ALEVEL ORGANIC CHEMISTRY

ORGANIC QUALITATIVE ANALYSIS

1. Appearance of the substance.

Observation	Deduction
Solid compound	Aromatic compound or aliphatic
	compound with a high molecular mass.
A colourless liquid	Aliphatic compound with a low
	molecular mass.
Pink crystals dissolves to form a	Phenol probably present.
pink solution on exposure to the	
atmosphere.	

BURNING FLAME:

Test	Observation	Deduction
Burn a small amount of the	Burns readily with yellow	Aliphatic saturated
organic compound on a	non-sooty flame.	compound with a low
spatula end or crucible.		carbon content.
	Burns with great difficulty	Carbohydrate inform of
	with a smell of burnt sugar.	sugar present.
	Burns readily with a yellow	Aromatic, unsaturated
	sooty flame.	compound with a high
		carbon content/ long chain
		aliphatic unsaturated
		compound with high carbon
		content.
		Alkyl halide, nitrogen
		containing compound or salt
		of carboxylic acid.

SOLUBILITY:

Test	Observation	Deduction
To 1cm ³ of organic	Soluble in water with water	Polar aliphatic compound
compound, add 2cm ³ of	to form a colourless	such as alcohol, carbonyl,
water.	solution.	carboxylic acid, ester or
		amine with a high molecular
		mass.
	Partially miscible with	Polar aliphatic compound
	water to form a colourless	such as alcohol, carbonyl,
	solution.	carboxylic acid, ester or
		amine with a high molecular
		mass.
	Immiscible with water	Non-polar aliphatic
		compound.
Shake a spatula endful of	Sparingly soluble in water	Polar aromatic compound
the organic compound with	to form a colourless	such as aromatic carbonyl
4cm ³ of water.	solution.	compound, carboxylic acid,
		ester or phenol.
	Insoluble in water	Non-polar aromatic
		compound.

INDICATOR USED:

Litmus paper	Litmus solution	Universal indicator	Deduction
		solution	
No effect on both	No effect on both	Solution remains green.	Neutral compound
blue and red litmus	blue and red		such as alcohol,
paper.	litmus solution.		carbonyl/ ester
Blue litmus paper	Blue litmus	Solution turns red/	Acidic compound
turns red.	solution turns red.	orange/ pink.	such as carboxyli.
Red litmus paper	Red litmus	Solution turns blue,	Basic compound
turns blue.	solution turns	purple, or violet.	such as amine/ salt
	blue.		of a carboxylic
			acid.

SMELL OF AN ORGANIC COMPOUND:

Observation	Deduction
Odourless	Ionic organic compound.
Fishy smell	Amines
Smell of petrol	Liquid alkanes
Pungent	Lower carboxylic acid and acid chlorides.
Carbolic smell	Phenol
Antiseptic smell	Triiodomsthane
Sweet, fruity smell	Ester
Sweet smell (but not fruity)	Ketones, aromatic aldehyde or lower
	alkythalides.

REAGENT:

Sodium hydroxide solution and silver nitrate solution.

It is used to test for aliphatic halide from aromatic halide. Aliphatic halide is of:

Phenol	Test	Observation	Deduction
	Add 2cm ³ of dilute sodium	White precipitate is	$AgCl_{(s)}$ formed
	hydroxide solution to about 5cm ³	formed on addition of	<i>Cl</i> ⁻ released iron
	of a test solution, shake well and	silver nitrate solution.	compound.
	heat the mixture, then cool and	Cream precipitate is	$AgBr_{(s)}$ formed.
	add silver nitrate solution.	formed on addition of	<i>Br</i> ⁻ released from
		silver nitrate solution.	compound.
		Pale yellow precipitate is	$AgI_{(s)}$ formed
		formed on addition of	<i>I</i> [−] released from
		silver nitrate solution.	compound.

