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PREFACE  

Principles of Pure Mathematics is the culmination of 

years of experience and research right from the time 

when I was still a high school student to the time 

during completion of my post graduate studies in 

engineering from one of the best universities in 

China. 

This book is intended to provide an excellent 

training in problem-solving and help the reader work 

logically on the mathematical principles. It in great 

detail consists of five sections: Algebra, Coordinate 

geometry, Vectors, Trigonometry and Calculus in 

relation to the syllabus stipulated by NCDC.  

The knowledge of Pure Mathematics forms basis for 

a number of scenarios in Applied Mathematics. 

Some proofs in the section of mechanics require 

knowledge of trigonometry while some questions in 

numerical methods require knowledge of 

integration, especially when asked to find the error 

made in using the trapezium rule which requires 

finding the exact value of the integral. Also, topics 

like centre of mass require the knowledge of finding 

the area under the curve and solids of revolution. It 

is therefore important for the reader to understand 

that a number of scenarios of applied mathematics 

are built on the concepts of this pure mathematics 

book. 

The worked examples in each section have been 

carefully selected to meet the demands of a wide 

range of students and teachers. At the end of each 

topic is a self-evaluation exercise with answers. This 

is to help the readers widen their experience and 

build their confidence in problem solving. Some 

problems require more thought and application and 

might appear to be quite more demanding for 

average learners. They should therefore not rule out 

guidance from their teachers in such situations.  

At the end of each section are examination past 

paper questions to help learners get exposed to the 

way questions are examined in various topics or 

subsections by UNEB. My decision not to group 

them according to their respective topics or 

subsections is to challenge the experience of the 

learners in identifying the topic or subsection where 

the question is coming from.  

It is therefore my sincere hope that students, teachers 

as well as general readers find this book a good, 

reliable and an indispensable guide to Pure 

Mathematics. 

Finally, all misfortunes, if any in this book are 

purely my responsibility since it is difficult to claim 

perfection. I will be glad for any comments or 

compliments that will be directed to me. For no one 

is a monopolist of knowledge and no scientific 

theory is born in vacuum. Every scientist builds on 

the work of his predecessors. 

I take this opportunity to thank all those who have 

suggested to improve this book. I am indebted to all 

the individuals who undertook the laborious task of 

assisting with proof reading and for the invaluable 

suggestions made throughout the preparation of this 

book. 
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INDICES 

𝑎𝑛 means 𝑎 × 𝑎 × 𝑎 × … × 𝑎 (𝑛 factors)

𝑛 is the index (plural indices) while 𝑎 is the base. 

An index is also called a power or an exponent 

Basic rules of indices 

When 𝑚 and 𝑛 are positive rational numbers: 

multiplication:       𝑎𝑚 × 𝑎𝑛 = 𝑎𝑚+𝑛

division:                 𝑎𝑚 ÷ 𝑎𝑛 = 𝑎𝑚−𝑛

raising to a power:   (𝑎𝑚)𝑛 = 𝑎𝑚𝑛

zero index:  𝑎0 = 1

negative index: 𝑎−𝑚 =
1

𝑎𝑚

Fractional index:   𝑎
1

𝑛 = √𝑎
𝑛

 

    𝑎
𝑚

𝑛 = ( √𝑎
𝑛

)
𝑚

The basic laws can be illustrated as follows: 

𝑎3 × 𝑎2 = 𝑎3+2 = 𝑎5

𝑎7 ÷ 𝑎3 = 𝑎7−3 = 𝑎4

(𝑎3)2 = 𝑎3×2 = 𝑎6

70 = 1

5−2 =
1

52
=

1

25

8
1
3 = √8

3
= 2 

√𝑎63
= 𝑎

6
3 = 𝑎2

Example 1 

Evaluate (i) (
81

256
)

3

4
(ii) (

25

49
)

−
1

2

Solution 

(i) (
81

256
)

3
4

=
(81)

3
4

(256)
3
4

=
(34)

3
4

(44)
3
4

=
33

43
=

27

64

(ii) (
25

49
)

−
1
2

= (
49

25
)

1
2

=
(49)

1
2

(25)
1
2

=
(72)

1
2

(52)
1
2

=
7

5

Example 2 

Simplify
27𝑛+2 − 6 . 33𝑛+3

3𝑛 . 9𝑛+2

Solution 

27𝑛+2 − 6 . 33𝑛+3

3𝑛. 9𝑛+2
=

(33)𝑛+2 − 2 . 31. 33𝑛+3

3𝑛. (32)𝑛+2

=
33(𝑛+2) − 2 . 32𝑛+4

3𝑛 . 32(𝑛+2)

=
33𝑛. 36 − 2 . 33𝑛. 34

33𝑛. 34

 

 

=
33𝑛(36 − 2 . 34)

33𝑛 . 34

=
34(32 − 2)

34

= 7 

Example 3 

Simplify 
𝑥

𝑦
1
2 + 𝑥

1
2

+
𝑥

𝑦
1
2 − 𝑥

1
2

Solution 

𝑥

𝑦
1
2 + 𝑥

1
2

+
𝑥

𝑦
1
2 − 𝑥

1
2

=
𝑥 (𝑦

1
2 − 𝑥

1
2) + 𝑥 (𝑦

1
2 + 𝑥

1
2)

(𝑦
1
2 + 𝑥

1
2) (𝑦

1
2 − 𝑥

1
2)

=
𝑥𝑦

1
2 − 𝑥

3
2 + 𝑥𝑦

1
2 + 𝑥

3
2

𝑦 − 𝑥

=
2𝑥√𝑦

𝑦 − 𝑥

Example 4 

Show that 17 (1 −
1

172)

1

2
= 𝑛√2 where 𝑛 is an integer 

Solution 

17 (1 −
1

172
)

1
2

= [172 (1 −
1

172
)]

1
2

= (172 − 1)
1
2

= (288)
1
2

= (2 × 144)
1
2

= (2 × 122)
1
2

= 12√2 

Example 5 

Simplify the following 

(a) 
2𝑛−3 × 8𝑛+1

22𝑛−1 × 42−𝑛
 (b) 

(𝑎
1
3 × 𝑏

1
2)

−6

√𝑎8𝑏94

Solution 

(a)
2𝑛−3 × 8𝑛+1

22𝑛−1 × 42−𝑛
=

2𝑛−3 × (23)𝑛+1

22𝑛−1 × (22)2−𝑛

=
2𝑛−3 × 23𝑛+3

22𝑛−1 × 24−2𝑛

=
2𝑛−3+(3𝑛+3)

22𝑛−1+(4−2𝑛)

=
24𝑛

23
= 24𝑛−3

Chapter 

1 
Indices, Logarithms and Surds 
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(b) 
(𝑎

1
3 × 𝑏

1
2)

−6

√𝑎8𝑏94 =
𝑎

1
3

×−6 × 𝑏
1
2

×−6

(𝑎8𝑏9)
1
4

=
𝑎−2 × 𝑏−3

𝑎2𝑏
9
4

= 𝑎−2−2 × 𝑏−3−
9
4

= 𝑎−4𝑏−
21
4

=
1

𝑎4𝑏
21
4

Example 6 

Simplify 

√1 − 𝑥
1
2

(1 + 𝑥)−
1
2 +

1
2

(1 − 𝑥)−
1
2√1 + 𝑥

1 − 𝑥
Solution 

√1 − 𝑥
1
2

(1 + 𝑥)−
1
2 +

1
2

(1 − 𝑥)−
1
2√1 + 𝑥

1 − 𝑥

=

1
2

(1 − 𝑥)
1
2(1 + 𝑥)−

1
2 +

1
2

(1 − 𝑥)−
1
2(1 + 𝑥)

1
2

1 − 𝑥

=

1
2

(1 − 𝑥)
1
2(1 + 𝑥)

1
2[(1 + 𝑥)−1 + (1 − 𝑥)−1]

1 − 𝑥

=
1

2
(1 − 𝑥)−

1
2(1 + 𝑥)

1
2 [

1

1 + 𝑥
+

1

1 − 𝑥
] 

=
1

2
(1 − 𝑥)−

1
2(1 + 𝑥)

1
2 [

1 − 𝑥 + 1 + 𝑥

(1 + 𝑥)(1 − 𝑥)
] 

= (1 − 𝑥)−
3
2(1 + 𝑥)−

1
2

= [(1 − 𝑥)3(1 + 𝑥)]−
1
2

= [(1 − 𝑥)2(1 − 𝑥)(1 + 𝑥)]−
1
2

= [(1 − 𝑥)2(1 − 𝑥2)]−
1
2

= (1 − 𝑥)−1(1 − 𝑥2)−
1
2

=
1

(1 − 𝑥)√1 − 𝑥2

LOGARITHMS 

Logarithm is another word to mean index or power i.e. if 

𝑦 = 𝑎𝑥, then we define 𝑥 as logarithm of 𝑦 to base

𝑎 (log𝑎 𝑦). If 𝑦 = 𝑎𝑥, then 𝑥 = log𝑎 𝑦

This can be used to convert from ‘index form’ to 

‘logarithmic form’ and vice versa. 

Logarithms to the base e, written ln 𝑥 or log𝑒 𝑥, are called

natural logarithms. 

Logarithms to the base 10, written log 𝑥 or log10 𝑥 are called

common logarithms. 

The logarithm of a positive number 𝑁 to the base 𝑎 is 

defined as the power of 𝑎 which is equal to 𝑁. Thus if  

𝑎𝑥 = 𝑁

then 𝑥 is the logarithm of 𝑁 to the base 𝑎, written 

𝑥 = log𝑎 𝑁

Thus 

𝑎log𝑎 𝑁 = 𝑁

Since we have 𝑎1 = 𝑎 and 𝑎0 = 1, it follows that

𝐥𝐨𝐠𝒂 𝒂 = 𝟏

𝐥𝐨𝐠𝒂 𝟏 = 𝟎

for all 𝑎(≠ 0) 

Logarithm of a negative number  

To evaluate log𝑎(−4) for some base 𝑎 > 0, we need to

solve the equivalent statement  

𝑥 = log𝑎(−4) ⇔ 𝑎𝑥 = −4

However, the value of 𝑎𝑥 where 𝑎 > 0, will always be

positive, therefore there is no value of 𝑥 for which 𝑎𝑥 = −4.

This means that we cannot evaluate the logarithm of a 

negative number. 

Basic laws of logarithms 

The laws for the manipulation of logarithms are derived 

directly from the laws of indices. 

1. 𝐥𝐨𝐠𝒂 𝒃𝒄 = 𝐥𝐨𝐠𝒂 𝒃 + 𝐥𝐨𝐠𝒂 𝒄

Let log𝑎 𝑏 = 𝑥 and log𝑎 𝑐 = 𝑦

𝑏 = 𝑎𝑥 and 𝑐 = 𝑎𝑦

𝑏𝑐 = 𝑎𝑥 . 𝑎𝑦

𝑏𝑐 = 𝑎𝑥+𝑦

log𝑎 𝑏𝑐 = 𝑥 + 𝑦 = log𝑎 𝑏 + log𝑎 𝑐

2. 𝐥𝐨𝐠𝒂 (
𝒃

𝒄
) = 𝐥𝐨𝐠𝒂 𝒃 − 𝐥𝐨𝐠𝒂 𝒄

Let log𝑎 𝑏 = 𝑥 and log𝑎 𝑐 = 𝑦

𝑏 = 𝑎𝑥 and 𝑐 = 𝑎𝑦

𝑏

𝑐
=

𝑎𝑥

𝑎𝑦

𝑏

𝑐
= 𝑎𝑥−𝑦

log𝑎 𝑏𝑐 = 𝑥 − 𝑦 = log𝑎 𝑏 − log𝑎 𝑐

3. 𝐥𝐨𝐠𝒂 𝒃𝒏 = 𝒏 𝐥𝐨𝐠𝒂 𝒃

Let log𝑎 𝑏 = 𝑥, ⇒ 𝑏 = 𝑎𝑥

𝑏𝑛 = (𝑎𝑥)𝑛

𝑏𝑛 = 𝑎𝑛𝑥

log𝑎 𝑏𝑛 = 𝑛𝑥

log𝑎 𝑏𝑛 = 𝑛 log𝑎 𝑏

4. 𝐥𝐨𝐠𝒂 𝒃 =
𝐥𝐨𝐠𝐜 𝒃

𝐥𝐨𝐠𝒄 𝒂

Let log𝑎 𝑏 = 𝑥

𝑎𝑥 = 𝑏

Introducing log𝑐  on both sides

log𝑐 𝑎𝑥 = log𝑐 𝑏

𝑥 log𝑐 𝑎 = log𝑐 𝑏

𝑥 =
log𝑐 𝑏

log𝑐 𝑎

log𝑎 𝑏 =
logc 𝑏

log𝑐 𝑎

This rule is also called the change of base rule 
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5. 𝐥𝐨𝐠𝒂 𝒃 =
𝟏

𝐥𝐨𝐠𝒃 𝒂

Let log𝑎 𝑏 = 𝑥

𝑎𝑥 = 𝑏

Introducing log𝑏  on both sides

log𝑏 𝑎𝑥 = log𝑏 𝑏

𝑥 log𝑏 𝑎 = 1

𝑥 =
1

log𝑏 𝑎

log𝑎 𝑏 =
1

log𝑏 𝑎

Notes: 

1. log
1

𝑎
= log 𝑎−1 = − log 𝑎

2. Logarithm of a negative number does not exist.

Example 7 

Given that log3 𝑥 = 𝑝 and log18 𝑥 = 𝑞, show that

log6 3 =
𝑞

𝑝−𝑞

Solution 

log18 𝑥 =
log3 𝑥

log3 18

𝑞 =
𝑝

log3 6 × 3

𝑞 =
𝑝

log3 6 + log3 3

𝑞 =
𝑝

log3 6 + 1

𝑞(log3 6 + 1) = 𝑝

𝑞 log3 6 + 𝑞 = 𝑝

𝑞 log3 6 = 𝑝 − 𝑞

log3 6 =
𝑝 − 𝑞

𝑞

log6 3 =
𝑞

𝑝 − 𝑞

Example 8 

If 𝑎2 + 𝑏2 = 23𝑎𝑏, show that log 𝑎 + log 𝑏 = 2 log (
𝑎+𝑏

5
) 

Solution 

From (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

⇒ 𝑎2 + 𝑏2 = (𝑎 + 𝑏)2 − 2𝑎𝑏

∴ (𝑎 + 𝑏)2 − 2𝑎𝑏 = 23𝑎𝑏

(𝑎 + 𝑏)2 = 25𝑎𝑏

(𝑎 + 𝑏)2

25
= 𝑎𝑏 

(
𝑎 + 𝑏

5
)

2

= 𝑎𝑏 

Introducing logarithm to the base 10 on each side, 

log (
𝑎 + 𝑏

5
)

2

= log 𝑎𝑏 

2 log (
𝑎 + 𝑏

5
) = log 𝑎 + log 𝑏 

Example 9 

Show that log𝑎 𝑏  . log𝑏 𝑐  .  log𝑐 𝑎 = 1

Solution 

log𝑎 𝑏 =
log𝑐 𝑏

log𝑐 𝑎

log𝑎 𝑏 × log𝑐 𝑎 = log𝑐 𝑏

log𝑎 𝑏 × log𝑐 𝑎 =
1

log𝑏 𝑐

∴ log𝑎 𝑏 × log𝑐 𝑎 × log𝑏 𝑐 = 1

Example 10 

Show that log𝑎(𝑎 + 𝑏)2 = 2 + log𝑎 (1 +
2𝑏

𝑎
+

𝑏2

𝑎2) 

Solution 

log𝑎(𝑎 + 𝑏)2 = log𝑎(𝑎2 + 2𝑎𝑏 + 𝑏2)

= log𝑎 𝑎2 (1 +
2𝑏

𝑎
+

𝑏2

𝑎2
)

= log𝑎 𝑎2 + log𝑎 (1 +
2𝑏

𝑎
+

𝑏2

𝑎2
) 

= 2 log𝑎 𝑎 + log𝑎 (1 +
2𝑏

𝑎
+

𝑏2

𝑎2
) 

= 2 + log𝑎 (1 +
2𝑏

𝑎
+

𝑏2

𝑎2
) 

Example 11 

If log𝑎 𝑏 = log𝑏 𝑐 = log𝑐 𝑎, show that 𝑎 = 𝑏 = 𝑐

Solution 

Introducing logarithm to the base 𝑎 

log𝑏 𝑐 =
log𝑎 𝑐

log𝑎 𝑏
 and log𝑐 𝑎 =

log𝑎 𝑎

log𝑎 𝑐
=

1

log𝑎 𝑐

log𝑎 𝑏 =
log𝑎 𝑐

log𝑎 𝑏
=

1

log𝑎 𝑐

log𝑎 𝑏 =
log𝑎 𝑐

log𝑎 𝑏

(log𝑎 𝑏)2 = log𝑎 𝑐 … . (𝑖)

log𝑎 𝑐

log𝑎 𝑏
=

1

log𝑎 𝑐

(log𝑎 𝑐)2 = log𝑎 𝑏 … (𝑖𝑖)

Dividing (i) and (ii); 

(log𝑎 𝑐)2

(log𝑎 𝑏)2
=

log𝑎 𝑏

log𝑎 𝑐

(log𝑎 𝑐)3 = (log𝑎 𝑏)3

log𝑎 𝑐 = log𝑎 𝑏

⇒ 𝑐 = 𝑏

Now log𝑎 𝑏 =
log𝑎 𝑐

log𝑎 𝑏

log𝑎 𝑏 = 1 ⇔ log𝑎 𝑐 = log𝑎 𝑏

𝑎1 = 𝑏

⇒ 𝑎 = 𝑏

∴ 𝑎 = 𝑏 = 𝑐 
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Example 12 

If 𝑢, 𝑣, 𝑠, 𝑡 are all positive, show that  

log (
𝑢

𝑣
) . log (

𝑠

𝑡
) = log (

𝑢

𝑠
) . log (

𝑣

𝑡
) + log (

𝑢

𝑡
) . log (

𝑠

𝑣
) 

the logarithms all being to the same base 

Solution 

log (
𝑢

𝑣
) . log (

𝑠

𝑡
) = [log 𝑢 − log 𝑣][log 𝑠 − log 𝑡] 

= log 𝑢 log 𝑠 − log 𝑢 log 𝑡 − log 𝑣 log 𝑠 + log 𝑣 log 𝑡  

= log 𝑢 log 𝑠 − log 𝑢 log 𝑡 − log 𝑣 log 𝑠 + log 𝑣 log 𝑡  

           + log 𝑢 log 𝑣 − log 𝑢 log 𝑣 + log 𝑠 log 𝑡 − log 𝑠 log 𝑡 

= log 𝑢 log 𝑠 − log 𝑢 log 𝑣 + log 𝑢 log 𝑣 − log 𝑣 log 𝑠  

+ log 𝑣 log 𝑡 − log 𝑠 log 𝑡 + log 𝑠 log 𝑡 − log 𝑢 log 𝑡 

= log 𝑢 [log 𝑠 − log 𝑣] + log 𝑣 [log 𝑢 − log 𝑠]  

+ log 𝑡 [log 𝑣 − log 𝑠] + log 𝑡 [log 𝑠 − log 𝑢] 

= log 𝑢 [log (
𝑠

𝑣
)] + log 𝑣 [log (

𝑢

𝑠
)] + log 𝑡 [log (

𝑣

𝑠
)]

+ log 𝑡 [log (
𝑠

𝑢
)] 

= log 𝑢 [log (
𝑠

𝑣
)] + log 𝑣 [log (

𝑢

𝑠
)] − log 𝑡 [log (

𝑠

𝑣
)]

− log 𝑡 [log (
𝑢

𝑠
)] 

= log (
𝑠

𝑣
) [log 𝑢 − log 𝑡] + log (

𝑢

𝑠
) [log 𝑣 − log 𝑡] 

= log (
𝑠

𝑣
) . log (

𝑢

𝑡
) + log (

𝑢

𝑠
) . log (

𝑣

𝑡
) 

 

Example 13 

If 𝑥 = log𝑎 𝑏𝑐, 𝑦 = log𝑏 𝑐𝑎 and 𝑧 = log𝑐 𝑎𝑏, prove that  

𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧 − 2 

Solution 

𝑥 = log𝑎 𝑏𝑐 ⇒ 𝑎𝑥 = 𝑏𝑐 … (i)  

𝑦 = log𝑏 𝑐𝑎 ⇒ 𝑏𝑦 = 𝑐𝑎  … (ii)  

𝑧 = log𝑐 𝑎𝑏 ⇒ 𝑐𝑧 = 𝑎𝑏  …. (iii)  

From (i), 𝑐 =
𝑎𝑥

𝑏
 

Substituting for 𝑐 in (ii); 

𝑏𝑦 =
𝑎𝑥

𝑏
× 𝑎 

𝑏𝑦+1 = 𝑎𝑥+1 

𝑏 = 𝑎
𝑥+1
𝑦+1 

Now from (iii);  

𝑐𝑧 = 𝑎𝑏 

(
𝑎𝑥

𝑏
)

𝑧

= 𝑎𝑏 

𝑎𝑥𝑧

𝑏𝑧
= 𝑎𝑏 

𝑎𝑥𝑧 = 𝑎𝑏𝑧+1 

𝑎𝑥𝑧 = 𝑎 [𝑎
𝑥+1
𝑦+1]

𝑧+1

 

𝑎𝑥𝑧 = 𝑎(𝑎)
(𝑥+1)(𝑧+1)

𝑦+1  

𝑎𝑥𝑧 = 𝑎
1+

(𝑥+1)(𝑧+1)
𝑦+1  

Now since the bases are the same, we can equate the powers 

1 +
(𝑥 + 1)(𝑧 + 1)

𝑦 + 1
= 𝑥𝑧 

𝑦 + 1 + 𝑥𝑧 + 𝑥 + 𝑧 + 1 = 𝑥𝑧(𝑦 + 1) 

𝑥 + 𝑦 + 𝑧 + 𝑥𝑧 + 2 = 𝑥𝑦𝑧 + 𝑥𝑧 

𝑥 + 𝑦 + 𝑧 = 𝑥𝑦𝑧 − 2 

 

Example 14 

By putting 𝛼 = log 𝑎, 𝛽 = log 𝑏, 𝛾 = log 𝑐 in the identity 

𝛼(𝛽 − 𝛾) + 𝛽(𝛾 − 𝛼) + 𝛾(𝛼 − 𝛽) = 0, show that  

(
𝑏

𝑐
)

log 𝑎

. (
𝑐

𝑎
)

log 𝑏

. (
𝑎

𝑏
)

log 𝑐

= 1 

where the logarithms are taken to any base 

Solution 

log 𝑎 (log 𝑏 − log 𝑐) + log 𝑏 (log 𝑐 − log 𝑎)  

                                                + log 𝑐 (log 𝑎 − log 𝑏) = 0 

log 𝑎 [log (
𝑏

𝑐
)] + log 𝑏 [log (

𝑐

𝑎
)] + log 𝑐 [log (

𝑎

𝑏
)] = 0 

log (
𝑏

𝑐
)

log 𝑎

+ log (
𝑐

𝑎
)

log 𝑏

+ log (
𝑎

𝑏
)

log 𝑐

= 0 

log [(
𝑏

𝑐
)

log 𝑎

. (
𝑐

𝑎
)

log 𝑏

. (
𝑎

𝑏
)

log 𝑐

] = 0 

Let 𝑁 be any base to which the logarithms are taken  

(
𝑏

𝑐
)

log 𝑎

. (
𝑐

𝑎
)

log 𝑏

. (
𝑎

𝑏
)

log 𝑐

= 𝑁0 

(
𝑏

𝑐
)

log 𝑎

. (
𝑐

𝑎
)

log 𝑏

. (
𝑎

𝑏
)

log 𝑐

= 1 

 

Equations in which the unknown occurs as an index 

Example 15 

Solve the following equations: 

(a) log𝑥 3 + log𝑥 27 = 2  (b) log3 𝑥 + 3 log𝑥 3 = 4 

Solution 

(a) log𝑥 3 + log𝑥 27 = 2 

log𝑥(3 × 27) = 2 

log𝑥 81 = 2 

𝑥2 = 81 

𝑥 = 9 

(b) log3 𝑥 + 3 log𝑥 3 = 4 can be written as  

log3 𝑥 + 3 (
1

log3 𝑥
) = 4 

(log3 𝑥)2 + 3 = 4 log3 𝑥 

Let log3 𝑥 = 𝑦, 

𝑦2 + 3 = 4𝑦 

𝑦2 − 4𝑦 + 3 = 0 

𝑦2 − 𝑦 − 3𝑦 + 3 = 0 

𝑦(𝑦 − 1) − 3(𝑦 − 1) = 0 

(𝑦 − 1)(𝑦 − 3) = 0 

𝑦 = 1 or 𝑦 = 3 

When 𝑦 = 1, log3 𝑥 = 1 ⇒ 𝑥 = 31 = 3 

When 𝑦 = 3, log3 𝑥 = 3 ⇒ 𝑥 = 33 = 27 
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Example 16 

Solve for 𝑥, log𝑥 9 + log𝑥2 3 = 2.5 

Solution 

log𝑥 9 + log𝑥2 3 = 2.5 

log𝑥 32 +
log𝑥 3

log𝑥 𝑥2
= 2.5 

2 log𝑥 3 +
log𝑥 3

2
= 2.5 

4 log𝑥 3 + log𝑥 3 = 5 

5 log𝑥 3 = 5 

log𝑥 3 = 1 

𝑥 = 3 

 

Example 17 

Given that log2 𝑥 + 2 log4 𝑦 = 4, show that 𝑥𝑦 = 16. 

Hence solve for 𝑥 and 𝑦 the simultaneous equations: 

log10(𝑥 + 𝑦) = 1 

log2 𝑥 + 2 log4 𝑦 = 4 

Solution 

log2 𝑥 +
2 log2 𝑦

log2 4 
= 4 

log2 𝑥 +
2 log2 𝑦

log2 22
= 4 

log2 𝑥 +
2 log2 𝑦

2
= 4 

log2 𝑥 + log2 𝑦 = 4 

log2 𝑥𝑦 = 4 

𝑥𝑦 = 24 

𝑥𝑦 = 16 

Now,  

𝑥 + 𝑦 = 10 

From 𝑥𝑦 = 16, 𝑥 =
16

𝑦
 

16

𝑦
+ 𝑦 = 10 

16 + 𝑦2 = 10𝑦 

𝑦2 − 10𝑦 + 16 = 0 

𝑦2 − 8𝑦 − 2𝑦 + 16 = 0 

𝑦(𝑦 − 8) − 2(𝑦 − 8) = 0 

(𝑦 − 8)(𝑦 − 2) = 0 

𝑦 = 8 or 𝑦 = 2 

When 𝑦 = 8, 𝑥 =
16

8
= 2 

When 𝑦 = 2, 𝑥 =
16

2
= 8 

∴ (𝑥, 𝑦) = (8, 2) or (2, 8) 

 

Example 18 

Solve the equation 2𝑥2
= 16𝑥−1 

Solution 

2𝑥2
= (24)𝑥−1 

2𝑥2
= 24𝑥−4 

𝑥2 = 4𝑥 − 4 

𝑥2 − 4𝑥 + 4 = 0 

(𝑥 − 2)2 = 0 

𝑥 = 2 

 

Example 19 

Find 𝑥 from the equation 32𝑥 = 5𝑥+1 

Solution 

Taking logarithms to base 10 on both sides 

log 32𝑥 = log 5𝑥+1 

2𝑥 log 3 = (𝑥 + 1) log 5 

2𝑥 log 3 = 𝑥 log 5 + log 5 

𝑥(2 log 3 − log 5) = log 5 

𝑥 =
log 5

2 log 3 − log 5
=

0.6990

0.2552
= 2.74 

 

Example 20 

Find, without using tables or calculator, the value of 𝑥, given 

that  

23𝑥+7

42𝑥−2
=

8𝑥−3

325−𝑥
 

Solution 

23𝑥+7

22(2𝑥−2)
=

23(𝑥−3)

25(5−𝑥)
 

23𝑥+7

24𝑥−4
=

23𝑥−9

225−5𝑥
 

2(3𝑥+7)−(4𝑥−4) = 2(3𝑥−9)−(25−5𝑥) 

2−𝑥+11 = 28𝑥−34 

−𝑥 + 11 = 8𝑥 − 34 

9𝑥 = 45 

𝑥 = 5 

 

Example 21 

Solve the equation 3𝑥2
= 9𝑥+4 

Solution 

3𝑥2
= 32(𝑥+4) 

𝑥2 = 2(𝑥 + 4) 

𝑥2 − 2𝑥 − 8 = 0 

𝑥2 − 4𝑥 + 2𝑥 − 8 = 0 

𝑥(𝑥 − 4) + 2(𝑥 − 4) = 0 

(𝑥 − 4)(𝑥 + 2) = 0 

𝑥 = 4 or 𝑥 = −2 

 

Example 22 

Solve the equation 23𝑥+1 = 5𝑥+1 

Solution 

Taking logarithms to base 10 on both sides  

log 23𝑥+1 = log 5𝑥+1 

(3𝑥 + 1) log 2 = (𝑥 + 1) log 5 

3𝑥 log 2 + log 2 = 𝑥 log 5 + log 5 

𝑥(3 log 2 − log 5) = (log 5 − log 2) 

𝑥 =
log 5 − log 2

3 log 2 − log 5
=

0.3979

0.2041
= 1.95 
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Example 23 

Solve the equation 22𝑥+1 − 5(2𝑥) + 2 = 0

Solution 

2(2𝑥)2 − 5(2𝑥) + 2 = 0

Let 2𝑥 = 𝑦,

2𝑦2 − 5𝑦 + 2 = 0

2𝑦2 − 𝑦 − 4𝑦 + 2 = 0

𝑦(2𝑦 − 1) − 2(2𝑦 − 1) = 0 

(2𝑦 − 1)(𝑦 − 2) = 0 

𝑦 =
1

2
 or 𝑦 = 2

When 𝑦 =
1

2
, 2𝑥 =

1

2
= 2−1 ⇒ 𝑥 = −1

When 𝑦 = 2, 2𝑥 = 21 ⇒ 𝑥 = 1

Example 24 

Solve the equation 52𝑥 − 5𝑥+1 + 4 = 0

Solution 

(5𝑥)2 − 5(5𝑥) + 4 = 0

Let 5𝑥 = 𝑦

𝑦2 − 5𝑦 + 4 = 0

𝑦2 − 𝑦 − 4𝑦 + 4 = 0

𝑦(𝑦 − 1) − 4(𝑦 − 1) = 0 

(𝑦 − 1)(𝑦 − 4) = 0 

𝑦 = 1 or 𝑦 = 4 

When 𝑦 = 1, 5𝑥 = 1

5𝑥 = 50

𝑥 = 0 

When 𝑦 = 4, 5𝑥 = 4

log 5𝑥 = log 4

𝑥 log 5 = log 4 

𝑥 =
log 4

log 5
= 0.8614 

Example 25 

Solve for 𝑡 in: 4(2𝑡+1) + 4(𝑡+3) = 16
1

4

    Solution 

42𝑡 × 41 + 4𝑡 × 43 =
65

4

4(42𝑡) + 64(4𝑡) =
65

4

4(4𝑡)2 + 64(4𝑡) =
65

4

Let 4𝑡 = 𝑦  ⇒ 4𝑦2 + 64𝑦 =
65

4

16𝑦2 + 256𝑦 − 65 = 0

16𝑦2 + 260𝑦 − 4𝑦 − 65 = 0

   4𝑦(4𝑦 + 65) − (4𝑦 + 65) = 0 

 (4𝑦 + 65)(4𝑦 − 1) = 0 

Either 𝑦 = −
65

4
or 𝑦 =

1

4

When 𝑦 = −
65

4
, 4𝑡 = −

65

4
, hence value of 𝑡 does not exist. 

When 𝑦 =
1

4
, 4𝑡 =

1

4
= 4−1, 𝑡 = −1

  ∴ 𝑡 = −1 

Example 26 

Solve the equations 

2𝑥+𝑦 = 8

32𝑥−𝑦 = 27

Solution 

2𝑥+𝑦 = 23

𝑥 + 𝑦 = 3 …. (i) 

32𝑥−𝑦 = 33

2𝑥 − 𝑦 = 3 …. (ii) 

Adding (i) and (ii); 

3𝑥 = 6 

𝑥 = 2 

Substituting for 𝑥 in (i); 

4 − 𝑦 = 3 

𝑦 = 1 

Example 27 

Solve the simultaneous equations 

5𝑥+2 + 7𝑦+1 = 3468

7𝑦 = 5𝑥 − 76

Solution 

From the first equation 

5𝑥 × 52 + 7𝑦 × 71 = 3468

25(5𝑥) + 7(7𝑦) = 3468

Substituting for 7𝑦

25(5𝑥) + 7(5𝑥 − 76) = 3468

25(5𝑥) + 7(5𝑥) − 532 = 3468

32(5𝑥) = 4000

5𝑥 = 125

5𝑥 = 53

𝑥 = 3 

From 7𝑦 = 5𝑥 − 76

7𝑦 = 53 − 76

7𝑦 = 49

7𝑦 = 72

𝑦 = 2 

Example 28 

Solve the simultaneous equations 

log2 𝑥 + 2 log4 𝑦 = 4

 𝑥 + 12𝑦 = 52 

Solution 

log2 𝑥 + 2 (
log2 𝑦

log2 4
) = 4

log2 𝑥 + 2 (
log2 𝑦

2
) = 4 

log2 𝑥 + log2 𝑦 = 4

log2 𝑥𝑦 = 4

𝑥𝑦 = 24

𝑥𝑦 = 16 

𝑥 =
16

𝑦
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=
√2(√2 + √3 + √5)

4

=
2 + √6 + √10

4

Example 37 

Find, without using tables or a calculator, the exact value of 

(2 + √3)
2

2 − √3
+

(2 − √3)
2

2 + √3
Solution 

(2 + √3)
2

2 − √3
+

(2 − √3)
2

2 + √3
=

(2 + √3)
3

+ (2 − √3)
3

(2 − √3)(2 + √3)

(2 + √3)
3

= 23 + 3(2)2(√3) + 3(2)(√3)
2

+ (√3)
3

   = 8 + 12√3 + 18 + 3√3 

   = 26 + 15√3  

(2 − √3)
3

= 23 + 3(2)2(−√3) + 3(2)(−√3)
2

+ (−√3)
3

    = 8 − 12√3 + 18 − 3√3 

    = 26 − 15√3  

(2 + √3)
3

+ (2 − √3)
3

(2 − √3)(2 + √3)
=

26 + 15√3 + 26 − 15√3

22 − 3

 = 52 

Equations involving surds 

Example 38 

Solve the equation √𝑥 −
6

√𝑥
= 1 

Solution

Multiplying through by √𝑥 

𝑥 − 6 = √𝑥 

Squaring both sides 

(𝑥 − 6)2 = 𝑥

𝑥2 − 12𝑥 + 36 = 𝑥

𝑥2 − 13𝑥 + 36 = 0

𝑥2 − 9𝑥 − 4𝑥 + 36 = 0

𝑥(𝑥 − 9) − 4(𝑥 − 9) = 0 

(𝑥 − 9)(𝑥 − 4) = 0 

either 𝑥 = 9 or 𝑥 = 4 

We need to verify the correctness of our solutions 

When 𝑥 = 9, L.H.S = 3 −
6

3
= 3 − 2 = 1 = R.H.S 

When 𝑥 = 4, L.H.S = 2 −
6

2
= 2 − 3 = −1 ≠ R.H.S 

∴ 𝑥 = 9 

Example 39 

Solve the equation 

√4 − 𝑥 − √6 + 𝑥 = √14 + 2𝑥

Solution 

Squaring both sides we have 

4 − 𝑥 − 2√(4 − 𝑥)(6 + 𝑥) + 6 + 𝑥 = 14 + 2𝑥 

−2√(4 − 𝑥)(6 + 𝑥) = 4 + 2𝑥

−√(4 − 𝑥)(6 + 𝑥) = 2 + 𝑥

Squaring both sides, we now have 

(4 − 𝑥)(6 + 𝑥) = 4 + 4𝑥 + 𝑥2

24 − 2𝑥 − 𝑥2 = 4 + 4𝑥 + 𝑥2

2𝑥2 + 6𝑥 − 20 = 0

𝑥2 + 3𝑥 − 10 = 0

𝑥2 + 5𝑥 − 2𝑥 − 10 = 0

𝑥(𝑥 + 5) − 2(𝑥 + 5) = 0 

(𝑥 + 5)(𝑥 − 2) = 0 

either 𝑥 = −5 or 𝑥 = 2 

Verifying the solutions; 

When 𝑥 = −5, L.H.S = √9 − √1 = 2 

    R.H.S = √4 = 2 = L.H.S 

When 𝑥 = 2, L.H.S = √2 − √8 = −√2 

  R.H.S = √18 = 3√2 ≠ L.H.S 

∴ 𝑥 = −5 

Example 40 

Find the values of 𝑥 which satisfy the equation 

2√𝑥 + 5 − √2𝑥 + 8 = 2 

Solution 

Squaring both sides 

4(𝑥 + 5) − 4√(𝑥 + 5)(2𝑥 + 8) + 2𝑥 + 8 = 4 

4𝑥 + 20 − 4√(𝑥 + 5)(2𝑥 + 8) + 2𝑥 + 8 = 4 

6𝑥 + 24 = 4√(𝑥 + 5)(2𝑥 + 8) 

3𝑥 + 12 = 2√(𝑥 + 5)(2𝑥 + 8) 

Squaring both sides  

9𝑥2 + 72𝑥 + 144 = 4(𝑥 + 5)(2𝑥 + 8)

9𝑥2 + 72𝑥 + 144 = 4(2𝑥2 + 18𝑥 + 40)

9𝑥2 + 72𝑥 + 144 = 8𝑥2 + 72𝑥 + 160

𝑥2 − 16 = 0

(𝑥 − 4)(𝑥 + 4) = 0 

either 𝑥 = 4 or 𝑥 = −4 

Verifying the solutions; 

When 𝑥 = 4, L.H.S = 2√9 − √16 = 2 = R.H.S 

When 𝑥 = −4, L.H.S = 2√1 − √0 = 2 = R.H.S 

∴ 𝑥 = 4 or 𝑥 = −4 i.e. 𝑥 = ±4 

Self-Evaluation exercise 

1. Evaluate

(i) 
8

2
3+4

3
2

16
3
4

(ii) 
√𝑎3× √𝑏23

√𝑎64
× √𝑏−26  when 𝑏 = 3 

[Ans: (i) 3/2  (ii) 3] 

2. If log𝑎 𝑛 = 𝑥 and log𝑐 𝑛 = 𝑦, where 𝑛 ≠ 1, prove that
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𝑥 − 𝑦

𝑥 + 𝑦
=

log𝑏 𝑐 − log𝑏 𝑎

log𝑏 𝑐 + log𝑏 𝑎

Verify this result, without using any tables, when   

𝑎 = 4, 𝑏 = 2, 𝑐 = 8, 𝑛 = 4096 

3. If log𝑎 (1 +
1

8
) = 𝑙, log𝑎 (1 +

1

15
) = 𝑚 and 

log𝑎 (1 +
1

24
) = 𝑛, show that log𝑎 (1 +

1

80
) = 𝑙 − 𝑚 − 𝑛 

4. Solve for 𝑥 (i) 32𝑥−1 = 5𝑥  (ii) 74𝑥+2 = 93𝑥−1

[Ans: (i) 1.87 (ii) −5.11] 

5. Solve the equation 2𝑥2
=

1

4
8𝑥

[Ans: 1, 2] 

6. Find 𝑥 if 9𝑥2
= 35𝑥−2

[Ans: 
1

2
, 2] 

7. Solve the equation 52𝑥 − 51+𝑥 + 6 = 0

[Ans: 0.431, 0.683] 

8. Solve the equation 42𝑥 = 26𝑥−1

[Ans: 
1

2
] 

9. Find 𝑥 if log𝑥 8 − log𝑥2 16 = 1

[Ans: 2] 

10. Find 𝑥 if log𝑥 3 + log3 𝑥 = 2.5

[Ans: √3, 9] 

11. Solve the simultaneous equations 2𝑥+𝑦 = 6, 3𝑥−𝑦 = 4

[Ans: 𝑥 = 1.92, 𝑦 = 0.66] 

12. Solve the equation 2𝑥 . 31−𝑥 = 6

[Ans: −1.71] 

13. If 𝑝2 = 𝑞𝑟 show that log𝑞 𝑝 + log𝑟 𝑝 =

2 log𝑞 𝑝 log𝑟 𝑝.

14. Solve the equation log3 𝑥 + log𝑥 3 =
10

3

[Ans: 27, √3
3

] 

15. Solve for 𝑥: log10 (
𝑥2+24

𝑥
) = 1 

[Ans: 4, 6] 

16. Solve for 𝑥: 2𝑥 × 3𝑥+1 = 52𝑥+1

[Ans: −0.358] 

17. Solve the equation log10(𝑥2 + 9) − 2 log10 𝑥 = 1

[Ans: 1] 

18. Solve the equations: 32𝑥+𝑦 = 12, 2𝑥−𝑦 = 4

[Ans: 𝑥 = 1.42, 𝑦 = −0.58] 

19. Solve the equation: 22+2𝑥 + 3 × 2𝑥 − 1 = 0

[Ans: −2] 

20. Without using tables, show that

log √27 + log √8 − log √125

log 6 − log 5
=

3

2

21. Find 𝑥 from the equation: 3𝑥 − 3−𝑥 = 6.832

[Ans: 1.768] 

22. Solve the equation 22𝑥+8 − 32(2𝑥) + 1 = 0

[Ans: −4] 

23. Solve the simultaneous equations

2𝑥+𝑦 = 6𝑦, 3𝑥 = 6(2𝑦)

[Ans: 2.71, 1.71] 

24. Simplify the expression 5 × 43𝑛+1 − 20 × 82𝑛

[Ans: 0] 

25. Find 𝑥 from the equation 9𝑥 − 12(3𝑥) + 27 = 0

[Ans: 1, 2] 

26. Solve the equation: 4𝑥 + 2 = 3 × 2𝑥

[Ans: 0, 1] 

27. If 2 log8 𝑁 = 𝑝, log2 2𝑁 = 𝑞, 𝑞 − 𝑝 = 4, find 𝑁

[Ans: 512] 

28. Simplify 92𝑛+2 × 62𝑛−3 ÷ (35𝑛 × 6 × 4𝑛−2)

[Ans: 3𝑛]

29. Express in its simplest form, log2 64 − log2 16

[Ans: 2] 

30. Given that log𝑥 𝑢 + log𝑥 𝑣 = 𝑝 and log𝑥 𝑢 − log𝑥 𝑣 =

𝑞, prove that 𝑢 = 𝑥
1

2
(𝑝+𝑞)

 and find a similar expression 

for 𝑣.  [Ans: 𝑣 = 𝑥
1

2
(𝑝−𝑞)

] 

31. Solve the equation log5 𝑥 = 16 log𝑥 5

[Ans: 625 or 1/625] 

32. Find the values of 𝑦 which satisfy the equation:

(8𝑦)𝑦 .
1

32𝑦
= 4 

[Ans: 2] 

33. Given that log9 𝑥 = 𝑝 and log√3 𝑦 = 𝑞, express 𝑥𝑦 and

𝑥2

𝑦
as powers of 3.

[Ans: 𝑥𝑦 = 32𝑝+
𝑞

2, 
𝑥2

𝑦
= 34𝑝−

𝑞

2] 

34. Solve for 𝑥 in the equation 𝑒2𝑥 + 𝑒𝑥 − 6 = 0

[Ans: ln 2] 

35. Find 𝑥 and 𝑦 given that 𝑒𝑥 + 3𝑒𝑦 = 3 and 𝑒2𝑥 −

9𝑒2𝑦 = 6, expressing each answer as a logarithm to

base 𝑒.

[Ans: 𝑥 = ln (
5

2
), 𝑦 = − ln 6] 

36. If 2 log𝑦 𝑥 + 2 log𝑥 𝑦 = 5, show that log𝑦 𝑥 is either 
1

2

or 2. Hence find all pairs of values of 𝑥 and 𝑦 which 

satisfy simultaneously the equation above and the 

equation 𝑥𝑦 = 27. 

[Ans: (𝑥, 𝑦) = (3, 9) or (9, 3)] 

37. Prove that, if 𝑥 = log10(𝑎 − 𝑏𝑦) − log10 𝑎, where 𝑎

and 𝑏 are constants, then 𝑦 =
𝑎

𝑏
(1 − 10𝑥)

Find the value of 𝑦 when 𝑎 = 4, 𝑏 = 2 and 𝑥 = −2.065

[Ans: 1.983] 

38. Given that 2𝑥+1 − 5𝑦 = 131, 2𝑥−4 + 5𝑦−2 = 13, find

𝑥 and 𝑦.

[Ans: 𝑥 = 7, 𝑦 = 3] 

39. Find, without the use of tables or a calculator, the value

of 𝑥, given that

2𝑥+5

8𝑥
=

4𝑥−1

22𝑥−1

[Ans: 𝑥 = 3] 

40. Solve for 𝑥, 9𝑥 − 4 × 3𝑥 + 3 = 0

[Ans: 0, 1] 
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Linear equations in one variable 

Solving linear equations in one variable is a simple task as 

we perform a few mathematical operations on either side of 

the equation. 

Example 1 

Solve the equations 

(a) 2𝑥 + 3(𝑥 − 1) = 4𝑥 + 12

(b) 
𝑥+5

5
=

𝑥−1

6

Solution 

(a) 2𝑥 + 3𝑥 − 3 = 4𝑥 + 12

5𝑥 = 4𝑥 + 12 

𝑥 = 12 

(b) 
𝑥+5

5
=

𝑥−1

6

6(𝑥 + 5) = 5(𝑥 − 1) 

6𝑥 + 30 = 5𝑥 − 5 

𝑥 = −35 

Simultaneous equations 

When only one unknown quantity has to be found, only one 

equation is needed to provide a solution. 

If two unknown quantities are involved in a problem we 

need two equations connecting them. Then, between the two 

equations we can eliminate one of the unknowns, producing 

just one equation containing just one unknown. This then 

ready for solution. 

Solution of three linear equations 

For three unknown quantities we need three equations. Then 

one unknown can be eliminated. One way to eliminate an 

unknown quantity is to add or subtract two of the equations 

and then go on to eliminate the second unknown in a similar 

way. 

Example 2 

Solve the equations 

𝑥 + 𝑦 − 𝑧 = 4 

2𝑥 + 𝑧 = 7 

3𝑥 − 2𝑦 = 5 

Solution 

𝑥 + 𝑦 − 𝑧 = 4  …. (i) 

2𝑥 + 𝑧 = 7 …. (ii) 

3𝑥 − 2𝑦 = 5  …. (iii) 

As 𝑧 appears only in equations (i) and (ii), we can eliminate 

𝑧 from these two equations 

(i) + (ii) gives

 

 

3𝑥 + 𝑦 = 11   …. (iv) 

Now bring in (iii) 

3𝑥 − 2𝑦 = 5   … (iii) 

(iv) – (iii)

3𝑦 = 6 

𝑦 = 2 

Substituting for 𝑦 = 2 in (iii) gives 

3𝑥 − 4 = 5 

3𝑥 = 9 

𝑥 = 3 

Now using 𝑥 = 3 in (ii) gives  

6 + 𝑧 = 7 

𝑧 = 1 

Therefore the solution of the three simultaneous equations is 

𝑥 = 3, 𝑦 = 2, 𝑧 = 1 

Example 3 

Solve the equations 

𝑥 − 𝑦 + 2𝑧 = 0 

2𝑥 + 𝑦 + 𝑧 = 3 

3𝑥 − 𝑦 + 𝑧 = 6 

Solution 

𝑥 − 𝑦 + 2𝑧 = 0   …. (i) 

2𝑥 + 𝑦 + 𝑧 = 3  …. (ii) 

3𝑥 − 𝑦 + 𝑧 = 6 ….. (iii) 

The easiest letter to eliminate from two pairs of equations is 

𝑦 

(i) + (ii) gives

3𝑥 + 3𝑧 = 3 

Dividing by 3 gives   𝑥 + 𝑧 = 1   …. (iv) 

(ii) + (iii) gives

5𝑥 + 2𝑧 = 9   … (v) 

Now we can either eliminate 𝑥 or 𝑧 from (iv) and (v); 

5 × (iv) – (v) gives  

3𝑧 = −4 

𝑧 = −
4

3

Using 𝑧 = −
4

3
 in (iv) gives; 

𝑥 −
4

3
= 3 

𝑥 =
7

3

Then using 𝑥 =
7

3
and 𝑧 = −

4

3
 in (ii) gives; 

14

3
+ 𝑦 −

4

3
= 3 

𝑦 = −
1

3

Therefore the solution is 𝑥 =
7

3
, 𝑦 = −

1

3
, 𝑧 = −

4

3

Chapter 
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𝑦(𝑦 − 3) + (𝑦 − 3) = 0 

(𝑦 − 3)(𝑦 + 1) = 0 

𝑦 = 3 or 𝑦 = −1 

Since 𝑥 = 𝑦 − 1, when 𝑦 = 3, 𝑥 = 2, and when 𝑦 = −1, 

𝑥 = −2 

The solution is 𝑥 = 2, 𝑦 = 3; 𝑥 = −2, 𝑦 = −1 

Example 9 

Solve the simultaneous equations 

𝑥 + √𝑦 = 9 

𝑥2 − 𝑦 = 9

Solution 

From the first equation 

𝑥 = 9 − √𝑦 

Substituting for 𝑥 in the second equation 

(9 − √𝑦)
2

− 𝑦 = 9

81 − 18√𝑦 + 𝑦 − 𝑦 = 9 

18√𝑦 = 72 

√𝑦 = 4

𝑦 = 16

Now from 𝑥 = 9 − √𝑦 

𝑥 = 9 − √16 = 4 

Self-Evaluation exercise 

1. Solve the following simultaneous equations

(a) 𝑥 + 2𝑦 = 3, 𝑥2 − 𝑥𝑦 + 5𝑦2 + 2𝑦 = 7

[Ans: (a) 𝑥 = 1, 𝑦 = 1; 𝑥 =
29

11
, 𝑦 =

2

11
] 

(b) 2𝑥 + 𝑦 = 1, 𝑥2 + 𝑥𝑦 + 3𝑥 − 𝑦 = 4

[Ans: 𝑥 = 1, 𝑦 = −1; 𝑥 = 5, 𝑦 = −9] 

(c) 2𝑥 − 3𝑦 = 1, 𝑥2 + 𝑥𝑦 − 4𝑦2 = 2

[Ans: 𝑥 = 2, 𝑦 = 1; 𝑥 = 11, 𝑦 = 7] 

(d) 𝑥 + 2𝑦 = 7, 𝑥2 + 2𝑦2 = 17

[Ans: 𝑥 = 3, 𝑦 = 2; 𝑥 =
5

3
, 𝑦 =

8

3
] 

2. Solve for 𝑎 and 𝑏 the simultaneous equations

𝑎2 + 𝑏2 =
13

4
,    𝑎𝑏 = −

3

2

[Ans: 𝑎 =
3

2
, 𝑏 = −1; 𝑎 = 1, 𝑏 = −

3

2
, 𝑎 = −1, 𝑏 =

3

2
, 𝑎 =

−
3

2
, 𝑏 = 1] 

3. Solve the system of equations

𝑥 + 𝑦 − 𝑧 = 9 

3𝑥 + 4𝑦 + 3𝑧 = 2 

4𝑥 + 5𝑦 + 3𝑧 = 5 

[Ans: 𝑥 = −8, 𝑦 = 11, 𝑧 = −6] 

4. Solve the simultaneous equations

𝑥 + 3𝑦 − 𝑧 = 13 

3𝑥 + 𝑦 − 𝑧 = 11 

𝑥 + 𝑦 − 3𝑧 = 11 

[Ans: 𝑥 = 2, 𝑦 = 3 and 𝑧 = −2] 

5. Solve the simultaneous equations

6𝑥 + 4𝑦 − 𝑧 = 3 

𝑥 + 2𝑦 + 4𝑧 = −2 

5𝑥 + 4𝑦 = 0 

[Ans: 𝑥 = 4, 𝑦 = −5, 𝑧 = 1] 

6. Solve the simultaneous equations

𝑥 + 𝑦 + 𝑧 = 2 

4𝑥 + 𝑦 = 4 

−𝑥 + 3𝑦 + 2𝑧 = 8

[Ans: 𝑥 = 0, 𝑦 = 4, 𝑧 = −2] 

7. Solve the simultaneous equations

−𝑥 + 3𝑦 + 24𝑧 = 17

2𝑥 + 6𝑦 + 14𝑧 = 6

𝑥 − 𝑦 − 𝑧 = 2 

[Ans: 𝑥 = 10, 𝑦 = −7, 𝑧 = 2] 

8. Solve the simultaneous equations

𝑥 + 𝑦 − 2𝑧 = 7 

2𝑥 − 3𝑦 − 2𝑧 = 0 

𝑥 − 2𝑦 = −1 

[Ans: 𝑥 = 1, 𝑦 = 2, 𝑧 = −2] 

9. Solve the simultaneous equations

𝑥 − 𝑦 + 𝑧 = 3 

4𝑥 + 2𝑦 + 𝑧 = 6 

𝑥 + 𝑦 + 𝑧 = 2 

[Ans: 𝑥 = 2, 𝑦 = −1, 𝑧 = 0] 

10. By row reducing the appropriate matrix to echelon

form, solve the system of linear equations

(a) 2𝑥 + 6𝑦 + 𝑧 = 0

𝑥 − 2𝑦 + 𝑧 = −10

4𝑥 + 3𝑦 + 𝑧 = 1

[Ans: 𝑥 = 2, 𝑦 = 1, 𝑧 = −10] 

(b) 𝑥 + 𝑦 − 𝑧 = 4

2𝑥 + 𝑧 = 7

3𝑥 − 2𝑦 = 5

 [Ans: 𝑥 = 3, 𝑦 = 2, 𝑧 = 1] 
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Any equation of the form 𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄 = 𝟎 is called a

quadratic equation and the values of 𝑥, which satisfy the 

equation, are called roots or solutions of the quadratic 

equation. 

We shall discuss the three methods of obtaining the roots of 

the quadratic equation. 

1. Solution by factorising

Consider the quadratic equation 3𝑥2 + 7𝑥 − 6 = 0

We get the product of the coefficient of 𝑥2 and the constant

term i.e. 3 × −6 = −18

Next, we find two factors of this product (−18) which add

up to give the coefficient of 𝑥 (7). These factors are 9 and

−2

Now we split the middle term using these factors and then

factorise the equation i.e.

3𝑥2 − 2𝑥 + 9𝑥 − 6 = 0

𝑥(3𝑥 − 2) + 3(3𝑥 − 2) = 0 

(3𝑥 − 2)(𝑥 + 3) = 0 

Now if the product of two quantities is zero then one, or 

both, of those quantities must be zero. 

3𝑥 − 2 = 0 or 𝑥 + 3 = 0 

𝑥 =
2

3
  or 𝑥 = −3

The values 
2

3
 and −3 are called the roots of that equation 

Example 1 

Find the roots of the equation 𝑥2 + 6𝑥 − 7 = 0

Solution 

1 × −7 = −7, we can use −1 and 7 as factors 

𝑥2 − 𝑥 + 7𝑥 − 7 = 0

𝑥(𝑥 − 1) + 7(𝑥 − 1) = 0 

(𝑥 − 1)(𝑥 + 7) = 0 

𝑥 − 1 = 0 or 𝑥 + 7 = 0 

𝑥 = 1 or 𝑥 = −7 

The roots of the equation are 1 and −7 

Note: 

It is usually best to collect the terms on the side where 𝑥2

term is positive, for example  

2 − 𝑥2 = 5𝑥  becomes 0 = 𝑥2 + 5𝑥 − 2

i.e.    𝑥2 + 5𝑥 − 2 = 0

Example 2 

Solve the equation 4𝑥 − 𝑥2 = 3

Solution 

0 = 𝑥2 − 4𝑥 + 3

 

 

𝑥2 − 4𝑥 + 3 = 0

𝑥2 − 𝑥 − 3𝑥 + 3 = 0

𝑥(𝑥 − 1) − 3(𝑥 − 1) = 0 

(𝑥 − 1)(𝑥 − 3) = 0 

𝑥 − 1 = 0 or 𝑥 − 3 = 0 

𝑥 = 3 or 𝑥 = 1 

Losing a solution 

Quadratic equations sometimes have a common factor 

containing the unknown quantity. It is very tempting in such 

cases to divide by the common factor, but doing this results 

in the loss of part of the solution, as the following example 

shows. 

First solution      Second solution 

𝑥2 − 5𝑥 = 0 𝑥2 − 5𝑥 = 0

𝑥(𝑥 − 5) = 0       𝑥 − 5 = 0 (Dividing by 𝑥) 

𝑥 = 0 or 𝑥 − 5 = 0               𝑥 = 5 

𝑥 = 0 or 5       The solution 𝑥 = 0 has been lost 

Although dividing an equation by a numerical common 

factor is correct and sensible, dividing by a common factor 

containing the unknown quantity results in the loss of a 

solution. 

2. Solution by completing the square

When there are no obvious factors, another method is

needed to solve the equation. One such method involves

adding a constant to the 𝑥2 term and 𝑥 term, to make a

perfect square. This technique is called completing the

square.

Consider 𝑥2 − 2𝑥

Adding 1 gives 𝑥2 − 2𝑥 + 1

Now 𝑥2 − 2𝑥 + 1 = (𝑥 − 1)2 which is a perfect square.

Adding the number 1 was not a guess, it was found by using 

the fact that  

𝑥2 + 2𝑎𝑥 + 𝑎2 = (𝑥 + 𝑎)2

We see from this that the number to be added is always 

(half the coefficient of 𝑥)2

Hence 𝑥2 + 6𝑥 requires 32 to be added to make a perfect

square 

𝑥2 + 6𝑥 + 9 = (𝑥 + 3)2

To complete the square when the coefficient of 𝑥2is not 1,

we first take out the coefficient of 𝑥2 as a factor e.g.

2𝑥2 + 𝑥 = 2 (𝑥2 +
1

2
𝑥) 

Now we add (
1

2
×

1

2
)

2

inside the bracket, giving 

2 (𝑥2 +
1

2
𝑥 +

1

16
) = 2 (𝑥 +

1

4
)

2

Chapter 
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Take extra care when the coefficient of 𝑥2 is negative e.g.

−𝑥2 + 4𝑥 = −(𝑥2 − 4𝑥)

Then −(𝑥2 − 4𝑥 + 4) = −(𝑥 − 2)2

−𝑥2 + 4𝑥 − 4 = −(𝑥 − 2)2

Example 3 

Solve the equation 𝑥2 − 4𝑥 − 2 = 0, giving the solution in

surd form. 

Solution 

𝑥2 − 4𝑥 − 2 = 0

Now factors can be found so we isolate the two terms with 

𝑥 in, 

𝑥2 − 4𝑥 = 2

Add {
1

4
× (−4)}

2

 to both sides 

𝑥2 − 4𝑥 + 4 = 2 + 4

(𝑥 − 2)2 = 6

𝑥 − 2 = ±√6 

𝑥 = 2 ± √6 

∴ 𝑥 = 2 + √6   or 𝑥 = 2 − √6 

Example 4 

Find the roots of the equation 2𝑥2 − 3𝑥 − 3 = 0

Solution 

2𝑥2 − 3𝑥 = 3

𝑥2 −
3

2
𝑥 =

3

2

𝑥2 −
3

2
𝑥 +

9

16
=

3

2
+

9

16

(𝑥 −
3

4
)

2

=
33

16

𝑥 −
3

4
= ±

√33

4

𝑥 =
3 ± √33

4

𝑥 =
3 + √33

4
= 2.186 or 𝑥 =

3 − √33

4
= −0.686 

3. The formula for solving a quadratic equation

Solving a quadratic equation by completing the square is

rather tedious. If the method is applied to a general quadratic

equation, a formula can be derived which can then be used

to solve any particular equation.

Using 𝑎, 𝑏 and 𝑐 to represent any numbers we have the

general quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

Using the method of completing the square for this equation 

𝑎𝑥2 + 𝑏𝑥 = −𝑐

𝑥2 +
𝑏

𝑎
𝑥 = −

𝑐

𝑎

𝑥2 +
𝑏

𝑎
𝑥 + (

𝑏

2𝑎
)

2

= (
𝑏

2𝑎
)

2

−
𝑐

𝑎

(𝑥 +
𝑏

2𝑎
)

2

=
𝑏2

4𝑎2
−

𝑐

𝑎

(𝑥 +
𝑏

2𝑎
)

2

=
𝑏2 − 4𝑎𝑐

4𝑎2

𝑥 +
𝑏

2𝑎
= ±√

𝑏2 − 4𝑎𝑐

4𝑎2

𝑥 = −
𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎

𝒙 =
−𝒃 ± √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂

Example 5 

Find, by using the formula, the roots of the equation 

2𝑥2 − 7𝑥 − 1 = 0 giving them correct to 3 decimal places.

Solution 

Comparing with 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 gives 𝑎 = 2, 𝑏 = −7,

𝑐 = −1 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

=
7 ± √49 − 4(2)(−1)

4

=
7 ± √57

4

𝑥 =
7 + √57

4
= 3.637 or 𝑥 =

7 − √57

4
= −0.137 

The discriminant between the roots of a quadratic 

equation  

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
The formula does not only enable us to solve quadratic 

equations but also to investigate the dependence of the roots 

on the relative values of 𝑎, 𝑏 and 𝑐. In particular, the type of 

roots which arise depend on the quantity 𝑏2 − 4𝑎𝑐 whose

square root is involved in the equation. This quantity is 

called the discriminant of the equation and it is often denoted 

by 𝐷. 

𝐷 = 𝑏2 − 4𝑎𝑐

If 𝑏2 − 4𝑎𝑐 > 0, then the square root will be a real number

and we shall obtain two real distinct roots of the equation.  

If 𝑏2 − 4𝑎𝑐 = 0, so is its square root, and both roots of the

equation will be real and equal. They will both be equal to 

−𝑏/2𝑎.

If 𝑏2 − 4𝑎𝑐 < 0, the square root involved in the equation is

that of a negative number. Such a square root cannot be a

real number.

We shall see later that it is a complex number. In this case

we say that the equation has no real roots or the equation has

complex roots.

Therefore, the discriminant gives the nature of the roots.
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0 ≥ 7𝜆2 − 24𝜆 − 16

7𝜆2 − 24𝜆 − 16 ≤ 0

7𝜆2 − 28𝜆 + 4𝜆 − 16 ≤ 0

7𝜆(𝜆 − 4) + 4(𝜆 − 4) ≤ 0 

(𝜆 − 4)(7𝜆 + 4) ≤ 0 

Critical values of 𝜆 are 4 or −
4

7

𝜆 ≤ −
4

7
−

4

7
≤ 𝜆 ≤ 4 

𝜆 ≥ 4 

𝜆 − 4 − + + 

7𝜆 + 4 − − + 

(𝜆 − 4)(7𝜆 + 4) + − + 

(𝜆 − 4)(7𝜆 + 4) ≤ 0 when −
4

7
≤ 𝜆 ≤ 4 

The relation between the roots of a quadratic equation 

and the coefficients 

If the equation   𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0  has roots 𝛼 and 𝛽,  then

its equivalent equation will be; 

       (𝑥 − 𝛼)(𝑥 − 𝛽) = 0, as it gives  𝑥 = 𝛼  or 𝑥 = 𝛽 

𝑥2 − 𝛽𝑥 − 𝛼𝑥 + 𝛼𝛽 = 𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎

𝑥2 − (𝛼 + 𝛽)𝑥 + 𝛼𝛽 = 𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎

By comparing the coefficients on both sides, we obtain 

𝛼 + 𝛽 = −
𝑏

𝑎
and   𝛼𝛽 =

𝑐

𝑎

where 𝛼 + 𝛽 is the sum of roots and 𝛼𝛽 is the product of 

roots. 

Hence the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0  can be written in the

form; 

𝒙𝟐 − (𝐬𝐮𝐦 𝐨𝐟 𝐫𝐨𝐨𝐭𝐬)𝒙 + (𝐩𝐫𝐨𝐝𝐮𝐜𝐭 𝐨𝐟 𝐫𝐨𝐨𝐭𝐬) = 𝟎

Example 11 

Write down the sum and product of the roots of the 

following equations; 

(a) 3𝑥2 − 2𝑥 − 7 = 0

(b) 5𝑥2 + 11𝑥 + 3 = 0

Solution 

(a) 𝑥2 −
2

3
𝑥 −

7

3
= 0

sum of roots =− (−
2

3
) =

2

3

product of roots = −
7

3

(b) 𝑥2 +
11

5
𝑥 +

3

5
= 0

sum of roots =−
11

5

product of roots = 
3

5

Example 12 

Find the quadratic equation whose roots are  
3

4
and −

1

2

Solution 

Sum of roots =
3

4
+ (−

1

2
) =

1

4
   and product of roots 

= 
3

4
× (−

1

2
) = −

3

8

𝑥2 − (sum of roots)𝑥 + (product of roots) = 0

𝑥2 − (
1

4
) 𝑥 + (

−3

8
) = 0 

8𝑥2 − 2𝑥 − 3 = 0

Example 13 

If 𝛼 and 𝛽 are the roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0,

obtain in terms of 𝑎, 𝑏 and 𝑐 the values of  

(a) 𝛼2 + 𝛽2 (b) 
𝛼

𝛽
+

𝛽

𝛼
(c) 𝛼3 + 𝛽3 (d) 𝛼 − 𝛽

Solution

𝑥2 +
𝑏

𝑎
𝑥 +

𝑐

𝑎
= 0 

𝛼 + 𝛽 = −
𝑏

𝑎
 𝛼𝛽 =

𝑐

𝑎
(a) 𝛼2 + 𝛽2 = 𝛼2 + 2𝛼𝛽 + 𝛽2 − 2𝛼𝛽

= (𝛼 + 𝛽)2 − 2𝛼𝛽

= (−
𝑏

𝑎
)

2

− 2 (
𝑐

𝑎
) 

=
𝑏2

𝑎2
−

2𝑐

𝑎

𝛼2 + 𝛽2 =
𝑏2 − 2𝑎𝑐

𝑎2

(b) 
𝛼

𝛽
+

𝛽

𝛼
=

𝛼2+𝛽2

𝛼𝛽

=
𝑏2 − 2𝑎𝑐

𝑎2
÷

𝑐

𝑎
𝛼

𝛽
+

𝛽

𝛼
=

𝑏2 − 2𝑎𝑐

𝑎𝑐

(c) (𝛼 + 𝛽)3 = 𝛼3 + 3𝛼2𝛽 + 3𝛼𝛽2 + 𝛽3

= 𝛼3 + 𝛽3 + 3𝛼𝛽(𝛼 + 𝛽)

𝛼3 + 𝛽3 = (𝛼 + 𝛽)3 − 3𝛼𝛽(𝛼 + 𝛽)

= (𝛼 + 𝛽)[(𝛼 + 𝛽)2 − 3𝛼𝛽]

𝛼3 + 𝛽3 = (−
𝑏

𝑎
) [

𝑏2

𝑎2
−

3𝑐

𝑎
] = −

𝑏

𝑎
(

𝑏2 − 3𝑎𝑐

𝑎2
) 

𝛼3 + 𝛽3 =
3𝑎𝑏𝑐 − 𝑏3

𝑎3

(d) 𝛼 − 𝛽 = √(𝛼 − 𝛽)2

 = √𝛼2 − 2𝛼𝛽 + 𝛽2 

 = √(𝛼 + 𝛽)2 − 2𝛼𝛽 − 2𝛼𝛽 

 = √(𝛼 + 𝛽)2 − 4𝛼𝛽 

𝛼 − 𝛽 = √
𝑏2

𝑎2
−

4𝑐

𝑎
= √

𝑏 − 4𝑎𝑐

𝑎2
=

√𝑏2 − 4𝑎𝑐

𝑎

Example 14 

If one root of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 is three times

the other root, show that 3𝑞2 = 16𝑝𝑟.

Solution 

Let one root be 𝛼, then the other will be 3𝛼 

𝛼 + 3𝛼 = −
𝑞

𝑝
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= 2𝜆2𝑐(𝑏2 − 2𝑐)

The equation is in the form 

𝑥2 − (𝑠um of roots)𝑥 + product of roots = 0

𝑥2 − 𝜆𝑏2𝑥 + 2𝜆2𝑐(𝑏2 − 2𝑐) = 0

To show that the roots are always real, we have to show that 

the discriminant, 𝐷 ≥ 0 i.e. is positive  

𝐷 = (𝜆𝑏2)2 − 4[2𝜆2𝑐(𝑏2 − 2𝑐)]

𝐷 = 𝜆2(𝑏2)2 − 8𝜆2𝑐(𝑏2 − 2𝑐)

𝐷 = 𝜆2[(𝑏2)2 − 8𝑐𝑏2 + 16𝑐2]

𝐷 = 𝜆2[(𝑏2)2 − 2(4𝑐)𝑏2 + (4𝑐)2]

𝐷 = 𝜆2(𝑏2 − 4𝑐)2

𝐷 = [𝜆(𝑏2 − 4𝑐)]2

It is clear that 𝐷 = [𝜆(𝑏2 − 4𝑐)]2 ≥ 0, thus the roots are

always real. 

Example 19 

Show that if the equations 𝑥2 + 𝑏𝑥 + 𝑐 = 0, 𝑥2 + 𝑝𝑥 + 𝑞 =

0 have a common root, then (𝑐 − 𝑞)2 = (𝑏 − 𝑝)(𝑐𝑝 − 𝑏𝑞)

Solution 

Let the common root be 𝛼 

𝛼2 + 𝑝𝛼 + 𝑞 = 𝛼2 + 𝑏𝛼 + 𝑐

(𝑝 − 𝑏)𝛼 = 𝑐 − 𝑞 

𝛼 =
𝑐 − 𝑞

𝑝 − 𝑏

Now substituting for 𝛼 in one of the two equations 

(
𝑐 − 𝑞

𝑝 − 𝑏
)

2

+ 𝑏 (
𝑐 − 𝑞

𝑝 − 𝑏
) + 𝑐 = 0 

(𝑐 − 𝑞)2

(𝑝 − 𝑏)2
+

(𝑏𝑐 − 𝑏𝑞)

(𝑝 − 𝑏)
+ 𝑐 = 0 

(𝑐 − 𝑞)2 + (𝑏𝑐 − 𝑏𝑞)(𝑝 − 𝑏) + 𝑐(𝑝 − 𝑏)2 = 0

(𝑐 − 𝑞)2 + (𝑝 − 𝑏)[𝑏𝑐 − 𝑏𝑞 + 𝑐(𝑝 − 𝑏)] = 0

(𝑐 − 𝑞)2 + (𝑝 − 𝑏)[𝑏𝑐 − 𝑏𝑞 + 𝑐𝑝 − 𝑏𝑐] = 0

(𝑐 − 𝑞)2 + (𝑝 − 𝑏)[𝑐𝑝 − 𝑏𝑞] = 0

(𝑐 − 𝑞)2 = −(𝑝 − 𝑏)[𝑐𝑝 − 𝑏𝑞]

(𝑐 − 𝑞)2 = (𝑏 − 𝑝)(𝑐𝑝 − 𝑏𝑞)

Maximum and minimum values of quadratic 

expressions 

The method of completing the square, used to solve any 

equation in the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 can be used to find

the maximum or minimum value of the expression 𝑎𝑥2 +

𝑏𝑥 + 𝑐. 

Example 20 

Find the minimum value of the expression  𝑥2 + 3𝑥 + 4

Solution 

       By completing the square;  

𝑥2 + 3𝑥 + 4 = 𝑥2 + 3𝑥 + (
3

2
)

2

− (
3

2
)

2

+ 4

=[𝑥2 + 3𝑥 + (
3

2
)

2

] −
9

4
+ 4

= [𝑥 +
3

2
]

2

+
7

4

Now [𝑥 +
3

2
]

2

 cannot be negative for any value of 𝑥, i.e 

[𝑥 +
3

2
]

2

≥ 0 

Thus 𝑥2 + 3𝑥 + 4 is always positive and will have a

minimum value of  
7

4
when  𝑥 +

3

2
= 0 i.e. when   𝑥 = −

3

2

Example 21 

Find the maximum value of 5 − 2𝑥 − 4𝑥2

Solution 

Let us first rewrite 5 − 2𝑥 − 4𝑥2 as −4𝑥2 − 2𝑥 + 5

−4𝑥2 − 2𝑥 + 5 = −4 (𝑥2 +
1

2
𝑥) + 5 

= −4 (𝑥2 +
1

2
𝑥 +

1

16
) +

4

16
+ 5

= −4 (𝑥 +
1

4
)

2

+
21

4

= 
21

4
− 4 (𝑥 +

1

4
)

2

Now 4 (𝑥 +
1

4
)

2

≥ 0 

Thus 5 − 2𝑥 − 4𝑥2 has a maximum value of 
21

4

Example 22 

Find by completing the square, the greatest value of the 

function 𝑓(𝑥) = 1 − 6𝑥 − 𝑥2

Solution 

1 − 6𝑥 − 𝑥2 = −𝑥2 − 6𝑥 + 1

= −[𝑥2 + 6𝑥] + 1

= −[𝑥2 + 6𝑥 + 32 − 32] + 1

=−[𝑥2 + 6𝑥 + 9 − 9] + 1

= −[𝑥2 + 6𝑥 + 9] + 9 + 1

=−(𝑥 + 3)2 + 10

= 10 − (𝑥 + 3)2

Since (𝑥 + 3)2 is the square of a real number, it cannot be

negative, it is zero when = −3 , otherwise it is positive. 

10 − (𝑥 + 3)2 is therefore always less than or equal to 10.

Thus, the greatest value is 10 

Example 23 

Show that 3𝑥2 + 6𝑥 + 20 is always positive

Solution 

3𝑥2 + 6𝑥 + 20 = 3 (𝑥2 + 2𝑥 +
20

3
) 

= 3 (𝑥2 + 2𝑥 + 1 − 1 +
20

3
) 

= 3 [(𝑥 + 1)2 +
17

3
] 

which, being the sum of two positive quantities, is always 

positive. 

