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GENERAL EDITOR’S FOREWORD

The present volume is one of a series on physics and mathematics, for
the upper forms at school and the first year at the university. The
books have been written by a team of experienced teachers at the
Royal Military College of Science, and the series therefore forms an
integrated course of study.

'In preparing their manuscripts the writers have been mainly guided
by the examination syllabuses of London University, the Joint Board
of Oxford and Cambridge and the Joint Matriculation Board, but
they have also taken a broad view of their tasks and have endeavoured
to produce works which aim to give a student that solid foundation
without which it is impossible to proceed to higher studies. The books
are suitable either for class teaching or self study; there are many
illustrative examples and large collections of problems for solution
taken. in the main, from recent examination papers.

It is a truism too often forgotten in teaching that knowledge is
acquired by a student only when his interest is aroused and maintained.
The student must not only be shown how a class of problems in mathe-
matics is solved but, within limits, why a particular method works
and in physics, why a technique is especially well adapted for some
particular measurement. Throughout the series special emphasis has
been laid on illustrations which may be expected to appeal to the
experience of the student in matters of daily life, so that his studies
are related to what he sees, feels and knows of the world around him.
Treated in this way, science ceases to be an arid abstraction and becomes
vivid and real to the inquiring mind.

The books have theretore been written, not only to ensure the
passing of examinations, but as a preparation for the exciting world
which lies ahead of the reader. They incorporate many of the sug-
gestions which have been made in recent years by other teachers and,
it is hoped. will bring some new points of view into the classroom and
the study. Last, but by no means least, they have been written by a
team working together, so that the exchange of ideas has been constant
and vigorous. It is 10 be hoped that the result is a series which is
adequate for all examinations at this level and yet broad enough to
satisfy the intellectual needs of teachers and students alike.

0. G. SutTOoN






PREFACE TO THE FOURTH EDITION

The chief alteration to this edition is the introduction of a short account
of matrices (Chapter 22) following that on complex numbers. The use of
matrices in scientific work has grown rapidly in recent years and some
knowledge of the subject is likely to be required in Advanced Level
work in the future

CJ.T.

PREFACE TO THE THIRD EDITION

In preparing this edition, the opportunity has been taken to amend
the text so that the units used are those of the Systéme International
d’Unités (S1). This system, in which the basic units of length, mass
and time are the metre, kilogramme and second, has many advantages;
its use by schools, universities and industry is being actively encouraged
and it'is, in the words of the Royal Society Conference of Editors on
Metrication in Scientific Journals, “‘destined to become the universal
currency of science and commerce’’.
CJT.

PREFACE TO THE SECOND EDITION

Some extra material has been included in this edition to take account
of recent (and forthcoming) changes in the requirements of the major
examination boards. In particular, 1 have inserted sections on the
determination of linear laws from experimental data and on elementary
three-dimensional coordinate geometry and | have added a chapter on
complex numbers. I have also taken the opportunity of making a
number of minor alterations where these have been required.
CJT.



PREFACE

The needs of those taking Pure Mathematics at Advanced Level in
the recently introduced General Certificates of Education have set the
standard for this book. The contents should also prove suitable for
candidates preparing themselves for the Intermediate Examination of
London University, the Qualifying Examination for the Mechanical
Science Tripos at the University of Cambridge and fot several of the
examinations set by the Civil Service Commission.

The starting point is the Ordinary Level for the General Certificates
and I have included in a single volume the appropriate parts of Algebra,
Trigonometry, Calculus and Geometry. With so wide a field of study,
the order in which the subjects appear is not necessarily the order in
which they should be read. I believe that an early start should be
made with the Calculus and the chapters on this subject may well be
studied concurrently with those on Algebra and Trigonometry. I have
included a large number of worked examples and graded the exercises
in a way which will, I hope, make the book equally suitable for class
or private study.

In preparing this book, I have made great use of the reports of the
Teaching Committees of the Mathematical Association. In particular,
I have found their recent reports on the Teaching of Trigonometry and
Calculus quite invaluable and I wish to acknowledge my debt to them.
Only very occasionally have I differed from their recommendations
and here, of course, I bear full responsibility.

Among nearly 1600 examples and exercises, [ have includgd a large
number taken from recent papers set by the various examining bodies.
My thanks are due to the Senate of the University of London, the
Oxford and Cambridge Schools Examination Board, the Joint Matricu-
lation Board of the Universities of Manchester, Liverpool, Leeds,
Sheffield and Birmingham and the Syndics of the Cambridge University
Press for permission to use their questions. My thanks are also due to
many friends and colleagues who read the manuscript and offered
constructive criticism. I am particularly grateful to Dr. E. T. Davies,
Professor of Mathematics, University of Southampton, Dr. D. R.
Dickinson, Senior Mathematics Master, Bristol Grammar School, Mr.
F. L. Heywood, Senior Mathematics Master, Manchester Grammar
School and Mr. H. K. Prout, Head of the Department of Mathematics,
Royal Naval College, Dartmouth, all of whom made most useful
suggestions when the book was in its first draft.

C. J. TRANTER

Roval Military College of Science,

Shrivenham.
viii
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CHAPTER |

THE THEORY OF QUADRATIC EQUATIONS.
MISCELLANEOUS EQUATIONS

1.1. The roots of a quadratic equation
The general quadratic equation can be written
ax? + bx + ¢ = 0, (1.1)
where a, b and ¢ are numerical coefficients and x is the quantity to
be found. Dividing by a and transposing the term not containing x
to the right hand side
x? + by _¢
a

2
The left hand side can be made into the perfect square (x + Zb—a)

by adding a term b?/(4a?). If therefore such a term is added to each
side

<x+£)2—£_£
2a/  4a®> a

_b* - 4ac
= Ta
Taking the square root of each side
b (b* — 4ac)
x + %= + 2a .

giving the two roots
— 2 -—
‘= b+ b 4ac).
2a

(12)

If b2 > dac the two roots are real and different, if b?> = 4ac the
roots are real and both equal to —b/(2a). If b> < 4ac the expression
under the square root sign is negative and, since there is no real
quantity whose square is negative, the roots are in this case said to
be imaginary.

The formula (1.2) is quite general and can always be used to obtain
the roots of a quadratic equation. If, however, factors of the left hand
side of the equation ax? + bx + ¢ = 0 can be found, the roots are
more easily obtained by setting each of the factors in turn equal to
zero and solving the resulting simple equations. This process is
illustrated in the first example below.

13
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Example 1. Solve the equations (a) 2x% + 5x — 12 = 0, (b) x2 + 11 = 7x.

The left hand side of equation (a) has factors (2x — 3)(x + 4) so that the
equation can be written .

(2x — 3)(x + 4) = 0.

Hence either 2x — 3 =0 giving x=3/2, or x + 4 =0 giving x = —4.
For equation (b}, a = 1, b = —7, ¢ = 11 and formula (1.2) gives

T+ J{T2— 4N} T+JS T+2236
X = = = y
2 2 2

giving x = 4-618 or 2-382.

Example 2. Find the value of k so that the equation 4x* — 8x + k = O shall have
equal roots.

Here a = 4, b = ~8, ¢ = k. The condition for equal roots (b> = 4ac) gives
(—8)% = 4(4)k) or 16k = 64, givingk = 4.
Example 3. Prove that the roots of the equation

P-q-nNl+px+q+r=0
arereal if p, q and r are real.
The condition for real roots (b2 > 4ac) is here that

Pz4p—q-ng+)

ie, that pl—4plg+nN+4g+1rP =0,
or {p—2q+nr}* =0

This is always true for the left hand side is the square of a real quantity and
therefore cannot be negative.

Example 4. If x is real, show that the expression y = (x> + x + 1)/(x + 1) can
have no real value between —3 and 1. (L.U)

Rearranging as a quadratic in x,

x+ly=x*+x+1

giving xXX+(l-yx+1-y=0.
For x to be real (1-y*=241-y),
or, d-y-3-y=z0

Changing the signs, for x to be real
G-Dy+3)=0

If y lies between —3and 1,y + 3 > 0,andy ~ 1 < Ogiving(y — )(y + 3) <0

and the above inequality is not satisfied. Hence there is no real value between

—3and 1.
1.2. The sum and product of the roots of a quadratic equation

The general quadratic equation
ax> + bx+c¢c=0 (1.1)

can be written as

x? +éx+£=0. (1.3)
a a
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If its roots are a and f, the left hand side of the equation can be written
as the product of two factors (x — a)(x — f) and thus the equation
can be written .

(x—a)x—p =0,
or, xt —(a + B)x + aff = 0. (1.4)
Since equations (1.3) and (1.4) are identical

b coefficient of x in equation (1.1)
a + ﬂ = - = - < 7 . n s
a coefficient of x* in equation (1.1) (1.5)
aff = ¢ _ coefficient independent of x in equation (1.1)
Ta coefficient of x* in equation (1.1)

The formulae (1.5) enable the values of the sum and product of the
roots to be written down in terms of the coefficients in the given
equation.

Example 5. Find the relation between a, b and c if one root of the equation
ax? + bx + ¢ = O is three times the other.

Let the roots be a and 3a. Then formulae (1.5) give
40 = —b/a and 3a® = c/a.
Substituting a = —b/(4a) from the first of these relations in the second

(&) =

3I{l-—) =-,
4a a

giving 3b% = 16ac as the required relation.

Example 6. If a, B are the roots of the equation x* — px + q = 0, form the equation
whose roots are a/f? and f/a’.

From (1.5), a+pf=p af=q (1.6)
, , a B E+p
The sum of the roots of the required equation = — + — = ———.
B« a’p?
Now,
C+ =@+ P’ ~af+p)=(+hia+h -3
= p(p? — 3q), using (1.6).
2
-3q) .

Hence the sum of the roots of the required equation = -E(B—qTi), since
a?f? = q* from the second of (1.6).

1
The product of the roots of the required equation = ,% »gz— = Py = p

From (1.5), when the coefficient of x? is unity,

the coefficient of x = — the sum of the roots,
the coefficient independent of x = the product of the roots.



16 PURE MATHEMATICS (1

Hence the required equation is
2
-3
oo P39

or, a*x* - p(p® — 3g)x + q= 0. ‘

EXERCISES 1 (a)

1. Solve the equations, (i) 8x* — 2x — 3 = 0, (i} 5x% + 10 = 17x.
2. Show that the equation kx(1 — x) = 1 has no real roots if 0 < k < 4. (L.U\}
3. Find the range of values of x for which
2
0< (—";:_1—2) < %. (L.U)
4. Find the relation between p, g and r if one root of the equation px? + gx +°
r = 0 is double the other.
5. If o, B are the roots of the quadratic equation ax? + bx + ¢ = 0, obtain
the equation whose roots are 1/a® and 1/8°.
If, in the above equation af? = 1, prove that a® + ¢ + abc = 0. (L.U))
6. In the equation ax? + bx + ¢ = 0, one root is the square of the other.

Without solving the equation, prove that c(a — b)* = a(c — b)>. (L.U)

1.3. Miscellaneous equations involving one unknown

The solution of certain types of equation can sometimes be made
to depend on that of the ordinary quadratic equation. Some of the
artifices employed in such solutions are illustrated in the examples
which follow.

Example 7. Solve the equation \/(3 — x) — J(T + x) = /(16 + 2x). (L.U)
When, as here, one side of an equation contains a single term involving a
square root, this can be removed by squaring both sides. If the terms in the
resuiting equation be transposed so that any radical term remaining is again
by itself, this can be removed by squaring again.

Applying this process to the equation given here, squaring both sides gives
3—x-2J{3~x)T+x)}+7+ x=16 + 2x,
which, on rearrangement and division by 2, gives
34+ x=—J{3 — x)NT + x)}.
Squaring again we have
B+ x=06-x7+x),

leading to the ordinary quadratic equation

2x% + 10x — 12 =0.
After division by 2, this can be written

(x + 6)(x — 1) =0,
with roots x = 6 and x = 1.
Only one of these roots (x = — 6) satisfies the given equation. The other
value (x = 1) does not satisfy the equation for solution but satisfies

JO =)+ J(T + x) = /(16 + 2x),



1] SIMULTANEOUS EQUATIONS 17

in which the radical terms on the left are separated by a plus instead of a
minus sign. If the same process is applied to this equation it will be found
to lead to the same quadratic 2x2 + 10x — 12 = 0 as before. Hence, in
solving equations of this type it is essential to check the values found in the
actual equation given. In the case of the equation given here the required
solution is x = —6.

Example 8. Solve the equation x* + 3x — 2 = 8/(x? + 3x).
Write y = x? + 3x and we obtain
y—2=28/y,
or, y? -2y -8=0.
This gives (y — 4)(y + 2) = 0,50 that y =4 or —2.

Since y = x2 + 3x, y = 4 gives the quadratic x2 + 3x — 4 =0, or (x + 4)
(x—1)=0 with roots x=1, —4. The other value (y= —2) gives x? +3x+2=0
or (x + 2)(x + 1) = 0 with roots x = — 1, —2. Hence the roots of the original
equation are —1, —2, —4 and 1.

1.4. Simultaneous equations

It is assumed that the student is familiar with the solution of pairs
of equations such as 3x + 4y = 7,2x — y = 1, in which both equations
are of the first degree. Here we shall consider pairs of equations in
which at least one is of a higher degree than the first and where the
solution can be made to depend on that of a quadratic equation. Few
fixed rules can be laid down but some of the methods available are
illustrated in-the examples below.

Example 9. Solve the pair of equations xy = 10, 3x + 2y = 16.

When one of the equations is of the first degree, either unknown is easily
expressed in terms of the other. Substitution in the second equation then
results in a single equation in one unknown.

. . . 3
For the pair given here, the second equation gives y = 8 — ix.

Substituting in the first equation

x<8 - %x) =10,

which, after multiplication by 2 and slight rearrangement, can be written
3x2 — 16x + 20 =0,
or, (3x — 10)(x — 2) = 0.
1 . 3 . .
Thus x = T and since y = 8 — 7% the corresponding value of y is 3; or
x=2andy=>35
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Example 10. Solve the pair of equations x* + 4xy + y* = 13, 2x* + 3xy = 8.

When the two equations are of the same degree in x and y and when the
separate terms involving the unknowns are all of this degree, the solution can be
obtained by writing y = mx and proceeding as follows.

With y = mx, the two equations become

x}(1 +4m + m?*) =13 and x}2 + 3m) = 8. (1.7
By division,
1+4m+m* 13
2+ 3m 8’
_Cross multiplying we have 8(1 + 4m + m?) = 13(2 + 3m), giving the quadratic
inm,
8m?> — Tm — 18 = 0,
This can be written m-28m+9) =0,
so that m=2 or -9/8.

The value of x can now be obtained by substitution in one of equations
(1.7). Choosing the second of (1.7) here as it is rather simpler than the first,
m = 2 gives

{2+ (X2} =8,
or, x =1 so that x = +1. Since y = mx and m = 2, the corresponding
values of y are +2.
The second value — 9/8 for m gives similarly

xz{Z + (3) (— g)}= 8,

leading to a negative value for x*. There are thus no real solutions correspond-
ing to this value of m.

EXERCISES 1 (b)
1. Find ¢ from the equation t — 1-324,/t — 2896 = 0.

2. Solve \/(x + 6) — J(x + 3) = /(2x + 5). (L.U)
12
. 2 12
3. Solve the equation x* + 2x + 1o
Solve the simultaneous equations, 2x — y = 5, x2 + xy = 2. (L.U)

5. Solve the equations x2 + y% = 5, xy = 2.
Solve the simultaneous equations,
x+2 200-4
y—4 x+2
x —y=3.

+3=0,

1.5, The square root of (a + ./b)
Simultaneous equations of a type considered in the last section
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appear in the calculation of the square root of the quantity a + /b
in which a is a rational and /b an irrational quantity. Before proceeding
to this calculation we consider two important results in‘connection
with such quantities.

Firstly, the square root of a rational quantity cannot be partly rational
and partly irrational.

To prove this, let ¢ be a rational quantity and suppose it is possible

that
Je=p+ g
p being rational and /g irrational. Squaring
c=p’+q+2p/q
2
. _¢c—=p —q.
leading to Ja= —
this requires that an irrational quantity should be equal to a rational
one, and is impossible.
Secondly, if p + \/qg = a + /b, where p and a are both rational
and \/q, /b are both irrational, then p = a and q = b.
If p is not equal to a, let p = a + a. Then
at+a+./g=a+./b,
giving Jb=a+ /q
This, by our first result, is impossible, so. that p = a. It then follows
immediately that g = b.
To calculate the square root of a + /b we suppose that
Jia+ b)) = £(/x + \/y)
Squaring both sides,
a+b=x+2/(xy) + y.
Using the second of the above results, we have
x+y=a,
2\/(xy) = |/b.
The second of these can be written 4xy = b and we have therefore
only to solve the simultaneous equations
x+y=a,
4xy = b
in order to find x, y and hence \/x and \/y.

Example 11. Find the square root of 14 + 6,/5. (L.U)
Let JU4 + 6J5) = £(Jx + 9.
Squaring, 14 + 6/5 = x + 2,/(xy) + .

Hence x+y=14, 2/(xy) = 6/5.
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The second equation gives \/(xy) = 3,/5 or xy = 45. From the first equation
we have y = 14 — x and substitution in xy = 45 gives the quadratic equation
x(14 — x) = 45. R
This can be written
x? — 14x + 45 =0,
or, (x—-9x -5 =0

Hence x = 9 or 5, and, from x + y = 14, the corresponding values of y are
S and 9. The required square root is therefore +(/9 + ./5) or +(3 + {/5).
It makes no difference to the final result whether we take the solution x = 9,
y = 5, or the alternativeone x = 5,y = 9.

Note. In finding the square root of a — /b the original assumption
is modified to \/(a — \/b) = £ (/x — {/y).

EXERCISES 1 (c)

Find the square root of 5 + 2,/6.

2. Express the square root of 18 — 12,/2 in the form /x — \/y where x and y
are rational. (L.U)

3. Find the square root ofa + b + /(2ab + b?).
4. Find rational numbers a and b such that ‘
34 J2=(a+by2)(6 - J2)~ (0.C)

EXERCISES 1 (d)
1. Show that for all real values of y, the expression
3y -2y =1t
V+y+2
always lies between —4/7 and 4.
2. Find the range of values of x for which
x(x — 2)

<76 > 2. (LU)

3. Find the values of A for which the equation
10x? +4x + 1 = 2Ax(2 — x)

has equal roots. (L.U)
4. Find, in its simplest rational form, the equation whose roots are
JINT £ 9 (L.U)

5. Show that the roots of the equation 2bx? + 2(a + b)x + 3a = 2b are real
when a and b are real.

If one root of this equation is double the other, prove that either a = 2b

or4a = 11b. (L.U)
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EXERCISES 21

If the roots of the equation x2 + bx + ¢ = 0 are a, # and the roots of the
equation x? + Abx + A%c = 0 are y, & show that the equation whose roots
areay + fd and ad + By is

x2 — Ab%x + 2A%c(b®* — 2¢) = 0.
Show that the roots of this equation are always real. (L.U)

The roots of the quadratic equation x> — px + q = Qarea and 8. Determine
the equation having the roots a®> + f~% and B? + a~2, expressing the
coefficients in terms of p and g. Prove further that if p and q are both real,
then this equation can have equal roots only if p = O or p> = 4gq.  (L.U)

Prove that the roots of the equation
k+3x*+6-2kx+k—-1=0

are real if, and only if, k is not greater than 3/2. Find the values of k if one

-

root is six times the other. (L.U)
If the equation a’x? + 6abx + ac + 8 = 0 has equal roots, prove that
the roots of the equation ac(x + 1)* = 4b%x are also equal. (L.U)

For what values of 1 has the equation x? — 3x + 2 = A(2x — 5) two equal
roots?

The roots of the equation x?> + ax + b = 0 are a, f. Find the equation
whoserootsare pa + qf,pB + qa. Iftheoriginalequationisx? — 4x — 5= 0
find the values of p/g in order that the new equation shall have one zero
root. '

Form the equation whose roots are the cubes of the roots of the equation
x? — 3x + 4 = 0, without solving the equation, giving the numerical values

of the coefficients of the new equation. (L.U)
Show that if the equations x? + bx + ¢ =0, x> + px + ¢ = 0 have a
common root, then (¢ — q)* = (b ~ p)(cp — bq). (L.U)

Solve the equation (3x? + 2x)? + 8 = 9(3x? + 2x).
Solve the equation /(x — 5) + 2 = \/(x + 7).

Solve the equation /(3x + 4) — /(x — 3) = 3. (L.U)
Solve the simultaneous equations,
x2 1 1 X
—_— — ———— = _— = - L.U-
2 yx1i b gEntaT? LU

Solve the simultaneous equations, x + y = 6, x2y* + 2xy — 35 = 0.

(L.U.)
Solve the simultaneous equations,
£+X=E xt + 2y =09.
y x 2
Solve the simultaneous equations,
X + 2 -1, x+y=2a (L.U)

y+a x+a
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Find u and v from the equations,
! + 2 =8, wov? =1 ‘
u+v u-—v 6
If
2 2
x__+_y_.=9’ 1+.l_=_3.’
y x x y 4
find the values of the product xy and hence solve the given equations
completely. (L.U)

If a, b, ¢, d are rational numbers and if neither b nor d is a perfect square,
prove that the product (a + /b){c + ,/d) can be a rational number only if

c d
2= ﬁ (L.U)

Express
1+./3
W3-
in the form a + b./c, where a, b, c are rational. L.U)

By putting z = x + x™!, solve the equation
2* - 9x3 4+ 14x? ~9x + 2 =0. (L.U)



CHAPTER 2

INDICES AND LOGARITHMS. THE REMAINDER
THEOREM. THE PRINCIPLE OF UNDETERMINED
COEFFICIENTS. PARTIAL FRACTIONS

2.1. The fundamental laws for positive integral indices

When a quantity a is multiplied by itself any number of times the
product is called a power of a. Thus a x a is the second power of a
and is written a®. The number expressing the power is called the index.
Thus the index of a? is the number 2. Generalising, we have the defini-
tion that if m is a positive integer, a™ denotes the product of m factors
each equal to a. We give below three fundamental laws for the com-
bination of indices. In all cases the indices m and n are assumed to be
positive integers, and in (i) we assume that m > n.

(i) a" xa"=a""". 2.1

By definition, ™ = ag.a.a... to m factors and ¢" =a.a.a... ton
factors. Hence a™ x a" = a.a.a... to (m + n) factors, =a™*", by
definition.

(1) a="+a" =a" " 2.2)

From the definitions of a™ and a",

_a" _a.a.a...tomfactors
" & a.a.a...to n factors
= a.a.a...to (m — n) factors = a™ ™ ".
(i) (@) = a™ (2.3)
@™y = a".a".a™... to n factors
= (a.a.a...to mfactors)(a.a.a... to m factors)...
the bracketed terms being repeated n times, so that

(@) =a.a.a...to mnfactors = a™.

a’ +a

2.2. Fractional, zero and negative indices

It is convenient to have available fractional, zero and negative
indices and for one set of laws to apply in all cases. However, the
definition of g™ as the product of m factors each equal to a is clearly
meaningless except when m is a positive integer. We introduce
fractional and negative indices by determining their meaning when
the first fundamental law a™ x a" = @™*" is true. It is then possible
to show that with the interpretations arrived at on this basis the other
two laws of § 2.1 remain valid.

23
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The interpretation of a*', p and q being positive integers
Since the first rule of § 2.1 is to be true, a?’? x a?? = g??/4, Similarly
aP? x aPf x qPlf = a?Pl% x gPl1 = 3714 and so on. Hence *
a®’% x a?% x aP'1 . to qfactors = q®/7 = gP.
This implies that (a”/%)? = a”, and taking the gth root
ablt = q\/ap, (24
i.e., that ¢™ is the gth root of a”.

The interpretation of a°

Since a™ x a" = a™*" is to be true for all values of m and n we can
take m = 0 and hence

a® x a* = a",
giving a®=aa" =1, (2.5
ie, any quantity with zero index is equivalent to unity.

The interpretation of a™"

The rule @™ x a" = a™*" is to hold for all m, n and we can therefore
take m = —n. The rule then gives

-n —n+n 0 1
bl

a"xa =a =qg" = |

giving, a "= 1/a", (2.6)
showing that a™" is the reciprocal of a”.

With these interpretations it remains to show that the two laws
a™ - a" = a" " " and (@™)" = a™ remain true for all values of m and n.
To prove the first we have

m n m

X —

n

a"-a"=4d
= a™ x a7 ", since a” " means 1/a",
= g™~ ", by the fundamental law.

To show that (a™)" = a™ for all m and n we take the value of m
to be unrestricted and consider in turn the cases in which n is a positive
integer, a positive fraction and any negative quantity. For any m and
positive integral n,

(a™y

at.a™.a™ . ..to nfactors

m+m+m+ to nterns mn

= qQ =a
For any m and n = p/g where p, g are positive integers,
(@™)" = (a™P"a. Now the gth power of (@™)"? is {(a™P"?}? or (a™)”. This
is a™?. Hence we have, on taking the gth root
(a"l)p/q — 9 \/amp = y"P
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Finally, for unrestricted m and n any negative quantity, we replace
nby — A Then
- —_— = -mai — pmn

@y - a* a a

Hence, with the interpretation of fractional, zero and negative
indices given in equations (2.4), (2.5) and (2.6) the three fundamental
laws for combination of indices given in (2.1), (2.2) and (2.3) remain
valid.

@y = @)= = .

Example 1. Express with positive indices, (i) __;; (i) \/(‘vz and evaluate
... {81)3* J
(iii) (ﬁ)
) 2b~3x? _ 2x2c“. m Y79 _ yl” _ 1t .
Te Ay T Tby? (R FE POEESTES

81\, (81)3_ 3)3_21
o ()" - -7

Example 2. Show that (xy)" = x"y" for all values of n.

If n is a positive integer, (xy)" = xy.xy.xy... to n factors. This can be written
as the product

(x.x.x...tonfactors) x (y.y.y... to n factors)
which is x"y".

If n is a positive fraction, say p/q where p and q are positive integers, the gth
power of (xy)*/%

= {(xy)P?}® = (xy)? = xPy? = (xPOyPIO).
Taking the gth root, (xy)?'? = xP/yP,
If n is any negative quantity, say — 4.
1

(e = ()™t = o xThyTh= Xy

EXERCISES 2 (q)
1. Express with positive integers (i) b™3x 72 =+ 4x, (ii) *\/y* x /y"/%
-173
2. Evaluate (i) (64)~ %2, (ii) (%)

3. Simplify (x*yz™%)? x J(x " °yz) + (xz)7%. (L.U)
— 2
4. Prove that(a — a™ ')(@*? + a~23) = fl— - ,73 (L.UY
3/2
5. Evaluate” + \} VX .
P My Py

n+ 1 -1
6. Simplify - 32 ,,,,,), '74(7; ——)
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2.3. The theory of logarithms

The logarithm of a positive quantity N to a given base a is defined
as the index of the power to which the base a must be raised’ to make
it equal the given quantity N. Thus

a* =N, 2.7
when x is the logarithm of N to the base a.
x is written x = log, N (2.8)

and the two formulae (2.7), (2.8) are equivalent statements expressing
the relationship between x, a and N.

If we substitute for x from (2.8) in (2.7) we have
a*" =N, 2.9)
a result which is often useful.

If we set x = 0 in (2.7) we have N = a°® = 1. The equivalent formula
(2.8) gives in this case

log,1 =0, (2.10)

so that the logarithm of unity is zero. f weput x =1in Q7) N =a
and formula (2.8) then gives

log,a =1, ‘ (2.11)
or, the logarithm of the base itself is unity.

To find the logarithm of the product of two positive numbers M
and N, we have, using (2.9),

MN _ alogu v . alug“ N _ alog,, M+log, N
Hence, by the definition of a logarithm,
log, MN = log, M + log, N, (2.12)

showing that the logarithm of a product of two positive numbers is the
sum of the logarithms of the separate numbers. Similarly

log, MNP ='log, M + log, N + log, P,
and so on for products of more factors.

For the logarithm of a quotient of two positive quantities M and
N. equation (2.9) gives

M B aoeM _ log, M ~log, N
N e |
showing that
M
logaﬁ _ ]oga A’[ - loga N, (213)

i.e., the logarithm of a quotient is the difference between the logarithm
of the numerator and that of the denominator.
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The logarithm of a positive quantity raised to a power can be found
similarly. Thus, again from (2.9),
MP = (alog,M )p = aplog‘M R »
giving log, M? = plog, M. (2.14)
If, in (2.14) we write p = 1/r,

log, M = %—log, M. (2.15)

Thus the logarithm of the pth power of a positive quantity is p times the
logarithm of the quantity, (2.14), and the logarithm of the rth root of
a positive quantity is 1/r times the logarithm of the quantity, (2.15).

. , 1
Example 3. Prove that'log, N = l—o_g—,E x log, N.

Let x = log, N so that b* = N. Taking logarithms to base a,
log (b*) = log, N,
giving, xlogb =log, N
1 .
or, X = m X lOg‘ N.

The result proved here is of importance in that it relates logarithms to different
bases. It shows that to transform logarithms from base a to base b we have
to multiply by the quantity 1/{log, b).

2
Example 4. Prove that 2 log_(a + b) = 2log.a + log, (l + 2 + b ) (L.U)

2log, (a + b) = log.(a + b)* = log. (a* + 2ab + b?)

2
=log¢{ (l+§+b)}
2b b‘)
= 2 —_ -3
log.a +lo&(l + 2 +a’

- 2b b’)
=2log.a + log,(l +71—+a—2

2.4. Common logarithms

The logarithms used in everyday calculations are those with base
10. Such logarithms are referred to as common logarithms and the base
is often omitted in written work. Thus log 24 is generally taken to
mean log, 24. The student is assumed to be familiar with their use
in arithmetical work and only very few examples will be given in this
section. Examples involving the use of common logarithms occur
throughout the book, particularly in the chapters on Trigonometry.
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Example 5. Calculate log 5 and log 0-125 given that log 2 = 0-3010.

log 5 =log (l?i-)) =logl0 —log2=1-1log2 since logl0 =1 (by 2.11),
=1 ~ 0-3010 = 0-6990.

1
log 0-125 = log (§) =logl —log8 = — 3log2, since logl =0 (by 2.10),
= —0:9030 = 10970, the last form meaning —1 + 0-0970.

Example 6.. Given that log 3 = 0-4771, find the number of digits in the integral part
of (\/3)%°.

89
log (/3)*® = > log 3 = §2—9 x 04771 = 2123 . ..

Thus 10 has to be raised to rather more than the twenty-first power to give
(/3)*° and this quantity will therefore contain 22 digits in its integral part.

2.5. Equations in which the unknown occurs as an index
When the unknown quantity in an equation occurs as an index, the
laws of combination of indices and the use of logarithms usually

enable the solution to be found. Some of the artifices used are illus-
trated in the following examples.

Example 7. Solve the equation 2** = 16*~ !, (L.U)
Since 16 = 24, the equation can be written
2x’ — (24):—1 = 24x—4
Hence x?=4x -4, or x*—4x +4 =0,
giving, (x — 2?2 =0, sothatx = 2.
Example 8. Find x from the equation 3** = 5** !,
Taking logarithms,
2xlog3 = (x + 1)log 5,

so that (2log3 — log 5)x = log 5. No. i log
Hence —_—
log 5 06990 06990 | 18445
¥ = Jlog3 — log5 2 x 04771 — 0:6990 02552 | 14068
_ 06990 x 04377
02552 274. SRR B

Example 9. Solve the equation 5** — 5**' + 4 = 0.
This can be written

(5" = 5(5 + 4 =0, No. | log
which in factor form is —
(5= 1D(5* -4 =0. 06021 : 1-7797
Hence either 5* = 1 leading to x = 0 by (2.5)]. 06990 | 18445
X _ H i 1 1 —_—
or 5 = 4. Taking logarithms this gives « ' i93s2
xlog5 = log4, R
so that
_log4 06021

= OB TOYC _ 0861,
T oes T 056990
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EXERCISES 2 (b)

If a = log, ¢, b = log, a, ¢ = log, b, prove that abc = 1. (L.U)
2. Without using tables, show that .
log /27 + log /8 — log /125 _3 L.U)
log6 — log 5 T2 e
3. Iflog, 1024 = 2, find x. (LU)
Using logarithms, evaluate the following:
1 1-405
(i) log,s 3-142; (ii) (ﬁ) (Q.E)
5. Solve the equations
(@) log(x? + 2x) = 09031, (b) (2-4)* = 0-59. (L.U)

Find x from the equation 3* — 37* = 6-832.
Solve the equation 22**8 — 32(2*) + 1 = 0.
8. Solve the simultaneous equations 2**7 = €, 3* = 6(2%).

2.6. The remainder theorem

The polynomial expression
CoX" + X" X" L H Gy X+ C (2.16)
can be written \
X = a4+ ¢, (x" ' —a" N+ (x" T —a"" Y+ ...+ ¢y y(x — a)

+cd"+c@ P +ca i+ +c,ate, (217)

Since, as can be verified by actual multiplication,
X"—d"=(x—ax" ' +ax" 2 +ax" 3+ ... +a" " X +av}),
each of the terms in the first line of the expression (2.17) is divisible
by x — a. Hence we can write
X"+ e X" M+ X"+t x+ e,
= amultipleof (x — @) + coa” + c,a" ' + c,a" 2 + ...+ Cp_ 10 + Cp
Hence, the remainder when a polynomial expression is divided by (x — a)
is obtained by writing a for x in the given expression. This result is
known as the remainder theorem and it enables the remainder to be
found without having to perform the division.

An alternative proof of the remainder theorem can be given as
follows. Let P(x) denote a polynomial expression in x, let Q(x) be

the quotient when P(x) is divided by (x — a) and let R be the remainder.
Then, for all values of x,

P(x) = (x — a)Q(x) + R,
and R is independent of x. Putting x = a we have
P(a) = R,

n—2



30 PURE MATHEMATICS 2

since the first term on the right hand side vanishes because of the
factor (x — a). Hence the remainder is obtained by writing a for x in
the given expression. .

An immediate and important consequence of the remainder theorem
is that if a polynomial expression in x vanishes for a certain value a
of x, then (x — a) is a factor of the expression.

Example 10. Find the value of k if the remainder when the polynomial 2x* + kx* ~
11x* + 4x + 12 is divided by (x — 3) is 60. (L.U)
By the remainder theorem, the remainder after division By (x — 3) is obtained
by writing x =3 in the expression 2x* + kx® — 11x* + 4x + 12. The
remainder is therefore

203)* + k(3)* = 11(3)" + 4(3) + 12,

or, 162 + 27k — 99 + 12 + 12.
This reduces to 27k + 87, and setting it equal to 60 we have
27k + 87 = 60.
giving k = — 1.
Example 11. Factorise a*(b — ¢) + b%(c — a) + c¥a — b). (L.U)

If we set a = b the given cxpression vanishes; in other words, there is no
remainder when the expression is divided by (a ~ b). Hence (a — b) is a factor.
Similarly (b — ¢) and (¢ — a) are factors.

The given expression is of the third degree so that, beside (@ — b), (b — ¢),
(¢ — a). there can be no further factor involving a, b or ¢. There may, however,
be a numerical factor so we write

a’(b — ¢) + b¥c — a) + c*a — b) = N(a — b){b - ¢)(c - a),

where N is the numerical factor. To determine N we can give a, b and ¢ any
values we find convenient. Choosing a =0, b = 1, ¢ = 2 the left hand side
becomes —2 while the right hand side is 2N. Thus 2N = —2 giving N = —1
and the required factors are

—(a — b)(b — c)(c - a).

2.7. The principle of undetermined coefficients

We start by showing that if a polynomial expression of degree n in
x vanishes for more than n different values of x, the coefficients of
each power of x must be zero. We write

P(x)=coX"+ e, x" P+ e,x" 2+ ...+ cpo X + Cp
and suppose that P(x) = 0 when x equals each of the unequal values

Xy, .. 0, Then (x — ay), (x — ay), ..., (x — a,) are all factors of
P(x) and we can write

P(x) = co(x — a)(x — ay)...(x — a,).
Let 8 be another value of x which makes P(x) vanish, then

colB — a))(B—az)...(B —a,) =0,
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and since none of the factors (8 — a;), (8 — a3), ..., ( — a,) vanish,
¢, must vanish. The expression P(x) now reduces to

P(x) = c;x" '+ e,x" T4+ .. 4 Cue X+ Cprs
and since this vanishes for more than n values of x we can show

similarly that ¢, = 0. In a similar way we can show that each of the
coefficients c,, ¢,, . . ., ¢, must also vanish.

