
The complex number z = x + yi is represented by a point Z with 
coordinates (x, y) relative to rectangular axes Ox, Oy with origin 0. 
The usual sign conventions used in graphical work are employed so 
that, if x and y are both positive the point Z lies in the first of the four 
quadrants in which the plane is divided by the axes, if x < 0 and y > 0 
the point Z lies in the second quadrant and so on. Examples are given 
in Fig. 195 in which the points Z t, Z 2, Z3 represent respectively the

y

Fig. .195

complex numbers 2 + 3¡, —2 — 2i and 3 — This representation of 
complex numbers was originally due to the mathematician J. R. 
Argand and a diagram such as Fig. 195 is often referred to as the 
Argand diagram.

With the notation z = x + yi, it is convenient (but not altogether 
desirable) to refer to x and y respectively as the real and imaginary 
parts of the complex number z and it is often useful to express this by 
the symbols x = R(z), y = I{z). Complex numbers for which y = 0 
are often said to be “purely real” and those for which x = 0 to be 
“purely imaginary”. The representative points of such numbers will 
lie respectively on the axes Ox, Oy of the Argand diagram and these
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axes are often referred to as the “real axis” and the “imaginary axis”. 
This terminology is convenient but it is not completely satisfactory 
for there is nothing imaginary about y (or the axis Oy)—it. is just as 
real as x (or the axis Ox).

If, in Fig. 196, the point Z represents the complex number 
z = x + yi and if the length OZ is denoted by r and the angle xOZ 
by 9, we have

y

x = r cos 9, y = r sin 9, 
r = +V(*2 + y2),

X  Vcos 9 = - , sin 9 = r r

(21.9)

The length r is called the modulus of the complex number x + yi and 
is denoted by the symbol |x + yi\ or |z|. The angle 9 is called the 
argument or amplitude of the complex number and is denoted by 
arg(x + yi) or amp(x + yi). The complex number z = x + yi is 
expressed in terms of its modulus r and argument 9 by the relation

z = x + yi = r(cos 9 + i sin 9) (21.10)
and it should be noted that r is always taken as being positive. The 
last of equations (21.9) show that there is one value of 9 for which 
— n < 0 ^ n  but that any value 9 differing from this by an even 
integral multiple of n would give the same representative point Z in 
Fig. 196. It is usual to take the value of 0 in the range —n < 0 * i n  
as the principal value of the argument of the number z. When determin­
ing the principal value of the argument, it is necessary for 6 to satisfy 
both the equations

a x  ■ n ycos 0 = -, sin 0 = -, r r
since the single equation tan 9 = y/x into which these equations can 
be combined leads to two possible values of 9 in the range.
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Example 1. Find the modulus and argument of the complex number — 2 + 3i.
In the Argand diagram (Fig. 197), the representative point Z has coordinates

( — 2,3). From the figure, if r and 9 are the required modulus and argument, 
r cos 9 = — 2, r sin 9 = 3.

Hence
r =  + V « -2 ) J +(3)2 3} = 7(13) = 3-61

and
- 2  3

cos 6 = - sin 9 =7(13)’ 7(13)
From the latter two equations, 9 = 123° 42' = 2159 radians.

21.3. Conjugate complex numbers
The two complex numbers x + yi, x — yi, which differ only in the 

sign of their imaginary parts are said to be conjugate. If z denotes the 
complex number x + yi, it is convenient to denote the conjugate 
number x — yi by z and immediate consequences are that

z + z = x + yi + x — yi = 2x,
zz = (x + yi)(x — yi) = x2 — y2i2 — x2 + y2.

Hence both the sum and the product of two conjugate complex numbers 
are real quantities.

The second of the above facts is useful in the reduction of a fraction 
of the form (a + bi)/(c + di). If the numerator and denominator are 
multiplied by the conjugate c — di of the denominator, the real 
quantity c2 + d2 is obtained in the resulting denominator; the details 
are shown in the following example.
Example 2. Express 2 + 31

3 + 4i-. in the form a + bi. (N.U.)

2 + 31 (2 + 3i)(3 -  4i)
3 + 4i -  (3 + 4i)(3 -  4i)

18 1
= — + —i, since

6 — 8i + 9i -  12i2 
9 -  16i2

= -1.
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21.4. The manipulation of complex numbers
If i is treated as an ordinary number and use is made of the relation 

i2 = —1, complex numbers obey all the ordinary rules of algebra. 
Thus, we can write

i3 =  i x i'2 =  — i, i* =  i2 x i1 =  — 1 x — 1 =  1, 

i'5 =  i4 x i =  i, etc.,
and these relations are often useful in the manipulation of complex 
numbers. The equality of two complex numbers a + bi, c + di implies 
[from equation (21.1)] that a = c and b = d\ in other words, if two 
complex numbers are equal, we can equate their real parts and we can 
equate their imaginary parts.

Some applications of these remarks are given in the two examples 
which follow.

Example 3. Simplify (2 + /)* -  (2 — i)4.
The quantity in question

= 24 + 4.23/ + 6.22/2 + 4.2i3 + i4 -  24 + 4.23i -  6.22i2 + 4.2t3 -  i4

= 64/ + 16i3 = 64/ -  16/ = 48/.

Example 4. Express v (3 + 4i) in the form a + bi.
If ^(3 + 4/) = a + bi, then

3 + 4/ = (a + bi)2 = a2 — b2 + 2abi. 
Equating the real and imaginary parts

a2 — b2 = 3, ab = 2.
The solution of these simultaneous algebraical equations is

a = ±2, b = ± 1, or a = ±Z, b = ±2i 
and both solutions lead to the result ±(2 + /) for ^(3 + 4/).

EXERCISES 21 (a)
1. Find the moduli and arguments of the four quantities:—

(a) - 1 ,  (b) /', (c) 3 + 4f, (d) - i  -  J3 
and show in the Argand diagram the positions of the points representing 
the quantities.

2. Find the real and imaginary parts of (2 + 30/(4 + 5i).
3. Express in the form a + bi:—

(i) (2 + i)\ (ii) (1 + i)4, (iii) (1 -  f)2/(l + i).
4. Simplify:—

3 + 4/ 3 - 4 /
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5. Find the modulus and argument o f the complex quantity (1 +  2i)/(3 +  4i).
6. Find the moduli and arguments o f z , =  (2 -  i)/(3i -  1), z2 =  (i -  3)/(2 +  i)

and of z1 + z2. (O.C.)
7. Given that/(z) =  (7 — z)/(l — z2) where z =  1 +  2i, show that |z| =  2|/(z)|.
8. Find the real and imaginary parts o f the complex number z when

(0 Z =  1 +  2i, (ii) Z +  ‘
z +  i

z + 1 z +  1 z -  3‘
9. If z =  x +  yi and z is the conjugate of z, find the values of x  and y such 

that

1 2 , . 
z z

10. If x, y, a and b are real numbers and if

x + yi = t------- 7T—: . „b +  cos 6 + i sin 6
show that (b2 — l)(x 2 +  y2) + a2 = 2abx.

21.5. Addition o f complex numbers in the Argand diagram
In the Argand diagram (Fig. 198), let and Z 2 represent the 

complex numbers z l = X! + y ti and z2 = x 2 + y2i- If P is the remain-

F l ( i .  I 9 S

ing vertex of the parallelogram of which OZ, and OZ2 are adjacent 
sides, it is easy to show that the coordinates of P are (x, + x2, y, + y2) 
and hence that P represents the complex number

z2 + z2 = x t + x 2 + (j/j + y2)i.
If Z 20  is produced to a point Z'2 such that Z'20  = OZ2, the coordinates 
of Z '2 will be ( —x2, — y2) and Z2 will represent the complex number 
— z2. If the parallelogram OZ'2QZx is completed, the point Q will 
represent the complex number zi + ( - z 2\  ^  is> zi -  zz-
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These constructions give a useful method of fixing the positions in 
the Argand diagram of points representing the sum or difference of 
two complex numbers and the following important results can be 
deduced. Since the moduli of the complex numbers z „  z 2 and z ,  + z2 
are respectively represented by OZu OZ2, OP and since OZ2 = Z 1P, 
OZx + Z ,P  ^  OP, it follows that

|z,| + |z2| > |zi + z2|. (21.11)
Thus the sum of the moduli of two complex numbers is not less than 
modulus of the sum of the numbers. The sign of equality in (21.11) occurs 
when Z 2 lies on OZj and this happens when the arguments of the 
complex numbers z u z2 are equal. Returning to Fig. 198, we have 
OZ, < OP + P Zt, so that Izjj < \zt + z2\ + \z2\ and hence

|z,| -  |z2| ^  |zj + z2|, (21.12)
and other results can be derived in similar ways.

Again using Fig. 198, Z lQ is equal and parallel to OZ'2 and, since 
OZ2 = OZ2, ZjQ is equal and parallel to OZ2. Hence OQZfZ2 is a 
parallelogram and Z 2Z, = OQ. But OQ measures the modulus of the 
complex number z, — z2 so that, if Z, and Z 2 respectively represent 
the complex numbers z, and z2, then |zt — z2| is equal to the length 
Z2Z,. Again, since Z 2Z X is parallel to OQ, the direction Z 2Z, can be 
used to measure the argument of z 1 — z2. The vector Z 2Z X can 
therefore be taken as completely representing the complex number 
z, -  z2 and this vectorial representation is often useful in working 
exercises. For example, if A and Z are the points in the Argand 
diagram representing respectively a fixed complex number a and a 
variable complex number z, then if |z — a| = constant = c, the locus 
of the point Z is a circle centre A and radius c.
Example 5. z is a variable complex number satisfying the relation |z — 3| = fc|z + 3| 

where k is a positive real constant. Show that, if k f  1, the locuS of the point 
representing the complex number z in the Argand diagram is a circle. What is the 
locus when k = 1 ?
In Fig. 199, Z represents the complex number z and the points A, B represent

y

respectively the numbers 3 and — 3. Then |z — 3| is equal to the length AZ  and 
|z + 3| is equal to the length BZ. Hence the point Z moves so that AZ  = kBZ
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and this shows that the locus is a circle except when k  = 1. For this special 
value of k, the locus is such that A Z  = B Z  and is therefore the axis Oy of the 
Argand diagram.

21.6. Products and quotients of complex numbers
Let zu z2 be complex numbers with moduli rlr r2 and arguments 

0l5 02. Then
ZjZ2 = r1(cosdl + is in 0i)r2(cos02 + isin#2)

= r ,r2{cos 8X cos 02 — sin 0t sin 02
+ i(sin 8l cos 82 + cos 8l sin 82)}, 

on performing the multiplication and using the relation i2 — — 1. 
Using the addition formulae for the sine and cosine, this can be 
written

ZjZ2 = rlr2{cos(01 + 02) + i sin {8l + 02)} (21.13)
and this result can be expressed in the form

M zl = N - N -
arg(z!z2) = arg zx + argz2

Thus the modulus of the product of two complex numbers is equal to the 
product of their moduli and the argument of the product is equal to the 
sum of the arguments. The reader should note, however, that the 
second of these statements is not necessarily true of the principal values 
of the arguments (for example, 8l + 02 may exceed n).

The quotient of two complex numbers can be handled in a similar 
way. Thus

(21.14)

zt _  r^cosflj + ¿sin#,) 
z2 r2(cos 0 2 + i sin 0 2)

_  rj(cos +  i sin 0j)(cos 0 2 — i sin 0 2)

r2(cos 0 2 + i sin 0 2) ( c o s  0 2 — i sin 0 2)

_  r! fcos 8i cos 0 2 + sin 0 ^  sin 0 2 + i(sin 0 t cos 0 2 — cos 8l sin 0 2) 

r21 cos2 02 + sin2 02

— —{cos(01 — 02) -f ¡s in ^ j -  02)}. 
r 2

Hence
z,
\Z2

z i

(21.15)
arg( “ ) =  ar8zi -  argz2,

and the modulus of the quotient of two complex numbers is therefore 
equal to the quotient of their moduli while the argument of the quotient 
is equal to the difference of the arguments.
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Example 6. i f  a rg (^— — fin d  the locus o f  the point which represents z in the

Argand diagram. (O.C.)

In Fig. 200, Z represents the complex number z and A, B  represent the numbers 
1 and — 1. The vectors A%, B Z  represent completely the complex numbers 
z -  1, z + 1 so that arg(z -  1) is given by the angle x A Z  and arg(z + 1) 
by the angle x B Z . Since

n
2

=  arg (z -  1) -  arg(z + 1),

we therefore have angle x A Z  — angle x B Z  = 90° and, since angle x A Z  = 
angle x B Z  + angle B Z A , it follows that the angle B Z A  is a right angle and 
that the point Z lies on a circle with A B  as a diameter.

Example 7. Use the results o f  § 21.6 to fin d  the modulus and argument o f  1/(1 — I)2-
The modulus r and argument 0  of 1 — i are given by r2 — 12 + (— l)2 = 2 and 
rcos6 = 1, r sin 0 = -1. Hence r = J 2  and 0 = - i n .  Using (21.14), the 
modulus of (1 -  i)2 is ^¡2 x ^/2 = 2 and its argument is —i n  — i n  = - \ n .  
Since the modulus and argument of 1 are respectively 1 and 0, use of (21.15) 
then gives the modulus of 1/(1 — i)2 as 1/2 and its argument as 0 — ( - ^ tt) = i*.

EXERCISES 21 (b)

1. O  is the origin in the Argand diagram and P, Q, R  represent respectively the 
complex numbers 3 +  4i, 4 +  6i, 1 +  2i. Show that O P Q R  is a parallelogram 
and find its area.

2. Find the modulus of the complex number
(2 -  3Q(3 +  4Q 

(6 +  40(16 -  80'
3. P  and Q  represent the complex numbers z lt z 2 in the Argand diagram and 

O  is the origin. If |z, — z2| =  |z, +  z2|, show that O P  is perpendicular to 
OQ.

4. If Zj =  2 +  i, z2 =  — 2 +  4i and

z 3  Z 1 Z 1



find z3. If Zj, z2, z3 are represented on the Argand diagram by P , Q , R  
respectively and O  is the origin, show that O R  is perpendicular to P Q .

5. If a is a real number and b is a complex number, show that the points in the 
Argand diagram which represent the complex numbers az 2 + b, az2 + b, 
az3 + b form a triangle similar to that formed by the points representing
Zl> z2> z3-

6. Two fixed points A  and B, and a variable point P  represent the complex 
numbers z1( z2 and z in the Argand diagram. Find the locus of P  given 
that arg(z — z,) = argz2.

7. Show that the representative points in the Argand diagram of the complex 
numbers 1 + 6i, 3 + 10i, 4 + 12i are collinear.

8. If a, b are the complex numbers represented by the points A , B  in the Argand 
diagram, what geometrical quantities correspond to the modulus and 
argument of b/al
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21.7. De Moivre’s theorem
When n is a positive integer, De Moivre’s theorem states that 

(cos 6 + i sin Of = cos n8 + i sin nO. If we assume the truth of this, we 
have

(cos 0 + i sin 0 f +1 = (cos 0 + i sin 0)"(cos 0 + i sin 0)
= (cos nO + i sin nO) (cos 0 + i sin 0)
= cos nO cos 0 — sin nO sin 0

+ i(sin nO cos 0 + cos nO sin0)
= cos (n + 1)6 + i sin (n + 1 )0.