Example 24 

Express 
2𝑥2 + 8𝑥 + 7

𝑥2 + 4𝑥 + 5
 in the form 𝑎 −

𝑏

(𝑥 + 𝑐)2 + 𝑑
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and state the values of 𝑎, 𝑏, 𝑐 and 𝑑 

Solution 

2 

𝑥2 + 4𝑥 + 5    2𝑥2 + 8𝑥 +  7

−2𝑥2 + 8𝑥 + 10

−3

2𝑥2 + 8𝑥 + 7

𝑥2 + 4𝑥 + 5
= 2 −

3

𝑥2 + 4𝑥 + 5
Now 𝑥2 + 4𝑥 + 5 = 𝑥2 + 4𝑥 + 4 − 4 + 5

= (𝑥 + 2)2 + 1

2𝑥2 + 8𝑥 + 7

𝑥2 + 4𝑥 + 5
= 2 −

3

(𝑥 + 2)2 + 1

𝑎 = 2, 𝑏 = 3, 𝑐 = 2, 𝑑 = 1 

Graphical representation of maximum and minimum 

values of a quadratic function 

If 𝑓(𝑥) = 𝑎(𝑥 + 𝑝)2 + 𝑞, and 𝑎 > 0, then 𝑓(𝑥) has a least

value of 𝑞, when 𝑥 = −𝑝 as shown below. 

If 𝑎 < 0, 𝑓(𝑥) has a greatest value of 𝑞, when 𝑥 = −𝑝 as 

shown below. 

Note: 

The graph of 𝑦 = 𝑓(𝑥) has a line of symmetry at 𝑥 = −𝑝 

Self-Evaluation exercise 

1. If the roots of the equation 3𝑥2 − 5𝑥 + 1 = 0 are 𝛼, 𝛽,

find the values of

(a) 𝛼𝛽2 + 𝛼2𝛽 (b) 𝛼2 − 𝛼𝛽 + 𝛽2 (c) 𝛼3 + 𝛽3 (d) 
𝛼2

𝛽
+

𝛽2

𝛼

[Ans: (a) 
5

9
 (b) 

16

9
  (c) 

80

27
 (d) 

80

9
] 

2. The equation 4𝑥2 + 8𝑥 − 1 = 0 has roots 𝛼, 𝛽. Find

the values of

         (a) 
1

𝛼2 +
1

𝛽2 (b) (𝛼 − 𝛽)2  (c) 𝛼3𝛽 + 𝛼𝛽3 (d)
1

𝛼2𝛽
+

1

𝛼𝛽2

[Ans: (a) 72 (b) 5 (c) −
9

8
(d) −32]

3. If 𝛼 and 𝛽 are the roots of the equation 3𝑥2 − 7𝑥 − 1 =

0 find the values of

(a) (𝛼 − 𝛽)2   (b) 𝛼2 + 𝛽2  (c) 𝛼4 + 𝛽4

[Ans: (a) 
61

9
  (b) 

55

9
  (c) 

3007

81
] 

4. If 𝛼 and 𝛽 are the roots of the equation 5𝑥2 − 3𝑥 − 1 =

0, form the equations with integral coefficients which

have roots

(a) 
1

𝛼2 and 
1

𝛽2

(b) 
𝛼2

𝛽
and 

𝛽2

𝛼

[Ans: (a) 𝑥2 − 19𝑥 + 25 = 0 (b) 25𝑥2 + 72𝑥 − 5 = 0]

5. The roots of the equation 𝑥2 + 6𝑥 + 𝑞 = 0 are 𝛼 and

𝛼 − 1. Find the value of 𝑞.

[Ans: 
35

4
] 

6. The roots of the equation 𝑥2 − 𝑝𝑥 + 8 = 0 are 𝛼 and

𝛼 + 2. Find two possible values of 𝑝.

[Ans: ±6] 

7. Find the condition that the roots of the equation 𝑝𝑥2 +

𝑞𝑥 + 𝑟 = 0 should be (i) equal in magnitude and 

opposite in sign, (ii) reciprocals. 

[Ans: (i) 𝑞 = 0 (ii) 𝑝 = 𝑟] 

8. One root of the equation 𝑝𝑥2 + 𝑞𝑥 + 𝑟 = 0 is twice the

other root. Show that 2𝑞2 − 9𝑟𝑝 = 0.

9. Find the values of 𝜆 for which the equation

10𝑥2 + 4𝑥 + 1 = 2𝜆𝑥(2 − 𝑥) has equal roots

[Ans: 3, −
1

2
] 

10. If the equation 𝑎2𝑥2 + 6𝑎𝑏𝑥 + 𝑎𝑐 + 8𝑏2 = 0 has

equal roots, prove that the roots of the equation

𝑎𝑐(𝑥 + 1)2 = 4𝑏2𝑥 are also equal.

11. The roots of the equation 𝑥2 + 𝑎𝑥 + 𝑏 = 0 are 𝛼, 𝛽.

Find the equation whose roots are 𝑝𝛼 + 𝑞𝛽, 𝑝𝛽 + 𝑞𝛼.

If the original equation is 𝑥2 − 4𝑥 − 5 = 0, find the

values of 
𝑝

𝑞
 in order that the new equation shall have one

zero root.

[ Ans: 𝑥2 + 𝑎(𝑝 + 𝑞)𝑥 + 𝑏(𝑝2 + 𝑞2) + (𝑎2 − 2𝑏)𝑝𝑞 = 0; 5, 
1

5
] 

12. Form the equation whose roots are the cubes of the roots

of the equation 𝑥2 − 3𝑥 + 4 = 0, without solving the

equation, giving the numerical values of the coefficients

of the new equation.

[Ans: 𝑥2 + 9𝑥 + 64 = 0]

13. Show that the roots of the equation 2𝑏𝑥2 + 2(𝑎 +

𝑏)𝑥 + 3𝑎 = 2𝑏 are real when 𝑎 and 𝑏 are real.

If one of this equation is twice the other, prove that

either 𝑎 = 2𝑏 or 4𝑎 = 11𝑏

14. The equation 𝑥2 + 2𝑝𝑥 + 𝑝2 + 𝑞2 = 𝑟2 has real roots.

Show that 𝑟2 ≥ 𝑞2

15. Find the values of 𝜆 for which the roots of the equation

−𝑝

( −𝑝, 𝑞)

𝑥 

𝑎 > 0 

Line of symmetry 

−𝑝

( −𝑝, 𝑞)

𝑥 

𝑎 < 0 

Line of symmetry 
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(b) Write down the values of 𝛼 + 𝛽 and 𝛼𝛽

(c) Form an equation with integral coefficients whose

roots are 
𝛼

𝛽
and 

𝛽

𝛼

(d) Prove that 𝛼 − 𝛽 = √5

[Ans: (a) 2 < 𝑘 < 6 (b) −7, 11 (c) 11𝑥2 − 27𝑥 + 11 = 0]

42. (a) If 𝛼2 and 𝛽2 are the roots of 𝑥2 − 21𝑥 + 4 = 0 and

𝛼 and 𝛽 are both positive, find:

(i) 𝛼𝛽;

(ii) 𝛼 + 𝛽;

(iii) the equation with roots 
1

𝛼2 and 
1

𝛽2

(b) If 𝛼 + 𝛽 = 5 and 𝛼𝛽 = 2, calculate
1

𝛼
+

1

𝛽
and 

hence determine the values of 𝑚 and 𝑛 such that 

𝑥2 + 𝑚𝑥 + 𝑛 = 0 has roots 
1

𝛼
and 

1

𝛽

[Ans: (a) (i) 2 (ii) 5 (iii) 4𝑥2 − 21𝑥 + 1 = 0 (b) 
5

2
, 𝑚 = −

5

2
; 

𝑛 =
1

2
] 

43. Given that 𝛼 and 𝛽 are the roots of the equation

2𝑥2 + 𝑥 + 2 = 0,

(a) evaluate 
1

𝛼2 +
1

𝛽2, 

(b) find an equation whose roots are 
1

𝛼2 and 
1

𝛽2

(c) show that 27𝛼4 = 11𝛼 + 10

[Ans: (a) −11/4 (b) 4𝑥2 + 11𝑥 + 9 = 0]

44. The real roots of the equation 𝑥2 + 6𝑥 + 𝑐 = 0 differ

by 2𝑛 where 𝑛 is real and non-zero. Show that

𝑛2 = 9 − 𝑐. Given that the roots also have opposite

signs, find the set of possible values of 𝑛.

[Ans: 𝑛 > 3 or 𝑛 < −3] 

45. The equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 and 𝑏𝑥2 + 𝑎𝑥 + 𝑐 =

0, where 𝑎 ≠ 𝑏, 𝑐 ≠ 0, have a common root. Prove that

𝑎 + 𝑏 + 𝑐 = 0

46. The roots of the quadratic equation 𝑥2 − 𝑝𝑥 + 𝑞 = 0

are 𝛼 and 𝛽. Form, in terms of 𝑝 and 𝑞, the quadratic

equation whose roots are 𝛼3 + 𝑝𝛼2, 𝛽3 + 𝑝𝛽2.

[Ans: 𝑥2 + (5𝑝𝑞 − 2𝑝3)𝑥 + 𝑞3 + 2𝑝2𝑞2 = 0]

47. If the equation 𝑥2 − 𝑞𝑥 + 𝑟 = 0 has roots 𝛼 + 2, 𝛽 −

1, where 𝛼, 𝛽 are the real roots of the equation 2𝑥2 −

𝑏𝑥 + 𝑐 = 0, and 𝛼 ≥ 𝛽, find 𝑞 and 𝑟 in terms of 𝑏 and

𝑐. In the case 𝛼 = 𝛽, show that 𝑞2 = 4𝑟 + 9

[Ans: 𝑞 =
𝑏

2
+ 1, 𝑟 =

𝑐

2
+

𝑏

4
−

3√𝑏2−8𝑐

4
− 2]

48. If the roots of the equation 𝑥2 − 𝑏𝑥 + 𝑐 = 0 are √𝛼 and

√𝛽. Show that

𝛼2 + 𝛽2 = (𝑏2 − 2𝑐 − √2𝑐)(𝑏2 − 2𝑐 + √2𝑐)
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A polynomial in 𝑥, a variable, is an expression of the form 

𝑐0𝑥𝑛 + 𝑐1𝑥𝑛−1 + 𝑐2𝑥𝑛−2 + ⋯ + 𝑐𝑛−1𝑥 + 𝑐𝑛

where 𝑛 is a positive integer 

and 𝑐0, 𝑐1, 𝑐2, ……, 𝑐𝑛−1, 𝑐𝑛 are constants.

The degree of 𝑛, the highest power of 𝑥. 

The constant term is 𝑐𝑛.

For example, 2𝑥7 + 3𝑥5 − 𝑥4 + 6𝑥 + 4 is a polynomial of

degree 7 with constant term 4. 

Operations on polynomials 

Addition: Add corresponding terms (powers of 𝑥) 

𝑓(𝑥) = 3𝑥4 − 5𝑥3               + 𝑥 − 4

    g(𝑥) =  4𝑥3 − 3𝑥2 + 4𝑥 + 3

𝑓(𝑥) + g(𝑥) = 3𝑥4 − 𝑥3 − 3𝑥2 + 5𝑥 − 1

Subtraction: Subtract corresponding terms 

𝑓(𝑥) = 3𝑥4 − 5𝑥3  + 𝑥 − 4

    g(𝑥) =  4𝑥3 − 3𝑥2 + 4𝑥 + 3

𝑓(𝑥) − g(𝑥) = 3𝑥4 − 9𝑥3 + 3𝑥2 − 3𝑥 − 7

Multiplication: This can be set out like a ‘long 

multiplication’. Leave spaces for ‘missing terms’ 

𝑓(𝑥)                      3𝑥3           − 2𝑥 +  4

g(𝑥)                                   𝑥2             − 3

𝑓(𝑥) × 𝑥2  3𝑥5 − 2𝑥3 + 4𝑥2

 𝑓(𝑥) × −3 − 9𝑥3 + 6𝑥 − 12

𝑓(𝑥) × g(𝑥)    3𝑥5 − 11𝑥3 + 4𝑥2 + 6𝑥 − 12

Division: This can be set out like a ‘long division’. Leave 

spaces for ‘missing terms’  

𝑥2 + 4𝑥 + 11 

𝑥2 − 4𝑥 + 3     𝑥4  − 2𝑥2 + 3𝑥 − 6

− 𝑥4 − 4𝑥3 + 3𝑥2

4𝑥3 − 5𝑥2  + 3𝑥

− 4𝑥3 − 16𝑥2 + 12𝑥

11𝑥2 −  9𝑥 −   6

− 11𝑥2 − 44𝑥 + 33

  35𝑥 − 39 

𝑥4 − 2𝑥2 + 3𝑥 − 6

𝑥2 − 4𝑥 + 3
= 𝑥2 + 4𝑥 + 11 +

35𝑥 − 39

𝑥2 − 4𝑥 + 3

This approach can be extended to the division of a 

polynomial 𝑓(𝑥) by a polynomial g(𝑥) of degree less than 

or equal to the degree of 𝑓(𝑥). If the division gives quotient 

𝑄(𝑥) and remainder 𝑅(𝑥), then  

 

 

𝑓(𝑥)

g(𝑥)
≡ 𝑄(𝑥) +

𝑅(𝑥)

g(𝑥)

𝑓(𝑥) ≡ g(𝑥)𝑄(𝑥) + 𝑅(𝑥) 

where 𝑅(𝑥) is of lower degree than g(𝑥) 

[In particular, if g(𝑥) is a quadratic function, then 𝑅(𝑥) is of 

the form 𝐴𝑥 + 𝐵] 

The Remainder Theorem: 

If a polynomial 𝑓(𝑥) is divided by (𝑥 − 𝑎), then the 

remainder is 𝑓(𝑎). 

𝑓(𝑥) = (𝑥 − 𝑎)𝑄(𝑥) + 𝑅 

𝑓(𝑎) = (𝑎 − 𝑎)𝑄(𝑥) + 𝑅 

𝑓(𝑎) = 𝑅 

The Factor Theorem: 

If (𝑥 − 𝑎) is a factor of 𝑓(𝑥), then 𝑓(𝑎) = 0 i.e. the 

remainder is zero. 

Conversely, if 𝑓(𝑎) = 0, then (𝑥 − 𝑎) is a factor of 𝑓(𝑥). 

This may be used to find the factors of a polynomial. Factors 

of the constant term are usually tested first. 

If it is suspected that (𝑥 − 𝑎) is a repeated factor: 

(a) ‘take out’ the factor, either by inspection or long

division to give

𝑓(𝑥) ≡ (𝑥 − 𝑎)g(𝑥) 

(b) test (𝑥 − 𝑎) as a factor of g(𝑥)

Special factors 

𝑎2 − 𝑏2 = (𝑎 − 𝑏)(𝑎 + 𝑏)

𝑎2 ± 2𝑎𝑏 + 𝑏2 = (𝑎 ± 𝑏)2

𝑎3 − 𝑏3 = (𝑎 − 𝑏)(𝑎2 + 𝑎𝑏 + 𝑏2)

𝑎3 + 𝑏3 = (𝑎 + 𝑏)(𝑎2 − 𝑎𝑏 + 𝑏2)

Example 1 

Find the remainder when 3𝑥5 − 𝑥2 + 1 is divided by

(𝑥 + 2) 

Solution 

Let 𝑓(𝑥) = 3𝑥5 − 𝑥2 + 1 

𝑓(−2) = 2(−2)5 − (−2)2 + 1 = −96 − 4 + 1 = −99

Example 2 

When the cubic polynomial 𝑥3 + 𝑎𝑥2 − 3𝑥 + 4 is divided

by 𝑥 − 3, the remainder obtained is twice the remainder 

obtained when the polynomial is divided by 𝑥 − 2. Find the 

value of 𝑎.  

Solution 

Let 𝑓(𝑥) = 𝑥3 + 𝑎𝑥2 − 3𝑥 + 4

𝑓(3) = 33 + 𝑎(32) − 3(3) + 4

Chapter 

4 

Polynomials and the Remainder 

Theorem 
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3 + 𝑐 = −4 

𝑐 = −7 

𝑝 = 𝑏 = −4 

𝑞 = 𝑐 = −7 

∴ 𝑝 = 1  and 𝑞 = −7 

Example 13 

Given that 𝑥4 − 6𝑥3 + 10𝑥2 + 𝑎𝑥 + 𝑏 is a perfect square,

find the values of 𝑎 and 𝑏.  

Solution 

Let 𝑥4 − 6𝑥3 + 10𝑥2 + 𝑎𝑥 + 𝑏 ≡ (𝑥2 + 𝐵𝑥 + 𝐶)2

(𝑥2 + 𝐵𝑥 + 𝐶)2 = 𝑥4 + 𝐵𝑥3 + 𝐶𝑥2 + 𝐵𝑥3 + 𝐵2𝑥2

+ 𝐵𝐶𝑥 + 𝐶𝑥2 + 𝐵𝐶𝑥 + 𝐶2

= 𝑥4 + 2𝐵𝑥3 + (𝐵2 + 2𝐶)𝑥2 + 2𝐵𝐶𝑥 + 𝐶2

𝑥4 − 6𝑥3 + 10𝑥2 + 𝑎𝑥 + 𝑏

≡ 𝑥4 + 2𝐵𝑥3 + (𝐵2 + 2𝐶)𝑥2 + 2𝐵𝐶𝑥 + 𝐶2

Comparing coefficients: 

2𝐵 = −6 

𝐵 = −3 

𝐵2 + 2𝐶 = 10

(−3)2 + 2𝐶 = 10

9 + 2𝐶 = 10 

𝐶 =
1

2
𝑎 = 2𝐵𝐶 

𝑎 = 2(−3) (
1

2
) = −3 

𝑏 = 𝐶2

𝑏 = (
1

2
)

2

=
1

4

∴ 𝑎 = −3, 𝑏 =
1

4

Repeated roots of a polynomial 

Suppose now that a polynomial 𝑓(𝑥) has a repeated factor 

(𝑥 − 𝑎) such that  

𝑓(𝑥) ≡ (𝑥 − 𝑎)2g(𝑥)

Differentiating, 

𝑓′(𝑥) = (𝑥 − 𝑎)2g′(𝑥) + 2(𝑥 − 𝑎)g(𝑥)

= (𝑥 − 𝑎)[(𝑥 − 𝑎)g′(𝑥) + 2g(𝑥)

Hence, if 𝑓(𝑥) has a repeated factor (𝑥 − 𝑎), then (𝑥 − 𝑎) 

is also a factor of 𝑓′(𝑥).

𝑓(𝑎) = (𝑎 − 𝑎)2g(𝑥) = 0

𝑓′(𝑎) = (𝑎 − 𝑎)[(𝑎 − 𝑎)g′(𝑥) + 2g(𝑥)] = 0

Furthermore, (𝑥 − 𝑎)2 is a factor of a polynomial 𝑓(𝑥) if

and only if 𝑓(𝑎) = 𝑓′(𝑎) = 0.

Example 14 

Given that the polynomial 𝑓(𝑥) = 𝑥3 + 3𝑥2 − 9𝑥 + 𝑘 has

a repeated linear factor, find the possible values of 𝑘. 

Solution 

Differentiating;  𝑓′(𝑥) = 3𝑥2 + 6𝑥 − 9

= 3(𝑥2 + 2𝑥 − 3) = 3(𝑥 − 1)(𝑥 + 3)

∴ the repeated factor of 𝑓(𝑥) is (𝑥 − 1) or (𝑥 + 3) 

If (𝑥 − 1) is a factor of 𝑓(𝑥), then 𝑓(1) = 0 

(1)3 + 3(1)2 − 9(1) + 𝑘 = 0

1 + 3 − 9 + 𝑘 = 0

𝑘 = 5 

If (𝑥 + 3) is a factor of 𝑓(𝑥), then 𝑓(−3) = 0 

(−3)3 + 3(−3)2 − 9(−3) + 𝑘 = 0

−27 + 27 + 27 + 𝑘 = 0

𝑘 = −27 

Thus the possible values of 𝑘 are 5 and −27 

Example 15 

Find the roots of the equation 4𝑥3 + 12𝑥2 − 15𝑥 + 4 = 0

given that it has a repeated root.  

Solution 

Let 𝑓(𝑥) = 4𝑥3 + 12𝑥2 − 15𝑥 + 4

then  𝑓′(𝑥) = 12𝑥2 + 24𝑥 − 15

= 3(4𝑥2 + 8𝑥 − 5)

= 3(4𝑥2 + 10𝑥 − 2𝑥 − 5)

= 3(2𝑥 − 1)(2𝑥 + 5) 

Any repeated root of the equation 𝑓(𝑥) = 0 is also a root of 

the equation 𝑓′(𝑥) = 0.

3(2𝑥 − 1)(2𝑥 + 5) = 0 

𝑥 =
1

2
or 𝑥 = −

5

2

the repeated root must be either −
5

2
or 

1

2

𝑓 (
1

2
) = 4 (

1

2
)

3

+ 12 (
1

2
)

2

− 15 (
1

2
) + 4 = 0 

 (2𝑥 − 1) is a repeated root of 𝑓(𝑥) 

𝑓 (−
5

2
) = 4 (−

5

2
)

3

+ 12 (−
5

2
)

2

− 15 (−
5

2
) + 4 = 54 ≠ 0 

 (2𝑥 + 5) is not a repeated factor of 𝑓(𝑥) 

4𝑥3 + 12𝑥2 − 15𝑥 + 4 ≡ (2𝑥 − 1)2(𝐴𝑥 + 𝐵)

= (4𝑥2 − 4𝑥 + 1)(𝐴𝑥 + 𝐵)

= 4𝐴𝑥3 + 4𝐵𝑥2 − 4𝐴𝑥2 − 4𝐵𝑥 + 𝐴𝑥 + 𝐵

= 4𝐴𝑥3 + (4𝐵 − 4𝐴)𝑥2 + (𝐴 − 4𝐵)𝑥 + 𝐵

Comparing coefficients: 

𝐴 = 1, 𝐵 = 4 

∴ 4𝑥3 + 12𝑥2 − 15𝑥 + 4 = (2𝑥 − 1)2(𝑥 + 4)

𝑥 =
1

2
 , 𝑥 =

1

2
, 𝑥 = −4

Self-Evaluation exercise 

1. When (𝑥4 + 𝑘𝑥2 + 4𝑥 + 2) is divided by (𝑥 + 3), the

remainder is 8. Find the value of 𝑘.

[Ans: −7] 

2. If 𝑓(𝑥) denotes the polynomial 2𝑥3 − 3𝑥2 − 8𝑥 − 3,

find the remainders when 𝑓(𝑥) is divided by

(i) 𝑥 − 1

(ii) 𝑥 + 3

(iii) 2𝑥 + 1

[Ans: (i) −12 (ii) −60 (iii) 0] 
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(b) Given that (𝑥 + 3) is a factor of 𝑓(𝑥), find the

value of 𝑏

[Ans: 𝑎 = −20, 𝑏 = −6] 

24. 𝑓(𝑥) = 𝑥3 + (𝑝 + 1)𝑥2 − 18𝑥 + 𝑞, where 𝑝 and 𝑞 are

integers.

(a) Given that (𝑥 − 4) is a factor of 𝑓(𝑥), show that

16𝑝 + 𝑞 + 8 = 0

(b) Given that (𝑥 + 𝑝) is also a factor of 𝑓(𝑥), and that

𝑝 > 0, show that 𝑝2 + 18𝑝 + 𝑞 = 0

Hence find the value of 𝑝 and the corresponding value 

of 𝑞. Also find the third factor. 

[Ans: 𝑝 = 2, 𝑞 = −40; 𝑥 + 5] 

25. The polynomials 𝑥3 + 4𝑥2 − 2𝑥 + 1 and 𝑥3 + 3𝑥2 −

𝑥 + 7 leave the same remainder when divided by 𝑥 −

𝑝. Find the possible values of 𝑝

[Ans: 3, −2] 

26. Given that 𝑓(𝑥) = 4𝑥4 + 12𝑥3 − 5𝑥2 − 21𝑥 + 10,

find by inspection two solutions of the equation 𝑓(𝑥) =

0. Hence factorise 𝑓(𝑥) and solve the equation

completely.

[Ans: 𝑥 = 1, −2, 
1

2
, −

5

2
] 

27. Find the roots of the equation 𝑥3 − 6𝑥2 − 63𝑥 −

108 = 0 given that it has a repeated root.

[Ans: −3,  −3, 12] 

28. Given that 𝑃(𝑥) = 8𝑥3 − 12𝑥2 − 18𝑥 + 𝑘, find the

values of 𝑘 such that the equation 𝑃(𝑥) = 0 has a

repeated root. Give the roots of the equation in each

case.

[Ans: 𝑘 = −5: −
1

2
, −

1

2
, 

5

2
;  𝑘 = 27: 

3

2
, −

3

2
] 

29. Find all real values of 𝑘 for which the equation

𝑥3 − 3𝑘𝑥2 + 2𝑘 + 2 = 0 has repeated roots and, for

each such 𝑘, solve the equation completely.

[Ans: 𝑘 = −1: −3, 0, 0; 𝑘 = 1: −1, 2, 2] 

30. Given that 𝑓(𝑥) = 2𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 − 8𝑥 + 𝑐, find

the real coefficients 𝑎, 𝑏 and 𝑐 when the following

conditions are satisfied:

(a) (𝑥 + 2) is a factor of 𝑓(𝑥) and 𝑓′(𝑥)

(b) when 𝑓(𝑥) is divided by (𝑥 − 2) the remainder is

16

Factorise 𝑓(𝑥) completely

[Ans: 𝑎 = 3, 𝑏 = −9, 𝑐 = 12; (𝑥 + 2)2(𝑥 − 1)(2𝑥 − 3)]

31. What is the value of 𝑎 if 2𝑥2 − 𝑥 − 6, 3𝑥2 − 8𝑥 + 4

and 𝑎𝑥3 − 10𝑥 − 4 have a common factor?

[Ans: 3] 

32. Given that (𝑥 − 1) and (𝑥 − 2) are factors of 6𝑥4 +

𝑎𝑥3 − 17𝑥2 + 𝑏𝑥 − 4, find 𝑎 and 𝑏, and any remaining

factors.

[Ans: 𝑎 = −9, 𝑏 = 24; (6𝑥2 + 9𝑥 − 2)]

33. Given that 𝑥3 = 𝑎(𝑥 + 1)3 + 𝑏(𝑥 + 1)2 + 𝑐(𝑥 + 1) +

𝑑, find the values of 𝑎, 𝑏, 𝑐 and 𝑑.

[Ans: 𝑎 = 1, 𝑏 = −3, 𝑐 = 3, 𝑑 = −1] 

34. A cubic polynomial gives remainders (5𝑥 + 4) and

(12𝑥 − 1) when divided by 𝑥2 − 𝑥 + 2 and

(𝑥2 + 𝑥 − 1) respectively. Find the polynomial.

[Ans: 𝑥3 − 2𝑥2 + 8𝑥 + 2]

35. A cubic polynomial gives remainders (13𝑥 − 2) and

(−1 − 7𝑥) when divided by 𝑥2 − 𝑥 − 3 and 𝑥2 − 2𝑥 +

5 respectively. Find the polynomial.

[Ans: 3𝑥3 − 5𝑥2 + 6𝑥 + 4]

36. Given that 𝑃(𝑥) = 2𝑥4 + 𝑚𝑥3 − 𝑛𝑥2 − 7𝑥 + 𝑘 is

divisible by (𝑥 − 2) and (𝑥 + 3) and leaves a

remainder of −18 when divided by (𝑥 + 1)

(a) Solve for 𝑚, 𝑛 and 𝑘

(b) Hence, find all linear factors of 𝑃(𝑥)

[Ans: (a) 𝑚 =
18

5
, 𝑛 =

39

5
, 𝑘 =

78

5
 (b) (𝑥 − 2), (𝑥 + 3)]

37. 𝑃(𝑥) = 𝑥3 + 𝑚𝑥2 + 𝑛𝑥 + 𝑘 is divisible by 𝑥2 − 4 and

leaves a remainder of 30 when divided by (𝑥 − 3).

Solve for 𝑚, 𝑛 and 𝑘 and hence fully factorise 𝑃(𝑥) into

its three linear factors.

[Ans: 𝑚 = 3, 𝑛 = −4, 𝑘 = −12; (𝑥 − 2)(𝑥 + 2)(𝑥 + 3)] 

38. If the polynomial 𝑃(𝑥) = 𝑥2 + 𝑎𝑥 + 1 is a factor of

𝑇(𝑥) = 2𝑥3 − 16𝑥 + 𝑏, find the values of 𝑎 and 𝑏.

[Ans: 𝑎 = 3, 𝑏 = −6; 𝑎 = −3, 𝑏 = 6] 

39. When a polynomial, 𝑃(𝑥), is divided by 𝑥 − 𝛼, it leaves

a remainder of 𝛼3and when it is divided by 𝑥 − 𝛽 it

leaves a remainder of 𝛽3. Find the remainder when

𝑃(𝑥) is divided by (𝑥 − 𝛼)(𝑥 − 𝛽)

[Ans: (𝛼2 + 𝛼𝛽 + 𝛽2)𝑥 − 𝛼𝛽(𝛼 + 𝛽)]

40. (a) Prove that if 𝑥3 + 𝑚𝑥 + 𝑛 is divisible by (𝑥 − 𝑘)2,

then (
𝑚

3
)

3

+ (
𝑛

2
)

2

= 0 

(b) Prove that if 𝑥3 + 𝑚𝑥 + 𝑛 and 3𝑥2 + 𝑚 have a

common factor (𝑥 − 𝑘) then 4𝑚3 + 27𝑛2 = 0

41. Prove that 𝑃(𝑥) = 𝑥𝑛 − 𝑎𝑛 is divisible by (𝑥 − 𝑎) for

all integer values of 𝑛
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Rational expression 

An expression of the form 
𝑃(𝑥)

Q(𝑥)
 where 𝑃(𝑥) and 𝑄(𝑥) ≠ 0 

are polynomials in 𝑥 is called a rational expression. 

The expressions 
5𝑥−2

𝑥2+3𝑥+2
, 

3𝑥2+2𝑥−1

𝑥2+𝑥−2
, 

𝑥+1

𝑥2−1
 are examples of 

rational expressions. 

A rational function which may be expressed as a sum of 

separate fractions is said to be resolved into its partial 

fractions. 

Consider the sum of 
7

𝑥−2
 and 

5

𝑥−1
, we simplify it as follows: 

7

𝑥−2
+

5

𝑥−1
=

7(𝑥−1)+5(𝑥−2)

(𝑥−2)(𝑥−1)
=

7𝑥−7+5𝑥−10

(𝑥−2)(𝑥−1)
=

12𝑥−17

(𝑥−2)(𝑥−1)

Conversely the process of writing the given fraction 
12𝑥−17

(𝑥−2)(𝑥−1)
as 

7

𝑥−2
+

5

𝑥−1
is known as splitting into partial 

fractions or expressing as partial fractions. 

Note:  

Expressing an algebraic fraction in terms of its partial 

fractions is rarely of interest in itself; it is however often an 

important means to other ends. 

Two common uses of partial fractions include the binomial 

series and integration, which are discussed in the respective 

chapters of this book. 

Proper fraction  

A proper fraction is one in which the degree of the numerator 

is less than the degree of the denominator. 

The expressions 
3𝑥+1

𝑥2+4𝑥+3
, 

7𝑥2+9

𝑥3+𝑥2−5
 are examples of proper 

fractions. 

Type 1: Linear factors, none of which is repeated  

If a linear factor 𝑎𝑥 + 𝑏 is a factor of the denominator 𝑞(𝑥), 

then the corresponding to this factor, associate a simple 

fraction 
𝐴

𝑎𝑥+𝑏
, where 𝐴 is a constant (𝐴 ≠ 0) 

i.e. when the factors of the denominator of the given fraction

are all linear none of which is repeated, we write the partial

fractions as follows:

𝑥 + 3

(𝑥 + 5)(2𝑥 + 1)
≡

𝐴

𝑥 + 5
+

𝐵

2𝑥 + 1

where 𝐴 and 𝐵 are constants to be determined 

Example 1 

Resolve into partial fractions 
3𝑥 + 7

𝑥2 − 3𝑥 + 2

 

 

Solution 

The denominator 𝑥2 − 3𝑥 + 2 can be factorised into linear

factors.  

𝑥2 − 3𝑥 + 2 = 𝑥2 − 𝑥 − 2𝑥 + 2 = 𝑥(𝑥 − 1) − 2(𝑥 − 1)

= (𝑥 − 1)(𝑥 − 2) 

Let
3𝑥 + 7

(𝑥 − 1)(𝑥 − 2)
≡

𝐴

𝑥 − 1
+

𝐵

𝑥 − 2

=
𝐴(𝑥 − 2) + 𝐵(𝑥 − 1)

(𝑥 − 1)(𝑥 − 2)

Equating the numerators 

3𝑥 + 7 = 𝐴(𝑥 − 2) + 𝐵(𝑥 − 1) 

3𝑥 + 7 = 𝐴𝑥 − 2𝐴 + 𝐵𝑥 − 𝐵 

3𝑥 + 7 = (𝐴 + 𝐵)𝑥 − 2𝐴 − 𝐵 

Equating the coefficients of like powers of 𝑥, we get 

𝐴 + 𝐵 = 3 …. (i) 

−2𝐴 − 𝐵 = 7 …(ii)

Adding (i) and (ii); 

𝐴 = −10 

Substituting for 𝐴 in (i); 

−10 + 𝐵 = 3

𝐵 = 13

∴
3𝑥 + 7

𝑥2 − 3𝑥 + 2
≡

−10

𝑥 − 1
+

13

𝑥 − 2
≡

13

𝑥 − 2
−

10

𝑥 − 1
Note: The constants 𝐴 and 𝐵 can also be found by 

successively giving suitable values for 𝑥. 

To find 𝐴, put 𝑥 = 1 

3(1) + 7 = 𝐴(1 − 2) + 𝐵(0) 

10 = 𝐴(−1) 

𝐴 = −10 

To find 𝐵, put 𝑥 = 2, 

3(2) + 7 = 𝐴(0) + 𝐵(2 − 1) 

𝐵 = 13 

which yields the same result as before 

Example 2 

Express into partial fractions
𝑥 + 4

(𝑥2 − 4)(𝑥 + 1)

Solution 

The denominator (𝑥2 − 4)(𝑥 + 1) can be further factored

into linear factors i.e. 

(𝑥2 − 4)(𝑥 + 1) = (𝑥 + 2)(𝑥 − 2)(𝑥 + 1)

Let 
𝑥 + 4

(𝑥2 − 4)(𝑥 + 1)
≡

𝐴

𝑥 + 2
+

𝐵

𝑥 − 2
+

𝐶

𝑥 + 1

  =
𝐴(𝑥−2)(𝑥+1)+𝐵(𝑥+2)(𝑥+1)+𝐶(𝑥+2)(𝑥−2)

(𝑥+2)(𝑥−2)(𝑥+1)

𝑥 + 4 = 𝐴(𝑥 − 2)(𝑥 + 1) + 𝐵(𝑥 + 2)(𝑥 + 1) 

+𝐶(𝑥 + 2)(𝑥 − 2)

To find 𝐴, put 𝑥 = −2, 

Chapter 

5 
Partial Fractions 
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−2 + 4 = 𝐴(−4)(−1) + 𝐵(0) + 𝐶(0)

2 = 4𝐴 

𝐴 =
1

2
To find 𝐵, put 𝑥 = 2, 

2 + 4 = 𝐴(0) + 𝐵(4)(3) + 𝐶(0) 

6 = 12𝐵 

𝐵 =
1

2
 

To find 𝐶, put 𝑥 = −1, 

−1 + 4 = 𝐴(0) + 𝐵(0) + 𝐶(1)(−3)

3 = −3𝐶 

𝐶 = −1 

𝑥 + 4

(𝑥2 − 4)(𝑥 + 1)
≡

1/2

(𝑥 + 2)
+

1/2

(𝑥 − 2)
+

−1

(𝑥 + 1)
𝑥 + 4

(𝑥2 − 4)(𝑥 + 1)
≡

1

2(𝑥 + 2)
+

1

2(𝑥 − 2)
−

1

𝑥 + 1

Example 3 

Express
𝑥 + 1

2𝑥3 − 5𝑥2 + 2𝑥
 in partial fractions 

Solution 

2𝑥3 − 5𝑥2 + 2𝑥 = 𝑥(2𝑥2 − 5𝑥 + 2) = 𝑥(𝑥 − 2)(2𝑥 − 1)

Let 
𝑥 + 1

2𝑥3 − 5𝑥2 + 2𝑥
≡

𝐴

𝑥
+

𝐵

𝑥 − 2
+

𝐶

2𝑥 − 1

≡
𝐴(𝑥 − 2)(2𝑥 − 1) + 𝐵𝑥(2𝑥 − 1) + 𝐶𝑥(𝑥 − 2)

𝑥(𝑥 − 2)(2𝑥 − 1)

𝑥 + 1 ≡ 𝐴(𝑥 − 2)(2𝑥 − 1) + 𝐵𝑥(2𝑥 − 1) + 𝐶𝑥(𝑥 − 2) 

Put 𝑥 = 0; 

1 = 2𝐴 

𝐴 =
1

2

Put 𝑥 = 2; 

3 = 6𝐵 

𝐵 =
1

2

Put 𝑥 =
1

2
; 

3

2
= 𝐶 ×

1

2
× (−

3

2
) 

𝐶 = −2 

∴
𝑥 + 1

2𝑥3 − 5𝑥2 + 2𝑥
≡

1

2𝑥
+

1

2(𝑥 − 2)
−

2

2𝑥 − 1

Example 4 

Express 
9𝑥 − 72

𝑥3 − 3𝑥2 − 18𝑥 + 40
 in partial fractions 

Solution 

We need to first factorise the expression using the factor 

theorem. 

Let 𝑓(𝑥) = 𝑥3 − 3𝑥2 − 18𝑥 + 40

Trying the factors of 40 as values of 𝑥 

𝑓(1) = 1 − 3 − 18 + 40 ≠ 0 ⇒ (𝑥 − 1) is not a factor 

𝑓(2) = 8 − 12 − 36 + 40 = 0 ⇒ (𝑥 − 2) is not a factor 

𝑥2 − 𝑥 − 20 

𝑥 − 2     𝑥3 − 3𝑥2 − 18𝑥 + 40

− 𝑥3 − 2𝑥2

−𝑥2 − 18𝑥 + 40

− −𝑥2 + 2𝑥

−20𝑥 + 40

− −20𝑥 + 40

     -     -  

𝑓(𝑥) = (𝑥 − 2)(𝑥2 − 𝑥 − 20)

= (𝑥 − 2)(𝑥2 + 4𝑥 − 5𝑥 − 20)

= (𝑥 − 2)[𝑥(𝑥 + 4) − 5(𝑥 + 4)] 

= (𝑥 − 2)(𝑥 − 5)(𝑥 + 4) 

Hence 𝑥3 − 3𝑥2 − 18𝑥 + 40 = (𝑥 − 2)(𝑥 − 5)(𝑥 + 4)

Let 
9𝑥 − 72

(𝑥 − 2)(𝑥 − 5)(𝑥 + 4)
≡

𝐴

𝑥 − 2
+

𝐵

𝑥 − 5
+

𝐶

𝑥 + 4
9𝑥−72

(𝑥−2)(𝑥−5)(𝑥+4)
≡

𝐴(𝑥−5)(𝑥+4)+𝐵(𝑥−2)(𝑥+4)+𝐶(𝑥−2)(𝑥−5)

(𝑥−2)(𝑥−5)(𝑥+4)

9𝑥 − 72 ≡ 𝐴(𝑥 − 5)(𝑥 + 4) + 𝐵(𝑥 − 2)(𝑥 + 4) 

+𝐶(𝑥 − 2)(𝑥 − 5)

Put 𝑥 = 2; 

18 − 72 = 𝐴(−3)(6) 

−54 = −18𝐴

𝐴 = 3

Put 𝑥 = −4; 

−36 − 72 = 𝐶(−6)(−9)

−108 = 54𝐶

𝐶 = −2

Put 𝑥 = 5; 

45 − 72 = 𝐵(3)(9) 

−27 = 27𝐵

𝐵 = −1
9𝑥 − 72

𝑥3 − 3𝑥2 − 18𝑥 + 40
≡

3

𝑥 − 2
−

1

𝑥 − 5
−

2

𝑥 + 4

Type 2: Linear factors, some of which are repeated 

If a linear factor 𝑎𝑥 + 𝑏 occurs 𝑛 times as a factor of the 

denominator of the given fraction, then the corresponding to 

these factors associate the sum of 𝑛 simple fractions, 

𝐴1

𝑎𝑥 + 𝑏
+

𝐴2

(𝑎𝑥 + 𝑏)2
+

𝐴3

(𝑎𝑥 + 𝑏)3
+ ⋯ +

𝐴𝑛

(𝑎𝑥 + 𝑏)𝑛

where 𝐴1, 𝐴2, 𝐴3, …, 𝐴𝑛 are constants

Example 5 

Resolve into partial fractions
9

(𝑥 − 1)(𝑥 + 2)2

Solution 

Let 
9

(𝑥 − 1)(𝑥 + 2)2
≡

𝐴

𝑥 − 1
+

𝐵

𝑥 + 2
+

𝐶

(𝑥 + 2)2

=
𝐴(𝑥 + 2)2 + 𝐵(𝑥 − 1)(𝑥 + 2) + 𝐶(𝑥 − 1)

(𝑥 − 1)(𝑥 + 2)2
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Improper fractions 

An improper fraction is one in which the degree of the 

numerator is greater than or equal the degree of the 

denominator. i.e. the degree of 𝑃(𝑥) ≥ the degree of 𝑄(𝑥) 

If the rational function is an improper fraction  

(a) Divide to obtain a quotient and a proper fraction

(b) Resolve the proper fraction into partial fractions as

before.

Example 11 

Resolve into partial fractions
𝑥2 + 𝑥 + 1

𝑥2 − 5𝑥 + 6
Solution 

Here the degree of the numerator is the same as the degree 

of the denominator 

 1 

𝑥2 − 5𝑥 + 6     𝑥2 +   𝑥 +  1

− 𝑥2 − 5𝑥 + 6

     6𝑥 − 5 

𝑥2 + 𝑥 + 1

𝑥2 − 5𝑥 + 6
= 1 +

6𝑥 − 5

𝑥2 − 5𝑥 + 6
𝑥2 − 5𝑥 + 6 = 𝑥2 − 3𝑥 − 2𝑥 + 6 = (𝑥 − 3)(𝑥 − 2)

Let 
6𝑥 − 5

𝑥2 − 5𝑥 + 6
≡

𝐴

𝑥 − 2
+

𝐵

𝑥 − 3
≡

𝐴(𝑥 − 2) + 𝐵(𝑥 − 3)

(𝑥 − 2)(𝑥 − 3)

6𝑥 − 5 ≡ 𝐴(𝑥 − 3) + 𝐵(𝑥 − 2) 

Put 𝑥 = 2, 

12 − 5 = −𝐴 

𝐴 = −7 

Put 𝑥 = 3, 

18 − 5 = 𝐵 

𝐵 = 13 

6𝑥 − 5

𝑥2 − 5𝑥 + 6
≡ −

7

𝑥 − 2
+

13

𝑥 − 3

∴
𝑥2 + 𝑥 + 1

𝑥2 − 5𝑥 + 6
= 1 −

7

𝑥 − 2
+

13

𝑥 − 3

Example 12 

Resolve into partial fractions 

4𝑥3 + 16𝑥2 − 15𝑥 + 13

(𝑥 + 2)(2𝑥 − 1)2

Solution 

Since the degree of the numerator is equal to the degree of 

the denominator, the denominator is divided into the 

numerator 

(𝑥 + 2)(2𝑥 − 1)2 = (𝑥 + 2)(4𝑥2 − 4𝑥 + 1)

= 4𝑥3 + 4𝑥2 − 7𝑥 + 2

 1 

4𝑥3 + 4𝑥2 − 7𝑥 + 2     4𝑥3 + 16𝑥2 − 15𝑥 + 13

− 4𝑥3 +   4𝑥2 −  7𝑥 +   2

12𝑥2 − 8𝑥 + 11

4𝑥3 + 16𝑥2 − 15𝑥 + 13

(𝑥 + 2)(2𝑥 − 1)2
≡ 1 +

12𝑥2 − 8𝑥 + 11

(𝑥 + 2)(2𝑥 − 1)2

Let 
12𝑥2 − 8𝑥 + 11

(𝑥 + 2)(2𝑥 − 1)2
≡

𝐴

(𝑥 + 2)
+

𝐵

(2𝑥 − 1)
+

𝐶

(2𝑥 − 1)2

12𝑥2 − 8𝑥 + 11 ≡ 𝐴(2𝑥 − 1)2 + 𝐵(𝑥 + 2)(2𝑥 − 1) 

+𝐶(𝑥 + 2)

Put 𝑥 = −2, 

48 + 16 + 11 = 25𝐴 

75 = 25𝐴 

𝐴 = 3 

Put 𝑥 = −
1

2
, 

3 − 4 + 11 =
5

2
𝐶 

20 = 5𝐶 

𝐶 = 4 

Put 𝑥 = 0, 

11 = 𝐴 − 2𝐵 + 2𝐶 

11 = 3 − 2𝐵 + 8 

𝐵 = 0 

12𝑥2 − 8𝑥 + 11

(𝑥 + 2)(2𝑥 − 1)2
≡

3

(𝑥 + 2)
+

4

(2𝑥 − 1)2

∴
4𝑥3 + 16𝑥2 − 15𝑥 + 13

(𝑥 + 2)(2𝑥 − 1)2
≡ 1 +

3

(𝑥 + 2)
+

4

(2𝑥 − 1)2

Example 13 

Express 
𝑥3 + 2𝑥2 − 𝑥 + 3

(𝑥 + 2)(𝑥 − 3)
 in partial fractions 

Solution 

       𝑥 + 3 

𝑥2 − 𝑥 − 6     𝑥3 + 2𝑥2 − 𝑥 + 3

− 𝑥3 − 𝑥2 − 6𝑥

3𝑥2 + 5𝑥 + 3

− 3𝑥2 − 3𝑥 − 18

 8𝑥 + 21   

𝑥3 + 2𝑥2 − 𝑥 + 3

(𝑥 + 2)(𝑥 − 3)
= 𝑥 + 3 +

8𝑥 + 21

(𝑥 + 2)(𝑥 − 3)

Let 
8𝑥 + 21

(𝑥 + 2)(𝑥 − 3)
≡

𝐴

𝑥 + 2
+

𝐵

𝑥 − 3

≡
𝐴(𝑥 − 3) + 𝐵(𝑥 + 2)

(𝑥 + 2)(𝑥 − 3)

8𝑥 + 21 ≡ 𝐴(𝑥 − 3) + 𝐵(𝑥 + 2) 

Put 𝑥 = 3: 

45 = 𝐵(5) 

𝐵 = 9 

Put 𝑥 = −2: 

5 = 𝐴(−5) 

𝐴 = −1 

∴
𝑥3 + 2𝑥2 − 𝑥 + 3

(𝑥 + 2)(𝑥 − 3)
≡ 𝑥 + 3 −

1

𝑥 + 2
+

9

𝑥 − 3
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Example 14 

Express
𝑥3 − 3𝑥2 + 1

𝑥2 − 𝑥 − 2
 in partial fractions 

Solution 

 𝑥 − 2 

𝑥2 − 𝑥 − 2     𝑥3 − 3𝑥2  + 1

− 𝑥3 − 𝑥2 − 2𝑥

−2𝑥2 + 2𝑥 + 1

− −2𝑥2 + 2𝑥 + 4

−3

𝑥3−3𝑥2+1

𝑥2−𝑥−2
= 𝑥 − 2 −

3

𝑥2−𝑥−2

𝑥2 − 𝑥 − 2 = 𝑥2 + 𝑥 − 2𝑥 − 2 = (𝑥 + 1)(𝑥 − 2)

Let
−3

(𝑥 + 1)(𝑥 − 2)
≡

𝐴

𝑥 + 1
+

𝐵

𝑥 − 2
≡ 𝐴(𝑥 − 2) + 𝐵(𝑥 + 1) 

−3 ≡ 𝐴(𝑥 − 2) + 𝐵(𝑥 + 1)

Put 𝑥 = −1; 

−3 = −3𝐴

𝐴 = 1

Put 𝑥 = 2; 

−3 = 3𝐵

𝐵 = −1

∴
𝑥3 − 3𝑥2 + 1

𝑥2 − 𝑥 − 2
≡ 𝑥 − 2 +

1

𝑥 + 1
−

1

𝑥 − 2

Self-Evaluation exercise 

Express the following into partial fractions 

1. 
3𝑥−10

(𝑥−2)(𝑥−4)
      [Ans: 

2

𝑥−2
+

1

𝑥−4
] 

2. 
𝑥

𝑥2−1
 [Ans: 

1

2(𝑥−1)
+

1

2(𝑥+1)
 ] 

3. 
5

6−𝑥−𝑥2      [Ans: 
1

3+𝑥
+

1

2−𝑥
 ] 

4. 
5𝑥2−12𝑥−5

(𝑥2−1)(𝑥−2)
  [Ans: 

6

𝑥−1
+

2

𝑥+1
−

3

𝑥−2
] 

5. 
17𝑥+11

(𝑥−2)(𝑥+3)(𝑥+1)
  [Ans: 

3

𝑥−2
−

4

𝑥+3
+

1

𝑥+1
] 

6. 
3𝑥+1

(𝑥+1)(𝑥2+1)
  [Ans: 

𝑥+2

𝑥2+1
−

1

𝑥+1
] 

7. 
𝑥+2

(2𝑥−1)(𝑥2+1)
    [Ans: 

2

2𝑥−1
−

𝑥

𝑥2+1
] 

8. 
3𝑥+1

𝑥(2𝑥2+1)
 [Ans: 

1

𝑥
+

3−2𝑥

2𝑥2+1
] 

9. 
𝑥2−10

(𝑥2+3)(2𝑥−1)
     [Ans: 

2𝑥+1

𝑥2+3
−

3

2𝑥−1
] 

10. 
𝑥2−13

(𝑥−1)2(𝑥+2)
 [Ans: 

2

𝑥−1
−

4

(𝑥−1)2
−

1

𝑥+2
] 

11. 
3𝑥2+7𝑥+1

𝑥3+2𝑥2+𝑥
 [Ans: 

1

𝑥
+

2

𝑥+1
+

3

(𝑥+1)2] 

12. 
2𝑥2−3𝑥−2

𝑥3−𝑥2 [Ans: 
5

𝑥
+

2

𝑥2 −
3

𝑥−1
] 

13. 
𝑥2+23

(𝑥+1)3(𝑥−2)
  [Ans: 

1

𝑥−2
−

1

𝑥+1
−

2

(𝑥+1)2 −
8

(𝑥+1)3] 

14. 
2𝑥2−5𝑥−5

(2𝑥2+5)(4𝑥−5)
 [Ans: 

𝑥

2𝑥2+5
−

1

4𝑥−5
] 

15. 
𝑥+2

(𝑥−2)(𝑥2−𝑥+2)
  [Ans: 

1

𝑥−2
−

𝑥

𝑥2−𝑥+2
] 

16. 
𝑥2+1

𝑥2−1
[Ans: 1 +

1

𝑥−1
−

1

𝑥+1
] 

17. 
𝑥2

𝑥2−𝑥−2
[Ans: 1 +

4

3(𝑥−2)
−

1

3(𝑥+1)
] 

18. 
𝑥(𝑥−2)

(3𝑥−1)(𝑥−1)
   [Ans: 

1

3
+

5

6(3𝑥−1)
−

1

2(𝑥−1)
] 

19. 
𝑥3

𝑥2−4
[Ans: 𝑥 +

2

𝑥−2
+

2

𝑥+2
] 

20. 
𝑥2−𝑥

(𝑥2+3)(𝑥2+2)
  [Ans: 

𝑥+3

𝑥2+3
−

𝑥+2

𝑥2+2
]   

21. 
3𝑥3+2𝑥2+2𝑥−3

(𝑥2+2)(𝑥+1)2  [Ans: 
2𝑥−1

𝑥2+2
+

1

𝑥+1
−

2

(𝑥+1)2] 

22. 
2𝑥4−2𝑥3+𝑥

(2𝑥−1)2(𝑥−2)
[Ans: 

𝑥

2
+ 1 −

1

4(2𝑥−1)
−

1

4(2𝑥−1)2 +
2

𝑥−2
 ] 

23. 
𝑥6−𝑥5−4𝑥2+𝑥

𝑥4+3𝑥2+2
[Ans: 𝑥2 − 𝑥 − 3 +

3

𝑥2+1
+

3𝑥

𝑥2+2
] 

24. 
7𝑥−1

6−5𝑥+𝑥2  [Ans: 
20

𝑥−3
−

13

𝑥−2
] 

25. 
7𝑥2−25𝑥+6

(𝑥2−2𝑥−1)(3𝑥−2)
  [Ans: 

𝑥−5

𝑥2−2𝑥−1
+

4

3𝑥−2
] 

26. 
𝑥2+𝑥+1

𝑥2+2𝑥+1
[Ans: 1 −

1

𝑥+1
+

1

(𝑥+1)2] 

27. Express
𝑥2−𝑥−1

𝑥3−8
 into partial fractions 

[Ans: 
1

12(𝑥−2)
+

11𝑥+8

12(𝑥2+2𝑥+4)
] 

28. Express
5𝑥3+2𝑥2+5𝑥

𝑥4−1
 in partial fractions 

[Ans: 
3

𝑥−1
+

2

𝑥+1
+

1

𝑥2+1
] 

29. Express in partial fractions
1+𝑥2

(1+𝑥)(1+𝑥3)

[Ans: 
2

3(1+𝑥)2
+

1

3(1−𝑥+𝑥2)
] 

30. Use the remainder theorem to find the three factors of

𝑥4 + 3𝑥2 − 4 and hence resolve

2𝑥3 − 𝑥2 − 7𝑥 − 14

𝑥4 + 3𝑥2 − 4
       into partial fractions 

[Ans: 
1

𝑥+1
−

2

𝑥−1
+

3𝑥+2

𝑥2+4
] 
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• It can be observed that the coefficients of the various

terms of the expansion (𝑎 + 𝑏)𝑛 for 𝑛 = 1, 2, 3, ….

form a pattern.

• The first and last numbers are 1 each. The other

numbers are obtained by adding the left and right

numbers in the previous row.

• 1,  1 + 4 = 5, 4 + 6 = 10, 6 + 4 = 10, 4 + 1 = 5,  1

• Reading from either end of each row, the coefficients

are the same

• There are (𝑛 + 1) terms

• Each term is of degree 𝑛

• The powers of 𝑎 are descending while the powers of 𝑏

are ascending

Example 1 

Expand (2 + 𝑥)5 in powers of 𝑥

Solution 

Using the coefficients from the Pascal’s triangle 

(2 + 𝑥) = 25 + 5 . 24 .  𝑥 + 10 .  23𝑥2 + 10 .  22𝑥3

+5 . 2𝑥4 + 𝑥5

= 32 + 80𝑥 + 80𝑥2 + 40𝑥3 + 10𝑥4 + 𝑥5

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2 

Expand (2 + 𝑥)4 and use your expansion to find

(a) (2.1)4

(b) (1.9)4

Solution 

(2 + 𝑥)4 = 24 + 4(2)3𝑥 + 6(2)2𝑥2 + 4(2)𝑥3 + 𝑥4

= 16 + 32𝑥 + 24𝑥2 + 8𝑥3 + 𝑥4

(a) (2.1)4 = (2 + 0.1)4 = 16 + 32(0.1) + 24(0.1)2 +

8(0.1)3 + (0.1)4

= 16 + 3.2 + 0.24 + 0.008 + 0.0001 

∴ (2.1)4 = 19.4481

(b) (1.9)4 = (2 − 0.1)4

= 16 + 32(−0.1) + 24(−0.1)2 + 8(−0.1)3 + (−0.1)4

     = 16 − 3.2 + 0.24 − 0.008 + 0.0001 

= 13.0321 

∴ (1.9)4 = 13.0321

Example 3 

Write down the expansion of (1 +
1

4
𝑥)

4

. Taking the first 

three terms of the expansion, put 𝑥 = 0.1, and find the value 

of (1.025)4, correct to three decimal places.

Chapter 

6 
Binomial Theorem 

Binomial 

A binomial is an algebraic expression of two terms (bi) which are connected by the operation ‘+’ or ‘−’. For example, 

𝑥 + 2𝑦, 𝑥 − 𝑦, 𝑥3 + 4𝑦, 𝑎 + 𝑏, etc. are binomials.

The theorem about the expansion of a power of two terms is called the binomial theorem. 

Pascal’s triangle: 

Let us consider the expansion of the 

(𝑎 + 𝑏)1 = 𝑎 + 𝑏

(𝑎 + 𝑏)2 = (𝑎 + 𝑏)(𝑎 + 𝑏) = 𝑎2 + 2𝑎𝑏 + 𝑏2

(𝑎 + 𝑏)3 = (𝑎 + 𝑏)2(𝑎 + 𝑏) = (𝑎2 + 2𝑎𝑏 + 𝑏2)(𝑎 + 𝑏) = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3

(𝑎 + 𝑏)4 = (𝑎 + 𝑏)3(𝑎 + 𝑏) = (𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3)(𝑎 + 𝑏) = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4

(𝑎 + 𝑏)5 = (𝑎 + 𝑏)4(𝑎 + 𝑏) = (𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4)(𝑎 + 𝑏)

= 𝑎5 + 5𝑎4𝑏 + 10𝑎3𝑏2 + 10𝑎2𝑏3 + 5𝑎𝑏4 + 𝑏4

The multiplications have been done and like terms collected (recall from multiplication of polynomials) 

If we extract the coefficients of 𝑎 and 𝑏, we obtain the Pascal’s triangle 

1  1 

1 2 1 

1 3 3 1 

1 4 6 4 1 

1 5 10 10 5 1 

Next line obtained by rule 1 6 15 20 15 6 1 

      .      .      .   .   .   .    .    .     .  .     .     .      .    .    .   .   .   .  .    .    .   .   .   . 
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Particular terms of the expansion  

By considering the general term of a binomial expansion, a 

term involving a particular power of 𝑥 may be found. 

Example 13 

Calculate the value of the term independent of 𝑥 in the 

expansion of (𝑥 −
3

𝑥2)
15

Solution 

The general term of the expansion (𝑎 + 𝑏)𝑛 is

𝑇𝑟+1 =  𝑛𝐶𝑟𝑎𝑛−𝑟𝑏𝑟

For the expansion (𝑥 −
3

𝑥2)
15

 

𝑇𝑟+1 =  15𝐶𝑟(𝑥)15−𝑟 (−
3

𝑥2
)

𝑟

=  15𝐶𝑟(𝑥)15−𝑟(−3)𝑟(𝑥−2𝑟)

𝑇𝑟+1 =  15𝐶𝑟𝑥15−3𝑟(−3)𝑟

For the term independent of 𝑥, the index/power of 𝑥 must be 

zero. 

15 − 3𝑟 = 0 

𝑟 = 5 

The 6th term is the term independent of 𝑥 and has the value 

𝑇6 =  15𝐶5(−3)5 = −729729

Example 14 

Find the coefficient of 𝑥5 in the expansion of (𝑥 +
1

𝑥3)
17

Solution 

𝑇𝑟+1 =  𝑛𝐶𝑟𝑎𝑛−𝑟𝑏𝑟 =  17𝐶𝑟(𝑥)17−𝑟 (
1

𝑥3
)

𝑟

=  17𝐶𝑟𝑥17−𝑟𝑥−3𝑟

=  17𝐶𝑟𝑥17−4𝑟

Let 𝑇𝑟+1 be the term containing 𝑥5

⇒ 17 − 4𝑟 = 5

4𝑟 = 12

𝑟 = 3 

𝑇𝑟+1 = 𝑇4 =  17𝐶3𝑥17−4(3) = 680𝑥5

∴ The coefficient of 𝑥5 = 680

Example 15 

Find the constant term in the expansion of (√𝑥 −
2

𝑥2)
10

Solution 

𝑇𝑟+1 =  10𝐶𝑟(√10)
10−𝑟

(−
2

𝑥2
)

𝑟

=  10𝐶𝑟𝑥
10−𝑟

2
(−2)𝑟

𝑥2𝑟

=  10𝐶𝑟(−2)𝑟𝑥
10−𝑟

2
−2𝑟

=  10𝐶𝑟(−2)𝑟𝑥
10−5𝑟

2

If 𝑇𝑟+1 is the constant term, then
10−5𝑟

2
= 0 

10 − 5𝑟 = 0 

𝑟 = 2 

The constant term is the 3rd term, 

𝑇3 =  10𝐶2(−2)2𝑥0 =
10 × 9

2 × 1
× 4 = 180 

Example 16 

Find, and simplify the middle term in the expansion, in 

ascending powers of 𝑥, of (3 − 5𝑥)8

Solution 

The middle term of (𝑎 + 𝑏𝑥)𝑛 is term containing 𝑥
𝑛

2  (𝑛 

even)  

The middle term is the 5th term and contains (−5𝑥)4

𝑇5 =  8𝐶4(3)4(−5𝑥)4 =
(8)(7)(6)(5)

(1)(2)(3)(4)
× 34 × (−5)4 × 𝑥4

= 3543750𝑥4

The binomial theorem for any rational index 

If 𝑛 is any rational value, positive or negative, and −1 <

𝑥 < 1, then the binomial theorem is  

(1 + 𝑥)𝑛 = 1 + 𝑛𝑥 +
𝑛(𝑛−1)

2!
𝑥2 +

𝑛(𝑛−1)(𝑛−2)

3!
𝑥3 + ⋯

Note: 

The RHS is an infinite series since 𝑛(𝑛 − 1)(𝑛 − 2) … will 

never become zero. The condition |𝑥| < 1 ensures that this 

series converges. 

The general term is 
𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑟+1)

𝑟!
𝑥𝑟

The first term must be 1. If it is not, it must be written in the 

form  

(𝑎 + 𝑥)𝑛 = 𝑎𝑛 (1 +
𝑥

𝑎
)

𝑛

 and the expansion can be applied 

provided that −1 <
𝑥

𝑎
< 1 

Example 17 

Find the first four terms of (1 − 2𝑥)−
3

2 and state the range

for which the expansion is valid. 

Solution 

(1 − 2𝑥)−
3

2 = 1 + (−
3

2
) (−2𝑥) +

(−
3

2
)(−

5

2
)

2!
(−2𝑥)2

+
(−

3

2
)(−

5

2
)(−

7

2
)

3!
(−2𝑥)3 + ⋯

= 1 + 3𝑥 −
15

2
𝑥2 +

35

2
𝑥3 + ⋯

This expansion is valid for −1 < −2𝑥 < 1 i.e. 
1

2
> 𝑥 > −

1

2

or −
1

2
< 𝑥 <

1

2

Example 18 

Obtain the first five terms in the expansion of (1 + 𝑥)
1

2. 

Hence evaluate √1.03 to 5 significant figures 

Solution 

(1 + 𝑥)
1

2 = 1 + (
1

2
) 𝑥 +

1

2
(

1

2
−1)

2!
𝑥2 +

1

2
(

1

2
−1)(

1

2
−2)

3!
𝑥3
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Putting 𝑥 = 0.2 =
1

5
, 

(1 +
3

125
)

1
3

= (
128

125
)

1
3

= (
27

53
)

1
3

=
(26 × 21)

1
3

5
=

4

5
√2
3

But from the series, 

(1 +
3

125
)

1
3

= 1 + (0.2)3 − (0.2)6 +
5

3
(0.2)9 + ⋯

      = 1 + 0.008 − 0.000064 + 0.000000853 

      = 1.0079369  

Thus, 

4

5
√2
3

= 1.0079369

√2
3

=
5

4
(1.0079369) = 1.25992 (5 d.p) 

Example 23 

Given that the first three terms in the expansion in ascending 

powers of 𝑥 of (1 − 8𝑥)
1

4 are the same as the first three terms 

in the expansion of 
(1+𝑎𝑥)

(1+𝑏𝑥)
, find the values of 𝑎 and 𝑏. Hence 

find an approximation to (0.6)
1

4 in the form 
𝑝

𝑞
, where 𝑝 and 

𝑞 are integers. 

Solution 

(1 − 8𝑥)
1

4 = 1 +
1

4
(−8𝑥) +

1

4
(

1

4
−1)

2!
(−8𝑥)2 + ⋯

= 1 − 2𝑥 −
3

32
(64𝑥2) + ⋯

= 1 − 2𝑥 − 6𝑥2 + ⋯
1+𝑎𝑥

1+𝑏𝑥
= (1 + 𝑎𝑥)(1 + 𝑏𝑥)−1

= (1 + 𝑎𝑥) [1 + (−1)𝑏𝑥 +
(−1)(−2)

2!
(𝑏𝑥)2 + ⋯ ]

= (1 + 𝑎𝑥)[1 − 𝑏𝑥 + 𝑏2𝑥2 + ⋯ ]

= 1 + 𝑎𝑥 − 𝑏𝑥 − 𝑎𝑏𝑥2 + 𝑏2𝑥2 + ⋯

= 1 + (𝑎 − 𝑏)𝑥 + (𝑏2 − 𝑎𝑏)𝑥2 + ⋯

Since the first three terms of the expansion are the same 

𝑎 − 𝑏 = −2  … (i) 

𝑏2 − 𝑎𝑏 = −6  … (ii)

𝑏(𝑏 − 𝑎) = −6 

𝑏(2) = −6 

𝑏 = −3 

From (i); 

𝑎 + 3 = −2 

𝑎 = −5 

Thus  (1 − 8𝑥)
1

4 ≈
1−5𝑥

1−3𝑥

(0.6)
1
4 = (1 − 0.4)

1
4 = (1 − 8(0.05))

1
4

Substituting 𝑥 = 0.05, we have 

(1 − 0.4)
1
4 ≈

1 − 5(0.05)

1 − 3(0.03)
=

0.75

0.85
=

15

17

Hence (0.6)
1

4 is approximately equal to 
15

17

Example 24 

Assuming that 𝑥 is small so that terms in 𝑥3 and higher

powers may be neglected, find a quadratic approximation to 

√(
1−𝑥

1+2𝑥
). 

Solution 

√(
1 − 𝑥

1 + 2𝑥
) = (1 − 𝑥)

1
2(1 + 2𝑥)−

1
2

(1 − 𝑥)
1
2 = 1 +

1

2
(−𝑥) +

1
2

(−
1
2

)

2!
(−𝑥)2 + ⋯

= 1 −
1

2
𝑥 −

1

8
𝑥2 + ⋯

(1 + 2𝑥)−
1
2 = 1 + (−

1

2
) (2𝑥) +

(−
1
2

) (−
3
2

)

2!
(2𝑥)2 + ⋯

= 1 − 𝑥 +
3

2
𝑥2 + ⋯

Neglecting terms in 𝑥3and higher powers,

√(
1 − 𝑥

1 + 2𝑥
) ≈ (1 −

1

2
𝑥 −

1

8
𝑥2) (1 − 𝑥 +

3

2
𝑥2)

≈ 1 − 𝑥 +
3

8
𝑥2 −

1

2
𝑥 +

1

2
𝑥2 −

1

8
𝑥2

Hence  √(
1−𝑥

1+2𝑥
) ≈ 1 −

3

2
𝑥 +

15

8
𝑥2

Example 25 

Express 
√1+𝑥

1−𝑥
 in ascending powers of 𝑥 up to and including 

the term in 𝑥3. By substituting 𝑥 =
1

4
, show that √5 ≈

4557

2048

Solution 

√1 + 𝑥

1 − 𝑥
= (1 + 𝑥)

1
2(1 − 𝑥)−1

(1 + 𝑥)
1

2 = 1 +
1

2
𝑥 +

1

2
(−

1

2
)

2!
𝑥2 +

1

2
(−

1

2
)(−

3

2
)

3!
+ ⋯

= 1 +
1

2
𝑥 −

1

8
𝑥2 +

1

16
𝑥3 + ⋯ for |𝑥| < 1

(1 + 𝑥)−1 = 1 + (−1)𝑥 +
(−1)(−2)

2!
𝑥2 +

(−1)(−2)(−3)

3!
+ ⋯

= 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯   for |𝑥| < 1
√1+𝑥

1−𝑥
= (1 +

1

2
𝑥 −

1

8
𝑥2 +

1

16
𝑥3) (1 + 𝑥 + 𝑥2 + 𝑥3)

= 1 + 𝑥 + 𝑥2 + 𝑥3 +
1

2
𝑥 +

1

2
𝑥2 +

1

2
𝑥3 −

1

8
𝑥2 −

1

8
𝑥3 +

1

16
𝑥3 + ⋯

= 1 +
3

2
𝑥 +

11

8
𝑥2 +

23

16
𝑥3 + ⋯

Hence 
√1 + 𝑥

1 − 𝑥
= 1 +

3

2
𝑥 +

11

8
𝑥2 +

23

16
𝑥3 

When 𝑥 =
1

4
, 

√5/4

3/4
= 1 +

3

2
(

1

4
) +

11

8
(

1

4
)

2

+
23

16
(

1

4
)

3

+ ⋯

2

3
√5 = 1 +

3

8
+

11

128
+

23

1024
+ ⋯

√5 ≈
3

2
(

1519

1024
) =

4557

2048
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Example 26 

Find the expansion of (1 − 𝑥 + 2𝑥2)
1

2 up to and including 

the term in 𝑥4.

Solution 

(1 − 𝑥 + 2𝑥2) must be expressed in the form (1 + 𝑧)4

where 𝑧 = −𝑥 + 2𝑥2.

[1 + (−𝑥 + 2𝑥2)]
1

2

= 1 +
1

2
(−𝑥 + 2𝑥) +

(
1

2
)(−

1

2
)

2!
(−𝑥 + 2𝑥2)2

 +
(−

1

2
)(−

1

2
)(−

3

2
)

3!
(−𝑥 + 2𝑥2)2

      +
(

1

2
)(−

1

2
)(−

3

2
)(−

5

2
)

4!
(−𝑥 + 2𝑥2)4 + ⋯

= 1 +
1

2
(−𝑥 + 2𝑥2) −

1

8
(−𝑥 + 2𝑥2)2

 +
1

16
(−𝑥 + 2𝑥2)3 −

5

128
(−𝑥 + 2𝑥2)4 + ⋯

Now, 

(−𝑥 + 2𝑥2) = 𝑥2 − 4𝑥3 + 4𝑥4

(−𝑥 + 2𝑥2)3 = (−𝑥)3 + 3(−𝑥)2(2𝑥2) + ⋯

= −𝑥3 + 6𝑥4 + ⋯

(−𝑥 + 2𝑥2)4 = (−𝑥)4 + ⋯

Therefore, 

(1 − 𝑥 + 2𝑥2)
1

2

= 1 −
1

2
𝑥 + 𝑥2 −

1

8
(𝑥2 − 4𝑥3 + 4𝑥4)

      +
1

16
(−𝑥3 + 6𝑥4 + ⋯ ) −

5

128
(𝑥4 + ⋯ )

= 1 −
1

2
𝑥 + (1 −

1

8
) 𝑥2 + (

1

2
−

1

16
) 𝑥3

+ (−
1

2
+

3

8
−

5

128
) 𝑥4 + ⋯

= 1 −
1

2
𝑥 +

7

8
𝑥2 +

7

16
𝑥3 −

21

128
𝑥4 + ⋯

Example 27 

Expand 
1

1+𝑥+2𝑥2 in ascending powers of 𝑥 up to and 

including the term in 𝑥3.

Solution 

Let 𝑦 = 𝑥 + 2𝑥2

1

1 + 𝑥 + 2𝑥2
=

1

1 + 𝑦
= (1 + 𝑦)−1

= 1 + (−1)𝑦 +
(−1)(−2)

2!
𝑦2 +

(−1)(−2)(−3)

3!
𝑦3 + ⋯

= 1 − 𝑦 + 𝑦2 − 𝑦3 + ⋯

𝑦2 = (𝑥 + 2𝑥2) = 𝑥2 + 4𝑥3 + 4𝑥4

𝑦3 = (𝑥 + 2𝑥2)3 = (𝑥)3 + 3(𝑥)2(2𝑥2) + ⋯ = 𝑥3 + ⋯

Substituting for 𝑦 gives; 
1

1+𝑥+2𝑥2 = 1 − 𝑥 − 2𝑥2 + 𝑥2 + 4𝑥3 − 𝑥3 + ⋯

= 1 − 𝑥 − 𝑥2 + 3𝑥3 + ⋯

Example 28 

Express 
3+𝑥

(2−𝑥)(1+2𝑥)
in partial fractions, and hence, or 

otherwise, obtain the first three non-zero terms in the 

expansion of this expression in ascending powers of 𝑥. 

State the range of values for which the expansion is valid. 

Solution 

Let 𝑓(𝑥) =
3+𝑥

(2−𝑥)(1+2𝑥)
≡

𝐴

2−𝑥
+

𝐵

1+2𝑥

≡
𝐴(1+2𝑥)+𝐵(2−𝑥)

(2−𝑥)(1+2𝑥)

Equating numerators: 

3 + 𝑥 ≡ 𝐴(1 + 2𝑥) + 𝐵(2 − 𝑥) 

Put 𝑥 = 2: 

5 = 5𝐴 

𝐴 = 1 

Putting 𝑥 = −
1

2
: 

5

2
=

5

2
𝐵 

𝐵 = 1 

Hence 
3+𝑥

(2−𝑥)(1+2𝑥)
≡

1

2−𝑥
+

1

1+2𝑥
 ≡

1

2(1−
𝑥

2
)

+
1

1+2𝑥

≡
1

2
(1 −

𝑥

2
)

−1

+ (1 + 2𝑥)−1

By the binomial expansion; 

1

2
(1 −

𝑥

2
)

−1

=
1

2
[1 + (−1) (−

𝑥

2
) +

(−1)(−2)

2!
(−

𝑥

2
)

2

 +
(−1)(−2)(−3)

3!
(−

𝑥

3
)

3

+ ⋯

=
1

2
[1 +

1

2
𝑥 +

1

4
𝑥2 +

1

8
𝑥3 + ⋯ ]

=
1

2
+

1

4
𝑥 +

1

8
𝑥2 +

1

16
𝑥3 + ⋯

valid for −1 <
𝑥

2
< 1 ⇒ −2 < 𝑥 < 2 

(1 + 2𝑥)−1 = 1 + (−1)(2𝑥) +
(−1)(−2)

2!
(2𝑥)2

+
(−1)(−2)(−3)

3!
(2𝑥)2 + ⋯

= 1 − 2𝑥 + 4𝑥2 − 8𝑥3 + ⋯

valid for −1 < 2𝑥 < 1 ⇒ −
1

2
< 𝑥 <

1

2

Adding gives: 

𝑓(𝑥) =
1

2
+

1

4
𝑥 +

1

8
𝑥2 +

1

16
𝑥3 + 1 − 2𝑥 + 4𝑥2 − 8𝑥3

=
3

2
−

7

4
𝑥 +

33

8
𝑥2 + ⋯

Validity is given when both conditions are valid – the 

smaller interval is taken. 

Series is valid for −
1

2
< 𝑥 <

1

2

Example 29 

Expand 
16𝑥2+8𝑥

(1+𝑥)(1+3𝑥)(1+5𝑥)
 in ascending powers of 𝑥, up to and 

including the term in 𝑥3.