We can now show that if two polynomials of degree n in x are equal
for more than n values of x, they are equal for all values of x. If we
suppose that the two expressions

CoX" + X"+ X" Ly X + G

dox" +dx" ' +d,x"" 2+ ... +d,_,x + d,
are equal for more than n values of x, then the polynomial

(co—dg)x" + (c; —d)X"" P + ...+ (Cpey — dp_ )X + ¢, — dp,
vanishes for more than n values of x and therefore all the coefficients
must be zero. Hence
cg—dy=0,¢;,—d; =0,..,¢,.,—-4d,_;,=0,¢c,—d, =0,
leading to
co=do,c;=dy,...Chy =d,_1, ¢, =4,

The two expressions are thus identical and therefore equal for all
values of x. Hence we have established the important result that if
two polynomial expressions in x are equal for all values of x we may
equate the coefficients of the like powers of x.

The result remains valid if the two expressions are not of the same
degree. For example if one is of degree n and the other of degree
n — 1 we should have

CoX" 4+ ¢ X"+ X" 4+ X + G,
=dx" ' +dyx""?+ ... +d,_,x+d,
and hence
co=0,c,=d,c;=4d,,...¢p_y=4d,_1,¢c,=4d,
The result given above is often called the principle of undetermined

coefficients and it has important applications. Some examples of its
use are given below.

Example 12. Find constants a, b, ¢ such that
2x2 -9 + l4=a(x — D(x —2)+ bx—1)+c (L.U)
The sign = is used to denote equality between two expressions for all values

of the variahle involved. When two expressions are separated by such a sign we
can equate the coefficients of like powers of the variable. Here we have

2x2 - 9x + M4 =a(x* -3x +2) + b(x — 1)+ ¢
=ax*-(Ba—-bx+2a-b+ec



32 PURE MATHEMATICS

Equating the coefficients of x? x and the term independent of x in turn
gives
a=2 3a~b=9, 2a—-b+c=14

Substituting @ = 2 in the second equation we have 6 — b = 9 giving b = -3
and substituting a = 2, b = -3 in the third equation, 4 + 3 + ¢ = 14 leading
toc=7.

Example 13. Find the relation between q and r so that x* + 3px* + qx + r shall
be a perfect cube for all values of x.
Let X+ 3ty gx+r=(x+a?
= x3 + 3ax? + 3a’x + @’
Equating the coefficients of x and the term independent of x, 3al=gq,a*=r.
Cubing the first, squaring the second and dividing we have
27a°  ¢°

aé r2‘

giving g> = 27r? as the required relation between g and r.

EXERCISES 2 (¢}

2

1. Find the values of p and q so that (x + 1) and (x — 2) shall be factors of

x* + px?* + 2x 4+ g. What is then the third factor?
2. Use the remainder theorem to find the factors of
@a—b>+b-0>+(c-a?,
3. Find the values of 4 and y if the expression
Ix* + AxP + 12x2 + ux + 4

1s (i) exactly divisible by (x — 1) and (ii) leaves remainder 18 when divided

by (x + 2).
4. Find the values of g and b in terms of n in
x—n+1P —(x-—n?=3x>+ax+5b

for all values of x. (L.U)

S. Find the values of A, B and C if the expression
Ax(x — 2){x + 3) + Bx{x — 2) + Cx(x + 3) + (x — 2)(x + 3)

has a constant value for all values of x. (L.U)

6. 1f4x3 + kx® + px + 2 is divisible by x2 + A2, prove that kp = 8.

2.8. Partial fractions

The student will aiready be familiar with the process of simplifying
a group of fractions separated by addition or subtraction signs into

a single fraction. For instance the expression
1 1 2x
+ -3
x—2 x+4+2 x*+4

can be simplified to give the single fraction 16x/(x* — 16) in which
the denominator is the lowest common denominator of the separate
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fractions. It is often desirable, for instance in expansions and in the

integral calculus (chapters 3 and 13), to be able to perform the reverse

process. In other words, we require to be able to split up a single
fraction whose denominator has factors into two or more partiai
fractions.

This reverse process, the resolution into partial fractions, depends
on the following simple rules: —

(i) If the degree of the numerator of the given fraction is equal tc
or greater than that of the denominator, divide the numerator by
the denominator until a remainder is obtained which is of lower
degree than the denominator.

(it) To every linear factor like (x — a) in the denominator there
corresponds a partial fraction of the form A/(x — a).

(iii) To every repeated linear factor like (x — a)? in the denominatoi
there corresponds two partial fractions of the form A/(x — a) anc
B/(x — a)?. Similarly for factors like (x — a)® we have three partia
fractions A/(x — a), B/(x — a)* and C/(x — a)® and so on.

(iv) To every quadratic factor like x? + ux + b there corresponds ¢
partial fraction (Cx + D)/(x* + ax + b). Repeated quadratic
factors require additional partial fractions as in (iii) above. Thu:
a factor (x? + ax + b)*> would require partial fraction:
(Cx + D)/(x* + ax + b)and (Ex + F)/(x* + ax + b)*.

The application of these rules is illustrated in examples 14 to I
below.

Example 14. Resolve into partial fractions 5/(x* + x — 6).
The factors of x> + x — 6 being (x + 3)(x — 2) we assume that
5 _ A B _ Alx—2)+ B(x +3)
x24+x—-6 x+3 x-2  (x+3Hx—2)

The denominators of the expressions on the left and right being the same,
the numerators must be the same. Hence we have

A(x —2)+ B(x + 3)=5. (2.18)
A and B can be found from this identity by applying the principle of undeter-

mined coefficients. Thus, equating the coefficients of x and the term not
containing x, we have

A+B=0 and -24+ 3B =5

The solution of this pair of simultaneous equations is 4 = — |, B = 1. Another
and, in the case of linear factors such as we have here, rather simpler method
of determining A and B from the identity (2.18) is to give x suitable numerical
values so that 4 and B can be found separately. Thus by putting x = 2 in
(2.18) we have (2 + 3)B = S, giving B = 1 and by putting x = — 3, we have
(=3 —2)A =5 givingA = —1.

s _ 11
xt+x-6 x-2 x+3

Hence
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9
Example 15. Separate [P TTE— into partial fractions.
Here, because of the repeated factor (x + 2), the correct assumption is
9 A B C ’

oD+ x—1 x+3 v

_Alx + 22+ Blx—1(x+2)+Clx—1)
B (x = 1)(x + 2) '

This identity requires that
Ax+ 2 +Bx - Dx+ 2+ Clx - 1) = 9.

can be found immediately by taking x = 1. Thus (1 + 2)*4 =9 giving
= 1. To find C, take x = —2 and we have (—2 — 1)C = 9 leading to
= —3. To find B we can equate the coefficients of, say, x2. This gives
+ B =0sothat,as A = 1, B= —1. Hence

9 1 1 3

x-=Dx+22 x-1 x+2 (x+27*

Example 16. Resolve 16x/(x* ~ 16) into partial fractions.
The factors of the denominator are (x — 2), (x + 2) and (x* + 4). In view of
rule (iv) and the quadratic factor (x? + 4), we assume
16x A B Cx+D
x*~16 x-2 x+2 x*+4
- A(x + 2(x* + 4) + B(x — 2)(x* + 4) + (Cx + D)(x — 2)(x + 2)
- (x = 2)(x + 2)(x*> + %) ’

This requires that
Alx + 2)(x2 + 4) + B(x — 2)(x* + 4) + (Cx + D)(x — 2)(x + 2) = 16x.
Putting x = 2,
2+ 2)(22 + 44 = 16 x 2,
giving 324 = 320r 4 = 1.
Putting x = =2,
(=2—-2{=2+4B=16 x (-2),
giving —32B = —-32o0r B =1.
Equating coefficients of x>, 4 + B+ C =0, or, sincce A=B=1C= -2;
and equating coefficients of the term independent of x, 84 — 88 — 4D =0,
which with 4 = B =1, gives D = 0.

16x 1 1 2x
Hence =

x* — 16 x—2+x+2_x2+4'

Example 17. Separate x*/(x* — 3x + 2) into partial fractions.

In all our examples so far, the numerator of the given fraction has been of
lower degree than the denominator. Here the numerator is of the third while
the denominator is of the second degree. Dividing x2 — 3x + 2 into x> we
find that the quotient is x + 3 and that the remainder is 7x — 6. Hence

X3 =x+3+_7ib_§_
x2=3x+2 x?—-3x+2
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We now proceed to separate (7x — 6)/(x? — 3x + 2) into two partial fractions

as in Example 14. Thus we assume that

x-6 _ A B _ A(x—1)+ B(x -2
x}-3x+2 x-2 x—-1  (x=-2x-1
Hence A(x — 1) + B(x — 2) = Tx — 6.

.

Setting x = 1 we find that B = —1 and taking x = 2 leads to 4 = 8. Finally

we therefore have
x3 _ 8 1

EXERCISES 2 (d)

Resolve into partial fractions :—

1.

6.

10.

S(x + 1) 5 10 — 11x
25 — x? T — A + 1Y

x3 6 333 + x
x4+ x-2 Cox* - 81

x? ; 2x* — 11x + S

(x+ 1) T (x4 2x — 5)(x — 3)
x4 x + 1 g 2y + 1
x2 4+ 2x+ U T+ DAy - 2)

EXERCISES 2 (e)

Simplify the expression § x 43+ — 20 x 82,
If a = 2, b = 3 show that (a*b?c®)*/(a™ b~ *c®) = 144,/2¢°.
Simplify 92"*2 x 623 + (35" x 6 x 4""2),
Evaluate (i) 82/1;:3/2, ii ;‘}/afxxf%b‘zz when b = 3.
Iflog,n = x and log_n = y, where n % 1, prove that

x—y log,c—log,a

x+y log,c + log,a

Verify this result, without using any tables, when a =4, b=2, c = §,

n = 4096. .
Using logarithm tables evaluate (i) (0:0371)T2, (ii) log, 0-65.

(L.U)
(QE)

If log,(t +g§) =1 log,(1 + ) =m and log, (1 + 7) = n, show that

log,(l +gg)=1—-m—n.
Find x from the equation 9* — 12(3*) + 27 = 0.
Solve the equation 4* + 2 = 3 x 2%,
If y = a + bx" is satisfied by the values
x = ’ 1 ! 2 ‘ 4

v=1 7 [ 10 | 15

show that n = log, (5/3) and deduce the values of a and b.

(L.U)
(L.u)
(L.U)

(LU)
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11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22.

23.

24.
25.

PURE MATHEMATICS [2

If2logg N = p,log, 2N = q,q — p = 4,find N. (L.U)
If x = log, (bc), y = log, (ca) and z = log, (ab) prove that
X+ y+z=xyz—2

Find the values of a and b if the expression 2x3 — 15x2 + ax + b is divisibie
both by x — 4 and by 2x — 1. (0.C)

A polynomial expression P(x), when divided by (x — 1) leaves a remainder
3 and, when divided by (x — 2) leaves a remainder 1. Show that when
divided by (x — 1)(x — 2) it leaves a remainder —2x + 5. (0.C)

Express a*(b — ¢) + b*(c — a) + c*(a — b) as the product of four factors.
(LU)

If x3 = alx + 1)(x + 2(x + 3)+ b(x + 1)(x + 2) + c(x + 1) + d, find the
numerical values of @, b, ¢ and d. (L.U)

Show that x* 4+ 6x — 10 can be expressed in the form

(x —a)(x — ) + 2(x — a) + 3x
in two different ways and find the values of a and § in each case. (L.U)
Find a and b so that

X4 = Ix3 4+ 17x2 — 17x + 6 = (x — D*(x? + ax + b).
Hence find all the factors of the quartic expression.
Find the value of ¢ if the expression
x4+ xy -6y +4x +y + ¢

can be expressed as the product of two linear factors.

Use the principle of undetermined coefficients to find the square root of
the expression x* + 4x3 + 8x% + 8x + 4.

5x +3 ) ] .
x+ DP2x + 1 )mto partial fractions.
2

x% — x —
Express “*x—JT‘—

8

3 2
SL{TZ%E in partial fractions. (Q.E.)

Separate
in partial fractions.

Express

1+ x?
—_— E.
1+ x)(1 + x°) (QE)
Use the remainder theorem to find the three factors of x* + 3x% — 4 and
hence resolve

Express in partial fractions

2P -xt—7x - 14
x*+3x2 -4
into partial fractions.



CHAPTER 3

ARITHMETICAL AND GEOMETRICAL PROGRESSIONS.
PERMUTATIONS AND COMBINATIONS.
THE BINOMIAL THEOREM

3.1. Series

A set of numbers each of which can be obtained from some definite
law is called a series or progression. Each of the numbers forming the
set is called a term of the series. Thus the sets

@ 1,35 7...,
(i) 1,2,4,8,..,
(iii) 12,22, 32, 42 ..,
are all series. In the first set, each number is obtained by adding 2 to
the preceding one, in the second each term is twice the preceding one
and in the third each number is the square of successive integers. It is
possible to give a formula for the general or nth term of each of the
above series. Thus for (i) the nth term is 2n — 1, for (ii) it is 2"~ ! and
for (iii) it is n?. If an expression for the nth term of a series is known
it is possible to write down successive terms by giving successive

integral values to n Thus the series whose nth term is (l + ;)

is one whose terms are 2, 3, $%, $22, .. ., these being the values obtained

by putting n = 1, 2, 3, 4, ... in the formula for the nth term.
Series play a very important part in mathematical analysis; in this
chapter we shall be concerned with a few of the simpler ones.

3.2. The arithmetical progression

A series in which each term is obtained from the preceding one by
adding (or subtracting) a constant quantity is called an arithmetical
progression (A.P.). Thus the series

1,3,57...,

a,a+d,a+ 2d,a+ 3d,...
are arithmetical progressions. The difference between each term and
the preceding one is called the common difference. When three quantities
are in arithmetical progression the middle one is called the arithmetic
mean of the other two. Thus g is the arithmetic mean between a — d
and a + d.

In the series
a,a +d,a+ 2d,a+ 3d,..., 3.0

the coefficient of d in any term is one less than the number of the
37
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term in the series. Thus a + 3d is the fourth term. If then the series
consists of n terms and / denotes the last or nth term )

I=a+ (n— 1)d. (32
To obtain the sum s, of n terms of the series (3.1) we have
S,=a+@+d)+@a+2d+...+((-2d+(-d)+|
for if | is the last term, the next to last will be | — d and the preceding

one will be | — 24 and so on. If now we write the series in the reverse
order

Sa=l+(-d+(-2d+...+@+2d)+@+d+a

Adding and noticing that the sums of terms in corresponding positions
are all a + [ we have

2s,=(@a+D+(@+ D+ (a+1D+...tonterms,

= n(a + ).
Hence
s, = ;a + 1), (3.3)
or, using (3.2),
s, = g{2a +(n— Dd). (3.4)

Example 1. Insert seven arithmetic means between 2 and 26.

It is always possible to insert any number of terms between two given
quantities such that the resulting series shall be an arithmetical progression.
Terms inserted in this way are called arithmetic means, an extension of the
meaning of an arithmetic mean between two given quantities.

Including the first and last terms, the number of terms will here be nine, so
we have to find an arithmetical progression of nine terms of which the first
is 2 and the last is 26. Let d be the common difference. Then

26 = 9th term = 2 + 84,
so that d = 3. The second term is therefore 2 + 3 or 5, the third 2 + 6 or 8
and so on. Hence the required means are 5, 8, 11, 14, 17, 20 and 23.
Example 2. Find three humbers in arithmetical progression such that their sum is
27 and their product is 504,

Let the three numbers in arithmetical progression be a — d, a and a + 4.
Then the sum of the numbers is 3a and since this is 27, a = 9. Their product is
(a — d)a(a + d) or a(a® — d?). Hence

ala® — d?%) = 504,

and since a =9, 81 — d? = 504/9 = 56, leading to d* =25 and d = +5.
Hence the required numbers are 9,9 + 5, i.e, 4,9 and 14.

Example 3. The first term of an arithmetical progression is 25 and the third term is
19. Find the number of terms in the progression if its sum is 82.

Here a =25, a+2d=19, so that 2d =19 —a =19 — 25 = —6 giving
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d = —3. With s, = 82, formula (3.4) for the sum of n terms of the series gives

82 = g{so +(n = (=3

as the equation for the number of terms (n). This reduces to the quadratic
equation

3n? — 53n + 164 = 0,
or (n—4)(3n—~41)=0.

Hence n = 4 or n = % = 132, The fractional result means that the sum of 13
terms will be greater than 82 and that of 14 terms will be less than 82.

3.3. The geometrical progression

A series in which each term is obtained from the preceding one by
multiplying (or dividing) by a constant quantity is called a geometrical
progression (G.P.). Examples are

1,2,4,8,...
a, ar, ar®, ar’, . ..
The ratio between each term and the preceding one is called the
common ratio. When three quantities are in geometrical progression
the middle one is called the geometric mean between the other two.
Thus a is the geometric mean between a/r and ar.
In the series,
a,ar,ar®, ar3,. .., (3.5)
the index of r in any term is one less than the number of the term in
the series. Thus ar® is the fourth term. The last or nth term of the
series is given by
I=ar 1 (3.6)
To obtain the sum s, of n terms of the series (3.5) we have
s,=a+ar+ar’* +...+a"" % +a L
Multiplying throughout by r
rs,=ar+ar> +ar*+ ... +ar""! + ar".
If we subtract, all the terms on the right hand side except a and ar”
cancel in pairs. Hence s, — rs, = a — ar”", leading to
a(l — r")

=T (37

n

Example 4. [nsert three geometric means between 162 and 1250.

As with arithmetical progressions, it is possible to insert any number of terms
between two given quantities such that the resulting series shall be a geo-
metrical progression. Such terms are referred to as geometric means, an
extension of a geometric mean between two given quantities. Here, including
the first and last terms, the number of terms will be five, so we have to find a
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geometrical progression of five terms of which the first is 162 and the last is
1250. Let r be the common ratio. Then

1250 = 5th term = 162r*.

Hence r* = 1250/162 = 625/81, so that r = +5/3. The second term is there-
fore (+5/3) x 162 or +270, the third is (+ 5/3)> x 162 or 450 and the fourth
is (+5/3)% x 162 or +750.

Example 5. Find three numbers in geometrical progression such that their sum is 39

and their product is 729.
Let the required numbers be a/r, a and ar. Then their product is a® and hence

a® = 729 giving a = 9. Since the sum is 39, we have

§+9+9r=39,

so that 9r> — 30r + 9 = 0. This can be written 3r> — 10r + 3 =0 or
(3r — 1)(r — 3) = 0, giving r = 1/3 or 3. The required numbers are therefore
9/3,9and 9 x 3, or 3,9 and 27.

Example 6. Find the sum of ten terms of the geometrical series 2, —4, 8, ...

Here the first term is 2 and the common ratio is —2. Hence in the formula
(3.7, a=2r = —2,n =10 Hence the required sum

o
- ﬁ‘l_‘_(_(“_zz);_} = 30 - 1) = —}1024 — 1) = —682.

EXERCISES 3 (a)

Write down the first three and the 8th term of the series whose nth terms
are:—

(i) 4n — 5, (i) 3" (ii) (=)
Show that the arithmetic and geometric means between the two quantities
a, b are respectively {a + b) and \/(ab).

Find the sum of ten terms of an arithmetical progression of which the first
term is 60 and the last is —104.

If the first, third and sixth terms of an arithmetical progression are in
geometrical progression, find the common ratio of the geometrical pro-
gression.

The sum of the last three terms of a geometrical progression having n terms
is 1024 times the sum of the first three terms of the progression. If the third
term is 5, find the last term. (L.U)

Find two numbers whose arithmetic mean is 39 and geometric mean 15.

(L.U.)
Prove that the series log a, log (ar), log (ar?), . . .. is an arithmetical progression
whose sum to n terms is 4n log (a?r~1).

The second and third terms of a geometrical progression are 24 and
12(b + 1) respectively. Find b if the sum of the first three terms of the
progression is 76.
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3.4. Simple and compound interest

If a sum of money P (the principal) is invested at simple interest of
r per cent. per annum, the amount A (principal plus intérest) after n
years is given by

nr
A=P (1 —) 38
for the interest for one year is Pr/100 and for n years nPr/100. The
various amounts after one, two, three, ... years therefore form an
arithmetical progression.

If, on the other hand, the same principal is invested at compound
interest of r per cent. per annum, the interest being added annually,
the amount after one year is P (1 + ﬁ), and this is the principal for
the second year. Hence after two years the amount is

Pl1+-L )1+ P1+L)2
(+1w)(+ToT))°r( 100

and so on. Thus after n years the amount will be given by

r n
A—P(l+m). (3.9)
In this case the amounts after one, two, three, ... years form a

geometrical progression.

If, with compound interest the interest is added half yearly, the
interest is half as much as when added yearly but it is added twice as
often. Hence in this case

r 2n
A= P(l ——) : .
+ 300 (3.10)
and similarly for cases where the interest is added at other intervals.

Suppose we wish to find the present value (V) of a given sum (S)
due n years hence. Then V is the sum put out to interest at the present
time which in n years will amount to S. Thus at simple interest

nr
S = V(l +1W)'
s

L
100
and at compound interest (added yearly),
- V( ;>"
S 1+ 100/

giving, V=

(3.11)

.. r\"
giving, V=S (1 + TO_O) (3.12)
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Example 7. Find the amount at the end of 10 years when £400 is invested at 4 per
cent. compound interest, (i) the interest being added annually and (ii) the interest
being added twice a year.

Here P = 400, r = 4, n = 10 and from (3.9), (3.10) we have

100
= £5917.

(i) interest added annually, amount = P(l " —'—) = 400(1:04)°

2n
(ii) interest added twice a year, amount = P(l + E(r)—_O) = 400(1-02)2°

= £5944.

Example 8. Find what sum a man has to invest on his fortieth birthday so that he
may be able to draw out a lump sum of £2000 on his sixtieth birthday, the
investment being made at S per cent. per annum compound interest.

Let V = sum required. Then ¥ has to amount to £2000 in 20 years.

2000
i = R -0 27T .
ie, V = 2000(1-05) 2655 £7533.

3.5. The convergence of the geometric series

Consider the geometrical progression 1 +1 + 1 + 31+ ... If we
stop at the third term the sum is 13 and this is less than 2 by the third
term ;. Similarly the sum of four terms is 17 which differs from 2 by
the fourth term 3. Similarly wherever we stop the sum is less than 2
by precisely the last term added. Thus the sum of this series never
exceeds 2, never reaches 2 but may be made as near to 2 as we please
by taking a sufficient number of terms. The value 2 is called the limit
of the sum of this series. Series [or which such a limit exists are said to
be convergent.

Consider now the general geometrical progression

a+ar+ar?+...
By (3.7) the sum to n terms, denoted by s, is given by

_al—-r)  a ar”
WETIZr T1-r 1=r

Suppose r lies between 0 and 1. Then r" decreases as n inureases and,
since it cannot be negative, it must tend to some positive limit . Since
r"tl=r. " r"*! and r" are both ultimately equal to / and we have
I = rl, showing, since r is not equal to unity, that / must be zero. In a
similar way, if r lies between —1 and 0, we can show that the limiting
value of r" is also zero. Thus the value of the term ar"/(1 — r) becomes
nearer and nearer to zero as n increases and the limit of the sum of

the progression, denoted by s is, for —1 < r < 1, given by

) (3.13)
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for we may make s, as near to a/(1 — r) as we please by making n
sufficiently large. We say that the geometric series whose first term is a
and common ratio r converges when —1 < r < 1 and the limit of the
sum is af(1 — r).

There is no limit of the sum of a geometrical progression whose
common ratio lies outside the range —1 to 1. For instance the sum
of the progression 1 + 2 + 4... gets more and more unmanageable
as more terms are taken. Each term in fact exceeds the sum of all the
preceding ones. The series is in this case said to be divergent.

Rather loose expressions are sometimes used in connection with
convergent series. Thus the limit of the sum is sometimes called *“the
sum to infinity” and a convergent geometrical progression is some-
times referred to as an “infinite” geometrical progression. It is pre-
ferable to avoid the words infinity and infinite as far as possible.

Example 9. The limit of the sum of a convergent geometrical progression is k and
the limit of the sum of the squares of its terms is l. Find the first term and the
common ratio of the progression.

Let the first term be a and the common ratio r. Then by (3.13) k = a/(1 — r).
For the series comprised of the squares of these terms the first term is 4* and
the common ratio r2. Hence ! = a2/(1 — r?). Squaring the expression for k
and dividing by that for / we have
B 1-r 1+4r
I = 1-r
Solving for r, we find r = (k? - )/(k? + I).
Substituting this value of r in the expression for k,
K- l] 2kl
=k(l-r=k|l - 5—|=5—
a=kl-r [ PEa | R
Example 10. Evaluate 06 as a fraction.
0-6 means % + 185 + 155 + .. and this can be written

s [1 PRI I ]
10 10 102 77
The series inside the square brackets is a convergent geometrical progression

with first term unity and common ratio 7. By (3.13) the limit of it« <rm is
1/(1 — %) or 3. Hence the value of
06=35xQ2=4%

3.6. Series involving the natural numbers

The positive integers 1, 2, 3, ... are often referred to as the natural
numbers. They form an arithmetical progression with first term and
common difference unity and the sum of the first n natural numbers
is therefore given by

nin + 1)

Sl=g{2+(n—1)}= .

(3.14)



44 PURE MATHEMATICS 3

The sum of the squares of the first n natural numbers can be found
by starting from the identity

—n—-1P¥=3n*-3n+ 1. .
Changing n successively into (n — 1), (n — 2), .., 2, 1, we have
m=—1P-mnm-2P=3n—-1)7>-3n-1 +1,
m=2-mn-3P=3n—-22-3n—2)+ 1,

22-13=322-32+1,
P-0=312-31+1

By addition and noticing that apart from n® and 0° all the terms on
the left hand side cancel in pairs,

3=3{P+22 ...+ (n— 12+ n*}
-31+2+...+(n—1)+n}+n
If we denote the sum of 12 + 22 + ... + n? by §,, this gives
n® =38, - 35, +n
Using the value of S, given in (3.14) we have

3§, =n? +%n(n+ l)—n=g(2n2 +3n+ 1),
nn + 1)2n + 1)

6

The sums of the cubes and higher powers of the natural numbers
can be found in a similar way but the process gets more and more
tedious.

or, S, = (3.15)

Example 11. Find the sum of n terms of the series 1.2 + 2.3 + 3.4 + .

The nth term is n(n + 1) and by writing this as (n*> + n), the sum of the series
is the sum of the squares of the first n natural numbers plus the sum of these
numbers. Hence the required sum

=inln+ D2n + 1)+ 4nn + 1)

){2n+ 1 . 1} =n(n+ l)(n+2)'

-1
in(n + 3

EXERCISES 3 (b)

1. In how many years will a sum of money double itself (a) at 5 per cent. simple
interest, (b) at 5 per cent. compound interest?

2. A man arranges to purchase a house, valued now at £1000, by paying £500
in ten years’ time and spreading the remaining payments in 10 equal annual
instalments of £X, the first being paid now. If compound interest on all
outstanding amounts is payable at 4 per cent. per annum, calculate the value
of X. (L.U)
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3. Prove that the geometrical progression,

12y ( 2 )2 +
3+ x? 3+ x2 e .
is convergent for all values of x and find the limit of its sum. (L.U)

4. Show that there are two geometrical progressions in which the second term
is —4/3 and the sum of the first three terms is 28/9. Show also that one of
these progressions is convergent and, in this case, find the limit of its sum.

(LU)

5. Find the first term and the common ratio of a convergent geometrical
progression in which (i) the limit of the sum is 4 and (ii) the limit of the sum
of the series formed by the cubes of the terms of the geometrical progression
is'192.

a_,__@

1+a (1 + a?

6. When does the series a + + ... converge and what is then

the limit of its sum?
7. Starting from the identity
n + 1)* = (2n — 1)* = 64n° + 16n,
show that the sum of the cubes of the first n natural numbers is equal to the
square of the sum of these numbers.

8. The first, second, third and nth terms of a series are 4, —3, —16 and
(an® + bn + c) respectively. Find a, b, c and the sum of n terms of the series.

3.7. Permutations and combinations

Suppose we have four objects denoted by A, B, C and D and we
select groups of two. Possible selections are AB, AC, AD, BC, BD and
CD. Each selection is called a combination and it is possible to make
six different combinations from four objects taken two at a time. If,
however, we are concerned with the arrangements of the four objects.
taken two at a time we can do this in twelve different ways, viz,,

AB, AC, AD, BC, BD, CD,
and BA, CA, DA, CB, DB, DC.

Each arrangement is called a permutation and it is possible to make
twelve different permutations from four objects taken two at a time.
Thus in forming combinations we are concerned only with the number
of things each selection contains whereas in forming permutations we
are concerned with the order of the component objects as well.

A formula giving the number of permutations which can be made
from n unlike things taken r at a time can be obtained as follows. We
have to fill up r places from n things. The first place can be filled in
n ways for we have n things at our disposal. When it has been filled
the second place can be filled in (n — 1) ways for now we have only
(n — 1) things available to fill it. Each way of filling the first place
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may be associated with each way of filling the second, so that the
first two places may be filled in n(n — 1) different ways. Proceeding
in this way the first three places can be filled in n(n —~ 1)(n — 2) ways
and all the r places can therefore be filled in

nn—-NHn-2)...n—-r+1)

ways. A convenient notation for the number of permutations of n
things taken r at a time is "P, and we therefore have

"P,=nn—-Nn-2)...(n—r+ 1), (3.16)
the number of factors being r (the number in the suffix of the symbol
"P,). Putting r = n we have for the number of permutations of n things

taken all at a time (or the number of ways of arranging » things among
themselves)

"P,=nn— n-—-2)...3.2.1,
there now being n factors. The product n(n — 1)(n — 2)...3.2.1 is
called “‘factorial n”’ and written (n}!, or sometimes, ]n.

To find the number of combinations which can be made from n
unlike things taken r at a time, let "C, (a notation similar to that for
the number of permutations) be the required number. Then each of
these "C, combinations consists of a group of r things. These can be
arranged among themselves in (r)! ways. Hence the product of "C, and
(r)! is the number of arrangements of n things taken r at a time, so that

"C, x (r)! ="P,
=nn-—-1mn-2)...(n—r+ 1.
nn—1Nn—-2)...n—r+1)

(! '
An alternative form of (3.17) can be obtained by multiplying numerator
and denominator by (n — r).. Since (n —r)!l=n—rn—r—1)...
3.2.1 the numerator will now contain all the numbers n, (n — 1),
{n — 2), down to unity and will therefore be (n)!.

o (n)!
Hence C, = Ol —nr

Hence "C, =

(3.17)

(3.18)

Example 12. Find how many different numbers can be made by using four out of
the nine digits 1,2,3,...,9.

The required number is the number of permutations of nine things taken four
at a time and is therefore

P, =9 x 8 x 7 x 6=3024
Example 13. In how many ways can an escort of four soldiers be chosen from nine

soldiers and in how many of these escorts will a particular soldier be included?
(L.U)

The required number is the number of selections which can be made from
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nine things taken four at a time. This is °C, which by (3.17) is
9XSX7X6=126.
4 x3x2x1
When a particular soldier is always to be included, we have to find the number
of ways in which selections for the other three places in the escort can be made
from the remaining eight men. This is 8C, or
8§x7Tx6
3Ix2x1

The method of the last part of example 13 can be employed to
obtain a formula which we shall use later in this chapter (page 50).
Suppose we have (n + 1) objects: the number of combinations of
these objects taken r at a time such that a particular object is always
excluded is "C, for we have to select from only n objects. The number
of combinations of the objects taken r at a time such that a particular
object is always included is "C,_, for we have to select from only n
objects for the remaining (r — 1) places in a selection. Since the object
must be either included or excluded, the sum is the total number of
combinations of (n + 1) objects taken r at a time or "*'C,. Hence

"tIC, ="C, + "C,_,. (3.19)

So far we have based our work on the assumption that the objects
of which arrangements have been made or from which selections have
been taken are all dissimilar. Formulae for the number of permutations
or combinations when the objects are not all unlike are rather com-
plicated. Such cases are best treated on their merits and we consider
the following as an example.

To find the number of arrangements of n things taken all at a time
when p are exactly alike of one kind and q are exactly alike of another
kind, let x be the required number of permutations. Then if the p like
objects were replaced by p unlike objects different from any of the
rest, from any one of the x arrangements we could form (p)! new per-
mutations without altering the position of any of the remaining
objects. If then this change were made in each of the x arrangements,
we should obtain x x (p)! permutations. Similarly if the g like objects
were replaced by g unlike ones, the number of permutations would be
x x (p)! x (q)!. But the objects are now all different and can be
arranged among themselves in (n)! ways. Hence

x x (p)! x (g)! = (n)!,
ivin x = (3.20)
Eving. ) (@) '
Similarly the number of arrangements of n things taken all at a time
when p are alike of one kind, g alike of a second kind and r alike of
a third kind and so on is

56.

(n)!
ot .. (3:2)
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Example 14. How many different arrangements of letters can be made by using all
the letters of the word contact? In how many of these arrangements are the
vowels separated? (L.U.)
Here we have seven letters including two ¢’s and two t’s. The required tumber
of arrangements by (3.20) is

(I Tx6x5x4x3x2x1 .
AN = 1260.
2y 2x1x2x1 60

If we treat the vowels o, a as one letter, the number of arrangements with the
vowels together is
26)! 2x6x5x4x3x2x1
ey 2x1x2x1
the multiplier 2 being introduced in the numerator to allow for the two possible
arrangements ao, oa of the vowels among themselves. The number of arrange-
ments with the vowels separated is the difference, 1260 — 360 or 900.
Sometimes the number of permutations of » things taken r at a time
is required when each thing may be repeated any number of times (up
to r) in any arrangement. Here the first place may be filled in n ways
and, when it has been filled, the second place may also be filled in
n ways for we are able, if we wish, to use the same thing again. Thus
the first two places can be filled in n x n or n? ways. Similarly the
first three places can be filled in n x n x n or n®> ways and so on. The
total number of arrangements is therefore n".

= 360,

Example 15. How many entries must be made in a football pool consisting of twelve
matches to ensure a correct forecast?

The result of each match may be win, lose or draw so that the forecast of the
first match can be made in three ways. The result of the second game can
similarly be entered in three ways so that a correct forecast of the first two
matches will require 3% entries. For the first three matches 33 entries will be
required and so on. Hence for all twelve matches the required number of
entries will be 3'2 or 531441.

3.8. Probability or chance

Suppose any one of m + n events is just as likely to happen as any
other and that one event is certain to happen. Then if m of the events
are considered favourable and n unfavourable the probability or
chance of a favourable event is said to be m/(m + n). For example, in
tossing a coin, heads or tails are equally likely and either a head or
tail must occur. The chance of throwing a head is therefore 1/2.
Similarly the chance of throwing a two with a six-sided die is 1/6 for
only the two is favourable, any one of the numbers one to six is equally
likely and one number must occur. The phrase ‘“‘just as likely to
happen” in the above definition is open to criticism but the general
sense is clear. Thus the belief that a coin will be equally likely to fall
heads or tails is generally accepted in the absence of any distinct proof
to the contrary.
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If the probability of an event happening is p and of its not happening
is g, we have from the above.
_n
Tm+n
Thus p+gq=1 and g =1 — p. Probabilities can therefore range
between 0 and 1, 0 indicating impossibility and 1 certainty. Some-
times percentages are used, a one per cent. chance means a chance of
one in a hundred. If the chances for and against an event are p and
g, the odds against an event happening are g to p. Thus odds of 5 to 2
against an event implies that the chance of the event happening is
2/7 and of it not happening is 5/7.

Example 16. What is the chance that a hand of thirteen cards dealt from a pack shall
contain only red cards?

p= q

m+n

The total number of possible hands is *>C,, and the total number of favourable
hands is 2°C,, for in this case selections of 13 have to be made from the 26
red cards. The required chance is therefore

26C,,/52C,; = 1/61055
approximately.