If then the theorem is true when the index is n, it is also true when the 
index is (n + 1). But

(cos 0 + i sin 0)2 = cos2 0 — sin2 0 + 2i sin 0 cos 0 
= cos 26 + i sin 20,

so that the theorem is true when n = 2. It follows that it is true when 
n = 3 ,4 ,... and we have established by the method of induction that 

(cos 0 + i sin 0)n = cos n0 + i sin nO (21.16)
whenever n is a positive integer.

When n is a negative integer, put n = — m so that m is a positive 
integer. Then

(cos 6 + i sin Of =  (cos 6 + i sin 0) m =
1

1

cos md + i sin md’

(cos 0 + i sin 0 f  
by (21.16). (21.17)

1 _  cos md — i sin mO
cos md + i sin m6 (cos md + i sin m#)(cos md — i sin md)

But,
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cos md — i sin md
cos 2md +  sin2md 

= cos( — md) + i sin( — md) 
= cos nd + i sin nd

and substitution in (21.17) shows that De Moivre’s theorem remains 
valid when n is a negative integer.

Next suppose that n is a fraction; put n — p/q where p and q art 
integers, no loss of generality occurring if q is taken as positive. By 
(21.16), since q is a positive integer,

and it follows that cos (pd/q) + i sin (pd/q) is a qth root of 
(cos d + i sin d)p.

It has been shown in the last paragraph that, when n is a fraction 
p/q, cos (pd/q) + i sin (pd/q) is one of the values of (cos d + i sin d f lq 
and it is useful to find the other values of this quantity. To do this, 
suppose that p(cos a + i sin a) represents any value of (cos d + i sin d)p/q 
so that

p*(cos a + i sin a)4 = (cos d + i sin d)p.
Since p and q are integers, this can be written

p*(cos qa + i sin qa) = cos pd + i sin pd 
and, by equating the real and imaginary parts,

pq cos qa = cos pd, pq sin qa = sin pd.
By squaring and adding we have p = 1 and the above relations reduce 
to cos qa = cos pd, sin qa = sin pd so that qa = 2kn + pd where k is 
zero or any integer. Taking k = 0 ,1 ,2 ,..., (q — 1) in succession

are all values of (cos d + i sin d)plq. These values are all distinct and 
there are no further values given by other values of k since any other 
integral value of k will differ from any one of 0, 1, 2, . . . ,  (q — 1) by a 
multiple of q. Using the convenient notation

(cos -d  + i sin - d \  = cos pd + i sin pd, 
\  d 4 )

and, since p is a positive or negative integer,

+ i sin - d \

cos pd + i sin pd = (cos 9 + i sin d f.
Hence

cis d  =  cos d  +  i sin d (21.18)
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we can therefore write

cis^  0 = cis(P-  + — '), k = 0 ,1 ,2 ,. . (q -  1], (21.19)

and this is De Moivre’s theorem for fractional indices.

Example 8. I f  n is an integer and z = cos 8 + sin 0, show that

2 cos nB = z" + -4, 2i sin nB = z" — -.z* z*
Use these results to establish the formula

8 cos* 8 = cos 40 + 4 cos 28 + 3.
Using De Moivre’s theorem we have

cos nB + i sin nB = (cos 8 + i sin Bf -  z".
Also,

cos nB — i sin nB — cos ( — nB) + i sin (— nB)
= (cos 8 + i sin By" = z~",

and the results (21,20) follow by addition and subtraction. 
Taking n = 1 in (21.20),

(2 cos 8)* = ^z + ^  = z* + 4z2 + 6 + ^  ^

= (Z4 + ?) +4(f2+?) + 6

(21.20)

= 2 cos 40 + 8 cos 20 + 6,
where we have used (21.20) with n = 4 and n = 2 in the last step. The required 
result then follows on division by 2.

21.8. The cube root of unity
We can use De Moivre’s theorem in the form (21.19) to find the three 

cube roots of unity. Thus, taking p = 1, q = 3, 6 = 0 we have, since 
cos 0 = 1, sin 0 = 0, cis 0 = 1,

(1)+ = cis where k = 0, 1, 2. (21.21)

With k = 0 the right-hand side of (21.21) is cisO = 1, while with 
k = 1 and 2, it gives respectively cis (2x/3) and cis (4tc/3). These are

2n . .  In  1 ,J3
cos y  + I sin y  = ~ 2 + ' 2

and

cos 471 + j sin 47T

so that the required cube roots are 1, j ( — 1 ± iyj 3).



21] C U B E  R O O T  OF U N I T Y 425

If o  is used to denote the complex root |(  — 1 + i' /̂3), then 
<o2 = U -  1 + <V3)2-= id  -  2«V3 -  3) = K - l  -  ¿73) 

and this is the second complex cube root of unity. Hence We can write 
the three cube roots of unity in the form

l,co, co1 where co = |(  -  1 + ¿7 3). (21.22)
It should be noted that (by definition) co3 = 1, that

co* — co x to3 = co, co5 = to2 x a)3 = co2, etc.,
and that

1 + «  + co2 = 1 + ¿ ( - 1 + ¿73) + | ( - 1 -  ¿73) = 0. (21.23) 
These relations are often useful in working examples.

Example 9. I f  co is a complex cube root of unity, form the quadratic equation whose 
roots are a> and 1/co.
The product of the roots is to x (1/co) = 1 and their sum is

CO CO CO

since co1 + 1 = — co by equation (21.23). Hence the required quadratic equation
is x2 + x + 1 = 0.

Example 10. I f  co is a complex cube root of unity and if x = a + b, y = aco + bco2, 
z = aco2 + bco*, show that x2 + y2 + z1 = 6ab.
We have x2 = a2 + lab + b2, y2 = a2co2 + 2abco3 + b2co4 = a2co2 + lab + 
b2co, z2 = a2co4 + labco6 + b2co* = a2co + lab + b2co2. Hence

x2 + y2 + z2 = a2(l + co2 + co) + 6 ab + fc2(l + co + co2) = 6ai>, 
when use is made of equation (21.23).

EXERCISES 21 (c) 

Use De Moivre’s theorem to show that 
(cos 30 + i sin 30)5 (cos 6 — i sin ff)3

cos 130 — i sin 130.(cos 50 + i sin 50)7 (cos 20 — i sin 20)5 
Use De Moivre’s theorem to show that

cos 40 =  cos4 0 — 6 cos2 0 sin2 0 +  sin4 0, 
sin 40 =  4 cos3 0 sin 0 — 4 cos 0 sin3 0.

Use the method of §21.8 to find the four fourth roots of unity. 
Show that

+ sin 0 + i cos 0)(f+ sin 0 — i cos 0 
Show that

(cos 0 +  i sin 0)2 
(sin cj> + i cos cj>)5

 ̂ =  c o s n ^  — 0^ + i sin — 0^

= sin (20 + 5cj>) -  i cos (20 + 5cj>).
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6. Use De Moivre’s theorem to find the value of

f s/(-3) -  n6 
1 7(-3)+ij '

7. If co is a complex cube root of unity, show that
(1 — co +  co2)(l +  co — co2) =  4.

8. Find the two square roots of i and the four values of (—16)*.
9. Find the three roots of the equation (1 — z)3 =  z3.

10. If co is a complex cube root of unity, show that
(i) (1 +  co — co2)3 — (1 — co +  co2)3 =  0,

(ii) (a +  bco +  cco2)(a +  bco2 + cco) =  a2 + b2 +  c2 — be — ca — ab.

EXERCISES 21 (d)
1. Express (5 + 4i)(3 + 20 in the form a + bi where a and b are real. Deduce

a pair of factors of 7 — 22i and hence express 72 + 222 as the product of 
two positive integers. (N.U.)

2. If z = x + yi and z5 = 1, show that 4x(y* — x4) = 1.
3. Express (1 + 202 and (1 + 203 in the form a + bi where a and b are real.

Hence find real numbers r and s for which 1 + 2i is a root of the equation 
z3 + rz2 - 7 z  + s = 0. (N.U.)

4. Find the square root of 5 + 12i.
5. Find two real numbers x and y such that

(1 + i)x + 2(1 -  20y = 3.
6. Express in the form a + bi,

(4 +  3»V(3 +  4Q 
3 +  i

7. Find the modulus and argument of (2 — i)2(3i — l)/(i + 3): (O.C.)
8. If Zj = (1 + 70/(1 — 0 and z2 =  (17 — 70/(2 +  2i) find the moduli of

z„ z2, z, + z2 and ZıZ2- (O.C.)
9. Prove that if (z — 60/(z + 8) is real, the locus of the point representing the

complex number z in the Argand diagram is a straight line. (O.C.)
10. Prove that if (z — 2i)/(2z — 1) is purely imaginary, the locus of the point

representing z in the Argand diagram is a circle and find its centre and 
radius. (O.C.)

11. If z is a complex number and

find the equation of the curve in the Argand diagram on which the point 
representing z lies. (O.C.)

12. If z, and z2 are two complex numbers such that |z1 — z2| =  |z t + z2|, show 
that the difference of their arguments is n[2 or 3tc/2.
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13. If z is represented by a point on the circle of radius a which touches the
y-axis of the Argand diagram at the origin O and lies in the first and fourth 
quadrants, prove that z — 2a =  iz tan (arg z). , (O.C.)

14. Find the modulus and argument of (a +  if»)2 where a and b are real. Deduce 
that

tan_i( ^ p ) =2tan' i0 -
15. If z3 = 2(i — 1), find all the possible values of the real part of 2z.
16. The complex numbers z — 2 and z — 2i have arguments which are (i) equal

and (ii) differ by \n  and each argument lies between — it and it. In each 
case find the locus of the point which represents z in the Argand diagram 
and illustrate by a sketch. (N.U.)

17. If z =  cos 9  +  i sin 0 and 0 <  9  <  it, find the values of the modulus and 
argument of 2/(1 — z2).

18. Complex numbers zx and z2 are given by the formulae

z, =  R. + ia>L, z2 =  R2 ----- l—coC
where R„ R2, to, L and C are all real. If z is given by z" 1 =  z2~ 1 +  z2~ \  
find the value of co for which z is real. (O.C.)

19. If z =  1 +  i, mark on the Argand diagram the points A, B, C, D, representing
z, z2, z3, z4. Find the moduli and arguments of z3 — z4 and z2 — z4. Show 
that the angle BDC is arg {(z3 — z4)/(z2 — z4)} and that the angles BDC 
and ACB are equal. (L.U.)

20. Prove that if Z =  X  +  iY =  (z — l)(z +  2) and z is a complex number 
with modulus 1 and argument 9,.

(i) Y/X =  -  3 cot 10, (ii) (X + l)2 +  Y2 =  1. (O.C.)
21. O is the origin and A represents the number z =  1 in the Argand diagram.

If P represents a variable complex number z, prove that PO is perpendicular 
to PA if the real part of (z — l)/z is zero. Deduce that, if z =  (1 +  iw)~l, 
where w is a variable real number, then the point representing z describes 
a circle of unit diameter. (L.U.)

22. Use De Moivre’s theorem to find the four fourth roots of 8( — 1 +  iyj3) in
the form a +  if», giving a and f> correct to 2 decimal places. (N.U.)

23. Use De Moivre’s theorem to show that
cos5x . ,_ . , . t.
-------- =  1 — 12 sin2 x +  16 sin4 x.
cos x

24. If co is a complex cube root of unity, show that
(2 +  5(0 +  2to2)6 =  (2 +  2co +  5 « 2)6 =  729.

25. w is a complex cube root of unity and a, b, c are real quantities. Show that 
(a + wb + co2c)3 is only real if a, b and c are not all different.

21] E X E R C I S E S



CHAPTER 22

MATRICES

22.1. Introduction
In this chapter we consider the definitions and elementary uses of 

matrices. We discuss the multiplication and factorization of matrices 
and their application to the solution of linear equations. Their use in the 
specification of mapping processes is also considered.

For simultaneous linear algebraic equations such as

we can think of the coefficients of x  and y  as a group or array of numbers 
and write the array in the form

Such an array enclosed in square brackets as shown above is called a 
matrix or, more particularly, a square matrix or a 2 x 2 matrix since it 
has two rows and two columns. More general arrays with any number m 
of rows and any number n of columns are called m x n matrices; for 
example

is a 3 x 2 matrix.
A matrix with m rows and only one column, that is a m x 1 matrix 

is called a column matrix, similarly a 1 x n matrix is called a row matrix. 
We shall see that such arrays can be considered as an extension of the 
concept of number, much as complex numbers are, and we shall form­
ulate rules for the addition and multiplication of matrices.

The quantities x  and y  in equations (22.1) can be shown as a 2 x 1 
matrix denoted by x and similarly the numbers p  and q as one denoted 
byp. Thus

(22. 1)

1 4 
B =  0 2 

3 1

and (22.3)

428



22] M A T R I C E S 429

We define the product of the matrices considered so far as being such 
that the equation

Ax =  p * (22.4)
is a short way of writing equations (22.1) since all the information in the 
equations is known when A, x and p are known. We thus have

a b~ ~x‘ ax +  by \ _ y
_c d_ -A _cx +  dy\

(22.5)

In equation (22.4) A can be said to operate on x or to multiply x; both 
expressions are used.

These ideas may be extended so that, for example, if we have three 
simultaneous equations in three unknowns x, y, z, such as

axx  +  a2y  +  a3z =  pi 
bxx + b2y  +  b3z = q\ 
cxx  +  c2y + c3z =  r)

we may. write the equations in the same matrix form
Ax =  p

where now
ax q% q$ ~x~ y

A = b, ¿3 
_Ci C2 C$_

x =

I iN
 ^

and p =
_r.

(22.6)

(22.7)

(22.8)

Example 1. Given that

r3= o -
L3 -

write down the full form of the equations Ax
-i-i 
2 

L3-

p. Find the vector p when

The equations are
3x +  2y +  z 

-  y +  z 
3x — 2y +  4 z = 9

Since x =  1, y  =  2, z =  3 it follows that
/> =  3 +  4 +  3 =  10, q =  - 2  +  3 =  1, 

and hence
^ 10- 

P :

(22.9)

r =  3 — 4 +  12 =  11
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Note that when x, y, i  are unknowns and p has this value the solution of equa­
tions (22.9) is

. - i n .

22.2. The product of two 2 x  2 matrices
The product o f  the two 2 x 2  matrices

is defined as the 2 x  2 matrix

_  [ a lC l +  a 2d i  flic 2 +
[b iC i +  b 2d i  biC 2 +  b 2fi2J

(22.10)

The elements in the product are the cross-products o f  rows o f A and 
columns o f B. Thus the first element is die cross-product o f  the ro w  
(0i a 2)  and the column (cjt/j), that is a 1c 1 +  a ^ i x. The other elements 
are similarly formed and may be remembered by the scheme

[row 1 col 1 row 1 col 21 
row 2 col 1 row 2 col 2J

where in each case rows refer to A and columns to B.

(22.11)

Example 2. Find the product AB where

First fill in the matrix A twice in the product giving
f l  2 1 21
[_2 3 2 3J‘

Insert in this format the columns of B giving

Tl-3 2-5 1-7 2-21
L2-3 3-5 2-7 3-2J'

Inserting plus signs and completing the arithmetic we obtain the required result

AB f3 +  10 7 +  41 ri3  111
1.6 +  15 14 +  6J — L.21 20J '

Notice that a change in the order o f  a product changes the result and, 
in general, AB ^  BA. Thus in the above example

BA = '31 +  7-2 
5-1 +  2-2

3-2 +  7-31 =  p 7  271 
5-2 +  2-3J L 9 16j"
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In AB, A is said to p r e m u lt ip ly  B or B is said to p o s tm u l t ip ly  A. The 
scheme shown in (22.11) applies also to a 2 x  2 matrix premultiplying 
a column matrix if  one remembers that the latter has only one column.