Solution 

All factors of the denominator are linear – need numerators 

𝐴, 𝐵 and 𝐶.  

Let 𝑓(𝑥) =
16𝑥2+8𝑥

(1+𝑥)(1+3𝑥)(1+5𝑥)
≡

𝐴

1+𝑥
+

𝐵

1+3𝑥
+

𝐶

1+5𝑥

 ≡
𝐴(1+3𝑥)(1+5𝑥)+𝐵(1+𝑥)(1+5𝑥)+𝐶(1+𝑥)(1+3𝑥)

(1+𝑥)(1+3𝑥)(1+5𝑥)

Equating the numerators: 

16𝑥2 + 8𝑥 = 𝐴(1 + 3𝑥)(1 + 5𝑥) + 𝐵(1 + 𝑥)(1 + 5𝑥)

+𝐶(1 + 𝑥)(1 + 3𝑥)
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Put 𝑥 = −1:  16 − 8 = 𝐴(−2)(−4) 

8 = 8𝐴 

𝐴 = 1 

Put 𝑥 = −
1

3
: 

16

9
−

8

3
= 𝐵 (

2

3
) (−

2

3
) 

−8 = −4𝐵

𝐵 = 2

Put 𝑥 = −
1

5
: 

16

25
−

8

5
= 𝐶 (

4

5
) (

2

5
) 

−24 = 8𝐶

𝐶 = −3

𝑓(𝑥) =
1

1+𝑥
+

2

1+3𝑥
−

3

1+5𝑥

= (1 + 𝑥)−1 + 2(1 + 3𝑥)−1 − 3(1 + 5𝑥)−1

= (1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ )

+ 2(1 − 3𝑥 + (3𝑥)2 − (3𝑥)3 + ⋯ )

− 3(1 − (5𝑥) + (5𝑥)2 − (5𝑥)3 + ⋯ )

= 1 − 𝑥 + 𝑥2 − 𝑥3 + 2 − 6𝑥 + 18𝑥2 − 54𝑥3 − 3 + 15𝑥

− 75𝑥2 + 375𝑥3 + ⋯

𝑓(𝑥) = 8𝑥 − 56𝑥2 + 320𝑥3 + ⋯

Example 30 

Expand 𝑓(𝑥) =
4𝑥3−7𝑥+3

(2−𝑥)(1+𝑥2)
 in partial fractions. 

Expand 𝑓(𝑥) in ascending powers of 𝑥 as far as, and 

including, the term in 𝑥3.

For what values of 𝑥 is this expansion valid? 

Solution 

Look at the denominator: one factor is linear and needs a 

numerator 𝐴, one is quadratic and needs  numerator 𝐵𝑥 + 𝐶. 

𝑓(𝑥) =
4𝑥2−7𝑥+3

(2−𝑥)(1+𝑥2)
≡

𝐴

2−𝑥
+

𝐵𝑥+𝐶

1+𝑥2

≡
𝐴(1+𝑥2)+(𝐵𝑥+𝐶)(2−𝑥)

(2−𝑥)(1+𝑥2)

Equating the numerators: 

4𝑥2 − 7𝑥 + 3 ≡ 𝐴(1 + 𝑥2) + (𝐵𝑥 + 𝐶)(2 − 𝑥)

Equating the numerators:  

4𝑥2 − 7𝑥2 + 3 ≡ 𝐴(1 + 𝑥2) + (𝐵𝑥 + 𝐶)(2 − 𝑥)

Put 𝑥 = 2:  

16 − 14 + 3 = 𝐴(1 + 4) 

5𝐴 = 5 

𝐴 = 1 

Put 𝑥 = 0: 

3 = 𝐴(1) + 𝐶(2) 

3 = 1 + 2𝐶 

𝐶 = 1 

Put 𝑥 = 1: 

4 − 7 + 3 = 𝐴(1 + 1) + (𝐵 + 𝐶)(1) 

0 = 2𝐴 + 𝐵 + 𝐶 

0 = 2 + 𝐵 + 1 

𝐵 = −3 

Alternatively, compare coefficients of 𝑥2:

4 = 𝐴 − 𝐵 ⇒ 𝐵 = −3 

Hence 𝑓(𝑥) ≡
1

2 − 𝑥
+

1 − 3𝑥

(1 + 𝑥2)

1

2−𝑥
=

1

2(1−
𝑥

2
)

=
1

2
(1 −

𝑥

2
)

−1

=
1

2
(1 +

𝑥

2
+

𝑥2

4
+

𝑥3

8
+ ⋯ )

valid −2 < 𝑥 < 2 

1

1 + 𝑥2
= (1 + 𝑥2)−1 = 1 − 𝑥2 + 𝑥4 + ⋯

valid for −1 < 𝑥 < 1 

𝑓(𝑥) =
1

2
(1 +

𝑥

2
+

𝑥2

4
+

𝑥3

8
+ ⋯ )

+ (1 − 3𝑥)(1 − 𝑥2 + 𝑥4 + ⋯ )

=
1

2
+

𝑥

4
+

𝑥3

16
+ 1 − 3𝑥 − 𝑥2 + 3𝑥3 + ⋯

=
3

2
−

11

4
𝑥 −

7

8
𝑥2 +

49

16
𝑥3 + ⋯

The series is valid when −2 < 𝑥 < 2 and −1 < 𝑥 < 1. 

Taking the smaller range, −1 < 𝑥 < 1 

Example 31 

Given that g(𝑥) =
5−5𝑥

(1+𝑥2)(3−𝑥)
, express g(𝑥) in partial 

fractions. Hence or otherwise, show that the expansion of 

g(𝑥) as a series in ascending powers of 𝑥, up to and 

including the term in 𝑥4 is
5

3
−

10

9
𝑥 −

55

27
𝑥2 +

80

81
𝑥3 +

485

243
𝑥4

Solution 

Let
5 − 5𝑥

(1 + 𝑥2)(3 − 𝑥)
≡

𝐴𝑥 + 𝐵

1 + 𝑥2
+

𝐶

3 − 𝑥

≡
(𝐴𝑥 + 𝐵)(3 − 𝑥) + 𝐶(1 + 𝑥2)

(1 + 𝑥2)(3 − 𝑥)

Equating the numerators: 

5 − 5𝑥 ≡ (𝐴𝑥 + 𝐵)(3 − 𝑥) + 𝐶(1 + 𝑥2)

Putting 𝑥 = 3: 

5 − 15 = 𝐶(1 + 9) 

10𝐶 = −10 

𝐶 = −1 

Putting 𝑥 = 0: 

5 = 𝐵(3) + 𝐶 

5 = 3𝐵 − 1 

𝐵 = 2 

Putting 𝑥 = 1: 

0 = (𝐴 + 𝐵)(2) + 𝐶(2) 

0 = 2𝐴 + 4 − 2 

𝐴 = −1 

Hence 
5 − 5𝑥

(1 + 𝑥2)(3 − 𝑥)
=

2 − 𝑥

1 + 𝑥2
−

1

3 − 𝑥
2 − 𝑥

1 + 𝑥2
= (2 − 𝑥)(1 + 𝑥2)−1 = (2 − 𝑥)(1 − 𝑥2 + 𝑥4+. . )

= 2 − 2𝑥2 + 2𝑥4 − 𝑥 + 𝑥3+..

= 2 − 𝑥 − 2𝑥2 + 𝑥3 + 2𝑥4+..
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(1 + 𝑥)
3
2 − (1 +

1
2

𝑥)
3

√1 − 𝑥
≃ −

3

8
𝑥2

12. Obtain the expansion of
3−4𝑥

1−3𝑥+2𝑥2 in ascending powers 

of 𝑥 as far as the term in 𝑥4.

[Ans: 3 + 5𝑥 + 9𝑥2 + 17𝑥3 + 33𝑥4]

13. Write down the first four terms in the expansion in

ascending powers of 𝑥 of (1 + 4𝑥)
1

2, and simplify the 

coefficients. Hence by putting 𝑥 = −
1

100
, calculate √6 

correct to four decimal places. 

[Ans: 1 + 2𝑥 − 2𝑥2 + 4𝑥3; 2.4495]

14. If terms containing 𝑥4 and higher powers of 𝑥 can be

neglected, show that

2

(𝑥 + 1)(𝑥2 + 1)
≈ 2(1 − 𝑥) 

15. Show that

12

(3 + 𝑥)(1 − 𝑥)2
≈ 4 +

20

3
𝑥 +

88

9
𝑥2

provided that 𝑥 is small enough to neglect powers 

higher than 2 

16. In the questions below, assume that 𝑥 is so small that

terms in 𝑥3 and higher powers may be neglected. Hence

find a quadratic approximation to the given function,

stating the values of 𝑥 for which your answer is valid.

(a) √
8+𝑥

1−3𝑥

3

(b) 
(1+4𝑥)

1
4

(1+5𝑥)
1
5

(c) 
1

(1+𝑥)(3−𝑥)

(d) 
1

(1−𝑥)(1+2𝑥)2

(e) 
1

(1−2𝑥)√1−𝑥

[Ans: (a) 2 +
25

12
𝑥 +

1175

288
𝑥2, |𝑥| <

1

3
(b) 1 +

1

2
𝑥2,

|𝑥| <
1

5
 (c) 

1

3
−

2

9
𝑥 +

7

27
𝑥2, |𝑥| < 1 (d) 1 − 3𝑥 + 9𝑥2,

|𝑥| <
1

2
(e) 1 +

5

2
𝑥 +

43

8
𝑥2, |𝑥| <

1

2
]

17. Use partial fractions to find the first non-zero terms in

the expansion of the given function in ascending powers

of 𝑥. State the values of 𝑥 for which the expansion is

valid.

(a)
3−5𝑥

(1−3𝑥)(1+𝑥)

(b) 
4𝑥

(1−𝑥)(3+𝑥)

(c) 
1+𝑥

(1+𝑥2)(1−𝑥)

(d) 
4−𝑥

(1−𝑥)2(1+2𝑥)

(e) 
2

(1+𝑥)(1+𝑥2)

(f) 
8(2𝑥−1)

(𝑥−2)2(𝑥2+2)

[Ans: (a) 3 + 𝑥 + 11𝑥2 + 25𝑥3 + 83𝑥4, |𝑥| <
1

3
(b) 

4

3
𝑥 +

8

9
𝑥2 +

28

27
𝑥3 +

80

81
𝑥4 +

244

243
𝑥5, |𝑥| < 1 (c) 1 +

2𝑥 + 𝑥2 + 𝑥4 + 2𝑥5, |𝑥| < 1 (d) 4 − 𝑥 + 12𝑥2 −

11𝑥3 + 38𝑥4, |𝑥| <
1

2
 (e) 2 − 2𝑥 + 2𝑥4 − 2𝑥5 + 2𝑥8,

|𝑥| < 1 (f) −1 + 𝑥 +
7

4
𝑥2 +

1

2
𝑥3 −

3

16
𝑥4, |𝑥| < √2]

18. Expand (1 + 2𝑥)
1

4 in ascending powers of 𝑥 as far as 

the term in 𝑥3, stating the values of 𝑥 for which the

expansion is valid. Hence obtain approximate values of 

(a) √1.4
4

 (b) √1.08
4

. 

[Ans: 1 +
1

2
𝑥 −

3

8
𝑥2 +

7

16
𝑥3, |𝑥| <

1

2
; (a) 1.0885 (b) 

1.019428]

19. Given that the first three terms in the expansion in

ascending powers of 𝑥 of (1 + 𝑥 + 𝑥2)𝑛 are the same

as the first three terms in the expansion of (
1+𝑎𝑥

1−3𝑎𝑥
)

3

,

find the non-zero values of 𝑛 and 𝑎. Show that the

coefficients of 𝑥3 in the two expansions differ by 7.5.

[Ans: 𝑛 = 6, 𝑎 =
1

2
] 

20. Show that if 𝑥 is so small so that 𝑥4 and higher powers

can be neglected then 
1+2𝑥+3𝑥2

(1−𝑥)(1+𝑥2)
 can be expressed in 

the form 𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐷𝑥3 and find 𝐴, 𝐵, 𝐶, 𝐷.

[Ans: 1 + 3𝑥 + 5𝑥2 + 3𝑥3]

21. If 𝑥 is so small that 𝑥3 and higher powers of 𝑥 may be

neglected, find the values of 𝑎 and 𝑏 such that

√1 + 4𝑥 ≈
1 + 𝑎𝑥

1 + 𝑏𝑥

By letting 𝑥 = 0.04, find an approximation to √29 in 

the form 𝑝/𝑞 where 𝑝 and 𝑞 are integers. 

[Ans: 𝑎 = 3, 𝑏 = 1; 70/13] 

22. Expand √4 − 𝑥 as a series in ascending powers of 𝑥 up

to and including the terms in 𝑥2. If terms in 𝑥𝑛,𝑛 ≥ 3,

can be neglected, find the quadratic approximation to

√
4−𝑥

1−2𝑥
. State the range of values of 𝑥 for which this

approximation is valid.

[Ans: 2 −
1

4
𝑥 −

1

64
𝑥2; 2 +

7

4
𝑥 +

175

64
𝑥2, |𝑥| <

1

2
] 

23. Expand the function (2 − 𝑥)√1 + 2𝑥 + 2𝑥2 in

ascending powers of 𝑥 as far as the term in 𝑥3.

[Ans: 2 + 𝑥 −
3

2
𝑥3]

24. Show that 
1

√1−𝑥
− √1 + 𝑥 =

𝑥2

2
+

𝑥3

4
if 𝑥4 and higher

powers of 𝑥 may be neglected. 

25. If 𝑥4 and higher powers of 𝑥 can be neglected, show

that

√
1 − 𝑥

1 + 𝑥 + 𝑥2
= 1 − 𝑥 +

1

2
𝑥3
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A statement involving the symbols ‘>’, ‘<’, ‘≥’, ‘≤’ is 

called an inequality. For example, 5 > 3, 𝑥 ≤ 4, 𝑥 + 𝑦 ≥ 9. 

An inequality may contain more than one variable and it can 

be linear, quadratic or cubic etc. For example, 3𝑥 − 2 < 0 

is a linear inequality in one variable, 2𝑥 + 3𝑦 ≥ 4 is a linear 

inequality in two variables and 𝑥2 + 3𝑥 + 2 < 0 is a

quadratic inequality in one variable. 

Rules for manipulating inequalities 

If 𝑎, 𝑏, 𝑐, 𝑑 and 𝑘 are numbers such that 𝑎 > 𝑏 and 𝑐 > 𝑑, 

then: 

(a) 𝑎 ± 𝑘 > 𝑏 ± 𝑘

(b) 𝑎𝑘 > 𝑏𝑘 for 𝑘 > 0 (positive)

𝑎𝑘 < 𝑏𝑘 for 𝑘 < 0 (negative)

(c) 𝑎 + 𝑐 > 𝑏 + 𝑑

A similar set of results arise for <

Note: We cannot make any deductions about 𝑎 − 𝑐 and    

𝑏 − 𝑑 or 𝑎𝑐 and 𝑏𝑑 or 𝑎 ÷ 𝑐 and 𝑏 ÷ 𝑑 

Solution of an inequality 

The value(s) of the variable(s) which makes the inequality a 

true statement is called its solutions. The set of all solutions 

of an inequality is called the solution set of the inequality. 

For example, 𝑥 − 1 ≥ 0, has infinite number of solutions as 

all real values grater than or equal to one make it a true 

statement. The inequality 𝑥2 + 1 < 0 has no solution in R

as no real value of 𝑥 makes it a true statement. 

To solve an inequality, we can 

(i) add (or subtract) the same quantity to (from) both sides

without changing the sign of inequality

(ii) multiply (or divide) both sides by the same positive

quantity without changing the sign of inequality.

However, if both sides if the inequality are multiplied

(or divided) by the same negative inequality the sign of

the inequality is reversed.

1. Linear inequalities in one unknown

These can be solved using the rules of inequalities. The

solution set can be illustrated on a number line.

Note the symbols used:

 

 

 

Example 1 

Find the solution set of 8 − 𝑥 ≥ 5𝑥 − 4 

Solution 

8 + 4 ≥ 5𝑥 + 𝑥 

12 ≥ 6𝑥 

2 ≥ 𝑥 

or 𝑥 ≤ 2 

This is illustrated as 

2. Linear inequalities in two unknowns

They are best solved graphically.

The corresponding equality gives the boundary line.

This is drawn as:

(a) a continuous line if the inequality is ≥ or ≤

(b) a dotted line if the inequality is > or <

A convenient point is chosen to identify on which side

of the line the inequality applies. The solution set of the

inequality is usually left unshaded.

Example 2 

Solve 𝑦 ≥ 0, 𝑥 + 𝑦 ≤ 2 and 𝑦 − 2𝑥 < 2 

Solution 

Draw the lines 𝑦 = 0 and 𝑥 + 𝑦 = 2 both continuous and 

the line 𝑦 − 2𝑥 = 2 (dotted). 

Test the point (0, 1). The unshaded region gives the solution 

set. 

𝑥 < 𝑎 

shows end point 

not included 

𝑎 

𝑥 ≥ 𝑎 

shows end point 

included 

𝑎 

0 1 2 3 4 −1−2 −3 

𝑥 

𝑦 

1 

2 

1 2 −1

𝑦 = 0 

𝑦 − 2𝑥 = 2 

𝑥 + 𝑦 = 2 

Chapter 

7 
Inequalities 
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Critical values of 𝑥 are 1, 2 and 4 

Let 𝑓(𝑥) =
(𝑥−4)(𝑥−1)

𝑥−2

𝑥 < 1 1 < 𝑥 < 2 2 < 𝑥 < 4 𝑥 > 4 

𝑥 − 4 − − − + 

𝑥 − 1 − + + + 

𝑥 − 2 − − + + 

𝑓(𝑥) − + − + 

True if 𝑥 > 4 or 1 < 𝑥 < 2 

Example 7 

Solve the inequality 

1

𝑥 − 4
>

1

3 − 𝑥
Solution 

1

𝑥 − 4
−

1

3 − 𝑥
> 0

(3 − 𝑥) − (𝑥 − 4)

(𝑥 − 4)(3 − 𝑥)
> 0

7 − 2𝑥

(𝑥 − 4)(3 − 𝑥)
> 0

Critical values of 𝑥 are 3, 3.5, 4 

Let 𝑓(𝑥) =
7−2𝑥

(𝑥−4)(3−𝑥)

𝑥 < 3 3 < 𝑥 < 3.5 3.5 < 𝑥 < 4 𝑥 > 4 

7 − 2𝑥 + + − − 

𝑥 − 4 − − − + 

3 − 𝑥 + − − − 

𝑓(𝑥) − + − + 

∴
1

𝑥 − 4
>

1

3 − 𝑥
 when 3 < 𝑥 < 3.5 or 𝑥 > 4 

Example 8 

Find the sets of values of 𝑥 for which |𝑥 − 3| > 2|𝑥 + 1| 

Solution 

Squaring, 

𝑥2 − 6𝑥 + 9 > 4𝑥2 + 8𝑥 + 4

0 > 3𝑥2 + 14𝑥 − 5

0 > 3𝑥2 + 15𝑥 − 𝑥 − 5

0 > 3𝑥(𝑥 + 5) − (𝑥 + 5) 

0 > (3𝑥 − 1)(𝑥 + 5) 

Critical values are 𝑥 = −5 and 𝑥 =
1

3

Let 𝑓(𝑥) = (3𝑥 − 1)(𝑥 + 5) 

𝑥 < −5 
−5 < 𝑥 <

1

3
𝑥 >

1

3
3𝑥 − 1 − − + 

𝑥 + 5 − + + 

𝑓(𝑥) + − + 

∴ |𝑥 − 3| > 2|𝑥 + 1| when − 5 < 𝑥 <
1

3

Example 9 

Find the set of values of 𝑥 for which 𝑓(𝑥) >
1

2
where 

𝑓(𝑥) =
𝑥(𝑥−2)

(𝑥+3)

Solution 

𝑥(𝑥 − 2)

(𝑥 + 3)
>

1

2
𝑥(𝑥 − 2)

(𝑥 + 3)
−

1

2
> 0

2𝑥(𝑥 − 2) − (𝑥 + 3)

2(𝑥 + 3)
> 0

2𝑥2 − 4𝑥 − 𝑥 − 3

2(𝑥 + 3)
> 0

2𝑥2 − 5𝑥 − 3

2(𝑥 + 3)
> 0

2𝑥2 − 6𝑥 + 𝑥 − 3

2(𝑥 + 3)
> 0

2𝑥(𝑥 − 3) + (𝑥 − 3)

2(𝑥 + 3)
> 0

(𝑥 − 3)(2𝑥 + 1)

2(𝑥 + 3)
> 0

Critical values of 𝑥 are −3, −
1

2
 and 3

Let g(𝑥) =
(𝑥−3)(2𝑥+1)

2(𝑥+3)

𝑥 <-3 -3 < 𝑥 <-
1

2
-

1

2
< 𝑥 < 3 𝑥 > 3 

𝑥 + 3 + + − − 

2𝑥 + 1 − − − + 

𝑥 − 3 + − − − 

g(𝑥) − + − + 

∴
𝑥(𝑥 − 2)

(𝑥 + 3)
>

1

2
 when − 3 < 𝑥 < −

1

2
 or 𝑥 > 3 

Example 10 

For what values of 𝑥 is 𝑓(𝑥) = 𝑥3 − 12𝑥2 + 39𝑥 − 28 <

0? 

Solution 

𝑓(𝑥) = 𝑥3 − 12𝑥2 + 39𝑥 − 28

Using the factor theorem, trying the factors of 28, 

𝑓(1) = (1)3 − 12(1)2 + 39(1) − 28 = 0

𝑥 − 1 is a factor of 𝑓(𝑥) 

Now using long division to obtain the remaining factors, 

𝑥2 − 11𝑥 + 28 

𝑥 − 1     𝑥3 − 12𝑥2 −  39𝑥 −  28

− 𝑥3 − 𝑥2

−11𝑥2 − 39𝑥 − 28

− −10𝑥2 + 11𝑥

    28𝑥 − 28  

− 28𝑥 −  28

- -  
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ARITHMETIC PROGRESSION (A.P) 

An arithmetic progression (abbreviated as A.P) is a 

sequence of numbers in which each term, except the first, is 

obtained by adding a fixed number to the immediately 

preceding term. This fixed number is called the common 

difference, which is generally denoted by 𝑑. Usually we 

denote the first term by 𝑎 and the last term as 𝑙. 

For example, 1, 3, 5, 7, …. is an A.P with common 

difference 2 

The general term or the 𝑛th term of the A.P is given by 

𝑢𝑛 = 𝑎 + (𝑛 − 1)𝑑

The 𝑛th term from the last is given by  

𝑢𝑛 = 𝑙 − (𝑛 − 1)𝑑

Example 1 

Show that (𝑥2 + 𝑥𝑦 + 𝑦2), (𝑧2 + 𝑥𝑧 + 𝑥2) and (𝑦2 + 𝑦𝑧 +

𝑧2) are consecutive terms of an A.P, if 𝑥, 𝑦 and 𝑧 are in A.P.

Solution 

The terms will be be in A.P if  

(𝑧2 + 𝑥𝑧 + 𝑥2) − (𝑥2 + 𝑥𝑦 + 𝑦2)

=  (𝑦2 + 𝑦𝑧 + 𝑧2) − (𝑧2 + 𝑥𝑧 + 𝑥2)

𝑧2 + 𝑥𝑧 − 𝑥𝑦 − 𝑦2 = 𝑦2 + 𝑦𝑧 − 𝑥𝑧 − 𝑥2

𝑥2 + 2𝑥𝑧 + 𝑧2 − 𝑦2 = 𝑦2 + 𝑦𝑧 + 𝑥𝑦

(𝑥 + 𝑧)2 − 𝑦2 = 𝑦(𝑥 + 𝑦 + 𝑧)

(𝑥 + 𝑧 − 𝑦)(𝑥 + 𝑧 + 𝑦) = 𝑦(𝑥 + 𝑦 + 𝑧) 

𝑥 + 𝑧 − 𝑦 = 𝑦 

𝑧 − 𝑦 = 𝑦 − 𝑥 

which is true since 𝑥, 𝑦, 𝑧 are in A.P 

Example 2 

Find three numbers in arithmetical progression such that 

their sum is 27 and their product is 504. 

Solution 

Let the three numbers in arithmetic progression be 𝑎 − 𝑑, 𝑎, 

𝑎 + 𝑑 

𝑎 − 𝑑 + 𝑎 + 𝑎 + 𝑑 = 27 

3𝑎 = 27 

𝑎 = 9 

𝑎(𝑎 − 𝑑)(𝑎 + 𝑑) = 504 

𝑎(𝑎2 − 𝑑2) = 504

Since 𝑎 = 9, 

81 − 𝑑2 = 56

𝑑2 = 25

𝑑 = ±5 

Hence the required numbers are 4, 9 and 14 

 

 

Example 3 

The product of three numbers in A.P. is 224, and the largest 

number is 7 times the smallest. Find the numbers. 

Solution 

Let the three numbers in A.P. be 𝑎 − 𝑑, 𝑎, 𝑎 + 𝑑 (𝑑 > 0) 

Now 

(𝑎 − 𝑑)𝑎(𝑎 + 𝑑) = 224 

𝑎(𝑎2 − 𝑑2) = 224  … (i)

Now, since the largest number is 7 times the smallest, 

𝑎 + 𝑑 = 7(𝑎 − 𝑑) 

𝑎 + 𝑑 = 7𝑎 − 7𝑑 

8𝑑 = 6𝑎 

𝑑 =
3𝑎

4
Substituting for 𝑑 in (i); 

𝑎 (𝑎2 −
9𝑎2

16
) = 224 

7𝑎3

16
= 224 

𝑎3 = 512

𝑎 = 8 

and 

𝑑 =
3𝑎

4
=

3

4
× 8 = 6 

Hence, the three numbers are 2, 8, 14 

Sum of an Arithmetic progression 

In the series 

𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, 𝑎 + 3𝑑, …. 

the coefficient of 𝑎 in any term is one less than the number 

of the term in the series. Thus 𝑎 + 3𝑑 is the fourth term.  

If then the series consists of 𝑛 terms and 𝑙 denotes the last or 

𝑛th term 

𝑙 = 𝑎 + (𝑛 − 1)𝑑 

To obtain the sum 𝑆𝑛 of 𝑛 terms of the series we have

𝑆𝑛 = 𝑎 + (𝑎 + 𝑑) + (𝑎 + 2𝑑)+. . . +(𝑙 − 𝑑) + 𝑙

If we now write the series in the reverse order, 

𝑆𝑛 = 𝑙 + (𝑙 − 𝑑)+. . . +(𝑎 + 2𝑑) + (𝑎 + 𝑑) + 𝑎

Adding and noticing that the sums of terms in corresponding 

positions are all 𝑎 + 𝑙 we have  

2𝑆𝑛 = (𝑎 + 𝑙) + (𝑎 + 𝑙)+. .. to 𝑛 terms

Hence 

𝑆𝑛 =
𝑛

2
(𝑎 + 𝑙) 

But 𝑙 = 𝑎 + (𝑛 − 1)𝑑  

𝑺𝒏 =
𝒏

𝟐
[𝟐𝒂 + (𝒏 − 𝟏)𝒅] 

Chapter 

8 
Arithmetic and Geometric Progressions 
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Example 11 

If 𝑎, 𝑏, 𝑐, 𝑑 are in G.P, prove that 𝑎2 − 𝑏2, 𝑏2 − 𝑐2, 𝑐2 − 𝑑2

are also in G.P 

Solution  

Let 𝑟 be the common ratio of the given G.P. Then  

𝑏

𝑎
=

𝑐

𝑏
=

𝑑

𝑐
= 𝑟 

𝑏 = 𝑎𝑟, 𝑐 = 𝑏𝑟 = 𝑎𝑟2, 𝑑 = 𝑐𝑟 = 𝑎𝑟3

Now, 

𝑎2 − 𝑏2 = 𝑎2 − 𝑎2𝑟2 = 𝑎2(1 − 𝑟2)

𝑏2 − 𝑐2 = 𝑎2𝑟2 − 𝑎2𝑟4 = 𝑎2𝑟2(1 − 𝑟2)

𝑐2 − 𝑑2 = 𝑎2𝑟4 − 𝑎2𝑟6 = 𝑎2𝑟4(1 − 𝑟2)

𝑏2 − 𝑐2

𝑎2 − 𝑏2
=

𝑎2𝑟2(1 − 𝑟2)

𝑎2(1 − 𝑟2)
= 𝑟2

𝑐2 − 𝑑2

𝑏2 − 𝑐2
=

𝑎2𝑟4(1 − 𝑟2)

𝑎2𝑟2(1 − 𝑟2)
= 𝑟2

∴
𝑏2 − 𝑐2

𝑎2 − 𝑏2
=

𝑐2 − 𝑑2

𝑏2 − 𝑐2
= 𝑟2

Hence, 𝑎2 − 𝑏2, 𝑏2 − 𝑐2, 𝑐2 − 𝑑2, are in a G.P

Example 12 

Find three numbers in geometric progression such that their 

sum is 39 and their product is 729. 

Solution 

Let the required numbers be 
𝑎

𝑟
, 𝑎 and 𝑎𝑟.

𝑎

𝑟
× 𝑎 × 𝑎𝑟 = 729 

𝑎3 = 729

𝑎 = 9 

9

𝑟
+ 9 + 9𝑟 = 39

9 + 9𝑟 + 9𝑟2 = 39𝑟

9𝑟2 − 30𝑟 + 9 = 0

3𝑟2 − 10𝑟 + 3 = 0

3𝑟2 − 9𝑟 − 𝑟 + 3 = 0

3𝑟(𝑟 − 3) − (𝑟 − 3) = 0 

(𝑟 − 3)(3𝑟 − 1) = 0 

𝑟 = 3 or 
1

3

The required numbers are 3, 9 and 27 

Example 13 

If 𝑝, 𝑞 and 𝑟 are three successive terms of a geometric 

progression, show that log 𝑝 , log 𝑞 and log 𝑟 are three 

successive terms of an arithmetic progression. (𝑝, 𝑞, and 𝑟 

are > 0) 

Solution 
𝑞

𝑝
=

𝑟

𝑞

Introducing log  on both sides 

log
𝑞

𝑝
= log

𝑟

𝑞

log 𝑞 − log 𝑝 = log 𝑟 − log 𝑞 

Hence log 𝑝, log 𝑞 and log 𝑟 are in arithmetic progression. 

Sum of a Geometric Progression 

In the series, 

𝑎, 𝑎𝑟, 𝑎𝑟2, 𝑎𝑟3, …

the index of 𝑟 in any term is one less than the number of the 

term in the series. Thus 𝑎𝑟3 is the fourth term. The last or

𝑛th term of the series is given by  

𝑙 = 𝑎𝑟𝑛−1

To obtain the sum 𝑆𝑛 of 𝑛 terms of the series, we have

𝑆𝑛 = 𝑎 + 𝑎𝑟 + 𝑎𝑟2+. . . +𝑎𝑟𝑛−2 + 𝑎𝑟𝑛−1

Multiplying throughout by 𝑟 

𝑟𝑆𝑛 = 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3+. . . +𝑎𝑟𝑛−1 + 𝑎𝑟𝑛

If we subtract, all the terms on the right hand side except 𝑎 

and 𝑎𝑟𝑛 cancel in pairs.

Hence  

𝑆𝑛 − 𝑟𝑆𝑛 = 𝑎 − 𝑎𝑟𝑛

𝑺𝒏 =
𝒂(𝟏 − 𝒓𝒏)

𝟏 − 𝒓
when 𝑟 > 1 

𝑺𝒏 =
𝒂(𝒓𝒏 − 𝟏)

𝒓 − 𝟏

Example 14 

The first three terms of a geometric progression are 𝑘 − 3, 

2𝑘 − 4, 4𝑘 − 3 in that order. Find the value of 𝑘 and the 

sum of the first eight terms of the progression.  

Solution 

Since the terms are in G.P, then  

2𝑘 − 4

𝑘 − 3
=

4𝑘 − 3

2𝑘 − 4
(2𝑘 − 4)2 = (𝑘 − 3)(4𝑘 − 3)

4𝑘2 − 16𝑘 + 16 = 4𝑘2 − 15𝑘 + 9

𝑘 = 7 

The first three terms of the progression are 4, 10, 25 

𝑎 = 4, 𝑟 =
10

4
=

5

2
= 2.5

𝑆𝑛 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1

𝑆8 =
4[(2.5)8 − 1]

2.5 − 1
= 4066.3438 

Example 15 

The first and last terms of a geometric series are 2 and 2048 

respectively. The sum of the series is 2730. Find the number 

of terms and the common ratio. 

Solution 

Let the number of terms be 𝑛 and the common ratio 𝑟. 

𝑛th term, 𝑢𝑛 = 𝑎𝑟𝑛−1

2𝑟𝑛−1 = 2048

𝑟𝑛−1 = 1024 … (i)

𝑆𝑛 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1
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𝑆∞ =
𝑎

1−𝑟
=

1

1−
1

5

=
5

4

Now 𝑆∞ − 𝑆𝑛 < 10−6

5

4
−

5

4
[1 − 5−𝑛] < 10−6

5−𝑛 < 10−6

Introducing log  to both sides 

log 5−𝑛 < log 10−6

−𝑛 log 5 < −6

𝑛 >
−6

− log 5

𝑛 > 8.58

Thus 𝑛 ≥ 9 i.e. 9 terms or more need to be taken. 

Combined A.Ps and G.Ps 

Example 20 

If 𝑎, 𝑏, 𝑐 are three consecutive terms of an A.P and 𝑥, 𝑦, 𝑧 

are three consecutive terms of a G.P. Then prove that  

𝑥𝑏−𝑐.  𝑦𝑐−𝑎.  𝑧𝑎−𝑏 = 1

Solution 

We have 𝑎, 𝑏, 𝑐 as three consecutive terms of A.P. Then 

𝑏 − 𝑎 = 𝑐 − 𝑏 = 𝑑 

𝑐 − 𝑎 = 2𝑑 

𝑎 − 𝑏 = −𝑑 

𝑏 − 𝑐 = −𝑑 

Now 

𝑥𝑏−𝑐 .  𝑦𝑐−𝑎.  𝑧𝑎−𝑏 = 𝑥−𝑑.  𝑦2𝑑 . 𝑧−𝑑

Since 𝑥, 𝑦, 𝑧 are in G.P 
𝑦

𝑥
=

𝑧

𝑦

𝑦 = √𝑥𝑧 

𝑥𝑏−𝑐.  𝑦𝑐−𝑎.  𝑧𝑎−𝑏 = 𝑥−𝑑 .  (√𝑥𝑧)2𝑑 . 𝑧−𝑑

= (𝑥𝑧)−𝑑 × (𝑥𝑧)𝑑

= (𝑥𝑧)−𝑑+𝑑

= (𝑥𝑧)0

∴ 𝑥𝑏−𝑐 .  𝑦𝑐−𝑎.  𝑧𝑎−𝑏 = 1

Example 21 

The third, sixth and seventh terms of a geometric 

progression (whose common ratio is neither 0 nor 1) are in 

arithmetic progression. Prove that the sum of the first three 

terms is equal to the fourth term. 

Solution 

𝑢3 = 𝑎𝑟2, 𝑢6 = 𝑎𝑟5, 𝑢7 = 𝑎𝑟6

𝑎𝑟2, 𝑎𝑟5, 𝑎𝑟6 are in A.P, then

𝑎𝑟5 − 𝑎𝑟2 = 𝑎𝑟6 − 𝑎𝑟5

𝑎𝑟2(𝑟3 − 1) = 𝑎𝑟5(𝑟 − 1)

From binomial expansion, 𝑟3 − 1 = (𝑟 − 1)(𝑟2 + 𝑟 + 1)

𝑎𝑟2(𝑟 − 1)(𝑟2 + 𝑟 + 1) = 𝑎𝑟5(𝑟 − 1)

𝑎(𝑟2 + 𝑟 + 1) = 𝑎𝑟3

𝑎𝑟2 + 𝑎𝑟 + 𝑎 = 𝑎𝑟3

∴ 𝑆3 = 𝑢4

Example 22 

If the 2nd, 5th and 9th terms of a non-constant A.P. are in G.P, 

find the common ratio of the G.P 

Solution 

𝑎 + 𝑑, 𝑎 + 4𝑑, 𝑎 + 8𝑑 are in a G.P 

⇒ 𝑟 =
𝑎 + 4𝑑

𝑎 + 𝑑
=

𝑎 + 8𝑑

𝑎 + 4𝑑
(𝑎 + 4𝑑)2 = (𝑎 + 𝑑)(𝑎 + 8𝑑)

𝑎2 + 8𝑎𝑑 + 16𝑑2 = 𝑎2 + 9𝑎𝑑 + 8𝑑2

8𝑑2 = 𝑎𝑑

8𝑑 = 𝑎 

𝑟 =
8𝑑 + 4𝑑

8𝑑 + 𝑑
=

12𝑑

9𝑑
=

4

3

Example 23 

Three positive numbers form an increasing G.P. If the 

middle term in this G.P. is doubled, the new numbers are in 

A.P. Find the common ratio of the G.P 

Solution 

Let 𝑎, 𝑎𝑟, 𝑎𝑟2 be the terms in the G.P, then

𝑎, 2𝑎𝑟, 𝑎𝑟2 are in A.P.

2𝑎𝑟 − 𝑎 = 𝑎𝑟2 − 2𝑎𝑟

4𝑎𝑟 = 𝑎 + 𝑎𝑟2

4𝑟 = 1 + 𝑟2

𝑟2 − 4𝑟 + 1 = 0

𝑟2 − 4𝑟 + 4 = 3

(𝑟 − 2)2 = 3

(𝑟 − 2) = ±√3 

𝑟 = 2 ± √3 

𝑟 = 2 − √3 or 𝑟 = 2 + √3 

Since the G.P is an increasing G.P, 𝑟 > 1 

∴ 𝑟 = 2 + √3 

Simple and compound interest  

If a sum of money of money 𝑃 (the principal) is invested at 

a simple interest of 𝑟 per cent. per annum, the amount 𝐴 

(principal plus interest) after 𝑛 years is given by 

𝐴 = 𝑃 (1 +
𝑛𝑟

100
) 

for the interest for one year is 
𝑃𝑟

100
and for 𝑛 years 

𝑛𝑃𝑟

100
. The 

various amounts after one, two, three, … years therefore 

form an arithmetic progression. 

If, on the other hand, the same principal is invested at 

compound interest of 𝑟 per cent. per annum, the interest 

being added annually, the amount after one year is 

𝑃 (1 +
𝑟

100
), and this is the principal for the second year. 

Hence after two years the amount is 

𝑃 (1 +
𝑟

100
) (1 +

𝑟

100
)  or 𝑃 (1 +

𝑟

100
)

2

and so on. Thus after 𝑛 years the amount will be given by 

𝐴 = 𝑃 (1 +
𝑟

100
)

𝑛
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Example 27 

A family decides to save some money in an account that 

pays 9% annual compound interest calculated at the end of 

each year. They put $2500 into the account at the beginning 

of each year. All interests are added to the account and no 

withdrawals are made. How much money will they have in 

the account on the day after they have made their tenth 

payment?  

Solution 

The problem is best looked at from the last payment of 

$2500 which has just made and which has not earned any 

interest. 

The previous payment has earned one lot of 9% and so is 

now worth 2500 × 1.09 

The previous payment has earned two years’ worth of 

compound interest and is worth 2500 × 1.092

The process can be continued for all the other payments and 

the various amounts of interest that each has earned. They 

form a geometric progression. 

Last payment  1st payment 

    2500 + 2500 × 1.09 + 2500 × 1.092+. . . +2500 × 1.099 

The total amount saved can be calculated using the formula 

𝑆𝑛 =
𝑎(𝑟𝑛 − 1)

𝑟 − 1

𝑆10 =
2500(1.0910 − 1)

1.09 − 1
= 37982.32 

The family will save about $37982.32 

Self-Evaluation exercise 

1. The 𝑛th term of an arithmetic progression (A.P) is

denoted by 𝑢𝑛, and the sum of the first 𝑛 terms is

denoted by 𝑆𝑛.

(a) In a certain A.P, 𝑢5 + 𝑢16 = 44 and 𝑆18 = 3𝑆10.

Calculate the value of the first term and the

common difference.

(b) In another A.P, 𝑢1 = 1. Given that 𝑢7, 𝑢11 and 𝑢17

are in geometric progression, find the value of

each.

[Ans: (a) 𝑎 = 3, 𝑑 = 3 (b) 1, 1, 1 or 4, 6, 9 ] 

2. If it is given that
1

𝑏+𝑐
, 

1

𝑐+𝑎
, 

1

𝑎+𝑏
 are three consecutive 

terms of an arithmetic series. Show that 𝑎2, 𝑏2 and 𝑐2

are also three consecutive terms of an arithmetic series. 

3. A man invests £100 at the beginning of each year for

ten years. The rate of compound interest is 9% per

annum. Calculate the total value of the investment at the

end of the ten full years.

[Ans: £1656.03] 

4. The fourth, seventh and sixteenth terms of an A.P. are

in geometric progression. If the first six terms of the

A.P. have a sum of 12, find the common difference of

the A.P. and the common ratio of the G.P.

[Ans: 2, 3] 

5. The third, fifth and seventeenth terms of an A.P. are in

geometric progression. Find the common ratio of the

G.P.

[Ans: 6] 

6. The third term of a geometric progression is 2, and the

fifth is 18. Find two possible values of the common

ratio, and the second term in each case.

[Ans: ±3, ±
2

3
] 

7. The third term of a geometrical progression is 2, and the

fifth is 18. Find two possible values of the common

ratio, and the second term in each case.

[Ans: ±3, ±
2

3
] 

8. Three numbers, 𝑛 − 2, 𝑛, 𝑛 + 3, are consecutive terms

of a geometric progression. Find 𝑛, and the term after

𝑛 + 3.

[Ans: 6, 13
1

2
] 

9. Find the ratio of the sum of the first 10 terms of the

series

log 𝑥 + log 𝑥2 + log 𝑥4 + log 𝑥8 +. ..

to the first term. 

[Ans: 1023] 

10. A man pays a premium of £100 at the beginning of

every year to an Insurance company on the

understanding that at the end of fifteen years he can

receive back the premiums which he has paid with 5%

compound interest. What should he receive? (Give your

answer correct to 3 s.f)

[Ans: £2270] 

11. A man earned in a certain year £2000 from a certain

source and his annual earnings from this time continued

to increase at the rate of 5%. Find to the nearest £ the

whole amount he received from this source in this year

and the next seven years. Give your answer correct to

three significant figures.

[Ans: £19100] 

12. Show that, if log 𝑎, log 𝑏, log 𝑐 are consecutive terms of

an arithmetic progression, then 𝑎, 𝑏, 𝑐 are in geometric

progression.

13. The eight term of an arithmetic progression is twice the

third term, and the sum of the first eight terms is 39.

Find the first three terms of the progression, and show

that its sum to 𝑛 terms is 
3

8
𝑛(𝑛 + 5)

[Ans: 
9

4
, 3, 

15

4
] 

14. Prove that log 𝑎 + log 𝑎𝑥 + log 𝑎𝑥2 +. .. to 𝑛 terms is

𝑛 log 𝑎 +
1

2
𝑛(𝑛 − 1) log 𝑥

15. If 1 + 2𝑥 + 4𝑥2+. . . =
3

4
, find the value of 𝑥 

[Ans: −
1

6
] 

16. A man saved $66000 in 20 years. In each succeeding

year after the first year, he saved $200 more than what
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Mathematical induction is a method of proving a given (or 

suspected) result for positive integers.  

This method is often used to prove the formula for the sum 

of 𝑛 terms of a series. 

To prove by induction 

1. Show that the result is true for 𝑛 = 1

2. Assume the validity of the result for 𝑛 equal to

some arbitrary but fixed natural number, say 𝑘

3. Show that the result is also true for 𝑛 = 𝑘 + 1

4. Conclude that the result holds for all natural

numbers.

The ∑ notation  

It is useful to have a short way of writing expressions like 

12 + 22 + 33 + ⋯ + 𝑛2

This is done by writing  

∑ 𝑟2

𝑛

1

= 12 + 22 + ⋯ + 𝑛2

Example 1 

Prove by induction that 𝑛2 + 𝑛 is even for all natural

numbers. 

Solution 

Let 𝑃(𝑛) = 𝑛2 + 𝑛

Put 𝑛 = 1, 

𝑃(1) = 12 + 1 = 2, which is even

𝑃(1) is true  

Let us assume that the statement is true for 𝑛 = 𝑘, i.e. 𝑃(𝑘) 

is even. 

𝑃(𝑘) = 𝑘2 + 𝑘

To prove 𝑃(𝑘 + 1) is true 

(𝑘 + 1)2 + (𝑘 + 1) = 𝑘2 + 2𝑘 + 1 + 𝑘 + 1

= 𝑘2 + 2𝑘 + 𝑘 + 2

= (𝑘2 + 𝑘) + 2(𝑘 + 1)

= an even number + 2(𝑘 + 1) 

= sum of two even numbers 

= an even number 

∴ 𝑃(𝑘 + 1) is true. 

Thus, if 𝑃(−𝑘) is true, then 𝑃(𝑘 + 1) is also true 

∴ By the principle of induction, 𝑛2 + 𝑛 is even for all natural

numbers 

Example 2 

Show by induction that 

𝑆𝑛 = ∑[𝑎 + (𝑟 − 1)𝑑]

𝑛

𝑟=1

=
1

2
𝑛[2𝑎 + (𝑛 − 1)𝑑] 

 

 

Solution 

For 𝑛 = 1, 

𝐿. 𝐻. 𝑆 = 𝑎 + (1 − 1)𝑑 = 𝑎 

𝑅. 𝐻. 𝑆 =
1

2
(1)[2𝑎 + (1 − 1)𝑑] = 𝑎 

Since 𝐿. 𝐻. 𝑆 = 𝑅. 𝐻. 𝑆, the result is true for 𝑛 = 1 

Assume the result is true for 𝑛 = 𝑘,  

𝑆𝑘 =
1

2
𝑘[2𝑎 + (𝑘 − 1)𝑑] 

Add the next term, the (𝑘 + 1)𝑡ℎ term giving 

𝑆𝑘+1 =
1

2
𝑘[2𝑎 + (𝑘 − 1)𝑑] + [𝑎 + (𝑘 + 1) − 1] 

=
1

2
[2𝑎𝑘 + 𝑘2𝑑 − 𝑘𝑑 + 2𝑎 + 2𝑘]

=
1

2
[2𝑎(𝑘 + 1) + 𝑘𝑑(𝑘 + 1)] 

𝑆𝑘+1 =
1

2
(𝑘 + 1)[2𝑎 + 𝑘𝑑] 

This is 𝑆𝑛 with 𝑛 replaced by (𝑘 + 1), thus if the result is

true for 𝑘, it is true for (𝑘 + 1). 

∴ By the principle of mathematical induction, the formula is 

true for all 𝑛. 

Example 3 

Prove by induction that 

1

1 . 2
+

1

2 . 3
+ ⋯ +

1

𝑛(𝑛 + 1)
=

𝑛

𝑛 + 1

for all positive integers 𝑛 

Solution 

For 𝑛 = 1, 

𝐿. 𝐻. 𝑆 =
1

1(1 + 1)
=

1

2

𝑅. 𝐻. 𝑆 =
1

1 + 1
=

1

2
Since L.H.S = R.H.S, the statement is true for 𝑛 = 1 

Assume true for 𝑛 = 𝑘, 

⇒
1

1.2
+

1

2.3
+ ⋯ +

1

𝑘(𝑘 + 1)
=

𝑘

𝑘 + 1

For 𝑛 = 𝑘 + 1, 

1

1.2
+

1

2.3
+ ⋯ +

1

𝑘(𝑘 + 1)
+

1

(𝑘 + 1)(𝑘 + 2)

=
𝑘

𝑘 + 1
+

1

(𝑘 + 1)(𝑘 + 2)

=
𝑘(𝑘 + 2) + 1

(𝑘 + 1)(𝑘 + 2)

=
𝑘2 + 2𝑘 + 1

(𝑘 + 1)(𝑘 + 2)

Chapter 
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=
(𝑘 + 1)2

(𝑘 + 1)(𝑘 + 2)

=
𝑘 + 1

𝑘 + 2
∴ it is true for 𝑘 + 1 

Thus if it is true for 𝑛 = 𝑘, it is also true for 𝑛 = 𝑘 + 1 

∴ by mathematical induction, the result is true or all positive 

integers 𝑛. 

Example 4 

Prove by mathematical induction 

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
for all natural numbers  

Solution 

For 𝑛 = 1, 

𝐿. 𝐻. 𝑆 = 1 

𝑅. 𝐻. 𝑆 =
1(1 + 1)

2
=

2

2
= 1 

Since L.H.S = R.H.S, the statement is true for 𝑛 = 1 

Now assume that the statement is true for 𝑛 = 𝑘, 

⇒ 1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
For 𝑛 = 𝑘 + 1, 

1 + 2 + 3 + ⋯ + 𝑘 + 𝑘 + 1 =
𝑘(𝑘 + 1)

2
+ 𝑘 + 1

=
𝑘(𝑘 + 1) + 2(𝑘 + 1)

2

=
(𝑘 + 1)(𝑘 + 2)

2
∴ it is true for 𝑘 + 1 

Thus if it is true for 𝑘, then it is also true for 𝑘 + 1 

By the principle of mathematical induction, the statement is 

true for all natural numbers. 

Example 5 

Prove by induction 

1 . 2 + 2 . 3 + 3 . 4 + ⋯ + 𝑛(𝑛 + 1) =
𝑛(𝑛 + 1)(𝑛 + 2)

3
for all natural numbers 

Solution 

For 𝑛 = 1, 

𝐿. 𝐻. 𝑆 = 1(1 + 1) = 2 

𝑅. 𝐻. 𝑆 =
1(1 + 1)(1 + 2)

3
=

1(2)(3)

3
= 2 

Since L.H.S = R.H.S, it is true for 𝑛 = 1. 

Now assume that the statement is true for 𝑛 = 𝑘 

⇒ 1 . 2 + 2 . 3 + 3 . 4 + ⋯ + 𝑘(𝑘 + 1) =
𝑘(𝑘 + 1)(𝑘 + 2)

3
For 𝑛 = 𝑘 + 1, 

1.2 + 2.3 + 3.4 + ⋯ + 𝑘(𝑘 + 1) + (𝑘 + 1)(𝑘 + 2)

=
𝑘(𝑘 + 1)(𝑘 + 2)

3
+ (𝑘 + 1)(𝑘 + 2)

=
𝑘(𝑘 + 1)(𝑘 + 2) + 3(𝑘 + 1)(𝑘 + 2)

3

=
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3
∴ it is true for 𝑘 + 1 

Thus if it is true for 𝑛 = 𝑘, it is also true for 𝑛 = 𝑘 + 1 

By the principle of mathematical induction, the statement is 

true for all natural numbers. 

Example 6 

Prove by mathematical induction 

12 + 22 + 32 + ⋯ + 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6
for all natural numbers  

Solution 

Putting 𝑛 = 1, 

𝐿. 𝐻. 𝑆 = 12

𝑅. 𝐻. 𝑆 =
1(1 + 1)[2(1) + 1]

6
=

(2)(3)

6
= 1 

Since L.H.S = R.H.S, the statement is true for 𝑛 = 1 

Now assume that the statement is true for 𝑛 = 𝑘 

12 + 22 + 32 + ⋯ + 𝑘2 =
𝑘(𝑘 + 1)(2𝑘 + 1)

6
To prove that 𝑃(𝑘 + 1) is true; 

[12 + 22 + 32 + ⋯ + 𝑘2] + (𝑘 + 1)2

=
𝑘(𝑘 + 1)(2𝑘 + 1)

6
+ (𝑘 + 1)2

=
𝑘(𝑘 + 1)(2𝑘 + 1) + 6(𝑘 + 1)2

6

=
(𝑘 + 1)[𝑘(2𝑘 + 1) + 6(𝑘 + 1)]

6

=
(𝑘 + 1)(2𝑘2 + 7𝑘 + 6)

6

=
(𝑘 + 1)[2𝑘2 + 4𝑘 + 3𝑘 + 6]

6

=
(𝑘 + 1)[2𝑘(𝑘 + 2) + 3(𝑘 + 2)]

6

=
(𝑘 + 1)(𝑘 + 2)(2𝑘 + 3)

6
Thus if it is true for 𝑛 = 𝑘, it is also true for 𝑛 = 𝑘 + 1 

By the principle of mathematical induction, the statement is 

true for all natural numbers  

Example 7 

Prove by the principle of mathematical induction that 

1 × 1! + 2 × 2! + 3 × 3!+. . . +𝑛 × 𝑛! = (𝑛 + 1)! − 1 

for all natural numbers 𝑛 

Solution 

For 𝑛 = 1, 

L.H.S = 1 × 1! = 1, R.H.S = (1 + 1)! − 1 = 2! − 1 = 1

Since L.H.S = R.H.S, it is true for 𝑛 = 1

Assume true for 𝑛 = 𝑘,

⇒ 1 × 1! + 2 × 2! + 3 × 3!+. . . +𝑘 × 𝑘! = (𝑘 + 1)! − 1
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For 𝑛 = 𝑘 + 1, 

1 × 1! + 2 × 2! + 3 × 3! + ⋯ + 𝑘 × 𝑘! + (𝑘 + 1) × (𝑘 + 1)! 

= (𝑘 + 1)! − 1 + (𝑘 + 1) × (𝑘 + 1)! 

= (𝑘 + 1)! [1 + (𝑘 + 1)] − 1 

= (𝑘 + 2)(𝑘 + 1)! − 1 

= (𝑘 + 2)! − 1 

It is also true for 𝑘 + 1 

By the principle of mathematical induction, the statement is 

true for all natural numbers. 

Example 8 

Prove by mathematical induction that 23𝑛 − 1 is divisible by

7, for all natural numbers 𝑛. 

Solution 

Let 𝑃(𝑛) = 23𝑛 − 1

For 𝑛 = 1,  

𝑃(1) = 23(1) − 1 = 8 − 1 = 7, which is divisible by7

𝑃(1) is true 

Now assume that the statement is true for 𝑛 = 𝑘 

𝑃(𝑘) = 23𝑘 − 1

⇒
23𝑘 − 1

7
= 𝐴 

where 𝐴 is an integer 

23𝑘 − 1 = 7𝐴

23𝑘 = 7𝐴 + 1

Now to prove 𝑃(𝑘 + 1)is true, consider 

𝑃(𝑘 + 1) = 23(𝑘+1) − 1

= 23𝑘 × 23 − 1

= 8(23𝑘) − 1

= 8(7𝐴 + 1) − 1 

= 8(7𝐴) + 8 − 1 

= 8(7𝐴) + 7 

= 7(8𝐴 + 1) 

  which is divisible by 7, 𝑃(𝑘 + 1) is true 

Thus if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true. 

By the principle of induction, 23𝑛 − 1 is divisible by 7 for

all natural numbers 𝑛 

Example 9 

Prove that the number, 𝑎𝑛 = 4𝑛 + 5, is divisible by 3 for all

positive integral values of 𝑛 

Solution 

For 𝑛 = 1, 

𝑎1 = 41 + 5 = 9

𝑎1 is divisible by 3 hence the statement is true for 𝑛 = 1

Assuming true for 𝑛 = 𝑘, 

i.e. 𝑎𝑘 = 4𝑘 + 5 is divisible by 3

⇒
4𝑘 + 5

3
= 𝐴 

4𝑘 + 5 = 3𝐴

4𝑘 = 3𝐴 − 5

Now to prove that 𝑎𝑘+1 is true (divisible by 3);

𝑎𝑘+1 = 4𝑘+1 + 5

= 4𝑘 . 4 + 5

= 4(3𝐴 − 5) + 5 

= 4(3𝐴) − 20 + 5 

= 4(3𝐴) − 15 

= 3(4𝐴 − 5) 

which is divisible by 3, hence 𝑎𝑘+1 is true

By the principle of mathematical induction, 𝑎𝑛 is divisible

by 3 for all positive integer values 𝑛 

Example 10 

By the method of induction, show that 10𝑛 + 3 . 4𝑛+2 + 5 is

divisible by 9 for all positive values of 𝑛 

Solution 

Let 𝑃(𝑛) = 10𝑛 + 3 . 4𝑛+2 + 5

𝑃(1) = 101 + 3 . 41+2 + 5 = 10 + 3(64) + 5 = 207
207

9
= 23 

𝑃(1) is divisible by 9, hence 𝑃(1) is true 

Assume 𝑃(𝑘) is divisible by 9 

𝑃(𝑘) = 10𝑘 + 3 . 4𝑘+2 + 5

⇒
10𝑘 + 3 . 4𝑘+2 + 5

9
= 𝐴 

where 𝐴 is a positive natural number 

10𝑘 + 3 . 4𝑘+2 + 5 = 9𝐴

10𝑘 = 9𝐴 − 3 . 4𝑘+2 − 5

For 𝑛 = 𝑘 + 1,  

𝑃(𝑘 + 1) = 10𝑘+1 + 3 . 4𝑘+3 + 5

= 10(10𝑘) + 3 . 4(4𝑘+2) + 5

= 10[9𝐴 − 3 . 4𝑘+2 − 5] + 12( 4𝑘+2) + 5

= 90𝐴 − 30(4𝑘+2) − 50 + 12(4𝑘+2) + 5

= 90𝐴 − 18(4𝑘+2) − 45

= 9(10𝐴 − 2(4𝑘+2) − 5)

∴ 𝑃(𝑘 + 1) is divisible by 9 

Thus if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is also true 

Hence, by induction, the number  10𝑛 + 3 . 4𝑛+2 + 5 must

be divisible by 9 for all positive integers. 

Example 11 

Show that for all positive integer values of 𝑛, 52𝑛 + 3𝑛 − 1

is an integer multiple of 9.  

Solution 

Let 𝑃(𝑛) = 52𝑛 + 3𝑛 − 1

For 𝑛 = 1, 

𝑃(1) = 52(1) + 3(1) − 1 = 27

which is a multiple of 9, hence true for 𝑛 = 1 

Assume true for 𝑛 = 𝑘 

⇒ 52𝑘 + 3𝑘 − 1 = 9𝐴

 where 𝐴 is some integer 

52𝑘 = 9𝐴 − 3𝑘 + 1
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For 𝑛 = 𝑘 + 1, 

𝑃(𝑘 + 1) = 52(𝑘+1) + 3(𝑘 + 1) − 1

= 25(52𝑘) + 3𝑘 + 2

 = 25(9𝐴 − 3𝑘 + 1) + 3𝑘 + 2 

 = 25(9𝐴) − 75𝑘 + 25 + 3𝑘 + 2 

 = 25(9𝐴) − 72𝑘 + 27 

 = 9(25𝐴 − 8𝑘 + 3) 

which is a multiple of 9, hence 𝑃(𝑘 + 1)is true 

Example 12 

Prove by induction that 𝑎𝑛 − 𝑏𝑛 is divisible by (𝑎 − 𝑏) for

all natural numbers. 

Solution 

Let 𝑃(𝑛) = 𝑎𝑛 − 𝑏𝑛

For 𝑛 = 1,  

𝑃(1) = 𝑎1 − 𝑏1 = 𝑎 − 𝑏

which is divisible by 𝑎 − 𝑏 hence 𝑃(1) is true 

Now assume the statement is true for 𝑛 = 𝑘, i.e. 𝑎𝑘 − 𝑏𝑘 is

divisible by 𝑎 − 𝑏 

⇒
𝑎𝑘 − 𝑏𝑘

𝑎 − 𝑏
= 𝐶 

where 𝐶 is a natural number (or an integer) 

𝑎𝑘 − 𝑏𝑘 = 𝐶(𝑎 − 𝑏)

𝑎𝑘 = 𝑏𝑘 + 𝐶(𝑎 − 𝑏)

Now to prove 𝑃(𝑘 + 1) is true i.e. prove 𝑎𝑘+1 − 𝑏𝑘+1 is

divisible by 𝑎 − 𝑏 

𝑎𝑘+1 − 𝑏𝑘+1 = 𝑎𝑘  .  𝑎 − 𝑏𝑘 .  𝑏

= 𝑎[𝑏𝑘 + 𝐶(𝑎 − 𝑏)] − 𝑏(𝑏𝑘)

= 𝑎(𝑏𝑘) + 𝑎𝐶(𝑎 − 𝑏) − 𝑏(𝑏𝑘)

= 𝑏𝑘(𝑎 − 𝑏) + 𝑎𝐶(𝑎 − 𝑏)

= (𝑎 − 𝑏)[𝑏𝑘 + 𝑎𝐶]

which is divisible by (𝑎 − 𝑏), hence 𝑃(𝑘 + 1) is true 

By the principle of mathematical induction, 𝑎𝑛 − 𝑏𝑛 is

divisible by 𝑎 − 𝑏 for all natural numbers. 

Example 13 

Prove that 
𝑑

𝑑𝑥
(𝑥𝑛) = 𝑛𝑥𝑛−1 for all positive integral values

of 𝑛. 

Solution 

For 𝑛 = 1, 

𝑅. 𝐻. 𝑆 = (1)𝑥1−1 = 𝑥0 = 1

𝐿. 𝐻. 𝑆 =
𝑑

𝑑𝑥
(𝑥1) =

𝑑

𝑑𝑥
(𝑥) = lim

∆𝑥→0

(𝑥 + ∆𝑥) − 𝑥

∆𝑥
= 1 

Since L.H.S = R.H.S, it is true for 𝑛 = 1, 

Assume true for 𝑛 = 𝑘, 

⇒
𝑑

𝑑𝑥
(𝑥𝑘) = 𝑘𝑥𝑘−1

Now prove true for 𝑛 = 𝑘 + 1 i.e. prove that 
𝑑

𝑑𝑥
(𝑥𝑘+1) =

(𝑘 + 1)𝑥𝑘

𝑑

𝑑𝑥
(𝑥𝑘+1) =

𝑑

𝑑𝑥
(𝑥𝑘 .  𝑥)

Using the product rule: 

𝑑

𝑑𝑥
(𝑥𝑘.  𝑥) = 𝑥𝑘(1) + 𝑥 [

𝑑

𝑑𝑥
(𝑥𝑘)]

= 𝑥𝑘 + 𝑥(𝑘𝑥𝑘−1) by assumption

= 𝑥𝑘 + 𝑘𝑥𝑘

= 𝑥𝑘(1 + 𝑘)

= (𝑘 + 1)𝑥𝑘

Thus if 
𝑑

𝑑𝑥
(𝑥𝑘) = 𝑘𝑥𝑘−1, then 

𝑑

𝑑𝑥
(𝑥𝑘+1 ) = (𝑘 + 1)𝑥𝑘.

By mathematical induction, the statement is true for all 

positive integral values of 𝑛 

Self-Evaluation exercise 

Prove, by induction, that the given statements are true for all 

integral positive values of 𝑛 

1. The sum of the first 𝑛 terms of the series

1 . 3 + 2 . 4 + 3 . 5 + ⋯ + 𝑟(𝑟 + 2) is

  
1

6
𝑛(𝑛 + 1)(2𝑛 + 7) 

2. 
1

1 .  3
+

1

3 .  5
+

1

5 .  7
+ ⋯ +

1

(2𝑟 − 1)(2𝑟 + 1)
=

𝑛

2𝑛 + 1

3. ∑
𝑟

2𝑟

𝑛

𝑟=1

= 2 −
𝑛 + 2

2𝑛

4. ∑
1

𝑟2 − 1

𝑛

𝑟=2

=
3

4
−

2𝑛 + 1

2𝑛(𝑛 + 1)

5. ∑ 𝑟(𝑟 + 1)(𝑟 + 2)

𝑛

𝑟=1

=
𝑛

4
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 

6. (1 × 4) + (2 × 5) + (3 × 6) + ⋯ + 𝑛(𝑛 + 3)

=
1

6
𝑛(𝑛 + 1)(𝑛 + 5) 

7. 1 + 3 + 5 + ⋯ + 2𝑛 − 1 = 𝑛2

8. 𝑛(𝑛 + 1)(𝑛 + 2) is an integer multiple of 6

9. 72𝑛+1 + 1 is an integer multiple of 8

10. 𝑛3 + 3𝑛2 − 10𝑛  is divisible by 3

11. 32𝑛 − 1 is a multiple of 8

12. 7𝑛 + 4𝑛 + 1 is divisible by 6

13. ∑ cos(2𝑟 − 1) 𝑥

𝑛

𝑟=1

=
sin 2𝑛𝑥

2 sin 𝑥

14. ∑
(𝑟 + 4)

2𝑟𝑟(𝑟 + 1)(𝑟 + 2)

𝑛

𝑟=1

=
1

2
−

1

2𝑛(𝑛 + 1)(𝑛 + 2) 

15. (2𝑛 + 1)(2𝑛 − 1) is an odd number

16. 2 + 4 + 6 + 9 + ⋯ + 2𝑛 = 𝑛(𝑛 + 1)

17. 1 + 4 + 7 + ⋯ + 3𝑛 − 2 =
𝑛(3𝑛−1)

2

18. 4 + 8 + 12 + ⋯ + 4𝑛 = 2𝑛(𝑛 + 1)

19. 
1

2
+

1

22 +
1

23 + ⋯ +
1

2𝑛 = 1 −
1

2𝑛

20. 52𝑛 − 1 is divisible by 24

21. 102𝑛−1 is divisible by 11

22. The sum 𝑆𝑛 = 𝑛3 + 3𝑛2 + 5𝑛 + 3 is divisible by 3

23. 72𝑛 + 16𝑛 − 1 is divisible by 64
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24. 2𝑛 > 𝑛

25. Prove by induction that for all positive integers 𝑛,

13 + 23 + 33 + ⋯ + 𝑛3 =
𝑛2(𝑛 + 1)2

4
      Deduce that  

(𝑛 + 1)3 + (𝑛 + 2)3 + ⋯ + (2𝑛)3 =
1

4
𝑛2(3𝑛 + 1)(5𝑛 + 3) 

26. Prove that if 𝑛 is a positive integer, 10𝑛 − 1 is divisible

by 9. Hence prove that a necessary and sufficient

condition for a positive integer to be divisible by 9 is

that the sum of its digits is divisible by 9.

27. Prove that if 𝑛 is any positive integer,

1 × 2 × 3 + 2 × 3 × 4 + ⋯ + 𝑛(𝑛 + 1)(𝑛 + 2)

=
1

3
𝑛(𝑛 + 1)(𝑛 + 2)(𝑛 + 3) 

28. Prove by induction that 𝑛(𝑛 + 1)(2𝑛 + 1) is a multiple

of 6 for all natural numbers.

29. Show that 112𝑛 − 1 is always exactly divisible by 120

when 𝑛 is a positive integer.

30. Show that 34𝑛+2 + 2 . 43𝑛+1 is exactly divisible by17 if

𝑛 is a positive integer.

31. Use the method of induction to prove that 6𝑛 − 1 is

divisible by 5 for all positive integral values of 𝑛

32. Prove that 8𝑛 − 7𝑛 + 6 is divisible by 7 for all positive

integral values.

33. Show that, for all positive integral values of 𝑛, 7𝑛 +

22𝑛+1 is divisible by 3

34. Prove that 72𝑛 + (23𝑛−3)(3𝑛−1) is divisible by 25 for

any natural number 𝑛.
35. Using mathematical induction prove that for every

integer 𝑛 ≥ 1, 2 . 7𝑛 + 3 . 5𝑛 − 5 is divisible by 24

36. Use mathematical induction to show that 25𝑛+1 −

24𝑛 + 5735 is divisible by 576 for all 𝑛 ≥ 1.

37. Prove, using the principle of mathematical induction,

that

1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑛

(𝑛 + 1)!
= 1 −

1

(𝑛 + 1)!

38. Prove by mathematical induction that 𝑛3 − 𝑛 is

divisible by 6 for all 𝑛 ≥ 2.

39. Prove by mathematical induction, that 81 × 32𝑛 − 22𝑛

is divisible by 5 for all natural numbers.
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Fundamental principles of counting 

We shall start by discussing two fundamental principles i.e. 

principle of addition and principle of multiplication. These 

two principles will enable us understand permutations and 

combinations and form the base for permutations and 

combinations. 

Fundamental principle of multiplication: If there are two 

jobs such that one of them can be completed in 𝑚 ways, and 

when it has been completed in any one of these 𝑚 ways, a 

second job can be completed in 𝑛 ways; then the two jobs in 

succession can be completed in 𝑚 × 𝑛 ways. 

Example 1 

In a class, there are 15 boys and 20 girls. The teacher wants 

to select a boy and a girl to represent the class in a function. 

In how many ways can the teacher make this selection?  

Solution 

Here the teacher is to perform two jobs: 

(i) Selecting a boy among 15 boys, and

(ii) Selecting a girl among 20 girls

The first of these can be performed in 15 ways and the 

second in 20 ways.  

Therefore, by the fundamental principle of multiplication, 

the required number of ways is 15 × 20 = 300 

Fundamental principle of addition: If there are two jobs 

such that they can be performed independently in 𝑚 and 𝑛 

ways respectively, then either of the two jobs can be 

performed in (𝑚 + 𝑛) ways. 

Example 2 

In a class, there are 20 boys and 10 girls. The teacher wants 

to select either a boy or a girl to represent the class in a 

function. In how many ways can the teacher make this 

selection? 

Solution 

Here the teacher is to perform either of the following two 

jobs:  

(i) selecting a boy among 20 boys, (or)

(ii) selecting a girl among 10 girls

The first of these can be performed in 20 ways and the 

second in 10 ways. Therefore, by fundamental principle of 

addition, either of the two jobs can be performed in 

(20 + 10) = 30 ways 

Thus, the teacher can make selection of boy/girl in 30 ways. 

 

 

Example 3 

A room has 10 doors. In how many ways can a man enter 

the room through one door and come out through a different 

door?  

Solution 

Clearly, a person can enter the room through any one of the 

ten doors. So, there are ten ways of entering into the room. 

After entering into the room, the man can come out through 

any one of the remaining 9 doors. So, he can come out 

through a different door in 9 ways. 

Hence, the number of ways in which a man can enter a room 

through one door and come out through a different door 

= 10 × 9 = 90 

Example 4 

How many words (with or without meaning) of three distinct 

letters of the English alphabets are there? 

Solution 

Here we have to fill up three places by distinct letters of the 

English alphabet. Since there are 26 letters of the English 

alphabet, the first place can be filled by any of these letters. 

So, there are 26 ways of filling up the first place. 

   Now, the second place can be filled up by any of the 

remaining 25 letters.  

So, there are 25 ways of filling up the second place. 

  After filling up the first two places, only 24 letters are left 

to fill up the third place. So, the third place can be filled in 

24 ways. Hence, the required number of words  

= 26 × 25 × 24 = 15600 

Example 5 

How many three-digit numbers can be formed by using the 

digits 1, 2, 3, 4, 5.  

Solution 

We have to determine the total number of three-digit 

numbers formed by using the digits 1, 2, 3, 4, 5.  

Clearly, the repetition of digits is allowed. 

A three-digit number has three places i.e. one’s, ten’s and 

hundred’s.  

The one’s place can be filled in 5 ways. 

Similarly, each of the ten’s and hundred’s place can be filled 

in 5 ways. 

∴ Total number of required numbers 

= 5 × 5 × 5 = 125 

Chapter 

10 
Permutations and Combinations 
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Example 6 

How many five-figure odd numbers can be made from the 

digits 1, 2, 3, 4, 5, if no digit is repeated? 

Solution 

For a number to be odd, we must have 1, 3 or 5 at the one’s 

place. So, there are three ways of filling the one’s place. 

Since no digit is repeated, the remaining four places can be 

filled in 4, 3, 2 and 1 ways respectively. 

Hence, total number of odd numbers  

= 4 × 3 × 2 × 1 × 3 = 72 

 

Example 7 

There are 6 multiple choice questions in an examination. 

How many sequences of answers are possible, if the first 

three questions have 4 choices each and the next three have 

5 each? 

Solution 

Here we have to perform 6 jobs of answering 6 multiple 

choice questions.  

Each of the first three questions can be answered in 4 ways 

and each of the next three can be answered in 5 ways. 

So, the total number of different sequences  

= 4 × 4 × 4 × 5 × 5 × 5 = 8000 

 

Example 8 

In how many ways can 5 persons sit in a car, 2 including the 

driver in the front seat and 3 in the back seat, if 2 particular 

persons do not know driving? 

Solution 

Let us mark the 5 seats by the letters 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 eith 

𝐴 as driver’s seat.  

Since 2 particular persons out of the 5 do not know driving, 

there are 3 choices for seat 𝐴, 4 choices for seat 𝐵, 3 choices 

for seat 𝐷 and 1 choice for seat 𝐸 

Therefore, the total number of arrangements 

= 3 × 4 × 3 × 2 × 1 = 72 

 

Example 9 

How many three-digit numbers greater than 600 can be 

formed by using the digits 4, 5, 6, 7, 8? 

Solution 

Clearly, repetition of digits is allowed. Since a three-digit 

number greater than 600 will have 6, 7 or 8 at hundred’s 

place. So, hundred’s place can be filled in 3 ways. 

Each of the ten’s and one’s place can be filled in 5 ways. 

Hence, total number of required numbers  

= 3 × 5 × 5 = 75 

 

 

Example 10 

How many numbers divisible by 5 and lying between 5000 

and 6000 can be formed from the digits 5, 6, 7, 8 and 9? 

Solution 

Clearly, a number between 5000 and 6000 must have 5 at 

thousand’s place. 

Since the number is divisible by 5 it must have 5 at one’s 

place. 

Now, each of the remaining places (i.e. hundred’s and ten’s) 

can be filled in 5 ways. 

Hence the total number of required numbers  

= 1 × 5 × 5 × 1 = 25 

 

Example 11 

How many three-digit odd numbers can be formed by using 

the digits 4, 5, 6, 7, 8, 9 if: 

(a) the repetition of digits is not allowed? 

(b) the repetition of digits is allowed? 

Solution 

For a number to be odd, we must have 5, 7 or 9 at the one’s 

place. So, there are three ways of filling the one’s place. 

(a) Since the repetition of digits is not allowed, the ten’s 

place can be filled with any of the remaining 5 digits in 

5 ways. 

Now, four digits are left. So, hundred’s place can be 

filled in 4 ways. 

So, required number of numbers  

= 3 × 5 × 4 = 60 

(b) Since the repetition of digits is allowed, so each of the 

ten’s and hundred’s place can be filled in 6 ways. 

Hence required number of numbers  

= 3 × 6 × 6 = 108 

 

Example 12 

How many numbers are there between 500 and 1000 which 

have exactly one of their digits as 8? 

Solution 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

For the number to be between 500 and 1000, it is a three-

digit number with 5, 6, 7, 8 and 9 as the possible digits to 

occupy the hundred’s place.  