If the chance of one event happening is p and that of another in-
dependent event happening is p’ the chance of both happening is pp".
The chance of the first happening and not the second is p(1 — p’),
that of the second happening and not the first is p'(1 — p) and the
chance of neither happening is (1 — p)(1 — p’). These results follow
directly from the definition of probability. For example the chance of
throwing a six with one die is 1/6, the chance of two sixes when two
dice are thrown is 1/36. The chance of one six only from two dice is

1545110
6 6 [3 6 36
and the chance of no sixes is 25/36.
EXERCISES 3 (c)

1. In how many ways can a team of eleven be picked from fifteen possible
players?

2. How many different arrangements can be made by taking (i) five, (ii) all the
letters of the word special?

3. How many numbers between 2000 and 3000 can be made from the digits
7,3,2,5?

4. In how many ways can five books be distributed to four readers when each
reader can have all the books?

5. How many numbers each of four digits can be formed from the digits I, 2,
3, 4 when each digit can be repeated four times? Calculate the sum of all
these numbers. (L.U))

6. There are 10 articles, 2 of which are alike and the rest all different. In how
many ways can a selection of 5 articles be made? (L.U)
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7. A signaller has six flags, of which one is blue, two are white and three are
red. He sends messages by hoisting flags on a flagpole, the message being
conveyed by the order in which the colours are arranged. Find how many
different messages he can send (i) by using exactly six flags, (ii) by using
exactly five flags. (L.U)

8. What are the odds against drawing three black balls from a bag containing
four white and five black balls?

9. Find the chance of throwing head and tail alternately with three successive
tosses of a coin.

3.9. The binomial theorem for a positive integral index
By actual multiplication, we can show that
1+x)? =1+ 2x + x2,
(14 x° =1+ 3x + 3x? + x3,
(1 +x)°* =14 4x + 6x% + 4x3 + x*.
In the expressions for these powers of (1 + x) we observe that:—

(i) the indices of x increase by unity as we go term by term from left
to right, the index of the last term being the same as the power to
which (1 + x) is raised,

(i) the first term and the coeflicient of x in the last term are both unity
and those of the other terms are 2C, in the expression for (1 + x)?,
3C, and 3C, in that for (1 + x)* and *C,; *C,, *C, in that for
(1 + x)*

This suggests that the result for any positive integral power n of

(1 + x) will be

I+x\f=14+"Cx+"C)x*+...+"Cx"+ ...+ x" (322

Assuming that this result is valid, multiplication by (1 + x) and

collection of the terms in like powers of x gives

I+x)*'=1+"Cy+ Dx+("C, + "C)x* + ...

+("C, + "C,_ )X + ...+ X"

Since "C, + 1=n+1="*!'C, and "*!C, ="C, + "C,_,, a result

already established in (3.19), this can be written

(1 + x)n+1 =14 n+lC1x + n+1C2x2 4+ ..+ n+lcrxr

+ ...+ x" (3.23)
Hence if the assumption made in (3.22) is true for a positive integral

index n, (3.23) shows that it is also true when n is increased to n + 1.

But we know the assumption to be true for n = 2, 3 and 4, so that

we infer that it is also true for n = 5 and therefore for n = 6 and so

on. Hence the result is true for any positive integer n.

Often the coefficients in (3.22) are abbreviated by omitting the n:
with this notation we should have

+xP=14+Cx+Cyx*+...+Cx" + ...+ x", (324

r— b
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where the coeflicient of x" is given by
_nn=1Nn-2)...n-r+1)
o O] -

The first and last terms are sometimes written as C, and C,, so that
C, and C, are both unity and C, is then always the coefficient of x’
in the expansion. The result established here is known as the binomial
theorem as it gives the expansion (a series of n + 1 terms) for the nth
power of the binomial expression (1 + x). The method used here in
establishing the theorem is known as a proof by induction and is a
very powerful method in many branches of pure mathematics.
If we require the expansion of (a + x)", we have

@+ x)=a" (1 + g)”,

and, writing x/a in place of x in (3.24),

C,="C

(3.25)

2 r n
Y x x x x
(a+x)=a(l+CIE+C2a—2+...+C,?+...+E)

a"+ Cua" 'x + Crua" 32+ ...
+Ca"'x" + ...+ x" (3.26)
The numerical coefficients in the binomial expansion are given by
the following table (Pascal’s arithmetical triangle).—

Power| Coefficients
R
3 , 1 3 3 1
4 |1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Apart from the first and last coefficients which are unity, any entry
in the table is given by adding together the one immediately above it
and the next entry on the left. Thus the entry 15 in the sixth line is
the sum of 10 and 5 and so on. The coefficients in the expansion of
(1 + x)" are therefore immediately obtained from the last line of the
table as 1, 7, 21, 35, 35, 21, 7 and 1 and once these are available, those
for (1 + x)® can be obtained similarly.

Example 17. Expand (x + 3y)°® by the binomial theorem and apply the expunsion to
evaluate (1-03)® correct to five places of decimals. (L.U)

Writing x for a, 3y for x and taking n = 6, (3.26) gives

(x + 3¥)° = x® + 6x°(3y) + 15x*(3))? + 20x%(3y)* + 15x%(3y)*
+ 6x(3y)* + (33",
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the coefficients being taken from Pascal’s triangle [or calculated from (3.25)].
This gives
(x + 3y)% = x°® + 18x5y + 135x*y? + 540x3y3 + 1215x2y*
+ 1458xy’ + 729y5.
Taking x = 1,y = 1072, x + 3y = 103 and hence
(103 =1+ 18 x 1072 4+ 135 x 107* + 540 x 107 4+ 1215 x 107*
+ 1458 x 1071° 4 729 x 10~12
= 10000000 + 0-1800000 + 0-0135000 + 0-0005400
+ 0-0000122 + 00000001 + ...
= 1-1940523 = 1-19405 (to five places).

Example 18. Expand (1 — 3x — x?)* in ascending powers of x as far as the term

in x*.
Writing —3x(1 + 4x) in place of x in (3.24) and taking the coefficients from
Pascal’s triangle,
(1 —3x = X% = {1 - 3x(1 + §x)}°
=1+ 5(=30)(1 + 3x) + 10(=3x)%(1 + $x)? + 10(—3x)°(1 + %x)*
+ 5(=3x)%1 + ¥x)* + ...

The last term in the expansion need not be included as it involves x> and higher
powers only. Simplifying and retaining only terms which involve x* and lower
powers we have

(1= 3x — x?)® =1 — (1 + Zx) + ¥x¥(1 + 4x + $x?)
10+ 20+ )+ AT+ )+
1= 4x + (=5 + )x? + (30 - 133)x°
+ (10 — 133 4 403X+ 4 .
1= Yx + $x? - Lx% - 3léxd 4

Example 19. Find the term independent of x in the expansion of 2x + 1/x*)'? in

descending powers of x and find the greatest term in the expansion when x = %.
(L.U)

12
We can write (2x + 1/x%)!2 as 21%x!?2 (l + 2%3) , 5o the term independent of

12
x is 2'2x!? times the term in x~!2 in the expansion of (l + —) . This is

2x3
2 1 4
1
C‘(Z_-xl‘) or

12xllx10x9_ 1
1x2x3x4 2412

and multiplying by 2!2x'2, the required term is 495 x 2 or 126720.

. ) 1\
Let T, be the rth term in the expansion of (1 + —) . Then

. 5
1€ 2‘—xlz,

2x3
T, = ”C —l T and 7 = IZC '—l rHence
r r—1 2 3 r+1 r 2x3

T, '3, 1 12-r+1 1
T ~ 12C,_, 2x* r 2(2/3)°

-7 (22
16 r /)’

[3
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when x = 2/3 all the factors in the expressions for 1C, and '2C,_, cancelling
except the last in numerator and denominator.

Thus the ( + 1)th term is greater than the rth so long as

27 (13 - r) 1
16\ r ’
i.e., so long as 351 > 43r. The largest value of r consistent with this inequality

is eight so the greatest term is the ninth.

Example 20. If C, denotes the coefficient of X" in the expansion of (1 + x)", n being
a positive integer, prove that

Co—C,+Cy—...+(—1)C, =0,
Co+C,+Cy+...+C,=2",
and deduce that, if n is even
200+ C, +2C, +C3+2C, + Cs + ... +2C, =3.2"" 1.

We have
Co+Cix+Cyx*+...+Cx"=(1+x) 327
Putting x = —1,

Co—Ci+Co+...+(-I))C,=(1=-1)=0, (3.28)
the coefficients of the various C's being +1 according as their suffices are
even or odd.

Putting x = 1in (3.27), .
Co+Ci+Cy+...+C,=(1+1)=2" (3.29)

Multiplying (3.29) by 3/2, (3.28) by 1/2 and adding
2C,+C, +2C, +...+2C,=%.2"=3.2""},
the coefficient of C, in (3.28) being + 1, since n is even.

3.10. The binomial theorem when 7 is not a positive integer

When n is fractional or negative, it can be shown (but tne proof is
outside the range of the present book) that the series

nin — 1) (n— 1)(n-2)
o 2 + 2 (3)!" B 4. (3.30)

is convergent if —1 < x < 1 and that the limit of its sum is (1 + x)".
This result is known as the binomial theorem for a fractional or
negative index. The points of difference between it and the theorem
for a positive integral index are :—

nin—1)

(1) for positive integral n, the series 1 + nx + o

terminates at the term in x” and its sum is (1 + x)* for all values
of x,

(ii) for fractional or negative n, the series does not terminate, it is
convergent and has (1 + x)* as the limit of its sum only when
—-1<x<l

1+ nx +

X2+ ...
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The following particular cases are worth noting. Puttingn = —11in
(3.30) we deduce that the series
l-x+x2—x3+... :

converges for —1 < x < 1 and the limit of its sum is Changing

1+ x
x to — x we see that the series

1+ x+x2+x3+...

converges for —1 < x < 1 and that the limit of its sum is

1—x
These two series are geometrical progressions with first terms unity
and common ratios ¥ x respectively and the limits of their sums as
given here agree with those obtained from (3.13). Putting n = —2
and changing x to —x in (3.30) we find that the series

14+ 2x +3x2+4x3+...

_ . . 1
converges for —1 < x <1 and the limit of its sum is T=0
Finally writing n = § in (3.30), the series

T4+ 3x — §x2 + 6% — ...
converges for —1 < x < 1 and the limit of its sum is \/(1 + x).

7T+ x

Example 21. Expand HT.)C)(I—+.X—2—)

in ascending powers of x as far as the term
in x*.
Resolving the given expression into partial fractions, we find
T+ x _ 3 4 — 3x
G+00+x) T+x 1+
=31+ x)7"+ (4 =301 + x)"?
=3l—-x+x*-x*+x*-..)
+(@4 =300 - x>+ x*—x%+..)
=T—6x—-x*+7x*+..,

the series being convergent if —1 < x < 1.

Example 22. Use the binomial theorem to find \/(1-05) to four places of decimals.
J105) = (1 + 005)*2 =1 + 4 x 005 — 4 x (005)* + &% x (0-05)° — ...

1 4+ 0025 — 0-000313 + 0-000008 - ...

1-0247 (to four places).

il

]

EXERCISES 3 (d)

1. If x is so small that x* and higher powers can be neglected, show that
(1 — 3x)°(2 + 3x)° = 64 + 96x — 720x2. (L.U)
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Find, by the binomial theorem, the coefficient of x® in the expansion of
(3 — 5xH)*in ascending powers of x. (QE)

Write down and simplify the term independent of x in the expansion of
1y . s .
(3x2 — Z) . Which is the numerically greatest term in this expansion when

x =147 (L.U)
In the binomial expansion. of (1 + x)"*!, n being an integer great¢r than
two, the coefficient of x* is six times the coefficient of x? in the expansion
of (1 + x)*~'. Determine the value of n. (L.U)
If *C, denotes the coefficient of x” in the expansion of (1 + x)", prove that
"C, 4+ 2("C,, )+ "C,.y =""2C,,,. (L.U)
Find the value of n for which the coefficients of x, x? and x* in the expansion
of (1 + x)" are in arithmetical progression. (L.U)

Express 2x3/(1 + x?)(1 — x)? as a sum of three partial fractions; and obtain
an expansion, in ascending powers of x, of this expression as far as the term

involving x’. _ (QE)
Use the binomial theorem to evaluate 0-90*2 correct to four significant
figures. Check the result by using logarithms. (Q.E)

EXERCISES 3 (e)

Find the sum of the terms from the (n + 1)th to the mth term inclusive of
an arithmetical progression whose first term is a and whose second term

isbh. If m = 13, n = 3 and the sum is 12aq, find the ratio b:a. (L.U)
If a', b”! ¢!, d7! are in arithmetical progression, prove that
b = 2ac/(a + c) and find b/d in terms of a and c. (L.U)

Three unequal numbers a, b, ¢ are such that 1/a, 1/b, 1/c are in arithmetical
progression and a, ¢, b are in geometrical progression. Prove that b, a, ¢
are in arithmetical progression. (L.U)

S is the sum of n terms of a geometrical progression, P is the product of
the n terms and R is the sum of the reciprocals of the terms. Prove that
(S/Ry* = P2

The amplitude of the first oscillation of a pendulum is 15°. If the amplitude
of each succeeding oscillation is 0-89 of the amplitude of the preceding
oscillation, find after how many oscillations the amplitude will first be less
than 1°. (L.U)

£1000 is borrowed at 5 per cent. compound interest. Two-thirds of the
amount then owing is paid back at the end of each year. How much will
have been paid back at the end of five years?

The sum of £2000 is borrowed from a building society at 4 per cent. per
annum compound interest, and the capital and interest is repaid by 20
annual payments of £4. Find A and the sum which would pay off the
balance after 10 such payments. (L.U)

If a geometrical progression withk common ratio (1 + ¢)/(1 — ¢) is con-
vergent, prove that ¢ must be negative, but that it is otherwise unrestricted.
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Two such progressions, one with ¢ = ¢, and the other with ¢ = ¢,, each
have their first terms unity. If S; and S, are the corresponding limits to
their sums, show that

S; = 82 =(e; — ¢)2¢qc,
Hence deduce that S, > S, when ¢, is less than ¢, numerically. (L.U)

The first term of a geometrical progression is 7 and its common ratio is 4.
Find how many terms of the progression must be taken in order that the
sum may differ from the limit of its sum by less than 0-01.

Show by induction that the sum of the cubes of the first n positive integers
is in*(n + 1) and deduce that the sum of the cubes of the n + 1 odd
integers from 1 to (2n + 1) inclusive is (n + 1)3(2n® + 4n + 1). (L.U)

If n consecutive terms are taken from an arithmetical progression of
common difference 2, show that

3(" sn - snz) = nZ(nZ - l)a
where s, is the sum of the n terms and S, is the sum of their squares. (L.U.)

A typical car registration number contains three letters of the alphabet and
three of the digits 0, 1, 2, ..., 9. How many such numbers can be formed?
(L.U)

In how many ways can a party of five people be selected from six men and
four women so that there are always more men than women in the party?

Using all the digits 1, 2, 3, 4, 5, 6 how many arrangements can be made
(i) beginning with an even digit, (ii) beginning and ending with an even digit?
Two straight lines intersect at 0. Points 4,, 4,, ..., A, are taken on one
line and points By, B,, . . ., B, on the other. Prove that the number of triangles
that can be drawn with three of the points for vertices is

(i) n%(n — 1), if the point O is not to be used,

(ii) n3, if the point O may be used. (L.U)
In a hand of twelve cards, five are red and seven black. If two cards are
selected at random, find the odds against them both being black.

The odds against a student solving a certain problem are 4 to 3 and the
odds in favour of a second student solving the same problem are 7 to S.
Find the chance that the problem will be solved if both students attempt it.
Prove that in the binomial expansion of (1 + 0:03)!2 the rth term is less
than one-tenth of the (r — 1)th term if r > 4. (L.U)
If the coefficients of x" ™!, x, x"*! in the binomial expansion of (1 + x)'
are in arithmetical progression, prove that

n?—ndr+1)+42-2=0.
Find three consecutive coefficients of the expansion of (1 + x)!* which
form an arithmetical progression. (L.U)

In the expansion of (1 + ax + 2x2)° in powers of x, the coefficients of x?
and x'! are 27 and — 192 respectively. Find a and the coefficients of x3
and x!°. (L.U)

If C, is the coefficient of x in the expansion of (1 + x)", n being a positive
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22.

23.

24.

25.

EXERCISES 57
integer, prove that
Co+C,+Cy+...+C, =2, .
and that
Co+2C +3C,+...4(n+1)C, = (n+ 22" " (L.U)

By using the identity (I — x%)" = (1 — x)(1 + x), or otherwise, prove that,
if n is a positive integer and C, is the coefficient of x, in the expansion of
(1 + x)", then

1-C2+Cl - +(-1)C,2 =0
if n is 0dd but is equal to (— 172" F 2)2(: + ‘:l) M e niseven,  (LU)
1+ 3x — 4x?), . )
Expand l/—(—i—i—“—x—) in ascending powers of x as far as the term in x?°,

1 —2x)?
assuming thfit the v)alue of x is such that the expansion converges.
Express

5x + x?
1= x01 - x?
in the form of partial fractions.

Prove that, when the function is expanded as a series in descending
powers of x, the coefficient of x " is 3n — 1 + (—1)". (QE)

Show that, if x is so small that x* and highef powers of x can be neglected.

then
x\? ] 5x\  15x?
{(1 +_2) - +3x)*} . (1 ~-6)=T. (N.U)



CHAPTER 4

TRIGONOMETRICAL RATIOS FOR ANY ANGLE.
GRAPHS OF TRIGONOMETRICAL RATIOS..
TRIGONOMETRICAL EQUATIONS

4.1. Introduction

The student is assumed to be familiar with the idea of circular
measure and the definitions of the trigonometrical ratios for acute
angles. Thus we take for granted that

x degrees = nx/180 radians. 4.1)
Also if x, y and r are respectively the base, height and hypotenuse of
the right-angled triangle ABC in which the angle BCA is a right angle
and the angle ABC is denoted by 8 (Fig. 1), then

A

B8 'C
FiG. 1.
sinf = y/r, cosf = x/r, tanf = y/x, 4.2)
and ) 1 )
cosec 0 = P secd = osF cotf = and 4.3)
Immediate and important consequences of these definitions are
_y _yr_sin6
tan 6 = X=X cos @ (4.4)
and, since by Pythagoras’ theorem, x2 + y? = r2,
2 2
sin? 6 + cos? § = y—;z-"— 1L @.5)
Also,
2 2 2 2
1+tan?@=1+7 XAy =sec’d, (4.6)

x? x2 7 x? 7 cos?é
and

2 2 2
X yo+ X r
l+cot’fd=1+"5= = -
+ + V2 y? y2  sin? @

S8

= cosec? §. (4.7)
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These relations enable all the trigonometrical ratios to be found
when one is given and are often very useful in casting expressions
involving the trigonometrical ratios into alternative forms.

Example 1. If sin 6 = 1/3 find the values of all the other trigonometrical ratios.
The relation (4.5) gives cos? @ = 1 — (1/3)* = 8/9, so that

cos.0 = 2,/2/3.
1/3 1
From (4.4), tan @ = W = 272

Formulae (4.3) then give cosec 8 = 3, sec 8 = 3/2,/2, cot § = 2/2.

Example 2. Show that sin® 6 — cos® 0 = (sin@ — cos 11 + sin8 cos 8).
sin® 0 — cos® @ = (sin § — cos B)(sin® @ + sin §cos & + cos? 0)
= (sin — cos §)(1 + sin G cos ),

using relation (4.5) in the second factor on the right.

4.2. The trigonometrical ratios for the general angle

Suppose a radius OP, starting from a standard initial position 0X,
is rotated in an anti-clockwise direction. It sweeps out angles which
are conventionally termed positive angles and these may be of any
magnitude. Thus the angle shown in Fig. 2 is 240° (2407/180 or
4n/3 radians). The same position will be reached by OP after rotations
240° + 360°, 240° + 720° or 240° + any integral multiple of 360°.
We should speak of these angles as being of magnitudes 600° (or
107/3 radians), 960° (or 16r/3 radians) and 240° + n x 360 [or
(6n + 4)r/3 radians] respectively.

D

P
FiG. 2 FiG. 3

Angles generated when OP rotates in a clockwise direction are
called negative angles: that shown in Fig. 3 is an angle of —240".

Taking O as origin, two perpendicular lines X'OX, Y'OY as axes
and OP of length 7, let the abscissa and ordinate of the point P with
respect to these axes be x and y. The axes divide the diagram into
four quadrants X0Y, YOX', X'OY' and Y'OX : these are referred to
as the first, second, third and fourth quadrants respectively. The usual
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sign conventions used in elementary graphical work* are taken to apply
to the coordinates x and y of the point P. Thus when P is in the first
quadrant x and y are both positive, when P is in the second quadrant

Y
Lo
L
Ly
(4
b 0 z X
YI
FiG. 4

x is negative and y positive, when P is in the third quadrant x and y
are both negative and when P is in the fourth quadrant x is positive
and y negative. r is taken to be positive for all positions of the line OP.

The trigonometrical ratios for angles XOP of any magnitude are
defined in precisely the same way as for acute angles: thus

sinf = y/r, cosf = x/r. tanf = y/x, (4.8)
and
0 1 0 1 1
cosec = n@ secf = cos 0 cotf = g (4.9)

but the appropriate signs are attached to x and y according to the position
of the point P. Hence for angles in which OP lies in the first quadrant,
since all of x, y and r are positive, the sine, cosine and tangent will be
positive. For angles in which OP lies in the second quadrant, since x
is negative, y and r positive, the sine is positive, cosine and tangent
negative. For angles in which OP is in the third quadrant we can
similarly deduce that the sine and cosine are both negative but the
tangent is positive, while for the fourth quadrant the sine and tangent
will be negative and the cosine positive. The diagram below shows
which of the ratios are positive in each quadrant and may be useful

as an aid to memory.
Sine | Al

Tangent ' Cosine

*See § 14.1.
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4.3. The trigonometrical ratios of some related angles

Some uscful relations connecting the trigonometrical ratios of
certain related angles can be obtained as follows. .

Y Y

/ 2

X’ 1] X X’ [7] X
y /80°+ 6

Y/ Y/
FiGg. § Fi1G. 6

In Fig. 5 the radii OP, OP’ correspond respectively to angles 6 and
—@. It is clear that the abscissae of P and P’ are the same and that
their ordinates are the same in magnitude but opposite in sign. In
other words, changing from —# to +8 is equivalent to reflecting OP’
in the axis X'0OX and this changes the sign of y but leaves x unaltered.
Hence, using (4.8),

sin(—0) = —sinf, cos(—6) = cos4, (4.10)

and, by division,
tan(—68) = —tané. 4.11)
In Fig. 6, POP' is a diameter of the circle centre 0. The angles XOP,
XOP' are respectively 8 and 180° + 6. The addition of 180° to 8 is

equivalent to reflecting OP through O. This changes the signs of both
x and y. Hence

sin(180° + 6) = —sin#, cos(180° + 8) = —cos b, 4.12)
and, by division,
tan (180° + 6) = tan 6. (4.13)

Changing the sign of @ in (4.12), (4.13) and using the results of (4.10),
(4.11) we have

sin (180° — ) = —sin(—6) = sin g,
} 4.14)

cos (180° — 6) = —cos(—6) = —cos b,
tan (180° — ) = tan(—6) = —tané.

In Fig. 7, the angle XOP is 8 and XOP’ is 90° + 6. The addition

of 90° to the angle is equivalent to measuring @ from the axis Y'OY
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instead of from X'OX. The ordinate of P’ is therefore the same as
the abscissa of P and the abscissa of P’ is minus the ordinate of P.
Hence, if x, y are the coordinates of P,

X’ o X

Y/
FiG. 7

sin(90° + 8) = x/r = cos 8, ¢cos(90° + 6) = —y/r = —sinf, (4.15)
and, by division, \
tan (90° + 8) = —cot 6. (4.16)

Changing the sign of @ in (4.15), (4.16) and using the results of (4.10),
(4.11),

c0s(90° — ) = —sin(—6) = sin 6,
tan (90° — 6) = cot 6.

The trigonometrical ratios for angles 270° + @ are obtained by the
addition of 180° in those for 90° + 6. Thus, using (4.15) and (4.12)
we have
sin (270° + 6) = sin {180° + (90° + 6)}

= —sin (90° + 6) = —cos 6,

siri (90° — ) = cos(—8) = cos 6,
} 4.17)

(4.18)
cos (270° + 6) = cos {180° + (90° + 6)}
: = —¢0s5(90° + 8) = sin 6,
and, by division,
tan (270°" + 8) = —cot 6. 4.19)
Changing the sign of § and using (4.10), (4.11)
sin (270° — ) = —cos(—60) = —cos b,
c0s (270° — @) = sin(—6) = —sin 6, } (4.20)
tan (270° — 6) = —cot(—6) = cot 6.

Finally, the addition of 360° (or any integral multiple thereof) does
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not alter the position of P. Hence we can drop the 360° and
sin (360° + ) = sin 0, cos(360° + ) = cos 0, 4.21)
sin (360° — #) = sin (—0) = —sin @, } 4.22)
cos (360° — 8) = cos(—8) = cos b, '
and the results for tan (360° 1 6) can be obtained by division.
It should be noted that for angles —6, 180° + 8, 360° + 4, sines
remain sines and cosines remain cosines. For 90° + 6, 270° + 6, sines
become cosines and cosines become sines.

Example 3. Express sin 135°, tan 140°, sin 1220° and cos(—840°) in terms of the
trigonometrical ratios of positive acute angles.

sin 135° = sin (180° — 45°) = sin 45°.
tan 140° = tan (180° — 40°) = —tan 40°.
sin 1220° = sin (3 x 360° + 140°) = sin 140°

(]

= sin (180° — 40°) = sin 40°.
cos (—840°) = cos 840° = cos (2 x 360° + 120°) = cos 120°
= cos (180° — 60°) = —cos 60°.

EXERCISES 4 (a)
1. If 8 is an acute angle and sin § = 1/4, find the values of the other trigono-
metrical ratios.
2. Iftan @ = 3/4, find possible values for sin 8 and cos 6.

3. Ifcos® = —3/5, find the values of sin § and tan 8 when 8 is in (i) the second
and (ii) the third quadrant.

4. Show that tan  + cot @ = sec § cosec # and that
(sin @ + cos B)(cot § + tan §) = sec § + cosecd.
Prove that tan? A4 — sin? A4 = sin* A sec? A.
Prove that
sin § 1+ cosé 2
1+ cosé sinf  sinf

7. Prove that sin 330° cos 390° — cos 570° sin 510° = 0.

Show that sin (270° — 8) — sin (270° + 6) = cos 8 + cos (180° + 6).

4.4. The graphs of the trigonometrical ratios for acute angles

The graph of sinf can be constructed as follows. Take points
P,, P,, P,, ... on a circle of unit radius and draw a line marked off
in degrees (or radians) in prolongation of the initial line CX (Fig. 8).
If we then plot a point @, such that its abscissa ON, is equal to the
number of degrees (or radians) in the angle XCP, and its ordinate
Q,N, is equal to the height of P, above CX, Q, will lie on the graph
of sin 6. Other points Q,, Q,, ... can be plotted similarly. The graph
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commences at zero and rises to unity when 8 reaches 90°. A rough
table of values of sin @ could be made by measuring the heights of
P,, P,, P;, ... above CX and recording these heights against the
corresponding angles XCP,, XCP,, XCP,, ...

Since, from (4.17), cos 8 = sin (90° — #), the values taken by the
cosine as the angle increases from 0° to 90° will be the same as those

sin 8
Y A
________________ 4 :
........... % :
_______ o i i
Lo L6
C X 0 N NN 90°
Fis. R

taken by the sine as the angle decreases from 90° to 0°. The graph
of cos @ for acute angles is shown in Fig. 9.

To construct the graph of tan 8 we draw a base line CX of unit
length and mark off a line in degrees (or radians) in prolongation of
CX. Points P, P,, P,, ... are taken on the line XY (perpendicular

cos &

é

0 3o° 6o° g0°
Fig. 9

to CX) as shown in Fig. 10. If we then piot a point Q, such that its
abscissa ON, is equal to the number of degrees (or radians) in the
angle XCP, and its ordinate is equal to P X, the point Q, will lie
on the graph of tanf. Other points Q,, Q,, ... can be plotted
similarly. The graph commences at zero and rises faster and faster
as the angle approaches 90°. Again, a rough table of values of tan ¢
could be made by measuring P, X, P,X, P,X, ... and recording these
lengths against the corresponding angles XCP,, XCP,, XCP,, ...

Tables of the trigonometrical ratios for angles between 0° and 90°
more accurate than could be obtained by measurement as indicated
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above are available. Details of their construction are beyond the
scope of the present book but the student will be expected to be able
to use the information contained in such tables.

Y |ton 6
L2 4]
|
1
1
i
)
L3 P i
1
|
P
] I
L2 S VA N
o
] ] 1
" { !
oo
oo 8
--- A A L n
c X o0 N, Ny N 9%°
FiG. 10

Accurate values of the ratios for certain angles such as 45° and 60°
can be obtained from the isosceles right-angled triangle and the
equilateral triangle as follows. In Fig. 11, ABC is an isosceles triangle
right-angled at C: the angle at B (and at A4) is 45°. If CB, CA are each

A
3 /
45° [2°
Y-} H c
Fig. 11 Fig. 12

taken to be of unit length, the hypotenuse AB will, by Pythagoras’
theorem, be of length ,/2. Hence

sin 45° = AC/AB = 1/{/2, co0s45° = BC/AB = 1/\/2,}(4 23)
tan45° = AC/BC = 1. )

In Fig. 12, ABC is an equilateral triangle each of whose sides is

taken to be of length 2. The perpendicular from A to BC will bisect

it at D. Hence ABD is a right-angled triangle of hypotenuse 2, base 1

and height, by Pythagoras’ theorem, /(22 — 1%) or /3. Therefore,
since the angle ABC is 60°,
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sin 60° = AD/AB = ,/3/2, cos60° = BD/AB = 1/2, }

tan 60° = AD/BD = /3. (4.24)

The trigonometrical ratios for 30° can also be obtained from the
triangle ABD of Fig. 12, using AD as its base and BD as its height,
for the angle DAB is 30°. In this way we find

sin 30° = BD/AB = 1/2, cos30° = AD/AB = /3/2, }

tan 30° = BD/AD = 1/,/3. (4.25)

The following table may be a useful aid to memory for these results :—

7} sin? @ cos? @ tan® 8

0° 0 1 0
30° 1/4 3/4 13
45° 12 12 1
60° 3/4 1/4 3
90° 1 0 0

The cosecant, secant and cotangent of these angles follow directly
from (4.3). For example,

1

sec 60° = Sos 60° =

4.5. The graphs of the trigonometrical ratios for the general angle

The results of §§4.3, 44 enable us to calculate the trigonometrical
ratios of any angle from a table of the ratios for acute angles. Thus

cos 170° = cos (180° — 10°) = —cos 10° = —0-9848,

sin 1220° = sin (3 x 360° + 140°) = sin 140° = sin (180° — 40°)

= sin 40° = 0-6428,
sin (—663°) = —sin 663° = —sin (2 x 360° — 57°)
= sin 57° = 0-8387.

To draw the graph of sinf for any angle we have (4.15),
sin (90° + 6) = cos 6 so that the graph for sin 6 for values of 8 between
90° and 180° is the same as that of cos 8 for 8 between 0° and 90°.
Also from (4.12), sin (180° + 6) = —sin @ so the graph for @ between
180° and 360° is the same as that for § between 0° and 180° but is
on the other side of the #-axis. Since sin (360° + 6) = sin @ the graph
repeats itself after 360° and again after 720° and so on. Finally, since,
(4.10), sin(—6) = —sin 6, the graph for negative # can be obtained
from that for positive 8 by reflection in the origin. The graph is shown
by the full curve of Fig. 13.



[4 GRAPHS OF TRIGONOMETRICAL RATIOS 67

Since, from (4.17), cos 8 = sin (90° — 6), the graph of cos 8 can be
obtained by displacing the graph of sin 6 to the left by 90° This is
shown dotted in Fig. 13.

cos 6

13. Graphs of sin 8 and cos 0

For the graph of tan §, we have by (4.11), tan(—8) = —tan @, so
the graph for —90° < # < 0 is obtained from Fig. 10 by reflection in
the origin. Also from (4.13), tan (180° + 6) = tan 6, so the graph for
@ between 90° and 270° is the same as that for 6 between —90° and
90° and so on. The full graph is shown in Fig. 14.
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14. Graph of tan§

The graphs of the trigonometrical ratios show their periodic nature.
Each ratio repeats itself after a certain interval (called the period).
The trigonometrical ratios are examples of periodic functions: the
periods of sin § and cos 8 are both 360° (or 2n radians) while that of
tan 6 is 180° (or = radians). The magnitude of sin @ and cos 6 is always
between +1: half of this range of variation (i.e., unity) is called the
amplitude.

The fundamental relation, sin? @ + cos? 8 = 1, proved in §4.1 for
acute angles remains true for all values of 8. For, as we have seen
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in §4.3, the addition or subtraction of any multiple of 90° can at
worst change a sine into a cosine or vice versa and lead to an alteration
in sign. But sin? 6 + cos? 6 only involves a sine and a cpsine and
variations in sign are unimportant as both terms are squared. Hence
the relation remains valid for all values of 6. Similar arguments can
be applied to show that the relations 1 + tan?8 = sec>8 and
1 + cot? § = cosec? § remain true for all values of 6.

Example 4. Draw the graph of y = sin(2x + 2n/3) from x = 0 to x = 2n. Use your
graph to find the positive values of x which satisfy the equation
x = Ssin(2x + 2x/3). (L.U)
Working in radians, using tables and the relations of §4.3, we can plot the
graph shown in Fig. 15.

Y

¥ .z
y 4 8 3 Y=sinr+%)
Vil

0\/ 'x'.gg?n
1

FiG. 15

Plotting the graph of y = x/5 on the same diagram, we find that the graphs
intersect at three points A4, B, C given by x = 0-48, 2:34 and 3-30 (approx.).
These are the required positive values of x which satisfy the equation
x = 5sin(2x + 2n/3).

EXERCISES 4 (b)

1. Use tables to find the values of
(i) sin 212°, (ii) cos(—110°), (iii) tan 1145°, (iv) sec 1327°.

2. If 90° < A < 180° and sin A = 0-6, use tables to find the values of sin 24

and cos 24. (0.C)
3. Find the pairs of angles between 0° and 180° which satisfy the equations
sin{x + y) =05, sin(x — y) = —0-5. (L.U)

4. Ifxisindegrees, draw on the same diagram the graphs of sin 2xand 1 — cos x
for values of x between 0° and 180°. Hence find an acute angle which satisfies
the equation sin 2x = 1 — cos x. (0.C)

5. By plotting tan x between 0 and n/2, show that the equation tan x = 2x
has a positive root less than n/2 and find this root. Without any further
exact plotting, show that the equation has roots lying just short of 3x/2,
5n/2, etc. (0.C)



4] TRIGONOMETRICAL EQUATIONS 69

6. Draw the graph of y = sin x + 3 sin 3x for values of x between 0° and 180°.
Hence find positive values of x less than 180° which satisfy the equation
sinx + 5sin3x —4=0. (0.C)

4.6. The solution of trigonometrical equations

Trigonometrical equations differ from algebraic equations in that
they often have an unlimited number of solutions. Some equations
can only be solved by graphical methods (see, for instance, Example 4,
page 68). In such cases it is usually best to rearrange the equation
so that the simplest trigonometrical graph is drawn. Thus in solving
the equation x = 5sin (2x + 2n/3) it is preferable to plot graphs of
y = sin (2x + 2n/3) and y = x/5 rather than y = 5sin (2x + 27/3) and
y=x

When a theoretical solution of a trigonometrical equation can be
obtained, the equation can often be reduced to one of the forms
sin@ = ¢, cos @ = c or tan 8 = ¢, where ¢ is a numerical quantity. We
now consider the solution of these three equations.

The simplest to deal with is tan § = ¢ and we commence with this
equation. Angles satisfying this equation are given by the abscissae
of the points of intersection of the graph of y = tan § with a line
parallel to the f-axis and at distance ¢ from it. Suppose that (Fig. 16)
A B, C, .., B, C,...are the points of intersection of the graph
y = tan @ with this line. The abscissae of all such points satisfy the
equation tan @ = c. Suppose one of these abscissae (for convenience
the smallest numerical one is usually selected) is a°. This then is the
abscissa of 4. The abscissa of B is 180° + a°, that of C is 360° + a°,
and so on for points to the right, while the abscissae of B, C, ... are
—180° + a°, —360° + a° and so on. All these results can be included
in the formula (n x 180° + a°) where n is any positive or negative
integer or zero. If a were quoted in radians instead of degrees we
should write the formula (nn + a). Hence the general solution of the
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equation tan @ = c is
(n x 180 4+ a) degrees or (nm + a) radians,

where a is any solution of the equation, but generally taken for con-
venience to be the smallest numerical solution. As an example the
general solution of the equation tan 8 = 1 is, since tan45° = 1,

(n x 180 + 45) degrees or (n + 1)n radians.