I1“  Ar * i _ r w  +  w i
L I  Lm  +  » L

and the product is itself a column matrix as seen in §22.1.

1. If
EXERCISES 22 (a)

A =
2 1 3 '

- 1 0  1 ,
3 4 2

write down the value o f Ax
T ' - T '3'

(a) when x  = 1
1

, (b) when x = 0
1

, (c) when x = 1
3

2. With the same value o f  A as in Exercise 1 above, write down the value of 
AB

'1 r '2 O'
(a) when B = 1 1 , (b) when B = 1 1

.1 1. 0 2
' 1 2"

(c) when B = - 1 — 1
2 1

3. Find AB and BA when

find AB, AC, BC and A(BC). 

5. Find AB, BC and CA when

6. Find Aa and A3 when

and verify that A(Aa) =  Aa(A).
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7. Given

find AB.

8. Find A(BC) when

9. Find Aa 4- B2 given that

- b  ? i  a -

B  ! ] •  c - G a .

" d B - [ J  11

10. Find AB, BC, CA and A(BC) where

11. If Xi = [*i, yu Zt] and x2
x2
y*

.22.
find xlx2.

12. Calculate AB, BA and BB when

A= ß  3] and

22.3. The product of two 3 x 3  matrices
The product of two 3 x 3  matrices A and B is given by the scheme of 

cross-products

AB =
’row 1 col 1 
row 2 col 1 
row 3 col 1

row 1 col 2 
row 2 col 2 
row 3 col 2

row 1 col 3 
row 2 col 3 
row 3 col 3

(22. 12)

whence if

'Ol °2 a3~ ■ /1 ¡2
A = b1 b2 b3 and B = r>h m2 m3

Si ca C3- ß l n2 «3.
then

AB =
'ai/j 4- a2mj +  a3«i
b xlx +  ¿ 2 ^ 1  +  *>3«1

S i h  4- c2m l + c3/i!

a j 2 +  a 2m 2 +  a 3n 2 a j 3 +  a 2m 3 4- a 3n 3'  

b j 2 +  b 2frt2 4- b 3n 2 b j 3 4- b 2tn 3 4- b 3n 3 . 
c j 2 4- c 2m 2 4- c 3n 2 c j 3 + c 2m 3 4- c3n3_

(22.13)
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Example 3. Find the product AB when
fl 0 1-1 
2 1 3 ’ U  2 1J

B
-1 3-1
2 2 
7 1.

First fill in the matrix A three times in the product giving
f l  0 1 1 0  1 1 0  1-1

2 1 3 2 1 3 2 1 3 .
L4 2 1 4 2 1 4 2 1J

Insert in this format the three columns of B each in its own column giving 
f l  . 4 0 .2  1 .3  l . - l  0 . 2  1 . 7  1 . 3  0 . 2  1 . 1~|

2 . 4  1 . 2  3 . 3  2 . - 1  1 . 2  3 . 7  2 . 3  1 . 2  3 . 1  .
L4.4 2 . 2  1 . 3  4 . - 1  2 . 2  1 . 7  4 . 3  2 . 2  1 . 1 .

Inserting plus signs the final result is
[ 4  +  0 +  3 ^ 1 + 0 +  7 3 + 0  +  1-1 f  7 6 4q

AB =  8 + 2  +  9 - 2  +  2 +  21 6 +  2 +  3 =  19 21 1 1 .
L16 +  4 +  3 - 4  +  4 + 7  12 +  4 +  1J L23 7 17-

Example 4. If K is the 3 X  3 matrix in Example 3 above, find the product AC where

We work as before but remember that the third column of C does not exist. 
Hence the working is

1 0  1 1 0 1-t
2 1 3  2 1 3
.4 2 1 4 2 1J

leading to

r 1 - 4 0 . 2 1 . 3 1 . - 1 0 . 2 1
2 . 4 1 . 2 3 . 3 2 . - 1 1 . 2 3

L.4.4 2 .2 1 .3 4 . - 1 2 .2 1
and

1 .7J

AC =

The above example shows that matrices of different dimensions can 
be multiplied provided that the number of columns in the premultiplier 
is equal to the number of rows in the postmultiplier. Such matrices are 
said to be conformable and the product is not defined for matrices which 
are not conformable. Thus the product CA in Example 4 above is 
meaningless.

22.4. Some general definitions
(/) Multiplication o f a matrix by an ordinary number 
The result of multiplying a matrix by a simple number is defined as 

being the same matrix with each element multiplied by the number.
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Thus if

,hen 3A " [9 0]

(11) Addition o f two matrices
Two matrices of the same shape, i.e. with the same number of rows 

and columns respectively in each, can be added or subtracted simply by 
adding or subtracting the elements. Thus if

then

A +  B = - r
—2j A +  A =  2A

It is evident that addition is a commutative operation, i.e. A +  B =  
B +  A.

( h i ) The distributive law
The operations of matrices also satisfy the distributive law both for 

addition and multiplication, that is
(A +  B) +  C =  A +  (B +  C),

the quantities in brackets being added first. Also
A(B +  C) =  AB +  AC.

(111) Commutative matrices
In the product of two matrices A and B, the matrices are said to be 

commutative if, and only if, AB =  BA. For example with the matrices 
in (ii) above

so that these two matrices are not commutative.

(p) The power of a matrix
Just as in elementary algebra, the powers of a matrix are defined by 

products so that
Aa =  A X A, A3 =  A  X A X A,

and so on.
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22.& Some particular matrices
(/) Diagonal matrices
A square matrix, that is one with an equal number of rows and 

columns, whose only non-zero elements occur in the principal diagonal 
is called a diagonal matrix. An example is

A =
o 0 O' 
0 6 0 
0 0 c

and this is often written omitting the zeros as

A =
a

b

or as diag (a, 6, c).

(//) Unit matrices
A diagonal matrix in which all the non-zero elements are unity is 

called a unit matrix. Thus

I3
'1 ' '1

1.
, I3 = 1

1.
and so on.

The suffices on the I ’s are often omitted if the order of the matrix is clear. 
The unit matrix has all the properties of unity in ordinary algebra and 
it can be easily verified that

IA =  AI =  A,
I =  I2 =  I3 =  . . .

(iii) The null matrix
A matrix in which all the elements are zero is called a null matrix, 

denoted by 0, and has the properties of zero in elementary algebra. Thus
A0 -  A0 =  0.

It should be noted however that the equation AB =  0 does not imply 
that either A or B is 0. For example AB =  0 when

(iv) Triangular matrices
A square matrix in which all the elements above the principal diagonal 

are zero is called a lower triangular matrix and one in which all the
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elements below the principal diagonal are zero is called an upper triangu­
lar matrix. These are usually denoted by L and U respectively and 
examples are

'  3 * ‘3 4 - r
L = 4

. - 1
2
4 1.

, u  = 2 4
1.

the omitted elements being all zero. Either is called a unit triangular 
matrix (and usually denoted by the suffix 1) when the elements of the 
principal diagonal are all unity; examples are

'  1 '1 4 - r
Lx = 4 1

1 4 1.
, U i - 1 4

1.

22.6. Determinants
With any square matrix there is associated a number A which is 

calculated from products of the elements of the matrix. Thus if

A = a b' 
c d A =  |A| = a b 

c d
and A is the number ad — be. Similarly for a 3 x 3 matrix

and

"a b c~ a b c
A = d e f

-g h L

II<rII<1 d e f  
g h i

(22.14)

A =  a « f + b f  d +  c d e
h i 1 g g h

=  a(ei — lif) + b{fg — id) +  c(dh — ge) (22.15)

The value of the associated determinant has often to be calculated when 
solving simultaneous equations and an example of the calculation so 
involved is given below.

A matrix A is said to be singular if the associated determinant A is 
zero; otherwise it is said to be non-singular.

Example 5. Calculate the value of the determinant

1
-1

1 2 3
A = 0 1 3

2 - 1 5

1+2 13 5 I+»1
I x 8 + 2 x 6 + 3 x  ( -2 )  .

I 0
I 2
14.
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22.7. The inverse matrix
The inverse of a square matrix A is a matrix, denoted by A-1, which is 

such that A_1A =  I. Thus to solve the simultaneous equations.of §22.1, 
i.e.

and this is the solution of the equations. It should be noted that the 
inverse matrix does not exist if the determinant associated with the 
original matrix is zero.

The following example shows how the inverse matrix may be calcu­
lated. This is not a very straightforward way of doing this but less 
complicated methods will be used later.

Example 6. Solve the equations 2x +  iy =  8, 5x — 2y =  1 by finding the inverse 
of the matrix

then, since A" ‘A =  I we have

fa  ¿»1 f2  31 _  [2a +  5b 3a -  2*1 f l  1 
l_c d\ |_5 - 2 j  ~  |_2c +  5d 3c -  2d] “  L l j '

Hence 3a — 2b *= 0, 2c +  5d =  0, 2a +  56 =  1, 3c — 2d =  1 giving

Therefore

Let

and

1 f 2 .8 +  3 . 1 
19L5. 8 - 2 . 1

Thus x — 1.^ “  2.
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EXERCISES 22 (6)
Given that

' 1  1 1 1 ' 1  2  0 " r
A = 1 1 1 , B = 0  1 2 , c  =

. 1  1  1

D =

. 0  0  l.
' i  o r  

0  1 1 

l 0  0  0
•

1 2 3
2 3 4
3 4 53'

1. Find the values of Aa, B2, C2 and D2.
2. Find ABC and ABCD.
3. Find E2, F2 and EF where

4. If

‘1 ■ r
a 1 , F =

J> c 1. -

b ca 
d e 

hL g
and - f

show that

Show that if

~ap bq cr~
AD = dp eq fr 

SP ir.
, da  =

ap
dq

3

•J
bp cp' I
«7 f t  •
hr ir\

then

L =
"1
2 1 and u  =

'I 2 4' 
2 - 2

3 0 1

r i 2 4‘

3

LU = 2
L3

6
15

6. If

A =
‘ 1
4

2
1

- r
2 and D =

3 0 - 3 __
show that

7. Prove that

1 - 2 - r p
AD = 4 - 1 2 , DA =

.3 0 -3 .

1
- 4

3

-J
2 _11- 1  - 2 .
0 - 3 j

0.
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8.
22]

9.

10.

1 1 .

12.

THE D E C O M PO SIT IO N  OF A M A TRIX  

Show that
a h g  
h b f
8 f  c

abc +  2fgh — af* — bg2 — c6a.

Verify that if
■ 2 - 1  r '1 0 r

A = 1 - 1  2 then A-1 ■= 1 1 3
- 1  l  - 1 . 0 1 1

Prove that the inverse of the matrix product LU is the matrix U_1L_1 
where U "1 and L "1 are the inverses of U and L respectively.

Writing K =  [_®  , show that Ka =  - I ,  K3 =  - K  and K‘ =  I.
Prove that

’1 2 3- ■ 2 4 - T
0 0 0 - 1 - 2 1
0 0 1 0 0 0

22.8. The decomposition of a matrix
A square matrix A can, in general, be expressed as a product of the 

form
A -  LjU (22.16)

where U is an upper triangular matrix and Lx is a lower unit triangular 
matrix. The combination UJL is also possible and, as a further step 
when required, U can be replaced by DU^ D being a diagonal matrix 
and Ux an upper unit triangular matrix. It can be shown that the decom­
position is unique.

The decomposition of a matrix in this way is not difficult to perform 
and when it has been expressed in the form (22.16) it is a much simpler 
process to find the inverse matrix A-1 and hence to solve the equation 
Ax =  p.

Example 7. Express the matrix

A“ B - 3
in the form L1DU1.
Write A ■* LiU, that is

G  - 3 - E  ?][S  a
where a, b, c and d have to be found. Carrying out the multiplication we have

[-2 31 r i . 6 + 0 . 0  l . c  +  0.<n T6 c "I
|_5 — 2J  “  L« ■ * +  I • 0 a .c  +  l . d j  lab ac +  d j '
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Hence 6 =  2, c =  3,a6 =  5 giving a 
and we thus have

5/2, ac +  d =  —2 giving d

[ s  - 2]  =  [ 5/2 l ]  P  - » J -
A further decomposition, if required, is found by writing

[2 ~ y  -[•/][■  f]-[‘ 7}
Thus e =  2 , /  =  —19/2, eg =  3 so that g =  3/2 and we have

G  - 3 - [ i  . „ „ ] [ ■  f ] .
and this is of the required form.

-19/2

[22

Example 8. Express in the form A =  LjU the 3 x 3 matrix
r l 2 4-i

A =  I 2 6 6 .
u3 6 15.

Write

A

+ 0.0 + 0.0 
+ 1 . 0  + 0 . 0  
+  c.O  + 1 . 0

1 .g  +  0 .e  +  0 . 0  
o . ^ + l . e  + 0.0 
b .g  +  c .e  +  1 . 0

f d  g h -
I ad ag +  e ah +  i 
Lbd bg +  ce bh +  ci +f-

1.  h +  0 . i +  0 ./-)
«.A + 1 ./ + 0. /
b .h  +  c . i + l . f j

Hence d, g, h take the values 1, 2, 4 respectively, that is the values of the first 
row of A. This is always the case. Then

o d = 2 giving a =  2, bd=  3 giving 6 =  3,
ag + e =  6 giving e =  2, bg +  ce =  6 giving c =  0,
ah +  i =■ 6 giving / =  - 2 , bh +  « + / =  15 giving / = 3 .

Therefore

A =

¿2.9. The inverse of a unit diagonal matrix
Provided that the determinant associated with the matrix is not zero, 

the inverse of a unit diagonal matrix is easily found as may be seen in 
the following examples.

Example 9. Find the inverse of Lx *» ^  J .

Writing L~ Î we must have

g  a c  . ] * [ ■  j



22] R E D U C T I O N  O F  A S Y S T E M  O F  E Q U A T I O N S 441

and this gives
fa  . 1 +  6 . k a . 0 +  6.1"] _  fa +  bk 6"] f  1 1
l_c . 1 + d .k  c.O + d . \ ]  ~  Lc +dk d\  ”  L l j ;

Hence 6 =  0, a =  1, d = \, c +  & =  0 leading to c =  —k and we have

That L~ 1 is also a unit lower triangular matrix is not surprising and this form 
might have been assumed at the start.

Example 10. Find the inverse of

L - f .  • I
U  V l j

Assuming that L ' ] is a unit lower triangular matrix we write

and

GiJGiJ-M-
This gives

,1 +  O. a  +  O.0 
| a .  1 +  1 . a  +  0 . 0  

.1 +  c . a  +  1 .0G:
1 .0  +  0 .1  +  0 . y 
a.O  +  l . l + O . y
6 . 0  +  c . l  +  1 . y

1 .0 + 0. 0 + 0 . In 
a . 0 + 1 . 0  +  0 . 1
6 . 0  +  c . 0 +  1 . 1J

1
+ a
+  ca +  0

0
1

e +  y

Hence a — —a, c 

L
Lay —

y, 6 =  
1

—a
.ay — 0

—ca — 0 =  ay — 0 and

22.10. Reduction of a system of equations
When a system of equations can be expressed in the form L:Ux =  p 

and the inverse L~J of Lj can be found (and this implies that |Li| #  0), 
the equation can be reduced as follows. Operate on both sides of the 
equation with L- J, giving

L-JLiUx = L i p ,
that is

IUx =  Ux =  L jp  

and this is the reduced equation.