(i) If the digit 8 occupies the hundred’s place, the digit in 

the ten’s place can be filled in 9 ways and that in one’s 

place also 9 ways. 

Number of ways = 1 × 9 × 9 = 81 

(ii) If the digit 8 occupies the ten’s place, then the digit in 

the hundred’s place can be filled in 4 ways and that in 

one’s place 9 ways. 

Number of ways = 4 × 1 × 9 = 36 

(iii) If the digit 8 occupies the one’s place, then the digit in 

the hundred’s place can be filled in 4 ways and that in 

one’s place 9 ways  

Number of ways = 4 × 1 × 9 = 36 

Total numbers between 500 and 1000  

= 81 + 36 + 36 = 153 
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We have already defined 0! = 1. This can be concluded as 

follows. 

we know that 𝑛𝑃𝑟 =
𝑛!

(𝑛 − 𝑟)!

Putting 𝑟 = 𝑛, 

𝑛𝑃𝑛 =
𝑛!

(𝑛 − 𝑛)! 

⇒ 𝑛! =
𝑛!

0!

0! =
𝑛!

𝑛!
= 1 

∴ 𝟎! = 𝟏 

Example 16 

Write down all the permutations of the vowels 𝐴, 𝐸, 𝐼, 𝑂, 𝑈 

in English alphabets taking 3 at a time and starting with 𝐸. 

Solution 

The permutations of vowels 𝐴, 𝐸, 𝐼, 𝑂, 𝑈 

EAI, EIA, EIO, EOI, EOU, EUO, EAO, EOA, EIU, EUI, 

EAU, EUA 

Clearly, there are 12 permutations 

Example 17 

Evaluate  8𝑃3

Solution 

8𝑃3 =
8!

(8 − 3)! 
=

8!

5!
=

(8 × 7 × 6) × 5!

5!

= 8 × 7 × 6 

= 336 

Example 18 

Given  𝑛𝑃5 = 42 𝑛𝑃3, find the value of 𝑛.

Solution 

𝑛!

(𝑛 − 5)!
= 42

𝑛!

(𝑛 − 3)!
𝑛(𝑛−1)(𝑛−2)(𝑛−3)(𝑛−4)(𝑛−5)! 

(𝑛−5)!
= 42

𝑛(𝑛−1)(𝑛−2)(𝑛−3)!

(𝑛−3)!

(𝑛 − 3)(𝑛 − 4) = 42 

𝑛2 − 7𝑛 + 12 = 42

𝑛2 − 7𝑛 − 30 = 0

𝑛2 − 10𝑛 + 3𝑛 − 30 = 0

𝑛(𝑛 − 10) + 3(𝑛 − 10) = 0 

(𝑛 − 10)(𝑛 + 3) = 0 

𝑛 = 10  or 𝑛 = −3 

Since 𝑛 cannot be negative, 𝑛 = 10 

Example 19 

If  5𝑃𝑟 =  6𝑃𝑟−1, find 𝑟

Solution 

5!

(5 − 𝑟)!
=

6!

[6 − (𝑟 − 1)]!
5!

(5 − 𝑟)!
=

6 × 5!

(7 − 𝑟)! 

1

(5 − 𝑟)!
=

6

(7 − 𝑟)(6 − 𝑟)(5 − 𝑟)!

1 =
6

(7 − 𝑟)(6 − 𝑟)

42 − 7𝑟 − 6𝑟 + 𝑟2 = 0

𝑟2 − 13𝑟 + 36 = 0

𝑟2 − 9𝑟 − 4𝑟 + 36 = 0

𝑟(𝑟 − 9) − 4(𝑟 − 9) = 0 

(𝑟 − 9)(𝑟 − 4) = 0 

𝑟 = 9  or 𝑟 = 4 
5𝑃𝑟  is meaningful for 𝑟 ≤ 5

∴ 𝑟 = 4 

Example 20 

In how many ways can five children stand in a queue? 

Solution 

The number of ways in which 5 persons can stand in a queue 

is the same as the number of arrangements of 5 different 

things taken all at a time. 

Hence the required number of ways  

=  5𝑃5 = 5! = 120

Example 21 

How many different signals can be made by hoisting 6 

differently coloured flags one above the other, when any 

number of them may be hoisted at one time? 

Solution 

The signals can be made by using at a time one or two or 

three or four of five or six flags. 

The total number of signals when 𝑟 flags are used at a time 

from 6 flags is equal to the number of arrangements of 6, 

taking 𝑟 at a time i.e.  6𝑃𝑟

Hence by the fundamental principle of addition, the total 

number of different signals  

=  6𝑃1 +  6𝑃2 +  6𝑃3 +  6𝑃4 +  6𝑃5 +  6𝑃6

= 6 + (6)(5) + (6)(5)(4) + (6)(5)(4)(3) 

+(6)(5)(4)(3)(2) + (6)(5)(4)(3)(2)(1) 

= 6 + 30 + 120 + 360 + 720 + 720 

   = 1956 

Example 22 

Find the number of different 4-letter words with or without 

meanings, that can be formed from the letters of the word 

‘NUMBER’ 

Solution 

There are 6 letters in the word ‘NUMBER’   

So, the number of 4 letter words 

= the number of arrangements of 6 letters taken 4 at a time 

=  6𝑃4

= 360 



 Permutations and Combinations 

       74  
Principles of Pure Mathematics by Kawuma Fahad 

Example 23 

How many different words can be formed with the letters of 

the word ORDINATE so that vowels occupy odd places? 

Solution 

In the word ORDINATE, there are 4 different vowels and 4 

different consonants.  

Four vowels can be placed at 4 odd places in  4𝑃4 = 4! = 24

different ways 

Then 4 consonants can be placed at 4 even places in  4𝑃4 =

4! = 24 different ways 

Hence required number of words = 24 × 24 = 576 

Example 24 

How many 6-digit numbers can be formed from the digits 0, 

1, 3, 5, 7, 9 which are divisible by 10 and no digit is 

repeated? 

Solution 

The given digits are 0, 1, 3, 5, 7 and 9, which are 6 in 

number. We are required to form 6-digit number which are 

divisible by 10 and no digit is repeated is repeated.  

 As the number is divisible by 10, so it must have a 0 at 

one’s place, therefore, one’s place can be filled up in only 

one way.  

The remaining 5 places can be filled up by the remaining 5 

digits in  5𝑃5 ways.

∴ the required number of numbers =  5𝑃5 = 5! = 120

Example 25 

How many numbers greater than 50000 can be formed by 

using the digits 0, 2, 3, 5 and 6, each digit is used only in 

each number? 

Solution 

The given digits are 0, 2, 3, 5 and 6, which are 5 in number. 

As the number 50000 has five digits and the numbers 

greater than 50000 are to be formed by using each of the 

given digit only once, the numbers of only five digits are to 

be formed.   

Ten thousand’s place can be filled up by any of the digits 5 

or 6 in 2 different ways.  

Remaining 4 places can be filled up by the remaining digits 

in  4𝑃4 ways.

∴ The required number of numbers = 2 ×  4𝑃4 = 48

Example 26 

In how many ways can 3 mathematics books, 4 history 

books, 3 chemistry books and 2 biology books can be 

arranged on a shelf so that all the books on the same subject 

are together? 

Solution 

First, we consider books of a particular subject as one unit. 

Thus, there are 4 units and these units can be arranged in 4! 

ways. 

Now in each of these arrangements, mathematics books can 

be arranged among themselves in 3! ways, history books in 

4! ways, chemistry books in 3! ways and biology books in 

2! ways.  

Therefore, the total number of arrangements  

= 4! × 3! × 4! × 3! × 2! 

= 24 × 6 × 24 × 6 × 2 

= 41472 

Example 27 

A family of 4 brothers and 3 sisters is to be arranged in a 

row, for a photograph. In how many ways can they be 

seated, if  

(a) all the sisters sit together

(b) all the sisters are not together

Solution 

(a) Since the 3 sisters are inseparable, consider them as one

single unit.

This together with 4 brothers make 5 persons who can

be arranged themselves in 5! ways.

In each of these permutations, the 3 sisters can be

rearranged among themselves in 3! ways.

Hence the total number of arrangements required

= 5! × 3! = 120 × 6 = 720 

(b) The number of arrangements of all the persons without

any restriction = 7! = 5040

Number of arrangements in which all the sisters sit

together = 720

∴ Number of arrangements required

= 5040 − 720 = 4320 

Example 28 

Three married couples are to be seated in a row having six 

seats in a cinema hall. If spouses are to be seated next to each 

other, in how many ways can they be seated?  

Find also the number of ways of their seating if all the ladies 

sit together and all gents sit together. 

Solution 

Let us denoted three married couples by C1, C2 and C3 where 

each couple is considered as one unit as shown below. 

     C1            C2             C3 

The number of ways in which the spouses can be seated next 

to each other = 3! 

As each couple can be seated in 2! ways, 

The number of seating arrangements so that the spouses are 

seated next to each other  

= 3! × 2! × 2! × 2! = 6 × 2 × 2 × 2 = 48 

Further, if three ladies sit together and all gents sit together 

then a unit of ladies and a unit of gents can be arranged in 2! 

ways. Also the ladies can be arranged among themselves in 
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3! ways and the gents can be arranged among themselves in 

3! ways.  

Thus, the total number of arrangements of seating all ladies 

and all gents together = 2! × 3! × 3! = 72  

Example 29 

In how many ways can 5 boys and 3 girls be seated in a row 

so that no two girls are together? 

Solution 

Let us first seat the 5 boys. This can be done in  5𝑃5 i.e. 5! =

120 ways. 

 B  B  B  B  B 

Now no two girls are together if they are seated only at the 

places marked ‘ ’. There are 6 such places and the 3 girls 

can be seated in  6𝑃3 = 120 ways.

Hence, by fundamental principle of multiplication, the total 

number of ways = 120 × 120 = 1440 

Example 30 

Find the number of different words that can be formed from 

the letters of the word ‘TRIANGLE’ so that no two vowels 

are together? 

Solution 

The word ‘TRIANGLE’ has 5 consonants and 3 vowels.  

Let us first arrange 5 consonants. This can be done in  5𝑃5

ways or 5! ways. Mark these consonants by C as shown 

below. 

 C  C  C  C  C 

Now no two vowels are together if these are arranged only 

at the places ‘ ’. There are 6 such places and the 3 vowels 

can be arranged at these places in  6𝑃3 ways.

Hence, the number of ways of arranging the letters of the 

word ‘TRIANGLE’ so that no vowels are together 

= 5! ×  6𝑃3 = 14400

Example 31 

7 candidates are to be examined – 2 in mathematics and the 

remaining in different subjects. In how many ways can they 

be seated in a row so that the two examinees in mathematics 

may not sit together?  

Solution 

When there is no restriction, the total number of ways in 

which 7 candidates can sit =  7𝑃7 = 5040.

When two candidates of mathematics sit together, we 

consider them as one candidate. Now the total candidates 

become 6, and they can be seated in  6𝑃6 = 6! ways. But 2

mathematics students can be arranged among themselves in 

2! ways. Thus the number of ways in which mathematics 

students sit together = 2! × 6! = 2 × 720 = 1440 

Hence, the number of ways in which mathematics students 

do not sit together  = 5040 − 1440 = 3600 

Example 32 

Find the number of different (eight letter) words can be 

formed out of the letters of the word DAUGHTER so that 

(a) the word starts with 𝐷 and ends with 𝑅

(b) position of letter 𝐻 remains unchanged

(c) relative position of vowels and consonants remains

unaltered

(d) no two vowels are together

(e) all vowels occur together

(f) all vowels never occur together

Solution 

The given word consists of 8 different letters out of which 3 

are vowels and 5 are consonants.  

(a) If the words have to start with 𝐷 and end with 𝑅, then

we can arrange remaining 6 places in
6𝑃6 = 6! = 720 ways.

(b) If position of 𝐻 remains unchanged, the remaining 7

letters can be arranged in 7 places in
7𝑃7 = 7! = 5040 ways

(c) The relative position of vowels and consonants remains

unaltered means that vowel can take the place of vowel

and consonant can take place of consonant. Now the 3

vowels can be arranged among themselves in 3! = 6

ways and the 5 consonants can be arranged among

themselves in 5! = 120 ways.

Thus the total number of words that can be formed

= 6 × 120 = 720 ways 

(d) First let us arrange the consonants in a row. This can be

done in  5𝑃5 = 5! = 120 ways

 C  C  C  C  C 

Now no two vowels are together if they are put at places 

marked ‘ ’. The 3 vowels can fill up these places in 
6𝑃3 = 120 ways.

Hence, the total number of words 

= 120 × 120 = 14400 

(e) To find the number of arrangements where the three

vowels 𝐴, 𝐸, 𝑂 all occur together, temporarily

considering this as one block, we can arrange this and 5

consonants in  6𝑃6 = 6! ways.

The three vowels can be arranged themselves in 3!

ways. Hence the number of words in which 3 vowels

occur together

= 6! × 3! = 7206 = 4320 

(f) The total number of (8-digit) words formed out of

letters of given word =  8𝑃8 = 8! = 40320

Hence the number of words formed in which all vowels

are never together

  = total number of words formed – the number of 

words formed in which all vowels are together 

= 40320 − 4320 = 36000 
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Permutations of objects not all distinct 

The number of mutually distinguishable permutations of 𝑛 

things, taken all at a time, of which 𝑝 are alike and of one 

kind, 𝑞 alike of second, 𝑟 of the third, such that 𝑝 + 𝑞 + 𝑟 =

𝑛, is 
𝑛!

𝑝!𝑞!𝑟!

Example 33 

Find the number of permutations of the letters of the word 

HEIDELBERG 

Solution 

Here we are given 9 letters of which there are 3 E’s and the 

remaining 7 are different. 

Required number of permutations =
10!

3!
= 604800

Example 34 

How many arrangements can be made with the letters of the 

word “MATHEMATICS”? 

Solution 

There are 11 letters in the word ‘MATHEMATICS’ of 

which two are M’s, two are A’s, two are T’s and all other 

are distinct. 

∴ required number of arrangements =
11!

2!×2!×2!
= 4989600 

Example 35 

How many numbers can be formed with the digits 1, 2, 3, 

4, 3, 2, 1 so that the odd digits always occupy the odd 

places? 

Solution 

There are 4 odd digits 1, 1, 3, 3 and 4 odd places (1st, 3rd, 

5th, 7th)  

So odd digits can be arranged in odd places in 
4!

2!2!
 ways 

The remaining 3 even digits 2, 2, 4 can be arranged in 3 

even places (2nd, 4th, 6th) in 
3!

2!
 ways.

Hence, the required number of numbers 

=
4!

2! 2!
×

3!

2!
= 6 × 3 = 18 

Example 36 

In how many of the distinct permutations of the letters in 

MISSISSIPPI do the four I’s not come together? 

Solution 

The given word has 11 letters, four I’s, four S’s, two P’s and 

one M.  

Total number of permutations =
11!

4! 4! 2!
= 34650 

When all the four I’s come together, then consider these four 

I’s as one letter and 7 others – four S’s, two P’s, one M 

So the number of permutations in which I’s come together 

=
8!

4! 2!
= 840 

∴ The number of permutations in which the four I’s do not 

come together = 34650 − 840 = 33810 

Example 37 

In how many ways can the letters of the word 

PERMUTATIONS be arranged such that 

(a) there is no restriction,

(b) 𝑃 comes before 𝑆,

(c) words start with 𝑃 and end with 𝑆,

(d) 𝐼’s are together,

(e) all vowels are together,

(f) 𝑃 comes before 𝑆 and there are always 4 letters between

𝑃 and 𝑆,

(g) there are four letters between 𝑃 and 𝑆?

Solution 

The given word has 12 letters – two T’s and 10 different 

letters  

(a) Total number of arrangements is 
12!

2!
= 6 × 11! 

= 239500800 

(b) Out of above arrangements, 𝑃 comes before 𝑆 in half

the arrangements

Hence the required number of arrangements = 3 × 11!

= 119750400 

(c) As position of 𝑃 and 𝑆 is fixed, remaining 10 letters

(two T’s and eight other different letters) can be

arranged in 
10!

2!
= 5 × 9! ways

= 1814400 

(d) Considering two T’s as a block, we have to arrange 11

different things, which can be done in 11! ways

= 39916800 

(e) Considering the five vowels in given letter – E, U, A, I,

O as a block, we have 8 objects having 2 alike objects

(T’s). So this can be arranged in 
8!

2!
= 4 × 7! ways

Now within the block, 5 different vowels can be

arranged in 5! ways.

Hence, the required number of arrangements =

4 × 7! × 5! = 2419200

(f) The number of ways in which 𝑃 comes before 𝑆 and

there are exactly four letters between 𝑃 and 𝑆 is given

by

1 2 3 4 5 6 7 8 9 10 11 12 

𝑃 𝑆 

𝑃 𝑆 

𝑃 𝑆 

𝑃 𝑆 

𝑃 𝑆 

𝑃 𝑆 

𝑃 𝑆 

There are 7 such ways in which 𝑃 comes before 𝑆 and 

there are exactly 4 letters between 𝑃 and 𝑆.  
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=
10!

4! 6!
= 210 

(b) If two particular books are always selected. This means

two books are selected out of the remaining 8 books.

∴ required number of ways =  8𝐶2 =
8!

2!6!
= 28

(c) If two particular books are never selected

This means four books are selected out of the remaining

8 books.

∴ required number of ways =  8𝐶4 =
8!

4!4!
= 70

Example 52 

In how many ways can players for a cricket team of 11 (5 

batsmen, 3 all-rounders, 2 bowlers, 1 wicket keeper) be 

selected from a group of 25 players containing 10 batsmen, 

8 bowlers, 5 all-rounders and 2 wicket keepers? 

Solution 

The selection of the team is divided into 4 phases: 

i. selection of 5 batsmen out of 10. This can be done in

 10𝐶5 ways

ii. selection of 3 all-rounders out of 5. This can be done

in  5𝐶3 ways.

iii. selection of 2 bowlers out of 8. This can be done in
8𝑐2 ways

iv. selection of 1 wicket keeper out of 12. This can be

done in  2𝐶1 ways.

∴ The team can be selected in  10𝐶5 ×  5𝐶3 ×  8𝑐2 ×  2𝐶1

ways

= 252 × 10 × 28 × 2 = 141120 ways 

Example 53 

Find the number of ways of selecting 9 balls from 6 red 

balls, 5 white balls and 5 blue balls if each selection consists 

of 3 balls of each colour, assuming that the balls are of the 

same colour are distinguishable? 

Solution 

Since balls of the same colour are distinguishable, therefore, 

we have 6 different red balls, 5 different white balls and 5 

different blue balls. 

We are to make selection of 9 balls, consisting of 3 balls of 

each colour.  

The number of ways of selecting 3 red balls from 6 different 

red balls =  6𝐶3 = 20

The number of ways of selecting 3 white balls from 5 

different white balls =  5𝐶3 = 10

The number of ways of selecting 3 blue balls from 5 

different blue balls =  5𝐶2 = 10

∴ The required number of ways of selecting 9 balls  

= 20 × 10 × 10 = 2000 

Example 54 

How many committees of five persons with a chairperson 

can be selected from 12 persons? 

Solution 

First, we select a chairperson. Any one person out 12 

persons can be selected as chairperson. So, there are 12 

ways of selecting a chairperson. As committees of 5 persons 

are to be selected from 12 persons, so we have to select 4 or 

more persons from the remaining 11 persons and this can be 

done in  11𝐶4 ways.

∴ The required number of committees that can be formed  

= 12 ×  11𝐶4 = 12 × 330 = 3960

Example 55 

A boy has 3 library tickets and 8 books of his interest in the 

library. Of these 8 books, he does not want to borrow 

Principles of Applied Mathematics unless Principles of Pure 

Mathematics is also borrowed. In how many ways can he 

choose the three books to be borrowed? 

Solution 

We have the following mutually exclusive possibilities 

i. Boy borrows Principles of Applied Mathematics.

When the boy borrows Principles of Applied

Mathematics, then he borrows Principles of Pure

Mathematics also. So, he can borrow just one more book

out of the remaining 6 books.

The number of possible choices is  6𝐶1

ii. Boy does not borrow Principles of Applied Mathematics

When the boy does not borrow Principles of Applied

Mathematics, then he can borrow any 3 books out of the

remaining 7 books.

The number of possible choices is  7𝐶3

Hence, the total number of possible ways

=  6𝐶1 +  7𝐶3 = 6 + 35 = 41

Example 56 

From a class of 25 students, 10 are to be chosen for an 

excursion party. There are three students who decide that 

either all of them will join or none of them will join. In how 

many ways can the excursion party be chosen?  

Solution 

We have the following two mutually exclusive possibilities: 

i. When three particular students join the party

When three particular students join the party, we have

to choose 7 more students out of the remaining 22

students. This can be done in  22𝐶7 ways

ii. When three particular students do not join the party

When three particular students do not join the party,

the10 students out of the remaining 22 students. This

can be done in  22𝐶10 ways
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containing 6 questions. He is not permitted to attempt more 

than 5 questions from either section. Find the number of 

different ways of selecting the questions. 

Solution 

The different mutually exclusive possibilities are: 

i. 2 from section 𝐴 and 5 from section 𝐵

Number of ways =  6𝐶2 ×  6𝐶5 = 15 × 6 = 90

ii. 3 from section 𝐴 and 4 from section 𝐵

Number of ways =  6𝐶3 ×  6𝐶4 = 20 × 15 = 300

iii. 4 from section 𝐴 and 3 from section 𝐵

Number of ways =  6𝐶4 ×  6𝐶3 = 15 × 20 = 300

iv. 5 from section 𝐴 and 2 from section 𝐵

Number of ways =  6𝐶5 ×  6𝐶2 = 6 × 15 = 90

∴ Total number of ways of selecting these questions 

= 90 + 300 + 300 + 90 = 780 

Example 62 

Out of 6 boys and 4 girls, a committee of 5 is to be formed. 

In how many ways can this be done if  

(a) at least 2 girls are included?

(b) at most 2 girls are included?

Solution 

(a) including at least two girls

The different mutually exclusive possibilities are:

i. 2 girls and 3 boys

Number of ways =  4𝐶2 ×  6𝐶3 = 6 × 20 = 120

ii. 3 girls and 2 boys

Number of ways =  4𝐶3 ×  6𝐶2 = 4 × 15 = 60

iii. 4 girls and 1 boy

Number of ways =  4𝐶4 ×  6𝐶2 = 1 × 6 = 6

∴ Total number of ways = 120 + 60 + 6 = 186

(b) Including at most 2 girls, the different mutually

exclusive possibilities are

i. 5 boys and no girl

Number of ways =  6𝐶5 = 6

ii. 1 girl and 4 boys

Number of ways =  4𝐶1 ×  6𝐶4 = 4 × 15 = 60

iii. 2 girls and 3 boys

Number of ways =  4𝐶2 ×  6𝐶3 = 6 × 20 = 120

∴ Total number of ways = 6 + 60 + 120 = 186

Example 63 

A box contains two white, three black and four red balls. In 

how many ways can three balls be drawn from the box, if at 

least one black ball is to be included in the draw 

Solution 

Box contains 3 black balls and 6 non-black balls (2 white 

and 4 red). The different possibilities are  

i. 1 black ball, 2 non-black balls

ii. 2 black balls, 1 non-black ball

iii. 3 black balls

∴ The required number of ways 

=  3𝐶1 ×  6𝐶2 +  3𝐶2 ×  6𝐶1 +  3𝐶3

= 3 × 15 + 3 × 6 + 1 = 64 

Example 64 

A team of 8 players is to be chosen from a group of 12 

players. One of the 8 is then to be elected as captain and 

another as vice-captain. In how many ways can this be done? 

Solution 

The number of ways of choosing 8 players out of 12 players 

=  12𝐶8 = 495

Now out of the 8 players, any one player can be elected as a 

captain, so there are 8 ways of electing a captain. After 

electing a captain, 7 players are left and any one out of these 

can be elected as vice-captain, so there are 7 ways of 

selecting a vice captain. 

∴ The required number of ways = 495 × 8 × 7 = 27720 

Selection of 𝒓 objects from a group containing 𝒏 objects 

some of which are similar 

Example 65 

Find the number of different selections of 3 and 4 letters 

from the word NUMBERING 

Solution 

The word NUMBERING has 8 different letters 

(NUMBERIG) and one double letter (NN)  

(a) different selection of 3 letters

i. No doubles (All letters different)

NUMBERIG

Number of ways =  8𝐶3 = 56

ii. 1 double and 1 different letter

NN – UMBERIG

Number of ways =  7𝐶1 = 7

Total number of different selections = 56 + 7 = 63 

(b) Different selection of 4 letters

i. No doubles (All letters different)

NUMBERIG

Number of ways =  8𝐶4 = 70

ii. 1 double and 1 different letter

NN – UMBERIG

Number of ways =  7𝐶2 = 21

Total number of different selections = 70 + 21 = 91 

Example 66 

Find the number of different selections of 4 letters from the 

word STATISTICS 

Solution 

The word STATISTICS contains 5 single letters, 3 double 

letters and 2 treble letters.  

The single letters are STAIC 

The double letters are SS, TT, II 

The treble letters are SSS, TTT 
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Selections of any size from a group 

The number of possible selections of any size that can be 

made from a group of unlike things deserves special 

consideration.  

 

Example 75 

How many different selections can be made from four letters 

𝐴, 𝐵, 𝐶, 𝐷? 

Solution 

Method 1: 

Number of selections of 1 letter =  4𝐶1 = 4 

Number of selections of 2 letters =  4𝐶2 = 6 

Number of selections of 3 letters =  4𝐶3 = 4 

Number of selections of 4 letters =  4𝐶4 = 1 

Total number of possible selections = 4 + 6 + 4 + 1 = 15 

With a larger number of objects to select from, the above 

method can be hectic. 

 

Method 2:  

In any given selection, the letter 𝐴 is either included or not 

included i.e. there are 2 ways of dealing with this letter.  

Similarly, the letter 𝐵 is either included or not included and 

so there are 2 ways of dealing with this letter.  

Extending this to all the four letters, we see that there are 

2 × 2 × 2 × 2 ways of dealing with the letters, but this 

includes the case in which none of the letters is included, 

and this is not a selection. 

Thus number of selections = 24 − 1 = 15, as obtained in 

method 1. 

In general, there are 𝟐𝒓 − 𝟏 selections which can be made 

from 𝒓 unlike items 

 

Group containing repeated items  

If the group from which selections are to be made includes 

some repeated items. Suppose, for example that a group of 

letters includes 3 A’s. These can be dealt with in 4 ways i.e. 

either no A’s, 1A, 2A’s or 3A’s are included in a particular 

selection. The different letters can be considered as before 

 

Example 76 

How many different selections can be made from the letters 

of the word OSMOSIS? 

Solution 

There are 3S’s, 2O’s and 2 other different letters 

The S’s can be dealt with in 4 ways 

The O’s can be dealt with in 3 ways 

The 𝑀 and 𝐼 can be dealt with in 2 ways each 

Total number of selections = 4 × 3 × 22 − 1 = 47 

 

Example 77 

How many different selections can be made from the letters 

of the word INABILITY? 

Solution 

𝐼𝑁𝐴𝐵𝐼𝐿𝐼𝑇𝑌 = 𝐼3𝑁𝐴𝐵𝐿𝑇𝑌 

Number of selections = 4 × 26 − 1 = 255 

 

Self-Evaluation exercise  

1. If  𝑛𝐶12 =  𝑛𝐶8, find 𝑟 

[Ans: 20] 

2. If  𝑛𝑃𝑟 = 840,  𝑛𝐶𝑟 = 35, find the values of 𝑛 and 𝑟 

[Ans: 𝑛 = 7, 𝑟 = 4] 

3. A book club offers a choice of 20 books of which a 

member choose six. Find the number of different ways 

in which a member may make his choice 

Given that 12 of the 20 books on offer are novels and 

that the other 8 are biographies, find the number of 

different ways in which a member chooses 6 so that 

(a) he has 3 novels and 3 biographies  

(b) he has at least 4 biographies 

[Ans: 38760 (a) 12320 (b) 5320] 

4. Nine people are going to travel in two taxis. The larger 

has five seats, and the smaller has four. In how many 

ways can the party be split up?                     [Ans: 126] 

5. Twelve people are to travel by three cars, each of which 

holds four. Find the number of ways in which the party 

may be divided if two people refuse to travel in the same 

car.                                                                 [Ans: 252] 

6. In how many ways can a party of five people be selected 

from six men and four women so that there are always 

more men than women in the party? 

[Ans: 186] 

7. There are 10 articles, 2 of which are alike and the rest 

all different. In how many ways can selection of 5 

articles be made?  

[Ans: 182] 

8. We wish to select 6 persons from 8, but if the person 𝐴 

is chosen, then 𝐵 must be chosen. In how many ways 

can selections be made? 

[Ans: 22] 

9. In an examination, a student has to answer 4 questions 

out of 5 questions; questions 1 and 2 are however 

compulsory. Determine the number of ways in which 

the student can make the choice. 

[Ans: 3] 

10. A bag contains six white marbles and five red marbles. 

Find the number of ways in which four marbles can be 

drawn from the bag if  

(a) they can be of any colour  

(b) two must be white and two red 

(c) they must all be of the same colour  

[Ans: (a) 330 (b) 25 (c) 20] 

11. In how many ways can a football team of 11 players be 

selected from 16 players to  

(a) include 2 particular players? 
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Introduction 

The number system that we are aware of today is the gradual 

development from natural numbers to integers, from 

integers to rational numbers and from rational numbers to 

real numbers. 

If we consider the following polynomial equations (i) 𝑥 −

1 = 0, (ii) 𝑥 + 1 = 1, (iii) 𝑥2 − 3 = 0, we see that all of

them have solutions in the real number system. However, 

this real number system is not sufficient to solve equations 

of the form 𝑥2 + 9 = 0 i.e. there does not exist any real

number which satisfies 𝑥2 = −9. The mathematical need to

have solutions for equations of the above form led us to 

extend the real number system to a new kind of system that 

allows the square root of negative numbers. 

        Let us consider solution of a simple quadratic equation 

𝑥2 + 16 = 0. Its solutions are 𝑥 = ±4√−1. We assume that

square root of −1 is denoted by the symbol 𝑖, called the 

imaginary unit. Thus for any two real numbers 𝑎 and 𝑏, we 

can form a new number 𝑎 + 𝑖𝑏. This number 𝑎 + 𝑖𝑏 is called 

a complex number. 

The complex number system 

A complex number is of the form 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are 

real numbers and 𝑖 is called the imaginary unit, having the 

property that 𝑖2 = −1. If 𝑧 = 𝑎 + 𝑖𝑏, then 𝑎 is called the real

part of 𝑧, denoted by 𝑅𝑒(𝑧) and 𝑏 is called the imaginary 

part of 𝑧 and is denoted by 𝐼𝑚(𝑧). 

Some examples of complex numbers are 3 − 2𝑖, √2 + 3𝑖 

Note that 3 is the real part and −2 is the imaginary part and 

so on.  

Two complex numbers 𝑎 + 𝑖𝑏 and 𝑐 + 𝑖𝑑 are equal if and 

only if 𝑎 = 𝑐 and 𝑏 = 𝑑 i.e. the corresponding real parts are 

equal and the corresponding imaginary parts are equal.  

The real numbers can be considered as a subset of the set of 

complex numbers with 𝑏 = 0. Hence the complex numbers 

0 + 𝑖0 and −2 + 𝑖0 represent the real numbers 0 and −2 

respectively. If 𝑎 = 0 the complex number 0 + 𝑖𝑏 or 𝑖𝑏 is 

called a pure imaginary number. 

We further observe that higher powers (multiples of 𝑖) can 

be reduced to ±1 or ±𝑖. 

Since 𝑖2 = −1

𝑖3 = 𝑖2. 𝑖 = −𝑖

𝑖4 = 𝑖3. 𝑖 = −𝑖. 𝑖 = −𝑖2 = 1

𝑖5 = 𝑖4. 𝑖 = 𝑖

    and so on 

 

 

Example 1 

Write the following as complex numbers 

(a) √−35   (b) 3 − √−7

Solution 

(a) √−35 = √(−1) × 35 = √−1 .√35 = 𝑖√35

(b) 3 − √−7 = 3 − √−1 × √7 = 3 − 𝑖√7

Example 2 

Show that 𝑖9 + 2𝑖11 + 𝑖13 = 0

Solution 

𝑖9 + 2𝑖11 + 𝑖13 = 𝑖8. 𝑖 + 2𝑖10 . 𝑖 + 𝑖12. 𝑖

= (𝑖2)4. 𝑖 + 2(𝑖2)5. 𝑖 + (𝑖2)6. 𝑖

= (−1)4. 𝑖 + 2(−1)5. 𝑖 + (−1)6𝑖

= 𝑖 − 2𝑖 + 𝑖 = 0 

Example 3  

Simplify (2 + 𝑖)4 − (2 − 𝑖)4

Solution 

(2 + 𝑖)4 − (2 − 𝑖)4 

= 24 + 4 . 23𝑖 + 6 . 22𝑖2 + 4 . 2𝑖3 + 𝑖4

−(24 − 4 . 23𝑖 + 6. 22𝑖2 − 4 . 2𝑖3 + 𝑖4)

= 64𝑖 + 16𝑖3

      = 64𝑖 − 16𝑖 

      = 48𝑖 

Negative of a complex number  

If 𝑧 = 𝑎 + 𝑖𝑏 is a complex number then the negative of 𝑧 is 

denoted by −𝑧 and it is defined as −𝑧 = −𝑎 + 𝑖(−𝑏) 

Basic algebraic operations 

Addition  

(𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑) 

Subtraction 

(𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑) 

To perform the operations with complex numbers we can 

proceed as in the algebra of real numbers replacing 𝑖2 by −1

whenever it occurs.  

Multiplication 

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑖𝑏𝑐 + 𝑖2𝑏𝑑

= (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) 

Chapter 

11 
Complex Numbers 
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Conjugate of a complex number 

If 𝑧 = 𝑎 + 𝑖𝑏, then the conjugate of 𝑧 is denoted by 𝑧̅ or 𝑧∗

and is defined by  

𝑧̅ = 𝑎 − 𝑖𝑏 

Division 

In simplifying the division of two complex numbers, we 

multiply the numerator and denominator by the conjugate of 

the denominator. 

𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
=

𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
×

𝑐 − 𝑖𝑑

𝑐 − 𝑖𝑑
𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
=

𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
+ 𝑖 (

𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
) 

Operations with the conjugate 

Addition: 

𝑧 + 𝑧∗ = (𝑎 + 𝑖𝑏) + (𝑎 − 𝑖𝑏) = 2𝑎

Subtraction:  

𝑧 − 𝑧∗ = (𝑎 + 𝑖𝑏) − (𝑎 − 𝑖𝑏) = 2𝑖𝑏

Multiplication: 

𝑧𝑧∗ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2

Division: 

𝑧

𝑧∗
=

𝑎 + 𝑖𝑏

𝑎 − 𝑖𝑏
=

(𝑎 + 𝑖𝑏)(𝑎 + 𝑖𝑏)

(𝑎 − 𝑖𝑏)(𝑎 + 𝑖𝑏)

= (
𝑥2 − 𝑦2

𝑥2 + 𝑦2
) + 𝑖 (

2𝑥𝑦

𝑥2 + 𝑦2
) 

Properties of the conjugate of a complex number 

1. 𝑧𝑧̅ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎2 + 𝑏2 which is a non-

negative real number.

2. Conjugate of 𝑧̅ is 𝑧 i.e. 𝑧̿ = 𝑧

3. If 𝑧 is real, i.e. 𝑏 = 0 then 𝑧 = 𝑧̅

Conversely, if 𝑧̅ = 𝑧, i.e. 𝑎 + 𝑖𝑏 = 𝑎 − 𝑖𝑏, then 𝑏 = −𝑏

⇒ 2𝑏 = 0, ∴ 𝑏 = 0 ⇒ 𝑧 is real.

Thus 𝑧 is real ⇔ the imaginary part is 0

4. Let 𝑧 = 𝑎 + 𝑖𝑏, then 𝑧̅ = 𝑎 − 𝑖𝑏

𝑎 = 𝑅𝑒(𝑧) =
𝑧 + 𝑧̅

2
Similarly, 

𝑏 = 𝐼𝑚(𝑧) =
𝑧 − 𝑧̅

2𝑖
5. The conjugate of the sum of two complex numbers 𝑧1,

𝑧2 is the sum of their conjugates i.e.

𝑧1 + 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ + 𝑧2̅

Proof: 

Let 𝑧1 = 𝑎 + 𝑖𝑏 and 𝑧2 = 𝑐 + 𝑖𝑑, then

𝑧1 + 𝑧2 = (𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑)

𝑧1 + 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = (𝑎 + 𝑐) − 𝑖(𝑏 + 𝑑)

𝑧1̅ = 𝑎 − 𝑖𝑏, 𝑧2 = 𝑐 − 𝑖𝑑

𝑧1̅ + 𝑧2̅ = (𝑎 − 𝑖𝑏) + (𝑐 − 𝑖𝑑) = (𝑎 + 𝑐) − 𝑖(𝑏 + 𝑑)

= 𝑧1 + 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅

Similarly, it can be proved that the conjugate of the 

difference of two complex numbers 𝑧1, 𝑧2 is the

difference of their conjugates i.e.  

𝑧1 − 𝑧2̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑧1̅ − 𝑧2̅

6. The conjugate of the product of two complex numbers

𝑧1, 𝑧2 is the product of two complex numbers 𝑧1, 𝑧2 is

the product of their conjugates i.e.

𝑧1𝑧2̅̅ ̅̅ ̅ = 𝑧1̅𝑧2̅

Proof:  

Let 𝑧1 = 𝑎 + 𝑖𝑏 and 𝑧2 = 𝑐 + 𝑖𝑑, then

𝑧1𝑧2 = (𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐)

𝑧1𝑧2̅̅ ̅̅ ̅ = (𝑎𝑐 − 𝑏𝑑) − 𝑖(𝑎𝑑 + 𝑏𝑐)

𝑧1̅ = 𝑎 − 𝑖𝑏, 𝑧2̅ = 𝑐 − 𝑖𝑑

𝑧1̅𝑧2̅ = (𝑎 − 𝑖𝑏)(𝑐 − 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) − 𝑖(𝑎𝑑 + 𝑏𝑐)

= 𝑧1𝑧2̅̅ ̅̅ ̅̅

7. The conjugate of the quotient of two complex numbers

𝑧1, 𝑧2 (𝑧2 ≠ 0)  is the quotient of their conjugates i.e.

(
𝑧1

𝑧2

)
̅̅ ̅̅ ̅̅

=
𝑧1̅

𝑧2̅

The proof of this property is left for the readers to do it 

on their own. 

8. 𝑧𝑛̅ = (𝑧̅)𝑛

Example 4 

Find the complex conjugate of (i) 2 + 𝑖√7 (ii) −4 − 9𝑖 

Solution 

By definition, the complex conjugate is obtained by 

reversing the sign of the imaginary part of the complex 

number. Hence the required conjugates are  

(i) 2 − 𝑖√7 (ii) −4 + 9𝑖

Example 5 

Express the following in the form 𝑎 + 𝑖𝑏 

(a) (3 + 2𝑖) + (−7 − 𝑖)

(b) (8 − 6𝑖) − (2𝑖 − 7)

(c) (2 − 3𝑖)(4 + 2𝑖)

(d) 
5+5𝑖

3−4𝑖

Solution 

(a) (3 + 2𝑖) + (−7 − 𝑖) = 3 + 2𝑖 − 7 − 𝑖 = −4 + 𝑖

(b) (8 − 6𝑖) − (2𝑖 − 7) = 8 − 6𝑖 − 2𝑖 + 7 = 15 − 8𝑖

(c) (2 − 3𝑖)(4 + 2𝑖) = 8 + 4𝑖 − 12𝑖 − 6𝑖2 = 14 − 8𝑖

(d) 
5+5𝑖

3−4𝑖
=

5+5𝑖

3−4𝑖
×

3+4𝑖

3+4𝑖
=

15+20𝑖+15𝑖−20

32+42

=
−5 + 35𝑖

25
= −

1

5
+

7

5
𝑖 

Example 6 

What is the conjugate of 
√5 + 12𝑖 + √5 − 12𝑖

√5 + 12𝑖 − √5 − 12𝑖
? 
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On the Argand diagram, each complex number is 

represented by a line of a certain length in a particular 

direction. Thus each complex number is shown as a vector 

on the Argand diagram. 

Any complex number 𝑧 = 𝑥 + 𝑖𝑦 may be represented on an 

Argand diagram by  

either (a) the point 𝑃(𝑥, 𝑦) 

or      (b) the position vector 𝑂𝑃̅̅ ̅̅

The modulus of 𝑧, |𝑧|, is the length of 𝑂𝑃. The argument of 

𝑧, arg 𝑧, is the angle 𝜃 between 𝑂𝑃 and positive real axis, 

where −𝜋 < 𝜃 ≤ 𝜋 

|𝑧| = √𝑥2 + 𝑦2

arg 𝑧 = 𝜃 = tan−1 (
𝑦

𝑥
)

Note: When finding arg 𝑧 illustrate the point on an Argand 

diagram to ensure the correct solution of tan−1 (
𝑦

𝑥
)

For 𝑧 = −𝑥 + 𝑦𝑖 

arg 𝑧 = 𝜃 = 𝜋 − 𝛼 = 𝜋 − tan−1
𝑦

𝑥

For 𝑧 = 𝑥 − 𝑦𝑖 

arg 𝑧 = −𝜃 = − tan−1
𝑦

𝑥

For 𝑧 = −𝑥 − 𝑦𝑖 

arg 𝑧 = −𝜃 = −(𝜋 − 𝛼) = −(𝜋 − tan−1
𝑦

𝑥
) 

Polar form (modulus-argument form) 

The polar form of a complex number is  

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

where 𝑟 = 𝑂𝑃 and 𝑥𝑂̂𝑃 

|𝑧| = 𝑟, where 𝑟 ≥ 0 

arg 𝑧 = 𝜃, where −𝜋 < 𝜃 ≤ 𝜋 

𝑧∗ = 𝑟(cos 𝜃 − 𝑖 sin 𝜃) = 𝑟(cos(−𝜃) + 𝑖 sin(−𝜃)) 

|𝑧∗| = 𝑟  and arg 𝑧∗ = −𝜃

Results: 

1. For any two complex numbers 𝑧1 and 𝑧2

(a) |𝑧1𝑧2| = |𝑧1||𝑧2|

(b) arg(𝑧1𝑧2) = arg 𝑧1 + arg 𝑧2

Proof: 

If 𝑧1 = 𝑟1(cos 𝜃1 + 𝑖 sin 𝜃1) and 𝑧2 = 𝑟2(cos 𝜃2 +

𝑖 sin 𝜃2), then |𝑧1| = 𝑟1, arg 𝑧1 = 𝜃1 ; |𝑧2| = 𝑟2, arg 𝑧2 =

𝜃2

𝑧1𝑧2 = 𝑟1𝑟2(cos 𝜃1 + 𝑖 sin 𝜃1)(cos 𝜃2 + 𝑖 sin 𝜃2)

= 𝑟1𝑟2[cos 𝜃1 cos 𝜃2 − sin 𝜃1 sin 𝜃2

+ 𝑖(sin 𝜃1 cos 𝜃2 + cos 𝜃1 sin 𝜃2)]

= 𝑟1𝑟2[cos(𝜃1 + 𝜃2) + 𝑖 sin(𝜃1 + 𝜃2)]

∴ |𝑧1𝑧2| = 𝑟1𝑟2 = |𝑧1||𝑧2| and

arg(𝑧1𝑧2) = 𝜃1 + 𝜃2 = arg 𝑧1 + arg 𝑧2

Im 

Re 
𝜃 

𝑦 

𝑥 

𝑃(𝑥, 𝑦) 

𝑂 

Im 

Re 

𝜃 
𝑦 

𝑥 

𝑃(𝑥, 𝑦) 

𝛼 
𝑂 

Im 

Re 
−𝜃

𝑦 

𝑥 

𝑃(𝑥, 𝑦) 

𝑂 

Im 

Re 
−𝜃

𝑦 

𝑥 

𝑃(𝑥, 𝑦) 

𝑂 
𝛼 

Im 

Re 
𝜃 

𝑦 = 𝑟 sin 𝜃 

𝑥 = 𝑟 cos 𝜃 

𝑃(𝑥, 𝑦) 

𝑂 

𝜃 
−𝜃

𝑧 

𝑧∗

𝑃 

𝑃∗ 

𝑂 
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𝑎2 − 𝑏2 = −5 … (i)

2𝑎𝑏 = 12… (ii) 

Either find 𝑎 and 𝑏 by inspection  

or  𝑏 =
6

𝑎
 from (ii)

In (i); 𝑎2 −
36

𝑎2
= −5 

𝑎4 + 5𝑎2 − 36 = 0

(𝑎2 + 9)(𝑎2 − 4) = 0

𝑎 is real ⇒ 𝑎2 ≠ −9,  𝑎2 = 4, 𝑎 = ±2

In (ii), when 𝑎 = 2, 𝑏 = 3, when 𝑎 = −2, 𝑏 = −3 

𝑧1 = 2 + 3𝑖, 𝑧2 = −2 − 3𝑖

(b) |−5 + 12𝑖| = √52 + 122 = 13

|𝑧1| = √22 + 32 = √13

|𝑧2| = √(−2)2 + (−3)2 = √13

arg(−5 + 2𝑖) = 𝜋 − tan−1
12

5
= 1.966 radians 

arg(2 + 3𝑖) = tan−1
3

2
= 0.983 radians 

arg(−2 − 3𝑖) = − (𝜋 − tan−1
3

2
) = −2.159 radians 

Example 19 

Find the modulus and argument of 𝑧1 = 1 + 𝑖,  and 𝑧2 =

√3 − 𝑖. Hence, or otherwise, write down |𝑧1
14|, |𝑧2

3|, |𝑧1𝑧2|

and arg (
𝑧1

𝑧2
)

Solution 

|1 + 𝑖| = √12 + 12 = √2

arg 𝑧 = tan−1 (
1

1
) =

𝜋

4

|√3 − 𝑖| = √(√3)
2
+ 12 = 2

arg 𝑧2 = − tan−1 (
1

√3
) = −

𝜋

6

|𝑧1
14| = |𝑧1|

14 = (√2)
14

= 128

|𝑧2
3| = |𝑧2|

3 = 23 = 8

|𝑧1𝑧2| = |𝑧1||𝑧2| = 2√2

arg
𝑧1

𝑧2

= arg 𝑧1 − arg 𝑧2 =
𝜋

4
− (−

𝜋

6
) =

5𝜋

12

Geometric representation of operations 

Addition: 𝑧1 + 𝑧2

Subtraction: 𝑧1 − 𝑧2

Locus of a complex number  

If 𝑧 is a variable complex number, represented by the 

position vector 𝑂𝑍⃗⃗⃗⃗  ⃗, then the locus of 𝑍 under certain

conditions can be sketched. Some of the common loci are 

illustrated below. 

The locus of 𝑍 when |𝑧| = 𝑎 is a circle, centre 𝑂 radius 𝑎 

The locus of 𝑍 when |𝑧 − 𝑝| = 𝑎, where 𝑝 is a fixed 

complex number, is a circle, centre 𝑃, radius 𝑎 

Im 

Re 

𝑧1 

𝑧2

−5 + 12𝑖

2 
−2

12 

−5

−3

3 

𝑧1 

𝑧2 

 
𝑧1 + 𝑧2 

𝑧1 

𝑧2 
 𝑧1 − 𝑧2 

−𝑧2

Re 

Im 

𝑂 

𝑎 𝑍 

Locus of 

𝑍 

Re 

Im 

𝑂 

𝑎 

𝑃 

Locus of 

𝑍 

𝑝 

𝑧 

𝑍 
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Solutions of polynomial equations 

Consider the equation 𝑥2 − 4𝑥 + 7 = 0

The discriminant is 𝑏2 − 4𝑎𝑐 = (−4)2 − 4(7)(1) = −12

which is negative. 

Thus, the roots of this quadratic equation are not real. The 

roots are given by 

4 ± √−12

2
=

4 ± 2𝑖√3

2
= 2 ± 𝑖√3 

Thus we see that the roots 2 + 𝑖√3 and 2 − 𝑖√3 are 

conjugate to each other.  

Cube roots of unity 

Let 𝑥 be the cube root of unity, then 𝑥 = (1)
1

3

𝑥3 = 1

𝑥3 − 1 = 0

Now we can simplify 𝑥3 − 1 in two ways i.e. using the

binomial expansion or using long division. 

(a) using long division

Since 𝑥 = 1 is the root of the equation, 𝑥 − 1 is a factor

𝑥2 + 𝑥 + 1 

𝑥 − 1     𝑥3 − 1

− 𝑥3 − 𝑥2

𝑥2 − 1

− 𝑥2 − 𝑥

    𝑥 − 1  

− 𝑥 − 1

- -

∴ (𝑥3 − 1) = (𝑥 − 1)(𝑥2 + 𝑥 + 1)

(b) Using the binomial expansion

(𝑥 − 1)3 = 𝑥3 − 3𝑥2 + 3𝑥 − 1

(𝑥 − 1)3 = 𝑥3 − 1 − 3𝑥(𝑥 − 1)

𝑥3 − 1 = (𝑥 − 1)3 + 3𝑥(𝑥 − 1)

𝑥3 − 1 = (𝑥 − 1)[(𝑥 − 1)2 + 3𝑥]

𝑥3 − 1 = (𝑥 − 1)[𝑥2 − 2𝑥 + 1 + 3𝑥]

∴ (𝑥3 − 1) = (𝑥 − 1)(𝑥2 + 𝑥 + 1)

Now we solve 

(𝑥 − 1)(𝑥2 + 𝑥 + 1) = 0

𝑥 − 1 = 0 or 𝑥2 + 𝑥 + 1 = 0

Hence 𝑥 = 1and 𝑥 =
−1±√1−(4)(1)(1)

2
=

−1±√3𝑖

2

∴ cube roots of unity are 1, 
−1+√3𝑖

2
, 
−1−√3𝑖

2

Here again, the two complex roots 
1

2
(−1 + √3𝑖) and

1

2
(−1 − √3𝑖) are conjugate to each other.

       From the above two examples one can infer that in an 

equation with real coefficients, imaginary roots occur in 

pairs (i.e. one is the conjugate of the other). This paved way 

for the following theorem. 

If the complex number 𝒑 + 𝒒𝒊 is a root of a polynomial 

equation with real coefficients, then its conjugate, 𝒑 − 𝒒𝒊, 

is also a root. 

If 𝜔 is used to denote the complex root 
1

2
(−1 + √3𝑖), then

𝜔2 =
1

4
(−1 + √3𝑖)

2
=

1

4
(1 − 2√3𝑖 − 3)

=
1

2
(−1 − √3𝑖)

and this is the second complex cube root of unity.  

Hence we can write the three cube roots of unity in the form 

1, 𝜔, 𝜔2 where 𝜔 =
1

2
(−1 + √3𝑖)

It should be noted that (by definition) 𝜔3 = 1, that

𝜔4 = 𝜔 × 𝜔3 = 𝜔, 𝜔5 = 𝜔2 × 𝜔3 = 𝜔2, etc.

and that  

1 + 𝜔 + 𝜔2 = 1 + (−
1

2
+

√3

2
𝑖) + (−

1

2
−

√3

2
𝑖) = 0 

1 + 𝜔 + 𝜔2 = 0

These relations are often useful in working out some 

problems. 

Example 26 

If 𝜔 is one of the complex cube roots of unity, show that 

(1 + 𝜔2) = 𝜔

Solution 

From 1 + 𝜔 + 𝜔2 = 0

1 + 𝜔2 = −𝜔

(1 + 𝜔2)4 = (−𝜔)4 = 𝜔4 = 𝜔3 × 𝜔 = 1 × 𝜔 = 1

Example 27 

If 𝜔 is a complex cube root of unity, form the quadratic 

equation whose roots are 𝜔 and 1/𝜔.  

Solution 

Product of roots = 𝜔 ×
1

𝜔
= 1 

Sum of roots = 𝜔 +
1

𝜔
=

𝜔2 + 1

𝜔
=

−𝜔

𝜔
= −1 

𝑥2 − (sum)𝑥 + (product) = 0

Hence the required quadratic equation is  

𝑥2 + 𝑥 + 1 = 0

Example 28 

If 𝜔 is a complex cube root of unity and if 𝑥 = 𝑎 + 𝑏, 

𝑦 = 𝑎𝜔 + 𝑏𝜔2, 𝑧 = 𝑎𝜔2 + 𝑏𝜔4, show that

𝑥2 + 𝑦2 + 𝑧2 = 6𝑎𝑏

Solution 

𝑥2 = (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2

𝑦2 = (𝑎𝜔 + 𝑏𝜔2)2 = 𝑎2𝜔2 + 2𝑎𝑏𝜔3 + 𝑏2𝜔4 

= 𝑎2𝜔2 + 2𝑎𝑏 + 𝑏2𝜔

𝑧2 = (𝑎𝜔2 + 𝑏𝜔4)2 = 𝑎2𝜔4 + 2𝑎𝑏𝜔6 + 𝑏2𝜔8
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Since the remainder is zero, then 1 + 𝑖 is a root  

𝑧4 + 3𝑧2 − 6𝑧 + 10 = (𝑧2 + 2𝑧 + 5)(𝑧2 − 2𝑧 + 2) = 0 

𝑧2 + 2𝑧 + 5 = 0 

Completing the square  

𝑧2 + 2𝑧 + 1 = −4 

(𝑧 + 1)2 = −4 

𝑧 + 1 = ±√−4 

𝑧 + 1 = ±2𝑖 

𝑧 = −1 ± 2𝑖 

∴ The other roots are 1 − 𝑖, −1 + 2𝑖, −1 − 2𝑖 

 

De Moivre’s theorem and its applications 

When 𝑛 is a positive integer, De Moivre’s theorem states 

that  

(𝐜𝐨𝐬 𝜽 + 𝒊 𝐬𝐢𝐧 𝜽)𝒏 = 𝐜𝐨𝐬 𝒏𝜽 + 𝒊 𝐬𝐢𝐧 𝒏𝜽 

This can be proved by mathematical induction as follows; 

For 𝑛 = 1,  

L.H.S = (cos 𝜃 + 𝑖 sin 𝜃)1 = cos 𝜃 + 𝑖 sin 𝜃 

R.H.S = cos 𝜃 + 𝑖 sin 𝜃 

Since L.H.S = R.H.S, it is true for 𝑛 = 1 

Assume that the statement is true for 𝑛 = 𝑘 

⇒ (cos 𝜃 + 𝑖 sin 𝜃)𝑘 = cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃 

Now for 𝑛 = 𝑘 + 1, 

 (cos 𝜃 + 𝑖 sin 𝜃)𝑘+1 = (cos 𝜃 + 𝑖 sin 𝜃)𝑘(cos 𝜃 + 𝑖 sin 𝜃) 

                                = (cos 𝑘𝜃 + 𝑖 sin 𝑘𝜃)(cos 𝜃 + 𝑖 sin 𝜃) 

                                = cos 𝑘𝜃 cos 𝜃 − sin 𝑘𝜃 sin 𝜃 

                                         +𝑖(sin 𝑘𝜃 cos 𝜃 + cos 𝑘𝜃 sin 𝜃) 

                                = cos(𝑘 + 1)𝜃 + 𝑖 sin(𝑘 + 1)𝜃 

If then the theorem is true when 𝑛 = 𝑘, it is also true when 

𝑛 = 𝑘 + 1, hence by mathematical induction  

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃 

 

Negative integer 

Let 𝑚 be a negative integer and equal to −𝑛 (𝑛 is a positive 

integer)  

(cos 𝜃 + 𝑖 sin 𝜃)𝑚 = (cos 𝜃 + 𝑖 sin 𝜃)−𝑛   

=
1

(cos 𝜃 + 𝑖 sin 𝜃)𝑛
 

=
1

cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃
 (By theorem) 

=
cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃

(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃)(cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃)
 

=
cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃

cos2 𝑛𝜃 + sin2 𝑛𝜃
 

= cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃 

= cos(−𝑛)𝜃 + 𝑖 sin(−𝑛)𝜃 

= cos𝑚𝜃 + 𝑖 sin𝑚𝜃 

(cos 𝜃 + 𝑖 sin 𝜃)𝑚 = cos 𝑚𝜃 + 𝑖 sin 𝑚𝜃 

This shows that De Moivre’s theorem is also valid when 𝑛 

is a negative integer. 

 

Fraction (irrational integer) 

Let 𝑛 be a fraction and equal to 
𝑝

𝑞
, where 𝑞 is a positive 

integer and 𝑝 is any integer. 

Consider [cos
𝜃

𝑞
+ 𝑖 sin

𝜃

𝑞
]
𝑞

= cos 𝜃 + 𝑖 sin 𝜃 

Therefore cos
𝜃

𝑞
+ 𝑖 sin

𝜃

𝑞
 is such that its 𝑞th power is   

cos 𝜃 + 𝑖 sin 𝜃. 

Hence cos
𝜃

𝑞
+ 𝑖 sin

𝜃

𝑞
 is one of the values of                   

(cos 𝜃 + 𝑖 sin 𝜃)
1

𝑞 

Raise each of these quantities to the 𝑝th power. 

(cos
𝜃

𝑞
+ 𝑖 sin

𝜃

𝑞
)

𝑝

 is one of the values of                       

[(cos 𝜃 + 𝑖 sin 𝜃)
1

𝑞]
𝑝

 

i.e. cos
𝑝

𝑞
𝜃 + 𝑖 sin

𝑝

𝑞
𝜃 is one of the values of                    

(cos 𝜃 + 𝑖 sin 𝜃)
𝑝

𝑞. 

 

Properties  

1. (cos 𝜃 + 𝑖 sin 𝜃)−𝑛 = cos(−𝑛𝜃) + 𝑖 sin(−𝑛𝜃) 

                                = cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃 

2. (cos 𝜃 − 𝑖 sin 𝜃)𝑛 = [cos(−𝜃) + 𝑖 sin(−𝜃)]𝑛 

                              = cos(−𝑛𝜃) + 𝑖 sin(−𝑛𝜃) 

                              = cos 𝑛𝜃 − 𝑖 sin 𝑛𝜃 

3. (sin 𝜃 + 𝑖 cos 𝜃)𝑛 = [cos (
𝜋

2
− 𝜃) + 𝑖 sin (

𝜋

2
− 𝜃)]

𝑛

 

= cos 𝑛 (
𝜋

2
− 𝜃) + 𝑖 sin 𝑛 (

𝜋

2
− 𝜃) 

 

Example 34 

Simplify  

(cos 2𝜃 + 𝑖 sin 2𝜃)3(cos 3𝜃 − 𝑖 sin 3𝜃)−3

(cos 4𝜃 + 𝑖 sin 4𝜃)−6(cos 𝜃 + 𝑖 sin 𝜃)8
 

Solution 

The given expression  

=
(cos 𝜃 + 𝑖 sin 𝜃)6(cos 𝜃 + 𝑖 sin 𝜃)9

(cos 𝜃 + 𝑖 sin 𝜃)−24(cos 𝜃 + 𝑖 sin 𝜃)8
 

= (cos 𝜃 + 𝑖 sin 𝜃)6+9+24−8 

= (cos 𝜃 + 𝑖 sin 𝜃)31 

= cos 31𝜃 + 𝑖 sin 31𝜃 

 

Example 35 

Simplify:
(cos 𝜃 + 𝑖 sin 𝜃)4

(sin 𝜃 + 𝑖 cos 𝜃)5
 

Solution 

sin 𝜃 + 𝑖 cos 𝜃 = 𝑖(−𝑖 sin 𝜃 + cos 𝜃) = 𝑖(cos 𝜃 − 𝑖 sin 𝜃) 

(cos 𝜃 + 𝑖 sin 𝜃)4

(sin 𝜃 + 𝑖 cos 𝜃)5
= [

(cos 𝜃 + 𝑖 sin 𝜃)4

𝑖5(cos 𝜃 − 𝑖 sin 𝜃)5
] 
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32𝑖 sin5 𝜃 = 𝑧5 − 5𝑧3 + 10𝑧 −
10

𝑧
+

5

𝑧3
−

1

𝑧5

32𝑖 sin5 𝜃 = (𝑧5 −
1

𝑧5
) − 5 (𝑧3 −

1

𝑧3
) + 10 (𝑧 −

1

𝑧
) 

32𝑖 sin5 𝜃 = (2𝑖 sin 5𝜃) − 5(2𝑖 sin 3𝜃) + 10(2𝑖 sin 𝜃)

16 sin5 𝜃 = sin 5𝜃 − 5 sin 3𝜃 + 10 sin 𝜃

Example 40 

Find (√3 + 𝑖)
5
 using De Moivre’s theorem.

Solution 

Let 𝑧 = √3 + 𝑖 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

𝑟 = |√3 + 𝑖| = √3 + 1 = 2 

𝜃 = tan−1 (
1

√3
) =

𝜋

6

Therefore, we have 𝑧 = √3 + 𝑖 = 2 (cos
𝜋

6
+ 𝑖 sin

𝜋

6
) 

(√3 + 𝑖)
5
= 25 (cos

𝜋

6
+ 𝑖 sin

𝜋

6
)
5

Using De Moivre’s theorem 

(√3 + 𝑖)
5
= 32 (cos

5𝜋

6
+ 𝑖 sin

5𝜋

6
) 

= 32(−
√3

2
+

1

2
𝑖) 

= −16√3 + 16𝑖 

Example 41 

Find (−1 + 𝑖)−4 using De Moivre’s theorem

Solution 

Let 𝑧 = −1 + 𝑖 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

𝑟 = |−1 + 𝑖| = √(−1)2 + 12 = √2 

and 𝜃 = 𝜋 − tan−1 (
1

1
) =

3𝜋

4

Thus 𝑧 = −1 + 𝑖 = √2 (cos
3𝜋

4
+ 𝑖 sin

3𝜋

4
) 

(−1 + 𝑖)−4 = (√2)
−4

[cos (
3𝜋

4
) + 𝑖 sin (

3𝜋

4
)]

−4

Using De Moivre’s theorem 

(−1 + 𝑖)−4 =
1

(√2)
4
[cos(−3𝜋) + 𝑖 sin(−3𝜋)] 

=
1

4
[−1 + 0𝑖] 

= −
1

4

Roots of a complex number  

A number 𝜔 is called an 𝑛th root of a complex number 𝑧, if 

𝜔𝑛 = 𝑧 and we write 𝜔 = 𝑧
1

𝑛

Working rule to find the 𝒏th roots of a complex number 

1. Write the given number in polar form

2. Add 2𝑘𝜋 to the argument

3. Apply De Moivre’s theorem (bring the power to inside)

4. Put 𝑘 = 0, 1, …, 𝑛 − 1

Illustration  

Let 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 

= 𝑟[cos(2𝑘𝜋 + 𝜃) + 𝑖 sin(2𝑘𝜋 + 𝜃)] 

𝑧
1

𝑛 = [𝑟(cos(2𝑘𝜋 + 𝜃) + 𝑖 sin(2𝑘𝜋 + 𝜃))]
1

𝑛

= 𝑟
1
𝑛 [cos (

2𝑘𝜋 + 𝜃

𝑛
) + 𝑖 sin (

2𝑘𝜋 + 𝜃

𝑛
)] 

where 𝑘 = 0, 1, 2, …, (𝑛 − 1) 

Only these values of 𝑘 will give 𝑛 different values of 𝑧
1

𝑛

provided 𝑧 ≠ 0 

Note: 

1. The number of 𝑛th roots of a non-zero complex number

is 𝑛

2. The moduli of these roots are the same non-negative

real numbers.

3. The argument of these 𝑛 roots are equally spaced. That

is if 𝜃 is the principal value of arg 𝑧 i.e. −𝜋 ≤ 𝜃 ≤ 𝜋

then the arguments of other roots of 𝑧are obtained by

adding respectively 
2𝜋

𝑛
, 
4𝜋

𝑛
, …, 

𝜃

𝑛

4. If 𝑘 is given integral values greater than or equal to 𝑛,

these 𝑛 values are repeated and no fresh root is

obtained.

The 𝒏th roots of unity 

1 = (cos 0 + 𝑖 sin 0) = cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋 

𝑛th roots of unity = 1
1

𝑛 = (cos 2𝑘𝜋 + 𝑖 sin 2𝑘𝜋)
1

𝑛

= (cos
2𝑘𝜋

𝑛
+ 𝑖 sin

2𝑘𝜋

𝑛
) 

where 𝑘 = 0, 1, 2, …, 𝑛 − 1 

∴ The 𝑛th roots of unity are cos 0 + 𝑖 sin 0, cos
2𝜋

𝑛
+ 𝑖 sin

2𝜋

𝑛
, 

cos
4𝜋

𝑛
+ 𝑖 sin

4𝜋

𝑛
, ……..…., cos(𝑛 − 1)

2𝜋

𝑛
+ 𝑖 sin(𝑛 − 1)

2𝜋

𝑛

Im 

Re 𝜃 

1 

√3

√3 + 𝑖

Im 

Re 

𝜃 

1 

−1

−1 + 𝑖
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[Ans: (a) 1 + 3𝑖 (b) −𝑖 (c) −10 + 10𝑖 (d) 1] 

3. Find the real values of 𝑥 and 𝑦 for which the following

equations are satisfied.

(a) (1 − 𝑖)𝑥 + (1 + 𝑖)𝑦 = 1 − 3𝑖

(b) 
(1+𝑖)𝑥−2𝑖

3+𝑖
+

(2−3𝑖)𝑦+𝑖

3−𝑖
= 𝑖 

(c) √𝑥2 + 3𝑥 + 8 + (𝑥 + 4)𝑖 = 𝑦(2 + 𝑖)

[Ans: (a) 𝑥 = 2, 𝑦 = −1 (b) 𝑥 = 3, 𝑦 = −1 (c) 𝑥 = −7,

𝑦 = −3 and 𝑥 = −
8

3
, 𝑦 =

4

3
] 

4. For what values of 𝑥 and 𝑦 are the numbers −3 + 𝑖𝑥2𝑦

and 𝑥2 + 𝑦2 + 4𝑖 complex conjugate of each other?

[Ans: 𝑥 = ±1, 𝑦 = −4 and 𝑥 = ±2𝑖, 𝑦 = 1] 

5. Find the modulus and argument of 
1+2𝑖

3+4𝑖

[Ans: 1/√5, 0.1798] 

6. Find the modulus and argument of 𝑧1 =
2−𝑖

3𝑖−1
, 𝑧2 =

𝑖−3

2+𝑖

and of 𝑧1 + 𝑧2

[Ans: (i) 1/√2, 
5𝜋

4
(ii) √2, 

3𝜋

4
 (iii) 

1

2
√10, 2.82]

7. Given that 𝑓(𝑧) =
7−𝑧

1−𝑧2 where 𝑧 = 1 + 2𝑖, show that 

|𝑧| = 2|𝑓(𝑧)|

8. Find the real and imaginary parts of the complex

number 𝑧 when
𝑧

𝑧+1
= 1 + 2𝑖

[Ans: −1, 
1

2
] 

9. If 𝑧 = 𝑥 + 𝑦𝑖 and 𝑧̅ is the conjugate of 𝑧, find the values

of 𝑥 and 𝑦 such that

1

𝑧
+

2

𝑧̅
= 1 + 𝑖 

[Ans: 
3

10
, 

9

10
] 

10. Express in the form 𝑎 + 𝑖𝑏

(a) 
3−𝑖

2+𝑖

(b) 
4+3𝑖

2−𝑖

(c) (
1+𝑖

1−𝑖
)

2

[Ans: (a) 1 − 𝑖 (b) 1 + 2𝑖 (c) −1 + 10𝑖] 

11. If (𝑥 + 𝑦𝑖)2 = 𝑎 + 𝑏𝑖, show that 𝑥2 − 𝑦2 = 𝑎,

2𝑥𝑦 = 𝑏. Hence evaluate √8 + 6𝑖

[Ans: ±(3 + 𝑖)] 

12. Find two real numbers 𝑥 and 𝑦 so that

𝑥(3 + 4𝑖) − 𝑦(1 + 2𝑖) + 5 = 0 

[Ans: 𝑥 = −5, 𝑦 = −10] 

13. If (𝑥 + 𝑦𝑖)3 = 𝑎 + 𝑏𝑖, show that

𝑎2 + 𝑏2 = (𝑥2 + 𝑦2)3

14. If 𝑧 = 𝑥 + 𝑦𝑖, show that |𝑧|2 = 𝑧𝑧̅. Show that |
1

𝑧
| =

1

|𝑧|

15. If 𝑧 = 𝑧,̅ find the locus of the point represented by 𝑧

[Ans: 𝑦 = 0] 

16. If |𝑧 − 2| = |𝑧 + 2|, find the locus of the point

represented by 𝑧

[Ans: 𝑥 = 0] 

17. If |𝑧 − 3𝑖| = 2|𝑧 − 3|, find the locus of the point

represented by 𝑧.

[Ans: 𝑥2 + 𝑦2 − 8𝑥 + 2𝑦 + 9 = 0]

18. Find the modulus of the complex number

(2 − 3𝑖)(3 + 4𝑖)

(6 + 4𝑖)(16 − 8𝑖)

[Ans: 
5

34
] 

19. 𝑃 represents the variable complex number 𝑧. Find the

locus of 𝑃, if

(a) 𝐼𝑚 [
2𝑧+1

𝑖𝑧+1
] = −2 

(b) 𝑅𝑒 (
𝑧−1

𝑧+𝑖
) = 1 

(c) |2𝑧 − 3| = 2

(d) arg (
𝑧−1

𝑧+3
) =

𝜋

2

[Ans: (a) 𝑥 + 2𝑦 = 2 (b) 𝑥 + 𝑦 + 1 = 0 (c) 4𝑥2 +

4𝑦2 − 12𝑥 + 5 = 0 (d) 𝑥2 + 𝑦2 + 2𝑥 − 3 = 0]

20. Given that 𝑧 = √3 + 𝑖, find the modulus and argument

of

(a) 𝑧2, (b) 
1

𝑧

Show in an Argand diagram the points representing the 

complex numbers 𝑧, 𝑧2 and 
1

𝑧

[Ans: (a) 4 (cos
𝜋

3
+ 𝑖 sin

𝜋

3
) (b) 

1

2
[cos (−

𝜋

6
) + 𝑖 sin (−

𝜋

6
)] 

21. Show that if 𝑎, 𝑏, 𝑐, 𝑑 and 
𝑎+𝑏𝑖

𝑐+𝑑𝑖
 are real, then 𝑎𝑑 = 𝑏𝑐. 

Hence show that if 𝑧 = 𝑥 + 𝑦𝑖 and 
𝑧2+2𝑧

𝑧2+4
 is real, the 

point represented by 𝑧 lies on the real axis or on a 

certain circle. 

[Ans: Circle has equation 𝑥2 + 𝑦2 − 4𝑥 − 4 = 0]

22. Use De Moivre’s theorem to show that

(cos 3𝜃 + 𝑖 sin 3𝜃)5(cos 𝜃 − 𝑖 sin 𝜃)3

(cos 5𝜃 + 𝑖 sin 5𝜃)7(cos 2𝜃 − 𝑖 sin 2𝜃)5

= cos 13𝜃 − 𝑖 sin 13𝜃 

23. Use De Moivre’s theorem to show that

cos 4𝜃 = cos4 𝜃 − 6 cos2 𝜃 + sin4 𝜃

sin 4𝜃 = 4 cos3 𝜃 sin 𝜃 − 4 cos 𝜃 sin3 𝜃

24. One root of the equation 𝑥2 − 𝜆𝑥 − 𝜇 = 0 is 2 − 𝑖. Find

𝜆 and 𝜇.

[Ans: 𝜆 = 4, 𝜇 = −5] 

25. Given that 𝑧∗ is the conjugate of 𝑧 and 𝑧 = 𝑎 + 𝑏𝑖

where 𝑎 and 𝑏 are real, find the possible values of 𝑧 if

𝑧𝑧∗ − 2𝑖𝑧 = 7 − 4𝑖

[Ans: 2 + 𝑖, 2 − 3𝑖] 

26. If 1 − √3𝑖 is a root of 2𝑥3 − 5𝑥2 + 10𝑥 − 4 = 0, find

the other roots.
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𝑧3 − 11𝑧 + 20 = 0

find the remaining roots. 

[Ans: 2 − 𝑖, −4] 

51. Show that 1 + 𝑖 is a root of the equation 𝑥4 + 3𝑥2 −

6𝑥 + 10 = 0. Hence write down one quadratic factor

of 𝑥4 + 3𝑥2 − 6𝑥 + 10, and find all the other roots of

the equation.

[Ans: 𝑥2 − 2𝑥 + 2, 1 ± 𝑖, −1 ± 2𝑖]

52. By using De Moivre’s theorem, or otherwise, find the

roots of the equation 𝑧4 + 4 = 0.

Hence, or otherwise, express 𝑧4 + 4 as a product of two

quadratic polynomials in 𝑧 with real coefficients.

[Ans: ±(1 + 𝑖), ±(1 − 𝑖), (𝑥2 − 2𝑥 + 2)(𝑥2 + 2𝑥 + 2)]

53. If 𝑧1 and 𝑧2 are complex numbers, solve the

simultaneous equations 4𝑧1 + 3𝑧2 = 23, 𝑧1 + 𝑖𝑧2 =

6 + 8𝑖, giving both answers in the form 𝑥 + 𝑦𝑖.

[Ans: 2 + 3𝑖, 5 − 4𝑖] 

54. Given that 𝑧1 = 3 + 2𝑖 and 𝑧2 = 4 − 3𝑖,

(i) find 𝑧1𝑧2 and 
𝑧1

𝑧2
, each in the form 𝑎 + 𝑖𝑏; 

(ii) verify that |𝑧1𝑧2| = |𝑧1||𝑧2|

[Ans: (i) 18 − 𝑖, 
6

25
+

17

25
𝑖] 

55. Solve the equation 𝑧3 = 8

(a) by finding one root by inspection and hence solving

𝑧3 − 8 = 0 by an algebraic method,

(b) by expressing 𝑧 in modulus-argument form and

then using De Moivre’s theorem.

Illustrate the roots on an Argand diagram

[Ans: 2, −1 ± √3𝑖] 

56. If 𝑥 = 𝑎 + 𝑏, 𝑦 = 𝑎𝜔 + 𝑏𝜔2, 𝑧 = 𝑎𝜔2 + 𝑏𝜔, show

that

(a) 𝑥𝑦𝑧 = 𝑎3 + 𝑏3

(b) 𝑥3 + 𝑦3 + 𝑧3 = 3(𝑎3 + 𝑏3)

where 𝜔 is the complex cube root of unity.