If we deal with the solution of cos § = ¢ in the same way, Fig. 17
applies. It should first be noted that since cos § always lies between
+1, there will be no solutions to an equation of this type for which

Y
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¢ is numerically greater than unity. Taking the smallest solution a°
as the abscissa of the point A, other solutions given by the abscissae
of points B, C, ... and B, C’, ... are 360° — a°, 360° + a°, ...
and —a°, -360° + a°, ... These are all included in the formula
(n x 360° + a°). Thus the general solution of the equation cos§ = ¢
when —1 <c< lis

(n x 360 + a) degrees or (2nm + a) radians,

where n is any positive or negative integer or zero and « is any solution
of the equation. As an example the general solution of the equation
cos 8 = 1/2, since cos 60° = 1/2, is

(n x 360 + 60) degrees or (2n + {)n radians.
4
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For the equation sin 8 = ¢, we again suppose that —1 < ¢ < 1 and
Fig. 18 applies. Taking the smallest solution a° as the abscissa of the
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point A, other solutions, given by the abscissae of points B, C, D, ...
and B, C, ...are 180° — a°, 360° + a°, 540° — a°,...and —180° — a°,
—360° + a°, ... The general formula including all these is n x 180° +
(— 1)y"a°. Hence the general solution of the equation sin 8 ="c when
—l<c<lis

(n x 180 + (—~ 1)y'a) degrees or (nn + (— 1)"a) radians,

where again n is any positive or negative integer or zero and « is any
solution of the equation. For example, the general solution of the
equation sin § = 1/,/2 is, since sin 45° = 1/,/2,
(=1y

4
Taking n = 0, 1, 2, 3, ... solutions are 45°, 135°, 405°, 495°, ... while
n= —1, —~2, =3, ... gives the solutions —225°, —315°, —585°, ...

To sum up, if a radians is one solution of the equation

(i) sin 8 = ¢, (— 1 <c < 1), the general solution is nw + (—1)"a,
(i) cos @ = ¢, (— 1 <c<1), the general solution is 2nn + a, (4.26)
(iii) tan # = c, the general solution is nn + a,

where n is any positive or negative integer or zero, and corresponding
expressions for the solutions in degrees.

Many trigonometrical equations can be reduced to one of these
forms and the general solution can then be written down. Examples
are given below and further examples will be found in Chapter 5,
page 83.

(n x 180 + (—1)* x 45) degrees or (n + )n radians.

Example 5. Find all the angles less than four right angles which satisfy the equation
2cos?’8 =1+ sin8. (L.u)

Since cos? @ = 1 — sin? 6, the equation can be written
2—2sin’6=1+sinf, or 2sin?8 +sinf—1=0.

This is equivalent to (2sin 8 — 1)(sin @ + 1) = 0. Hence either sin@ = 1/2

giving 8 = n x 180° + (~1)" x 30°; angles between 0° and 360° included in

this are those for n =0, n =1, ie. 30° and 150°; or sinf = —~1 giving

9 =n x 180° + (~1)(—90°); the only angle between 0° and 360° in this is

that for n = 1, i.e. 270°. Hence the required angles are 30°, 150° and 270°.

Example 6. Find ail the angles which satisfy the equation 4 sec* @ = 3 tan 6 + 5.
(L.U)

Since sec? § = 1 + tan? 6, the equation can be written
4+4tan’f=3tand +5 or 4tan’f - 3tanf—1=0.

This is equivalent to (tan® — 1)(4tan@ + 1) = 0. One set of solutions
corresponds to tan® = 1 and is § = n x 180° + 45°. The other corresponds
to tan @ = —1/4. From tables, the angle whose tangent is —0-25 is —14° 2/, so
that another set of solutions is given by

A =nx180° ~ 14° 2,
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Example 7. Find all the angles between 0° and 360° which satisfy the equation
sin 20 = cos 36. (L.U)
Since cos 38 = sin (90° — 36), we have sin 26 = sin(90° — 36) so that the
general solution is 260 = n x 180° + (—1)" x (90° — 36). Puttingn = 0,2, 4,6
and 8 respectively gives

(i) 26 =90° — 38 or 6 = 18°,

(i) 260 = 360° + 90° — 36 leading to § = 90°,

(iii) 20 = 720° + 90° — 30 leading to 6 = 162°,

{iv) 26 = 1080° + 90° — 30 giving 8 = 234°,
and (v) 260 = 1440° + 90° — 30 giving § = 306°.
Higher even values of n lead to values of # greater than 360° while odd positive
values and negative even values of n all lead to negative values of 6. The value
n = —1, gives 20 = —180° — 90° + 34 leading to # = 270° and values like
n = —3, -5, etc, give angles in excess of 360°. Hence the required angles are
18°,90°, 162°, 234°, 270° and 306°.

Example 8. Find the general value of 6, in degrees, which satisfies simultaneously the
equations tan 6 = /3, sec§ = —2. (L.U)
If tan § = /3, the general solution is § = n x 180° + 60°; if secfd = -2,
cosf = —1/2 and 6 = 2n x 180° + 120°. Solutions of the first equation are
therefore —480°, —300°, —120°, 60°, 240°, 420°, 600°, etc., while those of the
second are —480°, —240°, —120°, 120°, 240°, 480°, 600°, 840°, etc. Values
simultaneously satisfying the two equations are therefore —480°, —120°, 240°,
600°, etc., all of which are included in the formula n x 360° + 240°.

EXERCISES 4 (¢)
i. Find all the values of # which satisfy the equation

2tan @ + 3secf = 4cosb. (L.U)

2. Find the values of x between 0° and 360° satisfying the equation
10sin? x + 10sin x cos x — cos? x = 2. (L.U)

3. Find the values of A and B between 0° and 180° which satisfy the equations
A — B = 12° 18, cos (A + B) = 0-4457. (L.uU)

4. Give the general solution (in radians) of the equation
cos (6 — n/4) = sin 26.
5. Find the general solution of the equation 10sec?@ — 3 = 17tan 6.

6. What is the most general value of @ which satisfies both the equations

tan6 = 1/,/3and sin = —1/2?

EXERCISES 4 (d)
02 _ bz

2. Find the value of

1. Ifsind= find the values of cos 8 and tan 6.

sin? A cosec (75[ - A) — cot? (g - A) cos A. (LU)

f4
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10.

11

12.

13.

14.

15.

16.

17.

18.

19.
20.

EXERCISES 73

If 6 is an angle in the first quadrant and tan 6 = ¢, express all the other
trigonometrical ratios in terms of ¢.

Find the values of cos 3360°, cosec (—840°). . (L.U)
Prove the identity

(1 + secx + tan x)(1 + cosec x + cot x)
= 21 + tan x + cot x + sec x + cosec x),

and verify this result when x = =n/4. (L.u)
If tan? « ~ 2 tan? B = 1, find the possible ratios of cosatocos .  (L.U)

If sec 8 — cos @ = a and cosec 8 — sin 8 = b, prove that
a*bYa* + b + ) = 1.

Prove that cota + tan f = cotatan f.
cot f + tana
Show that
cosf — 1 cosf + 1
sech+ tanf | secO—tanp - 2L+ n0)
Prove that
1+ sin@ cos 8
cosf 1 —sin@ secf + tan6.
If xcos @ + ysin 8 = a and xsin @ — ycos @ = b, prove that
tanf = bx + ay and x? +y? =a? + b2, (L.U)
ax — by
If tan 6 + sin @ = x and tan 8 — sin § = y, prove that
(x? — y*)? = 16xy. (L.U)

Plot on the same diagram the graphs of cos 26 and tan (40° — 6) between
= —20° and 6 = 60°. Hence find two approximate solutions of the
equation cos 20 cot (40° — §) = 1.

Sketch the graph of y = (/2) sin? x and use your graph to solve the equation

2x = nsin? x. (0.C)
Find graphically the values of x between 0° and 180° which satisfy the
equation sin x = 3 cos? x. (0.C)

Draw on the same diagram the graphs of 4sin (x + 30°) and 2 + tanx
for values of x from 0° to 360°. From your graphs obtain the solutions,
within this range, of the equation 4 sin (x + 30°) — tanx = 2. (L.U)

Draw the graph of y = 2sin(x + n/4) between x = —n and x = n. By
drawing another graph, using the same scales and axes, solve approximately
the equation 4x? + 16sin? (x + n/4) = n?. (L.U)
Find all the angles between 0° and 360° which satisfy the equation
6sin’x + Scosx = 7.
Find the general solution of the equation tan 36 = cot 26.
Find the general values of x satisfying the equation

4cosx + 5 = 6sin®x.
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21.

22.

23.

24,
25.
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Assuming r is positive, find r-and a value of § between —180° and 180°
to satisfy the equations rcos @ = —4, rsin 8 = 2'5.

Find all the angles between 0° and 360° which satisfy the equation
3tan®# — 3tan?8 = tan§ — 1.

Find the general solution of the equation
(2tan x — 1)? = 3(sec? x — 2).

Find the general solution of the equation tan x tan 4x = 1.

Find the values of x, in radians, between 0 and 27, which satisfy the equation
6tan?x — 4sin?x = 1. (L.U)



CHAPTER 5

ADDITION THEOREMS. MULTIPLE AND SUB-
MULTIPLE ANGLES. FURTHER TRIGONOMETRICAL
EQUATIONS. THE INVERSE NOTATION.
SMALL ANGLES

5.1. The addition theorems for the sine and cosine

We now consider formulae expressing the trigonometrical ratios of
the sum of two angles in terms of the trigonometrical ratios of the
separate angles. Such formulae are known as addition theorems and
we start by deriving them for a restricted range of angles. Generalisa-
tion of the results to cover all angles can be made but the process is
rather troublesome: a compact general method of derivation of the
formulae making use of a result in coordinate geometry is available
and this is given in Chapter 14, page 262.

Formulae for sin (4 + B) and cos(4 + B) for cases in which the
angle (A + B) is acute can be obtained from Fig. 19. Here the angle
AOB is A, the angle BOC is B, P is any point on OC and PM, PN are
perpendicular to the lines OA4, OB respectively. NH and NK are

C
P
A
B
K %
o M H A
FiG. 19

perpendiculars from the point N on to OA, PM respectively. Since
PM, PN are perpendicular to the arms OA, OB respectively of the
angle AOB, the angle MPN is A. From the right-angled triangle
MPO,
OPsin(4A + B) = MP = MK + KP

= HN + KP, 5.1
since MHNK is a rectangle by construction. The right-angled triangle
OHN gives HN = ON sin A, and the right-angled triangle ONP gives
ON = OP cos B. Hence HN = OPsin A cos B. Also, from the right-

75
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angled triangle PKN, KP = PN cos 4, while the triangle ONP gives
PN = OPsin B. Thus KP = OP cos A sin B. Substituting for HN, KP
in (5.1) and dividing both sides by OP, we have
sin(4 + B) = sin Acos B + cos A sin B. (5.2)
The corresponding formula for cos(4 + B) is obtained similarly;
thus, from Fig. 19,
OPcos(A + B)= OM = OH — HM
= OH — NK.
Also OH = ON cos Aand ON = OP cos Bsothat OH = OP cos Acos B.
NK = PNsinA and PN = OPsin B, giving NK = OP sin A sin B.
Substitution and division by OP leads to
cos(A + B) = cos A cos B — sin A sin B. (5.3)

The formulae for sin (4 + B), cos(4 + B) given in (5.2), (5.3) are

C
A
A 8
K f
]
I )
M o H A

Fig. 20

the fundamental addition theorems. They have been derived only for
the case in which the angle (4 + B) is acute and Fig. 19 applies. For
the case in which 4 and B are both acute but in which their sum
(4 + B) is obtuse, we should work from Fig. 20. The lettering has the
same significance as in Fig. 19 but now M lies on 40 produced. We
now have, from the triangle M PO

MP = OP sin MOP = OPsin (180° — 4 — B).
Since sin (180° — #) = sin 6, this can still be written
OPsin(4 + B) = MP = MK + KP = HN + KP, (54)

and we obtain (5.2) in exactly the same way as before. The formula
for cos (4 + B) can be similarly extended to cases in which (4 + B)
is obtuse

The theorems can be extended to cases in which one of the angles,
say A', lies between 90° and 180° as follows. Let 4’ = 90° + 4, so
that A is acute. Then since sin A" = sin (90° + A) = cos 4 and
cos A" = cos(90° + A) = —sin A4,
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sin(A’ + B) = sin{(90° + 4 + B)
cos{A + B)
cos A cos B — sin 4 sin B,

mow

since 4 and B are both acute,
= sin A’ cos B + cos A’sin B.
Similarly,
cos{A’ + B)

cos (90° + A + B)

—sin(A4 + B)

—sin Acos B — cos Asin B
cos A’ cos B — sin A’ sin B.

Thus both the addition theorems are true when A’ lies between one
and two right angles. A similar argument holds if B is increased by
90°. Hence the theorems are true for any angles between 0° and 180°.
The argument can be extended to show that the theorems are valid
for angles of any magnitude but the full proof becomes rather long.
As stated previously, a much shorter proof for general angles can be
given when an elementary result in coordinate geometry is available
(see Chapter 14, page 262): for the present we shall take the theorems
as applying to angles of any size.

By writing — B for B in the theorems, we have, using (4.10), the
two results, ‘

sin (A — B) = sin A cos (— B) + cos A sin{—B)

b

= sin 4 cos B — cos A sin B, (5.5)
and
cos (4 — B) = cos A cos(— B) — sin A sin (— B)
= c0s A cos B + sin A sin B. (5.6)
Example 1. Show that cos 15° = \/;\/+2 1.

cos 15° = cos (45° — 30°)
= c0s 45° cos 30° + sin 45° sin 30°
_-1_.:/34, 11 3+t
TJ2 2 22 22

Example 2. Use the addition formula to show that cos (90° + A) = —sin A.
cos (90° + A) = c0s 90° cos A — sin 90° sin A
= —sin A4,

since cos 90° = 0, sin 90° = 1.

5.2. The addition theorem for the tangent
By division, the addition theorems for the sine and cosine give
sin (A + B)

tan (4 + B)=—————~COS(A B
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_ sin Acos B + cos A sin B
" cos Acos B — sin Asin B
tan 4 4+ tan B ‘

“1T—-tanAtan B 7
dividing numerator and denominator by cos 4 cos B.
Writing — B in place of B,
_ tan A + tan(—B)
tan (4 = B) =y an Atan (= B)
tanA — tan B (58)

1 + tan Atan B’

Example 3. Show that tan (45° + A) = —i - ::: :'

tan45° + tan4 1 +tan 4

tan (45" + 4) = 1 -tand5°tanA 1 —tan 4’

since tan 45° = 1.

EXERCISES 5 ()
1. Show that cos (x + f)cos(a — i) = cos?a — sin® f.
2. Prove that cot (4 + B) = A B 1
' " cotA +cotB’
3. Show that

sin{A + B+ C) = cos Acos BcosC(tan A + tan B
+ tan C — tan A tan Btan C)

and deduce that, if A, B, C are the angles of a triangle, then
cot AcotB + cotBecotC +cotCcotd = 1. (LU)
Show that asin x + bcos x = \/(a* + b?)sin (x + «) where tana = b/a.
5. Ifkcos@ = cos(f — «a), show that tan 8 = k coseca — cot a.
6. Prove that
sin(4 — B). sin(B—C)  sin(C — A)
cosAcosB ' cosBcosC ~ cosCcosA

$.3. Multiple angles

By writing B = A in the three addition formulae (5.2), (5.3) and
(5.7) we obtain expressions for the sine, cosine and tangent of 24 in
terms of the trigonometrical ratios of A. Thus, from (5.2)

sin(A + 4A) = sin Acos A + cos A sin A4,
or, sin 24 = 2 sin A cos A. (5.9)
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The addition formula for the cosine, (5.3), gives similarly
cos 24 = cos? A — sin? A. (5.10)
By writing sin? A = 1 — cos? 4, this can be written in the alternative
form
cos2A =2cos? 4 — 1, (5.11)
and by writing cos? 4 = 1 — sin? 4 in (5.10), yet another equivalent
form is
cos2A4 = 1 — 2sin? A. (5.12)
Sometimes, particularly in the integral calculus, it is necessary to
express sin? A and cos? A in terms of cos2A4. This can be done by
rearranging the last two formulae to give
cos? 4 = {1 + cos24) and sin®? 4 = (1 — cos24). (5.13)

By writing B = A in the addition formula for the tangent (5.7) we
have
2tan A

Expressions for the trigonometrical ratios of 34 can be obtained as

follows. By writing B = 24 in (5.2) we have
sin 34 = sin (4 + 24) \
= sin A cos 24 + cos A sin 2A.
Substituting cos 24 = 1 — 2sin2 A4, sin 24 = 2 sin 4 cos A gives
sin 34 = sin A(1 — 2sin? A) + 2sin A cos? A,
and, writing cos? 4 = 1 — sin? A we have, after slight reduction,
sin34 = 3sin A — 4sin® 4. (5.15)

A similar process applied to the addition formula for the cosine, (5.3),
gives

cos 34 = cos(A4 + 2A4)

cos Acos 24 — sin A sin 24
cos A(2cos? A — 1) — 2sin? Acos A
cos A(2cos? A — 1) — 2(1 — cos? A)cos A
= 4cos® A — 3 cos A. (5.16)

Proceeding similarly from (5.7), we have
tan 34 = tan (4 + 24)

_ tan A + tan 24

"1 —tan Atan24

2tan A
_ 1 — tan? A

2tan A )’
- tanA(l —tan® 4

tan 4 +
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using (5.14). After reduction this gives
3tan 4 — tan® A

tan 34 = 1-3tan? 4

. (5.17)

5.4. Submultiple angles

By writing A = x/2 in the formulae of the last section we have,
from (5.9),

sin x = 2 sin 1x cos }x, (5.18)
from (5.10), (5.11) and (5.12),
cos x = cos?ix — sin?ix
=2cos*ix — 1 (5.19)
=1 - 2sin?ix,
and from (5.14),
2tanix
1 — tan?4x’
These formulae enable us to express the sine, cosine and tangent
of an angle in terms of the tangent of the half angle. If we write
t = tandx, (5.21)

tan x = (5.20)

(5.20) gives immediately ‘
tan x = 2t/(1 — ¢2). (5.22)
Formula (5.18) can be written
sin x = 2 tan x cos? {x

_ 2tanjx
~ sec?ix
2tanix 2t
T 1+ tan?ix 1 4% (523)
Also, from (5.19),
cos x = cos? 4x(1 — tan®4x)
1 —tan?3x
T sec?ix
1 —tan?ix 1 -—-¢2
T 1+ tan?dx 0 147 (5.24)
The three formulae
. 2t 1 -2 2t ,
= ———— = —— t = —— .
Sinx = y——7, COSX =17y tanx =, —jy (5.25)

where t = tan4x are useful in the solution of a certain type of
trigonometrical equation (see p. 84). They also have other important
applications.
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cos 30  cos 66
cos@  cos20

cos30 cos6d 4dcos*f — 3cosf 4dcos?20 — 3cos26

cos®  cos20 cos 8. cos 20
=4cos?d — 3 — (4cos®20 — 3)
= 4(cos? § — cos? 26)
= 2{(1 + cos26) — (1 + cos46)} = 2(cos 20 ~ cos 46).

Example 4. Prove that

= 2(cos 20 — cos 46). (L.U)

Example 5. If tan8 = 4/3 and if 0° < 8 < 360°, find, without tables, the possible
values of tan 16 and sin 16.

Let t=tan}6, then 4/3 = tan@ = 2t/(1 — t?), giving 4 — 4t = 6t or
2t + 3t - 2 = 0. This gives (2t — 1)(t + 2) = O leading to t = 1/2 or —2, and
these are the required values of tan 46.

To find sin 46, we have
t = tan 40 = sin 16 sec 40 = sin $6(1 + tan?46)'?,
so that sin 46 = t//(1 + ¢*). With ¢ = 1/2 this gives
sind0 = (1/2)/J/(1 + 1/4) = 1//5;

andwitht = —2,sin 30 = —2//(1 + 4) = —2/(+./5) = 2//5if Bis to be less
than 360° and therefore 46 less than 180°.

EXERCISES 5 (b)

1. Iftan®a — 2tan® § = 1, prove that cos 2a + sin? § = 0. (L.U.)
2. Ift = tan 16, express the square root of
(1 +sin@)Bsinf + 4cosf + 5)

in terms of z. (L.U)

3. Ifsin30 = pandsin? @ = 2 — g, prove that p? + 16> = 12¢% (L.U)

. Prove that 2cot§4 + tan A = tan A4 cot® $4. (LU)

5. If2cosf = x + 1/x, show that 2 cos 30 = x> + 1/x>. (L.U)
1—-x

6. IfsecA —tan A = x, prove that tan 34 = (L.U)

1+ x

5.5. The factor formulae

The addition formulae for the sine and cosine can be used to express
sums and differences of sines and cosines as products. Starting from
the addition formulae

sin{A + B) = sin A cos B + cos A4 sin B,
sin {A — B) = sin A cos B — cos 4 sin B,

addition leads to

2sin Acos B =sin(4 + B) + sin{4 — B), (5.26)
and subtraction gives

2cos Asin B = sin(A + B) — sin(4 — B). (5.27)
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Similarly the addition formulae for the cosine

cos (A + B) = cos A cos B — sin A sin B,
cos(A — B) =cosAcos B + sin Asin B,
give 2cos Acos B =cos(A + B) + cos{(4A — B), (5.28)
and —2sin A sin B = cos(4 + B) — cos(A ~ B). (5.29)
These four formulae express products as sums.
By writing A+ B=C, A — B=D, so that A =4C + D) and
B = {{C — D) these formulae become
*sin C + sin D = 2sin $(C + D) cos ¥(C — D),
sinC —sinD = 2cos%(C + D)sin %(C — D),
cos C+cos D = 2 cos3(C + D)cos+C — D),
cos C—cos D = ~2sin{(C + D)sin 3(C — D).
These formulae, which express sums as products, are of great use and
are often called the factor formulae. It is useful to remember the results
in words; e.g., the sum of the sines of two angles is equal to twice the
sine of half the sum of the angles multiplied by the cosine of half the
difference of the angles and so on. The minus sign in the last formula
should be noted.
sin 34 sin6A + sin Asin2A

Example 6. Prove that Sin 34 cos 64 1 sin A cos 24 = tan SA.

Using (5.29) and (5.26),
sin 34 sin 64 + sin A sin 24
sin 34 cos 64 + sin A cos 24
_ —300s94 + 4 cos(—34) — 1cos 34 + cos(—A)
~ 1sin94 + {sin(—34) + {sin 34 + {sin(—A)
cos A — cos 94
~sin 4 + sin 94

—2sin (4 + 94)sin {4 — 94)

(5.30)

= Zcos KA + 94) sin }9A4 = A) * U8 (530}
sin 54 sin 44
= cosSAsindd _ lan4

Example 7. Without using tables, prove that cos 165° + sin 165° = cos 135°.
By the last of the factor formulae (5.30),

cos 165° — cos 135° = —2sin §(165° + 135°) sin 4{165° — 135°)
—2sin 150° sin 15°

—25in (180° — 150°) sin (180° ~ 15°)

— 2 sim30° sin 165°

—sin 165°,

since sin 30° = 1/2. Hence cos 165° + sin 165° = cos 135°.

[ I T

5.6. Further trigonometrical equations
The formulae of the last section enable certain trigonometrical
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equations to be reduced to equations of the form sin 8 = ¢, cos ¥ = ¢
or tan f§ = ¢, the general solution of which is known (Chapter 4,
page 71). The following examples illustrate the methods. .

Example 8. Find all the values of 8 which satisfy the equation
cosp8 + cos(p + 2)0 = cos 8.

Using the third of the factor formulae, the equation can be written
2cos(p + 1)dcos 8 = cos ),

or, cos@{2cos(p + 1)8 — 1} = 0.

1

Hence either cos@ =0, giving § = (2n + -12-)71 or cos(p + 1)8 = 3

) N 1( 1)
giving (p + 1) = (Zni )n,x.e.,ﬂ—;—:—l- 2n + 3 n.

Example 9. Find the general solution of the equation 2 sin 3x sinx = 1.
By formula (5.29), the equation can be written
—cosdx + cos2x =1,
and using the formula 2 cos? 2x — 1 = cos 4x, we have
—2cos?2x + cos2x =0 or cos2x(2cos2x — 1) =0,
so that either cos2x =0 giving 2x =(2n + d)n, ie, x=(n + Pn; or
cos2x = 4 giving 2x = 2n + Hn e, x = (n + .
5.7. The equation a cos 8 + b sin § = ¢

The equation a cos @ + b sin § = ¢ in which q, b and ¢ are supposed
known numerical quantities, often occurs in practical applications.
There are various methods of solution: here we shall consider two.

In the first method, we divide by \/(a*> + b?) and obtain

FiG. 21

a b . ¢
WCOSQ + Wsm@ = m
If we introduce an angle y whose tangent is b/a, a glance at Fig. 21
shows that a/,/(a®> + b?) is cosy and b/,/(a®> + b?) is sin y. Hence the
equation can be written
c

cosfcosy + sinfsiny = NCETS
(a* + b?y
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c
or, COos (0 -y = m
The equation has now been reduced to one of the standard forms
whose general solution is known. Hence a general value of 8 — y can
be written down and, since y is a known angle, # can be found. For
real solutions to exist it is necessary for ¢ to be numerically less than
/(8% + b*). More precise details of the method of solution can be
obtained from Example 10 below.
The second method makes use of the formulae (5.25), i.e., if t = tan 16
then
sinﬂ———iZt cos0————il_t2
Tl T 147
Substitution in th~ given equation g cos @ + b sin § = ¢ and multiplica-
tion throughout by 1 + 2, gives
a(l — t3) + 2bt = (1 + t3),
or, @+cy? -2t —(@a~c)=0.
This quadratic equation gives two values of ¢ (or tan {6) from which
general values of 8 can be derived. Again precise details will be found
in Example 10 where the equation is solved by both methods.

Example 10. Find the general solution of the equation 2 cos @ — sin@ = 1.
Method (i) Dividing by /{2* + (—1)*} or /5 we have
%cosﬂ - 713sin0 = %
Taking tany = —1/2 so that, from tables, y = —26° 34, 2/,/5, —1/,/5 are
respectively the cosine and sine of this angle and we have
cos 8 cos (—26° 34) + sin &sin (~26° 3¢) = 1/,/5,
or, cos (8 + 26° 34) = 1//5 = 0-4472.

Now the angle whose cosine is 0-4472 is 63° 26, so using the general solution
given in (4.26),

6 + 26°34' = n x 360° + 63° 26

The positive sign on the right leads to the solutions

8 =n x 360° + 36° 52,
while the negative sign gives § = n x 360° — 90°.
Method (i) Writing sin0 = 261 + t3), cos@ = (I — /1 + t3), where
t = tan 46, and muitiplying throughout by 1 + ¢, we have

21— ) —2t=1+1¢%
or, I+ 2u-1=0.

This can be written (¢ + 1)(3t — 1) = 0. The root t = —1 gives tan46 = —1,
so that 46 = n x 180° — 45° and @ = n x 360° — 90°. The root ¢t = 1/3 leads
to tan 40 = 4, 40 = n x 180° + 18°26' and @ = n x 360° + 36° 52’ as before.
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EXERCISES 5 (¢)

1. Prove that sin A4 sin (60° — A4)sin (60° + A) = 4 sin 34. (L.U)
2. H4 + B+ C = 180° prove that ¢

sin 4 + sin B + sin C = 4 cos1A cos 4B cos iC. (QE)

3. If cosA—cosB=p and sin 4 —sin B = q, express cos(4A — B) and

sin (4 + B) in terms of p and q. (L.U)

4. Find all the angles between 0° and 360° which satisfy the equation
cos 0 + sin 36 = cos 26.
5. Find the general solution of the equation
sin @ — sin 26 = sin 48 ~ sin 36.
6. Use the appropriate factor theorem to find the general value of x satisfying
the equation cos px + cosgx = 0.

7. Find all the angles between 0° and 360° which satisfy the equation

cosx + Tsinx = 5.
8. Find the value of @ less than 360° which satisfies the equation

3cosf —4sinf = 5.

5.8. The inverse notation
If sin @ = x where x is a given quantity numerically less than unity
we know that @ can be any one of a whole series of angles. Thus if
sin@ = 1/2, 8 = nn + (—1)"(n/6) and @ is “‘many-valued”. The inverse
notation § = sin~! x is used to denote the angle whose sine is x and
J e
6=sin"'x

E
FiGc. 22

the numerically smullest angle satisfying the relation x = sin 8 is chosen
as the principal value. Here and in what follows we shall deal only
with principal values and understand the statement § = sin™'x to
mean that 0 is the angle lying between — n/2 and /2 radians whose sine
is x. The statement 0 = sin~ ! x is read as 0 equals the inverse sine of
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x (or sine minus one x) and an alternative notation, more commonly
used on the Continent, is § = arc sin x.

The graph of § = sin~! x is, on this understanding, easily seen to
be that part of the graph x = sin @ given by —n/2 < 0 < n/2 with the
x-axis horizontal and the f-axis vertical. This is shown in Fig. 22.

6
+7

B-cos’x

-7 o 7
+ —~+— + z

FiG. 23

In a similar way, 8 = cos™! x will be taken to denote the smallest
angle whose cosine is x. Since the cosine takes the same values for
negative as for the corresponding positive angles and we require a
notation which gives an unique value to § when x is given, we conven-
tionally take @ to be the angle lying between 0 and n radians whose cosine

is x. For example, cos ™! (%) = g and cos™! (— %) = _Z?Tt The graph

of @ = cos™ ! x is easily derived from that of x = cos @ and is shown
in Fig. 23.

Fig. 24

The inverse tangent is similarly defined but since, unlike the sine
and cosine, the tangent can take all values, x is quite unrestricted in
value. § = tan~! x is taken to mean that @ is the smallest angle whose
tangent is x and 6 lies between —n/2 and n/2 radians. Thus
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tan" ! (1) = n/4 and tan"!(—1) = —n/4. The graph of § = tan™' x
is given in Fig. 24.

The inverse cosecant, secant and cotangent are similarly defined.
In order that they may be single-valued, we choose cosec™! x to denote
the angle between — /2 and n/2 whose cosecant is x while sec™ ' x
and cot™!x are taken to mean the angles lying between O and n
radians whose secant and cotangent respectively are x.

It follows from these definitions that

“lx)=x, tan(tan™!x)= x,etc. (531)

and these relations will be found useful in some of the examples and
exercises given below Care should be taken to avoid confusion
between the inverse sine, cosine, etc. of x and the reciprocals of sin x,

sin(sin™! x) = x, cos(cos

. 1
cos x, etc. The latter should always be written —— or cosec x,
sin x 08 X

or sec x, etc.
The general solutions of the three equations sind = ¢, cos8 = ¢,
and tan 6 = ¢ given in (4.26) can be compactly expressed in this inverse
notation. Thus if
(isinf=c(-1l<c<l), @=nn+ (=1 sin"! c,}

(i) cos@=c,(—1<c<1l), @=2nn+cos e

(iii) tan 0 = c, f=nr+tan"'c

Example 11. Show that

(5.32)

(@cos ' (=x)=m—cos 'x, (b) sin"'(—x)= —sin"'x.

{a) (i) Suppose that x is positive and let = cos™' x. Then 6 lies between 0 and
7/2 and x = cos #. Hence

—x = —cosfl = cos(n ~ B),
giving cos”'(=x)=n—80=n—cos""'x.
(i) If x is negative, let x = —y so that y is positive. Then cos” ! (—y)

= n — cos~ ! y by (i) above. Hence

cos tx=m—cos ! (~x)
and slight rearrangement gives

cos™'(—x)=nm —cos”!x
(iii) If x is neither positive nor negative, it must be zero. Hence cos™ ! (—x)
=cos 1(0) = n/2 and cos ™! x = cos™ ! (0) = /2, so that

n—cos 'x=n—1in=4n=cos™'(—x)

Hence cos™ ! (~x) = n — cos ™! x for all values of x (provided, of course.
that x is not numerically greater than unity).

(b) The identity sin™! (—x) = —sin~' x can be established in a similar way and
is left as an exercise for the student.

Example 12. Show that cos™ ' x + sin™ ' x = n/2.
(i) 1.ct x be positive and let & = cos™ ! x. Then @ lies between 0 and z/2, and
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x = cos 6. Hence

x = cos @ = sin (4z — 0),
giving sin"!x=4x -8 =4n ~ cos"'x, -
and the required result follows.

(i) Let x be negative and let x = —y so that y is positive. By (i) above,
cos™'y +sin"ly=7n/2 giving cos”'(—x) + sin"!(—x) = n/2. But, by
Example 11,

cos '{—x)=n—cos"'x and sin"'(-x)= —sin"'x,
so that
r—cos 'x—sin"'x = n/2
giving cos™'x +sin”!x = n/2.

(ili) If x is neither positive nor negative, it must be zero. Hence
cos 'x=cos"!(0)=n/2 and sin~!x = sin~!(0) =0,
giving cos™ ' x + sin~! x = /2.
Hence the identity cos™'x + sin™'x = n/2 is valid for all values of
x(~1<x<1)
Example 13. Show that tan™* (1/3) + sin™ ' (1/,/5) = n/4.

Let a =tan™*(1/3), B = sin™'(1/{/5), so that tana = 1/3 and sin § = 1/,/5.
Hence f is the angle shown in the right-angled triangle (Fig. 25) in which the

5 1

Fic. 25
height is 1 and the hypotenuse is /5. The base is \/(5 — 1) or 2 and we deduce
that tan § = 1/2. Hence
tan™ ' (1/3) + sin ' (1//S) =a + B
= tan" ! {tan (a + )}, by (5.31),

—tan“{ tan a + tan f }
N { ~ tanatan B

- (i)

=tan"' (1) = n/4.

EXERCISES 5 (d)

1. Evaluate sin™' (1/,/2), cos ' (—/3/2), sec™! 2 and cot™* (\/3).
2. Showthattan™!(—x) = —tan™ ' x.
3. Provethattan™*x + cot™!x = n/2.
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4. Prove that 2sin~! (l) = sin~?! (ﬁ)

2 2
5. Show thatcos™!(¢2) + 2tan~ ' (}) = sin" ' (3). .

6. 1If all the angles are acute, show that
cos™!x + cos™'y = cos™! [xy — /{(1 — xH)(1 - y)}}
7. Show that there is a positive value of x which satisfies the equation
tan"'(2x + 1) + tan™ ! (2x — 1) = tan~! 2, and find this value.

8. By drawing the graphs of y = tanx and y = 2x show that the smallest
positive root of the equation tan™!2x = x is the circular measure of an
angle of about 67°.

5.9. Small angles
If we plot on the same diagram the graphs of siné, 8 and tané

1Y
’0
Q Y
! 4\#\ 5in [}
3 EN
" " " 6
o 5 H
FiG. 26

for values of 8 in radians a figure like Fig. 26 results. It is apparent
that for 0 < 6 < n/2,

sinf < 6 < tan 6, (5.33)

and that these three quantities are approximately equal to one another
for small values of the angle 6.

Fis. 27
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These inequalities and approximations can also be inferred from
Fig. 27 in which the chord PQ subtends an acute angle 8 at the centre O
of a circle of radius ». The tangent to the circle at P meets OQ pro-
duced at T If OX is the bisector of the angle POQ it will bisect the
base of the isosceles triangle POQ at right angles at X. Hence
OX =rcos30, PQ = 2PX = 2rsin %0 and the area of the triangle
POQ = 1PQ.0X = j(2rsinif.rcos30) = 1r*sin 6. The area of the
sector POQ is 3r* @ (where 6 is in radians) and since OPT is a right
angle, PT = rtan @ and the area of the triangle OTP

=10P.PT=}r’tané.
From the figure,
area of triangle POQ < area of sector POQ < area of triangle POT,
or, ir¥sinf <3r’ 6 <4 tané,
which, on division by 4r? give
sinf < § < tan 6.

It is also clear that the areas of the three figures considered approach
equality as the angle 8 diminishes.

Dividing the inequalities (5.33) by sin f we find 1 < 6/sin § < 1/cos 6,
and this can be written 1 > (sin 6)/0 > cos 8. This in turn can be
written

0<1—§l—r;—€<l—cos().
Since 1 — cos @ = 2 sin? 16 and since sin § < 6, sin %0 will be less than
30 so we'have 1 — cos 8 < 2(26)* or 1 — cos 8 < 6. Hence
0<1- %Q < 162,
and 1 — (sin 6)/8 can therefore be made as small as we please by making
@ sufficiently small. Another way of expressing this is to write
sin 8

— = —6,

0

where ¢ is a quantity which we may make as small as we please by
taking 6 to be sofficiently small. Still another way of expressing the
same thing is to say that the limit of (sin )/@ as 8 tends to zero is

unity or, symbolically

lim. (-sinj) =1 (5.34)
6—-0 0

We also infer from the foregoing that when 8 is small, sin@ is

approximately equal to 6 (in radians). Also, since cos§ = 1 — 2sin? 30

and since sin 16 is approximately equal to 16, an approximate value

of cos@ when 6 is small will be 1 — 2(16)> or 1 — 462 A coarser
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approximation will be cos @ = 1 for small 6. As examples, consider
the values given by these approximations when the angle is 4°. The
radian measure of 4° is 00698 so that the approximation’ sin 8 = 0
gives sin 4° = 0:0698, while the approximation cos § = 1 — 46? gives
cos4° = 1 — 3(0-00487) = 0:9976. Both of these values are correct to
four decimal places.