Iron (III) chloride solution:

Test	Observation	Deduction
To 1cm ³ of the solution, add	Purple colouration formed.	Phenol present
iron(III) chloride solution,	_	
	No observable change	Phenol absent
To 1cm ³ of the solution, add	Brown precipitate is formed	Salt of aliphatic carboxylic
neutral (III) chloride	on heating.	acid present.
solution and heat		
	No observable change even	Salt of aliphatic carboxylic
	on heating,	acid absent.
	Red colouration which turns	Aliphatic carboxylic acid
	to reddish brown precipitate	present.
	on heating.	

SODIUM HYDROXIDE SOLUTION:

Test	Observation	Deduction
To 1cm ³ of the organic	Dissolves to form a	Neutralization reaction,
compound, add 4cm ³ of	colourless solution without	aliphatic carboxylic acid or
sodium hydroxide solution.	evolution of a gas.	phenol present.
To 1cm ³ of the organic	Dissolves to form a	Ester hydrolysis to form
compound, add 4cm ³ of	colorless solution without	alcohol and sodium salt of a
sodium hydroxide solution	evolution of a gas and on	carboxylic acid.
and boil.	boiling the sweet fruity	Ester present.
	smell is lost.	
To a spatula endful of the	Dissolves to form a	Neutralization
solid, add 4cm ³ of sodium	colourless solution without	Aromatic carboxylic acid or
hydroxide solution and	evolution of a gas.	phenol present.
warm.		
To 1cm ³ of the organic	Dissolves with evolution of	Aliphatic amine present
compound, add 4cm ³ of	a colourless gas that turns	
sodium hydroxide solution.	moist red litmus paper blue.	
To 1cm ³ of the organic	Dissolves on warming with	Aliphatic amide present.
compound, add 4cm ³ of	evolution of a colourless gas	
sodium hydroxide solution	that turns moist red litmus	
and warm.	paper blue.	

Sodium Carbonate Or Sodium Hydrogen Carbonate Solution:

Test	Observation	Deduction
To 1cm ³ of the solution, add	Effervescence of a	
little sodium carbonate	colourless gas which turns	$CO_{2(q)}$ evolved
/sodium hydrogen	moist blue litmus paper red	
carbonate,	and forms white precipitate	Carboxylic acid present.
Or to 1cm ³ of the solution	with calcium hydroxide	
add sodium carbonate/	solution.	
sodium hydrogen carbonate	No observable change	Carboxylic acid absent
solution.		

Action of 2, 4-dinitrophenythydrazine solution (Brady's solution):

Test	Observation	Deduction
To 1cm ³ of a solution, add	Yellow/ orange precipitate	Carbonyl compound present
2-3 drops of Brady's	No observable change	Carbonyl compound absent
Reagent		

Saturated sodium hydrogen sulphite solution:

Test	Observation	Deduction
To 1cm ³ of the solution, add	White precipitate	Carbonyl compound present
, ,	No observable change	Carbonyl compound absent
sulphite solution.		

Ammoniacal silver nitrate solution (Tollen's Reagent confirms aidehydes and ethanoic acid:

Test	Observation	Deduction
To 1cm ³ of the solution, add	Silver mirror formed on the	Reducing agent present
2cm ³ of Tollen's Reagent	walls of the test tube.	such as aldehydes,
and warm, then allow to		methanoic acid.
stand.		

Ammonial silver nitrate is prepared by,

N.B. To 1cm³ of silver nitrate solution, add 1cm³ of sodium hydroxide solution followed by dilute ammonia drop wise until the precipitate just dissolves, then add 2cm³ of the test solution and warm, then allow to stand.