57. Prove that if 𝜔3 = 1, then

1

1 + 2𝜔
−

1

1 + 𝜔
+

1

2 + 𝜔
= 0 

58. Find all the values of the following

(a) (𝑖)
1

3

(b) (8𝑖)
1

3

(c) (−√3 − 𝑖)
2

3

[Ans: (a) 
√3

2
+

1

2
𝑖, −

√3

2
+

1

2
𝑖, −𝑖 (b) √3 + 𝑖, −√3 + 𝑖, −2𝑖 

(c) −0.276 − 1.563𝑖, 1.492 + 0.543𝑖, −1.216 + 1.020𝑖]

59. Use De Moivre’s theorem to show that

sin 5𝜃 ≡ 16 sin5 𝜃 − 20 sin3 𝜃 + 5 sin 𝜃

60. Given that (cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos(𝑛𝜃) + 𝑖 sin(𝑛𝜃)

for a positive value of 𝑛 show that it is also true for 𝑛 a

negative integer.

61. If 𝑎 + 𝑖𝑏 is a root of the quadratic equation 𝑥2 + 𝑐𝑥 +

𝑑 = 0, show that 𝑎2 + 𝑏2 = 𝑑 and 2𝑎 + 𝑐 = 0.

62. Prove that the non-real cube roots of unity are −
1

2
±

√3

2
𝑖 

63. Show that for any complex numbers 𝑧 = 𝑧 + 𝑖𝑦 and

𝑤 = 𝑎 + 𝑏𝑖,

(a) (𝑧 + 𝑤)∗ = 𝑧∗ + 𝑤∗

(b) (𝑧𝑤)∗ = 𝑧∗𝑤∗

(c) (
𝑧

𝑤
)
∗

=
𝑧∗

𝑤∗

(d) (𝑧 − 𝑤)∗ = 𝑧∗ − 𝑤∗

(e) (𝑧2)∗ = (𝑧∗)2

(f) (𝑧∗)∗ = 𝑧

64. Verify that 𝑧 = −1 + √3𝑖 is a root of the equation 𝑧4 −

4𝑧2 − 16𝑧 − 16 = 0 and hence find the other roots.

[Ans: −1 − 𝑖√3, 1 ± √5] 

65. If 𝑧𝑛 + 𝑧−𝑛 = 2 cos(𝑛𝜃) show that 5𝑧4 − 𝑧3 − 6𝑧2 −

𝑧 + 5 = 0 ⇒ 10 cos2 𝜃 − cos 𝜃 − 8 = 0.

66. Show that cos 5𝜃 = 16 cos5 𝜃 − 20 cos3 𝜃 + 5 cos 𝜃,

and hence show that the roots of 𝑥(16𝑥4 − 20𝑥2 +

5) = 0 are 0, cos
𝜋

10
, cos

3𝜋

10
, cos

7𝜋

10
, cos

9𝜋

10

67. Given that 𝜔 is a complex root of the equation 𝑧5 − 1 =

0 and is such that it has the smallest positive argument,

show that 𝜔2, 𝜔3 and 𝜔4 are the other complex roots.

(a) Hence show that 1 + 𝜔 + 𝜔2 + 𝜔3 + 𝜔4 = 0

(b) Factorise 𝑧5 − 1 into real linear and quadratic

factors. Hence deduce that

(i) 2 (cos (
2𝜋

5
) + cos (

4𝜋

5
)) = −1 

(ii) 4 cos (
2𝜋

5
) cos (

4𝜋

5
) = −1 

68. Simplify

(cos 𝜃 + 𝑖 sin 𝜃)9(cos 3𝜃 + 𝑖 sin 3𝜃)−5

(cos(−2𝜃) + 𝑖 sin(−2𝜃))4

[Ans:  cos 2𝜃 + 𝑖 sin 2𝜃 ] 

69. Given that 𝑧1 =
−2+𝑖

1−3𝑖
and 𝑧2 =

−3+𝑖

2+𝑖
, find 

(a) arg (
𝑧1

𝑧2
) 

(b) |
𝑧1

𝑧2
| 

[Ans: (a) 
𝜋

2
 (b) 

1

2
] 

70. Show that 𝑧𝑛 + 𝑧−𝑛 = 2 cos 𝑛𝜃, where 𝑧 is a complex

number. Hence solve the equation 3𝑧4 + 2𝑧3 + 𝑧2 +

2𝑧 + 3 = 0

71. (a) If (3 + 𝑖)𝑧 = 4(2 − 𝑖), express 𝑧 and 𝑧2 in the form

𝑥 + 𝑖𝑦 where 𝑥 and 𝑦 are real.

(a) If 𝑎 =
3−𝑖

2+𝑖
, 𝑏 =

7+𝑖

2−3𝑖
, find the complex number 

𝑎+𝑏

𝑎−𝑏

(b) Find all complex numbers 𝑧, such that 𝑧4 + 3𝑧3 −

2𝑧2 + 3𝑧 + 1 = 0
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SECTION A 

1. A committee of seven people is to be selected from 4

men and 6 women. If the committee must have at least

two men, determine the total possible number of ways

of selecting the committee.

[2024, No. 1] 

2. The population of a country increases in a geometric

progression (G.P) by 2.75% per annum. Calculate the

number of years it will take for the population to double.

[2024, No. 5] 

3. Solve the inequality
7−2𝑥

(𝑥+1)(𝑥−2)
> 0

[2023, No. 5] 

4. Prove by induction that ∑ 𝑟2𝑛
𝑟=1 =

𝑛(𝑛+1)(2𝑛+1)

6

[2023, No. 1] 

5. Solve the simultaneous equations

2 log10 𝑦 = log10 2 + log10 𝑥

2𝑦 = 4𝑥

[2022, No. 1] 

6. Solve the inequality 
5−4𝑥

1−𝑥
< 3 

[2022, No. 5] 

7. (a) Express 𝑍 =
3+𝑖

1−𝑖
 in the form 𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 

are integers

(b) Find the argument of 𝑍

[2020, No. 2] 

8. In how many ways can the letters of the word

BUNDESLIGA be arranged if;

(a) there is no restriction?

(b) the vowels must be together?

[2020, No. 6] 

9. Show that the modulus of 
(1−𝑖)6

1+𝑖
= 4√2 

[2019, No. 1] 

10. Given that 𝛼 + 𝛽 =
−1

3
and 𝛼𝛽 =

2

3
, form a quadratic 

equation whose roots are 
𝛼

𝛽
and 

𝛽

𝛼
. 

[2019, No. 6] 

11. Express the function 𝑓(𝑥) = 𝑥2 + 12𝑥 + 32, in the

form 𝑎(𝑥 + 𝑏)2 + 𝑐.

Hence find the minimum value of the function 𝑓(𝑥).

[2018, No. 4: Ans: −4] 

12. Show that 2 log 4 +
1

2
log 25 − log 20 = 2 log 2 

[2018, No. 7] 

13. The coefficients of the first three terms of the expansion

of (1 +
𝑥

2
)

𝑛

 are in an Arithmetic progression (AP). Find

the value of 𝑛.                              [2017, No. 1: Ans: 8]

 

 

14. Solve for 𝑥 in the equation 42𝑥 − 4𝑥+1 + 4 = 0

[2017, No. 4: Ans: 
1

2
] 

15. Without using mathematical tables or a calculator, find

the value of

(√5 + 2)
2

− (√5 − 2)
2

8√5
[2016, No. 1: Ans: 1] 

16. Given that 2𝑥2 + 7𝑥 − 4, 𝑥2 + 3𝑥 − 4 and 7𝑥2 +

𝑎𝑥 − 8 have a common factor, find the:

(a) factors of 2𝑥2 + 7𝑥 − 4 and 𝑥2 + 3𝑥 − 4

(b) value of 𝑎 in 7𝑥2 + 𝑎𝑥 − 8

[2016, No. 5: Ans: 𝑎 = 26] 

17. The first term of an Arithmetic Progression (A.P) is

equal to the first term of a Geometric Progression (G.P)

whose common ratio is 1/3 and the sum to infinity is 9.

If the common difference of the A.P is 2, find the sum

of the first ten terms of the A.P.

[2015, No. 1: Ans: 150] 

18. Solve for 𝑥 in:

log𝑎(𝑥 + 3) +
1

log𝑥 𝑎
= 2 log𝑎 2

[2015, No. 3: Ans: 𝑥 = 1] 

19. Solve the simultaneous equations:

𝑥 − 2𝑦 − 2𝑧 = 0 

2𝑥 + 3𝑦 + 𝑧 = 1 

3𝑥 − 𝑦 − 3𝑧 = 3 

[2014, No. 1: Ans: 𝑥 = −2, 𝑦 = 3, 𝑧 = −4] 

20. Solve the equation √2𝑥 + 3 − √𝑥 + 1 = √𝑥 − 2

Verify your answer.

[2014, No. 6: Ans: 𝑥 = 3] 

21. Solve log𝑥 5 + 4 log5 𝑥 = 4

[2013, No. Ans: √5] 

22. In a Geometric Progression (G.P), the difference

between the fifth and the second term is 156. The

difference between the seventh and the fourth term is

1404. Find the possible values of the common ratio.

[2013, No. 2: Ans: 𝑟 = ±3] 

23. Solve the simultaneous equations

3𝑥 − 𝑦 + 𝑧 = 3, 

𝑥 − 2𝑦 + 4𝑧 = 3, 

2𝑥 + 3𝑦 − 𝑧 = 4. 

[2012, No. 1: Ans: 𝑥 = 1, 𝑦 = 1, 𝑧 = 1] 

24. The sum of the first 𝑛 terms of a Geometric Progression

(G.P) is 
4

3
(4𝑛 − 1). Find its 𝑛𝑡ℎ term as an integral

power of 2.                                [2012, No. 5: Ans: 22𝑛]
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52. By row reducing the appropriate matrix to echelon

form, solve the system of equations

𝑥 + 2𝑦 − 2𝑧 = 0 

2𝑥 + 𝑦 − 4𝑧 = −1 

4𝑥 − 3𝑦 + 𝑧 = 11 

[Nov 1998, No. 4: Ans: 𝑥 = 3, 𝑦 = 1, 𝑧 = 2] 

53. Solve simultaneously
1

𝑥
−

1

𝑦
=

1

6

𝑥(5 − 𝑥) = 2𝑦 

[Mar 1998, No. 1: Ans: (𝑥, 𝑦) = (9, −18) and (2, 3)] 

54. Prove that log6 𝑥 =
log3 𝑥

1+log3 2
. Hence given that log3 2 =

0.631, find without using tables or calculator log6 4

correct to 3 significant figures.

[Mar 1998, No. 2: Ans: 0.774] 

55. Find the values of 𝑘 for which the equation 
𝑥2−𝑥+1

𝑥−1
 has

repeated roots. What are the repeated roots? 

[1997, No. 2: Ans: 𝑘 = −1 or 3, repeated roots 0 and 2] 

56. By reducing to echelon form, solve the simultaneous

equations

𝑥 + 𝑦 + 𝑧 = 0 

𝑥 + 2𝑦 + 2𝑧 = 2 

2𝑥 + 𝑦 + 3𝑧 = 4 

[1997, No. 3: Ans: 𝑥 = −2, 𝑦 = −1, 𝑧 = 3] 

57. Solve 3(32𝑥) + 2(3𝑥) − 1 = 0

[1996, No. 1: Ans: −1] 

58. Express as equivalent fraction with a rational

denominator

√2

√2 + √3 − √5

[1996, No. 2: Ans: 
3+√6+√15

6
] 

59. Solve the inequality 
𝑥−1

𝑥−2
>

𝑥−2

𝑥+3

[1996, No. 3: Ans: −3 < 𝑥 <
7

6
  or 𝑥 > 2] 

60. Find how many terms of the series 1 +
1

5
+

1

52 +
1

53 + ⋯

must be taken so that the sum will differ from the sum 

to infinity by less than 10−6

[1996, No. 4: Ans: 9] 

61. Solve the simultaneous equations

2𝑥 − 5𝑦 + 2𝑧 = 14 

9𝑥 + 3𝑦 − 4𝑧 = 13 

7𝑥 + 3𝑦 − 2𝑧 = 3 

[1996, No. 5: Ans: 𝑥 = 1, 𝑦 = −4, 𝑧 = −4] 

SECTION B 

1. (a) Given that the polynomial 𝑥3 − 13𝑥 + 𝑝 is exactly

divisible by 𝑥 − 4, find the value of 𝑝.

Hence solve the equation 𝑥3 − 13𝑥 + 𝑝 = 0.

(b) Solve the inequality

𝑥2 − 𝑥 − 8

𝑥 + 3
≥

𝑥

2
[2024, No. 10] 

2. (a) The point 𝐶 n the complex plane corresponds to the

complex number 𝑧 such that 3|𝑧 − 2| = |𝑧 − 6𝑖|. Show

that the locus of 𝐶 is a circle.

(a) Find the square root of −5 + 12𝑖

[2014, No. 14] 

3. (a) Four different Mathematics books and six other

different books are to be arranged on a shelf. In how

many ways can the Mathematics books be arranged on

the shelf?

(b) On a certain day, Fatuma drunk 6 bottles of the 9

bottles of soda available. On the next day she drunk

5 bottles of the 7 bottles of soda available. In how

many ways could she have chosen the bottles of

soda to drink in the two days.

(c) Given that 𝐶𝑟
20 = 𝐶𝑟−2

20 , find the value of 𝑟. 

[2023, No. 12] 

4. (a) Solve the equation 𝑧3 − 7𝑍2 + 19𝑍 − 13 = 0

(b) Find the fourth roots of 8(−√3 + 𝑖)

[2023, No. 9] 

5. Expand (
1+3𝑥

1−𝑥
)

1

2
up to the term in 𝑥3

Hence substitute 𝑥 =
1

5
 to evaluate √8 correct to two 

decimal places. 

[2022, No. 12] 

6. (a) Given the geometric progression (G.P.) 2, 6, 18, 54,

… find the sum of the first ten terms of the G.P.

(b) In an arithmetic progression (A.P), the sum of the

fifth and sixteenth terms is 44. The sum of the first

18 terms is three times the sum of the first ten

terms. Determine the

(i) value of the first term

(ii) common difference of the A.P.

(iii) sum of the first 30 terms of the A.P

[2022, No. 9] 

7. (a) A polynomial 𝑃(𝑥) is given by 

𝑃(𝑥) = (𝑥 + 2)(𝑥 − 1)𝑄(𝑥) + (𝑎𝑥 + 𝑏) where 𝑄(𝑥) 

is the quotient and 𝑎𝑥 + 𝑏 is the remainder. When 𝑃(𝑥) 

is divided by 𝑥 − 1, the remainder is 4 and when 

divided by 𝑥 + 2, the remainder is 1. Find the values of 

𝑎 and 𝑏 

(b) (i) Expand (1 + 𝑥4)−
1

2 up to the fourth term

(ii) Use the first two terms of the expansion to find

the value of 
1

√144.0144
 correct to two significant

figures.

[2020, No. 9] 

8. (a) Solve the simultaneous equations:

2𝑥2 − 5𝑥𝑦 + 2𝑦2 = 0

𝑥 + 𝑦 = 6 
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[2013, No. 9: Ans: (a) (i) 2[cos 30° + 𝑖 sin 30°] (b) 

[1, 7] 

22. Given the equation 𝑥3 + 𝑥 − 10 = 0,

(a) show that 𝑥 = 2 is a root of the equation

(b) deduce the values of 𝛼 + 𝛽 and 𝛼𝛽 where 𝛼 and 𝛽

are other roots of the equation.

Hence form a quadratic equation whose roots are

𝛼2and 𝛽2.

[2013, No. 10: Ans: (b) −2, 5; 𝑥2 + 6𝑥 + 25 = 0]

23. If 𝑧 =
(2−𝑖)(5+12𝑖)

(1+2𝑖)2

(a) find the:

(i) modulus of 𝑧,

(ii) argument of 𝑧

(b) represent 𝑧 on a complex plane

(c) write 𝑧 in the polar form

[2012, No. 9: Ans: (a) (i) 5.814 (ii) −86.06° (c) 

5.814(cos 0.478𝜋 − 𝑖 sin 0.478𝜋)] 

24. Solve for 𝑥 in the following equations:

(a) 9𝑥 − 3𝑥+1 = 10

(b) log4 𝑥2 − 6 log𝑥 4 − 1 = 0

[2012, No. 15: Ans: (a) 1.465 (b) 16, 0.125] 

25. (a) The first term of an Arithmetic Progression (A.P) is

½. The sixth term of the A.P. is four times the fourth

term. Find the common difference of the A.P.

(b) The roots of a quadratic equation 𝑥2 + 𝑝𝑥 + 𝑞 = 0

are 𝛼 and 𝛽. Show that the quadratic equation whose

roots are 𝛼2 − 𝑞𝛼 and 𝛽2 − 𝑞𝛽 is given by

𝑥2 − (𝑝2 + 𝑝𝑞 − 2𝑞)𝑥 + 𝑞2(𝑞 + 𝑝 + 1) = 0

[2011, No. 9: Ans: (a) −
3

14
] 

26. (a) Form a quadratic equation having −3 + 4𝑖 as one

of its roots.

(b) Given that 𝑍1 = −1 + 𝑖√3 and 𝑍2 = −1 − 𝑖√3

(i) express 
𝑍1

𝑍2
 in the form 𝑎 + 𝑖√𝑏, where 𝑎 and 𝑏 

are real numbers. 

(ii) represent 
𝑍1

𝑍2
 on an Argand diagram. 

(iii) find |
𝑍1

𝑍2
| 

[2011, No. 10: Ans: (a) 𝑧2 + 6𝑧 + 25 = 0 (b) (i)

−
1

2
− 𝑖

√3

2
(iii) 1]

27. (a) Expand √(
1+𝑥

1−𝑥
) in ascending powers of 𝑥 to a term 

in 𝑥2

(b) (i) Using the expansion of (1 + 𝑥)
1

2 up to the term in 

𝑥3, find the value of √1.08 to 4 decimal places.

(ii) Express √1.08 in the form 
𝑎

𝑏
√𝑐. Hence evaluate

√3 correct to 3 significant figures.

[2010, No. 9: Ans: (a) 1 + 𝑥 +
1

2
𝑥2 (b) (i) 1.0392 (ii) 1.73]

28. (a) Given that the complex number 𝑍 and its conjugate

𝑍̅, satisfy the equation 𝑍𝑍̅ + 3𝑍̅ = 34 − 12𝑖, find the

values of 𝑍.

(b) Find the Cartesian equation of the locus of a point 𝑃

represented by the equation

|
𝑍 + 3

𝑍 + 2 − 4𝑖
| = 1 

[2010, No. 14: Ans: (a) (3 − 4𝑖), (−6 + 4𝑖) (b) 

8𝑦 + 2𝑥 = 11] 

29. (a) By using the Binomial theorem, expand (8 − 24𝑥)
2

3

as far as the 4𝑡ℎ term. Hence evaluate 4
2

3 to one decimal 

place. 

(b) Find the coefficient of 𝑥 in the expansion of

(𝑥 +
2

𝑥2)
10

[2009, No. 9: Ans: (a) 4 − 8𝑥 − 4𝑥2 −
16

3
𝑥3, 2.5 (b) 960]

30. (a) Given that
𝑖𝑥

1+𝑖𝑦
=

3𝑥+𝑖4

𝑥+3𝑦
, find the values of 𝑥 and 𝑦 

(b) If 𝑍 = 𝑥 + 𝑖𝑦, find the equation of the locus

|
𝑍+3

𝑍−1
| = 4 

[2009, No. 12:  Ans: (a) (𝑥, 𝑦) = (2, 1.5); (−2, −1.5) 

(b) 𝑥2 + 𝑦2 −
38

15
𝑥 +

7

15
= 0]

31. (a) Find the binomial expansion of (1 −
𝑥

2
)

5

. Use your 

expansion to estimate (0.875)5 to four decimal places.

(b) A financial credit society gives a 2% compound

interest per annum to its members. If Ochola

deposits shs 100,000 at the beginning of every year

starting with 2004, how much would he collect at

the end of 2008 if there are no withdrawals within

this period?

[2008, No. 15: Ans: (b) shs. 530812] 

32. (a) The function 𝑓(𝑥) = 𝑥3 + 𝑝𝑥2 − 5𝑥 + 𝑞 has a

factor (𝑥 − 2) and has a value of 5 when 𝑥 = −3.  Find

𝑝 and 𝑞.

(b) The roots of the equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 are 𝛼

and 𝛽. Form the equation whose roots are 
𝛼

𝛽
 and 

𝛽

𝛼
.

(c) Simplify:
√3−2

(2√3+3)
 in the form 𝑝 + 𝑞√3 where 𝑝, 𝑞 

are rational numbers. 

[2007, No. 9: Ans: (a) 𝑝 = 3, 𝑞 = −10 (b) 𝑎𝑐𝑥2 −

(𝑏2 − 2𝑎𝑐)𝑥 + 𝑎𝑐 = 0 (c) 4 −
7

3
√3]

33. (a) What is the smallest number of terms of the

Geometric Progression (G.P) 5, 10, 20, … that can give

a sum greater that 500,000?

(b) Prove by induction ∑
1

𝑟(𝑟+1)
𝑛
𝑟=1 =

𝑛

𝑛+1

(c) Solve simultaneously: 𝑎3 + 𝑏3 = 26 and 

𝑎 + 𝑏 = 2 

[2007, No. 14: Ans: (a) 17 (c) (𝑎, 𝑏) = (−1, 3) or 

(3, −1)] 
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34. (a) Express the complex numbers 𝑍1 = 4𝑖 and 𝑍 = 2 −

2𝑖 in the trigonometric form 𝑟(cos 𝜃 + 𝑖 sin 𝜃).

Hence or otherwise evaluate 
𝑍1

𝑍2
2

(b) Find the values of 𝑥 and 𝑦 in

𝑥

2 + 3𝑖
−

𝑦

3 − 2𝑖
=

6 + 2𝑖

1 + 8𝑖
[2006, No. 9: Ans: (a) 𝑧1 = 4(cos 90° + 𝑖 sin 90°),

𝑧2 = 2√2(cos(−45°) + 𝑖 sin(−45°)), −
1

2
(b) 𝑥 =

2.8, 𝑦 = 0.4] 

35. (a) Expand (𝑎 + 𝑏)4. Hence find (1.996)4, correct to 3

decimal places

(b) A credit society gives out a compound interest of

4.5% per annum. Muggaga deposits shs 300,000 at

the beginning of each year. How much money will

he have at the end of 4 years, if there are no

withdrawals during this period?

[2006, Ans: (b) Shs. 1,341,212.917 ] 

36. (a) Determine the Binomial expansion of (1 +
𝑥

2
)

4

Hence evaluate (2.1)4 correct to 2 decimal places

(b) A geometric progression (G.P) has a common ratio

𝑟 < 1, 𝑢1 = 15 and 𝑆∞ = 22.5, where 𝑆∞ is the sum

to infinity and 𝑢1, the first term. Find the:

(i) value of 𝑟,

(ii) ratio of 𝑢2: 𝑢3

[2005, No. 11: Ans: (b) (i) 
1

3
(ii) 3: 1]

37. (a) Solve the equations
4𝑥−3𝑦

4
=

2𝑦−𝑥

3
=

𝑧+4𝑦

2
and

6𝑥 + 6𝑦 + 2𝑧 = 6

(b) Given the polynomial 𝑓(𝑥) = 𝑄(𝑥)g(𝑥) + 𝑅(𝑥),

where 𝑄(𝑥) is the quotient, g(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽)

and 𝑅(𝑥) the remainder, show that

𝑅(𝑥) =
(𝑥 − 𝛽)𝑓(𝛼) + (𝛼 − 𝑥)𝑓(𝛽)

𝛼 − 𝛽

when 𝑓(𝑥) is divided by g(𝑥) 

Hence find the remainder when 𝑓(𝑥) is divided by 

𝑥2 − 9, given that 𝑓(𝑥) divided by (𝑥 − 3) is 2 and

when divided by 𝑥 + 3 is −3. 

[2005, No. 14: Ans: (a) 𝑥 =
17

15
, 𝑦 =

16

15
, 𝑧 = −

18

5

(b) 
5𝑥−3

6
] 

38. (a) Find 𝑛 if  𝑛𝑃4 = 30 𝑛𝐶5

(b) How many arrangements can be made from the

letters of the name MISSISSIPPI,

(i) when all the letters are taken at a time?

(ii) if the two letters P begin every word

(c) Find the number of ways in which a senior six

Mathematics student can choose one or more of the

four girls in the Mathematics class to join a

discussion group.

[2004, No. 9: Ans: (a) 8 (b) (i) 34650 (ii) 630 (c) 15] 

39. (a) Without using tables or calculators, simplify

(cos
𝜋

17
+ 𝑖 sin

𝜋
17

)
8

(cos
𝜋

17
+ 𝑖 sin

𝜋
17

)
9

(b) Given that 𝑥 and 𝑦 are real, find the values of 𝑥 and

𝑦 which satisfy the equation:

2𝑦 + 4𝑖

2𝑥 + 𝑦
−

𝑦

𝑥 − 𝑖
= 0 

[2004, No. 15: Ans: (a) −1 (b) (𝑥, 𝑦) = (−1, −2) or 

(1, 2)] 

40. (a) Given the inequalities 𝑦 > 𝑥 − 5 and 0 < 𝑦 <
6

𝑥
, 

Illustrate graphically by shading out the unwanted 

regions. 

(b) Solve the simultaneous equations

𝑥𝑦 + 2𝑥 = 5 

9𝑥 = 𝑦 + 6 

Illustrate your solutions on a graph 

[2003, No. 10: Ans: (b) (𝑥, 𝑦) = (1, 3) or (−
5

9
, −1)] 

41. (a) Use De Moivres theorem to express tan 5𝜃 in terms

of tan 𝜃

(b) Solve the equation 𝑧3 + 1 = 0

[2003, No. 12: Ans: (a) 
5 tan 𝜃−10 tan3 𝜃+tan5 𝜃

1−10 tan2 𝜃+5 tan4 𝜃
(b) −1,

1−𝑖√3

2
] 

42. (a) The tenth term of an arithmetic progression (A.P) is

29 and the fifteenth term is 44. Find the value of the

common difference and first term.

Hence find the sum of the first 60 terms.

(b) A cable 10 m long is divided into ten pieces whose

lengths are in a geometric progression. The length of

the longest piece is 8 times the length of the shortest

piece. Calculate to the nearest centimeter the length

of the third piece.

[2002, No. 9: Ans: (a) 2, 3; 5430 (b) 45 cm] 

43. (a) Find the equation whose roots are −1 ± 𝑖, where,

𝑖 = √−1.

(b) Find the sum of the first 10 terms of the series 1 +

2𝑖 − 4 − 8𝑖 + 16 + ⋯ in the form 𝑎 + 𝑏𝑖, where 𝑎

and 𝑏 are constants and 𝑖 = √−1

(c) Prove by induction that (cos 𝜃 + 𝑖 sin 𝜃)𝑛 =

cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃

[2002, No. 13: Ans: (a) 𝑧2 + 2𝑧 + 2 = 0 (b) 205 +

410𝑖] 

44. (a) Use De Moivres’ theorem or otherwise to simplify

(cos 𝜃 + 𝑖 sin 𝜃)(cos 2𝜃 + 𝑖 sin 2𝜃)

cos
𝜃
2

+ 𝑖 sin
𝜃
2

(b) Express
𝑖

4+6𝑖
 in modulus-argument form 

(c) Solve (𝑧 + 2𝑧∗)𝑧 = 5 + 2𝑧, where 𝑧∗ is the

complex conjugate of 𝑧
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[2001, No. 9: Ans: (a) cos (
5𝜃

2
) + 𝑖 sin (

5𝜃

2
) (b) 

0.1387[cos(0.187𝜋) + 𝑖 sin(0.187𝜋) (c) 1 ± 2𝑖] 

45. (a) It can be proved by induction that, for all positive 𝑛

13 + 23 + 33 + ⋯ + 𝑛3 =
1

4
𝑛2(𝑛 + 1)2

From this result, deduce that  

(𝑛 + 1)3 + (𝑛 + 2)3 + ⋯ (2𝑛)3 =
1

4
𝑛2(3𝑛 + 1)(5𝑛 + 3)

(b) A man deposits sh.800, 000 into his savings account

on which interest is 15% per annum. If he makes no

withdrawals, after how many years will his balance

exceed sh. 8 million?

[2001, No. 10: Ans: (b) 16.5 years] 

46. (a) The nth term of a series is 𝑈𝑛 = 𝑎3𝑛 + 𝑏𝑛 + 𝑐.

Given that 𝑈1 = 4, 𝑈2 = 13 and 𝑈3 = 46, find the

values of 𝑎, 𝑏 and 𝑐.

(b) If 𝛼 and 𝛽 are the roots of the equation 𝑥2 − 𝑝𝑥 +

𝑞 = 0, find the equation whose roots are 
𝛼3−1

𝛼
 and

𝛽3−1

𝛽

[2000, No. 9: Ans: (a) 𝑎 = 2, 𝑏 = −3, 𝑐 = 1    (b) 

𝑞𝑥2 − (𝑝2𝑞 − 2𝑞2 − 𝑝)𝑥 + 𝑞3 − 𝑝3 + 3𝑝𝑞 + 1 = 0]

47. (a) Prove by induction that 2𝑛 + 32𝑛−3 is always

divisible by 7 for 𝑛 ≥ 2

(b) Expand (1 −
𝑥

3
)

1

2
as far as the term in 𝑥2. Hence

evaluate √8, correct to three decimal places. 

[2000, No. 10: Ans: (b) 1 −
𝑥

6
−

𝑥2

72
− ⋯ , 2.829]

48. (a) Solve the equation 2(32𝑥) − 5(3𝑥) + 2 = 0

(b) The equations of three planes 𝑃1, 𝑃2 and 𝑃3 are

2𝑥 − 𝑦 + 3𝑧 = 3, 3𝑥 + 𝑦 + 2𝑧 = 7 and     

𝑥 + 7𝑦 − 5𝑧 = 13 respectively. Determine where

the three planes meet.

[1999, No. 10: Ans: (a) ±0.6309 (b) (−2, 5, 4)] 

49. If 𝑧 is a complex number, describe and illustrate on the

Argand diagram the locus given by each of the

following:

(i) |
𝑧+𝑖

𝑧−2
| = 3  (ii) Arg (𝑧 + 3) =

𝜋

6

[1999, No. 10: Ans: (i) 8𝑥2 + 8𝑦2 − 2𝑦 − 36𝑥 + 35 = 0,

centre (
9

4
,

1

8
), 𝑟 = 0.8385 (ii) 𝑦 =

𝑥√3

3
+ √3]

50. (a) Given that 𝑍1 = −𝑖 + 1, 𝑍2 = 2 + 𝑖 and 𝑍3 = 1 +

5𝑖, represent 𝑍2𝑍3, 𝑍2 − 𝑍1 and 
1

𝑍1
 on the Argand

diagram. Also show the representation of 
𝑍2𝑍3

𝑍2−𝑍1
+

1

𝑍1

(b) Prove that for positive integer 𝑛,

(cos 𝜃 + 𝑖 sin 𝜃)𝑛 = cos 𝑛𝜃 + 𝑖 sin 𝑛𝜃.

Deduce that this formula is also true for negative

values of 𝑛

[Nov 1998, No. 9] 

51. (a) Solve 4𝑥 − 2𝑥+1 − 15 = 0

(b) Five million shillings are invested each year at a rate

of 15% interest. In how many years will it

accumulate to more than sh. 50 million?

[Nov 1998, No. 10: Ans: (a) 2.3219 (b) 6 years] 

52. (a) When 𝑓(𝑥) = 𝑥3 − 𝑎𝑥 + 𝑏 is divided by 𝑥 + 1, the

remainder is 2 and 𝑥 + 2 is a factor of 𝑓(𝑥). Find 𝑎 and

𝑏.

(b) If the roots of the equation 𝑥2 + 2𝑥 + 3 = 0 are 𝛼

and 𝛽, form the equation whose roots are 𝛼2 − 𝛽

and 𝛽2 − 𝛼

[Mar 1998, No. 9: Ans: (a) 𝑎 = 5, 𝑏 = −2 (b) 𝑥2 + 2 = 0]

53. (a) Show the region represented by |𝑧 − 2 + 𝑖| < 1 on

an Argand diagram

(b) Express the complex number 𝑧 = 1 − √3𝑖 in

modulus argument form and hence find 𝑧2 and 
1

𝑧
 in

the form 𝑎 + 𝑏𝑖

[Mar 1998, No. 10: Ans: (b) 𝑧 = 2 [cos (−
𝜋

3
) + 𝑖 sin (−

𝜋

3
)] 

𝑧2 = −2 − 2√3𝑖 , 
1

𝑧
=

1

4
+

𝑖√3

4
 ] 

54. (a) If log𝑏 𝑎 = 𝑥, show that 𝑏 = 𝑎
1

𝑥 and deduce that 

log𝑎 𝑏 =
1

log𝑏 𝑎

(b) Solve

(i) log𝑛 4 + log4 𝑛2 = 3

(ii) 22𝑥−1 +
3

2
= 2𝑥+1

[1997, No. 9: Ans: (b) (i) 2, 4 (ii) 0, 1.585]

55. (a) Given the complex numbers 𝑧1 = 1 − 𝑖, 𝑧2 = 7 + 𝑖

represent 𝑧1𝑧2 and 𝑧1 − 𝑧2 on the Argand diagram.

Determine the modulus and argument of 
𝑧1−𝑧2

𝑧1𝑧2

(b) If 𝑧 is a complex number in the form (𝑎 + 𝑏𝑖), solve

(
𝑧−1

𝑧+1
)

2

= 𝑖

[1997, No. 10: Ans: (a) 0.6325, −124.7° (b) 𝑧 = 1 ± 𝑖√2] 

56. (a) Find 𝑥 if log𝑥 8 − log𝑥2 16 = 1

(b) The sum of 𝑝 terms of an arithmetic progression is

𝑞 and the sum of 𝑞 terms is 𝑝; find the sum of 𝑝 + 𝑞

terms.

[1996, No. 9: Ans: (a) 2 (b) −(𝑝 + 𝑞)] 

57. (a) Given that 𝑧 = √3 + 𝑖, find the modulus and

argument of (i) 𝑧2   (ii) 
1

𝑧

(iii) show in an Argand diagram the points representing

complex numbers 𝑧, 𝑧2 and 
1

𝑧

(b) In an Argand diagram, 𝑃 represents a complex

number 𝑧 such that 2|𝑧 − 2| = |𝑧 − 6𝑖|

Show that 𝑃 lies on a circle; find

(i) the radius of this circle

(ii) the complex number represented by its centre

[1996, No. 10: Ans: (a) (i) 4, 
𝜋

3
 (ii) 

1

2
, 

−𝜋

6
(b) (i) 3𝑥2 − 16𝑥 +

3𝑦2 + 12𝑦 − 20 = 0, 4.2164 units (ii)  
8

3
− 2𝑖]
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(b) Express 2𝑥3 + 5𝑥2 − 4𝑥 − 3 in the form (𝑥2 +

𝑥 − 2)𝑄(𝑥) + 𝐴𝑥 + 𝐵; where 𝑄(𝑥) is a polynomial

in 𝑥 and 𝐴 and 𝐵 are constants. Determine the values

of A and 𝐵 and the expression 𝑄(𝑥).

[1993, No. 2: Ans: (a) 𝑎 = 4, 𝑏 = −12, 𝑐 = 9, 

(2𝑝 − 3), (2𝑝 − 3) (b) 𝐴 = −3, 𝐵 = 3, 2𝑥 + 3] 

70. (a) (i) Show that ln 2𝑟, 𝑟 = 1, 2, 3 is an arithmetic

progression.

(ii) Find the sum of the first 10 terms of the

progression

(iii) Determine the least value of 𝑚 for which the

sum of the first 2𝑚 terms exceeds 883.7.

(b) Given that the equations 𝑦2 + 𝑝𝑦 + 𝑞 = 0 and

𝑦2 + 𝑚𝑦 + 𝑘 = 0 have a common root. Show that

(𝑞 − 𝑘)2 = (𝑚 − 𝑝)(𝑝𝑘 − 𝑚𝑞)

[1993, No. 3: Ans: (a) (ii) 38.12 (iii) 25] 

71. Solve the simultaneous equations

𝑧1 + 𝑧2 = 8

4𝑧1 − 3𝑖𝑧2 = 26 + 8𝑖

Using the values of 𝑧1 and 𝑧2, find the modulus and

argument of 𝑧1 + 𝑧2 − 𝑧1𝑧2

[1993; Ans: 𝑧1 = 8 + 2𝑖; 𝑧2 = −2𝑖]
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THE GRADIENT 

Gradient of a straight line is a measure of its slope with 

respect to 𝑥-axis. Gradient is defined as  

the increase in 𝑦 divided by the increase in 𝑥 between one 

point and another point on the line.  

In general, the gradient of the line passing through 𝐴(𝑥1, 𝑦1)

and 𝐵(𝑥2, 𝑦2) is

the increase in 𝑦

the increase in 𝑥
=

𝑦2 − 𝑦1

𝑥2 − 𝑥1

As the gradient of a straight line is the increase in 𝑦 divided 

by the increase in 𝑥 from one point on the line to another. 

   gradient measures the increase in 𝑦 per unit increase in 𝑥, 

i.e. the rate of increase of 𝑦 with respect to 𝑥.

From the examples below, the gradient of a line may be 

positive or negative  

A positive gradient indicates an ‘uphill’ slope with respect 

to the positive direction of the 𝑥-axis i.e. the line makes an 

acute angle with the positive sense of the 𝑥-axis. 

A negative gradient indicates a ‘downhill’ slope with respect 

to the positive direction of the 𝑥-axis i.e. the line makes an 

obtuse angle with the positive sense of the 𝑥-axis. 

Parallel lines 

If 𝐿1 and 𝐿2 are parallel lines, they are equally inclined to

the positive direction of the 𝑥-axis i.e.  

parallel lines have equal gradients 

Perpendicular lines  

Consider the perpendicular lines 𝐴𝐵 and 𝐶𝐷 whose 

gradients are 𝑚1 and 𝑚2 respectively.

If 𝐴𝐵, makes an angle 𝜃 with the 𝑥-axis, then 𝐶𝐷 makes an 

angle 𝜃 with the 𝑦-axis. Therefore triangles 𝑃𝑄𝑅 and 𝑃𝑆𝑇 

are similar. 

Now the gradient of 𝐴𝐵 is 
𝑆𝑇

𝑃𝑆
= 𝑚1

and the gradient of 𝐶𝐷 is −
𝑃𝑄

𝑄𝑅
= 𝑚2, i.e. 

𝑃𝑄

𝑄𝑅
= −𝑚2

But 
𝑆𝑇

𝑃𝑆
=

𝑄𝑅

𝑃𝑄
 (triangles 𝑃𝑄𝑅 and 𝑃𝑆𝑇 are similar) 

therefore 𝑚1 = −
1

𝑚2
or 𝑚1𝑚2 = −1 i.e.

the product of the gradients of perpendicular lines is −1, or, 

if one line has gradient 𝑚, any line perpendicular to it has 

gradient −
1

𝑚

Intercept of a line on the axes 

1. Intercept of a line on 𝑥-axis.

If a line cuts 𝑥-axis at a point (𝑎, 0), then 𝑎 is called the

intercept of the line on 𝑥-axis. |𝑎| is called the length of the

𝑦 

𝑥 
𝑂 

𝑥2 − 𝑥1 

𝑦2 − 𝑦1 
𝜃 

𝑦 

𝑥 
𝑂 

𝜃 

𝑦 

𝑥 
𝑂 

𝜃 

𝑦 

𝑥 
𝑂 

𝜃 

𝐿1 

𝐿2 

𝜃 

𝑦 

𝑥 
𝑂 

𝜃 

𝑇 

𝜃 

𝐵 

𝐴 

𝐶 

𝐷 

𝑄 

𝑃 

𝑅 

𝑆 

Chapter 
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The Straight Line 



 The straight line 

       121 
Principles of Pure Mathematics by Kawuma Fahad 

7𝑦 − 38 = −28𝑥 + 36 

28𝑥 + 7𝑦 − 74 = 0 

Example 6 

Find the equation of the straight line which passes through 

the intersection of the straight lines 5𝑥 − 6𝑦 = 1 and 3𝑥 +

2𝑦 + 5 = 0 and is perpendicular to the straight line 3𝑥 −

5𝑦 + 11 = 0 

Solution 

The straight line passing through the intersection of the 

given straight lines is  

5𝑥 − 6𝑦 − 1 + 𝜆(3𝑥 + 2𝑦 + 5) = 0 

(5 + 3𝜆)𝑥 + (−6 + 2𝜆)𝑦 + (−1 + 5𝜆) = 0 

Rewriting in the form 𝑦 = 𝑚𝑥 + 𝑐 

𝑦 = − (
5 + 3𝜆

−6 + 2𝜆
) 𝑥 − (

−1 + 5𝜆

−6 + 2𝜆
) 

This straight line is perpendicular to 3𝑥 − 5𝑦 + 11 = 0 

Product of the slopes of the perpendicular staight lines is −1 

i.e. 𝑚1𝑚2 = −1

⇒ − (
5 + 3𝜆

−6 + 2𝜆
) (

3

5
) = −1 

15 + 9𝜆 = −30 + 10𝜆 

𝜆 = 45 

⇒ 5𝑥 − 6𝑦 − 1 + 45(3𝑥 + 2𝑦 + 5) = 0

5𝑥 − 6𝑦 − 1 + 135𝑥 + 90𝑦 + 225 = 0

140𝑥 + 84𝑦 + 224 = 0 

5𝑥 + 3𝑦 + 8 = 0 

is the equation of the required staight line 

Example 7 

If 𝑂 is the origin, 𝐴 the point (8, 0) and 𝐵 the point (0, 6), 

find the coordinates of the points 𝑃 and 𝑄, where the line 

3𝑥 + 2𝑦 = 𝑐 meets 𝑂𝐴 and 𝐴𝐵 respectively. If the area of 

the triangle 𝑂𝑃𝑄 is one-half that of the triangle 𝑂𝐴𝐵, find 

the value of 𝑐.  

Solution 

The line 𝑂𝐴 is the 𝑥-axis and its equation is 𝑦 = 0. The 

coordinates of 𝑃 are therefore given by the solution of the 

simultaneous equations  𝑦 = 0 and 3𝑥 + 2𝑦 = 𝑐 

⇒ 3𝑥 + 0 = 𝑐

𝑥 =
𝑐

3

Hence, 𝑃 is the point (
𝑐

3
, 0) 

The line 𝐴𝐵 makes intercepts of 8 and 6 units on the 

coordinate axes and its equation is given by 
𝑥

8
+

𝑦

6
= 1 

3𝑥 + 4𝑦 = 24 

The coordinates of 𝑄 are given by the solution of the 

simultaneous equations 3𝑥 + 4𝑦 = 24 and 3𝑥 + 2𝑦 = 𝑐.  

3𝑥 + 4𝑦 = 24   … [1] 

3𝑥 + 2𝑦 = 𝑐  … [2] 

[1] – [2];

2𝑦 = 24 − 𝑐 

𝑦 = 12 −
𝑐

2
Substituting for 𝑦 in [1] gives; 

𝑥 =
2𝑐

3
− 8

The area of the triangle formed by the points (0, 0), (𝑥1, 𝑦1),

(𝑥2, 𝑦2) is 
1

2
(𝑥1𝑦2 − 𝑥2𝑦1).

The area of the triangle 𝑂𝑃𝑄 is given by 

1

2
[
𝑐

3
(12 −

𝑐

2
) − (

2𝑐

3
− 8) (0)] = 2𝑐 −

𝑐2

12
The area of the triangle 𝑂𝐴𝐵 is that of a right-angled triangle 

of base 8 and height 6 and hence is 24 units.  

If ∆𝑂𝑃𝑄 =
1

2
∆𝑂𝐴𝐵

2𝑐 −
𝑐2

12
=

24

2
𝑐2 − 24 + 144 = 0

(𝑐 − 12)2 = 0

𝑐 = 1 

The gradient of a straight line 

The gradient of a line is equal to the tangent of the angle 

between the line and the positive direction of the 𝑥-axis 

i.e. 𝑚 = tan 𝜃

The angle between lines  

Consider two lines which make angles 𝜃1 and 𝜃2 with the

positive direction of the 𝑥-axis.  

If the gradients of these lines are 𝑚1 and 𝑚2 respectively,

then 𝑚1 = tan 𝜃1,   𝑚2 = tan 𝜃2

𝜃 + 𝜃2 = 𝜃1

One angle between the lines is 𝜃, where 𝜃 = 𝜃1 − 𝜃2

tan 𝜃 = tan(𝜃1 − 𝜃2)

tan 𝜃 =
tan 𝜃1 − tan 𝜃2

1 + tan 𝜃1 tan 𝜃2

Hence the angle 𝜃 between two lines with gradients 𝑚1 and

𝑚2 is given by

tan 𝜃 =
𝑚1 − 𝑚2

1 + 𝑚1𝑚2

If 𝜙 is the exterior angle between the lines, then 

𝑦 

𝑥 𝑂 

𝜃1 

𝜃 

𝜃2 

𝜃 
𝜙 
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Solution 

The equation of any straight line perpendicular to 4𝑥 +

3𝑦 + 1 = 0 is 3𝑥 − 4𝑦 + 𝑘 = 0  

If the line passes through (−1, 3), then  

3(−1) − 4(3) + 𝑘 = 0 

⇒ 𝑘 = 15 

Substituting for the value of 𝑘 gives  

3𝑥 − 4𝑦 + 15 = 0 

 

Example 13 

Find the equation to the straight line which passes through 

the point (4, −5) and is perpendicular to the straight line 

3𝑥 + 4𝑦 + 5 = 0. 

Solution 

3𝑥 + 4𝑦 + 5 = 0   … [1] 

Method I: 

Any straight line perpendicular to [1] is given by  

4𝑥 − 3𝑦 + 𝑐 = 0  … [2] 

The straight line [2] passes through the point (4, −5) if  

4(4) − 3(−5) + 𝑐 = 0 

𝑐 = −16 − 15 = −31 

The required equation is therefore  

4𝑥 − 3𝑦 = 31 

Method II: 

Any straight line passing through the given point is  

𝑦 − (−5) = 𝑚(𝑥 − 4) 

This straight line is perpendicular to [1] if the product of 

their slopes is −1 

𝑚 × −
3

4
= −1 

𝑚 =
4

3
 

The required equation is therefore  

𝑦 + 5 =
4

3
(𝑥 − 4) 

4𝑥 − 3𝑦 = 31 

Method III: 

Any straight line is 𝑦 = 𝑚𝑥 + 𝑐. It passes through the point 

(4, −5), if  

−5 = 4𝑚 + 𝑐   … [3] 

It is perpendicular to [1] if  

𝑚 × −
3

4
= −1    … [4] 

Hence 𝑚 =
4

3
 and then [3] gives 𝑐 = −

31

3
 

The required equation is therefore  

𝑦 =
4

3
𝑥 −

31

3
 

4𝑥 − 3𝑦 = 31  

 

Example 14  

Find the equation of a straight line whose 𝑦-intercept is −3 

and which is  

(a) parallel to the line joining the points (−2, 3) and 

(4, −5) 

(b) perpendicular to the line joining the points (0, −5) 

and (−1, 3) 

Solution 

Here 𝑐 = 𝑦-intercept = −3 

(a) Let 𝑚 be the slope of the required line  

Since the required line is parallel to the line joining the 

points 𝐴(−2, 3) and 𝐵(4, −5) 

𝑚 = slope of 𝐴𝐵 =
−5 − 3

4 − (−2)
=

−8

6
= −

4

3
 

The equation of the line is 𝑦 = −
4

3
𝑥 + (−3) 

4𝑥 + 3𝑦 + 9 = 0 

(b) Let 𝑚 be the slope of the required line  

Since the required line is perpendicular to the line 

joining the points 𝐴(0, −5) and 𝐵(−1, 3). 

𝑚 × (slope of 𝐴𝐵) = −1 

𝑚 ×
3 − (−5)

−1 − 0
= −1 

𝑚 (
8

−1
) = −1  

𝑚 =
1

8
  

The equation of the line is given by 𝑦 =
1

8
𝑥 + (−3) 

𝑥 − 8𝑦 − 24 = 0 

 

Example 15 

Find the value of 𝑘 so that the line 2𝑥 + 𝑘𝑦 − 9 = 0 maybe 

(a) parallel to 3𝑥 − 4𝑦 + 7 = 0 (b) perpendicular to        

3𝑦 + 2𝑥 − 1 = 0 

Solution 

Given 2𝑥 + 𝑘𝑦 − 9 = 0 … [1] 

Slope of line [1]  = −
coeff.  of 𝑥

coeff.  of 𝑦
= −

2

𝑘
 

(a) Given line is 3𝑥 − 4𝑦 + 7 = 0 … [2]  

Slope of line [2] = −
3

−4
=

3

4
 

As the lines [1] and [2] are parallel,  

−
2

𝑘
=

3

4
 

⇒ 𝑘 = −
8

3
 

(b) Given line is 3𝑦 + 2𝑥 − 1 = 0 i.e. 2𝑥 + 3𝑦 − 1 = 0 

… [3] 

Slope of line [3] = −
2

3
 

As the lines [1] and [3] are perpendicular,  

(−
2

𝑘
) (−

2

3
) = −1 

4 = −3𝑘 

⇒ 𝑘 = −
4

3
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Introduction 

Consider an animal tied with a rope to a post in the ground, 

what path will it describe, if it moves so as always to keep 

the rope taut? If you look at the tip of the seconds hand of a 

watch, you see that it completes one revolution in one 

minute and that in completing this revolution, it traces out 

the circumference of a circle. Will the tip always describe 

the same path? If so, why?  

(a) In the first case, the animal moves along a circle if (i) the

post is fixed, (ii) the animal moves so that the rope

remains taut, i.e. its distance from the post does not

change and it remains constant. Had these two conditions

not been imposed on the motion of the animal, it would

not have moved along a fixed path (the circle)

(b) The tip of the seconds hand describes a circle because (i)

its one end is fixed, (ii) when it moves round the centre,

the distance between the two ends remains constant. If

the tip of the seconds hand of the watch were not bound

to fulfill these conditions, it would not have described a

fixed path (the circle).

Definition: If a point, which according to certain laws, 

describes a path and if every point on this path satisfies the 

given law, then the path is called the locus of the point.  

Equation of a locus 

The (Cartesian) equation of a locus is the equation in 𝑥 and 

𝑦 that is satisfied by the coordinates of every point on the 

locus and not by the coordinates of any point outside the 

locus.  

The coordinates (𝑥, 𝑦) of the moving point which generates 

the locus are called current coordinates. The point covers all 

positions on the locus and is called the general point.  

Method to find the equation of the locus of a point 

(i) Let (𝑥, 𝑦) be any point on the locus

(ii) Write the given geometrical condition (or conditions)

(iii) Express the given condition in mathematical form in

terms of 𝑥, 𝑦 and known constant (or constants) and

simplify it, if necessary.

(iv) Eliminate the variable (or variables), if any

(v) The equation so obtained will be the equation of the

required locus.

Note: Sometimes we take any point on the locus as (𝛼, 𝛽) 

or (ℎ, 𝑘) or (𝑥1, 𝑦1) instead of (𝑥, 𝑦).  We write the given

geometrical condition (or conditions) and express it in terms 

of 𝛼, 𝛽. Then we change 𝛼 to 𝑥 and 𝛽 to 𝑦 to get the required 

equation of the locus.  

Examples of Loci 

1. Let a point 𝑃 move (in a plane) such that its distance

from the 𝑥-axis is always equal to 𝑏 (> 0). The point

𝑃 will trace out a straight line 𝐴𝐵 parallel to 𝑥-axis at

a distance 𝑏 above the 𝑥-axis. Therefore, the locus of

the moving point 𝑃 is the straight line 𝐴𝐵.

2. Let 𝐴, 𝐵 be two fixed points (in a plane) and a point 𝑃

move in the plane such that its distances from the points

𝐴 and 𝐵 are equal. Obviously, all positions of the

moving point 𝑃 will lie on the perpendicular bisector

of the segment 𝐴𝐵. Therefore, the locus of the moving

point 𝑃 which remains at equal distances from 𝐴 and 𝐵

is the perpendicular bisector of the segment 𝐴𝐵.

3. Let a point move in a plane such that its distance from

a fixed point 𝐶 (in the plane) is always equal to 𝑟(> 0).

Obviously, all positions of the moving point 𝑃 will lie

on the circumference of a circle with centre 𝐶 and

radius 𝑟. Therefore, the locus of the point 𝑃 is the circle

with centre 𝐶 and radius 𝑟.

𝑦 

𝑥 

𝐴 𝐵 𝑃 

𝑂 

𝑃 

𝐴 𝐵 

𝐶 

𝑃 
𝑟 

Chapter 

14 
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(𝑥 − 3)2 + (𝑦 − 6)2 =
(3𝑥 + 5𝑦 − 4)2

34
34(𝑥2 + 𝑦2 − 6𝑥 − 12𝑦 + 45)

= 9𝑥2 + 25𝑦2 + 16 + 30𝑥𝑦 − 24𝑥 − 40𝑦

25𝑥2 + 9𝑦2 − 30𝑥𝑦 − 180𝑥 − 368𝑦 + 1514 = 0

Example 7 

The points 𝑅(2, 0) and 𝑃(3, 0) lie on the 𝑥-axis and 

𝑄(0, −𝑦) lies on the 𝑦-axis. The perpendicular from the 

origin to 𝑅𝑄 meets 𝑃𝑄 at point 𝑆(𝑋, −𝑌). Determine the 

locus of 𝑆 in terms of 𝑋 and 𝑌. 

Solution 

Gradient of 𝑅𝑄 =
0−(−𝑦)

2−0
=

𝑦

2

Gradient of 𝑂𝑆 =
−𝑌−0

𝑋−0
=

−𝑌

𝑋

Since 𝑅𝑄 and 𝑂𝑆 are perpendicular, 

𝑦

2
×

−𝑌

𝑋
= −1 

𝑦 =
2𝑋

𝑌
Now looking at 𝑃𝑄, 

Gradient 𝑄𝑆 = Gradient 𝑄𝑃 

−𝑌 + 𝑦

𝑋 − 0
=

0 + 𝑦

3 − 0
−3𝑌 + 3𝑦 = 𝑋𝑦

−3𝑌 + 3 (
2𝑋

𝑌
) = 𝑋 (

2𝑋

𝑌
) 

−3𝑌2 + 6𝑋 = 2𝑋2

2𝑋2 + 3𝑌2 = 6𝑋

This is the equation of the locus of 𝑆 

Example 8 

A point 𝑃 is such that the sum of squares of its distances 

from the two axes of coordinates is equal to the square of its 

distance from the line 𝑥 − 𝑦 = 1. Find the equation of the 

locus of 𝑃. 

Solution 

Let 𝑃(𝛼, 𝛽) be a variable point. 

The equations of the coordinate axes are 𝑦 = 0 and 𝑥 = 0 

The given line is 𝑥 − 𝑦 − 1 = 0 

According to the given condition;  

(
|𝛽|

1
)

2

+ (
|𝛼|

1
)

2

= (
|𝛼 − 𝛽 − 1|

√11 + (−1)2
)

2

𝛽2 + 𝛼2 =
(𝛼 − 𝛽 − 1)2

2
2𝛼2 + 2𝛽2 = 𝛼2 + 𝛽2 + 1 − 2𝛼𝛽 − 2𝛼 + 2𝛽

𝛼2 + 𝛽2 + 2𝛼𝛽 + 2𝛼 − 2𝛽 − 1 = 0

∴ The locus of the point 𝑃 is 𝑥2 + 𝑦2 + 2𝑥𝑦 + 2𝑥 − 2𝑦 −

1 = 0 

Example 9 

A straight line passes through the point (3, −2). Find the 

locus of the middle portion of the line intercepted between 

the axes.  

Solution 

Let the equation of the line be 
𝑥

𝑎
+

𝑦

𝑏
= 1 … [1] 

where 𝑎, 𝑏 vary. 

Since the line [1] passes through the point (3, −2), 

3

𝑎
−

2

𝑏
= 1 … [2] 

The line [1] meets the axes in points 𝐴(𝑎, 0) and 𝐵(0, 𝑏), 

then 𝐴𝐵 is the portion of the line intercepted between the 

axes. Let 𝑀 be mid-point of 𝐴𝐵, then the coordinates of 𝑀 

are (
𝑎

2
,

𝑏

2
). 

For the locus of 𝑀, put 
𝑎

2
= 𝑥, 

𝑏

2
= 𝑦 

⇒ 𝑎 = 2𝑥, 𝑏 = 2𝑦

Substituting these values of 𝑎 and 𝑏 in [2], the required 

equation of the locus is 

3

2𝑥
−

2

2𝑦
= 1 

3𝑦 − 2𝑥 = 2𝑥𝑦 

𝑂 
𝑃(3, 0) 

𝑦 

𝑥 

𝑆(𝑋, −𝑌) 

𝑅(2, 0) 

𝑄(0, −𝑦) 

𝑂 

𝑦 

𝑥 

𝑀 (
𝑎

2
,
𝑏

2
) 

𝐵(0, 𝑏) 

𝐴(𝑎, 0) 

𝑃(3, −2) 
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Introduction 

A circle is the locus of a point which moves in such a way 

that its distance from a fixed point is always constant. The 

fixed point is called the centre of the circle and the constant 

distance is called the radius of the circle. 

The equation of a circle when the centre and radius are 

given  

Let 𝐶(ℎ, 𝑘) be the centre and 𝑟 be the radius of the circle. 

Let 𝑃(𝑥, 𝑦) be any point on the circle. 

𝐶𝑃̅̅ ̅̅ = 𝑟

√(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟 

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2

is the required equation of the circle. 

Note:  

If the centre of the circle is at the origin i.e. (ℎ, 𝑘) = (0, 0), 

then the equation of the circle is 𝑥2 + 𝑦2 = 𝑟2

The equation of a circle if the endpoints of a diameter are 

given 

Let 𝐴(𝑥1, 𝑦1) and 𝐵(𝑥2, 𝑦2) be the end points of a diameter.

Let 𝑃(𝑥, 𝑦) be any point on the circle. 

The angle in a semicircle is a right angle, thus 𝑃𝐴 is 

perpendicular to 𝑃𝐵. 

⇒ (slope of 𝑃𝐴)(slope of 𝑃𝐵) = −1

(
𝑦 − 𝑦1

𝑥 − 𝑥1

) (
𝑦 − 𝑦2

𝑥 − 𝑥2

) = −1 

 

 

(𝑦 − 𝑦1)(𝑦 − 𝑦2) = −(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥 − 𝑥1)(𝑥 − 𝑥2) + (𝑦 − 𝑦1)(𝑦 − 𝑦2) = 0

is the required equation of the circle. 

Note: Alternatively, the equation of this circle can be 

obtained using the Pythagoras theorem. 

𝑃𝐴̅̅ ̅̅ 2 + 𝑃𝐵̅̅ ̅̅ 2 = 𝐴𝐵̅̅ ̅̅ 2

The general equation of the circle  

The general equation of the circle is in the form 

𝑥2 + 𝑦2 + 2g𝑥 + 2𝑓𝑦 + 𝑐 = 0.

This equation can be written by completing the square as  

𝑥2 + 2g𝑥 + g2 + 𝑦2 + 2𝑓𝑦 + 𝑓2 = g2 + 𝑓2 − 𝑐

(𝑥 + g)2 + (𝑦 + 𝑓)2 = (√g2 + 𝑓2 − 𝑐)
2

[𝑥 − (−g)]2 + [𝑦 − (−𝑓)]2 = g2 + 𝑓2 − 𝑐

This is of the form 

(𝑥 − ℎ)2 + (𝑦 − 𝑘)2 = 𝑟2

∴ The considered equation represents a circle with centre 

(−g, −𝑓) and radius √g2 + 𝑓2 − 𝑐 

∴ The general equation of the circle is 𝑥2 + 𝑦2 + 2g𝑥 +

2𝑓𝑦 + 𝑐 = 0. 

Note:  

The general second degree equation 𝑎𝑥2 + 𝑏𝑦2 + 2ℎ𝑥𝑦 +

2g𝑥 + 2𝑓𝑦 + 𝑐 = 0 represents a circle if  

1. 𝑎 = 𝑏 i.e. coefficient of 𝑥2 = coefficient of 𝑦2

2. ℎ = 0 i.e. no 𝑥𝑦 term.

Parametric form 

Consider a circle with radius 𝑟 and centre at the origin. Let 

𝑃(𝑥, 𝑦) be any point on the circle. Assume that 𝑂𝑃 makes 

an angle 𝜃 with the positive direction of 𝑥-axis and 𝑃𝑀 is 

the perpendicular to the 𝑥-axis. 

From the figure 
𝑥

𝑟
= cos 𝜃, 

𝑦

𝑟
= sin 𝜃 

𝐶 

𝑦 

𝑥 
𝑂 

𝑟 
𝑃(𝑥, 𝑦) 

𝑦 

𝑥 
𝑂 

𝑃(𝑥, 𝑦) 

𝐵(𝑥2,  𝑦2) 
𝐴(𝑥2,  𝑦2) 

𝑦 

𝑥 𝑂 

𝑃(𝑥, 𝑦) 

𝑟 
𝜃 

Chapter 

15 
The Circle 
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In figure (a), the straight line 𝐴𝐵 does not touch or intersect 

the circle. 

In figure (b), the straight line 𝐴𝐵 intersects the circle in two 

points and is called a secant. 

In figure (c), the straight line 𝐴𝐵 touches the circle at exactly 

one point, and it is called a tangent.  

A tangent to a circle is a straight line which intersects 

(touches) the circle in exactly one point. 

Equation of the tangent to a circle at a point (𝒙𝟏, 𝒚𝟏)

Let the equation of the circle be 𝑥2 + 𝑦2 + 2g𝑥 + 2𝑓𝑦 +

𝑐 = 0 

Let 𝑃(𝑥1, 𝑦1) be a given point on it

𝑥1
2 + 𝑦1

2 + 2g𝑥1 + 2𝑓𝑦1 + 𝑐 = 0

Let 𝑃𝑇 be the tangent at 𝑃 

The centre of the circle is 𝐶(−g, −𝑓) 

Slope of the 𝐶𝑃 =
𝑦1+𝑓

𝑥1+g

Since 𝐶𝑃 is perpendicular to 𝑃𝑇, slope of 𝑃𝑇 = − (
𝑥1+g

𝑦1+𝑓
) 

Equation of the tangent 𝑃𝑇 is 

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)

𝑦 − 𝑦1 = − (
𝑥1 + g

𝑦1 + 𝑓
) (𝑥 − 𝑥1)

(𝑦 − 𝑦1)(𝑦1 + 𝑓) = −(𝑥 − 𝑥1)(𝑥1 + g)

𝑦𝑦1 − 𝑦1
2 + 𝑓𝑦 − 𝑓𝑦1 = −[𝑥𝑥1 − 𝑥1

2 + 𝑔𝑥 − 𝑔𝑥1]

𝑥𝑥1 + 𝑦𝑦1 + 𝑓𝑦 + g𝑥 = 𝑥1
2 + 𝑦1

2 + g𝑥1 + 𝑓𝑦1

Add g𝑥1 + 𝑓𝑦1 + 𝑐 on both sides

𝑥𝑥1 + 𝑦𝑦1 + g𝑥 + g𝑥1 + 𝑓𝑦 + 𝑓𝑦1 + 𝑐

= 𝑥1
2 + 𝑦1

2 + 2g𝑥1 + 2𝑓𝑦1 + 𝑐

𝑥𝑥1 + 𝑦𝑦1 + g(𝑥 + 𝑥1) + 𝑓(𝑦 + 𝑦1) + 𝑐 = 0 is the 

required equation of the tangent at (𝑥1, 𝑦1)

Note: 

1. The equation of the tangent at (𝑥1, 𝑦1) to the circle

𝑥2 + 𝑦2 = 𝑎2 is 𝑥𝑥1 + 𝑦𝑦1 = 𝑎2.

2. To get the equation of the tangent at (𝑥1, 𝑦1), replace

𝑥2 as 𝑥𝑥1, 𝑦2 as 𝑦𝑦1, 𝑥 as 
𝑥+𝑥1

2
 and 𝑦 as 

𝑦+𝑦1

2
 in the

equation of the circle. 

3. The gradient of the tangent to the circle can be obtained

by differentiating the equation with respect to 𝑥 i.e.

𝑥2 + 𝑦2 + 2g𝑥 + 2𝑓𝑦 + 𝑐 = 0

2𝑥 + 2𝑦
𝑑𝑦

𝑑𝑥
+ 2g + 2𝑓

𝑑𝑦

𝑑𝑥
= 0 

(𝑥 + g) + (𝑦 + 𝑓)
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
= −

𝑥 + g

𝑦 + 𝑓

So that the gradient of the circle at the point (𝑥1, 𝑦1) is given

by  

(
𝑑𝑦

𝑑𝑥
)

𝑥=𝑥1

= −
𝑥1 + g

𝑦1 + 𝑓

Length of the tangent to the circle from a point (𝒙𝟏, 𝒚𝟏)

Let the equation of the circle be 𝑥2 + 𝑦2 + 2g𝑥 + 2𝑓𝑦 +

𝑐 = 0 

Let 𝑃𝑇 be the tangent to the circle from 𝑃(𝑥1, 𝑦1) outside it.

We know that the coordinate of the centre is (−g, −𝑓)and 

radius, 𝑟 = 𝐶𝑇 = √g2 + 𝑓2 − 𝑐 

From the right-angled triangle 𝑃𝑇𝐶, 

𝑃𝑇2 = 𝑃𝐶2 − 𝐶𝑇2

= (𝑥1 + g)2 + (𝑦1 + 𝑓)2 − (g2 + 𝑓2 − 𝑐)

= 𝑥1
2 + 2g𝑥1 + g2 + 𝑦1

2 + 2𝑓𝑦1 + 𝑓2 − g2 − 𝑓2 + 𝑐

= 𝑥1
2 + 𝑦1

2 + 2g𝑥1 + 2𝑓𝑦1 + 𝑐

∴ 𝑃𝑇 = √𝑥1
2 + 𝑦1

2 + 2g𝑥1 + 2𝑓𝑦1 + 𝑐, which is the length

of the tangent from the point (𝑥1, 𝑦1).

Note: 

1. If the point 𝑃 is on the circle, then 𝑃𝑇2 = 0 (𝑃𝑇 is zero)

2. If the point 𝑃 is outside the circle, then 𝑃𝑇2 > 0 (𝑃𝑇 is

real)

3. If the point 𝑃 is inside the circle, then 𝑃𝑇2 < 0 (𝑃𝑇 is

imaginary).

The condition for the line 𝒚 = 𝒎𝒙 + 𝒄 to be a tangent to 

the circle 𝒙𝟐 + 𝒚𝟐 = 𝒂𝟐

Substituting 𝑦 from the equation of the line to the equation 

of the circle. 

𝑥2 + (𝑚𝑥 + 𝑐)2 = 𝑎2

𝑥2 + 𝑚2𝑥2 + 2𝑚𝑐𝑥 + 𝑐2 = 𝑎2

(1 + 𝑚2)𝑥2 + 2𝑚𝑐𝑥 + 𝑐2 − 𝑎2 = 0

For a tangent, 𝑏2 − 4𝑎𝑐 = 0

(2𝑚𝑐)2 − 4(1 + 𝑚2)(𝑐2 − 𝑎2) = 0

4𝑚2𝑐2 − 4[𝑐2 − 𝑎2 + 𝑚2𝑐2 − 𝑚2𝑎2] = 0

𝑚2𝑐2 − 𝑐2 + 𝑎2 − 𝑚2𝑐2 + 𝑚2𝑎2 = 0

𝑎2 + 𝑚2𝑎2 = 𝑐2

𝑎2(1 + 𝑚2) = 𝑐2

𝐶(−g, −𝑓) 

𝑃(𝑥1, 𝑦1) 𝑇 

𝑃(𝑥1, 𝑦1) 

𝑇 
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(c) 

|𝑃𝑄| = √(8 − 4)2 + (−1 − 3)2 = √32 = 4√2 

|𝑃𝑀| = 2√2 

By Pythagoras theorem,  

(2√2)
2

+ 𝑥2 = (√10)
2

8 + 𝑥2 = 10

𝑥2 = 2

𝑥 = √2 

Example 24 

The figure above shows a circle whose centre is at 𝐶(8, 𝑘), 

where 𝑘 is a constant. The straight line with equation 𝑦 =

3𝑥 − 12 is a tangent to the circle at the point 𝐴(5, 3).  

(a) Find an equation of the normal to the circle at 𝐴

(b) Determine an equation of the circle.

Solution 

(a) As the tangent has gradient 3, the normal must have a

gradient −
1

3

𝐴(5, 3) ;    𝑦 − 𝑦0 = 𝑚(𝑥 − 𝑥0)

𝑦 − 3 = −
1

3
(𝑥 − 5) 

3𝑦 − 9 = −𝑥 + 5 

𝑥 + 3𝑦 = 14 

(b) 

The normal must pass through the centre 𝐶(8, 𝑘) 

⇒ 8 + 3𝑘 = 14

3𝑘 = 6

𝑘 = 2 

∴ 𝐴(5, 3)  and 𝐶(8, 2) 

|𝐴𝐶| = √(2 − 3)2 + (8 − 5)2 = √1 + 9 = √10 

 The equation of the circle is given by  

(𝑥 − 8)2 + (𝑦 − 2)2 = 𝑟2

(𝑥 − 8)2 + (𝑦 − 2)2 = (√10)
2

(𝑥 − 8)2 + (𝑦 − 2)2 = 10

FAMILY OF CIRCLES 

A collection of circles is called a family or a system of 

circles. Sometimes there exist more than one circle 

satisfying given conditions. The collection of all such circles 

is called a family of circles, satisfying the given conditions.  

Concentric circles: 

Two or more circles having the same centre are called 

concentric circles 

Circles touching each other: 

Two circles may touch each other either internally or 

externally. Let 𝐶1, 𝐶2 be the centres of the circle and 𝑟1, 𝑟2

be the radii and 𝑃 the point of contact. 

Case 1: The two circles touch externally 

The distance between their centres is equal to the sum of 

their radii. 

𝐶1𝐶2
̅̅ ̅̅ ̅̅ = 𝑟1 + 𝑟2

Case 2: The two circles touch internally 

The distance between their centres is equal to the difference 

of their radii. 

𝐶1𝐶2
̅̅ ̅̅ ̅̅ = 𝐶1𝑃̅̅ ̅̅ ̅ − 𝐶2𝑃̅̅ ̅̅ ̅ = 𝑟1 − 𝑟2

Orthogonal circles  

Two circles are said to be orthogonal if the tangent at their 

point of intersection are at right angles. 

𝑀 

𝑄(-1, 4) 

𝑃(3,  8) 

𝐶(2,  5) 
𝑥 

𝑦 

𝑥 𝑂 

𝐴 
𝐶 

𝑦 = 3𝑥 − 12 

𝑦 = 3𝑥 − 12 

𝐴(5, 3) 

𝐶(8, 𝑘) 
𝑟 

𝐶1 𝐶2 
𝑟2 𝑟1 

𝐶1 
𝐶2 

𝑟2 

𝑟1 
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3𝑦 − 3 = −4𝑥 + 12 

3𝑦 + 4𝑥 − 15 = 0 

To get point 𝑃, we need to solve the equations of the 

two lines simultaneously 

3𝑥 − 4𝑦 + 20 = 0  … [1] 

3𝑦 + 4𝑥 − 15 = 0   … [2] 

4[1] −3[2]; 

−25𝑦 + 125 = 0 

𝑦 = 5 

From [1]; 3𝑥 − 4(5) + 20 = 0 

3𝑥 = 0 

𝑥 = 0 

∴ The point 𝑃 is (0, 5) 

Example 31 

Prove that the circles whose equations are 𝑥2 + 𝑦2 − 4𝑦 −

5 = 0, 𝑥2 + 𝑦2 − 8𝑥 + 2𝑦 + 1 = 0 cut orthogonally and 

find the equation of the common chord. 

Solution 

𝐶1;    𝑥2 + 𝑦2 − 4𝑦 − 5 = 0 

         𝑥2 + 𝑦2 − 4𝑦 = 5 

         𝑥2 + (𝑦 − 2)2 − 4 = 5  

         𝑥2 + (𝑦 − 2)2 = 9 

       Centre (0, 2); radius = 3 

𝐶2;  𝑥2 + 𝑦2 − 8𝑥 + 2𝑦 + 1 = 0 

       𝑥2 − 8𝑥 + 𝑦2 + 2𝑦 + 1 = 0 

      (𝑥 − 4)2 − 16 + (𝑦 + 1)2 = 0 

      (𝑥 − 4)2 + (𝑦 + 1)2 = 16  

    Centre (4, −1); radius = 4 units  

Distance between centres,  

𝑑 = √(4 − 0)2 + (−1 − 2)2 = √16 + 9 = 5 

Now,  𝑟1
2 + 𝑟2

2 = 32 + 42 = 9 + 16 = 25 = 𝑑2 

⇒  The two circles are orthogonal  

Now, to find the equation of the common chord, we need to 

subtract the equations of the two circles and eliminate the 

coefficients of the square terms. 

𝑥2 + 𝑦2 − 4𝑦 − 5 = 0      … [1] 

𝑥2 + 𝑦2 − 8𝑥 + 2𝑦 + 1 = 0  … [2] 

Subtracting [1] – [2]; 

8𝑥 − 6𝑦 − 6 = 0 

4𝑥 − 3𝑦 = 3 

 

Example 32 

The circles 𝐶1 and 𝐶2 have respective equations 𝑥2 + 𝑦2 −

6𝑥 = 16 and 𝑥2 + 𝑦2 − 18𝑥 + 16𝑦 = 80. 

(a) By solving these equations simultaneously, show that 

𝐶1 and 𝐶2 touch at a point 𝑃 and determine its 

coordinates.  

(b) Determine further whether 𝐶1 and 𝐶2 touch internally 

or externally. 