Example 14. The elevations of the top Q of a flagstaff PQ from three distant points
A. B. C which are in a horizontal line with P are 8, 20 and 30 respectively. Prove

that AB = 3BC approximately. (L.U)
The three right-angled triangles CPQ, BPQ, APQ give
cp cos 30
67, = cot 30 = ;in—30’
BC + CP cos 260
“oP cot 26 = sin 26’
AB + BC + CP cos @
—————— =cotf = ——
()4 sin §
Q
g 26 £
A B8 4 P
FiG. 28

Since the points A4, B, C are all far from P, the angles 8, 26, 30 will all be small.
The cosines can therefore be replaced approximately by unity and the sines by
the angles in radian measure. Hence we can write approximately

cCp 1 BC CP 1 AB BC CP 1

e — = ==

QP 3¢ QP QP 28 QP QP QP @
Subtracting the first of these relations from the second and the second from the
third we shall have approximately

BC_1 1 1 AB 1 1 1

and

By division we then have AB/BC = 3, approximately.

Example 15. Find an approximate value of the acute angle which satisfies the equation
sinf@ = 0-52.

Since sin 8 is nearly equal to 0-5,  must be nearly n/6 radians. Let 8 = g + €
where ¢ is therefore small. Then

. [n .m n .
0-52 = sin (6+e) =sm€cose + cos = sine.

Since sin (n/6) = 1/2, cos (n/6) = \/3/2, and, because ¢ is small, cose = 1,
sin ¢ = ¢ approximately, we have

052 =_+ %}6,

D] e
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giving €= % x 002 = 00231,
Hence € = 00231 radians or 1° 19’ approximately and § = 31° 19"

EXERCISES 5 (¢)

Find an acute angle which approximately satisfies the equation sin § = 0-48.

The diameter of the bull’s eye of a certain target is 0-0254 m. At what distance
will it subtend an angle of 30 minutes?

In a right-angled triangle ABC, C is the right angle, the side BC = a and the
side AC = b. Show that the angle ABC lies between b/\/(a*> + b?) and
b/a radians.

Assuming that sin @ = @ — k6°, where k is a numerical constant, is a sufficient
approximation to the value of sin # when # is a small angle, use the formula
sin 3¢ = 3sin @ — 4sin® @ to show that k = 1/6. (This result gives, of course,
a better approximation than sin 8 = 6.

Prove that the perimeter of a regular polygon of n sides inscribed in a circle
of radius R is 2nR sin (n/n) and use the approximation of Exercise 4 above
to find the difference between this perimeter and the circumference of the
circle when R = 30 m, n = 200.

Prove that if 0 < 6 < #n/2,sin 6 > ¢ — 16°.
EXERCISES 5 (f)

Prove that tan (45° + 6) — tan (45° — 6) = 2tan 26.

If tana = af(a + 1) and tan f = 1/(2a + 1) find the smallest value of the
angle a + B.
Show that sin(a + f) sin (a — f) = sin? a — sin? g.

Express tan (4 + B + C) in terms of tan A, tan B and tan C.
Prove that
. 2tan*tan®
sin a sin f 22
cosa + cosf a I QE)
1 — tan® - tan? =
2 2
Prove the identity
(sin 2a — sin 2f) tan (@ + B) = 2(sin’ a — sin? f). (L.U)
If tan §x = cosec x — sin x, prove that tan’{x = -2 + /5. (L.U)
If sin @ + sin 20 = a and cos & + cos 20 = b, prove that
(a* + b?)(a* + b2 — 3) = 2b. (L.U)
Prove that
tana + tan (60° + a) + tan (120° + a) = 3 tan 3a. (L.U)
Prove that

sin® A + sin® (120° + A) + sin® (240° + A) = —3 sin 34. (LU)
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EXERCISES 93

Establish the identity
sin @ + sin (@ + «) + sin (6 + 2a) + sin (@ + 3a)

= 4sin (0 + ?) COS & COS . (L.U)

2
Prove that
sin 3x + 2sin 5x sin? x + sin 7x = cos x(sin 6x + sin 4x). (LU)
Prove that
1, cosA 1+ cosA L
2cot2Acot3A = T~ cosA osd (L.U)
Find all the angles between 0° and 180° (inclusive) which satisfy the
equation cos x — cos 7x = sin 4x. (L.U)
Solve the equation 10sin? § — 5sin 260 = 4, giving the values of § between
0° and 360°. (L.U)
Solve the equation 2sin 8 + 3cosf = —1, stating all solutions for the
range 0 < 6 < 27. (Q.E)
Solve completely the equation sin 38 cos 30 — cos? 20 + § = 0. (L.U)
Find a pair of angles lying between 0° and 180° and satisfying the equations
sinAd + sinB =095 4 — B = 120°. (LU)
Find all the angles between 0° and 360° satisfying the equation
sin28 —~ 2¢cos 20 = sinf — 2cos @ + 2. : (L.U)

Iftan @ = Atan (A — 6), show that
(A—1sin A = (A + 1)sin(20 — A).

Hence, or otherwise, find the values of & between 0° and 360° which satisfy
the equation tan § = 2 tan (60° — 6). (L.U)

Find two values of 6 less than x/2 satisfying the equation

8secd — 4tanf =17.
Write down the general solution of the equation. (L.U)
Prove that

4tan' () — tan~! (k) =

NN

Prove that
cot™!(3) = cot™1(3) + cos™' (3).
Find x from the equation tan™ ' 2x + tan~! 3x = n/4.

If 6 is an acute angle such that cos @ = 1 — x, where x is so small that
x? is negligible compared with unity, prove that cos20 = 1 — 4x and
cos 3¢ = 1 — 9x approximately. (LU



CHAPTER 6

RELATIONS BETWEEN THE SIDES AND ANGLES
OF A TRIANGLE. THE SOLUTION OF TRIANGLES.
HEIGHTS AND DISTANCES

6.1. Notation

A triangle has six parts or elements—three sides and three angles.
If A, B'and C are used to denote the angles of the triangle, it is con-
ventional to denote the sides opposite these angles by the corresponding
small letters a, b and ¢ respectively (Fig. 29).

FiG. 29

The sides of a triangle are independent of one another except for
the fact that the sum of any two of them must be greater than the
third. The angles, however, are not independent. Since the sum of
the angles of any triangle is 180°, the third angle is known if two angles
are given. There are thus five independent elements in a triangle,
three sides and two angles. Later in this chapter we shall see that if
three elements of a triangle, one at least of which is a side, are known,
the other three can be found. The process of calculating the unknown
elements of a triangle when three of its elements are given is termed
the solution of the triangle.

The early part of this chapter is devoted to the derivation of
relations between the sides and angles of a triangle. In the later
sections, the arrangement of the computations involved in the numerical
solution of triangles is discussed and examples are given of some prac-
tical applications to problems in heights and distances.

6.2. The sine formula

Let O be the centre of the circle circumscribing the triangle ABC.
Join BO and produce it to meet the circle again at D. Join DC.
Figs. 30, 31 apply respectively when the angle A of the triangle ABC
is acute or.obtuse. In both diagrams, the angle BCD, being the angle
in a semi-circle, is a right angle. In Fig. 30, the angle BDC is equal
to the angle BAC in the same segment, while in Fig. 31, the angle BDC
is equal to the supplement of BAC, since the points B, 4, C and D

94
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are concyclic. If R is the radius of the circumcircle so that BD = 2R,
the right-angled triangle BCD gives,

in Fig. 30, BC = 2R sin 4, .
in Fig. 31, BC = 2R sin (180° — A) = 2R sin A.
Hence in both cases, since BC = a,a = 2R sin A.

By joining AD instead of DC weé could prove similarly that
¢ = 2R sin C. By starting our construction from C, instead of B, we

FiG. 3]
could show in the same way that b = 2R sin B. These three results
can be displayed in the formula

a b c

sind  sinB  sinC 2‘R’ 6D
a result usually known as the sine formula. In certain cases (see for
instance, page 105) this formula enables the solution of a triangle to
be carried out and it also enables the radius R of the circumcircle of
a given triangle to be found.

6.3. The cosine formula

In Figs. 32 and 33, BD is the perpendicular from B on to the base
B8

¢ D A ¢ 2
Fig. 32 Fig. 33
CA, or CA produced, of the triangle ABC. The first diagram applies
when the angle A is acute, the second when A is obtuse. In each figure
the right-angled triangle DAB gives
BD = csin A.

In Fig. 32, DA=ccosAAand CD=CA—-DA=b—-ccosA
In Fig. 33, AD = ccos DAB = ccos(180° — A) = — ccos 4
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and CD =CA+ AD =b — ccos A.
Applying Pythagoras’ theorem to the right-angled tnangle DCB in
either figure,
= CD? + BD?,
or, a’> = (b - ¢ cos A)2 + ¢?sin® A
= b? — 2bccos A + c* (cos? A + sin? A),
which, using the identity sin? 4 + cos®> 4 = 1, gives
2 = b? + ¢* — 2bccos A. 6.2)
The two similar formulae
b* = ¢? + a* — 2cacos B,
¢ =a%*+ b* - 2abcosC,
can be similarly derived. These are the cosine formulae and are useful

in the solution of triangles when at least two sides are given (see
page 109).

Example 1. In a triangle ABC, prove that a* = (b — c)* + 4bc sin®> 44 and hence

be) si
that a = (b — c)sec ¢ where tan ¢ = ?L;l”%éﬁ (L.U)
Since cos 4 = 1 — 2sin? 44, the cosine formula
a? =b? 4+ ¢ — 2bccos A
gives '
a? = b* + ¢? — 2bc(l — 2sin?1A4)
= (b — ¢)* + 4bcsin? $4.
Using the given expression for tan ¢, this can be written
ad=pb-cP+pb- c)ztan ¢
= (b - c)*(l + tan® ¢)
= (b — c)*sec? ¢,
leading to = (b — c)sec ¢.
Example 2. Prove that in any triangle ABC, -0 _ 5in(A = B) (L.U)
xample 2. Prove n any triangle T T AT B UL

From the sine formula, g = 2R sin 4, b = 2R sin B, ¢ = 2R sin C, so that after
dividing numerator and denominator by 4R?,

o’ —b* sin*A —sin’B_ sin*4 —sin’ B
c? sin? C " sin*(4 + B) '
since C = 180° — A — B and hence
sin C = sin (180° — 4 —~ B) = sin(A + B).
This can be written
a® — b _sin4 + sin B)(sm A — sin B)
¢* sin2 (A + B)
_ 2sin{{4 + B)cos {4 — B).2cos}{4 + B)sin}{4 - B)
- 2sin{(4 + B)cosi(4 + B)sin(A + B)

using (5.30) and (5.9).
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This simplifies to
a* —b* 2siny{A4 — B)cos}{A — B) sin(4 — B)
- sin (4 + B) " sin{4 + B
EXERCISES 6 (a)

1. With the usual notation for a triangle ABC, prove that
acosA + bcos B = ccos(A — B). (L.U)

2. With the usual notation for a triangle ABC, show that c? can be expressed

in the form
(a + b)*(1 — k*cos?10),

and obtain the value of k2.
3. Prove that in a triangle ABC with circumcircle of radius R,
acos A + bcos B + ¢cos C = 4R sin 4 sin Bsin C.
4. If, in a triangle ABC, ab = c?, prove that
cos(A — B)+ cosC + cos2C = 1.
5. With the usual notation for a triangle ABC, prove that
(b+cjtaniA — (b — c)cot3A = 2bcot B.
6. Prove, in the usual notation for a triangle, that if
b+c c+a _a+b
i1 12 13 °

then,
sinA sinB sinC cosA cosB cosC
= = and = =

7 6 5 719 25 °

(L.U)
6.4. The area of a triangle
Let A denote the area of the triangle ABC and, in Fig. 34, let BD
B8

]
]
i
|
i
|
|
|
H
2}

c A
FiG. 34
be the perpendicular from B on to AC. Then since BD = csin A
A =1CA.BD = }bcsin A. (6.3)
In the same way we could show that A = icasinB or {absin C.
1
o . a _ zabc . .
By writing (6.3) in the form A= A Ve could rewrite the sine
formula (6.1) as
a b c abc
sind sinB sinC 2R =54 (64)
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To find an expression for the area of a triangle in terms of the sides
alone, we have from (6.3),

2bcsin A = 4A, .
and from the cosine formula (6.2),
2bccos A = b* + ¢* — a%.
Squaring and adding, and using sin? A + cos> A = 1, these give
4b%c? = 16A% + (b* + ¢* — a?)?,

so that A? = & {(4b%c* — (b + ¢* — a?)?}
16(2bc + b2 + ¢ — a®)(2bc — L* — c* + a?)
16{(b + ¢ — a*}a® — (b - ¢)*}
H#b+c+ab+c—aa—-b+c)a+b—oc).

]

If we write
2s=a+b+e 6.5)
so that s is half the perimeter of the triangle, this can be written
A% = $.25.(2s — 2a)(2s — 2b)(25s — 2¢),
or, A = /{s(s — a)(s — b)(s — ¢)}. (6.6)

Example 3. The sides of a triangle are in arithmetical progression and its area is 3/5ths
that, of an equilateral triangle of the same perimeter. Prove that its sides are in
the ratio 3:5:7.

Let the sides of the triangle be x — d, x, x + d. If 2s is its perimeter, 25 = 3x.
From (6.6) the square of its area

_ 3x(3x 3x 3x 3 2(1 2 2)
-——2—-2——X+d)(7 )(2 x d)—-4x 4x d*}.

For the equilateral triangle of the same perimeter each side will be x and the
square of its area

_E(i’f_ )(3_"_ )(i’_‘_ )-2‘_‘
=2\ " Y\Z7 " Y\7 )16

Hence x2(dx? — dY) = & x x4,
giving Ix? - d? = fpxt.
Thus & = ¢ ~ tdo)x® = foox,

so that d = 4x/10 = 2x/5. Hence the sides of the triangle are (x — 2x/5),
x and (x + 2x/5) or 3x/5, x, 7x/S, which are in the ratio 3:5:7.

6.5. The radius of the inscribed circle

Let I be the centre of the inscribed circle and D, E, F the points
of contact of the circle with the sides BC, CA, AB of the triangle ABC.
Then
area triangle BIC + area triangle CIA + area triangle AIB

= area triangle ABC = A.
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If r is the radius of the inscribed circle, the heights of the triangles
A

BIC, CIA, AIB are each r and their bases are respectively a, b and c.
Hence
ira + 3rb + irc = A,
orsinceda+ b +c)=s,
rs = A,

giving r=Afs. 6.7)
This formula, together with (6.6) enables the radius of the inscribed
circle to be found in terms of the three sides of the triangle.

Alternative expressions for r can be found as follows. Since Al
bisects the angle CAB, the angles AFI, IEA are right angles and

Al is common, the triangles AFI, IEA are congruent and AE = AF.
Hence

2AE = AE + AF

and similarly 2BD = BD + BF,
2CD = CD + CE.

By addition

2AE + 2(BD + CD) = AE + AF + BD + BF + CD + CE
or 2AE + 2BC = perimeter of the triangle ABC.
Hence 2AE + 2a = 25,
giving AE =5 — a.

In the right-angled triangle IEA, the angle EAIl is 4 and since

IE=r.
r

AE
giving r=(s— a)tan 3A.
Similarly we can show that r = (s — b)taniB, r = (s — c)tan C, and,
combining these with (6.7), we have
r=(s—a)taniAd = (s — b)taniB = (s — ¢)tan $C = Ass. (6.8)
Yet another expression for r can be obtained by starting from the
relation (see Fig. 35), BD + DC = BC = a. Now the angle DBI is

= tan A4,
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3B and the angle DCI is 1C, so that the right-angled triangles DBI,
DCI give

DB =rcotiB, DC = rcotiC. .
Hence r{cotiB + cotiC} = a.

This can be written
cos3B  cosiC
re——3i- 424 =g,
sin 3B sin 3C

r{sinC cos 3B + cos3Csin B} = asiniBsin ;C,
or, rsin}(B + C) = asiniBsin C.
Since 4 + B + C = 180°,
4B + C) = 90° — 44,
sin{(B + C) = sin (90° ~ 14) = cos 1 A.
Also, from the sine formula (6.1),
a = 2Rsin A = 4R sin 14 cos 1 4.

giving

Hence
rcos$A = 4R sin 34 cos 34 sin 4B sin 1C,
giving, r = 4Rsin}A sin {Bsin §C. (6.9)
6.6. The radii of the escribed circles ‘
Let I, be the centre of the escribed circle touching BC internally at

FiG. 36

D, and AB, AC externally at F,, E, respectively. Let the radius of this
circle be r,. Then, Fig. 36,

area triangle BI | A + area triangle CI, 4 — area triangle BI,C
= area triangle ABC = A

The heights of the triangles BI, 4, CI, A, BI,C are each r, and their
bases are respectively ¢, b and a. Hence

iric + 3rb — jria = A,
or, trilc+b—a)= A



6] RADII OF ESCRIBED CIRCLES 101

Since2s=a+ b+ c¢,c + b — a = 2s — 2a, and therefore
rs —a)=A.
Hence r, = A ‘ (6.10)
1" s—a )
and we can derive similar formulae r, = A/(s — b), ry = A/(s — ¢) for
the radii of the escribed circles opposite B and C respectively.
Since, from (6.7), A = rs, this can be written
rs
nE=5"e

and use of (6.8) for r then gives
r, = stanid. 6.11)
Similarly we can show that r, = stan4B and ry = stan iC.

Example 4. In a triangle ABC, r,, r,, r; respectively denote the radii of the three
escribed circles. Prove that ryry + ryry + rir, = s, where2s = a +.b + c.
(LU)
Since ry=A/fs—b), ry=Als—c), ryy3=A%s—b)(s—c). But
A? = s(s — a)(s — b)(s — c) so that r,ry = s(s — a). Similarly
ryry,=s(s—b) and r;r, =s(s — ¢
Hence
Tary +rr, +rr, =s(s—a)+ ss — b) +5(s — ¢)
=s3s—a-b—-c¢)
= 5(35s — 2s5) = 5%

EXERCISES 6 (b)

1. If E is the middle point of the side CA of the triangle ABC and if A is the
area of the triangle, prove that

BC? - BA?
4

2. If A is the area and R the radius of the circumcircle of the triangle ABC,
prove that cos A + cos(B — C) = 2A/aR.

3. If Ais the area and r, r,, r,, r, are respectively the radii of the inscribed and
the three escribed circles of a triangle, prove that A = (r7,7,7;)!/2.

4. 1Ifr,r,, 1, ry are respectively the radii of the inscribed and the three escribed
circles of a triangle and if R is the radius of the circumcircle, prove that
ry+ry;+r3—r=4R (L.U)

S. Ifr,,r, ry are respectively the radii of the three escribed circles of a triangle
ABC and if R is the radius of the circumcircle, prove that

r, = 4Rsin4A cos 4B cos4C,r, = 4R cos4Asin 4B cos 4C,
ry = 4R cos$A cos 4B sin 4C.

6. Ifr,r,, 7, ry are respectively the radii of the inscribed and the three escribed
circles of a triangle ABC, prove that

ryrory = r¥ cot? 34 cot? 4B cot? 4C. (L.U)

cot AEB = LU)
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6.7. Formulae for the angles of a triangle in terms of the sides
By rearranging the cosine formula
a® =b* + ¢* - 2bccos A
in the form
cos 4 = (b2 + ¢ — a?)/2bc,
we can express the angle A in terms of the sides of a triangle. This
formula is not, however, well suited to computation by logarithms
and we develop alternative formulae as follows.
From the formula (6.8) we have
tan$4 = r/(s — a).
Using (6.7), r = A/s, so that
_4a
s(s — ay
and using the expression (6.6) giving the area in terms of the sides,
we have

tanid = (6.12)

tanid = J{s(s — a)(s = b)(s — C)}

s(s — a)
L (s —b)s =)
or, tan3A4 = \/ { G- a) } (6.13)

The corresponding formulae

o= 1520501
anic = [fedbob]

can be similarly derived.

If in (6.12) we use the formula A = 1bcsin A instead of (6.6) we
have '

bcsin A bcsinjAcosy

tand = 2(s—a)  ss—a)
giving 14 = s(s ),
or, cosid = \/ {s(s - a)} (6.19)

Multiplication of (6.13) and (6.14) gives ‘
sinid = \/{ S~ b)(s — C)} 6.15)

and, of course, there are formulae correspondmg to (6.14), (6.15) for
the angles B and C.
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Example 5. Prove that in a triangle ABC,

1 I .1 1
iA + Ecos §B + Ecos

From (6.14) and the two similar formulae,

ZLC=(“+b+C)2.

2 4abc R

1
- cos?
a

s(s —a) + s(s — b) + s(s — ¢}

1 1 1

21 21 210 =
-cos*3A + —cos*1B + —cos*1C =
a 2 b 2 c 2

abc
_ 3 —sla+b+0
abc
3% -2

abc
_ s _@a+b+op
Tabc  4abc
6.8. The tangent formula
We now derive another set of formulae which are useful in the
numerical solution of triangles. Starting from the sine formula (6.1),
b=2RsinB, ¢ =2RsinC, and after division of numerator and
denominator by 2R, we have
b—c sinB-—sinC
b+c sinB+sinC
_2cos§(B + C)sin{B ~ C)
" 2sin{(B + C)cos B = C)
= cot{(B + C)tan {B — C).

b—-c
Hence tani(B - C) = ( s c) tan ¥(B + C),
and since {(B + C) = 90° — 14, this can be written
b—-c
tan 4B — C) = ( — c) cot 34. 6.16)

The two corresponding formulae
)cot%B, tan$(4 — B) = (a —b

a+b

tan {(C — 4) = (z;;‘

) cotiC,

can be similarly derived.

Example 6. Prove that in any triangle ABC,

sin{(B - C) = (b ;

Working as in § 6.8, we have

c) cos 1A

b—c sinB-sinC
a  sinA

_sinB—-sinC
~ sin(B+C)’
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since A = 180° — B — C. This can be written
b—c 2cos}{B+ C)sin¥B - ()
a  2sin¥{B + C)cos{B + C) .
_sin{B-C) sin{(B-C)
“sinf{B+C)  cosid

since (B + C) = 90° — 4A4. The result follows immediately after multiplication
by cos $A4.

EXERCISES 6 (¢}
1. With the usual notation for a triangle ABC, show that

sin A = ?)2?/{5(3 —a)s — b)(s — o)}

2. Prove that in any triangle ABC,
(@a+ b+ c)(tani4 + taniB) = 2ccot iC.
3. Show that in a triangle ABC,
b + ¢ = acos{(B — C)cosec 1A4.
4. Show that in a triangle ABC,if2s =a + b + ¢,

1 —taniA taniB = g (L.U)
5. Assuming the cosine formula for a triangle ABC, prove that
sind = \/ {(s L) )(s - C)} (LU)
6. Ifin a triangle ABC,
tan g = (Z t C) tan A4,
prove thata = (b — c)cosi4 secd. (L.U)

6.9. Summary of formulae for the triangle

The more important relations between the sides, angles and area of
a triangle and the radii of its associated circles are here collected for
reference.

If R is the radius of the circumcircle, r that of the inscribed circle,
ry, ry and r; the radii of the three escribed circles, A the area of the
triangle and 2s = a + b + ¢, then

a b c abc
Snd smB _snC_ R~ 64)
a? = b? + ¢ — 2bccos A, 6.2)
A = /{s(s — a)(s — b)(s — o)}, (6.6)
14 (s =b)s = o)
tand = \/ {——-——s(s ~ -, 6.13)

b—
b+

tan {B — C) = ( )cot 14, {6.16)
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r=A/s=(s—a)tanid = (s — b)taniB = (s — c)taniC, (6.8)

= staniA, (6.10, 6.11)

r, =
1" s—~a

and similar relations for r,, ry.

6.10. The numerical solution of triangles

When three elements of a triangle, one at least of which is a side,
aré given the other three can be found. The sine and cosine formulae
(6.4), (6.2) are all that are required to effect the calculation but some
improvement in the numerical work involved can be made in certain
cases by using the half angle formula (6.13) or the tangent formula
(6.16). However, we shall start by giving examples in which only the
sine and cosine formulae are employed.

It is advisable to set out the computational work in a systematic
manner and to employ checks whenever possible. Some suggested
lay-outs are shown in the examples given in the following paragraphs.

6.11. Examples of the use of the sine formula
(1) One side and two angles given

In this case the remaining angle can be found immediately from the
fact that the sum of the angles of a triangle is 180°. Suppose the given
side is ¢, then since the angle C is known, the diameter 2R of the
circumcircle can be found from

2R = —

sin C’

The remaining sides a and b can then be calculated from
a=2RsinA, b=2RsinB,

the angles A and B being known. The adaptation of the method to
the case where either of the sides a or b is given instead of ¢ should
cause no difficulty.

Example 7. Solve the triangle in which
¢c=2683m, A =80°30, B=40°12"

C-10" -+ 5 21::5 1l:;§6

= 180° — (80° 30’ + 40° 12) e |3
= 180° — 120°42 = $9° 18", sin 50° 18’ | 1-9344
.  cge 18’ 2R 1-4942

2R = ¢/sin C = 26-83/sin 59° 18'. ; o2y | 7.

a = 2Rsin A = 2R sin 80° 30, sin 80° 30" 19940
b = 2R sin B = 2R sin 40° 12", a = 3077 | 1-4882
The required solution is therefore 2R 1-4942
C= 59"718'. sin 40° 12’ | 1-8099
= 377 m,

Z = 20-14 m. b = 2014 | 1-:3041
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c b=? A
FiG. 37

(ii) Two sides and the non-included angle given (the ambiguous case)
To fix ideas, we shall take b, ¢ as the given sides and B as the given
angle. The angle C can be found from the sine formula in the form
csin B

sin C = b

(6.17)

Various possibilities may arise.

(a) The side b may be sufficiently small for b < ¢ sin B. This would
require sin C to be greater than unity and no triangle will exist
with the given values of b, ¢ and B. This is illustrated in Fig. 38.

FiG. 38 FiG. 39

(b) The given values b, ¢ and B may be such that b = ¢ sin B. In this
case, sinC = 1 and C = 90°. Here the triangle is right-angled at
C (Fig. 39). Since, when one angle of a triangle is a right angle the
other two are necessarily acute, this case can only occur when
B < 90°.

(c) When b, ¢ and B are such that b > csin B, sin C < 1 and there
will be two values of C (less than 180°) which can satisfy equation
(6.17). One of these values of C, say C,, will be acute and the other,
C,, will be obtuse. We now have to enquire if both these values
give possible solutions.

If B is obtuse, then it is the only obtuse angle of the triangle and the
angle C, must be excluded as a possible solution.

If B is acute, values of C greater than 90° are not immediately excluded.
If, however, b > ¢, such values are excluded on the grounds that the
angle C would then be greater than the angle B and the.greater angle
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would be opposite the lesser side.
For the case B < 90°, b < ¢, both
values C,, C, of C are possible
(Fig. 40). This case gives rise to two
possible triangles ABC,, ABC, and is
often called the ambiguous case.

To sum up, when the sides b, ¢ and
the angle B of a triangle are given, we

FIiG. 40 have to consider the following cases.
(a) b < c¢sin B. There is no solution.
(b) b = csin B. There is one solution and the triangle is right-angled

at C.

(¢) b > c¢csin B. If B = 90°, there is one solution and C is the acute
angle derived from equation (6.17). If B < 90° and b > c, there
is one solution and C is the acute angle derived from (6.17). If
B < 90° and b < ¢, there are two possible triangles ABC,, ABC,,
the angles C,, C, being respectively the acute and obtuse angles
satisfying equation (6.17).

Once C has been found, the remaining angle and side are then
found as in Example 7. In the ambiguous case there will be two values
a,, a, of the side a to be found corresponding to the two values 4,,
A, deduced for the angle 4. Some numerical examples follow.

Example 8. Is there a triangle in which b = 5, ¢ = 7 and B = 48° 35'? If so, solve
the triangle.

The' value of C is given by No. log.
. csin B _ 7sin48°35 7 0-8451
sinC=——=""73 sin48° 35 | 1-8751
This leads to a value of logsin C of 00212 and 07202
hence sin C = 1-05. Since this is greater than unity, 5 0-6990
;t::jrz r:sg 1:0 possible triangle with the given sides snC | 00212
Example 9. Solve the triangle in which b = 56, c = 70 and B = 53°8".
Here
o TsinsyE _No. | log
sme= 1 0-8451
This gives logsinC =0, sinC =1 and C = 90°. sin 53°8 | 19031
The remaining angle A is given by 0-7482
A=180°- (B + C) 56 07482
ol sinC__| 00000
For the side a, we have 7 08451
[ 7 sin 36° 52" | 1-7781
a=——.sinA = ————.5in 36° 52’ —_—
sin C sin 90 a = 4200 | 0:6232

= 7sin 36° 52" = 4-2.
The solution is therefore A = 36°52, C =90°, a =42
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Example 10. Solve the triangle in which b = 2493 m, ¢ = 1210 m, B = 122° 51".

Here
G C o 1218 122°51 _ 121sin57°9 No | l®
2493 2493 ’ 12:10 1-0828
since sin 122° 51’ = sin (180° — 122° 51"). sin57°9 | 19244
Hence logsin C = 16105, giving C = 24°4’, an 10072
obtuse \oralue for C being impossible as B is greater 2493 13967
than 90°. _
A = 1800 _ (B + C) sinC 16105
= 180° — (122° 51’ + 24° 4) 12:10 1-0828
=33°5. sin33°5 | 17371
e 08199
4=snc™ 4 sin 24° 4’ | 1-6105
1210 in330s = 1620. a=1620| 12094

T sin24°4”

The solution is therefore
A=335, C=244 a=1620m

Example 11. Solve completely the triangle in whichb = 2-718,¢ = 3-142, B = 54° 18..

(L.U)
No. log.
3142 | 04972
sin 54° 18’ | 1-9096
0-4068
2718 04343
sinC {19725
3142 04972
- — sin 55° 51" [ 19178
8 A > —
04150
FiG. 41 sin 69° 51' | 1-9725
a, = 2770 | 04425
Here 3142 04972
3-142 sin 54° 18’ sin 15° 33" | 1-4283
sinC="—-_—"+—. -
2718 ' 9255
Hence log sin C = 19725 giving C, = 69° 51’ and ~ _Sin110°9 | 19725
C, = 180° — 69° 51’ = 110° 9, since this is the a, = 0-8974| -9530

ambiguous case in which B <90° and b <ec. If
we denote the angles BAC,, BAC, respectively by
A, and A, we have

(i) A, = 180° — (54° 18’ + 69° 51') = 180° — 124° 9’ = 55° 51",
By the sine rule, if BC, = a,,

c sin A, = 3-142 sin 55° 51’
sin C, YT sin69° 51

a, =

= 2-770,
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and
(i) A, = 180° ~ (54° 18’ + 110°9) = 180° — 164° 27’ = 15° 33, so that if
BC, = a,,
. 3142 sin 15° 33 ’
sSin A2 = W = 0-897.

a; = —
2 sin C,

The required solution is therefore,

A =35551' C=469°51, a= 2770,
or, A=15°3%, C=110°9, a=0897

6.12. Examples of the use of the cosine formula

(i) Two sides and the included angle given
Suppose for example that the two sides b, ¢ and the included angle A
are given. The side a can be calculated from the cosine formula
a* = b* + ¢* — 2bc cos A,
tables of squares and square roots being useful in the arithmetical

work. The remaining angles B and C can then be found from the
sine rule arranged as

bsin A and sinC = csmA-

sin B =
Since all the sides are known, any question of the values of the angles B
and C is settled by taking angles which are in the same order of magni-
tude as the sides opposite them. Alternatively, once one of the angles
B or C has been found from the sine formula, since A4 is given, the
other can be found from the fact that the sum of the angles is 180°.

Example 12. Solve the triangle in which b = 10:6Tm, ¢ = 21-Tm, A = 44°46'.
a® =b* + ¢ - 2bccos A
= (10-67)> + (21-7) — 2(10-67)(21-7) cos 44° 46’

= 584-8 — 3288 = 2560. No. log.
a=160m. . . b2 = (10'67)2 1139
) bsin A 1067 sin 44° 46’ ¢t = (217) 4709
sinB = = 160
b+ 5488

Hence, Jogsin B = 1-6718. Since the

angle B, being opposite the smallest =2 Cx 1667 2211":374 }ggg‘g

side, is necessarily acute, this gives cos A cos 44° 46’ | 18512

B =28°1"

C=180°—- (A + B) 2bc cos A 3288 2:5169
= 1807 — (447 46 + 281 b 1067 | 10282
= 180° — 72°47' = 107° 13" sin A sin 44° 46’ | 1-8477

The required solution is therefore, 08759

B=28°1,C=10713,a=160m. . 160 | 1.2041

sin B i-6718
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(1) Three sides given
When all three sides are given, the angles can be found from the
cosine formula arranged in the form g
b2 + CZ — aZ

Cos A = TV

with corresponding formulae for cos B and cos C. Alternatively, one
of the angles can be found in this way and the other two found from
the sine formula.

Example 13. Solve the triangle in whicha = 16m, b = 1067 m, ¢ = 21-7m.

cos A = b? + ¢* - a? No. log.
2be b? = (1067) 1139
_(1067)? + (217)? ~ (160 2 =217 470-9
2(1067) (217) b? + ¢? 5848
A = 440 46 a? = (16012 2560

b2+t - a? 3288
2b = 2 x 1067 21-34 1-3292

B and C then follow as in Example 12.

¢ 217 | 13365
2be 26657
b2+ 2 —a* | 3288 | 25169
2bc . 26657
cos A 1-8512

EXERCISES 6 (d)

Solve the triangles in which :—

c=156m B =13420, C=¢62°9.
=05m, b=07m A = 62°
=1700m, b =21'42m, B = 51°34.
1072m, ¢ =7669m, B = 102°25"

=156m, ¢ =123m, C = 34°20.
=700m, b=35m C =47
=017m, b=01lm, = 010 m.

Find the third side and the radius of the circumcircle for the triangle in
whicha = 6324, b = 8222, C = 64° 32"

® N LA W -
QRO T R
1

6.13. Example of the use of the tangent rule

As shown in the last paragraph, when two sides and the included
angle are given a triangle can be solved by using the cosine formula
to find the remaining side and then the sine formula for the remaining
angles. The cosine formula is not, however, well suited to work with
logarithms. Unless the given sides are two-figure numbers and there-
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fore easy to square, it is best to use the tangent formula to deal with
this case.

Suppose the sides b, ¢ and the angle A are given. Then the tangent
formula (6.16)

tan (B — C) = (Z - i) cot 34,

enables 4(B — C) to be found. Since (B + C) = 90° — 14, we can
then find B and C by addition and subtraction. The remaining side a
is then found from the sine formula.

Example 14. Solve the triangle in whichb = 1067 m,c = 217 m, A = 44° 46
Here b < c and it is best to rewrite the tangent formula as

1 c—b 1
tan E(C - B) = (m) cot EA
1 217 — 1067 o mar
Hence tan E(C - B) = mcot 22°23
11-03 o nar
= 3—2—37 cot 22° 23'.
Hence
4C - B) = 39°37. No. log:
Also, ©11403 1-0426
HC +B)=90° - 34 cot 22°23 | 0-3853
= 90° — 22°2% = 67°37". 1-4279
By addition and subtraction, 323 1-5101
C =107°14, B = 28°. tan}(C - B) | 19178
_ si _21-7sin 44° 46’ ) 21-1 ) 1-3365
4= dnc nA = sin 107° 14 sin 44° 46 1-8477
217 sin 44° 46’ . 1-1842
=——————— = 160. 72°46" | 19801
snirae - 160 sim
Hence the required solution is a 1-2041

B =28, C=107°14, a=160m.

6.14. Alternative methods of solution of triangle with three sides given

The cosine formula, rearranged so that the angles are expressed
in terms of the sides, is again not well suited to work with logarithms.
If all three angles are to be found it is probably best to use formula

(6.13),
tan A4 = \/ {(S_:(sb)—(s—a;d}’

and the two similar formulae for B and C. To save repetition in the
logarithmic work, this can be written
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tan A = ! \/{(s —~ a)(s — b)(s — c)}’
S—a S

with corresponding expressions for B and C. The logarithm of the
expression under the square root sign has only to be worked out once
and the log tangents of the half angles then follow by subtracting
log(s — a), log (s — b) and log (s — ¢).

Alternatively, the angles could be calculated from (6.14) or (6.15),

COos3A = \/{s(s a)}’ sinid = \/{(s ~ b)(s — C)},
or from
sin A = 2A/bc

2
= ﬁ\/{S(S —a)(s = b)(s — o)},
a formula which is easily deduced from (6.4) and (6.6).