(22.17)
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Example 11. Reduce the simultaneous equations l x  +  3y =  8, 5x — 2y =  1 to the 
above form and hence solve the equations.

The matrix of the coefficients is ^  and this, by Example 7, can be

[ 5/2 i ] [ 2 - 19/2]  •

written

Hence

L' - U 2 1]  u - [ 2 -I 3,» ] -
Now, by Example 9 with k  =  5/2,

L ' i =  [ - 5 /2  l ]  

and so equation (22.17) becomes

[2 - S J E H 4 »  0 1 1 1 - [ - * » ] •
The reduced equations are therefore

2x +  3y =  8, - Xl y ----- 19,

giving y  =  2 and x  =  1.

Example 12. Solve the equations
-1 2 4-

L2 ! ¿ 1 0 - 0 -
nple 8, the equations can 1 

L s - f j l J  and U - f 1 I  .

2, 0  =  3, y  =  0, th

- t h , ]

[ ' 2 i l - H  i M - \ &

Using the result of Example 8, the equations can be written LxUx =  p where
" I T  r l 2 4-1

From Example 10 with a  =  2, /f =  3, y =  0, the inverse of Lx is given by 

L-

so that, since Ux =  L" }p,

Hence
x  + 2y + 4z — 2, 

2y - 2 z =  - 1, 
3 z =  - 5 .

The third equation gives z =  —5/3, the second y  =  —13/6 and the first then 
leads to x  =  13 and this is the required solution of the equations.



22] M A T R I C E S  AS T R A N S F O R M S 443

22.11. Alternative method of reduction of the system of equations
A  system of equations Ax =  p may be reduced to the form U x =  Lrjp  

by the traditional method of successive elimination of the unknowns, 
and this method is often the better way of dealing with a large number of 
equations especially when desk calculating machines are available. The 
method is outlined in the following example for the case of three equa­
tions in three unknowns.

Example 13. Solve the equations 2x +  5y — 3z =  5, x  — 4y +  z =  — 5 and 
4x 4- 3y — z =  10.

First reduce each equation by dividing by the coefficient of x  (if this coefficient 
is not zero) and so obtain the equations

x +  2-5y -  1-5z =  2-5, (22.18)
* _  4y +  z =  - 5 ,  (22.19)

x +  0-75y -  0-25z =  2-5. (22.20)
By subtracting equation (22.19) from (22.18) and then (22.20) from (22.19) we 
have

6-5y -  2-5z =  7-5, (22.21)
—4-75y +  l-25z =  -7-5. (22.22)

Then reduce the coefficient of y  to unity in each of these equations to give
y  -  0-385z =  1154, (22.23)

Subtraction then yields
y  -  0-263z =  1-579. (22.24)

0-122z =  0-425
and

z =  3-48. (22.25)
Equations (22.18), (22.23) and (22.25) can be written in matrix form as

r l  2-5 -1 -5  -1 ~x~ r 2'5 i
1 - 0  385 

1
y

-Z-
= 1-154 

.3-48 .
and this is of the form UiX =  p. The values of x, y  and z are easily deduced 
as x  =  1 -56, y  =  2-49, z =  3-48. It should be noticed that accuracy is often 
sacrificed when dividing unless a large number of figures are retained in the 
calculation. In this case the accurate solution is x  =  1-5, y  =  2-5, z =  3-5.

22.12. Matrices as transforms
If the coordinates of a point P are (x, y) referred to coordinate axes 

OX, O Y and (*', y') referred to new axes OX', O Y' obtained by rotating 
OX, 0  Y through an angle a (Fig. 201), the relations between the two 
sets of coordinates are obtained by projecting OP on the axes OX and 
O Y giving

x = x' cos a — y' sin a, 
y  =  x' sin a +  y' cos a.
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By projecting OP on OX' and O Y' we obtain similarly the inverse 
relations

x' — x  cos a +  y  sin a, 
y' — —x  sin a + y  cos a.

In matrix notation these results are
x

L JJ

cos a 
sin a

~ x '~ cos a 
—sin a

— sin a l [x'l 
cos a j |_yj
sin a"] I"x~| 
cos a j ly j

(22.26)

(22.27)

and it is evident that one matrix is the inverse of the other, that is
cos « —sin a 
sin a cos a

cos a sin a j _  Tl 
—sin a cos a j (_ 1

Again if a second rotation through an angle P gives new axes OX", O Y" 
with reference to which the coordinates of P are {x", y"), it is clear that

v n  _  fcos p 
y \  ~  L—sin ft 

_  ("cos ft 
|_—sin ft

sin f f  
cos ft_
sin ft' 
cos ft_

cos a 
—sin a

sin a"
cos a -7-

"cos (a +  ft) sin (a +  ft 
— sin (a +  ft) cos (a +  ft)] L>’_

More generally if the scale is changed in addition to the rotation of axes 
we may have a relation of the form

~x'~ > H ~X~
.  p - q . J -
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{ x ’Y  +  ( j ')2 =  ( p 2 +  q 2) ( x 2 +  f ) .
*

The mapping of a point on a plane is sometimes given as the reflection 
of the point in some line. If this line passes through the origin the 
mapping is found in matrix form as follows. Let (x, y) be the coordinates 
of a point P and (x\ / )  those of its reflection Q in the straight line 
y  = x  tan a. Let the polar coordinates of P be (r, 0); with the line y  = 
x  tan a as a new initial line the polar coordinates of P will be (r, 0 — a). 
With respect to this new initial line the polar coordinates of Q will be 
{r, — (0 — a)} and therefore the polar coordinates of Q with respect to 
the x-axis will be {r, — (0 — a) +  a}, that is (r, — 0 +  2*). Hence

x' =  r cos (2a — 0) =  r cos 0 cos 2a + r sin 0 sin 2a 
=  x cos 2a + y  sin 2a,

y' — r sin (2a — 0) =  r cos 0 sin 2a — r sin 0 cos 2a 
=  x sin 2a — y  cos 2a,

and therefore
v ~ "cos 2a sin 2a" ~x~

sin 2a —cos 2a_ J .

Example 14. Shaw that the matrices that correspond to the reflection of a point in 
the lines y  =» — x tan a and y  =  x tan a are respectively

Mi = cos 2a 
—sin 2a

—sin 2a"| 
—cos 2a J and Ma TCOS 2a 

|_sin 2a
sin 2a~j 

—cos 2aJ ‘

Show further that the combination of these reflections in the order first and 
then M2 is equivalent to a counter-clockwise rotation about the origin through an 
angle 4a.
The value of M2 has been given above and that for Mi is obtained by writing 
—a in place of a. The matrix for the combined transform in the required order is

so that

m m  _  Tcos 2a sin 2a l Tcos 2a —sin 2a"l
2 1 Lsin 2a —cos 2aJ sin 2a —cos 2aJ

_  Tcos2 2a — sin2 2a —2 sin 2a cos 2a“j 
L 2 sin 2a cos 2a cos2 2a — sin2 2aJ

K - [cos 4a —sin 4a 
sin 4a cos 4a

and this, from equation (22.26), corresponds to a rotation of 4a about the origin.

EXERCISES 22 (c) 
Express in the form LiU the matrix

ri 4i
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2.

3.

4.

5.

6.

7.

8.

9.

10 .

1.
2.

3.

4.

Find the inverse of the matrix
'1
2 1

.3 4 1J
Assuming it also to be a unit upper triangular matrix, find the inverse of

f l  2 3‘
1 - 1  .

1.
Express in the form LjDU the matrix

[2 - 2  T  
4 - 2 4 .

.6 - 4  7.
Reduce the simultaneous equations x + 3y = 4, 3x + 2y = 5 to the 
form Ux = L" Jp and hence solve the equations.
Reduce the simultaneous equations x + y  + z = 2, 2x + 3y — z = 8 
and 4x +  5y +  3z = 10 to the form Ux = L~}p.
Solve by the method of §22.11 the equations 2x — y  +  5z =  27, 
lx  — 2y — z = —3, 4x + 3y + 2z = 24.
Solve by the method of §22.11 the equations 2y +  Iz = 13, 
Ax — Ay +  Sz =  19, 2x +  y — z — 1.
Show that the reflection of the point (x, y) in the line y  = x tan a is 
given by x' = Ax where

^  _  rcos2a sin2a1 
~  Lsin 2a — cos2a_r 

Find the reflection of the liney = x.
The transformation A = Q  ^J maps the point (x, y) of a plane on to
the point (x',y')> i-e- — Ax. Find the equation of the line onto which 
the line x + y  = 0 is mapped. Find also the values of m for which the 
liney = mx is mapped onto itself.

EXERCISES 22 (d)
Evaluate as a single matrix the product diag (ai, bu Ci) diag (a2, ¿a, c2). 
Evaluate as a single matrix A2 — 4A where

ri 2 2'
A = 2 1 2 

2 2 1 
I f

‘2 1 T
1 2 - 2  

l2 - 2  —1_
show that A3 =  9A.
Find the possible pairs of values of x andy which satisfy the equation

r x v 1 1 f -Y1 r 2i
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5. Find the inverse of the matrix

'1 0 0 
A = 2 - 1  0

.5 - 6  - l j
6. By solving the equations

22] EXERCISES

'1 3 2' V ~a
0 1 1 y = b
0 0 1 _z_ _c_

find the inverse of the matrix

B =
1 3 2' 
0 1 I 
0 0 I

7. If the matrices A and B are those given in Exercises 5 and 6 above, find 
the inverse of the product AB.

8. Express as a product of linear factors the determinant
a b c 

b + c c + a a +  b 
be ca ab

9. Evaluate the determinants

10.

(0 1 1 1 (ii) 1 1 1
4 5 6 > 1 l +  o 1
8 9 10 1 1 1 +  b

Express as a product of linear factors
4 o +  1 

a +  I (a +  2)2 
a + 1 1

a + 1 
1

(a +  I f
11. Find A*1 when

A =
1 - 3  O'
2 0 1
4 1 3

and hence solve the simultaneous equations x 
Ax +  y  +  3z =  c.

3y = a, 2x + z = b,

12. If a +  26 +  c =  p, b +  2c = q, 3a +  4c = r find a 3 x 3 matrix A 
such that

13. If A = ^  show that 

A"1 =

and hence find A' 1 when a = 2, b

>" ~a
<7 = b
•jr_ _c_

d -if]
c O j

3, c = 4, d =  8.
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14. Find the inverse of the matrix
'1 0 O'
2 1 0 

.4 3 l j

and hence solve the simultaneous equations x =  a, 2x +  y  — b, 
Ax +  3y +  z =  c in the cases

V T ■2"
b = 5 and 3

S . 7 8

15. If Jt =  [4  _ } ]  and Y =  [* _  j ]  show that X2 +  Y2 =  (X +  Y)2.

16. Show that
'—a — ¿7 —a 2

1
a3

'  0 a <r
0
0

a
0

0 —a
0

—a
0

—a

17. If
\ r COS a s i n  a"l 

M ( a ) = L-sina cos J ’
show that

(i) M(a)M(/J) =  M(/3)M( a) =  M (a +  /?),
(ii) M 2(a) =  M(2a),

(iii) M (a)M (— a) =  I.

18. If x is a single column matrix with elements x, y, z, x' is a single row 
matrix with the same elements, and

show that

A =
'a h g~ 
h b f  , 

-g f  c-

x'Ax =  ax2 +  by2 +  cz2 +  Ifyz +  2gzx +  2hxy.

19. Solve the simultaneous equations 2x +  3y +  z =  9, x  +  2y +  3* =  6, 
3x +  y  +  2z =  8.

20. If A' is the matrix obtained from a square matrix A by interchanging its 
rows and columns and if X' is the matrix obtained from A' by replacing 
its elements by their complex conjugates, the matrix A is said to be 
Hermitian if  X' =  A. Show that

1
1 +  i 

2

l - i  T
3 i 

- i  0

19

is Hermitian.

A =
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Exercises 1 (a), p. 16.
1. (i) 3/4, -1 /2 . (ii) 2-643, 0-757.
3. x = 1,2-5 <  x <  4. 4. 2q2 = 9pr.
5. c3x2 + bib2 — 3ac)x + a3 = 0.

Exercises I (b ). p. 18.
1. 6-194,1-357.
3. 1, -3 , - 1  ± 75. 
5. ±2, ± 1 ; ±1, ±2.

2. - 2.
4. 2 , - 1 ;  -1 /3 , -17/3.
6. 5/2, -1 /2 ; 4,1.

Exercises 1 (c). p. 20.
1- ± (7 3  + V2)- 2. ±U/12 -  76).
3. ± (V(a + ib) + V(ifc)}. 4. 69/578, 37/578.

Exercises I (rf|. p. 20.
2. x > 6 and —6 < x < —2. 3. 3, —1/2.
4. 2x2 -  14x + 7 = 0.
7. q2x2 -  ip2 -  2<?)(q2 + l)x + iq2 + l)2 = 0.
8 .  -11,33/25. 10. 1 ±  73/2.

11. x2 + aip + q)x + bip2 + q2) + (a2 -  2b)pq = 0; 5, 1/5.
12. x2 + 9x + 64 = 0. 14. - 2 , - 1 ,  1/3,4/3.
15. 9. 16. 4, 7.
17. 4 ,-2 /3 ;-1 0 ,-2 3 /2 4 . 18. -1 ,  7; 1, 5; 5,1; 7, -  1.
19. ±1, ± 2 ; ± 7 6 , ±7(3/2). 20. a, a.
21. 5/12, 1/12; 7/12, -5/12.
22. 8, -8 /3  ; 2,4; 4, 2 ; - 1  ±  7(11/3), - 1  + 7(11/3).
24. (7/2) + 273. 25. 1/2, 1,1,2.

Exercises 2 (a), p. 25.
1. (i) 1/(46V). (ii) y.
3. x2y3/r9.
6. 4.

2. (i) 1/512. (ii) 3/2.
5. 7 x/y.

Exercises 2 (6). p. 29.
3. 3-2.
5. (a) 2, -4 . (6) -0-603.
7. -4 .

Exercises 2 (c). p. 32.
1. p = -5 , q = 8; x — 4.
3. 2 = 20, p = -39.
5. i4 = 0 ,B =  -2/5 , C =  -3/5.

Exercises 2 (</). p. 35.

1. - i ____ 2- .
5 -  x 5 + x 

, 1 2 1
x + 1 (x + l)2
2x -  3 2
x2 + 1 x  4'

3x
x2 + 2x - 5  x

4. (i) 0-3557. (ii) 0-0305.
6. 1-768.
8. 2-71, 1-71.

2. 3(a — b)ib — c)(c — a).
4. a = 3 — 6n, b = 3n2 — 3n + 1.

2.

4.

6.

8.

8 1
* + 3(x + 2) + 3(x -  1) '

1 -  —1_ + J
x + 1 (x + l)2 

13x 7 7
9(x2 + 9) + 9(x -  3) + 9(x + 3) 

5 5 1
9iy -  2) 9iy + 1) + 3iy + l)2’

449
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Exercises 2 (e). p. 35.
1 . 0 .

4. (i) 3/2. (ii) 3.
8. 1,2.

10. a = 5/2,6 = 9/2.
13. a =  31,6 =  -1 2 .
15. - ( 6  -  c)(c -  a)(a  -  b ) (a 2 +  b 2 +  c 2 + be  +  ca + ab).
16. a  =  1, 6 =  — 6, c =  7, d =  — 1.
17. a =  2, 0 =  — 3 ; a = - 5 , 0  =  4.
18. a = -5 ,6  =  6 ;(x  -  l )2(x  -  2)(x -  3).