Bromine water:

Test	Observation	Deduction
To 1cm ³ of the solution or	Reddish-brown solution	Unsaturated compound with
to half a spatula endful of	turns colourless, with no	multiple carbon to carbon
the solid, add bromine	white fumes, and formation	bonds e.g alkene or alkyne.
water, little at a time,	of a second liquid layer.	-
shaking after each addition	Reddish-brown solution	Aliphatic amine or aromatic
	turns colourless, with	amine whose amino group
	formation of a white fume	is not directly attached to
	and a product that is	the Bonzene ring.
	completely miscible with	
	water.	
	Reddish – brown solution	Aromatic amine with amino
	turns colourless, with	group directly attached to
	formation of white fumes	the Benzene ring present.
	and a product that is	
	immiscible with water,	
	white precipitate formed on	
	addition of excess Bromine	
	water.	Phenol present
	Reddish-brown solution	-
	turns colourless with no	
	fumes and a product that is	
	immiscible with water,	
	white precipitate formed on	
	addition of excess Bromine	
	water	

Fchling's solution:

Test for aliphatic aldehyles (aldose sugars/ reducing sugars) but does not apply to aromatic aldehydes where the aldehyde group is directly attached to the Benzene ring.

Test	Observation	Deduction
To 1cm ³ of the solution, add	Reddish brown precipitate	Reducing agent present
2cm ³ of fehling's solution		such as aliphatic aldehydes
and boil.		or aldose sugar.

Acidified potassium permanganate solution:

- Detects, by oxidizing primary and secondary alcohol to aldehyde, then to carboxylic and ketones respectively.
- Also detects unsaturation, methanoic acid and oxalic acid.

Test	Observation	Deduction
To 1cm ³ of solution, add 1-	Purple solution turns	Unsaturated compound with
2 drops of acidified	caolourless in the cold and	multiple carbon-sarbon
potassium permanganate	the product immiscible with	bonds e.g alkene/ alkyne.
solution.	water.	
To 1cm ³ of the solution, add	Purple solution turns	Primary alcohol, secondary
1-2 drops of acidified	colourless on warming and	alcohol, aldehydes,
potassium permanganate	the product is miscible with	methanoic acid, aldose
solution and warm.	water.	sugar, oxalic acid or salt of
		oxalic acid present.

Acidified potassium dichromate solution:

- It's a weaker oxidizing agent compared to potassium permanganate.
- It oxidizes primary alcohol to aldehydes and other reaction similar to those of acidified potassium permanganate.
- And changes from orange to green.

Ehanoic acid and Concentrated sulphuric acid:

Test	Observation	Deduction
To 1cm ³ of the solution of	Sweet, fruity smell	Esterification reaction
the organic compound, add		
1cm ³ of Ethanoic acid		
followed by about drops of		Primary, secondary or
concentrated sulphuric acid		tertiary alcohol present.
and warm. Pour the product		
in a beaker containing cold		
water.		

Ethanol/ methanol and concentrated sulphuric acid:

Test	Observation	Deduction
To 1cm ³ of the solution of	Sweet, fruity smell	Esterification reaction
the organic compound, add		
1cm ³ of ethanol/ methanol		Carboxylic acid confirmed
followed by about 5 drops		present.
of concentrated sulphuric		
acid and warm. Pour the		
product in a beaker		
containing cold water.		

Phosphorus pentachloride:

Observation	Deduction
Misty fumes which form dense white	Compound with OH-group such as an
fumes with concentrated ammonia solution.	alcohol, phenol or carboxylic acid.
Dense white fumes	Basic compound present such as amine

Sodium metal:

Test	Observation	Deduction
To test solution in a test	Effervescence of a	Compound with OH group
tube add a spatula of	colourless gas that burns	such as alcohol, phenol or
sodium metal	with a pop sound.	carboxylic acid.

Anhydrous zincchloride in concentrated hydrochloric acid (Luca's Reagent)

Observation	Deduction
No observable change at room temperature	Primary alcohol present
Cloudy solution formed with 5 to 10	Secondary alcohol present
minutes.	
Cloudy solution formed immediately	Tertiary alcohol present

Iodine solution and sodium hydroxide solution:

Tests compounds with a methyl group on carbon carrying an hydroxyl groups.

N.B All tertiary alcohol do not give positive iodoform tests.