(6.18)

Example 15. Solve the triangle in whicha = 16, b = 10-67, ¢ = 21-7.

We first find s from the formula No. log.
2s=a+b+ec
a 16

Then form (s —a), (s —b), b 10-67
(s o c 217
A check is provided from
s—a+-b+G—0c=s 2s = sum 4837
We then find s 24-19

log {(s — a)(s — B)(s — c)/s}
by adding the logarithms of s—a 819 | 09133

- - s—b 13-52 | 11310
(s—a) (s—b) (s—c) and s-¢ 249 | 03962
subtracting that of s. The
logarithm of the square root (s~a)s—b)(s— o) 2-4405
of this quantity follows by S 24-19 | 1-3836
division by two, and the angles j
are found from (6.18) and two (s —a)(s — b)ts — o)fs 10569
similar ‘formulae. From the Jils = a)(s — b)(s — ¢)fs} 0-5285
working on the right we find s—a 09133
14=2202 A= 4448, tan 34 i-6152
iB=14 1 B= 28 2,

_ cqo1k’ _ o 190 {(s — a)(s — b)(s — ¢)/s} 0-5285
ic=s¥3, c=10712. s—b ST
There is a final check that the s,
sum of the angles should be tan 1B 113975
180°. As there is a possible Vs — a)(s — b)(s ~ c)/s} 0-5285
error of at least half a minute s—c¢ 0-3962
in each angle due to the use of i
four-figure tables, the slight tan $C 01323

differences between the angles
found here and those in
Examples 12 and 13 and the
slight difference of A + B + C
from 180° is not surprising.
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EXERCISES 6 (e)

1. Calculate the remaining angles of a triangle in which two sides are 13-45 m,
54:31 m and the included angle is 67° 24'. .

2. Find the angles of a triangle whose sides are 104, 12-8 and 17-6 m.
3. Inatrianglea = 4832 m, b = 2:186 m, A— B = 34° 16". Solve the triangle.

In a triangle ABC, b = 6:27,.c = 432, A = 51°. Calculate the angles B and
C and the length of the internal bisector BD of the angle ABC. (L.U)
5. The sides a, b, ¢ of a triangle are respectively (k2 + k + 1), 2k + 1) and
(k* — 1) where k > 1. Show that the angle A4 is 120°.
6. Find the area of a triangle having sides of length 3222 m, 6447 m and
432-1 m. (Q.E)

6.15. Heights and distances

In the work of the surveyor and in navigation, elementary trigono-
metry finds an important application. It is often possible by measuring
certain distances and angles to calculate other distances and angles
which cannot be measured directly. Such calculations are usually
stmply practical applications of the formulae relating to the sides and
angles of a triangle. We give below a few typical examples explaining
the few technical terms used in this type of work as they occur.

Example 16. The angle of elevation of the top of a vertical tower from a point A is a.
From a point B, in a direct line between A and the foot of the tower and at distance
d from A, the angle of elevation to the top of the tower is B. Find the height of the
tower.

The angle of elevation of the top T of the tower from A is the angle the line
AT makes with the horizontal through 4 and the foot of the tower. If the
level of T had been below that of A we should speak of this angle as the angle
of depression.

3 (-3 ’
A d B

FiG. 42

In the diagram, TT' is the tower, T being the top and T’ the foot. ABT' is
horizontal, TT’ vertical, the angle AT'T is a right angle, the distance AB is
d and the angles of elevation a, f of T from A and B are as shown.

Applying the sine formula to the triangle ABT, since the external angle T'BT
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is equal to the sum of the angles TAB, BTA and therefore the angle BTA is
B — a, we have

TB __ d :
sina  sin(f - a)
giving TB = ;E‘:—(S,;II—_L(I).
The right-angled triangle TBT' now gives for the height of the tower
TT = TBsin 8
_dsingsin 8
sin (8 — a)’

Thus, by measuring two angles and one distance, this formula will enable the
height of an inaccessible object to be found.

Example 17. The angle of elevation of the top T of a vertical tower from a point A

is a. B is a second point on the same level as A and the foot of T' of the tower.
B is not in the straight line joining A and the foot of the tower and the distance
AB is c. The angles TAB, TBA are measured and found to be y and J respectively.
Derive a formula giving the height of the tower in terms of a, y, § and c.

T

g FiG. 43
From the triangle ABT,

AT ¢
sin 0 sin A'fB.
Since the angle ATB is 180 — y — 4, this gives

_ _csind
sin{y + &)
The right-angled triangle AT'T, gives
TT = AT sinq,
_csina ﬂ
sin (y + d)
when the expression for AT is substituted.

Example 18. A4 and B are two posts on one edge of a straight canal and C is a post on

the opposite edge; AB = 110 m, the angle CAB = 43°20' and the angle
CBA = 65° 52'. Find the width of the canal to the nearest metre.



EXERCISES 115

c
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@

The angle ACB = 180 - 43 20' — 65 52
=180 - 109 12 = 70° 48"

From the triangle ABC No Colog
. YR YV
110sin 65 52 110 {20414
AC = sin 70 4% s 65 820 9ed

andl 200 | ix3es
If CD is perpendicular to AB. the right-angled
triangle ADC gives sin 70 4% | 9751
CDh = sind43 20 : s
ACsin 43 CD = 7296118631
110sin 65 52" sain 43 20 B
sin 70 48
73m.

1-81382

EXERCISES 6(/f)

An aeroplanc is observed at the same instant from three stations A, B, C
in a horizontal straight line but not in a vertical planc through the acroplane.
If AB = BC = ¢ and the angles of clevation from 4. B. C are respectively
1. B. 7 prove that the height of the aeroplane is
¢/2
(cot? v + cot®; — 2cot’ V¥

An acroplane is observed simultanecously from two points 4 and B. at the
same level, A being at a distance ¢ due north of B. From A the bearing of
the acroplanc is 6 east of south at an elevation 1 and from B the bearing is
: . . ctansin¢
¢ cast of north. Show that the acroplanc is at a height snil + o) and
find its elevation from B. (L.U)
A vertical rectangular hoarding 24 m long and 3 m high, is held in position
by four equal stay ropes, two attached to each top corner, the bottom end
of cach rope being fixed to a point in the ground. If these four points are the
vertices of a square of side 3-6 m, calculate the length of cach stay and its
inclination to the horizontal. (L.U)

The base A of a vertical tower AB, of height h. and the base X of a vertical
flagpole X Y. of height H. are on level ground. and H > h. The angles of
clevation of Y from 4 and B are 1 and f respectively. Prove that
H = hsin vcos ficosec (v — /.
Taking h= 40 m, v = 30 and ff = 10, tind the angle of clevation of
B from X. giving your answer to the nearest tenth of a degree. (0.C)

(L.U)
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5. A straight path rises at an angle 8 to the horizontal; O, P and Q are three
points on the path, P being higher than O, and Q higher than P ; the distance
OP is x ft. At Q there is a vertical pole QR, the height of R above Q being h
ft. Prove that, if QR subtends angles « and g at O and P respectively, then

__xsinasin §
" sin(f — a)cos §
Prove also that the height of R above the level of O is
x sin Bsin (@ + 6)
sin(f—a)

6. A tripod consists of three rods 4B, AC and AD which are 100 m, 100 m and
125 m long respectively. The ends B, C and D of the three legs stand on a
horizontal plane; D is equidistant from B and C and 50 m from the line
BC. Find the height of the apex 4 above the ground, given that the angle
BAC is 25°. (QE)

7. A, B, C are three towns: B is 10 kilometres from A in a direction 47° E. of
N.; C is 17 kilometres from B in a direction 20° N. of W. Calculate the
distance and direction of 4 from C. (0.C)

8. A horizontal tunnel AB is bored through a ridge in a direction perpendicular
to the line of the ridge, and a path goes from A to B over the ridge. Show
that if / is the length of the tunnel, and a, § are the inclination of the two
portions of the path to the horizontal, the height of the ridge above the
tunnel is

(0.C)

Isin a sin
sin{a + )
What is the length of the path if / = 1000 m, « = 10° and # = 74°? (O.C)

EXERCISES 6 (g)

1. Assuming that, in any triangle ABC,
sind_sinB_sinC

a b ¢’
prove that atb-c_ tan 44 tan 1B.
a+b+c
Calculate the value of ¢ for the triangle in which
a+b=185m, A =72°14, B = 45°42. (0.C)

2. Ifin any triangle ABC

2/(be)

b+c

sinf = cos 14,
prove that (b + c)cos 8 = a.
For the case b = 123, ¢ = 41-2, A = 40° 50, find the value of sin 4 and
hence the value of a. (L.U)
3. In a triangle ABC, perpendiculars from the vertices to the opposite sides
are AD, BE, CF. Find the angles of the triangle DEF in terms of those of
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the triangle ABC and prove that the perimeter of the triangle DEF is
acos A + bcosB + ccosC. (LU)
Prove that in a triangle ABC, ‘

a? + b* + ¢* = 2{bccos A + cacos B + abcos C).
In a triangle ABC, X is the mid-point of the side BC. Prove that

. N 2b sin C
B= —— o
sin AXB = o v 37 — a%y
and that sin XAC = asin €

J@2b% + 2¢? — a?)

The area of a triangle is 336 m2, the sum of the three sides is 84 m and
one side is 28 m. Calculate the lengths of the other two sides. (L.U)

The angle A of a triangle ABC is 60° and the area of the triangle is equal
to that of an equilateral triangle with sides of length x. Show that
b+ c? —a? =x%.
In the triangle ABC the incentre and circumcentre are at the same distance
from the side BC. Prove that

4siniAsiniBsiniC = cos 4,
and deduce that cos B + cos C = 1. (L.U)

The radii of the incircle and circumcircle of the triangle ABC are r, R
respectively. Prove that the area of the triangle ABC is
r? cot$A4 cotiBcot iC.

If the tangents at 4, B, C to the circumcircle meet in D, E, F, prove that
the area of the triangle DEF is

R2tan Atan Btan C. (L.U)
Prove that the area of a triangle ABC is 2R? sin A sin B sin C where R is
the radius of the circumcircle.

If r is the radius of the circle inscribed in the triangle ABC, and if DEF
is the triangle formed by joining the points of contact of the inscribed
circle with the sides, prove that
(i) the area of the triangle DEF is 2r* cos §4 cos $B cosiC;
(ii) the radius of the circle inscribed in the triangle DEF is

2r cos §A cos $B cos 4C
cos3A + cos4B + cosiC’

(LU)

0O is the centre and R the radius of the circle circumscribing the triangle
ABC. AO, BO and CO meet the opposite sides in L, M, N respectively.
Show that

bsinC
cos(B —~ C)’
1,11t 2
AL BM CN R

(i) AL =

(i) (L.U)
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In any triangle ABC prove that
b—c siny{B—-C)
a  cosid
The inscribed circle of the triangle 4BC touches BC at E and one of the
escribed circles touches BC at F. If b > ¢, prove that BE = s — b and

EF =b—c,where2s =a+ b + c.

If A = 36°42', a = 432 and EF = 1-67, calculate the lengths of b and c.
(L.U)

.

In the triangle ABC, prove that ¢ cos (4 — B) = (a + b)sin iC.

If the sum of the lengths of two sides of a triangle is 21, the length of the
third side is 15 and the angle opposite the third side is 52°, solve the triangle
completely. (L.U)
If 2s = a+b+c, show that the area of the triangle ABC is given by
s*taniA4 taniBtan iC.

Find the angles and area of a triangle whose sides are 4-13, 3-28 and
167 metres.

In a triangle ABC, prove that
a*+ b - ¢?

tanBcotC = ————5—.
a’>—b*+ ¢

Find the difference between the areas of the two possible triangles ABC

inwhich 4 =29°13,a = 5147m, b = 1023 m.: (Q.E)
In a triangle ABC, a = 189 m, b = 122 m, A— B = 37°. Find the values
of Aand c. (L.U)

The sum of two sides of a triangle is 0337 m and the included angle is
56° 24'. Calculate the remaining angles when the third side is 0-163 m.
(L.U.)

Find all the sides and angles of a triangle ABC of which the area is 1008 m?
and in whicha=65m,b + c =97 m.

The sides AB, AC of a triangle ABC are equal to one another. The per-
pendicular from A4 on to BC is 4 m and that from B on to AC is 2 m. Find
the angle ABC and the area of the triangle.

A, B, C and D are four landmarks on the same horizontal level. B is 4 km
N.31°E. from A; Cis 6 km S. 10° 15 E. from B; D is 3 km E. from C.
Calculate the distance and bearing of D from A. (L.U)

From a point A, due south-east of a tower, the elevation of the top of the
tower is observed to be 32°. From A the observer walks in a straight line
100° west of north for 320 m and finds that he is then due south-west of
the tower. Assuming that the foot of the tower and the line of the observer’s
walk are in the same horizontal plane, find the height of the tower.

From a point 4 a beacon on a mountain is observed on a bearing 64° 6’
east of north and at an angle of elevation of 10° 12’. From another point,
at a distance of exactly 5 kilometres from A and at the same level, the
bearing of the beacon is 30° 45’ east of north and its elevation is 6° 18".
Find the height of the beacon above A4. (QE)
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Two towers A and B on a level plain subtend an angle of 90° at an
observer’s eye. The observer walks directly towards B a distance of 630 m
and then finds the angle subtended to be 143° 24", Find the distagce of the
tower A from each position of the observer.

At a point in the horizontal plane through the base of a circular tower, the
elevation of the top of the tower is § and the elevation of the highest point
of a flagstaff which stands on the top of the tower in the centre is y. At a
point a ft nearer the tower, the highest point of the flagstaff is just visible
above the edge of the tower at an elevation a. Prove that the height of the
flagstaff is

asin? asin (y ~ f) cosec (a — f) cosec (a ~ ).



CHAPTER 7

INTRODUCTION TO THE IDEAS OF THE
DIFFERENTIAL CALCULUS .

7.1. Functions and functional notation

When two variable quantities x and y are so related that the value
of one quantity y depends on the value of the other x, then y is said
to be a function of x. The relation containing the two variable quan-
tities may be a simple formula such as y = 4x2 + x + 2 or y = sin x,
or the relation may be expressed by means of a graph. Sometimes
the graph relating two variable quantities is available but it may be
impossible (or very difficult) to express the relationship by a formula.
For example, a recording barometer gives a record showing the atmo-
spheric pressure p plotted against the time t—the record displays p as
a function of ¢ but it is not generally possible to express p in terms of
t by a formula.

A means of expressing that y is a function of x when the formula
connecting the two variable quantities is not known or when we are
dealing with a general rather than a particular function of x is to write
y=f(x), y = ¢(x) or y = F(x). This notation does not mean that
y is f multiplied by x but is simply an abbreviation for the words
“function of x”. The different letters f, ¢, F, ... are used to denote
different functions.

If y=f(x) and we wish to specify y for a given value of x, say
x = 3, we write the result as f(3). For example, if f(x) = 4x? + x + 2,
f(3)=4 x 32 + 3 + 2 =41 and this is the value of y when x = 3.
Similarly, if ¢(x) = sin x, ¢(n/4) = sin n/4 = 1/,/2.

Functions such as we have considered above are termed explicit
functions. The variable quantity x is called the independent variable.
The second variable y, whose value depends on that given to x, is
referred to as the dependent variable.

Sometimes the relation between two variable quantities x and y is
given in a form such as

x2+y*=2x, or X+ y+cosy=4;

these are called implicit functions. In the first example given above
we could solve for y and obtain

y=(2x - x?,
and in this form, y is an explicit function of x. In the second example
it is not possible to find y explicitly as a function of x. We shall be
concerned in this book chiefly with explicit functions.
120
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A function like y = x? is a single-valued function of x—since, to
a given value of x, say x = 4, there corresponds one and only one value
of y (y = 4> = 16). On the other hand, a function like y ——-\/x is a
two-valued function—for a given value of x, say x = 4, there are two
values y = +2 which satisfy the given relation. In general, if to a
given value of x there corresponds more than one value of y, y is said
to be a multi- or many-valued function of x.

7.2. The gradient of a curve

It is often helpful to depict the variation of a function by means
of its graph. Suppose, to fix ideas, we consider the simple explicit
function y = x2. The graph is easily drawn and is shown in Fig. 45.

9

0 X
FiG. 45

We notice that as x increases from zero through positive values, y
increases. The reverse is true when x increases to zero from negative
values. We could describe the changes in y as x increases by saying
that y decreases so long as x < 0 and that y increases when x > 0.
If x,, y, are the abscissa and ordinate of a point P and x,, y, those
of a point @, the change in the value of y as x changes from x, to x,
is y, — y,. The average rate of change of y as x changes from x; to
X, is defined as
Ya = W1
X, — x;
and from the figure this is seen to be the tangent of the angle QPR,
PR being parallel to the x-axis. This quantity is referred to as the
slope of the chord PQ. It may help to make matters clearer to take
variables s and ¢ instead of x and y, s being the distance moved by a
body in time ¢. Instead of the graph y = x?, we should have the “‘space-
time” graph s = t2. The average rate of change of distance as t changes
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from ¢, to t, would be (s, — s,)/(t, — t,) and this is simply the average
speed of the body in the time interval (¢, — ¢,).

Let us now consider a numerical example. Take the simple function
y = x* whose graph is shown in Fig. 45 and take the abscissa of the
point P to be x, = 2. The ordinate of P is y, = 22 = 4. If we take the
abscissa of the point Q to be x, = 3, its ordinate y, = 32 = 9. The
tangent of the angle QPR, or the slope of the chord PQ, is

9-4
3-2
If we take another point Q,, nearer to P than Q, say one whose abscissa

is 2+4, its ordinate will be 2-4% or 5:76 and the slope of the chord PQ,
will be

= 5.

576 — 4

24 -2
Taking other points Q,, Q;, Q,, ... each one nearer to P than the
preceding one and taking, for example, their abscissae to be 2:2, 2-1,
245, ... the slopes of the chords PQ,, PQ,, PQ,, ..., calculated in the
same way, are 4-2, 4-1, 405, ...

When we join the point P to points Q, Q,, Q,, @, Q,, ... as the
latter approach nearer and nearer to P, the slopes of the chords PQ,
PQ,, PQ,, PQ,, PQ,, ... decrease and the calculated values of these
slopes suggest that they are approaching a limiting value which might
well be of magnitude 4. The same is suggested by Fig. 46 which is a
magnified version of part of the curve of Fig. 45.

= 44,

Q

Q,
0,
P

Fi1G. 46

To decide if the slopes of the various chords do in fact approach
a limit as the point Q approaches P and to find the value of this limit,
let the abscissa of @ be 2 + h. The ordinate of Q is (2 + h)* and the
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slope of the chord PQ is
2+h?—-22 ha+h
RQ+m-2 " h
As Q approaches P, the value of h becomes smaller and smaller and it
is apparent that the limiting value, as h decreases to zero, of the slope
of the chord PQ is 4. In other words, we can find the abscissa (2 + h)
of a point Q so that the slope of the chord PQ differs from 4 by as
little as we please. For example, if we wish to find a point Q such
that the slope of the chord PQ is 40001, we have to take the abscissa
of Q to be 2:0001. The line through P with slope 4 is the limiting
position of the chord PQ as Q approaches P and is the tangent to the

curve at P. The slope of this tangent line is defined as the gradient
of the curve at the point P.

4+ h .

7.3. The increment notation

A convenient notation for a small increase, or increment, in the
value of a variable x is the symbol Jx called ““‘delta x”. This notation
does not mean J multiplied by x but dx = x, — x where x, differs
from x by a small quantity. When y is a function of x, the symbol dy
is used to denote the change in the value of y corresponding to a
change dx in the value of the independent variable x. In Fig. 47,

Y

FiG. 47

P is a point on the graph of a function y = f(x) whose abscissa and
ordinate are x and y respectively and Q is a neighbouring point on
the graph with coordinates x + éx and y + dy. N and M are the
projections of the points P and Q on the x-axis, and PR is drawn
parallel to NM. Then ON = x, PN = y,OM = x + 6x,QM = y + 9y.
It follows that QR = QM — RM = QM — PN =y + dy — y = dy
and that PR = NM = OM — ON = x + 0x — x = x. The average
rate of change of y as x changes to x + Jx is measured by the tangent
of the angle QPR and this is clearly equal to the ratio dy/éx. The
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gradient of the curve at the point P, or the slope of the tangent to the
curve at the point P is the limiting value of the ratio éy/éx as dx
approaches zero.

As an example of the use of this notation, let us find the gradient
of the curve y = x? at the point P whose coordinates are (x, y). At
the point P we have

y= xzs
and at the neighbouring point Q whose coordinates are (x + dx,y + dy),
y + 6y = (x + ox)%.
By subtraction,
oy = (x + ox)? — x2 = (2x + Ox)dx,
oy

and - = 2x + Ox.
ox

As Jx approaches zero, a convenient notation for which is “as
dx — 0%, it is clear that this ratio approaches the limiting value 2x.
The gradient of the curve y = x? at the point (x, y), or the slope of the
tangent to the curve at this point, is therefore 2x. At the point where
x = 2, this result gives the gradient of the curve to be 4 as found in
the last section.

EXERCISES 7 (a)

1. Iff(x) = 2x% + x — 1, find the values of f(2), f(0) and f(—1).

2. If F(t) = 2t* + 3t — 2, find the values of F(3) and F(—4%). What values of
t make F(t) = 0?

3. If ¢(@) =4 — sin 4, find the values of ¢(0) and ¢(n/2). What values of
make ¢(f) = 0?

4. Express y explicitly in terms of x when

@) x? + 4y? = x, (i) xy + y* = x2
5. The distance s metres travelled by a body in time ¢ seconds is given by the

formula s = 2t + 2t. Find the average speeds of the body in time intervals
of 4,4 1 and % seconds from the commencement of its motion.

6. P and Q are neighbouring points on the curve y = 2(x — x?). P is the point
(x,y) and Q the point (x + dx,y + Jy). Find the value of the ratio dy/dx
and determine the gradient of the curve at the point P.

7. Find the gradient of the curve y = x3 at the point whose abscissa is x.

7.4. Differentiation from first principles. The differential coefficient
The process of calculating the ratio of the incremental change in

a function y of x to the incremental change in x, that is of determining

an expression for dy/dx, and then finding the limiting value of this
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ratio as Jx approaches zero, is known as differentiation from first
principles. The limit found in this way is generally denoted by the

symbol Z—i and is called the differential coefficient of y with respect to x.

Alternative notations for the differential coefficient of a function
Jf(x) of x are

DS S0 and f(x)

and alternative terms for this quantity are the derivative or derived
function. The process of differentiation is that of finding the gradient
of the curve representing the function under consideration and the
differential coefficient or derivative is the slope of the tangent to the
curve at a given point.

Consider as an example the function y = 5x2, To differentiate this
function from first principles we have

y = 5x2,
y + 8y = 5(x + 6x)>.
By subtraction,
Oy = 5{(x + 6x)* — x?} = 5(2x + 6x)ox.

Hence % = 5(2x + dx) = 10x + 50x,

and, since the limiting value as dx — 0 of the expression on the right
1s 10x,

dy .. (6y) _

dx ,lif.n(; ox/ 10x.

Thus, if y = 5x?, the differential coefficient of y with respect to x is
10x. Alternatively we could express the result as

d . 2 _
d—)—‘(Sx ) = 10x,

or, if f(x) = 5x2, f(x) = 10x.
For a general function y = f(x), we should have
dy {f(x+6x)—f(x)}
dx ::I_I.lo ox ' .1

7.5. The differential coefficient of x", n a positive integer
If y = x”, then
y+ dy = (x + ox)",
and, by subtraction,
oy = (x + ox)" — x".
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Since n is assumed to be a positive integer, (x + dx)" can be expanded
in a terminating series by the binomial theorem and we have

n(n 1)

oy = x" + nx"" 1(6x) + X" H6x)? + ... + (6x)" = X"

n(n —‘1)

= nx""1(dx) + 57 X"72(0x)? + ... + (Ox).
%
Division by dx gives
% _ X1y = nn — 1) X"72(0x) + ... + (Ox)"!
ox 2! o

Since all the terms on the right except the first contain Jdx raised to
a positive index, the limit of this expression as dx approaches zero is
nx"~! and we have the result that if

y = x", % = nx""! (7.2)

The same result holds when n is negative or fractional but we shall
delay a proof of this until pp. 141, 142.

7.6. The differential coefficients of sin x and cos x
If we take y = sin x, then
y + dy = sin(x + (Sx),
and, by subtraction,
Jdy = sin(x + dx) — smx
= 2¢os(x + 1 dx)sin$ dx,
by formula (5.30). Division by dx and a slight rearrangement gives
L §
gy; = cos(x + %5)6).(8“; gjx)

Now, from (5.34), as dx — 0, (sini dx)/( 6x) tends to unity, and
cos(x + 1 dx) tends to cos x, so that if

. dy _
y = sin Xx, o COS X. (1.3)

Similarly if y = cos x, y + dy = cos(x + dx) and
dy = cos{x + dx) — cosx.
This can be written in the form
dy . . (siné— dx
Ox = sin (x + 2 6X) W),
and the limit of dy/dx as dx tends to zero is now —sin x. Hence if

dy .
y = COs X, I = Tsimx. (7.4
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Example L. Differentiate from first principles, x> + x.
Lety = x3 + x?, then y + dy = (x + 6x)> + (x + ox)*.
By subtraction,
8y = (x + 0x)® — x® + (x + 6x)* — x? *
= 3x%dx) + 3x(6x)? + (6x)* + 2x(dx) + (6x)%.
)

Hence g;v_( = 3x? + 3x(6x) + (6x)® + 2x + Ox,
and the limit of this as dx tends to zero is 3x2 + 2x. Hence the derivative of
x* + x%is 3x2 + 2x.

It should be noted that the differential coefficient of this function is the
sum of the separate differential coefficients of x* and x. This is a special
case of a general result that the differential coefficient of the sum (or difference)

of two functions is the sum (or difference) of their separate differential
coefficients (see § 8.2).

Example 2. Differentiate 1/x* from first principles.
Here we let y = 1/x2, so that y + 8y = 1/(x + dx)%.
1 1
T x +6x)? X2
_ X2 —(x+ 6x)
T x¥x + ox)?
_ =2x(éx) — (6x)*
T x}Hx + 6x)?
dy _ —2x - (6x)
6x  x3*(x + ox)*
and the limit as dx — 0 is —2x/x*. Thus the derivative of 1/x? is —2/x>. It
should be noted that this can be expressed by saying that the derivative of

Hence dy

Thus

x~2is ~2x~3. Hence the result that if y = x", % = nx""?, proved for positive

integral n, holds whenn = —2.

Example 3. Differentiate 3x* + cos 2x from first principles.
Let y = 3x® + cos 2x, so that y + 8y = 3(x + 6x)* + cos 2(x + &x).
Then, by subtraction,

dy = 3{(x + 6x)> — x?} + cos 2(x + dx) — cas 2x
= 3(2x + Jdx)dx — 2sin (2x + &x)sin dx.

oy . (sin 6x)
Thus % 3(2x + Jx) — 2sin (2x + Ox). 5% )
and, taking the limit as dx tends to zero, we have
Q = 6x — 25in 2x.
dx

Notice that this result is the sum of the differential coefficients of 3x? and cos 2x

and that the differential coefficient of 3x? is 3 times the differential coefficient
of x2.
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EXERCISES 7 (b)

Differentiate from first principles :—
1. 5x3 3. 1/2x3). 5. cos3x. .
2. x* - x2 4, sin2x. 6. x + sin x.

7.7. The differential coefficient as a rate measurer

Suppose that a body moves a distance s in time ¢ and that s is a
function of ¢t given by s = f(t). We have already seen that if s, s, are
the distances moved in times ¢, t, respectively, the average speed of
the body over the time interval (¢, — ¢) is (s, — s)/(t, — t), or in the
incremental notation, ds/dt. The limit of this quantity as dt approaches
zero is ds/dt. This is the rate of change of distance with respect to time
and is the instantaneous speed of the body at time ¢.

Similarly if a body is moving in a straight line with velocity v, the
rate of change of velocity with respect to time is dv/dt and this is the
acceleration of the body at the instant considered. In general, if a
variable quantity y is a function of another variable x, the differential
coefficient dy/dx can be regarded as giving not only the gradient of
the graph of the function but also the rate of increase of y with respect
to x. The sign convention adopted is that the function is increasing
where its differential coefficient is positive and decreasmg where its
differential coefficient is negative.

Example 4. 4 body moves in a straight line a distance s metres in t seconds and
s = t>. Find the velocity and acceleration of the body after 3 seconds.
ds
Velocity, v = =~ = 3%
Y @t
Acceleration = fB = 6t.
dt

Putting ¢t = 3, the velocity and acceleration after 3 seconds are respectively
27 m/s and 18 m/s2.

Example 5. The diameter of an expanding smoke ring at time t is proportional to t2.
If the diameter is 0-06 m after 6 seconds, at what rate is it then changing ?

H D is the diameter, D = kt* where k is a constant. Since D = 0-06 when
t = 6,006 = 36k so that k = 1/600 and D = t*/600.

dD t
The rate of change of D = = 300 m/s.
When t = 6, the rate of change of D is therefore 0-02 m/s.

7.8. Approximations

If y=f(x) and if éx, dy are respectively the increment in x and
the corresponding increment in y, the limiting value of the ratio
dy/ox when dx approaches zero is, by definition, dy/dx or f’(x). Hence
we can write

Sy .,
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where ¢ is a quantity which tends to zero as dx tends to zero. This
can be written

oy = {['(x) + o}dx, ’
and as dx approaches zero, the second term on the right becomes more
and more insignificant compared with the first. Hence we may use
the equation
dy = f'(x) 6x (7.5)
as an approximate formula to find the effect on the value of a function
of a small change in the value of the independent variable.

Example 6. If y = x3, find the approximate percentage increase in y due to an
increase of 0’1 per cent. in x.

Here fx) = x> f(x)=3x?
and dy = 3x? dx.
2
Hence 2 = 3x 36x = 36_",
y x x

dividing by the equal quantities y and x>. Now éx/x is the ratio of the change
in x to x and the percentage change in x is therefore 100 dx/x. Similarly the
percentage change in y is 100 dy/y and we can write

percentage change in y = 3 x percentage change in x.

The percentage change in x being 01, the approximate change in y is therefore
0-3 per cent.

Example 7. Find the approximate error made in calculating the area of a triangle in
which two of the sides are accurately measured as 0-18 m and 0-25 m, while the
included angle is measured as 60°, but is 4° wrong.

Taking the given sides as b, ¢ and the included angle as A, the area A is given
by A = 4bcsin A. If A is in error by JA, the area will be in error by A where

d
oA = %bca (sin A) 64 = +bc cos A HA.

Nowb = 018, ¢ = 025, 4 = 60° = n/3rad,, 4 = §° = n/360 rad., so that

= 0-18x025xcosn/3  n _ o 104 m2

A 2 *360 ~ 16

EXERCISES 7 (¢)

1. A body moves in a straight line so that the distance moved s metres is
given in terms of the time ¢ seconds by s = t* — 2. Find an expression for
the velocity of the body at time ¢ and find the times at which the body is
at rest.

2. The velocity v m/s at time ¢ seconds of a body moving in a straight line
is proportional to ¢*. Find the acceleration of the body when ¢ = 2 seconds
if its velocity is then 16 m/s.
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10.

11.

12.

PURE MATHEMATICS {7

After t seconds, the area 4 m? of an ink stain is given by 4 = 1074t +¢%).
Find the rate at which the area is increasing after 2 seconds.

If the side of a square can be measured accurately to 01 mm,,what is the
possible error in the area of a square whose side is measured te be 200 mm?

Find the approximate percentage change in the square of a quantity when
the quantity itself changes by 0-1 per cent. Hence calculate an approximate
value for (10-01)2

Find the increase in the area of a circle when its radius changes from 5 m
to 51 m.

EXERCISES 7 (d)

If f(x) = 3x® + sin x, find the values of f(0), f(z/2) and f(—n).
If 4x3y — 2x* + 3xy = 0, express y explicitly in terms of x and find the
value of y when x = 2.
If f(x) = ax? + bx + ¢ where a, b, ¢ are constants, find an expression for
fix+ 1)
f(x) denotes an expression of the third degree in x. If f(—1) = 6, f(0) =9,
f(2) =19, f(3) = 11, find the expression for f(x).
If f(x) = log x, show that:—

@ f(ab = f(a) + f(b),

(i) f(a/b) = f(a) — f(b).
P is the point (x,y) and Q the point (x + Jx,y + Jy) on the graph of
y = {/x. Show that

oy __

Ox  \Jix + 6x) + /X
and hence find the gradient of the curve at the point P.
Find the slope of the curve y = ax? + bx + c, where a, b, ¢ are constants,
at a point whose abscissa is x. At what point is the tangent to the curve
parallel to the x-axis?

Calculate the gradient of the curve y = —x? + 4x® — 3x at each of the
points where it crosses the axis of x. (L.U)

Show that the gradient of the curve y = —1 + 3x — (x2/4) when x = 2 is
double that when x = 4. Find also the abscissa of the point on the curve
at which the gradient is — 1. (0.C)

An expression of the second degree is denoted by f(x). If (1) = 7,f(2) = 23,
f(3) = 17, find the gradient of the graph of f(x) at x = 2. (0C)

Find the value of the constant ¢ so that the tangent at the origin of
coordinates to the curve y = x(c — x2) makes an angle of 45° with the
X-axis.
For what values of x is the tangent to the curve

y =3+ 4
equally inclined to the two coordinate axes?
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13.

14.

15.

16.

18.

19.

20.

21.

22,

23.

24.

25.

EXERCISES 131

Differentiate from first principles . —
i) 4x2 + x, (i) 1/x.

Differentiate from first principles . — .

(i) sin ax, where a is a constant,

(i) 4 cos 2x.
Obtain from first principles the differential coefficient of 1/(x + 2) with
respect to x. (L.U)
If f(x) = 3x2 + sin x, find f’(x). What is the value of £'(0)?
An excavator removes V cubic metres of soil in ¢ minutes, where

V = 0-42t— 0000472

At what rate is the soil being removed after 20 minutes? (L.U)

Find the gradients of the curve y = x3 + 24x? + 192x at the points where
)x=2@1)x =4

If the distance s travelled by a particle in time ¢ is given by

s = ut + far?,
where u and a are constants, show that the velocity at time ¢ is 4 + at and
that the acceleration is constant.

The distance s m which a body has travelled in ¢ seconds is given by
s = 4t* — 1. Find when the body is at rest and the acceleration at that time.

Assuming that the path traced out by a mortar bomb is given by the
equation y = 4x — (x2/3-2), the x- and y-axes being horizontal and vertical
lines through the point of projection, find the angle of projection of the
bomb.

A particle moves along a straight line in such a manner that its distance
x from a fixed point in the line at time ¢ is given by x = cost. Prove that
its velocity is equal to — /(1 = x?) and that its acceleration is — x.

A point moves along a straight line and, at the end of ¢ seconds, its distance
(s) from a fixed point in the line is given by

s =13 — 9% + 24 — 18.
Show that the velocity vanishes for two values of ¢ and the acceleration
for one value of t. Find also the value of the velocity when the acceleration
vanishes and the values of the acceleration when the velocity vanishes.
(0.C)

The distance moved in a straight line by a particle in ¢ seconds is 5t3. Show
that v, the velocity, and f, the acceleration, are connected by the relation
1% = 60v. (0.C)

A body moves in a straight line so that the distance travelled s metres in
time t seconds is given by s = 82 + 3t. Find the approximate space
travelled during % seconds after 5 seconds of motion and deduce the
average velocity in that interval of time.



CHAPTER 8

TECHNICAL PROCESSES IN THE DIFFERENTIAL
CALCULUS .

8.1. Introduction

In the last chapter, where an attempt was made to introduce the
basic ideas of the differential calculus, examples were chosen which
involved only very simple functions. The differential coefficients of
more complicated functions can be found from first principles in the
same way but the labour involved in some cases is considerable.
Fortunately certain general theorems can be set up and these, together
with the differential coefficients of quite a smail number of standard
functions, enable the differential coefficients of more complicated
functions to be found readily.

It is the object of this chapter to deal with the technical processes
involved in finding the differential coefficients of functions which can
be considered as sums or differences, products or quotients, etc., of
simpler functions. The student should work through a large number
of examples on differentiation until he is thoroughly familiar with these
processes.