3. 3".
6. (i) 006424. (ii) -0-3107. 
9. 0, 1.

11. 512.

19. 2.

21.

23.

2 0 . x2 + 2 x + 2 .
1

2 x + 1 

3
x + 1 
2

(x + l)2' 
1

22.
1 llx  + 8

12(x -  2) 12(x2 + 2x + 4)’

1
24.

25.

3(1 + x)2 
1

x + 1

+
1

1
3(1 - x + x‘ J 

3x + 2
x + 1 x -  1 x' 

Exercises 3 (<i). p. 40.
+ 4'

1. (i) -1 ,3 , 7; 27. (ii) 1, 3, 9; 2187. (iii) 
3. -220.
5. 5120.
8. 1/3,2.

-1 , +1, -1 , +1. 
4. 3/2.
6. 3,75.

Exercises 3 (b). p. 44.
1. (a) 20. (6) 14 2. 2. 78-7.
, 3 + x2 
' x2 -  2x + 3' 4. 3.

5. 6, -1/2.
6. Converges when a < -  2 or a > 0, limit of sum = 1 + a. 

Also converges when a = 0, limit of sum = 0.
8. a = — 3, 6 = 2, c = 5; sum = (n/2) (11 — n — 2n2).

Exercises 3 (c). p. 49.
1. 1365.
3. 6.
5.256. Sum = 711040. 
7. (i) 60. (ii) 60.
9. 1/4.

2. (i) 2520. (ii) 5040. 
4. 1024.
6. 182.
8. 37 to 5.

Exercises 3 (</). p. 54.
2. -  55/(27.33'5). 
4. 8.

3. 567/16, 6th. 
6. 7.

1' 1 + x2 + (1 

8. 0 7930,0-7929.
x)2 1 -  x ; 2x3 + 4x‘* + 4x5 + 4x6 + 6x7.

Exercises 3 (e). p. 55.
1. (m -  n){a + j(m + n — 1)(6 — a ) ) ;  77/75.
2. (3u -  c)/(a + c). 5. 25.
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6. £1071.
9. 11.

13. 186.
16. 15 to 7.
19. 1001, 2002, 3003.

7. £147, £1193.
12. 263 x 103.
14.(0 360. (n)l44.
17. 16/21.
20. a — — 1. -80,432.

23. 1 + + ■
24. 3

Zv̂  i o ± J x + 1 6
2 1

1 + x(1 - x f  1 - 
Exercises 4 (a). p. 6.3.
1. cos 9 = 15/4, tan 0 = 1A/15, cosec 0 = 4, sec 9 = 4/̂ /15, cot 9 = 715.
2. sin 0 = ± 3/5, cos 0 = ± 4/5.
3. (i) sin 0 = 4/5, tan 0 = — 4/3. (ii) sin 9 = —4/5, tan 9 = 4/3.

Exercises 4 (6). p.68. 
1. (i) -0-5299. (ii)
2. sin 24 = -  0-96, cos 2/1 
4. 69° 39'.
6. 21“ 28,90,158“ 32'.

-0-3420. (iii) 2-1445. (iv) -2-5593.
0-28. 3. 0“. 30' 

5. 1-166.
; 60°, 90 ; 0°, 150“.

Exercises 4 (c). p.72.
1. n x 180° + (-1)" x 18°, n x 180°
2. 14° 2', 123° 41', 194° 2', 303° 41'.
3. 37° 55', 25° 37'; 154° 23', 142° 5'.
5. n x 180° + 35“, n x 180“ + 45°.

1)" x 54°.

4- ( t + i M J  ■ 2n) n-
6. n x 360° + 210“.

Exercises 4 id). p.72.
±2 ab

a2 + b , tan 9 = ± 2 ab1. cos 9 ■
2. 0.
3. sin 9 = t/sj( 1 + t2), cos 0 = 1/ (̂1 + t2), cosec 0 = /̂( 1 + r2)/t, sec 0 = y/(l + t2), 

cot 0 = 1/t.
4. —1/2,—2/̂ /3. 6. ±1/72.

13. -4°, 50°. 14. 0, ir/4, n/2.
15. 57° 54', 122° 6'. 16. 0“, 63°, 135°, 281°, 360°.
17. -  1-27, 0-11 radians. 18. 60“, 70“ 32', 289“ 28', 300“.
19. (2n + l)7r/10.
20. n x 360° ± 149“ 21', n x 360° ± 78“ 50'.
21. r = 4-717, 0 = 148“. 22. 30“, 45°, 150“, 210“, 225“, 330“.
23. it x 180° + 63° 26'.
24. (2n + 1 )tt/10, provided n is not of the form 5r + 2 where r is zero or an integer.
25. n/6, Sn/6, 7n/6, lltr/6.
Exercises 5 (6). p. 81.

(1 + t)(3 + t)2. 1 + t2
Exercises 5 (c). p. 85.
3. cos (A — B) = 1 — (̂p2 q2), sin (A + B) —
4. 0°, 90“, 120“, 135“, 240 315 , 360“.
5. 2mr, (2n — 1 )?t/2, (2n + 1 )?r/5.
7. 36“ 52', 126° 52'.

-}pq_ 
p2 + q2

6. (4u + 1 )n/(p + q), (4n ± 1 )n/(p -  q). 
8. 306 52'.
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Exercises 5 id). p.88.
1. n/4, 5rr/6, rr/3, n/6.

Exercises 5 (e). p. 92.
1. 28'41'.

7. 1/2.

2. 2-91 m
5. 0 00775 m.

Exercises 5 if). p. 92.
2. 45°.
. tan A + tan B + tan C -  tan A tan B tan C4.  .

1 -  tan B tan C -  tan C tan A — tan A tan B
14. O ', 10", 45°, 50°, 90°, 130°, 135°, 170°, 180°.
15. 63 26', 161° 34', 243° 26', 341 34'.
16. 139 48', 287° 35'. 17. n x 36 + 9°, 45° -  n x 180“.
18. 131° 48', 11“ 48'; 168' 12,48“ 12'.
19. 60,63 26', 243° 26', 300' .
20. 38° 23', 111° 37', 218° 23', 291 ° 37'.
21. 22“ 38', 36° 50'; n x 360“ + 22" 38', n x 360“ + 36° 50'.
24. 1/6.

Exercises 6 (a). p.97.
2. (4ab)/(a + b)2.

Exercises 6 id). p. 110.
1. A = 83’ 31', a = 17-5 m, b = 10 m.
2. No solution.
3. A = 38° 26', C = 90°, c = 27-35 m.
4. A = 33° 16', C = 44° 19', a = 60-21 m.
5. A = 100°, B = 45° 40', a = 21-5 m; A = 11“ 20', B = 134° 20', a = 4-3 m.
6. A = 103° 2', B = 29° 58', c = 5-25 m..
7. A = 108°, B = 37° 59', C = 34° 1’.
8. c = 7-93, R = 4-39.

Exercises 6 ie). p. 113.
1. 14“ 11', 98° 25'. 2. 35° 48', 46° 3', 98° 9',
3. A = 56° 24', B = 22° 8', C = 101° 28', c = 5-686 m.
4. B = 85" 37', C = 43° 23', BD = 3-365.
6. 62190 m2.

Exercises 6 (/). p. 115.

3. 3-54 m, 57° 41'.

4. 21-9° (approx.).
7. 15-32 km, S. 34“ 25' E.

6. 90-8 m. 
8. 1011 m.

Exercises 6 ig). p. 116.
I. 9-79 m.
3. 180 — 2A, 180" -  2B, 180° -  2C.
6. 26, 30 m.

13. A = 116° 9', B = 11° 51', a = 17-09, b =
14. 108° 42', 48° 46', 22° 32', area = 2-595 m3 
16. 624 m2.
18. 74° T, 49° 29'.

17. A = 75° 43', c = 17-76 m.

12. 6 = 7-22, c = 5-55. 
391.

2. sin 0 = 0-8126, a = 95-7.
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19. C = 28 30', A = B = 75 45', sides 32, 65, 65 m.
20. Angle ABC = 75° 31', area = 4 13 m2.
21. 6-61 km, S. 68° E. 22. 114-7 m.
23.931m. 24. 467-9, 784-7 m.

2. 0, - 3 ;  1/2, -2 . 

( -1  ± V5)(*/2).

7. 3x2.

Exercises 7 (a). p. 124.
1. 9, -1 ,0 .
3. 1/2, — 1/2; nn + ( - 1)"(*/6).
4. (i) y  =  ± V ( x -  x2)/2. (Ü) 3 =
5. 3,2-5, 2-25, 2-125 m/s.
6. 2 -  4x -  2 ¿x, 2 -  4x.

Exercises 7 (6). p. 128.
1. 15x2.
3. -  1/x3.
5 . - 3  sin 3x.

Exercises 7 (c ). p. 129.
1. 3r2 -  2r, 0, 2/3 seconds.
3. 1-3 x  10"5 m2/s.
5. 0-2 per cent., 100-2.

Exercises 7 (</). p. 130.
1. 0, 8-402, 29-61.
3. ax2 + (2a + b)x + a + b + c.
6. l/(2Vx).
8. -3 ,2 , -6 .

10. 5.
12. - 1, 1/2.
14. (i) a cos ax. (ii) — sin2x.
16. 6x + cosx, 1.
18. (i) 300. (ii) 432.
21. 75° 58'.
25. 8-3 m, 83 m/s.

Exercises 8 (a), p. 135.
1. 12x2 — cosx.
3. (1 -  3x2) cos x + x3 sin x.
5. — 2x(l + 4x2).
7. 81x2 + 108x + 36.
8. x{2 sin x cos x + x(cos2 x -  sin2 x)}. 

10. 40x3 — 2 sin x cos x + cos x — x sin x.

Exercises 8 (6). p. 137.

i l — 2 (1 + x2)2*

3 ~ 5x
' (1 + 2x2)2’

2 cos x
(1 -  sin x)2‘

7. cot x — x cosec2 x.
dos3 x -  sin3 x
(sin x + cos x f

2. 4x3 -  2x.
4. 2 cos 2x.
6. 1 + cosx.

2. 32 m/s2.
4. 40 mm2.
6. 7i m2.

2. y = (2x3)/(4x2 + 3), 0-842.
4. /(x) = — fx 3 + f |x 2 + ^ x  + 9.
7. 2ax + b, x = — b/2a, y = (4ac — b2)/4a.
9. 8.

11. 1.
13. ( i ) 8 x + l .  (ii) -1 /x 2.
15. — l/(x + 2)2.
17. 0-4012 cubic metres per minute.
20. 1 second, 1 m/s2.
23. -3 , ±6.

2. 10cos2x.
4. 1 -  2x.
6. x2(3 cos x — x sin x).

9 . - 2  sin x cos x.

2' (1 + 2 x f

4 — gfi—  
(3 -  2x2)3’

(sin x + cos x)2'
8. 2 sec2 x tan x.

10. -  2 cot x cosec2 x.
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Exercises 8 (<■). p. 141.
1. 12(4x -  5)2.
3. 2 cos 2(x — a).
5. 3 sec 3x tan 3x.
7 . - 3  sin2 (2 -  x) cos (2 -  x).
9. 3 sin2 x sin 4x.

1 1. sin" - 1 0 cos"“ ' 0{m cos2 0 -  n sin2 0).
1 2 . — (a/t2) sin (2 a/t).
13. (i) m sin"“ 1 x cos x. (ii) mx"~‘ cos(x"

2. 5x4(x + 3)4(2x + 3).
4. 2 sec2 2x.
6 . 6tan(3x + l)sec2 (3x 4- 
8 . 2 x(l — x)(l — 2 x).

10. 4 sec2 x tan x.

). (iii) — sin x cos (cos x).

Exercises 8 Ir/i. p. 143.

(2x3 + i)
2 ^ /(1  + x)' 

x -  1 -  2 x2

5' "V Ô T W
Exercises 8 (<■). p. 145.
5. sin- 1 x + x/J(\ -  x2).

Exercises 8 (/). p. 148.
1 -  3x2y2 

2 x3y

3 _ 2x + y 
x + 2 y

7. (8  + 4x)cos x + (1 -  4x — x2) sin x.

2. 30x2(2 -  5x3)-3 .

4 1 .
' 2(1 + x)3'2'

*  C O S  y j  X

2j x  ■

cos 2 x

4. -  tan 0. ‘

Exercises 8 (g). p. 149.
1. (i) 2 x 2 -  3x. (ii) (9t‘/2)/2 -  r 1/2 + 6. (iii) ~ 2 0 ~ 3 +  2 0 ~ 312.
2. (i) x  cos x. (ii) 6x — 10.
3. (i) cos t  sin 3r + 3 sin t cos 3t. (ii) 2f sin -  1 t + i 2/v/( 1 — t2)-

4. (i) x 2 sin x. (ii) tan x  + ( l -  - j  sec2 x.

5. (i) x ( l -  3x)2(2 -  15x). (ii) 21? cos 20  (cos 2 0  -  20  sin 20).

6 . (i) 2x3 + 3x2 + 1
—ôT+lj2 - (ii)

2 x + 3̂ /x 
2 (x + 2 n / x  +  1)'

(iii)
-1

x/*(l + V*)2'
7. (i) 2x -  x2 — 4 

(x2 -  4) 2
(ii) x2 -  6 x + 1 0

(iii)
(1 + x) sin x + cos x

(TT^F '
„ ... sin x — x cos x x — sin x cos x ..... 2cosx + 3
8 . ( l ) ---------r-j---------- . (ll) ------- 5------ =------- . ( i ll) ---------------------î

sin2 x x2 cos2x (2 + 3 cos x) 2

n r\ » -  i 2 . .... - 2 XCOS29. (i) nx ‘(tan nx + x sec2 nx). (n) — 5— ,--------------- .
sin (x2 -  1)

1 0 . (i) y2 + 2 x y ^ ’.
ax

(Hi)

(ii) 6(3y + 2 & .
ax

(iv)
x(dy!dx) — y
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11. (i) 6(x2 — x)5(2x -  1). (ii) 3 sin (2 — 3x). (iii) 2x (sin 2x + x cos 2x). 
112. (i) (ii) -(1  + 0) - ' ( 20 + 02) - ' 12.

14. (i)

15. (i)

(1 + t2)312'
(iii) 2x(x2 -  2)(x2 -  1)“3/2.

sec2 (x/2) ,..v cos(x/2)
2^/(1 -  tan2 (x/2)}' 2(1 + sin2 (x/2)}'

2 3t(")V ( i- t2)' 7(t(i - 13)}'

16. (i) -ijsin^-^. (ii) 2xsec2(x2). (iii) 

21. 2x/(x 3- y).
1 + x2

23. (i) (ii)
6 x — y 
8.y + x'

24 (j) 2x sin y + y sin x 
cos x — x2 cos y (ü)

25. 1.

26. (i) x(6 — x2) sin x + 6x2 cos x. (ii)

cos y — y cos x 
x sin y + 2y sin x

2

28.

(1 + x2)2'
x cos x -  2 sin x (6 — x2) sin x -  4x cos x

(iii) (1 + x)3

Exercises 9 (a), p. 155.
1. 0 00764 m/s.
2. 5-28 m2/s, 55-41 m3/s.
3. 0-3 mm/s.

Exercises 9 (6). p. 159.
1. 3 (min.), 7/3 (max.).
3. -3 , -1/3.
5. -  3, 1 (min.), 3/2 (max.).