Solution 

(a) Solving simultaneously  

𝑥2 + 𝑦2 − 6𝑥 = 16 

𝑥2 + 𝑦2 − 18𝑥 + 16𝑦 = 80  

Subtract; 

12𝑥 − 16𝑦 = −64 

3𝑥 − 4𝑦 = −16 

3𝑥 = 4𝑦 − 16 

𝑥 =
4𝑦 − 16

3
 

𝑥2 + 𝑦2 − 6𝑥 = 16 

(
4𝑦 − 16

3
)

2

+ 𝑦2 − 2(4𝑦 − 16) = 16 

16𝑦2 − 128𝑦 + 256 + 9𝑦2 − 72𝑦 + 288 = 144 

25𝑦2 − 200𝑦 + 400 = 0 

𝑦2 − 8𝑦 + 16 = 0 

(𝑦 − 4)2 = 0 

𝑦 = 4 

𝑦 = 4 is a repeated root, indeed the circles touch 

⇒ 𝑥 =
4(4) − 16

3
= 0 

The circles touch at (0, 4) 

(b) Firstly, we need the circle particulars  

𝐶1;  𝑥2 + 𝑦2 − 6𝑥 = 16 

      𝑥2 − 6𝑥 + 𝑦2 = 16 

(𝑥 − 3)2 − 9 + 𝑦2 = 16  

(𝑥 − 3)2 + 𝑦2 = 25  

Centre (3, 0); radius 5 

𝐶2; 𝑥2 + 𝑦2 − 18𝑥 + 16𝑦 = 80 

     𝑥2 − 18𝑥 + 𝑦2 + 16𝑦 = 80 

(𝑥 − 9)2 − 81 + (𝑦 + 8)2 − 64 = 80  

(𝑥 − 9)2 + (𝑦 + 8)2 = 225  

Centre (9, −8), radius 15 

Touching internally requires 𝑑 = 15 − 5 = 10 and 

touching externally requires 𝑑 = 15 + 5 = 20 

Distance between the centres is given by  

𝑑 = √(3 − 9)2 + (0 + 8)2 = √36 + 64 = √100 = 10 

∴ The circles touch internally 

 

Equation of a circle passing through three given points 

The form of the equation of the circle involves three 

parameters i.e. ℎ, 𝑟, 𝑘 and g, 𝑓, 𝑐 which require for their 

determination three conditions, and these three conditions 

may be that the circle shall pass through three given points. 

Assume, then, that a circle is to pass through the points 

𝑃1(𝑥1, 𝑦1), 𝑃2(𝑥2, 𝑦2) and 𝑃3(𝑥3, 𝑦3). Since each one of 

these points is on the curve, their coordinates must satisfy 

the equation of the curve. Hence  

(𝑥1 − ℎ)2 + (𝑦1 − 𝑘)2 = 𝑟2 

(𝑥2 − ℎ)2 + (𝑦2 − 𝑘)2 = 𝑟2 

(𝑥3 − ℎ)2 + (𝑦3 − 𝑘)2 = 𝑟2 

From these three equations, we can find the values of ℎ, 𝑘, 𝑟 

and substituting them in the original equation, we shall have 

the equation of the desired circle.  
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[Ans: 𝑥2 + 𝑦2 = 6𝑥 + 10𝑦 − 16 = 0, 𝑥2 +

𝑦2 + 12𝑥 − 14𝑦 − 40 = 0; 3𝑥 − 4𝑦 = 4, 10]

6. The circles 𝑥2 + 𝑦2 − 2𝑥 = 0 and 𝑥2 + 𝑦2 + 4𝑥 −

6𝑦 − 3 = 0 intersect at the points 𝐴 and 𝐵. Find (a) the

equation of 𝐴𝐵 (b) the equation of the circle which

passes through 𝐴, 𝐵 and the point (1, 2)

[Ans: (a) 2𝑥 − 2𝑦 − 1 = 0 (b) 𝑥2 + 𝑦2 − 2𝑦 − 1 = 0]

7. Given that the circles 𝑥2 + 𝑦2 − 3𝑦 = 0 and 𝑥2 +

𝑦2 + 5𝑥 − 8𝑦 + 5 = 0 intersect at 𝑃 and 𝑄, find the

equation of the circle which passes through 𝑃, 𝑄 and

(a) the point (1, 1) (b) the origin (c) touches the 𝑥-axis.

[Ans: (a) 𝑥2 + 𝑦2 + 𝑥 − 4𝑦 + 1 = 0, (b) 𝑥2 + 𝑦2 −

3𝑦 = 0 (c) 𝑥2 + 𝑦2 + 4𝑥 − 7𝑦 + 4 = 0]

8. The circle 𝑥2 + 𝑦2 + 3𝑥 − 5𝑦 − 4 = 0 and the

straight line 𝑦 = 2𝑥 + 5 intersect at the points 𝐴 and

𝐵. Find the equation of the circle which passes through

𝐴, 𝐵 and (a) the point (3, 1), (b) the origin (c) has its

centre on the 𝑦-axis.

[Ans: (a) 𝑥2 + 𝑦2 + 𝑥 − 4𝑦 − 9 = 0 (b) 5𝑥2 + 5𝑦2 +

23𝑥 − 29𝑦 = 0 (c) 2𝑥2 + 2𝑦2 − 7𝑦 − 23 = 0]

9. Write down the perpendicular distance from the point

(𝑎, 𝑎) to the line 4𝑥 − 3𝑦 + 4 = 0. The circle, with

centre (𝑎, 𝑎) and radius 𝑎, touches the line 4𝑥 − 3𝑦 +

4 = 0 at the point 𝑃. Find 𝑎, and the equation of the

normal to the circles at 𝑃. Show that 𝑃 is the point

(
1

5
,

8

5
). Show that the equation of the circle which has

centre 𝑃 and which passes through the origin is 

5(𝑥2 + 𝑦2) − 2𝑥 − 16𝑦 = 0.

[Ans: 
1

5
|𝑎 + 4|; 𝑎 = 1, 3𝑥 + 4𝑦 = 7] 

10. Find the centre and radius of each of the circles 𝐶1 and

𝐶2 whose equations are 𝑥2 + 𝑦2 − 16𝑦 + 32 = 0 and

𝑥2 + 𝑦2 − 18𝑥 + 2𝑦 + 32 = 0 respectively and show

that the circles touch externally. Find the coordinates

of their point of contact and show that the common

tangent at that point passes through the origin. The

other tangents from the origin, one to each circle, are

drawn. Find, correct to the nearest degree, the angle

between these tangents.

[Ans: (0, 8), 4√2; (9, −1), 5√2; (4, 4); 167°] 

11. The circles whose equations are 𝑥2 + 𝑦2 − 𝑥 + 6𝑦 +

7 = 0 and 𝑥2 + 𝑦2 + 2𝑥 + 2𝑦 − 2 = 0 intersect at the

points 𝐴 and 𝐵. Find (i) the equation of the line 𝐴𝐵 (ii)

the coordinates of 𝐴 and 𝐵. Show that the two given

circles intersect at right angles and obtain the equation

of the circle which passes through 𝐴 and 𝐵 and which

also passes through the centres of the two circles.

[Ans: (i) 3𝑥 − 4𝑦 = 9 (ii) (−1, −3), (
23

25
, −

39

25
), 

2𝑥2 + 2𝑦2 + 𝑥 + 8𝑦 + 5 = 0]

12. Find the centre and the radius of the circle 𝐶 which

passes through the points (4, 2), (2, 4) and (2, 6). If

the line 𝑦 = 𝑚𝑥 is a tangent to 𝐶, obtain the quadratic 

equation satisfied by 𝑚. Hence or otherwise find the 

equations of the tangents to 𝐶 which pass through the 

origin 𝑂. Find also (i) the angle between the two 

tangents, (ii) the equation of the circle which is the 

reflection of 𝐶 in the line 𝑦 = 3𝑥.  

[Ans: (5, 5), √10; 3𝑚2 − 10𝑚 + 3 = 0; 𝑦 =
1

3
𝑥, 𝑦 =

3𝑥; (i) 53.13° (ii) 𝑥2 + 𝑦2 + 2𝑥 − 14𝑦 + 40 = 0]

13. Show that the circles 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 − 2 = 0 and

𝑥2 − 𝑦2 − 8𝑥 − 10𝑦 + 32 = 0 touch externally and

find the coordinates of the point of contact

[Ans: (11/5, 13/5)] 

14. Find the centre and radius of the circle passing through

the points (3, 8), (9, 6) and (13, −2).

[Ans: (3, −2);  10] 

15. Determine the value of 𝑘 so that 𝑥2 + 𝑦2 − 8𝑥 +

10𝑦 + 𝑘 = 0 is the equation of a circle of radius 7.

[Ans: 𝑘 = −8] 

16. Find the equation of the circle with centre at (1, 3)

and tangent to the line 5𝑥 − 12𝑦 − 8 = 0.

[Ans: (𝑥 − 1)2 + (𝑦 − 3)2 = 9]

17. Find an equation of the circle that contains the point

(3, 1) and passes through the points of intersection of

the two circles 𝑥2 + 𝑦2 − 𝑥 − 𝑦 − 2 = 0 and 𝑥2 +

𝑦2 + 4𝑥 − 4𝑦 − 8 = 0.

[Ans: 3𝑥2 + 3𝑦2 − 13𝑥 + 3𝑦 + 6 = 0]

18. Show that the circles 𝑥2 + 𝑦2 − 2𝑎𝑥 + 𝑐2 = 0 and

𝑥2 + 𝑦2 − 2𝑏𝑦 − 𝑐2 = 0 are orthogonal.

19. Find the equation to the circle which passes through

the points (−2, 2), (2, 4), (5, −5). Show that the circle

touches the circle 2𝑥2 + 2𝑦2 − 17𝑥 + 16𝑦 + 65 = 0

at the point (5, −5).

[Ans: 𝑥2 + 𝑦2 − 4𝑥 + 2𝑦 − 20 = 0]

20. Show that the circles 𝑥2 + 𝑦2 + 4𝑥 − 2𝑦 − 11 = 0

and 𝑥2 + 𝑦2 − 4𝑥 − 8𝑦 + 11 = 0 intersect at right

angles and find the length of their common chord.

[Ans: 24/5] 

21. Prove that the circles 𝑥2 + 𝑦2 + 2𝑥 − 8𝑦 + 8 = 0;

𝑥2 + 𝑦2 + 10𝑥 − 2𝑦 + 22 = 0 touch one another.

Find

(a) the point of contact

(b) the equation of the common tangent at this point

(c) the area of the triangle enclosed by this common

tangent, the line of centres and the 𝑦-axis.

[Ans: (a) (-3.4, 2.2) (b) 4𝑥 + 3𝑦 + 7 = 0 (c) 289/24] 

22. Find the equation to the circle passing through the

point (−2, −6) and through the points of intersection

of the circles 𝑥2 + 𝑦2 − 3𝑥 + 4𝑦 − 2 = 0 and 𝑥2 +

𝑦2 + 5𝑥 − 3𝑦 = 8.

[Ans: 𝑥2 + 𝑦2 − 11𝑥 + 11𝑦 + 4 = 0]
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Introduction  

Today, we find applications of the theory of conic sections 

in the orbits of planets and artificial satellites. The theory 

also applied to the lenses of telescopes, microscopes and 

other optical instruments, weather prediction, 

communication by satellites, geological surveying and the 

construction of buildings and bridges. Conics can also occur 

in the study of atomic structure, the long-range guidance 

systems for ships and aircrafts, the location of hidden gun 

emplacements and the detection of approaching enemy ships 

and aircrafts. The surfaces of revolution formed by the conic 

sections, such as paraboloid, ellipsoid, and hyperboloid find 

application in the sciences dealing with light, sound and 

radio waves.  

It is helpful to visualize the conic sections formed by the 

intersections of a plane and a right circular cone. The cone 

is thought of as extending indefinitely on both sides of the 

vertex, that is a double right circular cone of infinite extent 

in both directions.  

Conics as sections of a plane and a right circular cone  

Take a point 𝑃 on a cone and consider the sections of the 

double cone by the planes passing through 𝑃. 

When the cutting plane is at right angles to the axis of 

the cone, the curve of intersection is a circle.  

When the cutting plane is somewhat inclined to this 

direction and intersects only one nappe, the curve of 

intersection is an ellipse. 

As the inclination increases, the ellipse gets more and 

more elongated till finally, when the cutting plane is parallel 

to the generator 𝐴𝐵, which is diametrically opposite to 𝑃, 

the ellipse is infinitely long. This is then really a parabola.  

When the cutting plane is still more inclined, it 

intersects both nappes, the curve of intersection is a 

hyperbola. A hyperbola consists of two branches.  

 

 

When 𝑃 is the vertex 𝑉 of the cone, the section is a pair 

of straight lines, which become coincident when the cutting 

plane touches the cone along a generator like 𝐴𝐵. (Two 

parallel lines cannot be obtained as a plane section of a 

cone).  

Finally, the locus is a single point if the plane contains 

the vertex and does not intersect either nappe of the cone.  

Note: The circle, ellipse, parabola, and hyperbola are the 

main conic sections. Two straight lines, intersecting or 

coincident and a single point are called degenerate cases.  

Definition: A conic section or conic, is the locus of a point 

which moves so that its distance from a fixed point is in a 

constant ratio to its distance from a fixed straight line.  

The fixed point is called a focus, the fixed straight line is 

called a directrix, and the constant ratio is called the 

eccentricity which is denoted by 𝑒.  

From the figure above 
|𝑃𝑆|

|𝑃𝑇|
= constant = 𝑒 

If 𝑒 = 1, the curve is a parabola  

If 𝑒 < 1, the curve is an ellipse  

If 𝑒 > 1, the curve is a hyperbola. 

The Parabola 

Standard equation of a parabola 

Let 𝑆 be the fixed point, called the focus, and 𝐿𝑀 the fixed 

line, called the directrix. Draw 𝑆𝑍 perpendicular to 𝐿𝑀. 

Bisect 𝑆𝑍 at 𝐴 and let 𝑆𝑍 = 2𝑎 so that |𝑆𝐴| = |𝐴𝑍| = 𝑎.  

Take 𝐴 as the origin, 𝐴𝑆 the positive 𝑥-axis and 𝐴𝑌 the 

positive 𝑦-axis perpendicular to the 𝑥-axis 𝐴𝑆 or 𝐴𝑋.  

Then the coordinates of the focus 𝑆 are (𝑎, 0), and the 

equation of the directrix 𝐿𝑀, being parallel to the 𝑦-axis, is 

𝑥 = −𝑎 or 𝑥 + 𝑎 = 0.  

𝑃 

𝑆

𝑇 𝑇 𝑃

𝑆
𝑇

𝑇
𝑆

𝑆

𝑃

𝑃

0 <
|𝑃𝑆|

|𝑃𝑇|
< 1 

|𝑃𝑆|

|𝑃𝑇|
= 1 |𝑃𝑆|

|𝑃𝑇|
> 1

𝑆(𝑎, 0)𝐴
𝑍

𝐿

𝑇

𝑀 𝑦

𝑥𝑎 𝑎

𝑃(𝑥, 𝑦) 

Chapter 

16 
Conic Sections 



 Conic Sections 

       147 
Principles of Pure Mathematics by Kawuma Fahad 

axis or 𝑦 = 0 is the axis of the parabola 𝑦2 = 4𝑎𝑥. Note that

the axis of the parabola passes through the focus and 

perpendicular to the directrix. 

Vertex: The point of intersection of the parabola and its axis 

is called its vertex. Here, the vertex is 𝐴(0, 0). 

Focal distance: The focal distance is the distance between 

a point on the parabola and its focus. 

Focal chord: A chord which passes through the focus of the 

parabola is called the focal chord of the parabola. 

Latus rectum: The double ordinate passing through the 

focus of a parabola is called the Latus rectum. In the figure, 

𝐿𝑆𝐿′ is the latus rectum. Another name for the latus rectum 

is the principal diameter.  

End points of latus rectum and length of latus rectum 

To find the end points, solve the equation of latus rectum 

𝑥 = 𝑎 and 𝑦2 = 4𝑎𝑥.

𝑦2 = 4𝑎(𝑎)

𝑦2 = 4𝑎2

𝑦 = ±2𝑎 

If 𝐿 and 𝐿′ are the end points of latus rectum, then 𝐿 is

(𝑎, 2𝑎) and 𝐿′ is (𝑎, −2𝑎). The length of latus rectum =

𝐿𝐿′ = 4𝑎.

Note:  So far we have discussed four standard types of 

parabolas. There are plenty of parabolas which cannot be 

classified under these standard types. For example, consider 

the following parabola. 

For the above parabolas, the axes are neither parallel to 𝑥-

axis nor parallel to 𝑦-axis. In such cases the equation of the 

parabolas include 𝑥𝑦 term, which is beyond the scope of this 

book, even though we will find the equation of the parabolas 

which are not in standard form. Note that for the standard 

types the axis is either parallel to the 𝑥-axis or parallel to 𝑦-

axis.   

All the parabolas discussed so far have vertex at origin. In 

general, the vertex need not be at the origin for any parabola. 

Hence, we need the concept of shifting the origin or 

translation of the axes. 

The process of shifting the origin or translation of axes 

Consider the 𝑥𝑜𝑦 system. Draw a line parallel to 𝑥-axis (say 

𝑋-axis) and draw a line parallel to 𝑦-axis (say 𝑌-axis). Let 

𝑃(𝑥, 𝑦) be the same point with respect to 𝑋𝑂𝑌 system.  

Let the co-ordinates 𝑂′ with respect to 𝑥𝑜𝑦 system be (ℎ, 𝑘).

The co-ordinate of 𝑃 with respect to 𝑥𝑜𝑦 system: 

𝑂𝐿 = 𝑂𝑀 + 𝑀𝐿 = ℎ + 𝑋 

i.e. 𝑥 = 𝑋 + ℎ

Similarly, 𝑦 = 𝑌 + 𝑘 

∴ The new co-ordinates of 𝑃 with respect to 𝑋𝑂𝑌 system 

𝑋 = 𝑥 − ℎ 

𝑌 = 𝑦 − 𝑘 

General form of the standard equation of a parabola, which 

is open rightward (i.e. the vertex other than origin) 

Consider a parabola with vertex V whose co-ordinates with 

respect to 𝑋𝑂𝑌 system is (0, 0) and with respect to 𝑥𝑜𝑦 

systems is (ℎ, 𝑘).  

Since it is open rightward, the equation of the parabola w.r.t 

𝑋𝑂𝑌 system is 𝑌2 = 4𝑎𝑋

By shifting the origin 𝑋 = 𝑥 − ℎ abd 𝑌 = 𝑦 − 𝑘, the 

equation of the parabola with respect to old 𝑥𝑜𝑦 system is  

(𝑦 − 𝑘)2 = 4𝑎(𝑥 − ℎ)

This is the general form of the standard equation of the 

parabola, which is open rightward. Similarly, the other 

general forms are  

(𝑦 − 𝑘)2 = −4𝑎(𝑥 − ℎ) (open leftwards)

(𝑥 − ℎ)2 = 4𝑎(𝑦 − 𝑘) (open upwards)

(𝑥 − ℎ)2 = −4𝑎(𝑦 − 𝑘) (open downwards)

Note: To find the general form, replace 𝑥 by 𝑥 − ℎ and 𝑦 by 

𝑦 − 𝑘 if the vertex is (ℎ, 𝑘) 

𝑥

𝑦

𝑀

𝑇

𝑍

𝐿

𝑎 𝑎
𝐴 𝑆 𝑁

𝐿

𝐿′

𝑃(𝑥1, 𝑦1) 

𝑃′

𝑂(0, 0)

𝑂′

𝑃(𝑥,  𝑦)

ℎ

𝑘

𝑀 𝐿

𝑦 𝑌

𝑥

𝑋

𝑌

𝑋

(𝑋, 𝑌)
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Example 1 

Find the equation of the following parabola with indicated 

focus and directrix. 

(a) (𝑎, 0)  ;    𝑥 = −𝑎      𝑎 > 0 

(b) (2, −3)   ; 𝑦 − 2 = 0

Solution 

(a) Let 𝑃(𝑥, 𝑦) be any point on the parabola. If 𝑃𝑀 is drawn

perpendicular to the directrix.

𝑆𝑃̅̅̅̅

𝑃𝑀̅̅̅̅̅
= 𝑒 = 1 

𝑆𝑃̅̅̅̅ 2 = 𝑃𝑀̅̅̅̅̅2

(𝑥 − 𝑎)2 + (𝑦 − 0)2 = (
𝑥 + 𝑎

√12
)

2

𝑥2 − 2𝑎𝑥 + 𝑎2 + 𝑦2 = 𝑥2 + 2𝑎𝑥 + 𝑎2

𝑦2 = 4𝑎𝑥

(b) Let 𝑃(𝑥, 𝑦) be any point on the parabola. If 𝑃𝑀 is drawn

perpendicular to the directrix

𝑆𝑃̅̅̅̅

𝑃𝑀̅̅̅̅̅
= 𝑒 = 1 

𝑆𝑃̅̅̅̅ 2 = 𝑃𝑀̅̅̅̅̅2

(𝑥 − 2)2 + (𝑦 + 3)2 = (𝑦 − 2)2

𝑥2 − 4𝑥 + 4 + 𝑦2 + 6𝑦 + 9 = 𝑦2 − 4𝑦 + 4

𝑥2 − 4𝑥 + 10𝑦 + 9 = 0

Example 2 

Find the equation of the parabola whose vertex is (1, 2) and 

the equation of the latus rectum is 𝑥 = 3.  

Solution 

From the given data, the parabola is open rightward. 

The equation is of the form (𝑦 − 𝑘)2 = 4𝑎(𝑥 − ℎ) 

Here, the vertex 𝑉(ℎ, 𝑘) is (1, 2). 

Draw a perpendicular from 𝑉 to the latus rectum. It passes 

through the focus. ∴ 𝐹 is (3, 2) 

Again 𝑉𝐹 = 𝑎 = 2 

The required equation is  

(𝑦 − 2)2 = 4(2)(𝑥 − 1)

(𝑦 − 2)2 = 8(𝑥 − 1)

Example 3 

Find the equation of the parabola if the curve is open 

rightward, vertex is (2, 1) and passing through point (6, 5). 

Solution 

Since it is open rightward, the equation of the parabola is of 

the form (𝑦 − 𝑘)2 = 4𝑎(𝑥 − ℎ)

The vertex 𝑉(ℎ, 𝑘) is (2, 1) 

(𝑦 − 1)2 = 4𝑎(𝑥 − 2)

But it passes through (6, 5) 

42 = 4𝑎(6 − 2)

⇒ 𝑎 = 1

∴ The required equation is (𝑦 − 1)2 = 4(𝑥 − 2)

Example 4 

Find the equation of the parabola if the curve is open 

upward, vertex is (−1, −2) and the length of the latus 

rectum is 4.  

Solution 

Since it is open upward, the equation is of the form 

(𝑥 − ℎ)2 = 4𝑎(𝑦 − 𝑘)

Length of the latus rectum = 4𝑎 = 4 and this gives 𝑎 = 1 

The vertex 𝑉(ℎ, 𝑘) is (−1, −2) 

Thus the required equation becomes  

(𝑥 + 1)2 = 4(𝑦 + 2)

Example 5 

Find the equation of the parabola if the curve is open 

leftward, vertex is (2, 0) and the distance between the latus 

rectum and directrix is 2.  

Solution 

Since it is open leftward, the equation is of the form 

(𝑦 − 𝑘)2 = −4𝑎(𝑥 − ℎ)

The vertex 𝑉(ℎ, 𝑘) is (2, 0) 

The distance between latus rectum and directrix = 2𝑎 = 2 

giving 𝑎 = 1 and the equation of the parabola is  

(𝑦 − 0)2 = −4(1)(𝑥 − 2)

𝑦2 = −4(𝑥 − 2)

Example 6 

Find the axis, vertex, focus, directrix, equation of the latus 

rectum, length of the latus rectum for the following 

parabolas and hence draw their graphs 

(a) 𝑦2 = 4𝑥

(b) 𝑥2 = −4𝑦

(c) (𝑦 + 2)2 = −8(𝑥 + 1)

𝑃(𝑥,  𝑦) 𝑀

𝑆(𝑎, 0)

𝑥 = −𝑎

𝑃(𝑥,  𝑦)

𝑀

𝑆(3, −3)

𝑦 − 2 = 0 

𝑦 

𝑥

𝑦 = 2

𝑥 = 3 

𝑃(3,  2)

(1,  2)

𝑉
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The points of intersection of a straight line and parabola 

The coordinates of the points of intersection of the straight 

line 𝑦 = 𝑚𝑥 + 𝑐 and the parabola 𝑦2 = 4𝑎𝑥 are the values

of 𝑥 which simultaneously satisfy both equations.  

Substituting 𝑦 = 𝑚𝑥 + 𝑐 in the equation of the parabola, 

(𝑚𝑥 + 𝑐)2 = 4𝑎𝑥

𝑚2𝑥2 + 2(𝑚𝑐 − 2𝑎)𝑥 + 𝑐2 = 0

The quadratic equation has real, equal or imaginary roots 

according as  

[2(𝑚𝑐 − 2𝑎)]2 − 4𝑚2𝑐2

is positive, zero or negative; i.e. according as 𝑐 is less than, 

equal to, or greater than 𝑎/𝑚. 

The three possibilities can be illustrated as was done for the 

circle. 

When 𝑐 < 𝑎/𝑚, the line intersects the parabola in two real 

points. 

When 𝑐 > 𝑎/𝑚, it does not meet the parabola at all, or 

rather, it meets the curve in two imaginary points. If 𝑐 =

𝑎/𝑚, the line touches the parabola. 

Substituting 𝑐 =
𝑎

𝑚
 in the equation 𝑦 = 𝑚𝑥 + 𝑐 to the line,

we find that the line 

𝑦 = 𝑚𝑥 +
𝑎

𝑚
, 

touches the parabola 𝑦2 = 4𝑎𝑥 for all values of 𝑚

Parametric equations of a parabola 

The point (𝑥1, 𝑦1) lies on the parabola 𝑦2 = 4𝑎𝑥 only if the

relation 𝑦1
2 = 4𝑎𝑥1 between its two coordinates is satisfied.

It is often convenient to be able to write down the 

coordinates of a point which always lies on the parabola. 

Such a point is one with coordinates (𝑎𝑡2, 2𝑎𝑡) for it is clear

that if  

𝑥 = 𝑎𝑡2, 𝑦 = 2𝑎𝑡

then 𝑦2 = (2𝑎𝑡)2 = 4𝑎(𝑎𝑡2) = 4𝑎𝑥 for all values of 𝑡.

Equation of a tangent to a parabola at 𝑷(𝒂𝒕𝟐, 𝟐𝒂𝒕)

𝑥 = 𝑎𝑡2, 𝑦 = 2𝑎𝑡

Gradient at any point is  

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
×

𝑑𝑡

𝑑𝑡
= 2𝑎 ×

1

2𝑎𝑡
=

1

𝑡
Alternatively, 

𝑦2 = 4𝑎𝑥

2𝑦
𝑑𝑦

𝑑𝑥
= 4𝑎 

𝑑𝑦

𝑑𝑥
=

2𝑎

𝑦

At point (𝑎𝑡2, 2𝑎𝑡), 
𝑑𝑦

𝑑𝑥
=

2𝑎

2𝑎𝑡
=

1

𝑡

Equation of a tangent becomes 

𝑦 − 2𝑎𝑡

𝑥 − 𝑎𝑡2
=

1

𝑡
𝑡𝑦 − 2𝑎𝑡2 = 𝑥 − 𝑎𝑡2

𝑥 − 𝑡𝑦 + 𝑎𝑡2 = 0

Equation of normal to the parabola at 𝑷(𝒂𝒕𝟐, 𝟐𝒂𝒕)

Gradient of tangent =
1

𝑡

Gradient of normal = −𝑡 

Equation of normal is thus given by 

𝑦 − 2𝑎𝑡

𝑥 − 𝑎𝑡2
= −𝑡 

𝑦 − 2𝑎𝑡 = −𝑡𝑥 + 𝑎𝑡3

𝑦 + 𝑡𝑥 = 2𝑎𝑡 + 𝑎𝑡3

Equation of the chord joining the points ൫𝒂𝒕𝟏
𝟐, 𝟐𝒂𝒕𝟏൯ and

൫𝒂𝒕𝟐
𝟐, 𝟐𝒂𝒕𝟐൯

Gradient of chord =
2𝑎𝑡2−2𝑎𝑡1

𝑎𝑡2
2−𝑎𝑡1

2

Equation of chord is given by 

𝑦 − 2𝑎𝑡1

𝑥 − 𝑎𝑡1
2 =

2𝑎𝑡2 − 2𝑎𝑡1

𝑎𝑡2
2 − 𝑎𝑡1

2

𝑦 − 2𝑎𝑡1

𝑥 − 𝑎𝑡1
2 =

2(𝑡2 − 𝑡1)

(𝑡2 − 𝑡1)(𝑡2 + 𝑡1)

𝑦 − 2𝑎𝑡1

𝑥 − 𝑎𝑡1
2 =

2

𝑡2 + 𝑡1

(𝑡1 + 𝑡2)𝑦 − 2𝑎𝑡1(𝑡1 + 𝑡2) = 2𝑥 − 2𝑎𝑡1
2

(𝑡1 + 𝑡2)𝑦 − 2𝑎𝑡1
2 − 2𝑎𝑡1𝑡2 = 2𝑥 − 2𝑎𝑡1

2

2𝑥 − (𝑡1 + 𝑡2)𝑦 + 2𝑎𝑡1𝑡2 = 0

Note: Many problems on the parabola are best solved by 

using the parametric equations. The above equations to the 

chord, tangent and normal are very useful in such work. The 

student should either remember them or (preferably) be able 

to derive them quickly. 

Point of intersection of two tangents to the parabola 

Consider tangents at 𝑃(𝑎𝑝2, 2𝑎𝑝) and 𝑄(𝑎𝑞2, 2𝑎𝑞)

intersecting at a point 𝑇 

Equation of a tangent at 𝑃 is  

𝑥 − 𝑝𝑦 + 𝑎𝑝2 = 0 … (i)

Equation of a tangent at 𝑄 is  

𝑥 − 𝑞𝑦 + 𝑎𝑞2 = 0 … (ii)

𝑃(𝑎𝑡1
2,  2𝑎𝑡1) 

𝑦

𝑥

𝑦2 = 4𝑎𝑥 

𝑄(𝑎𝑡2
2,  2𝑎𝑡2) 
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At the point of intersection, (i) and (ii) are satisfied 

simultaneously  

(i) − (ii);

𝑦(𝑝 − 𝑞) + 𝑎𝑝2 − 𝑎𝑞2 = 0

𝑦(𝑝 − 𝑞) = 𝑎(𝑝2 − 𝑞2)

𝑦(𝑝 − 𝑞) = 𝑎(𝑝 − 𝑞)(𝑝 + 𝑞) 

𝑦 = 𝑎(𝑝 + 𝑞) 

Substituting for 𝑦 in (i); 

𝑥 − 𝑝[𝑎(𝑝 + 𝑞)] + 𝑎𝑝2 = 0

𝑥 − 𝑎𝑝2 − 𝑎𝑝𝑞 + 𝑎𝑝2 = 0

𝑥 = 𝑎𝑝𝑞 

The point of intersection, 𝑇 is [𝑎𝑝𝑞, 𝑎(𝑝 + 𝑞)] 

Since the chord passes through 𝑆, then the gradient of 𝑃𝑆 is 

equal to the gradient of 𝑆𝑄; 

2𝑎𝑝

𝑎𝑝2 − 𝑎
=

2𝑎𝑞

𝑎𝑞2 − 𝑎
𝑝

𝑝2 − 1
=

𝑞

𝑞2 − 1

𝑝(𝑞2 − 1) = 𝑞(𝑝2 − 1)

𝑝𝑞2 − 𝑞𝑝2 = 𝑝 − 𝑞

𝑝𝑞(𝑞 − 𝑝) = 𝑝 − 𝑞 

Since 𝑝 ≠ 𝑞, divide by (𝑞 − 𝑝) 

⇒ 𝑝𝑞 = −1

But the tangents at 𝑃 and 𝑄 have gradients 
1

𝑝
and 

1

𝑞

respectively 

The product of the gradients =
1

𝑝𝑞
= −1 

Hence the tangents intersect at right angles  

The coordinates of 𝑇 become [−𝑎, 𝑎(𝑝 + 𝑞)]  

Hence 𝑇 lies on the line 𝑥 = −𝑎 for all values of 𝑝 and 𝑞 

Example 12 

The point 𝑇(𝑎𝑡2, 2𝑎𝑡) lies on the parabola with equation

𝑦2 = 4𝑎𝑥. A straight line passing through the origin,

intersects at right angles the tangent to the parabola at 𝑇, at 

the point 𝑃. Show that as 𝑡 varies, the cartesian locus of 𝑃 is 

𝑥3 + 𝑥𝑦2 + 𝑎𝑦2 = 0.

Solution 

𝑦2 = 4𝑎𝑥

2𝑦
𝑑𝑦

𝑑𝑥
= 4𝑎 

𝑑𝑦

𝑑𝑥
=

2𝑎

𝑦

𝑑𝑦

𝑑𝑥
|

𝑦=2𝑎𝑡
=

1

𝑡

Equation of tangent is 

𝑦 − 2𝑎𝑡 =
1

𝑡
(𝑥 − 𝑎𝑡2)

Equation of line 𝑂𝑃 is 

𝑦 = −𝑡𝑥 

Solving simultaneously; 

−𝑡𝑥 − 2𝑎𝑡 =
1

𝑡
(𝑥 − 𝑎𝑡2)

−𝑡2𝑥 − 2𝑎𝑡2 = 𝑥 − 𝑎𝑡2

−𝑎𝑡2 = 𝑥 + 𝑡2𝑥

−𝑎𝑡2 = 𝑥(1 + 𝑡2)

𝑥 =
−𝑎𝑡2

1 + 𝑡2

𝑦 =
𝑎𝑡3

1+𝑡2

i.e. 𝑃 (
−𝑎𝑡2

1+𝑡2 ,
𝑎𝑡3

1+𝑡2 ) 

Eliminate the parameter 𝑡; 

𝑋 =
−𝑎𝑡2

1+𝑡2 ; 𝑌 =
𝑎𝑡3

1+𝑡2

Dividing 

𝑌

𝑋
= −𝑡 

𝑡 = −
𝑌

𝑋
Substitute into either equation; 

𝑋 = −
𝑎(

−𝑌

𝑋
)

2

1+(
−𝑌

𝑋
)

2

𝑋 = −
𝑎𝑌2

𝑋2

1+
𝑌2

𝑋2

𝑋 = −
𝑎𝑌2

𝑋2 + 𝑌2

𝑋3 + 𝑋𝑌2 = −𝑎𝑌2

𝑋3 + 𝑋𝑌2 + 𝑎𝑌2 = 0

Example 13 

Find the equation of the tangent to the parabola 𝑦2 = 4𝑎𝑥 at

the point 𝑃(𝑎𝑝2, 2𝑎𝑝). If the tangents at 𝑃 and 𝑄 with

parameters 𝑝 and 𝑞 respectively intersect at 𝑇, find the locus 

of 𝑇, given that 𝑃𝑄 is of constant length 𝑙. 

Solution 

Parametric equations of the parabola 𝑥 = 𝑎𝑡2, 𝑦 = 2𝑎𝑡

𝑇

𝑦

𝑥𝑂

𝑦2 = 4𝑎𝑥 

𝑃 

𝑇

𝑦

𝑥

𝑄

𝑃 

𝑂

(𝑎𝑞2, 2𝑎𝑞) 

(𝑎𝑝2, 2𝑎𝑝) 
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Equation of 𝑄𝑅 is  

𝑦 − 0

𝑥 + 𝑎
=

2𝑞

𝑞2 + 1
 

𝑦 =
2𝑞(𝑥+𝑎)

𝑞2+1
…. (ii) 

To find the point of intersection 𝑅, we have to solve (i) and 

(ii) simultaneously i.e.  

2

𝑝
𝑥 =

2𝑞(𝑥 + 𝑎)

𝑞2 + 1
 

𝑥(𝑞2 + 1) = 𝑝𝑞(𝑥 + 𝑎) 

But 𝑝𝑞 = −1, thus  

𝑞2 + 1 = −
𝑥 + 𝑎

𝑥
 

𝑞2 = −1 −
𝑥 + 𝑎

𝑥
 

𝑞2 =
−2𝑥 − 𝑎

𝑥
 

From (i); 𝑝 =
2𝑥

𝑦
 

𝑝𝑞 = −1 

𝑝2𝑞2 = 1 

4𝑥2

𝑦2
(

−2𝑥 − 𝑎

𝑥
) = 1 

4𝑥(−2𝑥 − 𝑎) = 𝑦2 

−8𝑥2 − 4𝑎𝑥 = 𝑦2 

𝑦2 + 8𝑥2 + 4𝑎𝑥 = 0 

 

Self-Evaluation exercise  

1. Prove that the normal to the parabola 𝑦2 = 4𝑎𝑥 at its 

points of intersection with the straight line 2𝑥 − 3𝑦 +

4𝑎 = 0 meet on the parabola  

2. If the chord joining the points (𝑎𝑡1
2, 2𝑎𝑡1), (𝑎𝑡2

2, 2𝑎𝑡2) 

on the parabola 𝑦2 = 4𝑎𝑥 passes through the focus 

(𝑎, 0), find 𝑡2 in terms of 𝑡1. 𝑃𝑄 is a focal chord and 

𝑃𝐿, 𝑄𝑀 are perpendicular to the axis of the parabola. 

Prove that 𝑃𝐿. 𝑄𝑀 is constant.  

3. 𝑃 is the point (𝑎𝑡1
2, 2𝑎𝑡1) and 𝑄 the point (𝑎𝑡2

2, 2𝑎𝑡2) 

on the parabola 𝑦2 = 4𝑎𝑥. The tangent at 𝑃 and 𝑄 

intersect at 𝑅. Show that the area of the triangle 𝑃𝑄𝑅 is 
1

2
𝑎2(𝑡1 − 𝑡2)3. 

4. 𝑃 is the point (𝑎𝑡2, 2𝑎𝑡) on the parabola 𝑦2 = 4𝑎𝑥. If 

𝑃𝑁 is perpendicular from 𝑃 to the 𝑥-axis and 𝑀 is the 

point where the normal at 𝑃 meets the 𝑥-axis, prove that 

the distance 𝑀𝑁 is independent of 𝑡. 

5. 𝑃 is a point on a parabola whose focus is 𝑆. 𝐷 is the foot 

of the perpendicular from 𝑃 to the directrix. Show that 

the tangent to the parabola at 𝑃 bisects the angle 𝑆𝑃𝐷. 

6. The normal to the parabola 𝑦2 = 4𝑎𝑥 at the point 

𝑃(𝑎𝑡2, 2𝑎𝑡) meets the axis of the parabola at 𝐺 and 𝐺𝑃 

is produced beyond 𝑃, to 𝑄 so that 𝐺𝑃 = 𝑃𝑄. Show that 

the equation to the locus of 𝑄 is 𝑦2 = 16(𝑥 + 2𝑎) 

7. Show that the equation of the tangent to the curve 𝑦2 =

4𝑎𝑥 at the point (𝑎𝑡2, 2𝑎𝑡) is 𝑡𝑦 = 𝑥 + 𝑎𝑡2 and the 

equation of the tangent to the curve 𝑥2 = 4𝑏𝑦 at the 

point (2𝑏𝑝, 𝑏𝑝2) is 𝑦 = 𝑝𝑥 − 𝑏𝑝2. The curves 𝑦2 =

32𝑥 and 𝑥2 = 4𝑦 intersect at the origin and at 𝐴. Find 

the equation of the common tangent to these curves and 

the coordinates of the points of contact 𝐵 and 𝐶 between 

the tangent and the curves. Calculate the area of the 

triangle 𝐴𝐵𝐶. 

[Ans: 2𝑥 + 𝑦 + 4 = 0, (2, −8), (−4, 4); 108] 

8. Find the coordinates of the point of intersection 𝑅 of the 

tangents to the parabola 𝑦2 = 4𝑎𝑥 at the points 

𝑃(𝑎𝑡1
2, 2𝑎𝑡1), 𝑄(𝑎𝑡2

2, 2𝑎𝑡2). If the tangents at 𝑃, 𝑄 are 

inclined to one another at an angle of 45°, show that the 

locus of 𝑅 is the curve 𝑦2 = 𝑥2 + 6𝑎𝑥 + 𝑎2 

[Ans: [𝑎𝑡1𝑡2, 𝑎(𝑡1 + 𝑡2)] ] 

9. 𝑃 and 𝑄 are two points on the parabola 𝑦2 = 4𝑎𝑥 whose 

coordinates are (𝑎𝑡1
2, 2𝑎𝑡1), (𝑎𝑡2

2, 2𝑎𝑡2). 𝑂 is the origin 

of coordinates and 𝑂𝑃 is perpendicular to 𝑂𝑄. Show 

that 𝑡1𝑡2 + 4 = 0 and that the tangents to the curve at 𝑃 

and 𝑄 meet on the line 𝑥 + 4𝑎 = 0.  

10. 𝑃 is the point (𝑎𝑡2, 2𝑎𝑡) on the parabola 𝑦2 = 4𝑎𝑥. 𝑁 

is the foot of the perpendicular drawn from the origin to 

the tangent at 𝑃. Show that, as 𝑃 varies, the locus of 𝑁 

is the curve 𝑥(𝑥2 + 𝑦2) + 𝑎𝑦2 = 0 

11. The normal a point 𝑃(𝑎𝑡2, 2𝑎𝑡) to the parabola 𝑦2 =

4𝑎𝑥 meets the parabola again at point 𝑅(𝑎𝑇2, 2𝑎𝑇). 

Prove that 𝑇 = −𝑡 −
2

𝑡
. Prove also that, if the normal at 

𝑄(𝑎𝑡1
2, 2𝑎𝑡1) passes through 𝑅,then  𝑡1 =

2

𝑡
 

12. The normal at the point 𝑃(𝑎𝑡2, 2𝑎𝑡) to the parabola 

𝑦2 = 4𝑎𝑥 meets the curve again at the point 

𝑄൫𝑎𝑡′2
, 2𝑎𝑡′൯. Find 𝑡′ in terms of 𝑡 and hence, or 

otherwise, prove that the lines joining the origin to 𝑃 

and 𝑄 are at right angles if 𝑡2 = 2.  

13. Find the equation of the normal to the parabola 𝑦2 =

4𝑎𝑥 at the point (𝑎𝑡2, 2𝑎𝑡). The straight line 4𝑥 −

9𝑦 + 8𝑎 = 0 meets the parabola at the points 𝑃 and 𝑄; 

the normal to the parabola at the points 𝑃 and 𝑄 meets 

at 𝑅. Find the coordinates of 𝑅, and verify that it lies on 

the parabola. 

[Ans: (
81

4
𝑎, −9𝑎𝑎)] 

14. Prove that the equation of the tangent to the parabola 

𝑦2 = 4𝑎𝑥 at the point 𝑃(𝑎𝑝2, 2𝑎𝑝) on the curve is 

𝑝𝑦 = 𝑥 + 𝑎𝑝2. Find the coordinates of the point of 

intersection, 𝑇, of the tangents at 𝑃 and 𝑄(𝑎𝑞2, 2𝑎𝑞), 

simplifying your answers where possible. Given that 𝑆 

is the point (𝑎, 0), verify that 𝑆𝑃. 𝑆𝑄 = 𝑆𝑇2 

[Ans: [𝑎𝑝𝑞, 𝑎(𝑝 + 𝑞)]  ] 

15. Prove that the chord joining the points 𝑃(𝑎𝑝2, 2𝑎𝑝)and 

𝑄(𝑎𝑞2, 2𝑎𝑞) on the parabola 𝑦2 = 4𝑎𝑥 has the 

equation  

(𝑝 + 𝑞)𝑦 = 2𝑟 + 2𝑎𝑝𝑞 
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The normal at the point (𝑥1, 𝑦1) is the line through this point 

at right angles to the tangent. Its slope is therefore 
𝑎2𝑦1

𝑏2𝑥1
 and 

its equation is  

𝑦 − 𝑦1

𝑥 − 𝑥1

=
𝑎2𝑦1

𝑏2𝑥1

 

This can be written in the more symmetrical form  
𝑥 − 𝑥1

𝑥1/𝑎2
=

𝑦 − 𝑦1

𝑦1/𝑏2
 

 

Example 7 

Find the equations to the tangent and normal to the ellipse 

5𝑥2 + 3𝑦2 = 137 at the point (5, 2) 

Solution 

The equation of the ellipse can be written in the form  

𝑥2

(137/5)
+

𝑦2

(137/3)
= 1 

so that 𝑎2 = 137/5 and 𝑏2 = 137/3  

The equation of the tangent at (𝑥1, 𝑦1) is given by 
𝑥𝑥1

𝑎2
+

𝑦𝑦1

𝑏2
= 1 

5𝑥

(137/5)
+

2𝑦

(137/3)
= 1 

25𝑥 + 6𝑦 = 137 

The normal at (𝑥1, 𝑦1) is given by 

𝑥 − 5

5/(137/5)
=

𝑦 − 2

2/(137/3)
 

6𝑥 − 30 = 25𝑦 − 50 

6𝑥 − 25𝑦 + 20 = 0 

 

The points of intersection of a straight line and ellipse  

The coordinates of the points of intersection of the straight 

line 𝑦 = 𝑚𝑥 + 𝑐 and the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 are the values 

of 𝑥 and 𝑦 which simultaneously satisfy both equations. 

Writing 𝑦 = 𝑚𝑥 + 𝑐 in the equation to the ellipse, 

𝑥2

𝑎2
+

(𝑚𝑥 + 𝑐)2

𝑏2
= 1 

𝑏2𝑥2 + 𝑎2(𝑚𝑥 + 𝑐)2 = 𝑎2𝑏2 

𝑏2𝑥2 + 𝑎2𝑚2𝑥2 + 2𝑎2𝑚𝑐𝑥 + 𝑎2𝑐2 = 𝑎2𝑏2 

(𝑎2𝑚2 + 𝑏2)𝑥2 + 2𝑎2𝑚𝑐𝑥 + 𝑎2(𝑐2 − 𝑏2) = 0 

This quadratic equation has real, equal or imaginary roots 

according as  

(2𝑎2𝑚𝑐)2 − 4(𝑎2𝑚2 + 𝑏2)𝑎2(𝑐2 − 𝑏2) 

is positive, zero or negative i.e. according as 𝑐2 is less, equal 

to or greater than 𝑎2𝑚2 + 𝑏2. 

Again, the three possibilities can be illustrated as was done 

for the circle.  

When 𝑐2 < 𝑎2𝑚2 + 𝑏2, the line intersects the ellipse in two 

real points.  

When 𝑐2 > 𝑎2𝑚2 + 𝑏2, the line intersects the ellipse only 

in imaginary points. 

If 𝑐2 = 𝑎2𝑚2 + 𝑏2, the line is a tangent to the ellipse.  

Writing 𝑐 = √𝑎2𝑚2 + 𝑏2 in the equation 𝑦 = 𝑚𝑥 + 𝑐 to the 

line, we find that the line  

𝑦 = 𝑚𝑥 + √(𝑎2𝑚2 + 𝑏2) 

always touches the ellipse. 

Further, since the radical sign on the right-hand side may 

have either positive or negative signs attached to it, we see 

that there are two tangents to the ellipse having the same 𝑚. 

In other words, there are two tangents parallel to any given 

direction. 

 

The parametric equations to an ellipse 

When dealing with an ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1, working is 

generally made easier by using a parameter, but the question 

arises of what parameter to use. Now an equation in the form  

(     )2 + (    )2 = 1 

suggests the identity  

cos2 𝜃 + sin2 𝜃 = 1 

Thus  
𝑥

𝑎
= cos 𝜃  ⇒ 𝑥 = 𝑎 cos 𝜃 

𝑦

𝑏
= sin 𝜃 ⇒ 𝑦 = 𝑏 sin 𝜃 

We therefore take a general point on the ellipse 

(𝒂 𝐜𝐨𝐬 𝜽 , 𝒃 𝐬𝐢𝐧 𝜽), 𝜃 is called the eccentric angle of the 

point. 

 

Example 8 

An ellipse has parametric equations  

𝑥 = 4 cos 𝜃, 𝑦 = √7 sin 𝜃 

a) Find the coordinates of foci  

b) Sketch the ellipse  

Solution 

(a) 𝑥 = 4 cos 𝜃 ⇒ 𝑥2 = 16 cos2 𝜃 

𝑥2

16
= cos2 𝜃 

𝑦 = √7 sin 𝜃, 𝑦2 = 7 sin2 𝜃 

𝑦2

7
= sin2 𝜃 

∴
𝑥2

16
+

𝑦2

7
= 1 

Eccentricity relation: 𝑏2 = 𝑎2(1 − 𝑒2) 

7 = 16(1 − 𝑒2) 

7

16
= 1 − 𝑒2 

𝑒2 =
9

16
 

𝑒 =
3

4
 

Foci at (±𝑎𝑒, 0) 

Here (±4 ×
3

4
, 0) 

∴ (±3, 0) 

 



                                                          
 Conic Sections 

       163  
 Principles of Pure Mathematics by Kawuma Fahad 

i.e. 𝑀(− cos 𝑡 , sin 𝑡) 

𝑋 = − cos 𝑡 , 𝑌 = sin 𝑡 

⇒ 𝑋2 + 𝑌2 = 1 

 

Example 13 

Find the condition that the line 𝑦 = 𝑚𝑥 + 𝑐 should touch the 

ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1.  

Solution 

The equation of any tangent to the ellipse may be written  

𝑏𝑥 cos 𝜃 + 𝑎𝑦 sin 𝜃 − 𝑎𝑏 = 0 

Let this equation represent the same tangent as the given 

line which we shall write as  

𝑚𝑥 − 𝑦 + 𝑐 = 0 

Comparing coefficients, 

𝑏 cos 𝜃

𝑚
=

𝑎 sin 𝜃

−1
=

−𝑎𝑏

𝑐
 

∴ cos 𝜃 = −
𝑎𝑚

𝑐
, sin 𝜃 =

𝑏

𝑐
 

But  cos2 𝜃 + sin2 𝜃 = 1,  

∴
𝑎2𝑚2

𝑐2
+

𝑏2

𝑐2
= 1 

Therefore 𝑦 = 𝑚𝑥 + 𝑐 touches the ellipse if  

𝑐2 = 𝑎2𝑚2 + 𝑏2 

 

Example 14 

Find the equation of the chord of the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 

joining the points 𝑃( 𝑎 cos 𝜃 , 𝑏 sin 𝜃) and 

𝑄(𝑎 cos 𝜙 , 𝑏 sin 𝜙) 

Solution 

Gradient of 𝑃𝑄 =
𝑏 sin 𝜃 − 𝑏 sin 𝜙

𝑎 cos 𝜃 − 𝑎 cos 𝜙
 

=
2𝑏 cos

1
2

(𝜃 + 𝜙) sin
1
2

(𝜃 − 𝜙)

−2𝑎 sin
1
2

(𝜃 + 𝜙) sin
1
2

(𝜃 − 𝜙)
 

= −
𝑏 cos

1
2

(𝜃 + 𝜙)

𝑎 sin
1
2

(𝜃 + 𝜙)
 

The equation of the chord 𝑃𝑄 is  

𝑦 − 𝑏 sin 𝜃

𝑥 − 𝑎 cos 𝜃
= −

𝑏 cos
1
2

(𝜃 + 𝜙)

𝑎 sin
1
2

(𝜃 + 𝜙)
 

𝑎𝑦 sin
1

2
(𝜃 + 𝜙) − 𝑎𝑏 sin 𝜃 sin

1

2
(𝜃 + 𝜙) 

= −𝑏𝑥 cos
1

2
(𝜃 + 𝜙) + 𝑎𝑏 cos 𝜃 cos

1

2
(𝜃 + 𝜙) 

𝑏𝑥 cos
1

2
(𝜃 + 𝜙) + 𝑎𝑦 sin

1

2
(𝜃 + 𝜙) 

= 𝑎𝑏 [cos 𝜃 cos
1

2
(𝜃 + 𝜙) + sin 𝜃 sin

1

2
(𝜃 + 𝜙)] 

= 𝑎𝑏 cos [𝜃 −
1

2
(𝜃 + 𝜙)] 

= 𝑎𝑏 cos
1

2
(𝜃 − 𝜙) 

Hence the equation of the chord 𝑃𝑄 may be written: 

𝑥

𝑎
cos

1

2
(𝜃 + 𝜙) +

𝑦

𝑏
sin

1

2
(𝜃 + 𝜙) = cos

1

2
(𝜃 − 𝜙) 

or  

𝑏𝑥 cos
1

2
(𝜃 + 𝜙) + 𝑎𝑦 sin

1

2
(𝜃 + 𝜙) = 𝑎𝑏 cos

1

2
(𝜃 − 𝜙) 

 

Example 15 

The point 𝑃(5 cos 𝜃 , 4 sin 𝜃) lies on an ellipse 𝐸 with 

Cartesian equation 16𝑥2 + 25𝑦2 = 400 

(a) Find the coordinates of the foci of 𝐸 

(b) Show that an equation of the normal to the ellipse at 𝑃 

is 4𝑦 cos 𝜃 − 5𝑥 sin 𝜃 + 9 sin 𝜃 cos 𝜃 = 0 

The normal to the ellipse intersects the coordinate axes at 

the points 𝐴 and 𝐵, and the point 𝑀 is the midpoint of 𝐴𝐵. 

(c) Show that the locus of 𝑀, as 𝜃 varies, is the ellipse with 

equation 100𝑥2 + 64𝑦2 = 81 

Solution 

(a) 16𝑥2 + 25𝑦2 = 400 

𝑥2

25
+

𝑦2

16
= 1 

𝑏2 = 𝑎2(1 − 𝑒2) 

16 = 25(1 − 𝑒2) 

16

25
= 1 − 𝑒2 

𝑒2 =
9

25
 

𝑒 =
3

5
 

Foci at (±𝑎𝑒, 0) 

∴ (±3, 0) 

(b) Differentiate w.r.t 𝑥 

32𝑥 + 50𝑦
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
= −

16𝑥

25𝑦
 

𝑑𝑦

𝑑𝑥
|

𝑝
=

−80 cos 𝜃

100 sin 𝜃
= −

4 cos 𝜃

5 sin 𝜃
 

Normal gradient is 
5 sin 𝜃

4 cos 𝜃
 

Thus, 

𝑦 − 4 sin 𝜃 =
5 sin 𝜃

4 cos 𝜃
(𝑥 − 5 cos 𝜃) 

4𝑦 cos 𝜃 − 16 sin 𝜃 cos 𝜃 = 5𝑥 sin 𝜃 − 25 sin 𝜃 cos 𝜃 

4𝑦 cos 𝜃 − 5𝑥 sin 𝜃 + 9 sin 𝜃 cos 𝜃 = 0 

(c) When 𝑥 = 0, 𝑦 = −
9 sin 𝜃

4
 

When 𝑦 = 0, 𝑥 =
9 cos 𝜃

5
 

∴ 𝑀 (
9 cos 𝜃

10
,
−9 sin 𝜃

8
 ) 

𝑥 =
9 cos 𝜃

10
⇒ 𝑥2 =

81

100
cos2 𝜃 ⇒ cos2 𝜃 =

100

81
𝑥2 
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When 𝑦 =
4

5
𝑏, 𝑥2 = 3𝑏2 − 3 (

4

5
𝑏)

2

 

𝑥2 = 3𝑏2 −
48𝑏2

25
=

27𝑏2

25
 

𝑥 = ±
3√3

5
𝑏  

Ignore the negative value of 𝑥 

⇒ (
3√3

5
𝑏,

4

5
𝑏)  

The perpendicular bisector of 𝐴𝐵 meets the ellipse at the two 

points (0, −𝑏) and (
3√3

5
𝑏,

4

5
𝑏) 

 

Self-Evaluation exercise 

1. Find in the form 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 the equations of the 

ellipses with  

(a) eccentricity 
1

2
, foci (±2, 0) (b) eccentricity 

3

5
, foci 

(±9, 0) 

[Ans: (a) 
𝑥2

16
+

𝑦2

12
= 1 (b) 

𝑥2

225
+

𝑦2

144
= 1] 

2. Use the Locus definition of the ellipse to find the 

equation of the ellipse with eccentricity 
2

3
, focus (2, 1) 

and directrix 𝑥 = −
1

2
 

[Ans: 5𝑥2 + 9𝑦2 − 40𝑥 − 18𝑦 + 44 = 0] 

3. 𝑃 is the point (5 cos 𝜃 , 4 sin 𝜃) on the curve 
𝑥2

25
+

𝑦2

16
=

1 and 𝑆′ are the points with coordinates (−3, 0) and 

(3, 0), show that the value of 𝑃𝑆 + 𝑃𝑆′ is independent 

of 𝜃. 

4. Show that the equation to the chord joining the two 

points whose eccentric angles are 𝜙, 𝜙′ on the ellipse 

𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 is  

𝑥

𝑎
cos

1

2
(𝜙 + 𝜙′) +

𝑦

𝑏
sin

1

2
(𝜙 + 𝜙′) = cos

1

2
(𝜙 − 𝜙′)  

       Deduce the equation to the tangent at the point 𝜙 

5. Show that if the tangents to the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 at 

the points 𝑃(𝑎 cos 𝜃 , 𝑏 sin 𝜃) and 𝑄(𝑎 cos 𝜙 , 𝑏 sin 𝜙) 

intersect at the point 𝑅, then the coordinates of 𝑅 are 

(
𝑎 cos

1

2
(𝜃+𝜙)

cos
1

2
(𝜃−𝜙)

,
𝑏 sin

1

2
(𝜃+𝜙)

cos
1

2
(𝜃−𝜙)

). If 𝑃 and 𝑄 move on the 

ellipse in such a way that 𝜙 = 𝜃 +
1

2
𝜋, find the equation 

of the locus of 𝑅.                              [Ans: 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 2] 

6. The line 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to the ellipse 
𝑥2

𝑎2 +

𝑦2

𝑏2 = 1, (𝑎 > 𝑏 > 0). Show that 𝑐2 = 𝑎2𝑚2 + 𝑏2. The 

perpendicular distances from the points ൫√𝑎2 − 𝑏2, 0 ൯ 

and ൫−√𝑎2 − 𝑏2, 0 ൯, to any tangent to the ellipse are 

𝑝1, 𝑝2. Show that 𝑝1𝑝2 = 𝑏2. 

7. Prove that the equation of the tangent at the point 

(𝑥1, 𝑦1) on the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 is 
𝑥𝑥1

𝑎2 +
𝑦𝑦1

𝑏2 = 1. The 

tangent at the point ൫2 cos 𝜃 , √3 sin 𝜃൯ on the ellipse 

𝑥2

4
+

𝑦2

3
= 1 passes through the point 𝑃(2, 1). Show that 

√3 cos 𝜃 + sin 𝜃 = √3. 

8. Prove that the equation of the normal at 

(𝛼 cos 𝜙 , 𝛽 sin 𝜙) to the ellipse 
𝑥2

𝛼2 +
𝑦2

𝛽2 = 1 is 

𝛼𝑥 sec 𝜙 − 𝛽𝑦 cosec 𝜙 = 𝛼2 − 𝛽2. 𝑃 is the point 

(𝑎 cos 𝜃 , 𝑏 sin 𝜃) on the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1. 𝑀 and 𝑁 

are the feet of the perpendiculars from 𝑃 to the axes. 

Find the equation of 𝑀𝑁. Prove that, for variable 𝜃, 𝑀𝑁 

is always normal to a fixed concentric ellipse and find 

the equation to this ellipse. 

[Ans: 𝑏𝑥 sec 𝜃 + 𝑎𝑦 cosec 𝜃 = 𝑎𝑏; 
𝑥2

𝑎2 +
𝑦2

𝑏2 = (
𝑎𝑏

𝑎2−𝑏2)
2

]  

9. Show that the tangents to the ellipse 𝑥2 + 2𝑦2 = 18 at 

the points (0, −3), (−
72

17
, −

3

17
) intersect on the normal 

at the point (4, 1). 

10. The equation to a chord of the ellipse 𝑥2 + 4𝑦2 = 260 

is 𝑥 + 6𝑦 = 50. Find the coordinates of its middle 

point.  

[Ans: (5,
15

2
) ] 

11. Show that the 𝑥 coordinates of any points of 

intersection of the line 𝑦 = 𝑚𝑥 + 𝑐 and the ellipse 
𝑥2

9
+

𝑦2

4
= 1 are given by the solutions of the quadratic 

equation (4 + 9𝑚2)𝑥2 + 18𝑚𝑐𝑥 + (9𝑐2 − 36) = 0.  

If the line 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to the ellipse, prove 

that 𝑐2 = 4 + 9𝑚2. The line 𝑦 = 𝑚𝑥 + 𝑐 passes 

through the point (2, 3). Write down a second equation 

connecting 𝑚 and 𝑐, ane hence prove that 𝑚 must 

satisfy the equation 5𝑚2 + 12𝑚 − 5 = 0 

Prove that the two tangents drawn from the point (2, 3) 

to the ellipse are perpendicular to each other. 

[Ans: 2𝑚 + 𝑐 = 3] 

12. Show that the tangents to the ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 at 

points whose eccentric angles differ by 90° meet on the 

ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 2.  

13. Show that the equation of the tangent to the parabola 

𝑦2 = 4𝑎𝑥 at 𝑃(𝑎𝑝2, 2𝑎𝑝) is 𝑥 − 𝑝𝑦 + 𝑎𝑝2 = 0. 

Show also that the equation of the tangent to the ellipse 

𝑏2𝑥2 + 𝑎2𝑦2 = 𝑎2𝑏2 at  𝑄(𝑎 cos 𝜃 , 𝑏 sin 𝜃) is 

𝑏𝑥 cos 𝜃 + 𝑎𝑦 sin 𝜃 − 𝑎𝑏 = 0. Hence or otherwise, 

show that the tangent to the parabola at 𝑃 is also a 

tangent to the ellipse 4𝑥2 + 𝑦2 = 4𝑎2 if 𝑝 satisfies the 

equation 1 + 4𝑝2 = 𝑝4. 

Deduce that there are exactly two such common 

tangents. Determine the points of contact between the 

tangents and the ellipse 4𝑥2 + 𝑦2 = 4𝑎2. 

 6  
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9. The tangents at the points 𝑃 (𝑐𝑝,
𝑐

𝑝
) and 𝑄 (𝑐𝑞,

𝑐

𝑞
) on the

rectangular hyperbola 𝑥𝑦 = 𝑐2 intersect at the point 𝑅.

Given that 𝑅 lies on the rectangular hyperbola 𝑥𝑦 =
1

2
𝑐2, find the equation of the locus of the midpoint 𝑀 of

𝑃𝑄 as 𝑝 and 𝑞 vary. 

[Ans: 𝑥𝑦 = 𝑐2]

10. Show that the tangent at the point 𝑃, with parameter 𝑡,

on the curve 𝑥 = 𝑐𝑡, 𝑦 =
𝑐

𝑡
 has equation 𝑥 + 𝑡2𝑦 = 2𝑐𝑡.

This tangent meets the 𝑥-axis in a point 𝑄 and the line

through 𝑃 parallel to the 𝑥-axis cuts the 𝑦-axis in a point

𝑅. Show that, for any position of 𝑃 on the curve, 𝑄𝑅 is

a tangent to the curve with parametric equations 𝑥 = 𝑐𝑡,

𝑦 =
𝑐

2𝑡

11. Prove that the equation of the normal to the rectangular

hyperbola 𝑥𝑦 = 𝑐2 at the point 𝑃 (𝑐𝑡,
𝑐

𝑡
) is 𝑡𝑦 − 𝑡3𝑥 =

𝑐(1 − 𝑡4). The normal at 𝑃 and the normal at the point

𝑄 (𝑐𝑡,
𝑐

𝑡
), where 𝑡 > 1, intersect at the point 𝑁. Show

that 𝑂𝑃𝑁𝑄 is a rhombus, where 𝑂 is the origin. Hence,

or otherwise, find the coordinates of 𝑁. If the tangents

to the hyperbola at 𝑃 and 𝑄 intersect at 𝑇, prove that the

product of the lengths of 𝑂𝑇 and 𝑂𝑁 is independent of

𝑇, prove that the product of the lengths of 𝑂𝑇 and 𝑂𝑁

is independent of 𝑡

[Ans: (𝑐𝑡 +
𝑐

𝑡
, 𝑐𝑡 +

𝑐

𝑡
)]

12. Show that the equation to the chord two joining two

points (𝑥1, 𝑦1), (𝑥2, 𝑦2) on the rectangular hyperbola

𝑥𝑦 = 𝑐2 is
𝑥

𝑥1 + 𝑥2

+
𝑦

𝑦1 + 𝑦2

= 1 

13. The tangent at 𝑃 to the rectangular hyperbola 𝑥𝑦 = 𝑐2

meets the lines 𝑥 − 𝑦 = 0 and 𝑥 + 𝑦 = 0 at 𝐴 and 𝐵,

and ∆ denotes the area of the triangle 𝑂𝐴𝐵 where 𝑂 is

the origin. The normal at 𝑃 meets the 𝑥-axis at 𝐶 and

the 𝑦-axis at 𝐷. If ∆1 denotes the area of the triangle

𝑂𝐷𝐶 show that ∆2∆1= 8𝑐6.

14. (a) Find the equation of the tangent to the curve 𝑥𝑦 =

𝑐2 at the point (𝑐𝑡1,
𝑐

𝑡1
)

(b) Find the equation of the normal to the curve 𝑥𝑦 =

𝑐2 at the point (𝑐𝑡2,
𝑐

𝑡2
)

(c) If the tangent of (a) meets the normal of (b) on the

𝑦-axis show that 2𝑡2 = 𝑡1(1 − 𝑡2
4)

15. Find the equation of the chord joining the point (𝑐𝑡1,
𝑐

𝑡1
) 

to the point (𝑐𝑡2,
𝑐

𝑡2
) on the hyperbola 𝑥𝑦 = 𝑐2.

16. By letting 𝑡1 = 𝑡2 = 𝑡 use your answer to part (a) to

obtain the tangent to the curve 𝑥𝑦 = 𝑐2 at the point

(𝑐𝑡,
𝑐

𝑡
)

17. Given that 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to 𝑥𝑦 = 𝑑2 prove

that 𝑚 = −
𝑐2

4𝑑2

18. Show that the tangent at the point 𝑃, with parameter 𝑡,

on the curve 𝑥 = 𝑐𝑡, 𝑦 =
𝑐

𝑡
 has the equation 𝑥 + 𝑡2𝑦 =

2𝑐𝑡.

19. This tangent meets the 𝑥-axis in a point 𝑄 and the line

through 𝑃 parallel to the 𝑥-axis cuts the 𝑦-axis in a point

𝑅. Show that, for any position of 𝑃 on the curve, 𝑄𝑅 is

a tangent to the curve with parametric equations 𝑥 = 𝑐𝑡,

𝑦 =
𝑐

2𝑡

20. Show that the equation to the tangent to the hyperbola

𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 at the point 𝑃(𝑎 sec 𝜃 , 𝑏 tan 𝜃) is 
𝑥 sec 𝜃

𝑎
−

𝑦 tan 𝜃

𝑏
= 1. Find also the equation of the normal. 

21. The tangent at the point 𝑃 (𝑐𝑡,
𝑐

𝑡
), where 𝑡 > 0, on the

rectangular 𝑥𝑦 = 𝑐2 meets the 𝑥-axis at 𝐴 and the 𝑦-

axis at 𝐵. The normal at 𝑃 to the rectangular hyperbola

meets the line 𝑦 = 𝑥 at 𝐶 and the line 𝑦 = −𝑥 at 𝐷.

(a) Show that 𝑃 is the mid-point of both 𝐴𝐵 and 𝐶𝐷

(b) Prove that the points 𝐴, 𝐵, 𝐶 and 𝐷 form the

vertices of a square. The normal at 𝑃 meets the

hyperbola again at the point 𝑄 and the midpoint of

𝑃𝑄 is 𝑀

(c) Prove that, as 𝑡 varies, the point 𝑀 lies on the curve

𝑐2(𝑥2 − 𝑦2)2 + 4𝑥3𝑦3 = 0

22. The point 𝑃 (𝑎𝑝,
𝑎

𝑝
) lies on the rectangular hyperbola 𝐻, 

with Cartesian equation 𝑥𝑦 = 𝑎2 where 𝑎 is a positive

constant and 𝑝 is a parameter. 

(a) Show that the equation of a tangent at the point 𝑃

is given by

𝑥 + 𝑝2𝑦 = 2𝑎𝑝

The point 𝑄 (𝑎𝑞,
𝑎

𝑞
) also lies on 𝐻, where 𝑞 is a 

parameter, so that 𝑞 ≠ 𝑝. The tangent at 𝑃 and at 𝑄 

intersect at the point 𝑅. 

(b) Find simplified expressions for the coordinates of

𝑅.

The values of 𝑝 and 𝑞 are such so that 𝑝 = 3𝑞 

(c) Find a Cartesian locus of 𝑅 as 𝑝 varies

[Ans: (b)  𝑅 (
2𝑎𝑝𝑞

𝑝+𝑞
,

2𝑎

𝑝+𝑞
) (c) 𝑥𝑦 =

3

4
𝑎2]

23. The general point 𝑃 (𝑐𝑝,
𝑐

𝑝
), 𝑝 ≠ 0, where 𝑝 is a 

parameter, lies on the rectangular hyperbola, with 

Cartesian equation 𝑥𝑦 = 𝑐2.

(a) Show that the equation of the tangent to the

hyperbola at 𝑃 is given by  𝑦𝑝2 + 𝑥 = 2𝑐𝑝

Another point 𝑄 (𝑐𝑞,
𝑐

𝑞
) , 𝑝 ≠ ±𝑞 also lies on the 

hyperbola. The tangents to the hyperbola at 𝑃 and 𝑄 

meet at the point 𝑅. 
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(b) Show that the coordinates of 𝑅 are given by

(
2𝑐𝑝𝑞

𝑝 + 𝑞
,

2𝑐

𝑝 + 𝑞
) 

(c) Given that 𝑃𝑄 is perpendicular to 𝑂𝑅, show that

𝑝2𝑞2 = 1

24. The general point 𝑃 (5𝑡,
5

𝑡
) where 𝑡 is a parameter lies

on the hyperbola with cartesian equation 𝑥𝑦 = 25. 

(a) Show that an equation of the normal to the

hyperbola at the point 𝑃 is 𝑦 = 𝑡2𝑥 +
5

𝑡
− 5𝑡3

The normal to the hyperbola at 𝑃 meets the hyperbola 

again at the point 𝑄.  

(b) Show that the coordinates of 𝑄 are given by

(−
5

𝑡3
, −5𝑡3)

(c) Show that the Cartesian form of the locus of the

midpoint of 𝑃𝑄, as 𝑡 varies is given by

4𝑥𝑦 + 25 (
𝑦

𝑥
−

𝑥

𝑦
)

2

= 0 

25. The general point 𝑃 (
𝑝

2
,

1

2𝑝
) where 𝑝 is a parameter, lies 

on a rectangular hyperbola, with Cartesian equation 

4𝑥𝑦 = 1 

The normal to the hyperbola meets the hyperbola again 

at the point 𝑄. 

Show that the Cartesian form of the locus of the 

midpoint of 𝑃𝑄, as 𝑝 varies, is  

(𝑦2 − 𝑥2)2 + 16𝑥3𝑦3 = 0

26. Two distinct points 𝑃 (2𝑝,
2

𝑝
) and 𝑄 (2𝑞,

2

𝑞
), lie on the 

hyperbola with Cartesian equation 𝑥𝑦 = 4. 

The tangents to the hyperbola at the points 𝑃 and 𝑄, 

meet at the point 𝑅.  

(a) Show that the coordinates of the point 𝑅 are given

by   𝑥 =
4𝑝𝑞

𝑝+𝑞
, 𝑦 =

4

𝑝+𝑞

(b) Given that the point 𝑅 traces the rectangular

hyperbola 𝑥𝑦 = 3, find the two possible

relationships between 𝑝 and 𝑞, in the form 𝑝 =

𝑓(𝑞)

[Ans: 𝑝 = 3𝑞, 𝑝 =
1

3
𝑞] 

27. A hyperbola 𝐻 and a line 𝐿 have Cartesian equations

𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 and 𝑦 = 𝑚𝑥 + 𝑐 respectively where 𝑎,𝑏, 𝑚 

and 𝑐 are non-zero constants 

(a) Show that the 𝑥 coordinates of the points of

intersection between 𝐿 and 𝐻 satisfy the equation

(𝑎2𝑚2 − 𝑏2)𝑥2 + (2𝑎2𝑚𝑐)𝑥 + 𝑎2(𝑏2 + 𝑐2) = 0

(b) Given the line is a tangent to the hyperbola, show

that 𝑎2𝑚2 = 𝑏2 + 𝑐2

(c) Find the equations of the two tangents to the

hyperbola with Cartesian equation 
𝑥2

25
−

𝑦2

16
= 1 that

pass through the point (1, 4) and for each tangent 

the coordinates of their point of tangency. 

[Ans: 𝑦 = 𝑥 + 3, (−
25

3
, −

16

3
); 𝑦 = −

4

3
𝑥 +

16

3
, (

25

4
, −3)] 

28. A hyperbola 𝐻 has Cartesian equation 
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1

where 𝑎 and 𝑏 are positive constants. 

The straight line 𝑇1 is the tangent to 𝐻 at the point

(𝑎 cos ℎ𝜃 , 𝑏 sin ℎ𝜃). 𝑇1 meets the 𝑥-axis at the point 𝑃.

The straight line 𝑇2 is a tangent to the hyperbola at the

point (𝑎, 0). 𝑇1 and 𝑇2 meet each other at the point 𝑄.

Given further that 𝑀 is the midpoint of 𝑃𝑄, show that 

as 𝜃 varies, the locus of 𝑀 traces the curve with 

equation  

𝑥(4𝑦2 + 𝑏2) = 𝑎𝑏2
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17 
Examination Questions 

SECTION A 

1. The equation of an ellipse is 4𝑥2 + 25𝑦2 + 8𝑥 −

100𝑦 + 4 = 0. Detemine the;

(a) coordinates of the centre of the ellipse.

(b) eccentricity of the ellipse

[2024, No. 3] 

2. If a line 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to the curve 4𝑥2 +

3𝑦2 = 12, show that 𝑐2 = 4 + 3𝑚2.

[2023, No. 2] 

3. A line 𝐿 passes through the point of intersection of the

lines 𝑥 − 3𝑦 − 4 = 0 and 𝑦 + 3𝑥 − 2 = 0. If 𝐿 is

perpendicular to the line 4𝑦 + 3𝑥 = 0, determine the

equation of the line 𝐿.

[2022, No. 7] 

4. (a) Show that the curve whose parametric equations are

𝑥 = 9 cos 𝜃 and 𝑦 = 12 sin 𝜃 represents an ellipse

(b) Determine the eccentricity of the ellipse

[2020, No. 7] 

5. A point 𝑃 moves such that its distances from two points

𝐴(−2, 0) and 𝐵(8, 6) are in the ratio 𝐴𝑃: 𝑃𝐵 = 3 ∶ 2.

Show that the locus of 𝑃 is a circle.

[2018, No. 5: Ans: 𝑥2 + 𝑦2 − 32𝑥 − 21.6𝑦 + 176.8 = 0]

6. The equation of a curve is given by 𝑦2 − 6𝑦 + 20𝑥 +

49 = 0.