8.2. The differentiation of a sum
(a) Let y = u + C, where u is a given function of x and C is a constant.
Then, if x increases to x + Jx, u increases to u + Ju and y increases
to y + dy, so that

y+o0y=u+ou+ C.
By subtraction, dy = du, and division by dx gives

oy _ou
ox  ox
In the limit as Jx tends to zero, we have
dy du
dx  dx

Thus an additive constant disappears on differentiation.
(b) Let y = u + v, where u and v are given functions of x. If x increases
to x + Jx, u and v increase to u + du and v + Jv respectively and y
increases to y + dy. Hence
y+oy=u+du+v+ oy
and by subtraction
oy = du + ov.
132
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Dividing by dx and proceeding to the limit as dx tends to zero we
have

dy du + dv

dx dx dx
showing that the differential coefficient of a sum of two functions is the
sum of the differential coefficients of the separate functions. It is clear
that the plus sign can be replaced throughout by a minus sign and
that the differential coefficient of the difference of two functions is the
difference of the differential coefficients of the separate functions.

(¢) If y=u+ v+ w, where w is a third function of x, we can write
this as y = (u + v) + w, and application of the preceding result gives

dy d dw
a—a(uﬁ-v)'l"g;

(8.1)

S du g dv, aw (8.2)

In this way we can show, step by step, that the differential coefficient
of the sum of any finite number of functions is the sum of the differential
coefficients of the separate functions.

Example 1. Find the differential coefficient of the function
x5 —x*+ x> - x+3.

Since the differential coefficient of x" is nx"~ ', application of the above rules
gives for the differential coefficient, 5x* — 4x3 + 2x — 1.

8.3. The differentiation of a product

(a) Let y = Cu, where u is a function of x and C is a constant. Then
y + 6y = Clu + du),

where dy, du are the increments in y and u respectively corresponding

to an increment dx in x. By subtraction we find dy = C du, and
division by dx gives

oy _ du
In the limit as Jdx tends to zero, we have
dy _du
= Sav (8.3)

and the differential coefficient of a constant multiplied by a function of
x is equal to the constant multiplied by the differential coefficient of the
Sfunction.

{b) Let y = uv, where u and v are given functions of x. If dy, du, dv
are the increments in y, u and v respectively corresponding to an
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increment dx in x,
y+ dy = (u + Su)(v + 6v)
= uv + véu + udv + dudv.
By subtraction,
oy = vdu + udv + dudv.
A slight rearrangement and division by dx gives

éy ou
6)6 Dg— + (u + 5“)—‘
As Jx tends to zero, du tends to zero and du/dx, dv/dx, dy/éx tend
respectivel tod dv ddy Hen
PeCVEY 10 & @ € g e
dy du dv
—d—); = l)z; + ua;, 8.4)

showing that the differential coefficient of the product of two functions
of x is equal to the second function multiplied by the differential coefficient
of the first plus the first function multiplied by the differential coefficient
of the second.

(c) The differential coefficient of y = uvw where w is a third function
of x can be found as follows. If we divide the left-hand side of (8.4)
by y and the right-hand side by uv(=y) we can express the result in
the form

ldy ldu 41 1dv

ydx  udx  vdx
If now we apply this result to y = (uv)w we have

ldy 1d 1 dw
yix - wa) t W
But, by (8.4),
d du dv
E(uv) = vd—)z + ua,
so that

1dy 1 ( du dv) 1dw
yax " wVdx T ¥ax) T wix
ldu 1dv 1dw
T udx | vdx T wdx
Multiplication by y, or uvw, then gives

dy du dv dw
i vwd—+uwd + uvr—— ™
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For a more general function y = uvw ..., we can obtain similarly

dy du dv dw
E-vw...a—;+uw...dx+uv.‘.a, (8.5)

so that the derivative can be obtained by differentiating each function
separately multiplying by the remaining functions and adding the results.
Example 2. Find the differential coefficients of (i) 6x* and (ii) i‘:—x

(i) The differential coefficient of 6x* is 6 times the differential coefficient
of x* and so is 6 x 4x3, or 24x3.

(i) The differential coefficient of %{ is one-quarter of the differential

. . . cos x
coefficient of sin x and is therefore ra

Example 3. Find b if (i) y = x?sin x, (i) y = x sin x cos x.
(i) By (8.4),

dy . d , .d .
= sin xa(x )+ x E‘(sm x)
= 2xsin x + x? cos x.
(i) By (8.59),

dy . d d . . d

- = sin x cos x—{(x) + x cos x——(sin x) + x sin x—=—(coOs x

dx dx( ) dx ) dx )
= sin x cOS X + X €OS X.COS X + X sin x(—sin x)

= sin x cos x + x{cos? x — sin? x).

EXERCISES 8 (a)

Differentiate the following functions of x :—

1. 4x® —sinx + 2. 6. x3cosx.

2. 10sin x cos x. 7. (3x + 2)

3. sinx — x®cosx. 8. x?sinxcosx.

4. x(1 — x). 9. cos’x.

5. (1 +xHA - 2xY). 10. 10x* — sin? x + x cos x.

8.4. The differentiation of a quotient

Suppose that y = u/v where u and v are given functions of x. Then
u = yv and application of the rule for differentiating the product yv
gives
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. dy
Solving for o Ve have

g
dy dx dx
or, E)E = 1)2 (8.6)

Thus the differential coefficient of the quotient of two functions of x is
equal to the denominator times the differential coefficient of the numerator
minus the numerator times the differential coefficient of the denominator
all divided by the square of the denominator.

dy
dx
(i} Using (8.6),

Example 4. Find sin x.

1-x .
when (i) y = T x i)y =

1+ X)diii“ -x)~-(1 - x);iix(l + x)
1+ x)?

U+ 0)(=D-(1-x1 =2
N (1 + x)? T+ x)*

4y
dx

(i) Again using (8.6),
d . . d
dy x;;(sm x) — sin xa(x)
dx x?
X cosx — sin x
T

8.5. The differential coefficients of tan x, cot x, cosec x and sec x

The differential coeffficients of tan x, cot x, cosec x and sec x can
be derived from those of sin x and cos x and the rule for differentiating
a quotient. Thus

d _d (sin x)
E(tan x) = dx \cos x

d, . . d
cos xE)—C(sm x) — sin xa(cos X)

cos? x

_ €0s x(cos x) — sin x{ —sin x)
a cos? x

_ cos®x + sin®x

- cos? x

= sec? x. 8.7

1
cos? x
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Similarly
d fcos x
_(COt X) = dx (sm x) ’
. d .
~ sin xa(cos x) — cos xa(sm x)
B sin® x
_ —sin*x — cos® x
h sin? x
= — sinlz <= —cosec? x. (8.8)
Also
d dy 1
E)—C{cosec x) = a(_sin x)
sin xi(l) -1 i(sin x)
_ dx “dx
h sin? x
__sinx.(0) — (1) cos x
B sin? x
= - cPSZx = —cosec x cot x. 8.9)
sin? x

It is left as an exercise for the student to show in the same way that

d
Sec x) = sec x tan x.
axsee )

EXERCISES 8 (b)

Differentiate the following functions with respect to x :—

1 x 6 sin X — Cos x
Tox? 4+ 1 " sinx + cosx’
2—-x X
2. — 7. .
1+ 2x tan x
1-- 3x?
3. 2—47%2- 8. Secz X.
4 (-2 g, X
1+ tanx
:—%} 10. cot?x.

8.6. Differentiation of a function of a function

A function like y = (x + 3)? is a function of a function for (x + 3)
is a function of x and (x + 3)? is a function of (x + 3). Other examples



138 PURE MATHEMATICS (8

are sin ax, tan (x®), etc. The object of this section is to establish a
very simple rule for the rapid determination of the differential
coefficients of such functions. :

The differential coefficient of a function like our first example can,
of course, be found by first squaring out the right-hand side and
differentiating term by term. Thus

y=(x+3p
=x2+6x+9

dy

dx
It should be observed that the result is exactly the same as if we had
treated (x + 3) as if it were x and used the standard result for the
differential coefficient .of x®. Similarly if y = (x + a)3, where a is a
constant,

2x + 6 = 2(x + 3).

y = (x + a)®
= x* + 3ax? + 3a*x + 4°.
d
Y _ 3x? 4 6ax + 3a2.
dx

= 3(x? + 2ax + a?) = 3(x + a)?,

and again the result is the same as if we had treated (x + a) as if it were
x and used the standard result for the differential coefficient of x3.
Now consider y = (2x + 3)2. Working as before

y=4x* + 12x + 9,

dy_ _
E£—8x+12—4(2x+3),

so that the result is not now 2(2x + 3) but twice this. A rough
explanation is that whereas (x + 3) changes at the same rate as x,
(2x + 3) changes twice as fast. Similarly if y = (cx + d)?, where ¢
and d are constants,

y = c*x? + 2cdx + d?,

dy _ 2¢2x + 2cd = 2c(ex + d)

dx

and we observe that the result is the same as if we had treated (cx + d)

as if it were x, used the standard result for the differential coefficient

of x? and then multiplied by c, the differential coefficient of ¢x + d.
This suggests that if y is a function of u where u is a function of x,

the formula giving % might well be
dy dy du

Ix = du X I (8.10)
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Applied to some of the examples already given this would give:—
(@ y=(x+3)%ory=u*whereu=x+ 3.

dy _ du _

@—2u, a—l,

dy dy du

a;—-d; d——2 X1—2(X+3)
(b) y=(x+ a),ory = u® whereu = x + a.

dy ., du

du_3u’ dx_1

dy _dy du_ 5, 2

I = du d—3 x 1= 3(x + a)’.
(¢) y={(cx + d)*,or y = u* where u = cx + d.

dy du _

@—21" dx—c’

dy dy du _ _

F o dux—d-—Zu ¢ = 2c(cx + d).

A strict proof of the important formula (8.10) is rather beyond the
scope of the present book. The following, although it assumes a result
not already proved, must suffice. If y is a function of u and u is a
function of x, let du be the increment in u corresponding to an
increment dx in x, and let dy be the increment in y corresponding to
the increment du in u. Then, provided du # 0,

oy _ (5y¢5u

ox Ju

and, assuming that the limit of a product is the product of the limits,
this gives

dy _dy du
I du X I (8.10)
dy dy du %y dy
since —= P respectively the limiting values of 2 3u d éx

as dx tends to zero.

This formula is a most important one and the student should work
through many examples of its use. At first it is probably best to
introduce the auxiliary variable u as in the examples below but with
practice this soon becomes unnecessary and the results can be written
down at once.

. dy N P _(l+2x)2
Example 5. Find i when (i) y = (1 — 3x%)>, (i) y = T+ x

(i) Letu = 1 — 3x?, so0 that y = u5. Then
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du _ —6x and dy _ Sut.
dx u
dy _ dy du .
Hence - du o = Su* x (—6x)
= —30xu® = —30x(1 — 3Ix?)*.

1+ 2x
ii = , so that y = u?.
{ii) Letu T+ x sothaty = u

d . .
Here —1% = 2y, but to find ;; we have to apply the rule (8.6) for differentiating
¢
a quotient. This gives

d d
du-(l+x)d—x(l+2x)—(l+2x)a—;(l+x)

dx A + x)?
(l + x)(2) = (1 + 2x)(1) _ 1

1+ x? T+ x)F
dy dy du
Hence dx " du " dx

1
= 2u x m
___2(1+2x) 1 z=2(l+2x3)'
\I +x 1+ x) (a + xy

Example 6. Find (i)dit{sin (4: - —)} i 25 {cos (20 - ’g')}

(i) Let u = 4t — /S, so that "%‘ = 4. Then

d d, . d, . du
I{sm (4t - n/5)} = (ﬂ(sm u) = E‘(sm u) x T
= cosu x 4 = 4cos (4 — n/5).

(ii) Let y = cos* (20 — n/5) and let u = 20 —~ n/5. Then y = cos* u. This is still
a function of a function and we now let cosu = v.

Then y = v* and d_y = 4y, By (8.10),

dy dy dv .
o d—vxd—u_4v x (—sin u),
. dv .
since v = cosu and s0 — = —sinu.
du
dy dy du 3.
Also E_Ex'—ia——‘w sinu x 2,

du
since u = 26 — n/5, so thatd—o =2

Replacing the values u = 26 — n/5, v = cos u = cos (28 — n/5), we have

dy ( n
E——Sco 20 — )sm(ze —5—)
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EXERCISES 8 (c)

Find Q when —
dx

1. y=@4x- 5> 6. y=tan?(3x + 1).

2. y=(x*+ 3x)° 7. y=sin®2 — x).

3. y =sin2(x — a), « constant. 8. y=x*(1 —x)

4, y=tan2x. 9. y = sin® x sin 3x.
1+ sin®x

5. y = sec 3x. 10. y= m

11. Ifu = sin™ @ cos" 6, find the value of - E@ " if m and n are positive integers.

12. Find the differential coefficient of s with respect to ¢ if s = sin? (a/t) and
a is a constant.

13. If m is a positive integer, find the differential coefficients with respect to
x of —

(i) sin™x, (i) sin(x™), (iii) sin (cos x).
. e d
14. Ify = (tan x + sec x)™, where mis a positive integer, show that Ey;‘ = mysecx.
15. Show that the differential coefficient with respect to x of
tan x{1 + 2 sec? x) — 3x sec? x

is 6 sec? x tan x(tanx — x). Hence show that, if xisa positive acute angle,
this differential coefficient is positive.

8.7. The differential coefficient of x* when n is negative or fractional

It was shown in the last chapter (§ 7.5) that, if n is a positive integer,
the differential coefficient with respect to x of x" is nx"~!. The rules
established in §§ 8.4, 8.6 for differentiating a quotient and a function
of a function enable us to show that the same result is true when n is
negative or fractional.
(@) Let n be a negative integer and let n = —m so that m is a positive
integer. Then if y = x", we have

y=x_m=—_

x™
By the rule for differentiating a quotient, since m is a posmve integer
and therefore the differential coefficient of x™ is mx™~ !, we have

dy _ X" x0—1x mx™!
dx x2m

= = —mx

-m-1

sincen = —m.
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(b) Let n = p/q where p and g are integers. There is no loss of generality
in assuming that g is positive. Then, if y = x", we have

y = xPl4 = (xllq)p‘ .
Put x'/? = u, then y = u? and x = 9, so that

—=7p p—1 _1: u‘i"l

by the result already established.

The rule for differentiating a function of a function can be written
in the form

dy_dy _dx
du  dx ~ du
so that pur~ 1l = % x quit,
.. dy _ P o4
giving ax - qu .
Since u = x!/4, this can be written
dy _P l/qyp~q
dx ;1-(x )
= Ex(p/q)-‘ 1
q
= nx""1,

since n = p/q.

Hence dix(x") = nx"" 1! for all rational values of n.

o dy . 3\ . b+ x
Example 7. Find ix when (i) y = ( - F) L)y = \/(-__)

1—-x
i) Letu = x — 3/x* = x — 3x~ 2, Then y = u® and
dy du _3 _ 3
T=u = 1-3=2xT = 146X
dy _dy  du
Hence Ec‘duxdx

= 2u(l + 6/x3)
= 2(x — 3/x3)(1 + 6/x3).

(ii) Letu = (1 + x)/(1 — x). Then y = \/u = u!/? and

Q = u-l/l = 1
du 2Jw
and, by the rule for the differential coefficient of a quotient.
du 1-x+(1+x 2

dx (d-x? (-x7
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dy d dy du

Hence ax = du dx
. 1 2 a
T 2Ju {1l = x)?

—

EXERCISES 8 (d)
Differentiate with respect to x :—

1 3
1. ( 4 7) . 4. 1/ + x).
. Q-5 5. (1 - x)/( + x?).
3. JA+x). 6. sin(\/x).

7. Ify = /(1 + sin x), show that :_y = 4/(1 = sin x).

_ 1+ sinx dy 1
8 “Y*/(l L) show e g =
8.8. Differentiation of inverse functions
If in Fig. 48, PT is the tangent at the point P to the curve repre-

FiG. 48

senting the function y = f(x), and if PT makes an angle y with the
X-axis, dy

tan Y = -d;
If the equation y = f(x) is written in the form x = g(y), the curve of

Fig. 48 also represents this function. If PT makes an angle ¢ with
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the y-axis, we have

dx

tan g = ——.

¢ &

But, from the figure, ¢ + w = 90°, so that ¢ =_90° — y, and

tan ¢ = tan (90° — y) = coty = talll "

dx_ | fiy
dy /dx

An analytical proof of formula (8.11) would run as follows. If
y = f(x) and x is the inverse function given by x = g(y), we have

y = e}

Differentiating this with respect to y as a function of a function

1= fTg]g' ),

so that (8.11)

or, since x = g(y),
1 =f(x).9'0).
Hence g'(y) = 1/f'(x), and this can be written
dx _ [dy
dy | dx

8.9. The differential coefficients of tan™ ' x and sin ™' x
Ify = tan~! x, we have x = tan y and

Hence, using (8.11),
dy dx 1
dx /dy 1+ x*
Similarly, if y = sin™! x, x = sin y and

8.12)

dx
i cosy
= /(1 —sin?y)
= Y1 - x3),
dy dx

giving I =1 m (8.13)

The differential coefficients of the other inverse trigonometrical
functions can be found in the same way and are left as exercises for
the student.
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dy 1 ‘
Example 8. If y = sec™ ! x, show that x\/(x "t
Ify=sec"x,x=secy,sothat
d_x
dy
dy dx _ 1
Hence E l/ x\/(x -

= secytany = sec y /(sec?y — 1) = x,/(x* — 1).

1- z) dy 2
= cos—M[—2= nC A
Example9. Ify = cos (1 - show that T x

3

2

1-x
Letu=—— sothaty = cos™'u,oru = cos y.
14+ x

du___. _ _ 20 _ 2
5 siny = — /(1 ~ cos?y) Vit —u?)

- h- -
- tT+x3/ ) 1+x*

du dfl — xz)
Also, dx E(l + x2

0+ (=29 - (1 = x)2x)

1+ x?»?
dy dy du ( du) du
But dx du dx ! dy,
_4x) -4
2x 1+ x*?

4
T+ x?)?

_ 2
1+ x%¥

EXERCISES 8 (e)

1. Show that —dd;(cot“ X} = — 1

1+ x¥
. d e ; 1
2. Ifais a constant, show that — (cos —) =
dx a V@ - x?%
d -1 1
3. Show that IX(OOSCC x) = — m
- 2x ) dy 2
= 1 s A
4. Ify=tan (1 —i) show that x- 17

5. Differentiate x sin~* x with respect to x.

6. Ify = (sin™!x)/\/(1 — x?), show that (1 — x’):—;v‘ -~ xy=1



140 PURE MATHEMATICS [8

8.10. Differentiation of implicit functions
So far we have established rules for finding the differential coefficients
of explicit functions only. When the dependent variable y isnot given
explicitly in terms of the independent variable x it is not necessary,
nor indeed is it usually possible, to solve for y in terms of x.
Suppose, for example, that y is given implicitly in terms of x by
the equation

x? + y? = 2x. (8.14)

Since y? is a function of y and y is a function of x, the rule for differ-
entiating a function of a function (8. 10) gives

dy
0= 20 x L =0
Hence differentiating each term of equatlon (8.14) with respect to x
we have

dy
2x + ZyE; = 2,
- dy 1-x
giving o=y
In this example we can first solve equation (8.}4) for y to give
y =J2x — x?),

and then find dy/dx from the equations y = \/u where u = 2x — x2.
This procedure would give

dy 1 d

du ~ 2\/u x -2
dy dy
and then, Z)E dx 7(2
- X I - X

\/ u y '’
as before, but this method is more laborious.

As an example of a case where it is not possible to express y explicitly
in terms of x, consider the equation

x+y+cosy=4 (8.15)
The differential coefficients of y and cos y with respect to x are respec-
tively Z— and —sin y%, so term by term differentiation of (8.15) gives
dy .ody
l+d—x—smydx—0,
leading to d _ !

dx siny— 1
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Example 10. Find dy/dx when (i) \/x + \/y = 2, (ii) x"y" = const.

() Vx + /y = 2, s0 that
1 1 dy ‘
v ARl

. dy _ y
giving 2=~V
(ii) x™y* = const., and the rule for the differentiation of a product gives
- dy
mx™~! T =
Y+ X"yt ax 0,

so that B VS (P e A

8.11. List of standard forms

The differential coefficients of certain standard functions and the
rules for differentiation established in this chapter are most important.
They are here collected for easy reference. In all cases C denotes a
constant and u, v are functions of x.

d du dv
E;(u +v)= I + ™
d du
d du dv
L =gt g
du  dv
d (g _ Yax T Yax
dx u) v?
dy _dy du
dx  du " dx
dx _ /4y
dy dx’
_:%_)_CC_) = 0. ;;(sin X) =cosx.
d -1 d .
Zi(xn) = nx" ‘—i;(cos x) = —sinx.
d%(tan x) = sec? x. zd;(cot x) = —cosec? x.
d—d;(cosec Xx) = —cosec x cot x. d%(sec X) = secxtan x.
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8.12. Higher derivatives

If y be a function of x, the differential coefficient will itself be a
function of x. The result of differentiating dy/dx with reSpect to x
is called the second differential coefficient of y with respect to x or the
second derivative. Proceeding further, the differential coefficient of the
second derivative is called the third differential coefficient or third
derivative and so on.

A conventional notation for the first, second, third, ... and nth
differential coefficients of y with respect to x is

dy d’y & d'y
dx’ dx? dx¥ "7 dx™
If y is a function of x given by y = f(x), the notation

S £, - f ™),
is also sometimes used for the first, second, third, ..., nth derivatives.
There are but few cases in which the general expression for the nth
derivative of a function can be found. Here we shall be concerned
only with the first few differential coefficients and shall not attempt
to discuss the general derivative.

Example 11. Fmdd 4 and; 5 when (i) y = x'%, (i) y = co\s 2x.

dz
DY 0 D _goxe BV _gn0x
(i) dx—l()x, ol 90x®, dx3_720x'
2 4
(ii):—§=—2sin2x, d—x“;=—4cos2x, tK};=8sin2x.

2,
Example 12. Fmd: 3 when (i) y = x*(1 — x)%, (ii) y = x sin x.

M) y=x31 - x)* = x> — 2x> + x*,

dy = 2x - 6x% + 4x3,
dx

d?y

- =2- 12x2.
ol 2 - 12x + 12x

(ii) y = x sin x.
dy .
-—;=smx+ X COS X,

d? . .
E—};=cosx+ cosx — xsinx = 2¢€0s X — X sin x.
x

EXERCISES 8 (/)

Find dy/dx when :—
. x}?-x=0.
2. y? —sin2x = 4.
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EXERCISES

x? + xy + y? = a? (a constant).
Find dr/df when r? cos § = const.
If y = tan x, show that

d?y )
= 2tan x + 2tan® x.
Show that
aAUuv)y dU a2udv dU d*v %
o Tw Ve nt et Ve
where U and V are functions of x.
dz

Evaluate Ki{(l + 4x + x?)sin x}.

If y = (cos x)/x, prove that

EXERCISES 8 ()
qun%@ﬁ—gf+sxﬁﬂ%aﬂf—mm+6¢

_d_ -2 _ ag-1/2
(1ii) de(o 40~ 1%),

Find dy/dx when (i) y = cos x + xsin x, (ii) y = (3x — 1)(x — 3).

Find d6/dt when (i) @ = sin t sin 3¢, (ii) = t*sin~ ! ¢.

Differentiate with respect to x :—

i) 2 - x?)cosx + 2xsinx, (i) (1 — 1/x)tan x.
e d g Ay I

Find (i) dx{x (1 - 3x)°}, (i) d0{0 cos* 20}.

Find dy/dx when

34 x x32 I~ yx

xv W= @y =0

Differentiate with respect to x :—

(i) y=

x=1 (x—2d(x—-4) ... cosx
0) 7= @) —F—5— (i) g
Find dy/dx when . —
N X e _tanx oL osinx
@ y= sin x’ (@) y = x (i) y 2+ 3cosx

149

(QE)
QE)

(L.U)

(0.C)
(L.U)

Differentiate the following functions with respect to x and simplify the

resulting functions as far as possible.
cos(x? + 1)

@) x"tannx, (i) m

(QE)
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10. Ify isa function of x, find the differential coefficients with respect to x of -—

@ xy?, @) Gy + 2% GiD) x/y, (V) y/x.
11. Differentiate with respect to x :—
(i) (x* — x)%, (i) cos(2 — 3x), (iii) x?sin 2x. @“.u)

ol oot

(i) — { &\ Jx sz }

13. () If y = tan x + 4 tan? x, show that:—i = sect x.

12. Find

dy
dx

= -1

(i) If y = sin~? (cos x), show that ——

14. Find the value of . —

) %{sin“(tan ;)} (i) {tan ‘(sin ’—2‘)}
15. Find df/dt when:—
() @=cos™1(l — 2t?), (ii) § =sin~ 12> - 1).
16. Differentiate with respect to x :—

2
(i) cos(1/x), (i) tan(x?), (iii) sin™! (: ¥ i) (QE)

17. Show that x = (g sin 6nt)/4(6g — 36n?) satisfies the relation
“i:tz + 6gx = Zsm 6nt. (QE)

18. Ifa and f are constants, show that the derivative with respect to x of each
of the functions

2ot J(E22) wna 2t (228)

is {(a — x)(x — p)y~-2
19. Ify = sin™* (3x — 4x?), show that \/(1 — x?

=13

81S

20. Ifu=6*+ (sin"'6)* — 26,/(1 — 6*)sin~ ' 6, show that
du
_ ¥ _ 42 o1
V(L — 697 = 46*sin 6.
21. Find dy/dx when y3 — 3yx? + 2x3 = 0.
22. Ify* - 2y,/(1 + x*) + x? = 0, show that
dy

. X
dx  JA + %%
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23.

24,

25.

26.

27.

28.

29.

30.

EXERCISES 151

Find dy/dx when y is given by :—
(@) y2 + x2=4x + 1, (ii) 49® + xy — 3x? =0.
Find dy/dx when y is given by -— .
(i) x>siny — ycosx =0, (iij xcosy — y*sinx = 0.
Find the slope of the tangent to the curve )
xy? - 2x%yP + x* —1=0
at the point where x = 1, y = 2.

Find d*y/dx? when :—
2
R g o 1 oo '
(i) y=x’sinx, (i) y=xtan™'x, (ii) y T+
If y = tan? x, prove that
d’y
2 = A+ L+ 3y, (0C)
Ify= smzx, ﬁnd and ;——};, and prove that
:y +4xd + (2 +2y=0 L.U)

If y = (tan"! x)?, prove that

d 2dy}_ 2
E{(l“—x dx) 1+ x*

Show that if u = tan™! 8, then

(1+02y—+29‘;—‘;=0.



CHAPTER 9

SOME APPLICATIONS OF THE DIFFERENTIAL
CALCULUS

9.1. Introduction

We have seen in Chapter 7 that the derivative is a measure of the
slope of the tangent to the curve representing a function. The process
of differentiation has therefore the geometrical application of finding
the slope of a tangent to a curve but we shall delay giving examples
of this application until we discuss the methods of coordinate geometry
{Chapters 16, 17).

Other important applications already discussed are the use of the
derivative as a rate measurer and in finding velocities and accelerations
in dynamical problems. More eleaborate examples can be given now
that the technical processes of differentiation have been studied.
Further uses of the differential calculus occur in finding maximum
and minimum values, and in curve tracing. These applications are
discussed in the paragraphs which follow.

9.2. Some examples of the derivative as a rate measurer

We give below two examples in which the methods of the last
chapter can be used in solving problems on rates of change.
Example 1. The volume of a solid cube increases uniformly at k* cubic metres per

second. Find an expression for the rate of increase of its surface-area when the
area of a face is b* square metres.

If x is the length of an edge of the cube at time ¢, the volume V is given by
V = x*. Differentiating with respect to ¢, we have

dv ,dx
I = 3x "d-t'
But dV/dt is the rate of increase of volume and this is k*, so that
dx
3 _ q,.2%%
k’ = 3x ar
ivin ff = K
giving dr  3x*
The surface-area S of the cube is 6x2, so that the rate of increase of surface-area
at time ¢ is
ds dx
Et— = 12x—d—'
Substjtuting for dx/dt we find
3 3
d—-s = 12x x L = b

dt 32 x°
152
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When the area of a face is b2, x = b and the required rate of increase of surface-
area at this instant is obtained by writing x = b in the expression for dS/dt,
giving 4k/b.

Example 2. A4 hollow circular cone with vertical angle 90° and height 0-36 m is inverted
and filled with water. This water begins to leak away through a small hole in the
vertex. If the level of the water begins to sink at the rate of 0-01 metres in 120
seconds, and the water continues to leak away at the same rate, at what rate is
the level sinking when the water is 0-24 m from the top? (The volume of a cone
is one-third the area of the base times the height.)

Let (Fig. 49) the height of the water at time ¢ be h, and let the volume of the
water then be V. Then, V = {zr?h, where r is the radius of the water surface.

Since the semi-vertical angle of the cone is 45°, it is clear that r = h, so that

r = h, so that
V = {nh>.
By the rule for differentiating a function of a function,
v _dv dn
dt dh dt
= nhz% ©.1)

Since the level of the water is decreasing at the rate of (0-01/120) m/s when
the cone is full, i.e. when h = 0-36 m,

édlt/ = 1 x(0-36)% x (:TOOI m3/s

(a negative sign meaning a negative rate of increase or a rate of decrease).
dV/dt remains constant at this value. When the water is 0-24 m from the 1op,
h = 0:36—-0-24 = 012 m, and substitution in (9.1) gives

: dh
7 x (0-36)? xOT_% = nx (0127,

dh oo fosel o,
so tHat = 1% X(O_ﬁ) = —-75x107%

showing that the water is sinking at 0-75 mm/s at this instant.

9.3. Some dynamical applications

We have already seen (§7.7) that if a body, moving in a straight
line, has travelled a distance s and acquired a velocity v in time ¢,
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then
ds
b= 7 . 82
and its acceleration (a) at time ¢ is given by
dv
=7 9.3)

Alternative expressions for the acceleration can be found as follows.
Firstly, combining (9.2) and (9.3),

_d ds) _d*s
Secondly, since v is a function of s and s is a function of ¢,
dv dv ds dv dv
b il el i ARl 9.5)

Thus the acceleration may be expressed in any one of the three
equivalent forms

dv d’s v@
ar dr’ ds

In mechanical applications, differential coeflicients with respect to
the time are often denoted by dots placed above the dependent variable.
Thus ds/dt, d%s/dt?, dv/dt are denoted by $, § and © respectively. In
this notation, equations (9.2), (9.3) and (9.4) would be written

v=3 a=19v a=3

Example 3. The distance s moved in a straight line by a particle in time t is given
by s = at® + bt + c, where a, b and c are constants. If v is the velocity of the
particle at time t, show that 4a(s — c) = v* — b2 (L.U)

In the notation just given,
v=2S§=2at+b,
so that

4a(s — c) = 4a(at®> + bt + ¢ — c) = da(at® + bt)
=4g’t’+4abt=(2at+b)2—bz
= p? - b2

Example 4. If the velocity of a body varies inversely as the square root of the distance,
prove that the acceleration varies as the foyrth power of the velocity.

Denoting the distance travelled by s, the velocity and acceleration by v and
a we have,

where k is a constant.

- 7 &)

k
v = y
Js
o
“="Yis
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k? k? vt v*
STWTTITET W
since (/s = k/v, and we have established the result required. .

EXERCISES 9 (a)

1. A conical vessel has a vertical angle of 60°. If liquid is poured in at a rate of
2x 1073 m%/s, find the rate at which the level is rising when the depth of
liquid in the vessel is 0-05 m.

2. The radius of a sphere is r, the area of its surface is 4nr?, and its volume is
$nr3; if, when the radius of the sphere is 21 m, it is increasing at the rate of
001 my/s, find the rates at which the surface and volume are increasing at
the same time.

3. The inner and outer radii of a cylindrical tube of constant length change in
such a way that the volume of the material forming the tube remains constant.
Find the rate of increase of the outer radius at the instant when the radii
are 0-03 m and 0-05 m and the rate of increase of the inner radius is 0-5 mm/s.

4. The displacement x at time ¢t of a moving particle is given by

x = asin2t + bcos 2t,
where a and b are constants. If v is the speed at time ¢, prove that
v = 2,/(a* + b* — x?). L.u)

5. If the velocity of a body varies as the square of the distance travelled, show
that the acceleration of the body varies as the cube of the distance.

6. s is the distance moved and v the velocity acquired by a body moving in a
straight line at time ¢ If (i) v = u + ft, (ii) v> = u® + 2fs, where u and f
are constants, show that in each case the acceleration of the body is f.

9.4. Maximum and minimum

Suppose the graph of y = f(x) is as shown in Fig. 50. Points such
as A, B, C are called turning points. As x increases, the values taken
by y increase until the point 4 is reached, décrease from A to B,
increase again from B to C and then decrease. At 4, B and C. y is
neither increasing nor decreasing.

Y c

Fic. 50
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Sometimes the points 4, B and C are referred to as points of
maximum or minimum values, maxima at A and C and minimum at
B. 1t should be noted that a maximum or minimum value is the
greatest or least value in the neighbourhood, but it need not be the
absolutely greatest or least value. For example, there are points on
the left of the curve of Fig. 50 for which the values of y are less than
the “minimum value™ at B and there are points on the right where
the values are greater than the maximum value at 4. Again in Fig. 51,
which shows the graph of y = 2x? — x*, there are maximum values

a2 V¥ e

5
7ol 7 z

Fic. 51

where x = +1 and these are also greatest values, but the minimum
value at x = 0 is not a least value, for there are points on the curve
with smaller values of y than that at O.

Y Y

(7 \d
7] x o] x
FiGc. 52 FiG. 53

We have already seen that where the value of the derivative is
positive, the function itself is increasing and where it is negative, it
'is decreasing. This is illustrated geometrically in Figs. 52, 53 which
show the graphs of functions which increase and decrease respectively
as the independent variable increases. In the first diagram, the tangent
at a representative point P makes an acute angle y with the x-axis;
since the tangent of an acute angle is positive and since, by definition,
dy/dx = tany the derivative will be positive. In the second diagram,
the angle v is obtuse, and since such angles have negative tangents,
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the dertvative will be negative. At points like A, B or C in Figs. 50 or
51, the tangents to the curves will be parallel to the x-axis. At such
points, the tangent will make a zero angle with the x-axis and we
shall have

dy
dx
Returning to Fig. 50, shown again in Fig. 54, the signs of the deriva:

tive have now been marked in. Immediately to the left of the point A,
the function is increasing and its derivative is positive. At point A4,

=0

0 x

F1G. 54

the function is neither increasing nor decreasing and the derivative
is zero. Immediately to the right of point 4, the function is decreasing
and so has a negative derivative, and so on. We can formulate the
following rules for determining the position of turning points and
distinguishing between maximum and minimum values . —

(a) At a turning point, dy/dx = 0.

(b) At a point giving a maximum value, dy/dx changes from positive
to negative as x takes values just less and just greater respectively
than the value at the turning point.

(c) At a point giving a minimum value, dy/dx changes from negative
to positive as x takes values just less and just greater respectively
than the value at the turning point.

Example 5. Find the turning point on the curve y = x* — 2x and determine whether
it is a point of maximum or minimum y.

dy

Here ax =2x - 2,

and dy/dx vanishes when 2x — 2 = 0, i.e,, when x = 1. Hence the point x = 1,
y = (1)* — 2(1) = —1 is a turning point on the curve. For x = 0-9 (a value a
little less than the value x = 1 at the turning point),

dy

=2x09-2=-02
= 09 02
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For x = 11 (a value a little greater than x = 1),

Q=2x1-1—2=+0~2.
dx .

The derivative therefore changes from negative to positive, so the point x = 1,
y = —1 gives a point of minimum y. The graph of y = x> — 2x is shown in
Fig. 55.

Y

+10
+8
16
14
.-2

FiG. 5§

An alternative method of discrimination between maximum and
minimum values can be obtained as follows. If we plot on the same
diagram the graphs of y = f(x) and y = f'(x) (the derived function),

Y

y=Ff(x)

y=f(x)

T W

v

(

0
FiG. 56

we shall obtain a diagram such as that shown in Fig. 56. For points
to the left of the maximum value at A, f(x) is increasing and f'(x)
is positive, for points between A and the minimum value at B, f(x)
is decreasing and f’(x) is negative, and for points to the right of B,
f(x) is again increasing and f'(x) is positive. The derived function
f'(x) is zero for values of x corresponding to the points 4 and B.
Considering the graph y = f'(x), we see that for a value of x corres-
ponding to the point A, f'(x) is decreasing and therefore has a negative
derivative. Thus at point A, f”(x) (or d*y/dx?) is negative. Similarly
at point B, f(x) is increasing and its derivative f"(x) is positive. Hence
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at turning points giving maximum values
iz_y_ < 0
dx t ] Ll
and at turning points giving minimum values
d?y
Applied to Example 5, y = x* — 2x, dy/dx = 2x — 2 and there is a
turning point where 2x — 2 = 0, i.e, where x = 1. For this curve
d?y
i
and, this being positive, the turning point is one giving a minimum
value to y. This method is further illustrated in the following example.

Example 6. Find the maximum and minimum ordinates of the curve y = x*(x + 1).