Exercises 9 (r). p. 162.
2. Each 0 06 m.
5. 26-3 m.
8. l/20(^ + 4)m.

Exercises 9 («/). p. ¡67.
1. 0, 2/3.

2. —4 (min.), 0 (max.).
4. -3 .+  2^/2, - 2 J 2  -  3. 
6. 25.

3. 4-32 x 10~4 m3. 
7. 0-1188 m2.

2. (2n + l)n, n an integer.
3. x = —2 gives a minimum, x = 2 gives a point of inflexion. 
6. (i) ±1, infinite, (ii) ±1/^/2.

Exercises 9 (el. p. 167.
1. (i) 257r/16. (ii) 9rr/4. 1 44 times.
2. 2 per cent./second. 3. 1-6 mm s.
4. After 2 and 7/2 seconds. 0 m/s, —6 m/s2 ;

9/2 m/s, 12 m/s2 Min. vel. -3 /2  m/s.
5. 8 m/s2.
6. x = -c/2b, y = —c2/4ab. A minimum.
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7. I (min.), -  1 (max.).
/  2 \ - l t1°. I — 1
\n + 1/

11. Length = 64/x2, area = (256/x) + 2x2.
12. Sum of volumes = (/3 -  3/2x + 3x2/)/1728.

Minimum volume = I3/6912.
13. 004 m. 14. 0-224 m3, 1 -25 m.
15. 4-8 km/h, 4-2 km. 16. £1 79.
18. Square of side rsj2. 19. 0-3 m.
20. IJ 2 = 1 26.
21. -  17 (min.), 1-519 (max.), x = 4/3.
22. -  6/3a. 25. —1/2 (min.), 1/2 (max.).

Exercises 10 (a), p. 174.
1. (3x7/3/7) + C. 2. ( — 3/x) + C.
3. x + x2 + (x3/3) + C. 4. (x3/3) + 2x -  (1/x) + C.
5. x -  (1/x) + C. 6. sin x — cos x + C.
7. 2 tanx + t a n '1 x + C.
8. (x76) + x* -  (2x3/3) + (x2/2) -  3x + C.
9. t3 -  (t2/2) + 71 + C. 10. C - 2 8  -  (1/6) -  (1/202).

11. (ax2/2) + (6x3/3) + (cxV4) + C. 12. 62 + sin 8 + C.
13. tan 8 — 9 + C. 14. (x + sin x)/2 + C.
15. tan ~1 x + C.

Exercises 10 (6). p. 176.
1. y = x2 -  x + 1. 2. y = 1 + x — (2x3/3).
3. 8/3. 4. 13 m from the origin.
,  dx , d2x
5 r = dt-’/ = dF ’ x = 8i - 12i + 6 ' - 1.
6. At distance 39-33 from the origin, 27-33.

Exercises 10 (c). p. 183.
1. 3437 2. 4/3.
3. 81/10. 4. 16.
5. n/2. 6. 1.
7. 1 -  (7t/4). 8. (73) + (1/2).
9. 417 10. 1/4.

11. 1/6. 12. y = 3x2 — x3, 6j.
13. 72  -  1.

Exercises 10 {d). p. 186.
I. 729735. 2. 714.
3. 625712. 4. 875.
5. 593740. 6. 7 /2 .

Exercises 10 (e). p. 186.
1. (i) (3x4/2) + 5x3 -  6x2 + C. (ii) (2*3/2/3) -  (4x5'2/5) + (2x,/2/7) + C.
2. (i) 3x3 -  12x2 + 16x + C. (ii) (x3/3) + x2 -  3x + C.
5. ft# ~  sin 0) + C.
6. 6y = 6 + 9x + 3x2 — x3, 9. 7. (5/2) — cos t.
8. 2y = x3 -  6x2 + 9x + 3, 10/3. 9. 5 m/s, 5/3 m.

2M -  W 3M — W
10 2ÉI ’ 6ËÎ  ' 11. (i) 29/6. (ii) 30057/1120.
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12. (i) 1/6. (ii) 0.
13. (i) s/6. (ii) $(b2 — a2) + sin b — sin a.
14. 256.
16. y = 9 + 6x -  3x2, 32.
18. 55-5.
21. l-26x 1(T3 m3.
22. Height = r2/4a, vol. = sr4/8a.

15. 2, -3 .
17. 21a2 ¡(A.
19. 128/5, c = 3 032.

24. 9s/4.

Exercises II (u). p. 192.
1. - i(2  -  x)4 + C. 2. - ^ ( 1  -  x )" + C.

3 1 + C 
4(2* -  l)2 '

4. f7(5x -  7) + C.

5. 1/4. 6. 1/2.
7. (i) }(sin 2x + cos 2x) + C. (ii) ^ tan (2x — 1) + C.
8. s/24. 9. sin - 1 (x/2) + C.

2 , / 2x + 1\ , {x -  2\10. —rz tan 1 I — T— ) + C. 11. sin 1 —-— ) + C
73  V 73  / V 3 )

1 . 3x -  2
1Z' 7 1 7 tan 717 ' C'

Exercises 11 tb). p. 194.
1. s/2. 2. \a + ^ sin 2a.
3. 5s/4. 4. 1 + (jr/2).
5. 9/8. 6. 1/4.
7. 1/2. 8. 72/4.
9. 5/6. 10. 0.

Exercises II (c). p. 200.
1. ^sin(x2 -  1) + C. 2 * + C 9(x3 + 8)3 +
3. 2 sin 7 x  + C. 4. —$ cos5 x + C.
5. £ cos3 2x — \  cos 2x + C.
6. -  k\/( 1 — 9x2) -   ̂sin ' 1 3x + C. 7. i t a n - 'x 4 + C.

8. ^x7<4 -  x2) + 2 sin" 1 + C. 9. 106.
10. 0-2165. 11. 1 172.
12. a3/3. 13. s/4.
14. sa2/4. 15. 2/3.
16. 2.
Exercises 11 (d). p.204.

1. -x c o sx  + sinx + C. 2. \x  + i  sin 2x + C.
3.  ̂sin2 x + C. 4. x sin"1 x + 7(1 —
5. -7 (1  -  x2)sin" 1 x + x + C. 6. — 2s.
8. (r) (s2 + 8s -  32)/(272). (ii) 1.

Exercises 11 (e). p. 209.
1. 0 1054.0 1054. 2. 0-6931.
3. 1-1. 4. 74-84.
5. 0-5235.

Exercises 11 (/). p. 210.
1. i(x2 -  3)3 + C. 2. { tan2 x + C.

3. - 7 (4  -  x2) + C. 4. i  ta n -1 + c
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5. -  cosec 0 — sin 0 < C.

1. y/(4 + X 2 ) 

4.x
+  c .

9. -|(cos2x + y/3*) + C. 
11. 1/6.
13. 4/3.
15. 8/105.
17. 1/12.
19. (tr2 + 4)/16.
22. -9/8.
24. 16 65.

8. I tan3 0 + C.

10. ^ (x  + 2)3,2(3x -  4) + C.
12. 435/237160.
14. 0.
16. (4^2 + 2 -  7ty/2)/8.
18. ti/4,
20. 2«735.
23. (i) x = tan 6. (ii) x = sin 6. 
25. 577.

Exercises 12 (a), p. 216.
1. 64/3. 
3. 7a2/9. 
5. In.

Exercises 12 (b). p. 219.
1. 1/2.,
3. 1-978.

2. 128/81.
4. 1/6.
6. 7t(5fl + fa3).

2. 71-5. 
4. 1.

Exercises 12 (r). p. 224.
1. 31/4.
3. .x = 635/217,T = 1275/496.
5. 5Q7ta3. C. of G. is on x-axis at distance 10a/3 from origin
6. On y-axis at distance 3-6 from origin.

2. x = 10-8, ÿ = 4-5. 
4. 85/31.

Exercises 12 (d ). p. 229.
1. 3A4/2/5, where M = mass, / = length of rod.
2. pa*¡20. 3. Mb2/9, where M  = mass.
4. Mh2/2, where M = mass. 5. a2/3.
6. d2 + (b2/4).

Exercises 12(e). p. 2.32 
1. 12- 1.

3. 12.
5. 241-2.

Exercises 12 (/). p. 2.33.
1. 79/6. Results differ because part of curve lies below x-axis.
2.
4.

8/3.
8u2/3. 32ttíí3/3.

3.
5.

(96J5)/5. 
(37T/2) + 4n.

6. 2-25 x t0~3 m3. 7. (i) 0. (ii) 2In.
11. x = 4a/3n, y  = 4b /3n. 12. x  =  a n /2, y  = a n /8.
13. 16/15, x  = 4/7, y  = 0. 14. x  = 3a/8, y  =  0.
15. x = 3/2, y  = 0. 16. p a V  3.
17. 2/9. 20. 3iWa2/5.
21. a( r -  P). 22. 108.
23. 2 l(2b2/3 -  a2'3)3'2 -  a}. 24. 3^.
25. n( lOy/10 -  11/27.

Exercises 1.3 (o|. p. 240.
1. (i) x(l + 21ogpx). (ii) -1/x.

2. nr/2. 
4. 2nr2. 
6. 3n.
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2. log, x, x(log, x -  1) + C. 3. 2 (approx.).
4. (il 2x/(x4 — 1). (ii) — cosec x.
5. \ / j { x 2 + 1), log, {x + J ( x 2 + 1)} + C.

Exercises 13 (¿>). p. 244.
1. (i) e2'(2 sin 3x + 3 cos 3x). (ii) 2xex‘.
5. (i) (I -  e“3)/3. (ii) i(e2 -  è ' 2) -  2. (iii) 2.
7. (i) (x2 -  2x + 2)ex + C. (ii) ^e'(sin x + cos x) + C.
8. e~ 1

Exercises 13 (c). p. 250.
1. |lo g ,(x 2 + 1) + C. 2. i
3. 3 log, 2. 4- (
5. log,(C + e x) + C. 6. i
7. log, (log, t) + C.
8. 2 log, (2t2 + 2t + 1) -  7 tan ' 1 (2t + 1) + C.

9. ~ + ^ lo g ,(2 x - 3)+  C.

log, (3 + 4 tan x) + C.

10. 2x -  log, (x + 2) + C.

11.
x
6~

x‘
T 2x -  4 log, (4 -  2x) + C.

12. log,• ( ^ ) + C. 13. log, {(x + l)2(x -  2)4} + C.
\  3

14. — + -  log, (x -  1) -  i  log, (x + 1) + C.2 2 

15. 4 log, (x -  3) 15
x -  3 + C.

16. 2 log, (x -  3) -  log, (x2 + 4) + ^tan 1 ^  + C.

17. log, (4/3). 18. (1/2) + log, (3/4).

19. ( l o g ,* - l )

20. y  t a n '1

21. x tanx  + log, cos x + C.

-A +  c .

x2 1 
j  + g loge (x2 + 1) + C.

(x + 4) -  — + 2x + C. 422. (y  -  s) log,

21 (x + ï )  l0ë,,;>C ~ log' (ji: + + C
24. tan x (log, tan x — 1) + C.
Exercises I3(</). p. 255.

1. -4(3 -  22x + 36x2).

3. 10'log, 10.

4. (log, x)' log, (log, x) +
log,

9. A = 2, B = 8, C = -9 .
Exercises 13 (e). p. 256.

I. (i) l/(sin x cos x). (ii) seex.

3(1 -  5x)

b )

' 2(1 -  x)4(l -  3x)1/2

10. -2 /3  < x «  2/3.

2. e~'

3. (i) 1
(«)

1
x(l + x)’ 2,/(x2 -  1)'



460 A N S W E R S  TO  T H E  E X E R C I S E S

6. (i) 3V *  + 21og,(x -  1) + C. (ii) Kl -  éT*'2) + log, 2.
8. a = - A l l ,  /? = j ( B -  A2/4). 10. ln(e2 -  e~2 + 4).

11. (i) log, (e* - e ' x) + C. (ii) e - 1 log, (x* + e*) + C.
x113. (i) x -  log,(x + 2) +  C. (ii) y  -  4x + 5 log,(x -t- 1) + C.

14. (i) $ log, 2. (ii) |  log, (t -  1) -  log, (t + 3) -  $ log, t + C.

15. (i) i  log, (x(x2 -  3)*) + C. (ii) i  log, ^ + C.

16. (i) x + f  log, (x + 2) -  log, (x + 5) + C.

(ii) 3 log, (x -  2) -  |  log. (2x + 1) + ^  } + C.

17. (i) i  log. (f). (ii) i  log, (4).
18. log, (11/6).̂

21- «  À ~ -  (H) (5‘ *“ *) sin 2x. log, 5.
23. 147/40.

Exercises 14 (a), p. 263.

2. (i) (a) (2,273). (6) {(5V2)/2,-(5V2)/2). 
(ii) (a) (V2.Tr/4). (b) (13,112“ 37').

4. (i) J(a2 + b2). (ii) J(a2 + b2).
5. 475, 5, 717.

Exercises 14 (b ). p. 267.

1. (2,5/3), (-20,31).
5. (i) 1. (ii) a2.
8. (8 -  373)/4.

Exercises 14 (c). p. 271.

1. x2 + y2 -  6x — 8y = 0.
3. 2x — y — 2 = 0.
5. (-1/11, -19/11).
7. (2,0), (2, 10); (2, 5).

Exercises 14 (</). p. 271.

1. 6 + 273.
3. (13/3, 8/3).
6 V fri2 + ' 7  ~  2r1r2cos(g, -  fl2)} 

2 sin (0j — #2)
7. (1,1), (-5/2,9/2), (9/2, -5/2).
8. (8, 0).

11. 10.

13. (4, 2), (0, 4).
15. 15x2 — y2 + lax  = a2.
17. 2x — y — 16 = 0, 2x — y + 8 = 0.
18. x2 + y2 -  12x -  18y + 109 = 0.
19. 3x -  y -  1 = 0.
20. 2x2 + 2y2 ± x ± 13y T 13 = 0.
21. (1172)/5,(11713)/10,(11717)/10.
22. (5, 6).
23. a = 6, b = 3, AB = 1/12.

(iii) 7(2p2 + q2 + r1 -  2pr -  2pq). 
8. (5, 5).

2. 741,.(- 1/3, 5/3). 
7. 21.

2. x2 + y2 -  8x -  8y + 7 = 0. 
4. y = ±3x.
6. (0,0), (1,2); 75.

2. 768, 750, 7106. 
5. (1/6, 1/2).

10. 51-8, 165-3, 209-5, 2500. 
12. 4.
14. 8x + 6y = 63.
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Exercises 15 (a), p. 280.

1. (i) V3x + y + 3 = 0. (ii) 3x -  5y + 15 = 0. (iii) 3x + 2y = 0.
2. 4/3.
3. (i) 13, -65/12. (ii) 5/12. (iii) 5.
4. (1,1), 2x + 3y = 5. 5. 3/^5.
6. 5x + y = 9. 7. x + y -  8.
8. 2x -  y  = 4.
9. x cos a + y sin a = + c^/(sin a cos a).

10. a2 + b2 = a2b2. 11. x -  2y + 2 = 0 ,4x -  y = 6.

12. y + mx = 0, (a + b/m)y -  bx + ab = 0; (—
\am + 2 b am + 2b/

Exercises 15 (6). p. 285.