- It is also called iodo form. H Tests compound of formula
$$\begin{array}{c} H \\ C \\ -R \end{array}$$
, where R is an alkyl group of hydrogen. OH

Test	Observation	Deduction
To 1cm ³ of the solution, add		
2cm ³ of iodine solution	Pale yellow precipitate with	$CHI_{3(s)}$ formed
followed by dilute sodium	an antiseptic smell	Alcohol with structure CH3C
hydroxide solution drop		ОН
wise until the solution turns		Or Carbonyl with structure
pale yellow. Warm it gently		
and then cool under running		CH3"
tap water.		0

Concentrated hydrochloric acid and sodium nitrite solution:

Test	Observation	Deduction
To 1cm ³ of the organic	Effervescence of a colourless	$N_{2(q)}$ evolved
compound, add 4 drops of	gas neutral to litmus paper.	
concentrated hydrochloric		Primary aliphatic amine
acid followed by 1cm ³ of		present.
sodium nitrite solution and	No observable change on	Tertiary aliphatic amine
temperature maintained at	warming	
°C.	Yellow oily liquid is formed	Nitrosoamine formed,
	without effervescence of a	secondary aliphatic amine
	colourless gas.	present.
	No observable change in the	Primary aromatic amine
	cold, but on warming,	present.
	effervescence occurs, of a	
	colourless gas neutral to	
	litmus paper	

Copper(II) sulphate solution:

Test	Observation	Deduction
To 3cm ³ of organic	Deep blue solution is	Aliphatic amine present
compound, add 1cm ³ of	formed	
cooper (II) sulphate		
solution.		

Concentrated hydrochloric acid, followed by sodium nitrite solution, sodium hydroxide solution and then 2-naphthol:

Test	Observation	Deduction
To about 2cm ³ of organic compound,	Bright yellow	
add 4 drops of concentrated	precipitate is formed on	Azone dye is formed.
hydrochloric acid, followed by 3/4	addition of dilute	
drops of sodium nitrite solution, then	sodium hydroxide	Amino benzene present.
1cm ³ of sodium hydroxide solution, and	solution.	
3 drops of 2-naphthat		

Soda lime (mixture of sodium hydroxide and calcium oxide):

Test	Observation	Deduction
To 1cm ³ of the organic	Colourless vapour with a	Alkane evolved. Aromatic
compound or to half a	smell of petrol or paraffin	carboxylic acid present.
spatula endful of the organic	that burns with a non-sooty	
compound, add 2 spatula	flame.	
endful of soda lime and	Colourless vapour with a	Benzene vapour evolved.
warm the mixture, first	carbolic smell which burns	Aromatic carboxylic acid
gently and more strongly	with a sooty flame.	e.g benzoic acid.
	Colourless vapour with a	Phenol evolved
	carbolic smell which burns	
	with a sooty flame.	Hydroxyl aromatic
		carboxylic acid present.
	Colourless vapour with a	Lower aliphatic amine
	characteristic fishy smell	evolved.
	which turns moist red litmus	Lower aliphatic amide or
	vapor blue and burns with a	substitute amide present.
	non-sooty flame.	

Hot concentrated sulphuric acid:

Test	Observation	Deduction
To 1cm ³ of the organic	White fumes which turn	Alcohol dehydrated to form
compound, add 5 drops of	acidified potassium	alkene.
concentrated sulphuric acid	manganate (VII) solution	
and heat pass the vapour	from purple to colourless.	
formed through acidified		
potassium manganate(VII)		
solution.		

Dilute sulphuric acid:

Test	Observation	Deduction
To 1cm ³ of the solution, add	White precipitate	Phenolic compound
2-3 drops of dilute sulphuric		Aromatic carbonyl acid/ salt
acid.		of aromatic carboxylic acid.
To a spatula endful of the	The solid dissolves in the	Basic compound present e.g
solid, add 4cm ³ of dilute	acid in the cold without	Amine
sulphuric acid and shake	effervescence.	
well to dissolve.		

NB. Salt of aromatic carboxylic acid can be formed when aromatic carboxylic acid is reacted with sodium hydroxide solution.