=x¥x + 1) = x> + x%

dy _ a2 d*y -
dx—3x +2X, E—6x+2
dy/dx vanishes when 3x? + 2x = 0, i.c, when x = 0 and when x = —2/3.

When x = 0, d’y/dx* = 2; this being positive, x = 0 gives a minimum value
to y, the minimum ordinate being y = 0.

When x = —2/3,d%y/dx* = 6(—2/3) + 2 = —2;this being negative, x = —2/3
gives a maximum ordinate of

(=2/32(=2/3+1), or 4/27.

EXERCISES 9 (b)
1. Find the values of x for which the expression (x — 2)(x — 3)* has maximum
and minimum values and discriminate between them.

2. Xy=(x—2)(x + 1)? find the maximum and minimum values of y, stating
which is which.

3. Find the maximum and minimum values of the expression
3x
(x — D{x —4)
4. Find the maximum and minimum values of the function
(x - D(x — 2)/x
and illustrate your result by drawing the graph of the function between
x=—3and x = 3.
5. Find the maximum and minimum values of the function 2sint + cos2t
and discriminate between them.

6. Show that the function x* — 6x% + 18x + 5 increases with x for all values
of x. Find the value of the function when the rate of increase is least.
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9.5. Applications to practical problems

Many practical problems can be solved by the method of the last
section. It sometimes happens that the quantity whose maximum
or minimum value is sought appears at first to be a function of more
than one variable. In such cases it is often possible, by means of
geometrical or other relations between the variables, to eliminate all
but one of these variables. Once the quantity has been expressed in
terms of a single variable, the procedure is identical to that given in
the previous section. We differentiate with respect to the single
variable remaining and the values which make the derivative vanish
include those giving maximum and minimum values to the quantity
under discussion. In many cases it is unnecessary to examine the
changes in sign of the derivative (or the sign of the second derivative,
if that method is used) to discriminate between maximum and mini-
mum values, for it is often possible to see at once on physical grounds
whether the solution leads to a maximum or minimum. Some
illustrative examples follow.

Example 7. Find the height of the right circular cylinder of greatest volume which

can be cut from a sphere of radius a. (L.U)
A B
5" |h
o 2
o FTW
D c
FiG. 57

In Fig 57, O is the centre of the sphere and ABCD is a plane section of the
cylinder through its axis. If X is the mid-point of the generator BC of the
cylinder and if the radius and helght of the cylinder are respectively r and h,
the right-angled triangle BOX gives

rt +1h* = g% 9.6)
The volume V of the cylinder* is given by
V = nrh.
Since, from (9.6),

r = o? —J"hz
= nhia® — Yh?) = math — 3h%),

the volume is now cxprcssed in terms of the single variable h. V is a maximum

* See §20.5.
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or minimum when dV/dh = 0, i.e., when
n(a® — $h*) =0

or when h = 2a//3. ‘
This value of h does in fact give a maximum value for the volume - f the cylinder
since

v 3

W= —Eﬂh= —\/Sna,

which is a negative quantity.

Example 8. A despatch rider is in open country at a distance of 6 kilometres from
the nearest point P of a straight road. He wishes to proceed as quickly as possible
to a point Q on the road 20 kilometres from P. If his maximum speed, across
country, is 40 kilometres per hour and, along the road, 50 kilometres per hour,
find at what distance from P he should strike the road. (L.U)

In Fig. 58, the rider starts from a point 4 and strikes the road at a point B,
x kilometres along the road from P. Then AP =6, PB = x, PQ = 20,
BQ = PQ — PB = 20 — x kilometres.

FiG. 58

Since the angle APB is a right angle,
AB = /(36 + x?) kilometres.

Along AB, the rider's speed is 40 km/h and along BQ it is 50 km/h, so that
the times taken to traverse AB and BQ are respectively

V(36 + x%) 20 — x
BT and 50

The total time T for the journey is therefore given by
_JB6+x%)  20-x
T="%"*"s

and for the journey to be accomplished as quickly as possible, this must be
a minimum, or dT/dx = 0. Now

ar_ 1 = 1

dx ~ 40 2.\/(36 +x3) 50
This vanishes when /(36 + x?)= 5x/4, i.e., when 36 + x* = 25x?/16 or when
9x2/16 = 36, giving 3x/4 = 6 or x = 8 kilometres.

hours.

Example 9. A straight line AB has its ends on two fixed perpendicular lines 0X, OY
and passes through a fixed point C whose distances from the fixed lines are a, b.
Find the position of AB which makes the triangle AOB of minimum area and
calculate that minimum area. (L.U)
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Draw CD, CE perpendicular respectively to OX and OY. Let AB make an
angle 8 with OX. Then
AD = acotf, BE = btané. .

The area of the triangle AOB is the sum of the areas of the rectangle ODCE
and the two triangles DAC, ECB.

8

a

1
0 0 A
FiG. 59
Hence if A is the area of the triangle AOB,
A =ab+4acotf.a + 4b.btan g
= ab + %a*cot & + {b*tan 6. 9.7)
This is a minimum when dA:d6 = 0, i.e, when
—4a? cosec? § + 4b? sec? 6 = 0,
or when tan 8 = a/b.
The value of the minimum area is obtained by substituting the value of 8
given above in (9.7), giving
A, = ab + $a’(b/a) + 4b*(a/b)
= 2ab.

EXERCISES 9 (¢)

An open cylindrical vessel is to be constructed from a given amount of
uniform thin material. Show that it contains the greatest possible volume
when its height is equal to the radius of its base. (0.C)

A piece of wire, which forms the circumference of a circle of 0-12 m radius,
is cut and bent so as to form two new circles. Find the radius of each circle
in order that the sum of the areas of the two circles shall be as small as
possible. (0.C)

Square pieces are cut out of a square sheet of metal as shown in the figure,
and the remainder is folded about the dotted lines so as to form an open

FiG. 60



9] POINTS OF INFLEXION 163

box. If the length of the edge of the square sheet is 0:18 m, find the maximum
volume of the box.

4. A cylindrical tin canister without a lid is made of sheet metal. If S is the
area of the sheet used, without waste, V the volume of the canister and r
the radius of the cross-section, prove that

2V = Sr — nrd.
If S is given, prove that the volume of the canister is greatest when the ratio
of the height to the diameter is 1:2. (L.U)

5. ABCD is a square ploughed field of side 132 metres, with a path along its
perimeter. A man can walk at 8 km/h along the path, but only at 5 km/h
across the field. He starts from A4 along AB, leaves AB at a point P, and
walks straight from P to C. Find the distance of P from A, if the time taken
is the least possible. (L.U)

6. An isosceles triangle of vertical angle 26 is inscribed in a circle of radius a.
Show that the area of the triangle is 4a® sin 8 cos® § and hence that the area
is a maximum when the triangle is equilateral. (L.U)

7. The sum of the perimeters of two rectangles is 1-98 m. The ratio of length to
breadth is 3:2 for one rectangle and 4:3 for the other. Find the minimum
value for the sum of their areas.

8. A piece of wire 01 m long is cut into two parts one of which is bent into
a circle, and the other into a square. If the sum of the areas of the circle
and of the square is to be a minimum, find the radius of the circle.  (Q.E.)

9.6. Points of inflexion

Consider the function y = (x — 1)3(12x?> — 9x — 43). By the rule
for differentiating a product,

-:—‘v; = 3(x — 1)?(12x%? — 9x — 43) + (x — 1)’(24x ~ 9)
= (3(x — 1)*{12x* — 9x — 43 + (x — 1)(8x — 3)}
= 3(x — 1)2{20x? — 20x — 40}
= 60(x — 1)’ (x + 1)(x — 2).

Hence dy/dx vanishes when x = —1, x =1 and x = 2. When
x < —1, dy/dx is positive, when x lies between —1 and 1, dy/dx is
negative, when x lies between 1 and 2, dy/dx is negative and when
x > 2, dy/dx is positive. Since dy/dx changes sign from positive to
negative as x increases through x = — 1, x = —1 gives a2 maximum
value and since dy/dx changes from negative to positive as x passes
through x = 2, x = 2 gives a minimum value to y. Although dy/dx
vanishes when x = 1, dy/dx does not change sign as x passes through
this value and, although the tangent to the curve is parallel to the
x-axis at x = 1, this point is neither a maximum nor a minimum. Such
a point is called a point of inflexion: a rough graph of the function is
shown in Fig. 61 and the tangents at-and adjacent to the critical points
A, B and C are shown in the subsidiary diagrams.
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ANY

N

FiG. 61

As we pass through the point of inflexion B, the derivative changes
from negative, through zero, to negative again. A graph of the deriva-
tive would therefore show a maximum at B and another method of
finding points of inflexion would be to seek maximum (or minimum)
values of the derivative. Thus, at a point of inflexion at which the
tangent to the curve is parallel to the x-axis both

i e B Y

- N
N
]

1
~
Q
é

c

dy d’y
H =0 and 3}7 = 0,
and the second derivative changes sign as we pass through the critical

point. ‘

At a point of inflexion, the curve “crosses its tangent” and such
points can, of course, occur when the tangent is not parallel to the
x-axis. At such points the second derivative can be shown to vanish
but the first derivative is, of course, not itself zero. It is beyond the
scope of the present book to consider these points in further detail
and we simply state the rule that the second derivative changes sign as
we pass through and vanishes at a point of inflexion.

To sum up the results of the last three sections we have . —

2
Z—i =0, %‘ivf positive ; minimum value for y.
2
% =0, ‘%CZZ negative ; maximum value for y.
d*y d*y L . . .
— p i 0, o changing sign, point of inflexion.

Example 10. Find the turning points and point of inflexion on the curve
y=x%— 5x* + 5x% — 1.
Here,

? = 5x* ~ 20x? + 15x% = 5x¥x? — 4x + 3)
x

= S5x%{x ~ 1)(x — 3),

2
3;‘; = 20x* — 60x? + 30x = 10x(2x? — 6x + 3).
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Hence the first derivative vanishes when x = 0, 1 and 3. When x = 0, the
second derivative vanishes, when x = 1, the second derivative is — 10, and when
x = 3 it is 90. Hence x = 1 gives a maximum, x = 3 gives a minimum. Since
the second derivative is negative for small negative values of x, positive for
small positive values of x and zero at x = 0, there is a point of inflexion for
this value of x. Since the first derivative also vanishes when x = 0, the tangent
to the curve is parallel to the x-axis at the point of inflexion.

9.7. Curve sketching

It is often useful to be able to make a rough sketch of a curve without
going to the labour of actually plotting a large number of points on
it. The following procedure, either wholly or in part, should enable a
good idea of the shape of a curve to be obtained.

(i) Determine if the curve is symmetrical about either or both axes
of coordinates. Symmetry about the x-axis occurs if the equation
contains only even powers of y and about the y-axis if the equation
contains only even powers of x.

(ii) Determine if there is symmetry about the origin. Such symmetry
occurs when a change in the sign of x causes a change in the sign
of y without altering its numerical value.

(iii) Seek values of x which make y? negative and therefore y imaginary.
No real points occur on the curve for such values of x.

(iv) Find where the curve crosses the axes of coordinates. The curve
cuts the x-axis at points for which y = 0 and it cuts the y-axis
where x = 0. It passes through the origin if y = 0 when x = 0.

(v) Find values of x (if any) which make y very large and values of
y (if any) which make x very large.

(vi) If the curve passes through the origin, its behaviour in this neigh-
bourhood can sometimes be decided by studying the value of the
ratio y/x. If this ratio is small the curve keeps close to the x-axis
near the origin, if y/x is nearly unity, the direction of the curve
bisects the angle between the axes, while if y/x is large the curve
keeps near the y-axis. An alternative and better method is to
study the value of the derivative dy/dx near the origin. Since this
quantity measures the slope of the tangent to the curve, a small
value means that the curve lies near the x-axis, a large value that
it lies near the y-axis, while a value near unity means that the
tangent at the origin approximately bisects the angle between the
axes.

(vii) Find turning points and points of inflexion (if any) by the methods
of this chapter.

Some illustrative examples follow.
Example 11. Sketch the curve y = x* — 6x* + 8x + 10.

Since odd values of x and y occur, there is no symmetry about the coordinate
axes. A change in sign of x alters the value of y so that there is no symmetry
about the origin. Points exist on the curve for all values of x. The curve crosses,
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Example 12. Sketch the curve y* = x3.

PURE MATHEMATICS

the y-axis where y = 10. It is not convenient to find quickly the points at
which the curve crosses the x-axis for this requira the solution of a quartic
equation. The curve does not pass through the origin. When x is large, the
dominant term is x* and this is positive whatever the sign of x. Hence y is
large and positive when x is large and positive or large and negative.

&y =4x3 - 12x + 8
dx
= 4(x — 1)*(x + 2).
d?y
-d—;i = 12x2 - 12
Hence turning points or points of inflexion occur when x =1 and x = —2.

Y

13
2 / 0 l
7 v

1

FiG. 62

When x = 1, the second derivative vanishes and changes sign, so x = 1 gives
a point of inflexion where the tangent is paralle] to the x-axis. When x = 1,
the value of y is easily found to be 13. When x = —2, the second derivative is
positive, so that x = —2 gives a minimum value to y, the value of y at this
point being — 14. A rough sketch of the curve is shown in Fig. 62.

3

Since only even powers of y occur, the curve is symmetrical about the x-axis.
It is not symmetrical about the y-axis for an odd power of x occurs in the

Y

FiG. 63
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equation. When x is negative, y? is negative and there are no real points of
the curve for such values of x. The curve passes through the origin and since
its equation can be written in the form (y/x)? = x, the ratio y/x is small when
x is small. The curve therefore lies close to the x-axis near the origin. As x
becomes large so does y. A sketch is given in Fig. 63.

EXERCISES 9 (d)
Find the values of x at the points of inflexion (if any) of the curve
y=3x*—4x3 + 1.
For what values of x are there points of inflexion on the curve y = x + sinx
at which the tangent is parallel to the x-axis?
Discuss the nature of the points on the curve

y = 3x* — 8x3 — 24x? + 96x

at which the tangent to the curve is parallel to the x-axis.

Give a rough sketch of the curve a%y = 4x%(3a — 4x), where a is constant.
(L.U.)

Sketch the graph of the curve y? = x(5 — x)*. (L.U)
Find (i) the slopes of the tangents to the curve whose equation is
y* = x*(1 — x?) at the points where x = 0 and x = 1, and (ii) the values of
x at the turning points of the curve. Sketch the curve. (0.C)

EXERCISES 9 (¢)

A vessel is constructed so that the volume of water contained in it is

(3 2
19—2{): + 24x* + 192x),
when the depth is x. What is the rate of increase of volume per unit increase
of x when (i) x = 2, (ii) x = 4? How many times faster does the surface rise
when x = 2 than when x = 4, if water is poured in at a constant rate? (O.C.)

If the volume of a cone remains constant while the radius of its base is
increasing at the rate of 1 per cent. per second, find the percentage rate
per second at which its height is diminishing. (0.C)
A trough 3 m long has its cross-section in the form of an isosceles triangle.
The depth of the trough is 0-2 m and it is 0-25 m wide at the top. If water
runs into it at the steady rate of 6 x 10”* m3/s at what rate is the surface
rising when the depth of water is 0-1 m?

A body moves in a straight line so that its distance s m from a fixed point
O at time t seconds is given by

s=(t—2Q2t—7).
Find when the body passes through O and the velocity and acceleration
each time it passes. Find also the minimum value of the velocity.

The velocity v m/s of a particle which has travelled a distance s metres
from a fixed point is given by v2 = 16s. Find the acceleration of the particle.
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12.

14.

15.

16.

17.

18.
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Find the values of x and y at the turning point of the curve
ay = bx? + cx,

where a, b and c are positive constants. Is the turning point & maximum
or minimum?

Find the values of x at the turning points of the curve

_xt-x+1

Ve a1
State which is a maximum and which a minimum.

Show that maximum and minimum values of cos® x sin x occur when
sin? x = 1/4.

Show that the minimum value of asec @ — btan 8 is \/(a> — b?).
Determine thé value of x for which the positive square root of

2 atl
x"—-x"
is a maximum; n is a constant greater than unity. (QE)

A prism of square section contains 64 cubic metres of clay, the side of the
square being x metres. Express the length of the prism in terms of x and
find the total area of its faces.

Show that the total area is a minimum when the prism is a cube.

A piece of wire of length [ is cut into two portions of lengths x and (I ~ x).
Each portion is then cut into twelve equal parts which are soldered together
so as to form the edges of a cube. Find an expression for the sum of the
volumes of the two cubes so formed. What is the least value of the sum
of the volumes? {O0.C)

Find the height of the right circular cone of maximum volume, the sum
of the height and radius of the base being 0-12 m.

Post Office regulations restrict parcels to a maximum length of 1-07 m and
a maximum girth of 1-83 m. Find the maximum permissible volume of a
rectangular parcel.

Find also the length of the longest thin rod which can be packed inside a
parcel of maximum permissible volume.

The point A4 is 7 kilometres due north of a point B. One man starts from A
and walks due east at the rate of 3 km/h. Simultaneously a second man
starts from B and walks due north at the rate of 4 km/h. Find the rate
at which the distance between them is increasing when they are 15 kilo-
metres apart. Find also the minimum distance between them.

A water tank with an open top and square horizontal cross-section is to
contain 1 cubic metre. Find the cost of lining the tank with sheet lead at
£0-374 per square metre when that cost is the least possible.

In a triangle ABC, the angles B and C are equal. Prove that the maximum
value of cos A + cos Bis 9/8.

Find the dimensions of the rectangle of greatest area which can be inscribed
in a circle of radius r.
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Given that the stiffness of a beam of rectangular cross-section varies
directly as its breadth and as the cube of its depth, find the breadth of the
stiffest beam of rectangular cross-section which can be cut from a ¢ylindrical
log of diameter 0-6 m. (QE)

Find the quantity which, when added to the square of its reciprocal, gives
a minimum sum.

Find the maximum and minimum value of y when
yp=x>—4x? - 3x + 1.

Find also the value of x at the point of inflexion. (QE)

Find the abscissa of the point of inflexion on the curve
y=ax? + bx* + cx + d,

where a, b, c and d are constants.

Sketch the curve (a — x)y?> = (a + x)x?, where a is constant.

If a is a constant, trace the curve x’y = 4a%(2a — y).

Sketch the graph of y = x/(x? + 1), finding the maximum and minimum

values of y.

Prove that the graph lies entirely within the region bounded by the
linesy = + 1. (L.U)



CHAPTER 10

INTRODUCTION TO THE IDEAS OF THE
INTEGRAL CALCULUS .

10.1. The nature of the fundamental problem of the integral calculus

The preceding chapters on the differential calculus have been con-
cerned with the rate of variation of various known functions. The
integral calculus is concerned with the inverse problem—if the rate of
variation of a function is known, what is the function itself? In symbols,
we have to find a function y of x when the derivative dy/dx is known,
i.e., we have to find y from the equation

dy
&= 400, (10.1)

where ¢(x) is a known function of x.

As an example, suppose we know that the velocity at time t of a
particle moving in a straight line is (4 + at) where u and a are constants,
and we wish to find an expression for the distance s travelled by the
particle in this time. Since the velocity is expressed by ds/dt, we have
to find s from the equation

%; =u+ at. \ (10.2)
This entails finding a function of ¢ whose derivative with respect to
t is (u + at). An inspired guess will lead to the result s = ut + iat*
for the derivative of this expression is u + at. This, however, is not
the only solution to our problem. The function s = ut + at* + C,
where C is any constant whatever, has the same derivative and the
general solution of equation (10.2) is

s =ut + $at? + C. (10.3)
The conventional way of writing the solution of equation (10.1) is

y= f $(x) dx, (104)

and y is called the indefinite integral of ¢(x) with respect to x. The
origin of this notation will be explained later (§ 10.5); at present we
shall merely regard it as a means of expressing y when the derivative
of y with respect to x is ¢(x). In this notation the solution of equation
(10.2) would be written

s = J.(u + at)dt,

170
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and this indefinite integral we have seen in (10.3) to be ut + 4at* + C,
where C is an arbitrary constant.

There is a distinction between direct and inverse operations in
mathematics. Differentiation is a direct operation and can be per-
formed according to definite rules to give an unambiguous result. An
inverse operation is of the nature of a question. The operation of
integration, i.e., of finding the indefinite integral, asks what function
when differentiated will produce an assigned result? We have seen
in the example given in (10.2) and (10.3) that if there is one answer
there are an infinite number owing to the presence of the arbitrary
constant C. To discover under what circumstances there is an answer
is beyond the scope of the present book. We shall simply state here
that there is an answer, ie., the indefinite integral exists, for a large
class of functions and in this and the subsequent chapter we shall
discuss methods for finding it.

10.2. Standard forms
There are no infallible rules by which the indefinite integral

j ¢(x)dx of any given function ¢(x) can be found. Integration being

an inverse operation, we can only be guided by the results of the direct
operation of differentiation. Moreover, although the indefinite integral
exists for a large class of functions, it may not be capable of expression
in terms of functions normally employed in mathematics. An example
of a comparatively simple function where this is the case is

sin x
dex,
and such instances can be extended indefinitely.

A first list of integrals is easily obtained from the list of standard
forms for the derivative given on page 147. On inversion, each of these
will give an indefinite integral. The student should become thoroughly
familiar with this list which is fundamental.

dx")--nx"'l ”x"dx— - +C
dx ' ’ J Tn+1 ’

' (except whenn = —1).
dix{sin X) = oS X, cos xdx = sinx + C.
%(cos X) = —sin x, sinxdx = —cosx + C.
%c(tan x) = sec? x, sec? xdx = tanx + C.
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‘;ix(cot x) = —cosec? x, cosec? xdx = —cotx + C.
d, . _, 1 r dx Ly )
E{sm x) = =3 J_\/—_(l——xz) =sin" "' x + C.
d N | [ dx

E(tan )_1+—x2’ .1+x2_tan x + C.

In each case C denotes an arbitrary constant.

By differentiating with respect to x the results given on the right
of the above list by use of the standard derivatives on the left it will
be seen that the result in each case is the function (the integrand)

included within the sign J‘ ...dx. Thus, since

d(x"+l )_(n+1)x"_

E,n+l+c T on+1 =X
xn+l

then jx"dx = + C.
n+1

And since %(tan x + C) = sec? x,

then J.secz xdx =tanx + C,

and so on. It should be noted that the result given for J x"dx is

invalid for n = —1: the integral Jx"dx will be discussed later
(§ 13.4). It should also be noted that

dx d dx
,[\/(1 X7 B ,[1 ¥ x2

are conventional ways of writing integrals which should strictly be
written

f ———1—2dx and J. ——l—zdx.
J( = x%) 1+ x

Since the differential coefficient of the sum (or difference) of two
functions is the sum (or difference) of the differential coefficients of
the separate functions, it follows conversely that the indefinite integral
of the sum (or difference) of two functions is the sum (or difference) of
the indefinite integrals of the separate functions. Thus

f (6(x) £ 200)dx = j Sdx + j 0, (10.5)



10] STANDARD FORMS 173

and this result can be generalised to cover any finite number of
functions.

Again, since the differential coefficient of a constant multiplied by
a function is equal to the constant multiplied by the differential
coefficient of the function, it follows conversely that the indefinite
integral of a constant multiplied by a function is equal to the constant
multiplied by the indefinite integral of the function. In symbols, if a
is a constant,

fa d(x)}dx = a J P(x)dx. (10.6)

The standard integrals given in this section and the rules expressed
symbolically in {10.5) and (10.6) enable the integrals of quite a large
number of functions to be written down. Some examples follow.

1
Example 1. Evaluate j(x’ +2+ 2)dx.

X

J'(x1+2+x—lz)dx= ’dx+2.‘.dx+J.x"dx

X
x3

+2x-x"'+C

w

It should be noted that the integral is first expressed as the sum of three
separate integrals and that | 2dx =2 | dx = 2| x%dx = 2x. Also that the

three arbitrary constants from the threc separate integrals can be combined
into a single arbitrary constant C.

Example 2. Integrate (2x — 1)? with respect to x.
Since 2x — 1)® = 8x* — 12x? + 6x — 1, we can write
J‘(Zx —1)3dx = 8Ix3dx - lZI'x’dx + 6dex —I dx
-5(3) - 2(5) + 3)
= 8(7 - 12 -3— + ? x + C

=2x*—4x3 4+ 3x? - x + C.

Example 3. Evaluate I (26 + sin 6)d0.

I(m + sin OO = 2_[040 +Isin0d0.

2
=2.07—-oos0+C

=8 —cosd + C.

4
Example 4. FindJ-(' ;

l)dz.
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Since (2 + 1)/¢* can be written t* + 1/12, we have

I("t’: l)dt=j(t’+t'z)dt=J‘t2dt +J. t™2dt .

I |
=-—t'+C==—-+C
3 + 3 t+C

EXERCISES 10 (a)
Integrate the following functions with respect to x :—

2
1 x*3, 5. "—x“,*—l LU
2. 3/x% 6. sinx + cosx.
3. 2, . 2 3
1+ x) 7 2secx+1+x2
1 2
4. (x+;). 8. x*+4x*-2x*+x-13.

Evaluate the following indefinite integrals —
-1
9. J(St’ —t+ . 1. J"" T tey,

10. J' (515 + 515 - z)do. 2. J(w + cos )d6.

13. By using the relation sec? @ = 1 + tan? g, find the value of Jtan’ 6d6. In
a similar manner show that

J-cotzﬂdﬂ =C— 68— cotf.
14. Use the relation cos x = 2 cos? $x — 1 to evaluate J' cos? 4x dx.

15. Ifd + x’):—i = 1, find the general value of y.

10.3. Some geometrical and dynamical applications

The problem of finding a function which has a known differential
coefficient has many geometrical and dynamical applications. The
indefinite integral gives a general solution to this problem but often
a particular solution is required which satisfies some geometrical or
physical condition obtaining in the specific problem under discussion.
Such a condition enables the particular solution to be selected from
the general solution by fixing the value of the arbitrary constant in
the indefinite integral.

Some illustrative examples are given below.
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10 GEOMETRICAL AND DYNAMICAL APPLICATIONS

Example 5. At a point on a curve the product of the slope of the curve and the square

of the abscissa of the point is 2. If the curve passes through the point x = 1,

= — 1, find its equation. (L.U)
The slope of the curve at the point whose coordinates are x and y is’ dy/dx
so that

Ll )
x dx
dy 2
Hence e
2 2
and y=J‘——2dx=—-x-+C’
where C is an arbitrary constant. The equation y = —2/x + C gives, for

different values of C, a family of curves in each of which the product ef the
slope and the square of the abscissa at a point is 2. The particular curve which.
passes through the point x = 1, y = —1 is obtained by selecting from this
family that curve which passes through the point in question. Since y = —1
whenx =1

—-1=-2/1+C
so that C = 1 and the required equationis y = 1 — 2/x.

dy _
dx

2
that d—x’,- = 6andthat y = 4 when x = 0. \ (L.U)

ax + 2, where a is constant, express y as a function of x, given

d
Differentiating the given expression for dy/dx we have
d?y
axi T

and hence a = 6. Therefore

dy
E—6X+2,
and y=j(6x+2)dx=3x2+2x+c.

The constant C is found from the condition that y = 4 when x = 0, so that
C=4andy=3x? + 2x + 4.

Example 7. A particle starts from rest with acceleration (30 — 6t) m/s* at time t.

When and where will it come to rest again?
Since acceleration is rate of change of velocity, if v is the velocity at time ¢,

dv
E = 30 — 6t.
Hence V= f(30 — 61)dt = 30t — 32 + C,

where C is an arbitrary constant.

Since the particle starts from rest, v = 0 when ¢t = 0, so that C = 0. Thus
v = 30t — 3t* = 3¢(10 — r). The body is at rest when v = 0 and this occurs

175
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when t = O (the beginning of the motion) and again when ¢t = 10 seconds. If
s is the distance travelled in t seconds,

ds 2
E;—v—30t—3t.

Hence s= J'(30t — 3t3)dt = 1512 — 3 + C,

where C' is another arbitrary constant. Here s is the distance travelled from
the starting point so that s =0 when t =0 and therefore C' = 0. Thus
s =15t> - t* = (15 ~ t) and when t = 10, the time when the particle is
again at rest, the distance travelled will be 10%(15 — 10) or 500 m.

EXERCISES 10 (b)

d
1. The gradient of a curve at any point is given by é = 2x ~ 1. If the curve

passes through the point x = 1, y = 1, find the equation of the curve. (L.U.)

2. Find the equation of the curve whose gradient is 1 — 2x? and which passes
through the point x = 0, y = 1. (L.U)
3. A curve passes through the origin of coordinates and its gradient is 2x — x2/2

at the point whose abscissa is x. Find the ordinate of the curve when x = 2.
(0.C)

4. A particle is moving along a straight line with acceleration (2 + 3t) m/s?
at time ¢ seconds. At zero time its distance from the origin is 5 m; at time
t = 1 its velocity is 10 m/s. Where is it at time ¢t = 1?

5. A particle moves on a straight line OA and at time ¢ it is distant x from O,
x being taken positive when the point is on the same side of O as 4. Write
down expressions for the velocity v and acceleration f of the particle at
time .

Find the distance x at time ¢ if f= 48t — 24, given also that v = 6 and
x= —1whent=0.
Show that the particle is stationary at O when ¢t = 1/2. (0.C)

6. At time ¢ the velocity of a particle moving in a straight line is increasing at
the rate (4t + 3/t%). When t = 1, the velocity is 10 and at that time the
particle is at distance 4 from the origin. Where is the particle 2 seconds
later and what is its velocity then?

10.4. Calculation of an area as a limit of a sum

As a preliminary to a second interpretation of integration we give
below an example of the calculation of an area as the limit of a sum.

If the graph of y = 1 + x be plotted, the graph is seen to be a straight
line and a diagram as shown in Fig. 64 results. Consider the trapezium
AOBC included between the graph, the x-axis and ordinates OA, BC
at x = 0 and x = 10 respectively. The base of the trapezium is 10 units,
OA = 1, BC = 11, the mean height of the trapezium is 6 and its area
A is therefore 60 units of area.
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The area A might also be calculated as follows. Divide the area
into n strips of equal width 10/n by lines parallel to the y-axis. Suppose
the rth strip is PNMQ. Since for the first strip PN lies along OA,
for the second strip PN is at distance 10/n from the y-axis, for the
third strip PN is distant 2(10/n) from the y-axis and so on, the distance
of PN from the y-axis for the rth strip will be (r — 1)(10/n). Similarly
the distance of QM from the y-axis for the rth strip will be r(10/n).
Thus for the strip shown in the figure, the x-coordinate of P is
(r — 1)(10/n), and since P lies on the graph of y = 1 + x, the ordinate
PN will be given by

10 tor

PN=1+9=D_,_ . (10.7)
n n n
Similarly the length QM is given by
OM =1+ 170’. (108)

By drawing PR perpendicular to QM and QS perpendicular to PN,
it can be inferred that the area of the trapezium is greater than the
area of n rectangles like PNMR and that it is less than the area of
n rectangles like SNMQ. Since the base of the rectangles is 10/n,

area rectangle PNMR = %) (1 _10 + IOr) = 10_ &20 1021:,

n n n

n

area rectangle SNMQ = o 1+ ) = + -

The sum of the n rectangles of which PNMR is typical is therefore

10 ( IOr) 10 = 100r
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n n? n? n n? n?

10 100 300 10 100 100n
+(————2+—2—)+ t\ =+
n n n n n n
=(ing—1nﬂ)(l+l+l+ . to n terms)

1
+n—020(1+2+3+...+n)
(1_9_ 100) 100 n(l + n)

2 n2‘ 2

n n
50(1 +n) — 60 — 50
n n’

10-—

Similarly the sum of the n rectangles of which SNMQ is typical can
be found to be 60 + 50/n, and we have

50 50

By taking n = 10, i.e,, by dividing OB into 10 equal parts, we have
55 < A <65,
while if we take 100 strips (n = 100),
595 < A < 60°5.

By using 1000 strips, we should find that A lies between 5995 and
60-05 and equation (10-9) shows that A lies between 60 — ¢ and 60 + ¢
where ¢ can be made as small as we please by taking n sufficiently
large.

It should be noted that as the number n of rectangles such as
PNMR and SNMQ increases, their widths (10/n) decrease and the
area can be estimated with greater precision. The area is in fact the
limit to which the sum of the areas of the rectangles approaches as
their number increases and their width decreases.

10.5. The integral as a sum

The procedure outlined in § 10.4 could be used to find the area
below. a curve like y = 1 + x? but the summations involved would be
more complicated. We apply below a similar procedure to the more
general curve y = ¢(x) and are led to the idea of an integral being
regarded as the limit of a sum.

To simplify matters we consider the function y = ¢(x) as one which
is positive and increasing as x increases from x =a to x = b. In
Fig. 65, OU = a, OV = b and a < b. We wish to investigate the area
AUVB.
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Fi1G. 65

PNMQ is one of the n strips into which the area is divided in the
manner of §10.4 and we take ON =x, PN =y, NM = 6x. It is
assumed that the area CONP bounded by the axes, the ordinate PN
and the curve y = ¢(x) is some function A(x) of x. When x increases
to x + Ox, the area CONP increases to the area COMQ and this we
take to be A(x) + dA(x). The area PNMQ is, by subtraction, dA(x).
The area of the rectangle PNMR is yJx, and since QM = y + dy,
the area of the rectangle SNMQ is (y + dy)dx. It can be inferred from
the figure that ‘

area PNMR < area PNMQ < area SNMQ,
or, yox < 8A(x) < (y + dy)ox. (10.10)

Employing the symbol Z to denote the summation of n such strips,
we have

Zydx < area AUVB < Z(y + dy)ox. (10.11)

Suppose we draw AF parallel to the x-axis and construct the
rectangle DEFB of Fig. 65 to be of width éx. The difference between
the two sums T y éx and Z (y + Jy)dx (or the difference between the
sums of rectangles like SNMQ and PNMR) can be seen, by sliding
rectangies like SPRQ parallel to the x-axis until QR lies along BV,
to be equal to the area of the rectangle DEFB. This area is BF .Jx,
and since dx = UV/n, the difference X (Jy dx) between the two sums
is (BF.UV)/n and this can be made arbitrarily small by taking » large
enough. Thus Z (dy 6x) tends to zero with éx and if Ty dx tends to a
limit then X (y + dy)éx tends to the same limit. In this case the area
AUVRB lies between sums which have the same limit, and it follows
that

area AUVB = lim. X y dx.

ox—0

This. limit is denoted by r ydx and is called the definite integral of y
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with respect to x taken over the range from x = a to x = b. The letters
a and b, called the lower and upper limits of integration, indicate the
range in x from UA to VB over which the summation is made. The

symbol J- is a specialised form of S, the sign of summation used in

earlier times.

The definite integral so defined is independent of the idea of
differentiation. Except in very simple cases such as that given in
§10.4, it is not practicable to use it as a means of determining an area
because of the awkward summations involved. We can, however,
connect this definition of the integral with the definition of the indefinite
integral (the inverse of the derivative) given in § 10.1 and a practicable
method of calculation of area is then available.

To do so, we return to the inequalities of (10.10) which, after
division by dx, give

SA(x)

X

Assuming* that dy tends to zero with Jdx, this shows that
dA
= I |
y is therefore the derivative of A(x) and hence A(x) is the indefinite
integral of y. Now A(x) measures the area CONP, and from Fig. 65,
area AUVB = area COVB — area COUA = A(b) — Ala).

(10.12)

Hence f ydx = lim. £ ydx = area AUVB
a éx-0
= A(b) — A(a), (10.13)

where A(x) denotes the indefinite integral of y with respect to x as
defined in § 10.1.

The argument given above is for a curve in which y is positive and
increasing with x. When y decreases as x increases, the inequalities
are reversed but it is still true that 0A/dx lies between y and y + dy
and (10.13) still applies. If y increases while x increases from a to k
and decreases while x increases from k to b, the integral or area can be
found in two parts and these can then be summed. It is also assumed

b
above that y is positive; when y is negative £ ydx and | ydx are
negative (see § 12.2).

a

* For the functions used in this book dy always tends to zero with dx for the values
of x under discussion. The student should be warned, however, that this is not always
the case and equation (10.12) does not then remain valid.
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10.6. The example of & 10.4 solved by integration

The area bounded by y = 1 + x, the x-axis and ordinates at x = 0,
x = 101is, by (10.13),

A(10) ~ A(0),
where A(x) = indefinite integral of (1 + x) with respect to x,
=x + 4x? + C. A(10) is therefore 10 + 4(10%) + C = 60 + C and
A(0) is simply C, so that in Fig. 64,
area AOBC = A(10) - A0) =60+ C - C
= 60 units.

This example shows that in evaluating an area or a definite integral,

the arbitrary constant of the indefinite integral may be omitted. I