1. 135°.
2. AB, 3x + 4y = 19; BC, x -  3y = 2; CA, 5x -  2y + 3 = 0, 

tan B = 13/9, tan C =  13/11.
3. y + 2 = 0, >> — V3x + 3^3 + 2 = 0.
4. 29y -  2x = 0.
5. (i) x = 2. (ii) 4x + 3y + 1 = 0. (iii) 3x -  4y = 0.
6. 4x + 3y = 11.
7. x -  y + 1 = 0 ;(2 ,3);x  + y = 5.
8. (i) 7x -  2y = 7. (ii) 3x + y = 2. (iii).(11/13, -7/13).
9. (7,7).

Exercises 15 (c). p. 288.

1. (i) 1. (ii) 0 (point lies on line).
2. h cos a + k sin a — p.
3. Point is centre of an escribed circle.
4. 6x — 4y = 3.
5. 2x -  159y = 11, 34x + 27y = 57.
6. x -  2y + 1 = 0, 2x + y = 3.
7. 4x -  7y + 3 = 0 ,49x + 28y = 12; 2x + 3y = 5, 15x -  lOy + 8 = 0, 

x -  3y + 2 = 0, 3x + y + 1 = 0.
8. B(x — h) — A(y — fc) = ±(4x + By + C).

Exercises 15 (</). p. 292.

1. x +  9 y =  11, 2 x - 4 y +  11 = 0 . 2. x =  1, y  =  1.
3. (i) x +  y =  1. (ii) x +  3y =  1. 4. 23x +  23y =  11.
5. 18x +  29y +  4 =  0. 6. 45°.
8. 2x -  y =  0, 2x -  l l y  =  0.

Exercises 15 (e). p. 297.

1. m =  0031, c =  2-5. 2. m =  2-3, c =  — 10.
3. a =  3 ,«  =  100; 100. 4. a =  2, p =
5. a =  c =  4. 7. C  =  10, n =
8. C  =  0 000136, n = 0-546. 9. k =  5 x l O ' 7, «  =

10. >4 = j, n = i;m  = ^, c = l ; x  = 1 and 4.

Exercises 15 (/ ). p. 298.
1. x +  y  =  6.
2. 4 B  =  10, equation 4x — 3y +  5 =  0 ; equation to BC, 3x +  4y +  10 =  0 ; C  is point 

( -1 0 ,  5) or (6, -7 ) .
3. 4x +  3y +  1 =  0, 4x +  3y +  11 =  0, 4x +  3y =  9.
4. 4x +  3y =  9,4x +  3y +  11 =  0 ; 27/8, 121/24.
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5. 85° 14'. 6. ax + by = a2.
7. (0, 1/m).
8. 3y — 4x + 6 = 0; (6-6, 6-8), (3,2); 8-4.

11. x + 7y + 20 = 0, 7x — y = 10.
12. (139/74, 353/74).
13. 3x + y = 6 ,4x + y = 8; x = 1.
14. x — y = 0,.x + 2y = 0; (0, 0), (2, 2), ( -2 , 1), (-1 /3 , 13/3); area = 53/6.
15. x + 2y = 8, 2x -  y + 9 = 0; ( — 5, - 1).
17. 2x -  5y =  18. 19. (8, 3).
21. 4x — 3y + 2 = 0. 22. 13x -  Uy = 9, 5x -  y = 0.
24. x2 -  4xy -  y2 = 0. 25. ab(x1 -  y2) + (b2 -  a2)xy = 0.
26. A = 271, C = 82. 27. A = 60, B = 0 017.
28. A = 6-4, n = 3. 29. a = 5-99, b = 1-20.
30. k = 210, n = 0-3.

Exercises 16 (a), p. 304.
1. (5, -6), V61.
2. (i) x2 + y2 + lOx + 12y -  39 = 0.

(ii) x2 + y2 — 2ax + 2by + 2b2 = 0.
3. x2 + y2 — 2x — 2y — 3 = 0.
4. x2 + y2 -  lOy = 0. 5. x2 + y2 — llx  -  7y + 30 = 0.
6. x + 5y + 2 = 0. 7. x2 + y2 -  5x -  y + 4 = 0.
8. x2 + y2 -i- 5x — 5y = 0.

Exercises 16 (b ). p. 308.
1. 3x + y = 19, y = 2.
2. (i) g x + fy  = 0. (ii) x + 2y = 7.
3. 4x — 3 y = 25,4x — 3y + 25 = 0.
4. 3x + 2 y = 0.
5. 2x2 + 2y2 -  8x + Ay + 5 = 0. 6. 12/5.
7. y = 0, 3> = 4x; (3,0), (9/5,12/5).

8.

Exercises 16 (c). p. 312.
1. 3. 2. 12.
3. (i) (10, 2). (ii) 2. 5. x + 3y = 7.
6. 3x -  y = 1, x — 3y + 13 = 0; (2,5); x2 + y2 -  4x -  lOy + 19 = 0.

Exercises 16 (</). p. 314.
1. x — y = 3.
2. 5x + y + 2 = 0, 2x — lOy + 21 = 0.
5. x2 + y2 + 4x -  7y + 5 = 0.
6. x2 + y2 — 20x = 0, x2 + y2 — 4x — 16.y + 64 = 0.

Exercises 16 (e). p. 314.
1. (i) 2, (1,3).

(ii) (6, 3), ( -2 , -  1); x2 + y2 -  23x + 36y - 1 5  = 0.
2. (13/3, 16/3), (10n/2)/3.
3. x2 + y2 — 6x — Ay — 28 = 0. 4. x2 + y2 — 4x + 7y — 20 = 0.
5. 3x2 + 3y2 -  26x -  16y + 61 = 0.
6. x2 + y2 + 15y = 0, 3(x2 + ? )  -  20>> = 0.
7. (1,4), 4. 8. -40/9.

10. 3x -  4y =  25,.x = ±5. 11. 3x2 + 3y2 ± 8ay + 4a2 = 0.
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12. x2 + y2 -  lOx -  5y + 25 = 0, (3, 4).
13. 40y = 9x.
14. (-1 ,3), 710/2; x -  3y + 15 = 0; 72.
15. (x -  4)2 + ( y ±  3)2 = 9, (x + 8)2 + (y ± 15)2 = 225.
16. (6,0), (0, 3), (0,4) ; 4x + 7y = 73 ; 711.
17. (1,0); 73/2. 18.7.
19. 3x2 + 3y2 -  6x -  lOy + 3 = 0.
20. 5x2 + 5y2 + 24x -  36y = 0; 2x = 3y.
21. 24/5.
22. (i) (-3-4, 2-2). (ii) 4x + 3y + 7 = 0. (iii) 289/24.
23. x2 + y2 + 8x + lOy -  59 = 0, x2 + y2 -  8x -  6y + 21 = 0.
24. x2 + y2 -  1 lx + lly  + 4 = 0.
25. (1/2,1X75/2.

Exercises 17 la). p. 321.
1. 6x -  4y = 51.
2. x -  2y + 144 = 0, 2x + y + 18 = 0; (-36 , 54).
3. (o/l6, —a/2), (o/4, a); 16x + 4y + a = 0, 4x — 2y + a = 0, ( — a/8, a)4).
4. x + y = 3.
5. 4y = x2 -  4x + 16; y = x, y + 3x
,  , f 3 / a 1,3fc1/3 \)
6. 90 , tan |  2( fl2/3 + ¡,2,3)} ■

= 0.

Exercises 17 lb), p. 323.
1. — 1/f,.
4. h = 0, k = 2r; x = 0. 

Exercises 17 (r). p. 330.
1. 2; 1/2; 3.

6. 8x -  3y = 36, 3x -  2y = 18. 

Exercises 17 Id), p. 336.
1. (±713,0); 713/3; 8/3.
2. 3x2 -  y2 = 3a2.
3. x -  2y + 1 = 0, 2x + y + 7 = 0.
4. 30x -  24y ± 7 I6I = 0.
7. (t2 + l)(x/a) -  (r2 -  l)(y/i>) = 21.

X  V8. -  sec <b — f  tan 0 = 1 .a b

3. xy = y(h — 2a) + 2ak.

2. x2 + 2y2 = 100.

5. 2x — y = ±6. 

x y10. -  cos <j> + -  sin d> = 1. a 0

Exercises 17 (e). p. 341.
3. 7 2 . 4. x + r2y = 2ct.
5. 375.
8. A rectangular hyperbola with the edges of the corner as asymptotes. 

Exercises 17 (/). p. 341.
1. (1,0); x + 1 = 0. 2. a2f3/2.
3. (af,t2,a(i, + t2}). 7. - t  -  (2/t).

10. 9x -  4y + 4 = 0, x -  4y + 36 = 0.
11. 7 (7/3)x + 7 (20/3)y = 9, 47(7/3)x + 7(20/3)y = 16; 36° 29'.
12. ({a + 6}cos0, (a — fc}sinf>).
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14. (5,15/2). 17. 1/V2.
18. x2 -  y2 = 32.

Exercises 19(c). p. 381. ,
1. 32° 54'. 2. 60°.
3. (i) 54° 44'. (ii) 65° 54'. 4. (i) 77° 59'. (ii) 81° 26'.
6. (i) 65° 23'. (ii) 100°. (iii) 49° 14'.
8. AB = 17, BC = 20, CA = 29 m. {Sj3)/12.

Exercises 19 (</). p. 384.
3. r j(d2 -  r2)/d, (d2 -  r2)/d. 5. 00125 m.

Exercises 19 (e). p. 391.
1. 7; x2 + y2 + z2 + 2x -  4y -  16z + 20 = 0.
2. x2 -  y2 + z2 = 0. 4. 72° 14'.
6. i i  9 ,f, - f .  7. 2x + iy  -  z = 14.
8. x + y + 2z = 3, 60°. 9. 13.

10. Al + Bm + Cn = 0 and Atx + Bfi + Cy = D.

Exercises 19 (/). p. 392.
2. Plane parallel to AB, CD.
3. (i) 15-97 m. (ii) 70° 12'.

12- J { ( b 2 + c 2 -  a2)/2}.
15. 54° 44'.
18. 54“ 44'.
20. 20-62, 15-2, 15-59 m, 0-843.
22. a(3 + 2V3J/3, 2a(3 + ,/6)/3.
23. (a) 0-022 m. (6) 0 0314 m.

m,n2 — m2nt n,l2 — n2l,
30. (i) -2 /7 6 , -1 /7 6 , 1/76;

(ii) 2x + y -  z = 2.

Exercises 20 (a), p. 400.
1. 109 35 m3.
3. (i) 1:9. (ii) 1:27.
6. (73û3)/2.
8. 380 m3.

Exercises 20 ib). p. 402.
1. 4(3 + 272)*a3.
4. (7/2 + 377)na2.

Exercises 20 (c). p. 404.
1. (2n2r3)/3; {1 + 7(4n2 + l)};rr2.
2. na2/4.
4. 1-7.

Exercises 20 «/). p. 407.
2. 0-023 m.
8. 5Jta2. 13na3/6.

Exercises 20 (e). p. 409.
I. sin0 = 0 -  (2tt/3).
3. 1-37 radians.

11. 2-88 m.
13. 1-465,20° 56'.
16. (i) 22-7. (ii) 33-1 m2.

2. 5-33 x 10“5 m3.
5. (i) (72a3)/6. (ii) (1 + 73)a2. 
7. 18-5a3.

2. 5-28 x 10“2 m2.
5. 5-78x 10“5, 3-15x 10“5 m3.

3. (2R -  h) (nh2/3).
8. x = 2/3, 0 = 35° 15'.

3. 0026 m.

2. 12-03 m. 
6. (23a3)/24.

26. 5/6.
z -V

/,m2 -  l2m,"
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8. {k(1 + 6j7)a2.
9. na2(ih -  a)/24; Oh -  a)/(8/i).

12. 27tr2(r + x)/3. 13. 0-1 m.
15. 4:(1 + 75); 119 m. 16.5:4.
17. a(6 + 2j6)/2.
18. (i) 0-24 m. (ii) 0-0905 m2. (iii) 0 000266 m3.

19.
24. 54 44'. 25. 1-21 x 10s km3 (approx.).

Exercises 21 (a). p. 417.
1. (a) l,7i. (6) l,|7r. ( c )  5,0-927. (4) 2, - 5 tt/6.
2. 23/41,2/41.
3. (i) 3 + 4i. (ii) -4 .  (iii) — 1 — i.
4. (i) 16. (ii) 48i/25. 5. 1/^5,0-1798.
6. (i) 1/72, 57t/4. (ii) J2,  37t/4. (iii) y  10, 2-82.
8. (i) -  1,2- ( i i ) i - f .  9.

Exercises 21 (b ). p. 421.
1. 2 2. £.
4. 1-2 + l-6i.
6. A line through A parallel to OB, O being the origin.
8. OB/OA, angle BOA.

Exercises 21 (c). p. 425.
3. ±1, ±i. 6. 1.
8. ±(1 + 0/72, ± 7 2  ± iV2.
9. U d  ± ¡73).

Exercises 21 (d). p. 426.
1.7 + 22/, (5 -  40(3 -  2i), 13 x 41.
3. - 3  + 4/, -11  -  2i; r = 4, s = 30.
4. ± (3 + 2i). 5. x = 2, y = i
6. ±5(1 + 0/2. 7.5,0-6435.
8. 5,6-5,2061,32-5.

10. Centre i  + i, radius \J \7 .

11. (x + |) 2 + y2 = Jf.

15. 2, -1  ± 73.
16. (i) x + y = 2. (ii) (x -  l)2 + (y -  l)2
17. cosec 0,{n -  6.
18 L ~ CR ' ]‘/2

' \CL(L -  CR22)f
19. 272, itt; 275, 0-4637.
22. ±(1-73 + i)> ± (1 -  1 -73i)-

14. a2 + b2, tan

=  2.

Exercises 22 (a), p. 431.
’6" ■ r T6"

1. (a) 0
9

, (b) 2
- 1

, (c) 0
19

6 6' ’ 5 7" '7 6'
2. (a) 0 0 

9 9
, (b) - 2  2 

10 8
, (c) 1

3
- 1

4
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3. AB =

4. AB =

5. AB =

6. A

6 10'  

3 II
10 3' 
5 1

1 5
5 26

BA =
? »]■

AC = p 1(
’}  BC' P 1} A < ,C |-

BC = ' l l
2 ; ] .  c * .

[* ! ? }

AJ = '37
81 . S ] -

■ 8. G  .3 - ’ • B  H

[ .5  S }

-  r io  3 10 141 
'• |_16 4 14 20J  ■

l ° . A B = g  ,5 ] ,  BC =  [2 J ] ,  CA =  [ q ,5 ] ,  A(BC)

1 1 . XiXa +  yiya +  2 i * 2 -

i2- a b = [ 87 3 -  b a = P  3 ’ B° = [4 3 -

Exercises 22 (6). p. 438.

1. A3 =  3A, B3
r l 4 41

0 1 4 , c2 =
.0 0 1. L

20 26-| 
20 29 38 
.26 38 50J

r l  0 2~| 
D3 =  0 1 2 . 

L0 0 1.

f l6  23 30n r 16 23 69-1
2 . ABC = 16 23 30 ABCD = 16 23 69

Ll6 23 30. .16 23 69.

r 1 0 On r l 2a 2 P  + aty-
3 . E3 = 2a 1 0 , F3 = 0 1 2 y

L lb  +  ca 2c 1. .0 0 1 _
f l  a p - 1

EF =  la aa + 1 aft +  y
Li> 2>a + c bfi +  cy +  \.

Exercises 22 (c). p. 445.

1 ■ l i =  [ 7  ?]> u = [ i  - i 3 -

- 2  -5-1
1 1 . 