(a) Show that the curve is a parabola

(b) Find the coordinates of its vertex

[2017, No. 7: Ans: (b) (−2, 3)] 

7. Find the angle between the lines 2𝑥 − 𝑦 = 3 and 11𝑥 +

2𝑦 = 13.

[2016, No. 2: Ans: 36.87°] 

8. Find the equation of a line through the point (5, 3) and

perpendicular to the line 2𝑥 − 𝑦 + 4 = 0.

[2015, No. 2: Ans: 2𝑦 + 𝑥 = 11] 

9. A focal chord 𝑃𝑄, to the parabola 𝑦2 = 4𝑥, has a

gradient 𝑚 = 1. Find the coordinates of the midpoint of

𝑃𝑄.

[2014, No. 2: Ans: (3, 2)] 

10. Given that 𝑟 = 3 cos 𝜃 is an equation of a circle, find its

Cartesian form.

[2013, No. 3: Ans: 𝑥2 + 𝑦2 − 3𝑥 = 0]

11. The line 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to the ellipse

𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 when 𝑐 = ±√𝑎2𝑚2 + 𝑏2. Find the 

equations of the tangents to the ellipse 
𝑥2

4
+

𝑦2

1
= 1 from 

the point (0, √5).  

[2012, No. 6: Ans: 𝑦 = ±𝑥 + √5]

12. Find the equation of a line through the point (2, 3) and

perpendicular to the line 𝑥 + 2𝑦 + 5 = 0.

[2011, No. 2: Ans: 𝑦 = 2𝑥 − 1] 

13. The points 𝐴 and 𝐵 lie on the positive sides of the 𝑥-

axis and 𝑦-axis respectively. If the length 𝐴𝐵 is 5 units

and angle 𝑂𝐴𝐵 is 𝜃, where 𝑂 is the origin, find the

equation of the line 𝐴𝐵. (Leave 𝜃 in your answer)

[2010, No. 2: Ans: 𝑦 = −𝑥 tan 𝜃 + 5 sin 𝜃] 

14. Given the points 𝑂(0, 0) and 𝑃(4, 2), 𝐴 is the locus of

the points such that 𝑂𝐴 ∶ 𝐴𝑃 = 1: 2. 𝑄 is the mid-point

of 𝐴𝑃. Find the locus of 𝑄 in its simplest form.

[2008, No. 5: Ans: 3𝑋2 + 3𝑌2 − 8𝑋 − 4𝑌 = 0]

15. Find the locus of the point 𝑃(𝑥, 𝑦) which moves such

that its distance from the point 𝑆(−3, 0) is equal to its

distance from a fixed line 𝑥 = 3.

[2007, No. 7: Ans: 𝑦2 = −12𝑥]

16. Prove that 𝑦 = −3𝑥 + 6 is a tangent to the rectangular

hyperbola whose parametric co-ordinates are of the

form (√3𝑡,
√3

𝑡
)

[2006, No. 4] 

17. Sketch the parabola 𝑦2 = 12(𝑥 − 4). State the focus

and equation of the directrix.

[2005, No. 7: Ans: (7, 0), 𝑥 = 1] 

18. 𝐴 is the point (1, 3) and 𝐵 is the point (4, 6). 𝑃 is a

variable point which moves in such a way that

(𝐴𝑃̅̅ ̅̅ )2 + (𝑃𝐵̅̅ ̅̅ )2 = 34. Show that the locus of 𝑃

describes a circle. Find the centre and radius of the

circle.

[2004, No. 5: Ans: (
5

2
,

9

2
) , 𝑟 =

5√2

2
 units] 

19. The points 𝐴(2, 1), 𝑃(𝛼, 𝛽) and point 𝐵(1, 2) lie in the

same plane. 𝑃𝐴 meets the 𝑥-axis at the point (ℎ, 0) and

𝑃𝐵 meets the 𝑦-axis at the point (0, 𝑘). Find ℎ and 𝑘 in

terms of 𝛼 and 𝛽.

[2003, No. 7: Ans: ℎ =
2𝛽−𝛼

𝛽−1
, 𝑘 =

2𝛼−𝛽

𝛼−1𝛼
] 

20. The points 𝑅(2, 0) and 𝑃(3, 0) lie on the 𝑥-axis and

𝑄(0, −𝑦) lies on the 𝑦-axis. The perpendicular from the

origin meets 𝑃𝑄 at 𝑆(𝑋, −𝑌). Determine the locus of 𝑆

in terms of 𝑋 and 𝑌.

[2002, No. 4: Ans: 2𝑋2 + 3𝑌2 − 6𝑋 = 0]

21. Find the locus of the point which is equidistant from the

line 𝑥 = 2 and the circle 𝑥2 + 𝑦2 = 1. Illustrate this

with a sketch.

[2001, No. 7: Ans: 𝑦2 + 6𝑥 − 9 = 0]

22. Show that the line 𝑥 − 2𝑦 + 10 = 0 is a tangent to the

ellipse 
𝑥2

64
+

𝑦2

9
= 1
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13. (a) Find the equation of the tangent to the parabola

𝑦2 =
𝑥

8
at the point (𝑡2,

𝑡

4
)

(b) If the tangents to the parabola in (a) above at the

points 𝑃 (𝑝2,
𝑝

4
) and 𝑄 (𝑞2,

𝑞

4
) meet on the line

𝑦 = 2 

(i) show that 𝑝 + 𝑞 = 16,

(ii) deduce that the mid-point of 𝑃𝑄 lies on the line

𝑦 = 2

[2011, No. 13: Ans: (a) 𝑥 − 8𝑡𝑦 + 𝑡2 = 0] 

14. (a) (i) Find the co-ordinates of the points where the

ellipse 
𝑥2

4
+

𝑦2

9
= 1 cuts the axes

(ii) Express the given equation in a(i) above, in its

polar form.

(b) If the line 𝑦 = 𝑚𝑥 + 𝑐 is tangent to the ellipse

𝑥2

4
+

𝑦2

9
= 1, show that 𝑐2 = 4𝑚2 + 9

[2010, No. 13: Ans: (a) (i) (0, −3), (0, 3)           

(ii) (3 cos 𝜃 , 2 sin 𝜃]

15. (a) Find the equation of the tangent and normal to the

ellipse

(b) If the tangent in (a) cuts the 𝑦-axis at a point 𝐴 and

the 𝑥-axis at a point 𝐵, and the normal cuts the 𝑥-

axis at point 𝐶, find the co-ordinates of points 𝐴, 𝐵

and 𝐶.

[2009, No. 15: Ans: (a) 
𝑥

2
cos 𝜃 + 𝑦 sin 𝜃 = 1; 

2

3
𝑥 sec 𝜃 −

1

3
𝑦 cosec 𝜃 = 1 (b) 𝐴(0, cosec 𝜃),

𝐵(2 sec 𝜃 , 0), 𝐶(1.5 cos 𝜃 , 0)] 

16. A circle cuts the 𝑦-axis at two points 𝐴 and 𝐵. It

touches the 𝑥-axis at a distance of 4 units from the

origin and distance 𝐴𝐵 is 6 units. 𝐴 is the point (0, 1). 

Find the: 

(a) equation of the circle

(b) equations of the tangents to the circle at 𝐴 and 𝐵

[2008, No. 9] 

17. (i) Show that the equation of the tangent to the

hyperbola (𝑎 sec 𝜃 , 𝑏 tan 𝜃) is

𝑏𝑥 − 𝑎𝑦 sin 𝜃 − 𝑎𝑏 cos 𝜃 = 0 

(ii) Find the equations of the tangents to 
𝑥2

4
−

𝑦2

9
= 1,

at the points where 𝜃 = 45° and where 𝜃 = −135°

(iii) Find the asymptotes

[2007, No. 11: Ans: (ii) 𝑦 = (
3

2
√2) 𝑥 − 3, 𝑦 =

3√2

2
𝑥 + 3] 

18. (a) Form the equation of a circle that passes through the

points 𝐴(−1, 4), 𝐵(2, 5) and 𝐶(0, 1).

(b) The line 𝑥 + 𝑦 = 𝑐 is a tangent to the circle 𝑥2 +

𝑦2 − 4𝑦 + 2 = 0. Find the coordinates of the points

of contact of the tangent for each value of 𝑐

[2006, No. 13: Ans: (a) 𝑥2 + 𝑦2 − 2𝑥 − 6𝑦 + 5 = 0

(b) 𝑐 = 0, 4;  (−1, 1); (1, 3)]

19. (a) Find the equation of a circle which passes through

the points (5, 7), (1, 3) and (2, 2).

(b) (i) If 𝑥 = 0 and 𝑦 = 0 are tangents to the circle

𝑥2 + 𝑦2 + 2g𝑥 + 2𝑓𝑦 + 𝑐 = 0, show that 𝑐2 =

g2 = 𝑓2

(ii) Given that the line 3𝑥 − 4𝑦 + 6 = 0 is also a

tangent to the circle in (b) (i) above, determine

the equation of the circle lying in the first

quadrant.

[2005, No. 12: Ans: (a) 𝑥2 + 𝑦2 − 7𝑥 − 9𝑦 + 24 = 0

(b)(ii) 𝑥2 + 𝑦2 − 2𝑥 − 2𝑦 + 1 = 0]

20. (a) Show that the line 5𝑦 = 4𝑥 + 25 is a tangent to the

ellipse

𝑥2

25
+

𝑦2

9
= 1 

(b) Find the equation of the normal to the ellipse at the

point of contact

(c) Determine the eccentricity of the ellipse.

[2004, No. 13: Ans: (b) 𝑦 = −
5

4
𝑥 −

16

5
(c) 𝑒 = ±

4

5
] 

21. (a) A conic section is given by 𝑥 = 4 cos 𝜃; 𝑦 =

3 sin 𝜃. Show that the conic section is an ellipse and

determine its eccentricity.

(b) Given that the line 𝑦 = 𝑚𝑥 + 𝑐 is a tangent to the

ellipse 
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1, show that 𝑐2 = 𝑎2𝑚2 + 𝑏2.

Hence determine the equations of the tangents at the 

point (−3, 3) to the ellipse 
𝑥2

16
+

𝑦2

9
= 1

[2003, No. 14: Ans: (a) 𝑒 =
√7

4
(b) 𝑦 = 3, 𝑦 =

18

7
𝑥 +

75

7
] 

22. 𝑃 is a variable point given by the parametric equations

𝑥 =
1

2
(𝑡 +

1

𝑡
); 𝑦 =

𝑏

2
(𝑡 −

1

𝑡
) 

Show that the locus of 𝑃 is 
𝑥2

𝑎2 −
𝑦2

𝑏2 = 1 

State the asymptotes. Determine the coordinates of the 

points where the tangent from 𝑃 meets the asymptotes. 

[2002, No. 10: Ans: 𝑦 = ±
𝑏

𝑎
𝑥; (𝑎𝑡, 𝑏𝑡), (

𝑎

𝑡
, −

𝑏

𝑡
)] 

23. (a) (i) Find the equation of the chord through the points

(𝑎𝑡1
2, 2𝑎𝑡1) and (𝑎𝑡2

2, 2𝑎𝑡2) of the parabola 𝑦2 = 4𝑎𝑥

(ii) Show that the chord cuts the directrix when

𝑦 =
2𝑎(𝑡2𝑡1 − 1)

𝑡1 + 𝑡2

(b) Find the equation of the normal to the parabola

𝑦2 = 4𝑎𝑥 at (𝑎𝑡2, 2𝑎𝑡) and determine its point of

intersection with the directrix.

[2001, No. 12: Ans: (b) 𝑦 + 𝑡𝑥 − 𝑎𝑡3 − 2𝑎𝑡 = 0,

(−𝑎, 𝑎𝑡(𝑡2 + 3)]

24. (a) A point 𝑃 is twice as far from the line 𝑥 + 𝑦 = 5 as

from the point (3, 0). Find the locus of 𝑃

(b) A point 𝑄 is given parametrically by 𝑥 = 2𝑡,

𝑦 =
2

𝑡
+ 1.

Determine the cartesian equation of 𝑄 and sketch it.
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Vector quantities 

Vector quantities are those that have both magnitude and 

direction. Examples of vectors include velocity, 

acceleration, displacement.  

Vector representation 

A vector can be represented by a section of a straight line, 

whose length represents the magnitude of the vector and 

whose direction, indicated by an arrow, represents the 

direction of the vector. 

Such vectors can be denoted by a small letter say 𝑎.  

Alternatively, we can represent a vector by the magnitude 

and direction of a line joining 𝐴 to 𝐵. When we denote the 

vector by 𝐴𝐵⃗⃗⃗⃗  ⃗ or 𝐴𝐵, the vector in the opposite direction i.e.

from 𝐵 to 𝐴 is written 𝐵𝐴⃗⃗⃗⃗  ⃗ or 𝐵𝐴

Modulus of a vector  

The modulus of a vector 𝑎 is its magnitude and it is written 

|𝑎| i.e. |𝑎| is the length of the line representing 𝑎. 

The modulus of a vector 𝑎 = (
𝑥
𝑦) = 𝑥𝑖 + 𝑦𝑗 is given by

|𝑎| = √𝑥2 + 𝑦2 

The modulus of a vector 𝑎 = (
𝑥
𝑦
𝑧
) = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 is 

|𝑎| = √𝑥2 + 𝑦2 + 𝑧2 

Equal vectors  

Two vectors with the same magnitude and same direction 

are equal  

i.e. 𝑎 = 𝑏 if |𝑎| = |𝑏| and the directions of 𝑎 and 𝑏 are the

same.

Negative vectors 

If two vectors, 𝑎 and 𝑏, have the same magnitude but 

opposite directions, we say that  

𝑏 = −𝑎 

i.e. −𝑎 is a vector of magnitude |𝑎| and in the direction

opposite to that of 𝑎.

We also say that 𝑎 and 𝑏 are equal and opposite vectors.

Parallel vectors  

Two vectors 𝑎 and 𝑏 are parallel if one is a scalar multiple 

of the other i.e. 𝑎 = 𝜆𝑏 where 𝜆 is a scalar.  

Unit vectors  

The unit vector, as the name implies, is a vector having a 

magnitude (length) of one unit.  

We use the notation 𝑎̂. Then, 𝑎̂ is a vector of length one unit 

in the same direction as 𝑎. 

For example, if we had a vector 𝑟 of length 4 units, to find 

the corresponding unit vector, 𝑟̂, we would need to divide 

the vector 𝑟 by four, resulting in a vector parallel to 𝑟 but of 

unit length.  

We then have the definition that 

𝑎̂ =
𝑎

|𝑎|

Addition of vectors 

The vector sum of two vectors 𝑎 and 𝑏 is given by the unique 

vector 𝑐 (also known as the resultant) by using the Triangle 

Law of Addition or the Parallelogram law of addition. 

Triangle law of addition 

Vector 𝑏 is translated so that its tail coincides with the head 

of vector 𝑎. 

Then, the vectors sum of 𝑎 and 𝑏 is the vector 𝑐 which closes 

the triangle. 

𝑎 

𝐴 

𝐵 

𝐴𝐵⃗⃗⃗⃗  ⃗ 
𝐵𝐴⃗⃗ ⃗⃗  

𝐵 

𝐴 

𝑎 

𝑏 

𝑎 𝑏 
−𝑎

𝑎 

𝑎̂ 

𝑏 𝑎 

𝑎 
𝑏 

𝑐 = 𝑎 + 𝑏 
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25𝑥2 = 9 

𝑥 = ±
3

5
Substituting for 𝑥, we have  

𝑦 = ±
4

5

Therefore, both 𝑣 =
3

5
𝑖 +

4

5
𝑗 and 𝑣 = −(

3

5
𝑖 +

4

5
𝑗) are 

perpendicular to 𝑢 

Example 9 

Find a vector perpendicular to both 𝑎 = 2𝑖 + 𝑗 − 𝑘 and   

𝑏 = 𝑖 + 3𝑗 + 𝑘 

Solution 

Let 𝑐 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 be perpendicular to both 𝑎 and 𝑏. 

Then we have  

𝑎 ∙ 𝑐 = 0 and 𝑏 ∙ 𝑐 = 0 

From 𝑎 ∙ 𝑐 = 0, we obtain  

(2𝑖 + 𝑗 − 𝑘 ) ∙ (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) = 0 

2𝑥 + 𝑦 − 𝑧 = 0…(1) 

From 𝑏 ∙ 𝑐 = 0, we obtain  

(𝑖 + 3𝑗 + 𝑘 ) ∙ (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) = 0 

𝑥 + 3𝑦 + 𝑧 = 0 … (2) 

In order to solve for three unknowns, we need one more 

equation. We note that if 𝑐 is perpendicular to 𝑎 and 𝑏, then 

so too will be the unit vector 𝑐̂. So, without any loss in 

generality, we can assume that 𝑐 is a unit vector. This will 

provide a third equation 

|𝑐| = 1 

𝑥2 + 𝑦2 + 𝑧2 = 1… . . (3) 

We can now solve for 𝑥, 𝑦 and 𝑧 

(1) + (2);      3𝑥 + 4𝑦 = 0 ⇒ 𝑥 = −
4

3
𝑦

2 × (1) − (2);  5𝑦 + 3𝑧 = 0 ⇒ 𝑧 = −
5

3
𝑦 

Substituting for 𝑥 and 𝑧 into (3) gives; 

(−
4

3
𝑦)

2

+ 𝑦2 + (−
5

3
𝑦)

2

= 1 

16𝑦2 + 9𝑦2 + 25𝑦2 = 1 

50𝑦2 = 9 

𝑦 = ±
3

5√2

𝑦 = ±
3√2

10

𝑥 − −
4

3
× ±

3√2

10
= ∓

2√2

5

𝑧 = −
5

3
× ±

3√2

10
= ∓

√2

2

∴ ∓
2√2

5
𝑖 ±

3√2

10
𝑗 ∓

√2

2
𝑘 or ∓

1

10
(4√2𝑖 − 3√2𝑗 + 5√2𝑘) are 

two vectors perpendicular to 𝑎 and 𝑏. Of course, any 

multiple of this vector will also be perpendicular to 𝑎 and 𝑏. 

Example 10 

Prove the cosine rule in the form 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝐴 

using the scalar product  

Solution 

In △𝐴𝐵𝐶, let 𝑎 = 𝐵𝐶⃗⃗⃗⃗  ⃗, 𝑏 = 𝐴𝐶⃗⃗⃗⃗  ⃗ and 𝑐 = 𝐴𝐵⃗⃗⃗⃗  ⃗, then

𝑎2 = 𝑎 ∙ 𝑎 = (𝑏 − 𝑐) ∙ (𝑏 − 𝑐)  

= 𝑏 ∙ (𝑏 − 𝑐) − 𝑐 ∙ (𝑏 − 𝑐) 

= 𝑏 ∙ 𝑏 − 𝑏 ∙ 𝑐 − 𝑐 ∙ 𝑏 + 𝑐 ∙ 𝑐 

= 𝑏2 + 𝑐2 − 2𝑏 ∙ 𝑐 

∴ 𝑎2 = 𝑏2 + 𝑐2 − 2𝑏𝑐 cos𝐴 

Example 11 

The points 𝐴 and 𝐵 have position vectors 𝑎 and 𝑏 with 

respect to an origin 𝑂. Show that the area of triangle 𝑂𝐴𝐵 is 

given by 
1

2
√𝑎2𝑏2 − (𝑎 ∙ 𝑏)2.

Solution 

𝑂𝑃 = 𝑂𝐴 cos 𝜃 

𝑂𝑃 = |𝑎| cos 𝜃 

Since 𝑎 ∙ 𝑏 = |𝑎||𝑏| cos 𝜃 ⇒ cos𝜃 =
𝑎∙𝑏

|𝑎||𝑏|

𝑂𝑃 = |𝑎| ×
𝑎 ∙ 𝑏

|𝑎||𝑏|
=
𝑎 ∙ 𝑏

|𝑏|

Using Pythagoras’ theorem in ∆𝑂𝐴𝑃, 𝑂𝑃2 + 𝐴𝑃2 = 𝑂𝐴2 

𝐴𝑃2 = 𝑂𝐴2 − 𝑂𝑃2 = 𝑎2 −
(𝑎 ∙ 𝑏)2

𝑏2

Hence the area of ∆𝑂𝐴𝐵 =
1

2
× 𝑂𝐵 × 𝐴𝑃 

=
1

2
√𝑏2 × (𝑎2 −

(𝑎 ∙ 𝑏)2

𝑏2
) 

=
1

2
√𝑎2𝑏2 − (𝑎 ∙ 𝑏)2

𝐴 

𝐶 

𝐵 

𝑏 

𝑐 

𝑎 

𝑂 

𝐴 

𝐵 𝑃 

𝑎 

𝑏 
𝜃 
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To show that three points are vertices of a triangle  

Consider three points 𝐴, 𝐵 and 𝐶 as vertices of a triangle 

𝐴𝐵𝐶 as shown below 

⇒ 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶

or 𝐴𝐵 + 𝐵𝐶 + 𝐶𝐴 = 0 

Example 12 

Show that the points 𝐴(4, 5, 2), 𝐵(1, 7, 3) and 𝐶(2, 4, 5) are 

vertices of a triangle. 

Solution 

Let 𝑂𝐴 = (
4
5
2
), 𝑂𝐵 = (

1
7
3
)  and 𝑂𝐶 = (

2
4
5
) 

𝐴𝐵𝐶 is a triangle if 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶 

𝐴𝐵 = 𝑂𝐵 − 𝑂𝐴 = (
1
7
3
) − (

4
5
2
) = (

−3
2
1
) 

𝐵𝐶 = 𝑂𝐶 − 𝑂𝐵 = (
2
4
5
) − (

1
7
3
) = (

1
−3
2
) 

𝐴𝐶 = 𝑂𝐶 − 𝑂𝐴 = (
2
4
5
) − (

4
5
2
) = (

−2
−1
3
) 

Now, 

𝐴𝐵 + 𝐵𝐶 = (
−3
2
1
) + (

1
−3
2
) = (

−2
−1
3
) 

= 𝐴𝐶 

∴ The points 𝐴, 𝐵 and 𝐶 are vertices of a triangle 

Example 13 

Show that the vectors 2𝑖 − 𝑗 + 𝑘, 𝑖 − 𝑗 − 5𝑘, 3𝑖 − 4𝑗 − 4𝑘 

form the vertices of a right-angled triangle.  

Solution 

Let 𝐴 = 2𝑖 − 𝑗 + 𝑘, 𝐵 = 𝑖 − 3𝑗 − 5𝑘, 𝐶 = 3𝑖 − 4𝑗 − 4𝑘 

We know that two vectors are perpendicular to each other, 

i.e. have an angle of 90° between them, if their scalar

product is zero.

𝐴𝐵 = 𝑂𝐵 − 𝑂𝐴 = (𝑖 − 3𝑗 − 5𝑘) − (2𝑖 − 𝑗 + 𝑘) 

𝐴𝐵 = −𝑖 − 2𝑗 − 6𝑘 

𝐵𝐶 = 𝑂𝐶 − 𝑂𝐵 = (3𝑖 − 4𝑗 − 4𝑘) − (𝑖 − 3𝑗 − 5𝑘) 

𝐵𝐶 = 2𝑖 − 𝑗 + 𝑘 

𝐶𝐴 = 𝑂𝐶 − 𝑂𝐴 = (2𝑖 − 𝑗 + 𝑘) − (3𝑖 − 4𝑗 − 4𝑘) 

𝐶𝐴 = −𝑖 + 3𝑗 + 5𝑘 

Now, 

𝐵𝐶 ∙ 𝐶𝐴 = (2𝑖 − 𝑗 + 𝑘) ∙ (−𝑖 + 3𝑗 + 5𝑘) 

= (2)(−1) + (−1)(3) + (1)(5) 

= 0 

Since 𝐵𝐶 ∙ 𝐶𝐴 = 0, 𝐵𝐶 is perpendicular to 𝐶𝐴 hence ∆𝐴𝐵𝐶 

is a right-angled triangle.  

Alternatively;  

Considering ∆𝐴𝐵𝐶 as a right-angled triangle, by Pythagoras 

theorem 

|𝐴𝐵|2 = |𝐵𝐶|2 + |𝐶𝐴|2 

|𝐴𝐵|2 = (−1)2 + (−2)2 + (−6)2 = 41 

|𝐵𝐶|2 = 22 + (−1)2 + 12 = 6 

|𝐶𝐴|2 = (−1)2 + 32 + 52 = 35 

|𝐵𝐶|2 + |𝐶𝐴|2 = 6 + 35 = 41 

Thus, |𝐴𝐵|2 = |𝐵𝐶|2 + |𝐶𝐴|2 

  So, 𝐴𝐵𝐶 is a right-angled triangle 

VECTOR PRODUCT/CROSS PRODUCT 

Unlike the scalar product of two vectors, which results in a 

scalar value, the vector product or as often, called the cross 

product, produces a vector.  

We define the vector product as follows 

The vector product (or cross product) of two vectors, 𝑎 and 

𝑏, produces a third vector, 𝑐, where  

𝑐 = 𝑎 × 𝑏 = |𝑎||𝑏| sin 𝜃 𝑛̂ 

and 𝜃 is the angle between 𝑎 and 𝑏 and 𝑛̂ is a unit vector 

perpendicular to both 𝑎 and 𝑏 i.e. to the plane of 𝑎 × 𝑏. This 

means that the vectors 𝑎, 𝑏 and 𝑛̂ (in that order) form a right-

handed system. 

We now consider some properties of the vector product. 

1. Direction of 𝑎 × 𝑏

The resulting vector, 𝑐 = 𝑎 × 𝑏 is a vector that is

parallel to the unit vector 𝑛̂ (unless 𝑎 × 𝑏 = 0)

2. Magnitude of 𝑎 × 𝑏

The magnitude of 𝑎 × 𝑏 is given by

|𝑎 × 𝑏| = |𝑎||𝑏||sin 𝜃||𝑛̂| 

But, |𝑛̂| = 1 and 0 ≤ 𝜃 ≤ 𝜋 ⇒ sin 𝜃 ≥ 0, thus 

|𝑎 × 𝑏| = |𝑎||𝑏| sin 𝜃 

3. From these two properties, we can also conclude that

If 𝑎 × 𝑏 = 0, then either

(a) 𝑎 = 0 or 𝑏 = 0 or both 𝑎 and 𝑏 are zero

(b) sin 𝜃 = 0 ⇒ 𝜃 = 0 𝑜𝑟 𝜋

4. 𝑎 × 𝑏 = −𝑏 × 𝑎

5. 𝑎 × (𝑏 + 𝑐) = (𝑎 × 𝑏) + (𝑎 × 𝑐)

6. (𝑎 + 𝑏) × 𝑐 = (𝑎 × 𝑐) + (𝑏 × 𝑐)

𝐴 

𝐶 

𝐵 

𝑏 

𝑐 

𝑎 

𝑏 

𝑎 

Plane containing 𝑎 and 𝑏 

𝜃 

𝑐 

𝑛̂ 
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7. 𝑎 × (𝑘𝑏) = (𝑘𝑎) × 𝑏 = 𝑘(𝑎 × 𝑏), 𝑘 a scalar

8. 𝑎 × 𝑎 = 0

9. 𝑎 ∙ (𝑎 × 𝑏) = 0

10. 𝑏 ∙ (𝑎 × 𝑏) = 0

VECTOR FORM OF THE VECTOR PRODUCT 

1. Component form

The vector product is only defined when both vectors are

three dimensional.

The vector product of 𝑎 = (

𝑎1
𝑎2
𝑎3
) and 𝑏 = (

𝑏1
𝑏2
𝑏3

) is given by

𝑎 × 𝑏 = (

𝑎1
𝑎2
𝑎3
) × (

𝑏1
𝑏2
𝑏3

) = (

𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

)

This is known as the component form of the cross product. 

The result is a third vector that is at right angles to the two 

original vectors. This can be verified by making use of the 

dot product i.e.  

𝑎 ∙ (𝑎 × 𝑏) = (

𝑎1
𝑎2
𝑎3
) ∙ (

𝑎2𝑏3 − 𝑎3𝑏2
𝑎3𝑏1 − 𝑎1𝑏3
𝑎1𝑏2 − 𝑎2𝑏1

) 

= 𝑎1(𝑎2𝑏3 − 𝑎3𝑏2) + 𝑎2(𝑎3𝑏1 − 𝑎1𝑏3) +

𝑎3(𝑎1𝑏2 − 𝑎2𝑏1)

= 𝑎1𝑎2𝑏3 − 𝑎1𝑎3𝑏2 + 𝑎2𝑎3𝑏1 − 𝑎2𝑎1𝑏3
+ 𝑎3𝑎1𝑏2 − 𝑎3𝑎2𝑏1

   = 0 

2. Determinant form

When vectors are given in base vector notation, a more

convenient method of finding the vector/cross product relies

on a determinant representation. Given two vectors 𝑎 =

𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 and 𝑏 = 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘, the vector

product 𝑎 × 𝑏 is defined as

 𝑎 × 𝑏 = |
𝑖 𝑗 𝑘
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3

| 

        = |
𝑎2 𝑎3
𝑏2 𝑏3

| 𝑖 − |
𝑎1 𝑎3
𝑏1 𝑏3

| 𝑗 + |
𝑎1 𝑎2
𝑏1 𝑏2

| 𝑘

Example 14 

Find the vector product (
2
4
1
) × (

−1
4
−2
) 

Solution 

(
2
4
1
) × (

−1
4
−2
) = (

4 × −2 − 1 × 4
1 × −1 − (−2) × 2

2 × 4 − (−1) × 4
) = (

−12
3
12
) 

Example 15 

Find 𝑎 × 𝑏 if 𝑎 = 2𝑖 + 𝑘 and 𝑏 = 3𝑖 − 4𝑗 + 2𝑘. Hence, 

find |𝑎 × 𝑏| 

Solution 

Using the determinant form of the cross product we have: 

𝑎 × 𝑏 = |
𝑖 𝑗 𝑘
2 0 1
3 −4 2

| = |
0 1
−4 2

| 𝑖 − |
2 1
3 2

| 𝑗 + |
2 0
3 −4

| 𝑘 

= (0 − (−4))𝑖 − (4 − 3)𝑗 + (−8 − 0)𝑘 

      = 4𝑖 − 𝑗 − 8𝑘 

Therefore,  |𝑎 × 𝑏| = √(4)2 + (−1)2 + (−8)2 = √81 = 9 

Example 16 

Find the angle between vectors 𝑎 and 𝑏 if 𝑎 = 2𝑖 − 𝑗 + 𝑘 

and 𝑏 = 3𝑖 − 4𝑗 + 2𝑘 

Solution 

Let us first determine 𝑎 × 𝑏 

𝑎 × 𝑏 = |
𝑖 𝑗 𝑘
2 −1 1
3 −4 2

| = |
1 1
−4 2

| 𝑖 − |
2 1
3 2

| 𝑗 + |
2 −1
3 −4

| 𝑘 

     = 2𝑖 − 𝑗 − 5𝑘  

Next, |𝑎 × 𝑏| = √4 + 1 + 25 = √30 

From 𝑎 × 𝑏 = |𝑎||𝑏| sin 𝜃 𝑛̂, we have that 

|𝑎 × 𝑏| = ||𝑎||𝑏| sin 𝜃 𝑛̂| = |𝑎||𝑏| sin 𝜃 

where 𝜃 is the angle between 𝑎 and 𝑏. 

|𝑎| = √4 + 1 + 1 = √6  and |𝑏| = √9 + 16 + 4 = √29 

√30 = √6 × √29 sin 𝜃

sin 𝜃 =
√30

√6 × √29
𝜃 = 24.53° 

Of course, it would have been easier to do the above 

example using the scalar product. 

Example 17 

Find a unit vector that is perpendicular to the plane 

containing the points 𝐴(1, 2, 3), 𝐵(2, 1, 0) and 𝐶(0, 5, 1) 

Solution 

Let’s draw a diagram of the situation described so that the 

triangle 𝐴𝐵𝐶 lies on the planes containing the points 𝐴, 𝐵 

and 𝐶.  

Then, the vector, perpendicular to the plane containing the 

points 𝐴, 𝐵 and 𝐶 will be parallel to the vector produced by 

the cross product 𝐴𝐵 × 𝐴𝐶. 

𝐴(1, 2,3) 

𝐶(0,  5,1) 

𝐶(2,  1,0) 

𝐴𝐵 × 𝐴𝐶 
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𝐴𝐵 = 𝑂𝐵 − 𝑂𝐴 = (
0
10
1
) − (

1
6
3
) = (

−1
4
−2
) 

𝐴𝐶 = 𝑂𝐶 − 𝑂𝐴 = (
5
8
3
) − (

1
6
3
) = (

4
2
0
)

Next, we calculate the vector product: 

𝐴𝐵 × 𝐴𝐶 = (
−1
4
−2
)(
4
2
0
) = (

4(0) − (−2)(2)
(−2)(4) − (−1)(0)
(−1)(2) − (4)(4)

) = (
4
−8
−18

) 

Area of triangle 𝐴𝐵𝐶 =
1

2
|𝐴𝐵 × 𝐴𝐶| 

=
1

2
√42 + (−8)2 + (−18)2 = √101 unit2

Example 21 

Show that the quadrilateral with vertices 𝐴(4, 1, 0), 

𝐵(7, 6, 2), 𝐶(5, 5, 4) and 𝐷(2, 0, 2) is a parallelogram. 

Hence find its area. 

Solution 

If both pairs of opposite sides of a quadrilateral are 

congruent, then the quadrilateral is a parallelogram.  

If 𝐴𝐵 ≅ 𝐷𝐶 and 𝐴𝐷 ≅ 𝐵𝐶, then 𝐴𝐵𝐶𝐷 is a parallelogram.  

𝐴𝐷 = 𝑂𝐷 − 𝑂𝐴 = (
2
0
2
) − (

4
1
0
) = (

−2
−1
2
) 

𝐵𝐶 = 𝑂𝐶 − 𝑂𝐵 = (
5
5
4
) − (

7
6
2
) = (

−2
−1
2
) 

⇒ 𝐴𝐷 = 𝐷𝐶

Now, 

𝐴𝐵 = 𝑂𝐵 − 𝑂𝐴 = (
7
6
2
) − (

4
1
0
) = (

3
5
2
) 

𝐷𝐶 = 𝑂𝐶 − 𝑂𝐷 = (
5
5
4
) − (

2
0
2
) = (

3
5
2
) 

⇒ 𝐴𝐵 = 𝐷𝐶

Thus the quadrilateral 𝐴𝐵𝐶𝐷 is a parallelogram 

Area = |𝐴𝐵 × 𝐴𝐶| 

𝐴𝐶 = 𝑂𝐶 − 𝑂𝐴 = (
5
5
4
) − (

4
1
0
) = (

1
4
4
) 

𝐴𝐵 × 𝐴𝐶 = (
3
5
2
)(
1
4
4
) = (

5(4) − 2(4)

−[3(4) − 2(1)]

3(4) − 5(1)
) = (−

12
10
7
) 

Area = |𝐴𝐵 × 𝐴𝐶| = √122 + (−10)2 + 72 = √293 unit2 

Example 22 

Prove that |𝑎 × 𝑏| = |𝑎|2|𝑏|2 − (𝑎 ∙ 𝑏)2 

Solution 

|𝑎 × 𝑏| = |𝑎||𝑏| sin 𝜃 

|𝑎 × 𝑏|2 = |𝑎|2|𝑏|2 sin2 𝜃 

|𝑎 × 𝑏|2 = |𝑎|2|𝑏|2(1 − cos2 𝜃) 

|𝑎 × 𝑏|2 = |𝑎|2|𝑏|2 − |𝑎|2|𝑏|2 cos2 𝜃 

|𝑎 × 𝑏|2 = |𝑎|2|𝑏|2 − (|𝑎||𝑏| cos 𝜃)2 

But  𝑎 ∙ 𝑏 = |𝑎||𝑏| cos 𝜃 

∴ |𝑎 × 𝑏|2 = |𝑎|2|𝑏|2 − (𝑎 ∙ 𝑏)2 

THE EQUATION OF A STRAIGHT LINE  

A straight line is located uniquely in space if either it passes 

through a known fixed point and has a known direction, or 

it passes through two known fixed points. 

Vector equation of a line in 2D 

The vector equation of a line 𝐿 in the direction of vector 𝑏, 

passing through the point 𝐴 with position vector 𝑎 is given 

by  

𝑟 = 𝑎 + 𝜆𝑏 

where 𝜆 is a scalar parameter  

Proof:  

Let the point 𝑃(𝑥, 𝑦) be any point on the line 𝐿, then the 

vector 𝐴𝑃 is parallel to the vector 𝑏 

𝑟 = 𝑂𝑃 

     = 𝑂𝐴 + 𝐴𝑃 

∴ 𝑟 = 𝑎 + 𝜆𝑏 

We can now derive two other forms for equations of a line. 

We start by letting the coordinates of 𝐴 be (𝑎1, 𝑎2), the

coordinates of 𝑃 be (𝑥, 𝑦) and the vector 𝑏 = (
𝑏1
𝑏2
) 

For 𝑟 = 𝑎 + 𝜆𝑏, we have 

(
𝑥
𝑦) = (

𝑎1
𝑎2
) + 𝜆 (

𝑏1
𝑏2
) = (

𝑎1 + 𝜆𝑏1
𝑎2 + 𝜆𝑏2

) 

This provides us with the parametric form for the 

equations of a straight line: 

𝑥 = 𝑎1 + 𝜆𝑏1
𝑦 = 𝑎2 + 𝜆𝑏2

Next, from the parametric form, we have 

𝑥 = 𝑎1 + 𝜆𝑏1 ⇒ 𝜆 =
𝑥 − 𝑎1
𝑏1

 … [1] 

𝑦 = 𝑎2 + 𝜆𝑏2 ⇒ 𝜆 =
𝑦 − 𝑎2
𝑏2

… . [2] 

𝐴 𝐵 

𝐶 𝐷 

𝑂 

𝐴 

𝑃 𝑟 

𝜆𝑏 

𝐿 

𝑦 

𝑥 
𝑏 
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LINES IN THREE DIMENSIONS 

In three dimensional work, always try to visualize situations 

very clearly. Because diagrams are never very satisfactory, 

it is useful to use the corner of a table with an imagined 

vertical line for axes; then pencils become lines and books 

or sheets of paper become planes. 

It is tempting to generalize from a two-dimensional line like 

𝑥 + 𝑦 = 8 and think that the Cartesian equation of a three-

dimensional line will have the form 𝑥 + 𝑦 + 𝑧 = 8. This is 

not correct – as we will see later this represents a plane, 

not a line. 

Cartesian equation of a line in three dimensions 

Consider the cartesian form of any straight line 𝐿 passing 

through the point 𝑃(𝑥1, 𝑦1, 𝑧1):
𝑥 − 𝑥1
𝑎

=
𝑦 − 𝑦1
𝑏

=
𝑧 − 𝑧1
𝑐

From this equation, we obtain the parametric form of the 

straight line 
𝑥 − 𝑥1
𝑎

= 𝜆 ⇒ 𝑥 = 𝑥1 + 𝜆𝑎

𝑦 − 𝑦1
𝑏

= 𝜆 ⇒ 𝑦 = 𝑦1 + 𝜆𝑏

𝑧 − 𝑧1
𝑐

= 𝜆 ⇒ 𝑧 = 𝑧1 + 𝜆𝑐

which then leads to the vector form of the straight line: 

(
𝑥
𝑦
𝑧
) = (

𝑥1
𝑦1
𝑧1
) + 𝜆 (

𝑎
𝑏
𝑐
) 

Example 26 

Find the Cartesian equations of the line that is parallel to the 

vector 2𝑖 + 3𝑗 + 4𝑘 and which passes through the point 𝐴, 

position vector 3𝑖 − 𝑗 + 2𝑘 

Solution 

The vector equation of the line is  

𝑟 = 3𝑖 − 𝑗 + 2𝑘 + 𝜆(2𝑖 + 3𝑗 + 4𝑘) 

Thus 

𝑥 = 3 + 2𝜆 ⇒ 𝜆 =
𝑥 − 3

2

𝑦 = −1 + 3𝜆 ⇒ 𝜆 =
𝑦 + 1

3

𝑧 = 2 + 4𝜆 ⇒ 𝜆 =
𝑧 − 2

4
The cartesian equations are therefore 

𝑥 − 3

2
=
𝑦 + 1

3
=
𝑧 − 2

4
(= 𝜆) 

Example 27 

Find the Cartesian form of the straight line passing through 

the point (4, 6, 3) and having direction vector 3𝑖 − 2𝑗 + 𝑘. 

Solution 

The vector equation of the line is given by 

𝑟 = (4𝑖 + 6𝑗 + 3𝑘) + 𝜆(3𝑖 − 2𝑗 + 𝑘) 

From the vector equation we obtain the parametric form of 

the line 

𝑥 = 4 + 3𝜆, 𝑦 = 6 − 2𝜆 and 𝑧 = 3 + 𝜆 

From these equations we have; 

𝜆 =
𝑥 − 4

3
, 𝜆 =

𝑦 − 6

−2
,   𝜆 =

𝑧 − 3

1
Then, eliminating 𝜆, we have 

𝑥 − 4

3
=
𝑦 − 6

−2
=
𝑧 − 3

1
or 

𝑥 − 4

3
=
𝑦 − 6

−2
= 𝑧 − 3 

Showing that a point lies on a given line 

Showing that a point lies on a line is as simple as finding the 

value of the parameter 𝜆 (or whatever letter it is) that gives 

your point’s coordinates as the output.  

Example 28 

Show that the point (3, 6, −2) lies on the line given by the 

equation  𝑟 = (
−5
2
6
) + 𝜆 (

2
1
−2
). 

Solution 

(
𝑥
𝑦
𝑧
) = (

−5 + 2𝜆
2 + 𝜆
6 − 2𝜆

) 

Solve the 𝑥-direction equation 

3 = −5 + 2𝜆 

𝜆 = 4 

Then check the other two directions by putting the 𝜆-value. 

𝑦 = 2 + 𝜆 = 2 + 4 = 6 

𝑧 = 6 − 2𝜆 = 6 − 2(4) = −2 

Therefore, the point (3, 6, −2) lies on the line. 

Example 29 

Show that the points whose position vectors are 

(−2𝑖 + 3𝑗 + 5𝑘), (𝑖 + 2𝑗 + 3𝑘) and (7𝑖 − 𝑘) are collinear. 

Solution 

Let 𝐴, 𝐵, 𝐶 be the three given points whose position vectors 

are 𝑎, 𝑏, 𝑐 respectively. Then  

𝑎 = −2𝑖 + 3𝑗 + 5𝑘, 𝑏 = 𝑖 + 2𝑗 + 3𝑘, 𝑐 = 7𝑖 − 𝑘 

The vector equation of 𝐴𝐵 is given by  

𝑟 = 𝑎 + 𝜆(𝑏 − 𝑎) 

𝑟 = (−2𝑖 + 3𝑗 + 5𝑘)

+ 𝜆[(𝑖 + 2𝑗 + 3𝑘) − (−2𝑖 + 3𝑗 + 5𝑘)]

𝑟 = (−2𝑖 + 3𝑗 + 5𝑘) + 𝜆(3𝑖 − 𝑗 − 2𝑘)  … [1] 

The three points 𝐴, 𝐵, 𝐶 will be collinear if 𝐶 lies on it, i.e. 

if 𝐶 satisfies [1]  

7𝑖 − 𝑘 = (−2𝑖 + 3𝑗 + 5𝑘) + 𝜆(3𝑖 − 𝑗 − 2𝑘) 

7𝑖 − 𝑘 = (−2 + 3𝜆)𝑖 + (3 − 𝜆)𝑗 + (5 − 2𝜆)𝑘 

Now, 

−2 + 3𝜆 = 7 ⇒ 𝜆 = 3

3 − 𝜆 = 0 ⇒ 𝜆 = 3

5 − 2𝜆 = −1 ⇒ 𝜆 = 3 
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PLANES 

A plane is a surface such that if two points are taken in it, 

straight line joining them lies wholly in the surface.  

General equation of the plane  

The locus of the equation will be a plane, if every point of 

the line joining any two points on the locus lies on the locus. 

Let 𝑃(𝑥1, 𝑦1, 𝑧1) and 𝑄(𝑥2. 𝑦2, 𝑧2) be any two points on the

locus represented by  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0  ……. [1] 

Since 𝑃 and 𝑄 lie on [1], then 

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 + 𝑑 = 0   …. [2]

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑑 = 0   …. [3]

Multiplying [3] by 𝑘 and adding to [2], we get 

𝑎(𝑥1 + 𝑘𝑥2) + 𝑏(𝑦1 + 𝑘𝑦2) + 𝑐(𝑧1 + 𝑘𝑧2) + 𝑑(1 + 𝑘) = 0

𝑎 (
𝑥1 + 𝑘𝑥2
1 + 𝑘

) + 𝑏 (
𝑦1 + 𝑘𝑦2
1 + 𝑘

) + 𝑐 (
𝑧1 + 𝑘𝑧2
1 + 𝑘

) + 𝑑 = 0 

This shows that the point (
𝑥1+𝑘𝑥2

1+𝑘
,
𝑦1+𝑘𝑦2

1+𝑘
,
𝑧1+𝑘𝑧2

1+𝑘
 ) is also on 

the locus. But for different values f 𝑘, these are the general 

coordinates of any point on the line 𝑃𝑄. Thus, every point 

on the straight line joining any arbitrary points on the locus 

lies on the locus. Therefore, by definition of a plane, the 

locus of [1] is a plane.  

Notes:  

1. Number of constants in 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. The

equation 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 can be written as 
𝑎

𝑑
𝑥 +

𝑏

𝑑
𝑦 +

𝑐

𝑑
𝑧 + 1 = 0 or 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 1 = 0, where

𝑎1 =
𝑎

𝑑
, 𝑏1 =

𝑏

𝑑
, 𝑐1 =

𝑐

𝑑
. This shows that although the 

given equation contains four constants 𝑎, 𝑏, 𝑐, 𝑑 yet in 

reality it contains only three independent constants. 

Hence, a plane can be uniquely determined if three 

independent conditions are given. 

2. The plane passing through the origin is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 =

0 as in this case 𝑑 = 0

One point form of the equation of the plane 

Let (𝑥1, 𝑦1, 𝑧1) be a given point.

Let the plane containing this point be 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0     … [1] 

Since the point (𝑥1, 𝑦1, 𝑧1) lies on it, therefore,

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 + 𝑑 = 0   … [2]

Subtracting [2] from [1], we get 

𝑎(𝑥 − 𝑥1) + 𝑏(𝑦 − 𝑦1) + 𝑐(𝑧 − 𝑧1) = 0

which is the required equation of the plane passing through 

a given point (𝑥1, 𝑦1, 𝑧1).

Any three points not a straight line determine a plane. While 

this characterisation of a plane is quite simple. It is not 

convenient for beginning the study of planes. Instead it is 

more convenient to find the equation of a plane 

perpendicular to a line.   

Vector equation of a plane  

Let 𝑃(𝑥, 𝑦, 𝑧), whose position vector is 𝑟 = 𝑂𝑃 be any point 

on the plane relative to some origin 𝑂. 

Consider three points 𝐴, 𝐵 and 𝐶 on this plane where 𝑂𝐴 =

𝑎, 𝐴𝐵 = 𝑏 and 𝐴𝐶 = 𝑐 i.e. the plane contains the vectors 𝑏 

and 𝑐, where 𝑏 ≠ 𝑐 ≠ 0 and the vectors 𝑎, 𝑏 and 𝑐 are non-

coplanar. 

Now, as 𝐴𝑃, 𝑏 and 𝑐 are coplanar, then we can express 𝐴𝑃 

in terms of 𝑏 and 𝑐.  

𝐴𝑃 = 𝜆𝑏 + 𝜇𝑐 

for some real 𝜆 and 𝜇 

Then, 𝑟 = 𝑂𝑃 = 𝑂𝐴 + 𝐴𝑃 = 𝑎 + 𝜆𝑏 + 𝜇𝑐 

Thus, the vector equation of a plane is given by 

𝒓 = 𝒂 + 𝝀𝒃 + 𝝁𝒄 

This means that to find the vector form of the equation of a 

plane, we need to know 

(i) the position vector of a point A in the plane, and

(ii) two non-parallel vectors in the plane

Example 40 

Find the vector equation of the plane containing the vectors 

(
2
1
1
) and (

3
0
−1
) which also includes the point (1, 2, 0) 

Solution 

Let 𝑏 = (
2
1
1
) and 𝑐 = (

3
0
−1
) be two vectors on the plane. 

Then, as the point (1, 2, 0) lies on the plane, we let 𝑎 = (
1
2
0
) 

be the position of this point.  

Using the vector form of the equation of a plane i.e. 

𝑟 = 𝑎 + 𝜆𝑏 + 𝜇𝑐 

𝑟 = (
1
2
0
) + 𝜆 (

2
1
1
) + 𝜇 (

3
0
−1
) 

Cartesian equation of a plane 

In the same way we are able to produce a Cartesian equation 

for a line, we now derive the Cartesian equation of a plane. 

Using the example above to obtain the parametric equations 

and use them to derive the Cartesian equation of the plane. 

𝐶 

𝐴 
𝐵 

𝑃(𝑥, 𝑦, 𝑧) 

𝑐 
𝑏 

𝑎 

𝑗 

𝑘 

𝑖 𝑂 
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Example 42 

Find the vector and Cartesian equation of the pane through 

the point (1, 2, 3) and perpendicular to the line with 

direction ratios (2, 3, −4). 

Solution 

The position vector of the point (1, 2, 3) is 

𝑎 = 𝑖 + 2𝑗 + 3𝑘 

Normal vector 𝑛 perpendicular to the plane is 

𝑛 = 2𝑖 + 3𝑗 − 4𝑘 

Therefore, the vector equation of the plane passing through 

the point 𝐴 with position vector 𝑛 is given by  

(𝑟 − 𝑎) ∙ 𝑛 = 0 

[𝑟 − (𝑖 + 2𝑗 + 3𝑘)] ∙ (2𝑖 + 3𝑗 − 4𝑘) = 0 

Cartesian form  

Let 𝑟 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘, then 

[(𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) − (𝑖 + 2𝑗 + 3𝑘)] ∙ (2𝑖 + 3𝑗 − 4𝑘) = 0 

[(𝑥 − 1)𝑖 + (𝑦 − 2)𝑗 + (2 − 3)𝑘] ∙ (2𝑖 + 3𝑗 − 4𝑘) = 0 

2(𝑥 − 1) + 3(𝑦 − 2) − 4(𝑧 − 3) = 0 

2𝑥 + 3𝑦 − 4𝑧 + 4 = 0 

Example 43 

Find the cartesian equation of the plane containing the point 

𝐴(3, 1, 1) and with the normal vector given by 

𝑛 = 3𝑖 − 2𝑗 + 4𝑘 

Solution 

Using the normal vector, 𝑛 = 3𝑖 − 2𝑗 + 4𝑘 and a vector on 

the plane passing through the point 𝐴(3, 1, 2) i.e. the vector 

𝐴𝑃 = (𝑥 − 3)𝑖 + (𝑦 − 1)𝑗 + (𝑧 − 1)𝑘  

where 𝑃(𝑥, 𝑦, 𝑧) is an arbitrary point on the plane, we have  

𝑛 ∙ 𝐴𝑃 = 0 

(3𝑖 − 2𝑗 + 4𝑘) ∙ [(𝑥 − 3)𝑖 + (𝑦 − 1)𝑗 + (𝑧 − 1)𝑘] = 0 

3(𝑥 − 3) + (−2)(𝑦 − 1) + 4(𝑧 − 1) = 0 

3𝑥 − 9 − 2𝑦 + 2 + 4𝑧 − 4 = 0 

3𝑥 − 2𝑦 + 4𝑧 = 11 

Alternatively, using 𝑟 ∙ 𝑛 = 𝑛 ∙ 𝑎 

(
𝑥
𝑦
𝑧
) ∙ (

3
−2
4
) = (

3
−2
4
) ∙ (

3
1
1
) 

3𝑥 − 2𝑦 + 4𝑧 = 11 

Example 44 

The foot of the perpendicular drawn from the origin to a 

plane is (4, −2,−5). Find the equation of the plane.  

Solution 

Let 𝑂 be the origin and 𝑁(4,−2,−5) on the plane be the 

foot of the perpendicular from 𝑂 to the given plane. Let 

𝑃(𝑥, 𝑦, 𝑧) be any point on the plane.  

Then, direction ratios of 𝑁𝑃 and 𝑂𝑁 are given as follows; 

𝑁𝑃 = 𝑂𝑃 − 𝑂𝑁 = (
𝑥
𝑦
𝑧
) − (

4
−2
−5
) = (

𝑥 − 4
𝑦 + 2
𝑧 + 5

) 

𝑂𝑁 = (
4
−2
−5
) 

Since 𝑂𝑁 ⊥ 𝑁𝑃, therefore, 

(
𝑥 − 4
𝑦 + 2
𝑧 + 5

) ∙ (
4
−2
−5
) = 0 

4(𝑥 − 4) − 2(𝑦 + 2) − 5(𝑧 + 5) = 0 

4𝑥 − 16 − 2𝑦 − 4 − 5𝑧 − 25 = 0 

4𝑥 − 2𝑦 − 5𝑧 − 45 = 0 

Example 45 

Find a normal vector to the plane 𝑥 + 2𝑦 + 3𝑧 − 6 = 0. 

Solution 

The equation of the plane can be rewritten as: 

𝑥 + 2𝑦 + 3𝑧 = 6 

or (𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘) ∙ (𝑖 + 2𝑗 + 3𝑘) = 6 

or 𝑟 ∙ 𝑛 = 6 

when 𝑛 = 𝑖 + 2𝑗 + 3𝑘 

Thus, normal unit vector to the given plane is 

𝑛

|𝑛|
=

𝑖 + 2𝑗 + 3𝑘

√12 + 22 + 32
=

1

√14
(𝑖 + 2𝑗 + 3𝑘) 

Example 46 

Find the vector equation of a plane which is at a distance of 

6 units from the origin and has 2,−1, 2 as the direction ratios 

of a normal to it. Also, find the coordinates of the of the foot 

of the normal drawn from the origin.  

Solution 

Let 𝑛 be a vector normal to the plane. Then the direction 

vectors of 𝑛 are 2,−1, 2 

𝑛 = 2𝑖 − 𝑗 + 2𝑘 

|𝑛| = √22 + (−1)2 + 22 = 3 

𝑛̂ =
𝑛

|𝑛|
=
2

3
𝑖 −

1

3
𝑗 +

2

3
𝑘 

Since the plane is at a distance of 6 units from the origin, its 

equation is  

𝑟 ∙ 𝑛̂ = 6 

𝑟 ∙ (
2

3
𝑖 −

1

3
𝑗 +

2

3
𝑘) = 6 

The position vector of the foot of the normal drawn from the 

origin is  

𝑝𝑛̂ = 6 (
2

3
𝑖 −

1

3
𝑗 +

2

3
𝑘) = 4𝑖 − 2𝑗 + 4𝑘 

So the coordinates of the foot of the normal are (4, −2, 4) 

𝑂 

𝑁(4,−2,−5) 𝑃(𝑥, 𝑦, 𝑧) 
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Alternative method 

The equation of the plane passing through the point 

(𝑥1, 𝑦1, 𝑧1) is 𝑎(𝑥 − 𝑥1) + 𝑏(𝑦 − 𝑦1) + 𝑐(𝑧 − 𝑧1) = 0.

The equation of the plane passing through the point 

(1, 0, −1) is  

𝐴(𝑥 − 1) + 𝐵(𝑦) + 𝐶(𝑧 + 1) = 0   … [1] 

Since it passes through (3, 1, 4) and (2, −2, 0), therefore 

𝐴(3 − 1) + 𝐵(1) + 𝐶(4 + 1) = 0 

2𝐴 + 𝐵 + 5𝐶 = 0 …. [2] 

and   𝐴(2 − 1) + 𝐵(−2) + 𝐶(0 + 1) = 0 

𝐴 − 2𝐵 + 𝐶 = 0   …. [3] 

[2] − 2 × [3];

5𝐵 + 3𝐶 = 0 

⇒ 𝐵 = −
3𝐶

5
Substituting for 𝐵 in [2]; 

2𝐴 −
3𝐶

5
+ 5𝐶 = 0

10𝐴 − 3𝐶 + 25𝐶 = 0 

10𝐴 + 22𝐶 = 0 

𝐴 = −
11𝐶

5
Substituting for 𝐵 and 𝐴 in [1]; 

−
11𝐶

5
(𝑥 − 1) −

3𝐶

5
(𝑦) + 𝐶(𝑧 + 1) = 0 

−11𝑥 + 11 − 3𝑦 + 5𝑧 + 5 = 0

−11𝑥 − 3𝑦 + 5𝑧 + 16 = 0

Example 49 

Find the equation of the plane containing the vectors 𝑏 =

3𝑖 − 𝑗 + 2𝑘 and 𝑐 = 2𝑖 + 2𝑗 + 𝑘 and passing through the 

point 𝐴(2, 1, 6).  

Solution 

The cross product 𝑏 × 𝑐 represents a vector that is 

perpendicular to the plane containing the vectors 𝑏 and 𝑐. 

𝑛 = 𝑏 × 𝑐 = |
𝑖 𝑗 𝑘
3 −1 2
2 2 1

| 

= |
−1 2
2 1

| 𝑖 − |
3 2
2 1

| 𝑗 + |
3 −1
2 2

| 𝑘 

    = 5𝑖 + 𝑗 + 8𝑘 

Let 𝑃(𝑥, 𝑦, 𝑧) be any point on the plane. As 𝑃 lies on the 

plane, the vector 𝐴𝑃 must also be perpendicular to the vector 

𝑛 i.e. 𝑛 ∙ 𝐴𝑃 = 0. 

𝐴𝑃 = 𝑂𝑃 − 𝑂𝐴 = (𝑥 − 2)𝑖 + (𝑦 − 1)𝑗 + (𝑧 − 6)𝑘 

(5𝑖 + 𝑗 + 8𝑘 ) ∙ [(𝑥 − 2)𝑖 + (𝑦 − 1)𝑗 + (𝑧 − 6)𝑘] = 0 

5(𝑥 − 2) + 𝑦 − 1 + 8(𝑧 − 6) = 0 

5𝑥 − 𝑦 − 8𝑧 + 39 = 0 

We can check this result by use of the parametric form of 

the plane 

From the vector, 𝑟 = (
2
1
6
) + 𝜆 (

3
−1
2
) + 𝜇 (

2
2
1
), we obtain 

the parametric equations: 

𝑥 = 2 + 3𝜆 + 2𝜇 … . . [1] 

𝑦 = 1 − 𝜆 + 2𝜇 … . [2] 

𝑧 = 6 + 2𝜆 + 𝜇   … . [3] 

[1] − [2];

𝑥 − 𝑦 = 1 + 4𝜆 … . . [4] 

[2] − 2 × [3];

𝑦 − 2𝑧 = −11 − 5𝜆 … . [5] 

From [4]; 𝜆 =
𝑥−𝑦−1

4

Substituting in [5] we obtain; 

𝑦 − 2𝑧 = −11 − 5(
𝑥−𝑦−1

4
) 

4𝑦 − 8𝑧 = −44 − 5𝑥 + 5𝑦 + 5 

5𝑥 − 𝑦 − 8𝑧 = −39 

5𝑥 − 𝑦 − 8𝑧 + 39 = 0 

As expected, we produce the same equation 

Example 50 

Find the equation of a plane through three given points 

(−2, 6, −6), (−3, 10, −9) and (−5, 0, −6).  

Solution 

Equation of the plane passing through the given points 

(−2, 6, −6), (−3, 10, −9) and (−5, 0, −6) is  

|

𝑥 − (−2) 𝑦 − 6 𝑧 − (−6)
−3 − (−2) 10 − 6 −9 − (−6)
−5 − (−2) 0 − 6 −6 − (−6)

| = 0 

⇒ |
𝑥 + 2 𝑦 − 6 𝑧 + 6
−1 4 −3
−3 −6 0

| = 0 

(𝑥 + 2)(0 − 18) − (𝑦 − 6)(0 − 9) + (𝑧 + 6)(6 + 12) = 0 

−18𝑥 − 36 + 9𝑦 − 54 + 18𝑧 + 108 = 0

−18𝑥 + 9𝑦 + 18𝑧 + 18 = 0

−2𝑥 + 𝑦 + 2𝑧 + 2 = 0

2𝑥 − 𝑦 − 2𝑧 − 2 = 0

Alternatively; 

The equation of the plane passing through the point 

(−2, 6, −6) is  

𝐴(𝑥 + 2) + 𝐵(𝑦 − 6) + 𝐶(𝑧 + 6) = 0  … [1] 

Since it passes through (−3, 10, −9) and (−5, 0,−6), then 

𝐴(−3 + 2) + 𝐵(10 − 6) + 𝐶(−9 + 6) = 0 

−𝐴 + 4𝐵 − 3𝐶 = 0  … [2]

and 

𝐴(−5 + 2) + 𝐵(0 − 6) + 𝐶(−6 + 6) = 0 

−3𝐴 − 6𝐵 = 0 … [3]

From [3];     𝐴 = −2𝐵 

Substituting for 𝐴 in [2]; 

2𝐵 + 4𝐵 − 3𝐶 = 0 

𝐶 = 2𝐵 

Substituting for 𝐴 and 𝐶 in [1]; 

−2𝐵(𝑥 + 2) + 𝐵(𝑦 − 6) + 2𝐵(𝑧 + 6) = 0

−2𝑥 − 4 + 𝑦 − 6 + 2𝑧 + 12 = 0

−2𝑥 + 𝑦 + 2𝑧 + 2 = 0

2𝑥 − 𝑦 − 2𝑧 − 2 = 0
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Solution 

We need to prove that the normal, 𝑛 to the plane is 

perpendicular to the direction vector, 𝑏 of the line. 

Rewriting 𝑥 − 2𝑦 + 2𝑧 = 11 in the normal vector form, we 

have 𝑟 ∙ (
1
−2
2
) = 11. 

From this equation, 𝑛 = (
1
−2
2
) 

From vector equation of line, direction vector is 𝑏 = (
4
3
1
) 

𝑏 ∙ 𝑛 = (
4
3
1
) ∙ (

1
−2
2
) = 4 − 6 + 2 = 0 

The vectors are perpendicular and so the line and plane are 

parallel. 

Example 55 

Find the vector equation of the line passing through (1, 2, 3) 

and parallel to the planes 𝑟 ∙ (𝑖 − 𝑗 + 2𝑘) = 5 and                   

𝑟 ∙ (3𝑖 + 𝑗 + 𝑘) = 6.  

Solution 

Let the direction of the line be 𝑑 = 𝑑1𝑖 + 𝑑2𝑗 + 𝑏𝑑3𝑘

Equation of the line passing through (1, 2,3) and having the 

direction 𝑑 is  

𝑟 = 𝑖 + 2𝑗 + 3𝑘 + 𝜆𝑑 

𝑟 = 𝑖 + 2𝑗 + 3𝑘 + 𝜆(𝑑1𝑖 + 𝑑2𝑗 + 𝑑3𝑘)  … [1]

Line [1] and plane 𝑟 ∙ (𝑖 − 𝑗 + 2𝑘) = 5 are parallel 

⇒ Normal of the plane is perpendicular to line [1]

(𝑑1𝑖 + 𝑑2𝑗 + 𝑑3𝑘) ∙ (𝑖 − 𝑗 + 2𝑘) = 0

𝑑1 − 𝑑2 + 2𝑑3 = 0  … [2]

Again line [1] and plane 𝑟 ∙ (3𝑖 + 𝑗 + 𝑘) = 6 are parallel, 

⇒ Normal of the plane is perpendicular to line [1]

(𝑑1𝑖 + 𝑑2𝑗 + 𝑑3𝑘) ∙ (3𝑖 + 𝑗 + 𝑘) = 0

3𝑑1 + 𝑑2 + 𝑑3 = 0  … [3]

Adding [2] and [3] gives;  

4𝑑1 + 3𝑑3 = 0

𝑑1 = −
3𝑑3
4

Substituting for 𝑑3 in [3];

3𝑑1 + 𝑑2 −
4𝑑1
3
= 0

5𝑑1 + 3𝑑2 = 0

𝑑1 = −
3𝑑2
5

∴ 𝑑1 = −
3𝑑2
5
= −

3𝑑3
4

𝑑1
3
=
𝑑2
−5

=
𝑑3
−4

3,−5,−4 are the direction ratios of the line. 

Hence the equation of the required line is  

𝑟 = 𝑖 + 2𝑗 + 3𝑘 + 𝜆(3𝑖 − 5𝑗 − 4𝑘) 

Equation of a plane containing two nonconcurrent lines  

The equation of a plane containing any two nonconcurrent 

lines can be obtained using three approaches as shall be 

discussed as follows: 

Consider a plane containing two lines 𝐿1 and 𝐿2 with

equations 𝑟1 = 𝑎1 + 𝜆𝑏1 and 𝑟2 = 𝑎2 + 𝜇𝑏2 respectively.

Method 1:  

We can choose one position vector (𝑎1 or 𝑎2) of a point

from any of the two lines and then use the two direction 

vectors of the lines (𝑏1 and 𝑏2). The vector equation of the

plane will be in the form  

𝑟 = 𝑎1 + 𝜆𝑏1 + 𝜇𝑏2
or 𝑟 = 𝑎2 + 𝜆𝑏1 + 𝜇𝑏2

We can then use this vector equation to obtain parametric 

equations and hence the cartesian equation. 

Method 2:  

Since we have two vectors on the plane i.e. the direction 

vectors 𝑏1 and 𝑏2, we can use the dot/scalar product to obtain

the normal to the plane i.e.  

𝑛 ∙ 𝑏1 = 0  and 𝑛 ∙ 𝑏2 = 0

Once we have the normal to the plane, we can use the normal 

form to obtain the equation of the plane i.e.  

𝑟 ∙ 𝑛 = 𝑛 ∙ 𝑎1  or 𝑟 ∙ 𝑛 = 𝑛 ∙ 𝑎2

Method 3:  

We can use the cross product to obtain the normal to the 

plane i.e. the normal, 𝑛 to the plane will be given by  

𝑛 = 𝑏1 × 𝑏2
Once we get the normal, we can use 𝑟 ∙ 𝑛 = 𝑛 ∙ 𝑎1 or 𝑟 ∙ 𝑛 =

𝑛 ∙ 𝑎2 to obtain the equation of the plane.

𝑛 

𝑣 

𝑛 

𝑛 
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𝑥 = 2 + 5𝑠 

𝑦 = 1 + 𝑠 

𝑧 = −𝑠 

If this line lies on the plane, then the parametric equations 

must satisfy the Cartesian equation of the plane. 

Substituting into equation 𝑥 − 3𝑦 + 2𝑧 = −1, we get  

𝐿. 𝐻. 𝑆 = (2 + 5𝑠) − 3(1 + 𝑠) − 2𝑠 

        = 2 + 5𝑠 − 3 − 3𝑠 − 2𝑠 

        = −1 

        = 𝑅.𝐻. 𝑆 

Therefore, the line lies in the plane 

Note: An alternative approach to this is to show that the line 

is parallel to the plane and the distance between the line and 

the plane is zero.  

Parallel and perpendicular planes 

If two planes Π1 and Π2 have normal vectors, 𝑛1 = 𝑎1𝑖 +

𝑏1𝑗 + 𝑐1𝑘 and 𝑛2 = 𝑎2𝑖 + 𝑏2𝑗 + 𝑐2𝑘 respectively, then the

two planes, Π1 and Π2 are

1. parallel if and only if their normal vectors are

parallel i.e. iff 𝑛1 = 𝜆 × 𝑛2 where 𝜆 is a scalar

i.e.
𝑎1
𝑎2
=
𝑏1
𝑏2
=
𝑐1
𝑐2
= 𝜆 

2. perpendicular if and only if their normal vectors are

perpendicular i.e. iff 𝑛1 ∙ 𝑛2 = 0

(𝑎1𝑖 + 𝑏1𝑗 + 𝑐1𝑘) ∙ (𝑎2𝑖 + 𝑏2𝑗 + 𝑐2𝑘) = 0

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

Hence, the planes 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑑1 = 0 and

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 + 𝑑2 = 0 are perpendicular if

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

Taking this one step further, this result also means that we 

can use the normal to find the angle between two planes. 

Equation of a plane parallel to a given plane 

Let the given plane be 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 ... [1] 

Let          𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 + 𝑑1 = 0   … [2]

[1] and [2] are parallel if

𝑎1
𝑎
=
𝑏1
𝑏
=
𝑐1
𝑐
= 𝜆 

∴ 𝑎1 = 𝜆𝑎, 𝑏1 = 𝜆𝑏, 𝑐1 = 𝜆𝑐

Substituting in [2], we get  

𝑎𝜆𝑥 + 𝑏𝜆𝑦 + 𝑐𝜆𝑧 + 𝑑1 = 0

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 +
𝑑1
𝜆
= 0 

Suppose 𝑘 =
𝑑1

𝜆
, 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑘 = 0 

Hence, the equation of any plane parallel to the given plane 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 is  

𝒂𝒙 + 𝒃𝒚 + 𝒄𝒛 + 𝒌 = 𝟎 

Example 58 

Find the equation of the plane through (2, 3,4 ) parallel to 

the plane 𝑥 + 2𝑦 + 4𝑧 = 5.  

Solution 

𝑥 + 2𝑦 + 4𝑧 = 5   … [1] 

Any plane parallel to [1] is  

𝑥 + 2𝑦 + 4𝑧 = 𝑑  … [2] 

If [2] passes through (2, 3, 4), then  

2 + 6 + 16 = 𝑑 

𝑑 = 24 

Substituting in [2], we get 

𝑥 + 2𝑦 + 4𝑧 = 24 

This is the required equation  

Example 59 

Find the equation of the plane perpendicular to the plane 

2𝑥 + 3𝑦 − 5𝑧 − 6 = 0 and passes through the points 

𝑃(2,−1,−1) and 𝑄(1, 2, 3).  

Solution 

Method I: 

Let the required plane be 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. Since this 

plane is perpendicular to the plane 2𝑥 + 3𝑦 − 5𝑧 − 6 = 0, 

then  

2𝑎 + 3𝑏 − 5𝑐 = 0   … [1] 

Since 𝑃 and 𝑄 also lie on the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 𝑜, 

2𝑎 − 𝑏 − 𝑐 + 𝑑 = 0  … [2] 

𝑎 + 2𝑏 + 3𝑐 + 𝑑 = 0  … [3] 

Subtracting [3] from [2] gives; 

𝑎 − 3𝑏 − 4𝑐 = 0   … [4] 

Adding [1] and [4] gives;  

3𝑎 = 9𝑐 

𝑎 = 3𝑐 

Substituting for 𝑎 in [4]; 

3𝑐 − 3𝑏 − 4𝑐 = 0 

𝑏 = −
𝑐

3
Substituting for 𝑎 and 𝑏 in [2] gives; 

2(3𝑐) +
𝑐

3
− 𝑐 + 𝑑 = 0

𝑑 = −
16𝑐

3
Finally substituting these values in 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0, 

3𝑐𝑥 −
𝑐

3
𝑦 + 𝑐𝑧 −

16𝑐

3
= 0 

9𝑥 − 𝑦 + 3𝑧 − 16 = 0 

Method II: 

Any plane passing through (2, −1,−1) is 

𝑎(𝑥 − 2) + 𝑏(𝑦 + 1) + 𝑐(𝑧 + 1) = 0  … [1] 
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This passes through (1, 2, 3) if 

𝑎(1 − 2) + 𝑏(2 + 1) + 𝑐(3 + 1) = 0 

−𝑎 + 3𝑏 + 4𝑐 = 0  … [2]

The plane [1] is perpendicular to the plane 2𝑥 + 3𝑦 − 5𝑧 −

6 = 0 if the normals to the planes are at right angles to each 

other. Thus  

2𝑎 + 3𝑏 − 5𝑐 = 0  … [3] 

Subtracting [3] – [2] gives; 

3𝑎 − 9𝑐 = 0 

𝑎 = 3𝑐 

Substituting for 𝑎 in [2]; 

−3𝑐 + 3𝑏 + 4𝑐 = 0

𝑏 = −
𝑐

3
Substituting for 𝑎 and 𝑏 in [1]; 

3𝑐(𝑥 − 2) −
𝑐

3
(𝑦 + 1) + 𝑐(𝑧 + 1) = 0 

9𝑥 − 18 − 𝑦 − 1 + 3𝑧 + 3 = 0 

9𝑥 − 𝑦 + 3𝑧 − 16 = 0 

Example 60 

Find the equation(s) of the plane(s) parallel to the plane 

3𝑥 − 6𝑦 + 2𝑧 + 14 and  

(a) 6 units from the origin,

(b) 4 units from 𝐴(2, 1, −3),

(c) 5 units from the above plane

Solution 

The equation of any plane parallel to the given plane is of 

the form  

3𝑥 − 6𝑦 + 2𝑧 + 𝑘 = 0  … [1] 

(a) Since [1] is 6 units from the origin

|3(0) − 6(0) + 2(0) + 𝑘|

√32 + (−6)2 + 22
= 6 

|𝑘| = 42 

𝑘 = ±42 

Hence the equations of the planes are 3𝑥 − 6𝑦 + 2𝑧 ±

42 = 0 

(b) Since [1] is 4 units from 𝐴(2, 1, −3), therefore

|3(2) − 6(1) + 2(−3) + 𝑘|

√32 + (−6)2 + 22
= 4 

|𝑘 − 6| = 28 

𝑘 − 6 = ±28 

𝑘 = 34 or 𝑘 = −22 

The required equations of the planes are 3𝑥 − 6𝑦 +

2𝑧 + 34 = 0 and 3𝑥 − 6𝑦 + 2𝑧 − 22 = 0.  

(c) Take a point (0, 0, −7) on 3𝑥 − 6𝑦 + 2𝑧 + 14 = 0

Since the perpendicular distance of (0, 0, −7) from

3𝑥 − 6𝑦 + 2𝑧 + 𝑘 = 0 is equal to 5, then

|3(0) − 6(0) + 2(−7) + 𝑘|

√32 + (−6)2 + 22
= 5 

|𝑘 − 14| = 35 

𝑘 − 14 = ±35 

𝑘 = 49 or− 21 

Hence, the required equations of the planes are 

3𝑥 − 6𝑦 + 2𝑧 + 49 = 0 and 3𝑥 − 6𝑦 + 2𝑧 − 21 = 0 

Example 61 

Find the equation of the plane which passes through 

𝑃(2, 3, 4) and is perpendicular to the planes 2𝑥 − 𝑦 + 2𝑧 −

8 = 0 and 𝑥 + 2𝑦 − 3𝑧 + 7 = 0.  