1.
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5-[  -? ]C ] - [ - 3 ;
r1 1

6 , L 1 -

l-i
-3
2.

Exercises 22 (</). p. 446.

1. diag (Oifla, Ma, CiC2). 2. 51.
4. x =  2/V3, J- =  -  1/V3; x =  -2 /V 3 , J  =  l/l/3 .

r 1 i r 2i
=  - 2  1 8

L—2 - 1  lJ -10.

5. 8.
sin 4a) =  0. 10. a

- 1 o on r l - 3  1-1
5. 2 - 1  0 . 6. 0 1 - 1

- - 7
r - 12

6 - l J  

9 -1_1

.0 0 1-

7. 9
.  - 7

- 7  1 .
6 - l J

8. —(a +  6 +  c)(

9. (i) 0, (ii) ab. 10. 2(a 4- l)(a +  3)3.
11. x ■ 1(—a +  9b — 3c), y  =  1(—2a +  3b — c), z = 1(2a — 136 +  6c). 

4 - 8  3- ■>•![-: -a-
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Acceleration, 154.
Addition of complex numbers, 418.
Addition theorems, for sine and cosine, 

75; for tangent, 77; general proof of, 
262.

Ambiguous case, in solution of triangles, 
106.

Amplitude, of complex number, 415; of 
periodic function, 67.

Angle, between line and plane, 378; 
between two lines, 281, 387; of depres­
sion, 113; of elevation, 113.

Angles, multiple, 78; negative, 59; of 
triangle in terms of sides, 102; small, 89; 
submultiple, 80.

Answers to exercises, 428.
Apollonius, circle of, 353.
Applications, of differential calculus, 152; 

of integral calculus, 212.
Approximate methods of integration, 204; 

Simpson’s rule, 208; trapezoidal rule, 
206.

Approximations, 128; successive, 252.
Arc, length of, 229.
Area, calculation of, 181; further examples, 

212; of quadrilateral, 266; of sector of 
circle, 395; of surfaoe of revolution, 231; 
of trapezium, 395; of triangle, 97; of 
triangle with given vertices, 265.

Argand diagram, 414.
Argument, of complex number, 415.
Arithmetic mean, 37.
Arithmetical progression, 37.
Asymptotes, of hyperbola, 337.
Auxiliary circle, of ellipse, 329.

Binomial theorem, for fractional and 
negative indices, 53; for positive integral 
index, 50.

Bisectors, of angles between given lines, 
287.

Cartesian coordinates, 260; relation with 
polar, 260.

Centre, of ellipse, 325; of gravity, 219; of 
hyperbola, 332; of mass, 219; of simili­
tude, 351.

Centroid of triangle, 356.
Ceva’s theorem, 360; converse of, 360.
Change of variable, integration by, 195, 

199.
Circle, Apollonius, 353; auxiliary, 329; 

director, 328; escribed, 100; general 
equation to, 302; geometrical theorems 
on, 344; inscribed. 98; intersections 
with straight line, 306; tangent to, 305; 
through intersections of given circles, 
313; through three given points, 304;

whose diameter is join of given points, 
303; with given centre and radius, 302.

Circles, orthogonal, 311; radical axis to, 
312.

Circumcentre, of triangle, 355.
Combinations, 45.
Common logarithms, 27.
Complex numbers, 412; addition of, 418; 

argument of, 415; conjugate, 416; geo­
metrical representation of, 414; imagi­
nary part of, 414; manipulation of, 417; 
modulus of, 415; principal value of 
argument of, 415; products and quo­
tients of, 420; real part of, 414.

Compound interest, 41.
Cone, surface and volume of, 402.
Conic section, definition of, 317.
Conical surface, definition of, 368.
Conjugate complex numbers, 416.
Convergence of geometric series, 42.
Coordinates, of point dividing join of two 

points, 263; in three dimensions, 385; 
polar, 260; rectangular, 260; systems of, 
259.

Coplanar lines, definition of, 369.
Cosine, addition theorem for, 76; differen­

tial coefficient of, 126; formula for 
triangle, 95.

Cube roots of unity, 424.
Cuboid, definition of, 367.
Curve sketching, 165.
Cylinder, surface and volume of, 401.
Cylindrical surface, definition of, 368.

De Moivre’s theorem, 422.
Definite integral, 181; evaluated by change 

of variable, 199.
Dependent variable, 120.
Depression, angle of, 113.
Derivative, 125; higher, 148.
Derived function, 125.
Desargues’ theorem, 366.
Determinants, 436.
Diameter, of ellipse, 325.
Differential calculus, some applications 

of, 152.
Differential coefficient, as rate measurer. 

128, 152; of cos x , 126; of cosec x. 137; 
of cot x, 137; of e*, 243; of function of 
function, 137; of implicit functions, 146; 
of inverse functions, 143; of product, 
133; of quotient, 135; of sec x, 137; of 
sin x, 126; of sin-1 x, 144; of sum, 132; 
of tan x, 136; of tan-1 x, 144; of x", 125, 
141.

Differentiation, from first principles, 124; 
logarithmic, 251.

Dihedral angle, definition of, 378.
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Direction cosines, 386.
Director circle, of ellipse, 328.
Directrix of conic section, 317.
Distance, between two points with given 

coordinates, 261; in three dimensions, 
386.

Dynamical applications of differential cal­
culus, 153; of integral calculus, 174.

Eccentric angle, 328.
Eccentricity of conic section, 317.
Elevation, angle of, 113.
Ellipse, auxiliary circle of, 329; centre of, 

325; definition of, 317; director circle 
of, 328; equation to, 324; foci of, 326; 
intersections with straight line, 327; 
latus-rectum of, 325; major and minor 
axes of, 325; normal to, 327; para­
metric equations to, 328; tangent to, 
326; vertices of, 325.

Empirical formulae, 293.
Equation a cos 6 + b sin 8 = c, 83.
Equation to locus, 267.
Equations, in which unknown occurs as 

index, 28; miscellaneous, 16; simul­
taneous, 17.

Equations, quadratic, 13; roots of, 13; 
theory of, 13.

Equations, trigonometrical, solution of, 69.
Escribed circle, radius of, 100.
Euler line, of triangle, 357.
Ex-centre, of triangle, 355.
Explicit functions, 120.
Exponential function, 241; differentiation 

and integration of, 243; series for, 254.

Factor formulae, 81.
Figures of revolution, volumes of, 184.
Focus, of conic section, 317.
Fractional indices, 23.
Fractions, partial, 32.
Frustum, of cone and pyramid, definition 

of, 368; spherical, volume of, 405.
Function of function, differential coeffi­

cient of, 137.
Functional notation, 120.
Functions, derived, 125; explicit, 120; 

implicit, 120; many-valued, 121; single­
valued, 121.

Generator, of cone, 368; of cylinder, 3.68.
Geometrical applications of integral cal­

culus, 174.
Geometrical mean, 39.
Geometrical progression, 39; convergence 

of, 42.
Geometrical representation of complex 

numbers, 414.
Geometry of circle, 302.
Gradient of curve, 121.
Graphs of trigonometrical ratios, for acute

angles, 63; for the general angle, 66.
Gravity, centre of, 219.
Gyration, radius of, 225.

Heights and distances, 113.
Higher derivatives, 148.
Hyperbola, asymptotes of, 337; centre of, 

332; definition of, 317; director circle 
of, 334; equation to, 331; foci of, 333; 
intersections with straight line, 334; 
latus-rectum of, 332; normal to, 333; 
parametric equations to, 335; rect­
angular, 338; tangent to, 333; transverse 
axis of, 332; vertices of, 332.

Imaginary part of complex number, 414.
Implicit function, definition of, 120; dif­

ferentiation of, 146.
In-centre of triangle, 355.
Increment notation, 123.
Indefinite integral, 170.
Independent variable, 120.
Indices, fractional, zero and negative, 23; 

fundamental laws of, 23.
Induction, method of, 51.
Inertia, moment of, 225.
Inflexion, points of, 163.
Inscribed circle, radius of, 98.
Integral, as a sum, 178; definite, 179; 

indefinite, 170.
Integral calculus, some applications of, 

212.

Integrand, definition of, 172.
Integration, approximate methods of, 204; 

by change of variable, 195; by parts, 
201; of e*, 243; of products of sines and 
cosines, 193; of rational algebraical 
functions, 247; some methods of, 189.

Interest, simple and compound, 41.
Intersections of curves with given equa­

tions, 270.
Inverse functions, differentiation of, 143.
Inverse notation, 85.

Joachimsthal’s section formulae, 263.

Latus-rectum, of ellipse, 325; of hyper­
bola, 332; of parabola, 318.

Length of arc, 229; of sector of circle, 395.
Length of tangent to circle from given 

point, 309.
Limit of sum of series, 42.
Line of greatest slope, 378.
Linear laws, 293.
Locus, equation to, 267.
Logarithmic function, 239; differentiation 

of, 240; series for, 254.
Logarithms, common, 27; theory of, 26.

Maclaurin’s series, 252.
Major axis, of ellipse, 325.
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Manipulation of complex numbers, 417,
Many-valued functions, 121.
Mass, centre of, 219.
Matrices, 428; decomposition of, 439; 

determinant associated with, 436; gen­
eral definitions of, 433; inverse of, 437; 
inverse of unit diagonal, 440; particular, 
435; product of, 430, 432, 433; use in 
reducing a system of equations, 441; 
use in solution of simultaneous equa­
tions, 437

Maximum and minimum, 155.
Mean, arithmetic, 37; geometric, 39.
Mean values, 217.
Medians, of triangle, 356.
Menelaus’ theorem, 361; converse of, 362.
Mensuration formulae, summary of, 408.
Methods of integration, 189.
Minor axis, of ellipse, 325.
Miscellaneous equations, 16.
Modulus of complex number, 415.
Moments of inertia, 225.
Multiple angles, 78.

Natural numbers, series involving, 43.
Negative angles, 59.
Negative indices, 23.
Nine-point circle, 356.
Normal, definition of, 319; to ellipse, 327; 

to hyperbola, 333; to parabola, 319; to 
plane, 372,

Numerical integration, 204.

Ordered pair of real numbers, 412.
Orthocentre, of triangle, 355.
Orthogonal circles, 311.
Orthogonal projection, 376.

Pair of straight lines, equation to, 290.
Parabola, definition of, 317; equation to, 

317; important property of, 322; inter­
sections with line, 319; latus-rectum of, 
318; normal to, 319; parametric equa­
tions to, 321; tangent to, 318; vertex of. 
318.

Parallelepiped, definition of, 367.
Parallelism of lines, condition for, 284.
Parametric equations, to ellipse, 328; to 

hyperbola, 335; to parabola, 321.
Partial fractions, 32; use in integration, 

248.
Parts, integration by. 201.
Pascal’s arithmetical triangle, 51.
Pedal line, of triangle, 357.
Pedal triangle, 355.
Periodic function, 67; amplitude of, 67. I
Permutations, 45.
Perpendicular distance of point from line. 

286.

Perpendicularity of lines, condition for, 
284.

Plane, definition of, 367; equation to, 389.
Playfair’s axiom, 369. .
Points of inflexion, 163.
Polar coordinates, 260; relation with 

Cartesian coordinates, 260.
Polyhedron, definition of, 367.
Principal value, of argument of complex 

number, 415; of inverse function, 85.
Prism, definition of, 367; volume of, 395, 

397.
Probability, 48.
Product, differential coefficient of, 133; 

of complex numbers, 420.
Progressions, arithmetical, 37; geometri­

cal, 39.
Proportion, theorems on, 347.
Ptolemy’s theorem, 353.
Pyramid, definition of, 367; volume of, 

397.

Quadratic equation, roots of, 13; sum and 
products of roots of, 14; theory of, 13.

Quadrilateral, area of, 266; ratio and 
rectangle properties of, 352.

Quotient, differential coefficient of, 135; 
of complex numbers, 420.

Radical axis, 312.
Radius of gyration, 225.
Ratio and rectangle properties of triangle 

and quadrilateral, 352.
Ratios, trignometrical, 58; graphs of, 63, 

66; of some related angles, 61.
Real part of complex number, 414.
Rectangular hyperbola. 338.
Reduction of a system of equations, 441 ; 

alternative method of, 443.
Regular polyhedron, definition of, 367.
Relations between sides and angles of 

triangle, 94.
Remainder theorem, 29.
Right circular cone, definition of, 402.
Right circular cylinder, definition of, 401.
Roots of quadratic equation, 13; sum and 

product of, 14.

Sector of circle, area of, 395; length of 
arc, 395.

Sector of sphere, volume of, 405.
Series, 37; for ex, 254; for log,(l + x),

1 254; involving natural numbers, 43;
Maclaurin’s, 252.

Shortest distance between skew lines, 374.
Similar rectilinear figures, theorems on, 

350.
Similar triangles, theorems on, 347.
Similitude, centre of, 351.
Simple interest, 41.
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Simpson’s rule for approximate integra­
tion, 208.

Simson line, of triangle, 357.
Simultaneous equations, 17.
Sine, addition theorem for, 75; differential 

coefficient of, 126; formula for triangle, 
94.

Single-valued functions, 121.
Skew lines, angle between, 369; definition 

of, 369; shortest distance between, 374.
Slope, of line, 121.
Small angles, 89.
Solution of triangles, 105.
Sphere, geometrical properties of, 381; 

mensuration of, 404.
Square root of (a + Jb), 18.
Standard forms, differential coefficients, 

147; integrals, 171; generalisation of list 
of integrals, 189.

Straight line, in terms of intercepts on 
axes, 277; in terms of length and slope 
of perpendicular from origin, 278; in 
terms of slope and coordinates of point 
on line, 276; in terms of slope and 
intercept on y-axis, 275; in three dimen­
sions, 390; intersections with circle, 
306; with ellipse, 327; with hyperbola, 
334; with parabola, 319; parallel to an 
axis, 274; passing through intersections 
of two given lines, 289; passing through 
two given points, 277; special forms of 
equation, 275.

Submultiple angles, 80.
Substitution, integration by, 195.
Successive approximations, 252.
Summary, of formulae for triangle, 104; 

of mensuration formulae, 408.
Surface, of cone, 403; of cylinder, 401; of 

spherical frustrum, 406.
Surface of revolution, area of, 231.

Tangent, addition theorem for, 77; for­
mula for triangle, 103.

Tangent, to circle, 305; to curve, 123; to 
ellipse, 326; to hyperbola, 333; to 
parabola, 318. '

Tetrahedron, definition of, 367; volume 
of, 398.

Transverse axis, of hyperbola, 332.
Trapezium, area of, 395.
Trapezoidal rule, 206.
Triangle, ■ numerical solution of, 105; 

radii of escribed circles of, 100; radius 
of inscribed circle of, 98; relations 
between sides and angles, 94.

Trigonometrical equations, solution of, 
69.

Trigonometrical ratios, for general angle, 
59; graphs of, 63, 66; of some related 
angles, 61.

Truncated prism, pyramid, etc., definition 
of, 368.

Turning points, 155.

Undetermined coefficients, principle of, 
30.

Unity, cube roots of, 424.

Variable, dependent, 120; independent,
120.

Velocity, 153.
Vertex, of ellipse, 325; of hyperbola, 332; 

of parabola, 318.
Volume, of cone, 402; of cylinder, 401; of 

figures of revolution, 184; of frustum 
of sphere, 405; of oblique prism, 397; 
of prism, 395; of pyramid, 397; of 
tetrahedron, 398.

Zero indices, 23.
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