Solution 

Any plane passing through 𝑃(2, 3, 4) is given by 

𝑎(𝑥 − 2) + 𝑏(𝑦 − 3) + 𝑐(𝑧 − 4) = 0    … [1] 

where 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 is the normal vector to the plane 

The plane [1] is perpendicular to the given planes if  

2𝑎 − 𝑏 + 2𝑐 = 0   …. [2] 

     𝑎 + 2𝑏 − 3𝑐 = 0   …. [3] 

Subtracting [2] −2 ×[3] gives; 

−5𝑏 + 8𝑐 = 0

⇒ 𝑏 =
8𝑐

5
Substituting for 𝑏 in [2]; 

2𝑎 −
8𝑐

5
+ 2𝑐 = 0

10𝑎 + 2𝑐 = 0 

𝑎 = −
𝑐

5
Substituting for 𝑎 and 𝑏 in [1]; 

−
𝑐

5
(𝑥 − 2) +

8𝑐

5
(𝑦 − 3) + 𝑐(𝑧 − 4) = 0 

−𝑥 + 2 + 8𝑦 − 24 + 5𝑧 − 20 = 0

−𝑥 + 8𝑦 + 5𝑧 − 42 = 0

𝑥 − 8𝑦 − 5𝑧 + 42 = 0

Angle between planes  

The angle between two planes is defined as the angle 

between their normals. 

If two planes Π1 and Π2 have normal vectors, 𝑛1 = 𝑎1𝑖 +

𝑏1𝑗 + 𝑐1𝑘 and 𝑛2 = 𝑎2𝑖 + 𝑏2𝑗 + 𝑐2𝑘 respectively, and

intersect at an acute angle 𝜃 (or 180° − 𝜃 depending on their 

direction), the acute can be found from  

𝑛1 

𝑛2 

𝜃 

𝜃 

𝜋1 

𝜋2 
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=
|(1)(1) + (2)(1) + (−1)(0) − 3|

√12 + 22 + (−1)2
= 0 

This shows that the point lies in the plane. 

Example 67 

Show that the points 𝑖 − 𝑗 + 3𝑘 and 3(𝑖 + 𝑗 + 𝑘) are 

equidistant from the plane 𝑟 ∙ (5𝑖 + 2𝑗 − 7𝑘) + 9 = 0. 

Solution 

The given plane can be represented in Cartesian form as 

5𝑥 + 2𝑦 − 7𝑧 + 9 = 0 

Let 𝑎 = 𝑖 − 𝑗 + 3𝑘 and 𝑏 = 3(𝑖 + 𝑗 + 𝑘) 

Let 𝐴 and 𝐵 be the points whose position vectors are 𝑎 and 

𝑏 

𝐴 = (1,−1, 3), 𝐵 = (3, 3, 3) 

Now, the distance of 𝐴 from the plane  

=
|5(1) + 2(−1) + (−7)(3) + 9|

√52 + 22 + (−7)2
=

9

√78

and the distance of 𝐴 from the plane 

=
|5(3) + 2(3) + (−7)(3) + 9|

√52 + 22 + (−7)2
=

9

√78

∴ The points 𝐴 and 𝐵 are equidistant from the plane. 

Intersection of a line and a plane 

In the previous examples, we considered the case of a line 

and a plane being parallel, and the case of a line lying in a 

plane. If neither of these happens, then the line and plane 

must intersect in a point.  

The angle between a line and a plane  

The angle between a line and a plane is defined as the angle 

between the line and its projection on the plane.  

To find the angle between a line and a plane, we look at the 

vectors 𝑛 (perpendicular to the plane) and 𝑑 (in the direction 

of the line) 

We can find angle 𝜙 from the formula  

cos𝜙 =
𝑑 ∙ 𝑛

|𝑏||𝑛|

then subtract from 90° to find 𝜃 

Alternatively, we can use the fact that 

cos𝜙 = cos(90° − 𝜃) = sin 𝜃 to write directly 

sin 𝜃 =
𝑑 ∙ 𝑛

|𝑑||𝑛|

Example 68 

Find the position vector of the point where the line 

𝑟 = (
5
3
−1
) + 𝜆(

1
−4
2
) meets the plane 𝑟 ∙ (

2
1
3
) = 12 

Solution 

The position vector of the point of intersection will satisfy 

both the equation of the line and that of the plane. 

If 𝑟1 is the position vector of the point of intersection, then

𝑟1 = (
5
3
−1
) + 𝜆 (

1
−4
2
) and 𝑟1 ∙ (

2
1
3
) = 12 

Thus 

(
5 + 𝜆
3 − 4𝜆
−1 + 2𝜆

) ∙ (
2
1
3
) = 12 

10 + 2𝜆 + 3 − 4𝜆 − 3 + 6𝜆 = 12 

𝜆 =
1

2
 

The required position vector is (
5
3
−1
) +

1

2
(
1
−4
2
) = (

11

2

1
0

) 

Example 69 

Find the point of intersection of the line 
𝑥

2
=
𝑦+6

2
= 3𝑧 − 1 

and the plane 3𝑥 + 𝑦 − 𝑧 = 9. Find also the angle between 

the line and the plane. 

Solution 

Introducing the parameter 𝜆, we have the parametric 

equations 

𝑥 = 2𝜆, 𝑦 = 2𝜆 − 6 and 
𝑧+1

3

Substituting each of these values into the equation of the 

plane, we obtain  

6𝜆 + (2𝜆 − 6) −
𝜆 + 1

3
= 9 

18𝜆 + 6𝜆 − 18 − 𝜆 − 1 = 27 

23𝜆 = 46 

𝜆 = 2 

Substituting for 𝜆 = 2, we get  

𝑥 = 4, 𝑦 = −2 and 𝑧 = 1 

∴ The point of intersection is (4, −2, 1) 

Now writing the equation of the plane as 𝑟 ∙ (
3
1
−1
) = 9 and 

the equation of the line as 𝑟 = (

0
−6
1

3

) + 𝜆(

2
2
1

3

), we have 

𝑛 = (
3
1
−1
) and 𝑑 = (

2
2
1

3

) 

𝑑 ∙ 𝑛 = 6 + 2 −
1

3
=
23

3

|𝑑| = √22 + 22 + (
1

3
)
2

= √
73

9

𝜃 

𝜙 
𝑛 𝑑 

𝑟 = 𝑎 + 𝜆𝑑 
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𝑥 = −
8

5
(𝑧 + 1) + 2𝑧 + 3 

𝑥 =
2𝑧 + 7

5
Collecting this information together 

5𝑥 − 7

2
=
5𝑦 + 8

−8
= 𝑧 

𝑥 − 7/5

2
=
𝑦 + 8/5

−8
=
𝑧

5
which is a set of equations of the line passing through the 

point (7/5, −8/5, 0) having direction (2, −8, 5). In vector 

equation, this would be expressed as  

𝑟 = (
7/5
−8/5
0

) + 𝜆 (
2
−8
5
) 

There are a couple of useful checks which can be used here. 

We can test whether (7/5, −8/5, 0) really does lie on both 

planes by substituting into both equations.  

Example 73 

Find the equation of the line of intersection of the planes   

𝑥 + 3𝑦 + 𝑧 = 5 and 2𝑥 − 𝑦 − 𝑧 = 1. Find also the angle 

between the two planes. 

Solution 

𝑥 + 3𝑦 + 𝑧 = 5    … . [1] 

2𝑥 − 𝑦 − 𝑧 = 1    … . [2] 

Eliminate 𝑧 and hence write 𝑥 in terms of 𝑦 

Adding [1] and [2]; 

3𝑥 + 2𝑦 = 6 ⇒ 𝑥 =
6 − 2𝑦

3
Now we eliminate 𝑦 and write 𝑥 in terms of 𝑧 

Adding [1] to 3 × [2]; 

7𝑥 − 2𝑧 = 8 ⇒ 𝑥 =
2𝑧 + 8

7
Putting these together into a single equation, we have the 

line 

𝑥 =
6 − 2𝑦

3
=
2𝑧 + 8

7
Note: Having found this line, it is worth choosing a simple-

valued point on the line, such as (2, 0, 3) and checking that 

it lies on both planes – which in this case it does. 

To find the angle between the planes, we find the angle 

between their normal vectors. 

Rewriting the equations as 𝑟 ∙ (𝑖 + 3𝑗 + 𝑘) = 5 and      

𝑟 ∙ (2𝑖 − 𝑗 − 𝑘) = 1, we can calculate  

(𝑖 + 3𝑗 + 𝑘) ∙ (2𝑖 − 𝑗 − 𝑘) = −2 

|𝑖 + 3𝑗 + 𝑘| = √11, |2𝑖 − 𝑗 − 𝑘| = √6 

cos 𝜃 =
−2

√66
𝜃 = 104.3° 

If the acute angle was required, it would be                    

(180° − 104.3°) = 75.7° 

Example 74 

Find the equation of the plane through the intersection of the 

planes 3𝑥 − 𝑦 + 2𝑧 − 4 = 0 and 𝑥 + 𝑦 + 𝑧 − 2 = 0 and 

the point (2, 2, 1). 

Solution 

Given planes are: 

3𝑥 − 𝑦 + 2𝑧 − 4 = 0 and 𝑥 + 𝑦 + 𝑧 − 2 = 0 

Any plane through their intersection is  

3𝑥 − 𝑦 + 2𝑧 − 4 + 𝜆(𝑥 + 𝑦 + 𝑧 − 2) = 0 … [1] 

Since point (2, 2, 1) lies on it,  

3(2) − 2 + 2(1) − 4 + 𝜆(2 + 2 + 1 − 2) = 0 

2 + 3𝜆 = 0 

𝜆 = −
2

3
Substituting for 𝜆 in [1] gives; 

3𝑥 − 𝑦 + 2𝑧 − 4 −
2

3
(𝑥 + 𝑦 + 𝑧 − 2) = 0 

9𝑥 − 3𝑦 + 6𝑧 − 12 − 2𝑥 − 2𝑦 − 2𝑧 + 4 = 0 

7𝑥 − 5𝑦 + 4𝑧 − 8 = 0 

Example 75 

Find the equation of the plane through the line of 

intersection of the planes 𝑥 + 𝑦 + 𝑧 = 1 and 2𝑥 + 3𝑦 +

4𝑧 = 5 which is perpendicular to the plane 𝑥 − 𝑦 + 𝑧 = 0.  

Solution 

The given planes are 

𝑥 + 𝑦 + 𝑧 = 1   … [1] 

2𝑥 + 3𝑦 + 4𝑧 = 5   … [2] 

𝑥 − 𝑦 + 𝑧 = 0   … [3] 

Any plane through the intersection of [1] and [2] is given by 

𝑥 + 𝑦 + 𝑧 − 1 + 𝜆(2𝑥 + 3𝑦 + 4𝑧 − 5 ) = 0 

(1 + 2𝜆)𝑥 + (1 + 3𝜆)𝑦 + (1 + 4𝜆)𝑧 − 1 − 5𝜆 = 0 .. [4] 

The direction ratios of the normal of [3] are 1,−1, 1 

Also, the direction ratios of the normal of [4] are 1 + 2𝜆, 

1 + 3𝜆, 1 + 4𝜆 

Two planes are perpendicular if their normal are 

perpendicular i.e. 𝑛1 ∙ 𝑛2 = 0

⇒ 1 + 2𝜆 − 1 − 3𝜆 + 1 + 4𝜆 = 0

𝜆 = −
1

3
Now the equation of the required planes is given by 

(1 −
2

3
) 𝑥 + (1 − 1)𝑦 + (1 −

4

3
) 𝑧 − 1 +

5

3
= 0 

𝑥 − 𝑧 + 2 = 0 

Intersection of three planes 

We shall consider these systematically. Let us call the three 

planes 𝜋1, 𝜋2 and 𝜋3, and let 𝑛1, 𝑛2, 𝑛3 be vectors normal

to these planes respectively. 

Case 1 

The three planes are coincident. Then every point on each 

plane lies on all three planes is a plane, namely 

𝜋1(= 𝜋2 = 𝜋3)
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Self-Evaluation exercise 

1. Prove that if 𝐴𝑂⃗⃗⃗⃗  ⃗ + 𝑂𝐵⃗⃗ ⃗⃗  ⃗ = 𝐵𝑂⃗⃗ ⃗⃗  ⃗ + 𝑂𝐶⃗⃗⃗⃗  ⃗, then 𝐴, 𝐵, 𝐶 are

collinear.

2. If 𝑀 is the midpoint of 𝐴𝐵തതതത and 𝑁 is the midpoint of

𝐶𝐷തതതത, show that 2𝑀𝑁 = 𝐴𝐶 + 𝐵𝐷

3. If the vectors 𝑎 = 2𝑢 − 3𝑣 and 𝑏 = 5𝑢 + 4𝑣, find the

scalars 𝑚 and 𝑛 such that 𝑐 = 𝑚𝑎 + 𝑛𝑏 where 𝑐 =

12𝑢 + 7𝑣 and 𝑢 and 𝑣 are non-parallel vectors.

[Ans: 𝑚 =
13

23
, 𝑛 =

50

23
] 

4. Consider the parallelogram 𝐴𝐵𝐶𝐷 where the point 𝑃 is

such that 𝐴𝑃 ∶ 𝑃𝐷 = 1 ∶ 2 and 𝐵𝐷 intersects 𝐶𝑃 at 𝑄

where 𝐷𝑄 ∶ 𝑄𝐵 = 1 ∶ 3. Find the scalar 𝑚 if 𝐶𝑃 =

𝑚𝐶𝑄

[Ans: 𝑚 =
4

3
] 

5. Find the values(s) of 𝑥 for which the vectors 𝑥𝑖 + 𝑗 −

𝑘 and 𝑥𝑖 − 2𝑥𝑗 − 𝑘 are perpendicular.

[Ans: 1] 

6. 𝑃, 𝑄 and 𝑅 are three points in space with coordinates

(2, −1, 4), (3, 1, 2) and (−1, 2, 5) respectively. Find

angle 𝑄 in the triangle 𝑃𝑄𝑅

[Ans: 105.2°] 

7. Find the values of 𝑥 and 𝑦 if 𝑢 = 𝑥𝑖 + 2𝑦𝑗 − 8𝑘 is

perpendicular to both 𝑣 = 2𝑖 − 𝑗 + 𝑘 and 𝑤 = 3𝑖 +

2𝑗 − 4𝑘

[Ans: 𝑥 = −
16

7
, 𝑦 = −

44

7
] 

8. Find the unit vector that is perpendicular to both 𝑎 =

3𝑖 + 6𝑗 − 𝑘 and 𝑏 = 3𝑖 + 2𝑗 − 4𝑘

[Ans: ±
1

√11
(−𝑖 + 𝑗 + 3𝑘)] 

9. Use vector methods to prove the Pythagoras’ theorem

10. Use vector methods to prove that the diagonals of a

rhombus bisect each other at right angles.

11. Show that if 𝑎, 𝑏 and 𝑐 are non-zero vectors such that

𝑎 ∙ 𝑏 = 𝑎 ∙ 𝑐, then either 𝑏 = 𝑐 or 𝑎 is perpendicular to

(𝑏 − 𝑐)

12. Vectors 𝑎, 𝑏 and 𝑐 are such that 𝑎 ∙ 𝑐 = 3 and 𝑏 ∙ 𝑐 =

4. Given that the vector 𝑑 = 𝑎 + 𝜆𝑏 is perpendicular

to 𝑐, find the value of 𝜆

[Ans: −
3

4
] 

13. In the trapezium shown below, 𝐵𝐸: 𝐵𝐶 = 1: 3

14. Show that 3𝐴𝐶 ∙ 𝐷𝐸 = 2(4𝑚2 − 𝑛2) where |𝐴𝐵| =

𝑚, |𝐷𝐶| = 2 and |𝐷𝐴| = 𝑛

15. Find the equation of the line that passes through the

point 𝐴(2, 7) and is perpendicular to the line with

equation 𝑟 = −𝑖 − 3𝑗 + 𝜆(3𝑖 − 4𝑗)

[Ans: 𝑟 = 2𝑖 + 7𝑗 + 𝑡(4𝑖 + 3𝑗)] 

16. Find the Cartesian equation of the line passing through

the points 𝐴(5, 2, 6) and 𝐵(−2, 4, 2).

[Ans: 
𝑥−5

−7
=
𝑦−2

2
=
𝑧−6

−4
] 

17. Show that the lines 
𝑥−1

2
= 2 − 𝑦 = 5 − 𝑧 and 

4−𝑥

4
=

5+𝑧

2
are parallel.

18. Find the coordinates of the point where the line 𝑟 =

(
−2
5
3
) + 𝑡 (

−1
2
1
) intersects 𝑥-𝑦 plane 

[Ans: (1, −1, 0)] 

19. The line 
𝑥−3

4
= 𝑦 + 2 =

4−𝑧

5
 passes through the point 

(𝑎, 1, 𝑏). Find the values of 𝑎 and 𝑏. 

[Ans:  𝑎 = 15, 𝑏 = −11] 

20. Find the acute angle between the following lines

(a) 𝑟 = (
0
2
3
) + 𝑠 (

3
4
5
) and 𝑟 = (

−2
5
3
) + 𝑡 (

−1
2
1
) 

(b) 𝑟 = (
2
1
4
) + 𝑠 (

−2
0
1
) and 𝑟 = (

1
1
1
) + 𝑠 (

1
1
3
) 

(c) 
𝑥−3

−1
=
2−𝑦

3
=
𝑧−4

2
and 

𝑥−1

2
=
𝑦−2

−2
= 𝑧 − 2 

[Ans: (a) 54.74° (b) 82.25° (c) 57.69°] 

21. Find the point of intersection of the lines

(a) 
𝑥−5

−2
= 𝑦 − 10 =

𝑧−9

12
and 𝑥 = 4, 

𝑦−9

−2
=
𝑧+9

6

(b) 
2𝑥−1

3
=
𝑦+5

3
=
𝑧−1

−2
and 

2−𝑥

4
=
𝑦+3

2
=
4−2𝑧

1

[Ans: (a) (4, 10.5, 15) (b) do not intersect] 

22. Show that the lines
𝑥−1

−3
= 𝑦 − 2 =

7−𝑧

11
and 

𝑥−2

3
=

𝑦+1

8
=
𝑧−4

−7
 are skew.

23. Find the equation of the line passing through the origin

and the point of intersection of the lines with equations

𝑥 − 2 =
𝑦−1

4
, 𝑧 = 3 and 

𝑥−6

2
= 𝑦 − 10 = 𝑧 − 4 

[Ans: 
𝑥

4
=
𝑦

9
=
𝑧

3
] 

24. Find the value(s) of 𝑘, such that the lines 
𝑥−2

𝑘
=
𝑦

2
=

3−𝑧

3
 and 

𝑥

𝑘−1
=
𝑦+2

3
=
𝑧

4
 are perpendicular. 

[Ans: 3 or −2] 

25. Find a direction vector of the line that is perpendicular

to both 
𝑥+1

3
=
𝑦+1

8
=
𝑧+1

12
 and 

1−2𝑥

−4
=
3𝑦+1

9
=
𝑧

6

[Ans: 12𝑖 + 6𝑗 − 7𝑘 (or any multiple thereof)] 

26. Are the lines 
𝑥−1

5
=
𝑦+2

4
=
4−𝑧

3
and 

𝑥+2

3
=
𝑦+7

2
=
2−𝑧

3

parallel? Find the point of intersection of these lines. 

What do you conclude? 

[Ans: Not parallel. Do not intersect. Lines are skew] 

𝐴 𝐵 

𝐷 𝐶 

𝐸 
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67. Find the equation of the plane passing through the line

of intersection of the planes 𝑥 + 2𝑦 + 3𝑧 − 4 = 0 and

3𝑧 − 𝑦 = 0 and perpendicular to the plane 3𝑥 + 4𝑦 −

2𝑧 + 6 = 0

[Ans: 2𝑥 + 3𝑦 + 9𝑧 = 8] 

68. Find the vector equation of the line passing through the

point (−1, 2, 1) and parallel to the line 𝑟 = 2𝑖 + 3𝑗 −

𝑘 + 𝜆(𝑖 − 2𝑗 + 𝑘). Also, find the distance between

them.

[Ans: 𝑟 = −𝑖 + 2𝑗 + 𝑘 + 𝜇(𝑖 − 2𝑗 + 𝑘); √
83

6
 units] 

69. Find the equation of the plane passing through the

points 𝐴(2, 1, −3), 𝐵(−3,−2, 1) and 𝐶(2, 4, −1).

[Ans: 18𝑥 − 10𝑦 + 15𝑧 + 19 = 0] 

70. Find the Cartesian of a line which passes through the

point (−4, 2, −3) and is parallel to the line 
−𝑥−2

4
=

𝑦+3

−2
=
2𝑧−6

3

[Ans: 
𝑥+4

−8
=
𝑦−2

−4
=
𝑧+3

3
] 

71. Find the angle between the two straight lines 𝑟 = 3𝑖 −

2𝑗 + 4𝑘 + 𝜆(−2𝑖 + 𝑗 + 2𝑘) and 𝑟 = 𝑖 + 3𝑗 − 2𝑘 +

𝜇(3𝑖 − 2𝑗 + 6𝑘).

[Ans: 79°] 

72. Find the coordinates of the foot of the perpendicular

from the point 𝐴(1, 2, 1) to the line joining 𝐵(1, 4, 6)

and 𝐶(5, 4, 4). Also, find the length of the

perpendicular.

[Ans: (3, 4, 5); 2√6 units] 

73. Show that the lines 𝑟1 = 𝑖 + 2𝑗 + 3𝑘 + 𝜆(2𝑖 + 3𝑗 +

4𝑘) and 𝑟2 = 2𝑖 + 3𝑗 + 4𝑘 + 𝜇(3𝑖 + 4𝑗 + 5𝑘)

intersect. 

74. The position vectors of two points 𝐴 and 𝐵 are 3𝑖 +

𝑗 + 2𝑘 and 𝑖 − 2𝑗 − 4𝑘 respectively. Find the equation

of a plane through 𝐵 and perpendicular to 𝐴𝐵.

Calculate the distance of the plane so obtained from the

point (−1, 1, 1).

[Ans: 𝑟 ∙ (2𝑖 + 3𝑗 + 6𝑘) + 28 = 0; 5 units] 

75. Find the angle between the planes whose equations are

𝑟 ∙ (−𝑖 + 2𝑗 + 2𝑘) = 3 and 𝑟 ∙ (3𝑖 − 2𝑗 + 6𝑘) + 7 =

0

[Ans: 76.2°] 

76. Find the equation of the plane through the point

(3, 4, −1), which is parallel to the plane 𝑟 ∙ (2𝑖 − 3𝑗 +

5𝑘) + 7 = 0

[Ans: 2𝑥 − 3𝑦 + 5𝑧 + 11 = 0] 

77. Find the equation of the plane passing through the

points 𝑃(1,−1, 2) and 𝑄(2,−2, 2) and perpendicular

to the plane 6𝑥 − 2𝑦 + 2𝑧 = 9.

[Ans: 𝑥 + 𝑦 − 2𝑧 + 4 = 0] 

78. Find the vector equation of the plane passing through

the line of intersection of the planes 𝑟 ∙ (2𝑖 − 7𝑗 +

4𝑘) = 3 and 𝑟 ∙ (3𝑖 − 5𝑗 + 4𝑘) + 11 = 0 and passing 

through the points (−2, 1, 3).  

[Ans: 𝑟 ∙ (15𝑖 − 47𝑗 + 28𝑘) = 7] 

79. Find the equation of the plane passing through the line

of intersection of the planes 2𝑥 − 𝑦 = 0 and 3𝑧 − 𝑦 =

0 and perpendicular to the plane 4𝑥 + 5𝑦 − 3𝑧 = 8.

[Ans: 28𝑥 − 17𝑦 + 9𝑧 = 0] 

80. Show that the plane whose vector equation is 𝑟 ∙

(𝑖 + 2𝑗 − 𝑘) = 1 and the line whose vector equation is

𝑟 ∙ (𝑖 + 𝑗 + 𝑘) + 𝜆(2𝑖 + 𝑗 + 4𝑘) are parallel. Also,

find the distance between them.

[Ans: 
1

6
√6 units]

81. Find the foot of perpendicular from the point (2, 3, −8)

to the line 
4−𝑥

2
=
𝑦

6
=
1−𝑧

3
. Also find the perpendicular

distance from the given point to the line. 

[Ans: (2, 6, −2); 3√5] 

82. Find the length and the foot of perpendicular from the

point (1,
3

2
, 2) to the plane 2𝑥 − 2𝑦 + 4𝑧 + 5 = 0.

[Ans: √6]

83. Find the equation of the plane through the points

(2, 1, −1) and (−1, 3, 4), and perpendicular to the

plane 𝑥 − 2𝑦 + 4𝑧 = 10.

[Ans: 18𝑥 + 17𝑦 + 4𝑧 = 49] 

84. Find the equation of the plane which is perpendicular

to the plane 5𝑥 + 3𝑦 + 6𝑧 + 8 = 0 and which

contains the line of intersection of the planes 𝑥 + 2𝑦 +

3𝑧 − 4 = 0 and 2𝑥 + 𝑦 − 𝑧 + 5 = 0.

[Ans: 51𝑥 + 15𝑦 − 50𝑧 + 173 = 0] 

85. Find the equation of the plane through the intersection

of the planes 𝑟 ∙ (𝑖 + 3𝑗) − 6 = 0 and 𝑟 ∙ (3𝑖 − 𝑗 −

4𝑘) = 0 whose perpendicular distance from origin is

unity.

[Ans: 4𝑥 + 2𝑦 − 4𝑧 − 6 = 0 and 

−2𝑥 + 4𝑦 + 4𝑧 − 6 = 0]

86. Show that the points (𝑖 − 𝑗 + 3𝑘) and 3(𝑖 + 𝑗 + 𝑘) are

equidistant from the plane 𝑟 ∙ (5𝑖 + 2𝑗 − 7𝑘) + 9 = 0

and lies on opposite side of it.

87. 𝐴𝐵 = 3𝑖 − 𝑗 + 𝑘 and 𝐶𝐷 = −3𝑖 + 2𝑗 + 4𝑘 are two

vectors. The position vectors of the points 𝐴 and 𝐶 are

6𝑖 + 7𝑗 + 4𝑘 and −9𝑗 + 2𝑘, respectively. Find the

position vectors of point 𝑃 on the line 𝐴𝐵 and a point

𝑄 on the line 𝐶𝐷 such that 𝑃𝑄 is perpendicular to both

𝐴𝐵 and 𝐶𝐷.

[Ans: 3𝑖 + 8𝑗 + 3𝑘, −3𝑖 − 7𝑗 + 6𝑘] 
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Chapter 

19 
Examination Questions 

SECTION A 

1. The point 𝐶(𝑎, 4, 5) divides the line joining points

𝐴(1, 2, 3) and 𝐵(6, 7, 8) in the ratio 𝜆 ∶ 3. Using

vectors, find the values 𝑎 and 𝜆.

2. [2024, No. 7]

3. Find the angle between the line 𝑟 = (
2
0
5

) + 𝜆 (
3

12
4

) and 

the plane −𝑥 + 2𝑦 + 2𝑧 − 66 = 0. 

[2023, No. 4] 

4. The position vectors of points 𝑃 and 𝑄 are given by

𝑂𝑃 = 𝑖 − 2𝑗 + 𝑘 and 𝑂𝑄 = 3𝑖 − 4𝑗 + 6𝑘 respectively.

Point 𝑅 divides the line 𝑃𝑄̅̅ ̅̅  in the ratio 2 ∶ −3.

Determine the coordinates of the point 𝑅.

[2022, No. 3] 

5. A plane is perpendicular to the vector 𝑟 = (𝑖 + 3𝑗 −

2𝑘) and contains the point 𝑃(−2, 0, 4). Determine the

equation of the plane.

[2020, No. 4] 

6. Given the plane 4𝑥 + 3𝑦 − 3𝑧 − 4 = 0;

(a) show that the point 𝐴(1, 1, 1) lies on the plane

(b) find the perpendicular distance from the plane to

the point 𝐵(1, 5, 1)

[2019, No. 4] 

7. Determine the angle between the line 
𝑥+4

8
=

𝑦−2

2
=

𝑧+1

−4

and the plane 4𝑥 + 3𝑦 − 3𝑧 + 1 = 0

[2018, No. 2: Ans: 69.33°] 

8. The vertices of a triangle are 𝑃(4, 3), 𝑄(6, 4) and

𝑅(5, 8). Find the angle 𝑅𝑃𝑄 using vectors.

[2017, No. 5: Ans: 52.13°] 

9. Three points 𝐴(2, −1, 0), 𝐵(−2, 5, −4) and 𝐶 are on a

straight line such that 3𝐴𝐵 = 2𝐴𝐶. Find the coordinates

of 𝐶.

[2016, No. 8: Ans: 𝐶(−4, 8, −6)] 

10. Given that 𝐷(7, 1, 2), 𝐸(3, −1, 4) and 𝐹(4, −2, 5) are

points on a plane, show that 𝑬𝑫 is perpendicular to 𝑬𝑭.

[2015, No. 5] 

11. Find the equation of a line through 𝑆(1, 0, 2) and

𝑇(3, 2, 1) in the form 𝑟 = 𝑎 + 𝜆𝑏.

Hence, deduce the cartesian equation of the line.

[2014, No. 5: Ans: 
𝑥−1

2
=

𝑦

2
=

𝑧−2

−1
= 𝜆] 

12. The position vector of point 𝐴 is 2𝑖 + 3𝑗 + 𝑘, of 𝐵 is

5𝑗 + 4𝑘 and of 𝐶 is 𝑖 + 2𝑗 + 12𝑘. Show that 𝐴𝐵𝐶 is a

triangle.

[2013, No. 4] 

13. A line passes through the points 𝐴(4, 6, 3) and

𝐵(1, 3, 3).

(a) Find the vector equation of the line

(b) Show that the point 𝐶(2, 4, 3) lies on the line in (a)

above.

[2012, No. 4: Ans: (a) (
4
6
3

) + 𝜆 (
−3
−3
0

)] 

14. Show that the points 𝐴, 𝐵 and 𝐶 with position vectors

3𝑖 + 3𝑗 + 𝑘, 8𝑖 + 7𝑗 + 4𝑘 and 11𝑖 + 4𝑗 + 5𝑘

respectively, are vertices of a triangle.

[2011, No. 7] 

15. Given the points 𝐴(−3, 3, 4), 𝐵(5, 7, 2) and 𝐶(1, 1, 4),

find the vector equation of a line which joins the mid-

points of 𝐴𝐵 and 𝐵𝐶.

[2010, No. 5: Ans: 𝑟 = (
1
5
3

) + 𝜆 (
2

−1
0

)] 

16. Find the equation of a line through the point (1, 3, −2)

and perpendicular to the plane whose equation is

4𝑥 + 3𝑦 − 2𝑧 − 16 = 0.

[2009, No. 7: Ans: 𝑟 = (
1
3

−2
) + 𝜆 (

4
3

−2
)] 

17. The points 𝑃(2, 3), 𝑄(−11, 8) and 𝑅(−4, −5) are

vertices of a parallelogram 𝑃𝑄𝑅𝑆 which has 𝑃𝑅 as a

diagonal. Find the coordinates of the vertex 𝑆.

[2009, No. 5: Ans: 𝑆(9, −10)] 

18. Given vectors 𝑎 = 𝑖 − 3𝑗 + 3𝑘 and 𝑏 =-𝑖 − 3𝑗 + 2𝑘,

find the:

(i) acute angle between the vectors 𝑎 and 𝑏

(ii) equation of the plane containing 𝑎 and 𝑏

[2008, No. 4: Ans: (i) 30.86° (ii) −3𝑥 + 5𝑦 + 6𝑧 = 0] 

19. A point 𝑃 has co-ordinates (1, −2, 3) and a certain

plane has the equation 𝑥 + 2𝑦 + 2𝑧 = 8. The line

through 𝑃 parallel to the line 
𝑥

3
=

𝑦+1

−1
= 𝑧 + 1 meets the

plane at 𝑄. Find the co-ordinates of 𝑄. 

[2007, No. 5: Ans: (6, −
11

3
,

14

3
)] 

20. Find the point of intersection of the plane 11𝑥 − 3𝑦 +

7𝑧 = 8 and the line

𝑟 = (
−3
1
5

) + 𝜆 (
1
2

−2
), where 𝜆 is a scalar 

[2006, No. 5: Ans: (−4, −1, −7)] 

21. Given that the vectors 𝑎𝑖 − 2𝑗 + 𝑘 and 2𝑎𝑖 + 𝑎𝑗 − 4𝑘

are perpendicular, find the values of 𝑎

[2005, No. 4: Ans: −1, 2] 
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16. The position vectors of points 𝐴 and 𝐵 are       

𝑂𝐴 = 2𝑖 − 4𝑗 − 𝑘 and 𝑂𝐵 = 5𝑖 − 2𝑗 + 3𝑘

respectively. The line 𝐴𝐵 produced to meet the plane

2𝑥 + 6𝑦 − 3𝑧 = −5 at a point 𝐶. Find the:

(a) co-ordinates of 𝐶

(b) angle between 𝐴𝐵 and the plane.

[2008, No. 12: Ans: (a) (8, 0, 7) (b) 9.16°] 

17. Given that the position vectors of 𝐴, 𝐵 and 𝐶 are

𝑂𝐴 = (
1

−2
2

), 𝑂𝐵 = (
3
2

−1
) and 𝑂𝐶 = (

7
10
−7

) 

(i) Prove that 𝐴, 𝐵 and 𝐶 are collinear

(ii) Find the acute angle between 𝑂𝐴 and 𝑂𝐵

(iii) If 𝑂𝐴𝐵𝐷 is a parallelogram, find the position

vectors of 𝐸 and 𝐹 such that 𝐸 divides 𝐷𝐴 in the

ratio 1: 2 and 𝐹 divides it externally in the ratio

1: 2.

[2007, No. 15: Ans: (ii) 106.1° (iii) 𝑂𝐸 = (

5

3

2

−
4

3

) ; 𝑂𝐹 =

(
3

10
−8

)] 

18. (a) Given the vectors 𝑎 = 3𝑖 − 2𝑗 + 𝑘 and 𝑏 = 𝑖 −

2𝑗 + 2𝑘, find

(i) the acute angle between the vectors

(ii) vector 𝑐 such that it is perpendicular to both

vectors 𝑎 and 𝑏

(b) Given that 𝑂𝐴 = 𝑎 and 𝑂𝐵 = 𝑏, point 𝑅 is on 𝑂𝐵̅̅ ̅̅

such that 𝑂𝑅̅̅ ̅̅ = 𝑂𝐴̅̅ ̅̅  are both produced they meet at

point 𝑄. Find:

(i) 𝑂𝑅 and 𝑂𝑃 in terms of 𝑎 and 𝑏

(ii) 𝑂𝑄 in terms of 𝑎

[2006, No. 11: Ans: (a) (i) 36.7° (ii) 2𝑖 + 5𝑗 + 4𝑘 (b) (i) 
1

5
(2𝑎 + 3𝑏) (ii) 

8

5
𝑎] 

19. (i) Determine the coordinates of the point of

intersection of the line 
𝑥+1

2
=

𝑦−3

5
=

𝑧+2

−1
 and the plane

𝑥 + 𝑦 + 𝑧 = 12 

(ii) Find the angle between the line 
𝑥+1

2
=

𝑦−3

5
=

𝑧+2

−1

and the plane 𝑥 + 𝑦 + 𝑧 = 12

[2005, No. 10: Ans: (i) (3, 13, −4) (ii) 39.25°] 

20. (a) Find the equation of the line through 𝐴(2, 2, 5) and

𝐵(1, 2, 3)

(b) If the line in (a) above meets the line 
𝑥−1

1
=

𝑦−2

0
=

𝑧−1

3
at 𝑃, find the:

(i) coordinates of 𝑃,

(ii) angle between the two lines

[2004, No. 11: Ans: (b) (i) 𝑃(3, 2, 7) (ii) 8.1° or 171.9°] 

21. (a) in a triangle 𝐴𝐵𝐶, the altitudes from 𝐵 and 𝐶 meet

the altitudes from 𝐵 and 𝐶 meet the opposite sides at 𝐸

and 𝐹 respectively. 𝐵𝐸 and 𝐶𝐹 intersect at 𝑂. Taking 𝑂 

as the origin, use the dot product to prove that 𝐴𝑂 is 

perpendicular to 𝐵𝐶. 

(b) Prove that ∠𝐴𝐵𝐶 = 90° given that 𝐴 is (0, 5, −3),

𝐵(2, 3, −4) and 𝐶(1, −1, 2). Find the coordinates of

𝐷, if 𝐴𝐵𝐶𝐷 is a rectangle.

[2003, No. 11: Ans: (b) 𝐷(−1, 1, 3)] 

22. (a) Find the equation of the perpendicular line from

point 𝐴 = (
2

−1
4

) onto the line 𝑟 = (
1
0
2

) + 𝜆 (
2
1
2

). What 

is the distance from 𝐴 to 𝑟? 

(b) Find the angle contained between line 𝑂𝑅 and the 𝑥-

𝑦 plane, where 𝑂𝑅 = (
2
1
2

) 

[2002, No. 11: Ans: (a) 1.795 units (b) 41.81°] 

23. (a) Find the Cartesian equation of the plane through

𝐴(0, 3, , −4), 𝐵(2, −1, 2) and 𝐶(7, 4, −1). Show that

𝑄(10, 13, −10) lies in the same plane.

(b) Express the equation of the plane in (a) in the scalar

product form

(c) Find the area of triangle 𝐴𝐵𝐶 in (a)

[2001, No. 14: Ans: (b) 𝑟 ∙ (
3

−6
−5

) = 2 (c) 25.1 sq. units] 

24. (a) Show that the equation of the plane through points

𝐴 with the position vector −2𝑖 + 4𝑘 perpendicular to

the vector 𝑖 + 3𝑗 − 2𝑘 is 𝑥 + 3𝑦 − 2𝑧 + 10 = 0

(b) (i) Show that the vector 2𝑖 − 5𝑗 + 3.5𝑘 is

perpendicular to the line 𝑟 = 2𝑖 − 𝑗 + 𝜆(4𝑖 + 3𝑗 +

2𝑘)

(ii) Calculate the angle between the vector 3𝑖 −

2𝑗 + 𝑘 and the line in (b)(i) above.

[2000, No. 12: Ans: (b) (ii) 66.6°] 

25. (a) Find in Cartesian form the equation of the line

passing through the points 𝐴(1, 2, 5), 𝐵(1, 0, 4) and

𝐶(5, 2, 1)

(b) Find the angle between the line 
𝑥+4

8
=

𝑦−2

2
=

𝑧−1

−4
 and 

the plane 4𝑥 + 3𝑦 − 3𝑧 + 1 = 0 

[1999, No. 16: Ans: (a) 𝐴, 𝐵 and 𝐶 are non-collinear (b) 

69.3°] 

26. The vector equations of lines 𝑃 and 𝑄 are given as 𝑟𝑝 =

𝑡(4𝑖 + 3𝑗) and 𝑟𝑞 = 2𝑖 + 12𝑗 + 5(𝑖 − 𝑗).

(a) Use the dot product to find the angle between 𝑃 and

𝑄

(b) If the lines 𝑃 and 𝑄 meet at 𝑀, find the coordinates

of 𝑀. Find also the equation of the line through 𝑀

perpendicular to the line 𝑄.

[Nov 1998, No. 12: Ans: (a) 8.13° (b) 𝑁/𝐴] 
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Trigonometry 

Trigonometry is the branch of mathematics that deals with 

the measurement of sides and angles of triangles and their 

relationship with each other. There are many applications 

where the knowledge of trigonometry is used such as 

astronomy, navigation (on the oceans, in aircraft and in 

space), electronics seismology, medical imaging and many 

other physical sciences.  

Angles 

An angle is defined as the amount of rotation of a revolving 

line from the initial position to the terminal position. 

Counter-clockwise rotations will be called positive and the 

clockwise will be called negative.  

Consider a rotating ray 𝑂𝐴 with its endpoint at the origin 𝑂. 

The rotating ay 𝑂𝐴 is often called the terminal side of the 

angle and the positive half of the 𝑥-axis (𝑂𝑋) is called the 

initial side.  

The positive angle 𝜃 is 𝑋𝑂𝐴 (counter-clockwise direction)  

The negative angle 𝜃 is 𝑋𝑂𝐴′ (clockwise direction) 

Note:  

1. one complete rotation (counter-clockwise) = 360°

2. If there is no rotation, the measure of the angle is

0°

Measurement of angles  

If a rotation from the initial position to the terminal position 

is (
1

360
)

𝑡ℎ

of the revolution, the angle is said to have a 

measure of one degree and written as 1°. A degree is divided 

into minutes, and a minute is divided into seconds.  

Radian measure 

One radian, is the measure of an angle subtended at the 

centre 𝑂 of a circle of radius 𝑟 by an arc of length 𝑟.  

Note: 

1. To express the measure of an angle as a real

number, we use radian measure.

2. The word “radians” is optional and often omitted.

Thus, if no unit is given for a rotation, it is

understood to be in radians.

Relationship between Degrees and Radians 

Since a circle of radius 𝑟 has a circumference of 2𝜋𝑟, a circle 

of radius 1 unit (which is referred to as a unit circle) has a 

circumference 2𝜋. When 𝜃 is a complete rotation, 𝑃 travels 

the circumference of a unit circle completely.  

If 𝜃 is a complete rotation (counter-clockwise) then 𝜃 = 2𝜋 

radian. On the other hand, we already know that one 

complete rotation (counter-clockwise) is 360°, 

consequently 360° = 2𝜋 radians or 180° = 𝜋 radian. It 

follows that  

1° =
𝜋

180
 radian  and

180°

𝜋
= 1 radian 

Therefore 1° ≈ 0.01746 radian and 1 radian = 180° ×
7

22
≈

57°16′. 

Conversions for some special angles 

Degrees 30° 45° 60° 90° 180° 270° 360° 

Radians 𝜋

6

𝜋

4

𝜋

3

𝜋

2
𝜋 3𝜋

2

2𝜋 

𝐴 

𝐴’ 
𝑌’ 

𝑌 

𝑋 

Positive angle 

(anticlockwise) 

negative angle

(clockwise) 

𝑂 

𝜃 

−𝜃

𝑂 

𝑟 

𝑟 

𝑟 

𝑂 

𝜃 

𝑟 = 1 
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sec 𝜃 =
1

cos 𝜃
=

1

0.500
= 2.00 

tan 𝜃 =
sin 𝜃

cos 𝜃
=

0.625

0.500
= 1.25 

cot 𝜃 =
cos 𝜃

sin 𝜃
=

0.500

0.625
= 0.80 

Trigonometric ratios of special angles 𝟑𝟎°, 𝟒𝟓° and 𝟔𝟎° 

Consider an equilateral triangle 𝐴𝐵𝐶 of side 2 units. 𝐴𝐷 

bisects angle 𝐴 and bisects the side 𝐵𝐶.  

Using the Pythagoras’ theorem on triangle 𝐴𝐵𝐷; 

𝐴𝐷 = √22 − 12 = √3 

Hence, 

sin 30° =
𝐵𝐷

𝐴𝐷
=

1

2

cos 30° =
𝐴𝐷

𝐴𝐵
=

√3

2

tan 30° =
𝐵𝐷

𝐴𝐷
=

1

√3

sin 60° =
𝐴𝐷

𝐴𝐵
=

√3

2

cos 60° =
𝐵𝐷

𝐴𝐵
=

1

2

tan 60° =
𝐴𝐷

𝐵𝐷
= √3 

Consider an isosceles triangle 𝑃𝑄𝑅 with 𝑃𝑄 = 𝑄𝑅 = 1 unit. 

By Pythagoras’ theorem,  

𝑃𝑅 = √12 + 12 = √2 

Hence, 

sin 45° =
1

√2

cos 45° =
1

√2
tan 45° = 1 

It can be observed that  

sin 30° = cos 60° , sin 45° = cos 45° and 

sin 60° = cos 30°  

In general, 

sin 𝜃 = cos(90° − 𝜃) 

cos 𝜃 = sin(90° − 𝜃) 

For example, it may be checked by calculator that sin 25° =

cos 65°, sin 42° = cos 48° and so on. 

The trigonometric ratios of 30°, 45° and 60° are 

summarized in the table below. 

𝜃 sin 𝜃° cos 𝜃° tan 𝜃° 

30 1

2
√3

2

1

√3

45 1

√2

1

√2

1 

60 √3

2

1

2
√3

Example 4 

Using surd forms, evaluate 

3 tan 60° − 2 cos 30°

tan 30°
Solution 

tan 60° = √3, cos 30° =
√3

2
and tan 30° =

1

√3

3 tan 60° − 2 cos 30°

tan 30°
=

3(√3) − 2 (
√3
2

)

1

√3

=
3√3 − √3

1

√3

= 2√3 ×
√3

1
= 6 

Evaluating trigonometric ratios of any angles  

The easiest method of evaluating trigonometric functions of 

any angle is by using a calculator. The following values, 

correct to 4 decimal places, may be checked.  

sin 18° = 0.3090 

sin 241.63° = −0.8799 

cos 56° = 0.5592 

cos 331.78° = 0.8811 

tan 178° = −0.0349 

tan 296.42° = −2.0127 

To evaluate, say, sin 42°23′ using a calculator means 

finding sin 42
23°

60
 since there are 60 minutes in 1 degree.

23

60
= 0.3833, thus 42°23′ = 42.3833°

Thus sin 42°23′ = sin 42.3833° = 0.6741, correct to 4 d.p 

Similarly, cos 72°38′ = cos 72
38°

60
= 0.2985, correct to 4

d.p

𝐴 

𝐵 𝐶 
60° 60° 

2 2 

1 1 

√3

30° 30° 

𝐷 

𝑅 𝑄 

√2

𝑃 

1 

1 

45° 

45° 
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Trigonometric identities  

A trigonometric identity is a relationship that is true for all 

values of the unknown variable.  

tan 𝜃 =
sin 𝜃

cos 𝜃
, cot 𝜃 =

cos 𝜃

sin 𝜃
, sec 𝜃 =

1

cos 𝜃

cosec 𝜃 =
1

sin 𝜃
 and cot 𝜃 =

1

tan 𝜃
are examples of trigonometric identities. 

Applying Pythagoras’ theorem to the right-angled triangle 

shown below 

𝑎2 + 𝑏2 = 𝑐2… (1)

Dividing each term by 𝑐2 gives:

𝑎2

𝑐2
+

𝑏2

𝑐2
=

𝑐2

𝑐2

(
𝑎

𝑐
)

2

+ (
𝑏

𝑐
)

2

= 1 

(cos 𝜃)2 + (sin 𝜃)2 = 1

𝐜𝐨𝐬𝟐 𝜽 + 𝐬𝐢𝐧𝟐 𝜽 = 𝟏

Dividing each term of equation (1) by 𝑎2 gives:

𝑎2

𝑎2
+

𝑏2

𝑎2
=

𝑐2

𝑎2

1 + (
𝑏

𝑎
)

2

= (
𝑐

𝑎
)

2

𝟏 + 𝐭𝐚𝐧𝟐 𝜽 = 𝐬𝐞𝐜𝟐 𝜽

Dividing each term of equation (1) by 𝑏2 gives:

𝑎2

𝑏2
+

𝑏2

𝑏2
=

𝑐2

𝑏2

(
𝑎

𝑏
)

2

+ 1 = (
𝑐

𝑏
)

2

𝐜𝐨𝐭𝟐 𝜽 + 𝟏 = 𝐜𝐨𝐬𝐞𝐜𝟐 𝜽

The above three are further examples of trigonometric 

identities.  

Example 1 

Prove the identity sin2 𝜃 cot 𝜃 sec 𝜃 = sin 𝜃

Solution 

With trigonometric identities, it is necessary to start with the 

left-hand side (LHS) and attempt to make it equal to the 

right-hand side (RHS) or vice versa. It is often useful to 

change all of the trigonometric ratios into sines and cosines 

where possible. Thus,  

 

LHS = sin2 𝜃 cot 𝜃 sec 𝜃

= sin2 𝜃 (
cos 𝜃

sin 𝜃
) (

1

cos 𝜃
) 

= sin 𝜃 = RHS 

Example 2 

Prove that 
tan 𝑥 + sec 𝑥

sec 𝑥 (1 +
tan 𝑥
sec 𝑥

)
= 1 

Solution 

LHS =
tan 𝑥 + sec 𝑥

sec 𝑥 (1 +
tan 𝑥
sec 𝑥

)

=

sin 𝑥
cos 𝑥

+
1

cos 𝑥

(
1

cos 𝑥
) (1 +

sin 𝑥
cos 𝑥

1
cos 𝑥

)

=

sin 𝑥 + 1
cos 𝑥

(
1

cos 𝑥
) [1 + (

sin 𝑥
cos 𝑥

) (
cos 𝑥

1
)]

=

sin 𝑥 + 1
cos 𝑥

(
1

cos 𝑥
) [1 + sin 𝑥]

= (
sin 𝑥 + 1

cos 𝑥
) (

cos 𝑥

1 + sin 𝑥
) 

= 1 = RHS 

Example 3 

Prove that
1 + cot 𝜃

1 + tan 𝜃
= cot 𝜃 

Solution 

LHS =
1 + cot 𝜃

1 + tan 𝜃

=
1 +

cos 𝜃
sin 𝜃

1 +
sin 𝜃
cos 𝜃

 

=

sin 𝜃 + cos 𝜃
sin 𝜃

cos 𝜃 + sin 𝜃
cos 𝜃

= (
sin 𝜃 + cos 𝜃

sin 𝜃
) (

cos 𝜃

cos 𝜃 + sin 𝜃
) 

=
cos 𝜃

sin 𝜃
= cot 𝜃 = RHS 

𝑎 

𝑏 
𝑐 

𝜃 

Chapter 
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2 sin 𝜃

cos 𝜃
= 1 

2 tan 𝜃 = 1 

tan 𝜃 =
1

2

𝜃 = tan−1
1

2
= 26.57° 

Since tangent is positive in the first and third quadrants. 

𝜃 = 26.57° and 206.57° 

Example 17 

Solve 4 sec 𝑡 = 5 for values of 𝑡 between 0° and 360° 

Solution 

sec 𝑡 =
5

4
1

cos 𝑡
=

5

4

cos 𝑡 =
4

5
= 0.8 

𝑡 = cos−1 0.8 = 36.87°

Since cosine is positive in the first and fourth quadrants. 

𝑡 = 36.87°  or 360° − 36.87° 

Example 18 

Solve 2 − 4 cos2 𝐴 = 0 for values of 𝐴 in the range 0° <

𝐴 < 360° 

Solution 

2 − 4 cos2 𝐴 = 0

cos2 𝐴 =
2

5
= 0.5

cos 𝐴 = √0.5 = ±0.7071 

𝐴 = cos−1(0.7071)

Cosine is positive in quadrants one and four and negative in 

quadrants wo and three. Thus in this case, there are four 

solutions, one in each quadrant. 

The acute angle cos−1 0.7071 = 45°

Hence, 𝐴 = 45°, 135°, 225° or 315° 

Example 19 

Solve the equation 

8 sin2 𝜃 + 2 sin 𝜃 − 1 = 0

for all values of 𝜃 between 0° and 360°. 

Solution 

Factorising  8 sin2 𝜃 + 2 sin 𝜃 − 1 = 0

8 sin2 𝜃 + 4 sin 𝜃 − 2 sin 𝜃 − 1 = 0

4 sin 𝜃 (2 sin 𝜃 + 1) − (2 sin 𝜃 + 1) = 0 

(2 sin 𝜃 + 1)(4 sin 𝜃 − 1) = 0 

Hence 4 sin 𝜃 − 1 = 0, from which sin 𝜃 =
1

4
= 0.25 

or 2 sin 𝜃 + 1 = 0, from which sin 𝜃 = −
1

2
= −0.5 

𝜃 = sin−1 0.25 = 14.48°  or 165.52°, since sine is positive

in the first and second quadrants, or  

𝜃 = sin−1 0.5 = 210° or 330°, since sine is negative in the

third and fourth quadrants.  

Hence 𝜃 = 14.48°, 165.52°, 210°  or 330° 

Example 20 

Solve 6 cos2 𝜃 + 5 cos 𝜃 − 6 = 0 for values of 𝜃 from 0° to

360°. 

Solution 

6 cos2 𝜃 + 5 cos 𝜃 − 6 = 0

6 cos2 𝜃 + 9 cos 𝜃 − 4 cos 𝜃 − 6 = 0

3 cos 𝜃 (2 cos 𝜃 + 3) − 2(2 cos 𝜃 + 3) = 0 

(2 cos 𝜃 + 3)(3 cos 𝜃 − 2) = 0 

Hence 3 cos 𝜃 − 2 = 0, from which cos 𝜃 =
2

3
= 0.6667 

or   2 cos 𝜃 + 3 = 0, from which, cos 𝜃 = −
3

2
= −1.5 

The minimum value of a cosine is −1, hence the latter 

expression has no solution and is thus neglected.  

Hence,  

𝜃 = cos−1 0.6667 = 48.18°

and since cosine is positive in the first and fourth quadrants, 

𝜃 = 48.18° or 311.82° 

Example 21 

Solve 5 cos2 𝑡 + 3 sin 𝑡 − 3 = 0 for values of 𝑡 from 0° to

360°.  

Solution 

Since cos2 𝑡 + sin2 𝑡 = 1, cos2 𝑡 = 1 − sin2 𝑡. Substituting

for cos2 𝑡 in the given equation gives:

5(1 − sin2 𝑡) + 3 sin 𝑡 − 3 = 0

5 − 5 sin2 𝑡 + 3 sin 𝑡 − 3 = 0

−5 sin2 𝑡 + 3 sin 𝑡 + 2 = 0

5 sin2 𝑡 − 3 sin 𝑡 − 2 = 0

5 sin2 𝑡 − 5 sin 𝑡 + 2 sin 𝑡 − 2 = 0

5 sin 𝑡 (sin 𝑡 − 1) + 2(sin 𝑡 − 1) = 0 

(5 sin 𝑡 + 2)(sin 𝑡 − 1) = 0 

Hence,   

5 sin 𝑡 + 2 = 0 from which, sin 𝑡 = −
2

5
= −0.4 

      or  sin 𝑡 − 1 = 0, from which, sin 𝑡 = 1 

𝑡 = sin−1 0.4 = 23.58°

Since sine is negative in the third and fourth quadrants 

𝑡 = 203.58°   or  336.42° 

Also,  𝑡 = sin−1 1 = 90° and sine is positive in the first and

fourth quadrants.  

Hence, 𝑡 = 90°, 203.58° or 336.42° 

0°, 360° 

90° 

180° 

270° 

36.87° 

36.87° 

𝐴 𝑆 

𝑇 
𝐶 
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Example 22 

Solve 18 sec2 𝐴 − 3 tan 𝐴 = 21 for values of 𝐴 between 0°

and 360°. 

Solution 

1 + tan2 𝐴 = sec2 𝐴

Substituting for sec2 𝐴 n the given equation

18(1 + tan2 𝐴) − 3 tan 𝐴 = 21

18 + 18 tan2 𝐴 − 3 tan 𝐴 − 21 = 0

18 tan2 𝐴 − 3 tan 𝐴 − 3 = 0

6 tan2 𝐴 − tan 𝐴 − 1 = 0

6 tan2 𝐴 − 3 tan 𝐴 + 2 tan 𝐴 − 1 = 0

3 tan 𝐴 (2 tan 𝐴 − 1) + (2 tan 𝐴 − 1) = 0 

(2 tan 𝐴 − 1)(3 tan 𝐴 + 1) = 0 

Hence    2 tan 𝐴 − 1 = 0, from which tan 𝐴 =
1

2
= 0.5 

or 3 tan 𝐴 + 1 = 0, from which tan 𝐴 = −
1

3
= −0.3333 

𝐴 = tan−1 0.5 = 26.67° or 206.57°, since tangent is

positive in the first and third quadrants, or  

𝐴 = tan−1(0.3333) = 161.57° or 341.57°, since

tangent is negative in the second and fourth quadrants. 

Hence, 𝐴 = 26.57°, 161.57°, 206.57° or 341.57° 

Example 23 

Solve 3 cosec2 𝜃 − 5 = 4 cot 𝜃 in the range 0° < 𝜃 <

360°. 

Solution 

cot2 𝜃 + 1 = cosec2 𝜃

Substituting for cosec2 𝜃 in the given equation gives:

3(cot2 𝜃 + 1) − 5 = 4 cot 𝜃

3 cot2 𝜃 + 3 − 5 = 4 cot 𝜃

3 cot2 𝜃 − 4 cot 𝜃 − 2 = 0

Since the LHS does not factorise, the quadratic formula is 

used. Thus,  

cot 𝜃 =
−(−4) ± √[(−4)2 − 4(3)(−2)]

2(3)

=
4 ± √40

6
= 1.708   or − 0.3874 

⇒ tan 𝜃 =
1

1.708
   or −

1

0.3874

𝜃 = tan−1 (
1

1.708
) = 30.17°  or 210.17° since tangent is 

positive in the first and third quadrants, or 

𝜃 = tan−1 (
1

0.3874
) = 111.18°  or  291.18°  since tangent is 

negative in the second and fourth quadrants. 

Hence, 𝜃 = 30.17°, 111.18°, 210.17° or 291.18° 

Example 24 

Solve the equation 2 tan2 𝜃 = 11 sec 𝜃 − 7 for 0 ≤ 𝜃 <

360° 

Solution 

2 tan2 𝜃 = 11 sec 𝜃 − 7

2(sec2 𝜃 − 1) = 11 sec 𝜃 − 7

2 sec2 𝜃 − 11 sec 𝜃 + 5 = 0

2 sec2 𝜃 − sec 𝜃 − 10 sec 𝜃 + 5 = 0

sec 𝜃 (2 sec 𝜃 − 1) − 5(2 sec 𝜃 − 1) = 0 

(2 sec 𝜃 − 1)(sec 𝜃 − 5) = 0 

2 sec 𝜃 − 1 = 0 or sec 𝜃 − 5 = 0 

sec 𝜃 =
1

2
 or sec 𝜃 = 5 

⇒ cos 𝜃 = 2   or cos 𝜃 =
1

5
= 0.2 

cos−1 2 = undefined

cos−1 0.2 = 78.5°

∴ 𝜃 = 78.5°, 281.5° 

Example 25 

Solve the equation 4 cot2 𝑥 − 9 cosec 𝑥 + 6 = 0, for 0 ≤

𝑥 < 360°. 

Solution 

4 cot2 𝑥 − 9 cosec 𝑥 + 6 = 0

4(cosc2 𝑥 − 1) − 9 cosec 𝑥 + 6 = 0

4 cosec2 𝑥 − 9 cosec 𝑥 + 2 = 0

4 cosec2 𝑥 − 8 cosec 𝑥 − cosec 𝑥 + 2 = 0

4 cosec 𝑥 (cosec 𝑥 − 2) − (cosec 𝑥 − 2) = 0 

(cosec 𝑥 − 2)(4 cosec 𝑥 − 1) = 0 

cosec 𝑥 − 2 = 0  or cosec 𝑥 − 1 = 0 

cosec 𝑥 = 2   or  cosec 𝑥 =
1

4

⇒ sin 𝑥 =
1

2
 or   sin 𝑥 = 4 

sin−1 4 = undefined

sin−1 0.5 = 30°

∴ 𝑥 = 30°, 150° 

Example 26 

Solve sec2 𝑦 + tan 𝑦 = 3 for 0 ≤ 𝑥 < 360°

Solution 

sec2 𝑦 + tan 𝑦 = 3

(1 + tan2 𝑦) + tan 𝑦 = 3

tan2 𝑦 + tan 𝑦 − 2 = 0

(tan 𝑦 − 1)(tan 𝑦 + 2) = 0 

tan 𝑦 − 1 = 0   or tan 𝑦 + 2 = 0 

tan 𝑦 = 1  or tan 𝑦 = −2 

tan−1 1 = 45°

𝑦 = 45°, 225° 

tan−1 2 = 63.4°

𝑦 = 116.6°, 296.6° 

∴ 𝑦 = 45°, 116.6°, 225°, 296.6° 

Example 27 

Solve 2 cosec2 𝜑 + cot2 𝜑 = 11 for 0 ≤ 𝜑 < 360°
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Introduction 

It is often useful to be able to express a trig ratio of an angle 

𝐴 + 𝐵 in terms of trig ratios of 𝐴 and of 𝐵. 

It is dangerously easy to think, for instance, that sin(𝐴 + 𝐵) 

is sin 𝐴 + sin 𝐵. However, this is false as can be seen by 

considering   

sin(45° + 45°) = sin 90° = 1 

whereas     sin 45° + sin 45° =
1

2
√2 +

1

2
√2 ≠ 1

Thus the sine function is not distributive and neither are the 

other trig functions. 

The correct identity is sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 +

cos 𝐴 sin 𝐵. 

This is proved geometrically when A and B are both acute, 

from the diagram below. 

The right-angled triangles 𝑂𝑃𝑄 and 𝑂𝑄𝑅 contain angles 𝐴 

and 𝐵 as shown. 

From the diagram, ∠𝑈𝑅𝑄 = 𝐴 

sin(𝐴 + 𝐵) =
𝑇𝑅

𝑂𝑅
=

𝑇𝑆 + 𝑆𝑅

𝑂𝑅
=

𝑃𝑄 + 𝑆𝑅

𝑂𝑅

=
𝑃𝑄

𝑂𝑄
×

𝑂𝑄

𝑂𝑅
+

𝑆𝑅

𝑄𝑅
×

𝑄𝑅

𝑂𝑅

∴ sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 

This identity is in fact valid for all angles and it can be 

adapted to give the full set of compound angle formulae.  

To find an identity for the sine of a difference, we can use 

the identity just derived, substituting −𝐵 for 𝐵 

sin(𝐴 − 𝐵) = sin[𝐴 + (−𝐵)] 

= sin 𝐴 cos(−𝐵) + cos 𝐴 sin(−𝐵) 

sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵 

 
 

To develop an identity for cos(𝐴 + 𝐵), we recall the 

following  

cos 𝜃 = sin (
𝜋

2
− 𝜃)

In this identity, we shall substitute 𝐴 + 𝐵 for 𝜃. 

cos(𝐴 + 𝐵) = sin [
𝜋

2
− (𝐴 + 𝐵) ] = sin [(

𝜋

2
− 𝐴) − 𝐵]

We now use the identity of sine of a difference 

sin [(
𝜋

2
− 𝐴) − 𝐵] = sin (

𝜋

2
− 𝐴) cos 𝐵 − sin 𝐵 cos (

𝜋

2
− 𝐴)

= cos 𝐴 cos 𝐵 − sin 𝐵 sin 𝐴 

∴ cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 

Now, let us consider cos(𝐴 − 𝐵). This is equal to 

cos[𝐴 + (−𝐵)] and by cosine of a sum, we have the 

following  

cos(𝐴 − 𝐵) = cos 𝐴 cos(−𝐵) − sin 𝐴 sin(−𝐵) 

cos(−𝐵) = cos 𝐵 and sin(−𝐵) = − sin 𝐵 

cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 

An identity for the tangent of a sum can be derived using 

identities already established. 

tan(𝐴 + 𝐵) =
sin(𝐴 + 𝐵)

cos(𝐴 + 𝐵)

=
sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵

cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵
Divide both the Numerator and Denominator by cos 𝐴 cos 𝐵 

=

sin 𝐴 cos 𝐵
cos 𝐴 cos 𝐵

+
cos 𝐴 sin 𝐵
cos 𝐴 cos 𝐵

cos 𝐴 cos 𝐵
cos 𝐴 cos 𝐵

−
sin 𝐴 sin 𝐵
cos 𝐴 cos 𝐵

 

tan(𝐴 + 𝐵) =
tan 𝐴 + tan 𝐵

1 − tan 𝐴 tan 𝐵
Similarly, an identity for a tangent of a difference can be 

established. 

It is given by  

tan(𝐴 − 𝐵) =
tan 𝐴 − tan 𝐵

1 + tan 𝐴 tan 𝐵

Collecting these results we have: 

𝐬𝐢𝐧(𝑨 + 𝑩) ≡ 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑩 + 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 

𝐬𝐢𝐧(𝑨 − 𝑩) ≡ 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑩 − 𝐜𝐨𝐬 𝑨 𝐬𝐢𝐧 𝑩 

𝐜𝐨𝐬(𝑨 + 𝑩) ≡ 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 − 𝐬𝐢𝐧 𝑨 𝐬𝐢𝐧 𝑩 

𝐜𝐨𝐬(𝑨 − 𝑩) ≡ 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩 + 𝐬𝐢𝐧 𝑨 𝐬𝐢𝐧 𝑩 

𝐭𝐚𝐧(𝑨 − 𝑩) =
𝐭𝐚𝐧 𝑨 − 𝐭𝐚𝐧 𝑩

𝟏 + 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧 𝑩

𝐭𝐚𝐧(𝑨 − 𝑩) =
𝐭𝐚𝐧 𝑨 − 𝐭𝐚𝐧 𝑩

𝟏 + 𝐭𝐚𝐧 𝑨 𝐭𝐚𝐧 𝑩

𝑅 

𝑄 𝑆 

𝑇 𝑃 𝑂 

𝐵 
𝐴 

𝑈 
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Solving trigonometric equations  

Example 12 

Solve the equation  

4 sin(𝑥 − 20°) = 5 cos 𝑥 

for values of 𝑥 between 0° and 90° 

Solution 

From the formula of sin(𝐴 − 𝐵) 

4 sin(𝑥 − 20°) = 4[sin 𝑥 cos 20° − cos 𝑥 sin 20°] 

= 4[0.9397 sin 𝑥 − 0.3420 cos 𝑥] 

= 3.7588 sin 𝑥 − 1.3680 cos 𝑥 

Since 4 sin(𝑥 − 20°) = 5 cos 𝑥 

3.7588 sin 𝑥 − 1.3680 cos 𝑥 = 5 cos 𝑥 

3.7588 sin 𝑥 = 5 cos 𝑥 + 1.3680 cos 𝑥 

sin 𝑥

cos 𝑥
=

6.3680

3.7588
= 1.6942 

tan 𝑥 = 1.6942 

𝑥 = tan−1 1.6942 = 59.45° 

 

Example 13 

sin(𝜃 − 45°) = sin 𝜃,   0 ≤ 𝜃 < 360° 

Solution 

sin(𝜃 − 45) = sin 𝜃 

sin 𝜃 sin 45 − cos 𝜃 sin 45 = sin 𝜃 

sin 𝜃 ×
√2

2
− cos 𝜃 ×

√2

2
= sin 𝜃 

√2 sin 𝜃 − √2 cos 𝜃 = 2 sin 𝜃 

√2 sin 𝜃

cos 𝜃
−

√2 cos 𝜃

cos 𝜃
=

2 sin 𝜃

cos 𝜃
 

√2 tan 𝜃 − √2 = 2 tan 𝜃 

(√2 − 2) tan 𝜃 = √2 

tan 𝜃 =
√2

√2 − 2
= −2.4142 

tan−1(−2.4142) = 67.5° 

∴ 𝜃 = 112.5°, 292.5° 

 

Example 14 

cos(𝑥 − 30°) = sin(𝑥 + 30°),     0 ≤ 𝜃 < 360° 

Solution 

cos(𝑥 − 30°) = sin(𝑥 + 30°) 

cos 𝑥 cos 30 + sin 𝑥 sin 30 = sin 𝑥 cos 30 + cos 𝑥 sin 30 

√3

2
cos 𝑥 +

1

2
sin 𝑥 =

√3

2
sin 𝑥 +

1

2
cos 𝑥 

√3 cos 𝑥 + sin 𝑥 = √3 sin 𝑥 + cos 𝑥 

√3 cos 𝑥

cos 𝑥
+

sin 𝑥

cos 𝑥
=

√3 sin 𝑥

cos 𝑥
+

cos 𝑥

cos 𝑥
 

√3 + tan 𝑥 = √3 tan 𝑥 + 1 

√3 − 1 = (√3 − 1) tan 𝑥 

tan 𝑥 = 1 

tan−1 1 = 45° 

∴ 𝑥 = 45°, 225° 

Example 15 

cos(𝑦 − 30°) = sin(𝑦 + 45°),   0 < 𝑦 < 360° 

Solution 

cos(𝑦 − 30) = sin(𝑦 + 45) 

cos 𝑦 cos 30 + sin 𝑦 sin 30 = sin 𝑦 cos 45 + cos 𝑦 sin 45 

√3

2
cos 𝑦 +

1

2
sin 𝑦 =

√2

2
sin 𝑦 +

√2

2
cos 𝑦 

√3 cos 𝑦 + sin 𝑦 = √2 sin 𝑦 + √2 cos 𝑦 

√3 cos 𝑦

cos 𝑦
+

sin 𝑦

cos 𝑦
=

√2 sin 𝑦

cos 𝑦
+

√2 cos 𝑦

cos 𝑦
 

√3 + tan 𝑦 = √2 tan 𝑦 + √2 tan 𝑦 + √2 

√3 − √2 = (√2 − 1) tan 𝑦 

tan 𝑦 =
√3 − √2

√2 − 1
= 0.7673 

tan−1 0.7673 = 37.5° 

∴ 𝑦 = 37.5°, 217.5° 

 

Example 16 

sin(𝜑 − 30°) = cos(𝜑 − 45°),    0 ≤ 𝜑 < 360° 

Solution 

sin(𝜑 − 30°) = cos(𝜑 − 45°) 

sin 𝜑 cos 30 − cos 𝜑 sin 30 = cos 𝜑 cos 45 + sin 𝜑 sin 45 

√3

2
sin 𝜑 −

1

2
cos 𝜑 =

√2

2
cos 𝜑 +

√2

2
sin 𝜑 

√3 sin 𝜑 − cos 𝜑 = √2 cos 𝜑 + √2 sin 𝜑 

√3 sin 𝜑

cos 𝜑
−

cos 𝜑

cos 𝜑
=

√2 cos 𝜑

cos 𝜑
+

√2 sin 𝜑

cos 𝜑
 

√3 tan 𝜑 − 1 = √2 + √2 tan 𝜑 

√3 tan 𝜑 − √2 tan 𝜑 = √2 + 1 

tan 𝜑 =
√2 + 1

√3 − √2
= 7.5958 

tan−1 7.5958 = 82.5° 

∴ 𝜑 = 82.5°, 262.5° 

 

Example 17 

cos(𝛼 − 60°) = cos(𝛼 + 60°),    0 ≤ 𝛼 < 360° 

Solution 

cos(𝛼 − 60) = cos(𝛼 + 60) 

cos 𝛼 cos 60 + sin 𝛼 sin 60 = cos 𝛼 cos 60 + sin 𝛼 sin 60 

2 sin 𝛼 sin 60 = 0 

√3 sin 𝛼 = 0 

sin 𝛼 = 0 

sin1 0 = 0° 

∴ 𝛼 = 0°, 180° 

 

Self-Evaluation exercise 

Prove the following identities  

1. cot(𝐴 + 𝐵) ≡
cot 𝐴 cot 𝐵−1

cot 𝐴+cot 𝐵
 

2. (sin 𝐴 + cos 𝐴)(sin 𝐵 + cos 𝐵) ≡ sin(𝐴 + 𝐵) +

cos(𝐴 − 𝐵) 
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Using this identity for tan 2𝐴 again, but this time with 𝐴 =

2𝜃, gives  

tan 4𝜃 =
2 tan 2𝜃

1 − tan2 2𝜃
=

2 (
24
7

)

1 − (
24
7

)
2 = −

336

527

Example 2 

Eliminate 𝜃 from the equations 𝑥 = cos 2𝜃 , 𝑦 = sec 𝜃 

Solution 

Using  cos 2𝜃 = 2 cos2 𝜃 − 1 gives

𝑥 = 2 cos2 𝜃 − 1 and 𝑦 =
1

cos 𝜃 

𝑥 = 2 (
1

𝑦
)

2

− 1 

(𝑥 + 1)𝑦2 = 2

Example 3 

Prove that: 
1 − cos 2𝜃

sin 2𝜃
= tan 𝜃 

Solution 

LHS =
1 − cos 2𝜃

sin 2𝜃
=

1 − (1 − 2 sin2 𝜃)

2 sin 𝜃 cos 𝜃

=
2 sin2 𝜃

2 sin 𝜃 cos 𝜃

=
sin 𝜃

cos 𝜃
= tan 𝜃 = RHS 

Example 4 

Prove the following identities 

(a) sec 𝜃 cosec 𝜃 ≡ 2 cosec 2𝜃

Solution 

LHS = sec 𝜃 cosec 𝜃 =
1

cos 𝜃
×

1

sin 𝜃

=
1

sin 𝜃 cos 𝜃

=
2

2 sin 𝜃 cos 𝜃

=
2

sin 2𝜃
= 2 cosec 2𝜃 = RHS 

(b) tan 𝜃 + cot 𝜃 ≡ 2 cosec 2𝜃

Solution 

LHS = tan 𝜃 + cot 𝜃 =
sin 𝜃

cos 𝜃
+

cos 𝜃

sin 𝜃

=
sin2 𝜃 + cos2 𝜃

cos 𝜃 sin 𝜃

=
1

sin 𝜃 cos 𝜃

=
2

2 sin 𝜃 cos 𝜃

=
2

sin 2𝜃
= 2 cosec 2𝜃 = RHS 

(c)
1 − cos 2𝑥

sin 2𝑥
≡ tan 𝑥 

Solution 

LHS =
1 − cos 2𝑥

sin 2𝑥
=

1 − (1 − 2 sin2 𝑥)

2 sin 𝑥 cos 𝑥

=
2 sin2 𝑥

2 sin 𝑥 cos 𝑥

=
sin 𝑥

cos 𝑥
= tan 𝑥 = RHS 

(d) 
cos 2𝜃

cos 𝜃 − sin 𝜃
≡ cos 𝜃 + sin 𝜃 

Solution 

LHS =
cos 2𝜃

cos 𝜃 − sin 𝜃
=

cos2 𝜃 − sin2 𝜃

cos 𝜃 − sin 𝜃

=
(cos 𝜃 − sin 𝜃)(cos 𝜃 + sin 𝜃)

cos 𝜃 − sin 𝜃
= cos 𝜃 + sin 𝜃 = RHS 

(e)
cos 2𝑥

sin 𝑥
+

sin 2𝑥

𝑥
≡ cosec 𝑥 

Solution 

LHS =
cos 2𝑥

sin 𝑥
+

sin 2𝑥

𝑥
=

1 − 2 sin2 𝑥

sin 𝑥
+

2 sin 𝑥 cos 𝑥

cos 𝑥

=
1

sin 𝑥
−

2 sin2 𝑥

sin 𝑥
+ 2 sin 𝑥

= cosec 𝑥 − 2 sin 𝑥 + 2 sin 𝑥 

= cosec 𝑥 = RHS 

Alternatively; 

LHS =
cos 2𝑥

sin 𝑥
+

sin 2𝑥

𝑥
=

cos 2𝑥 cos 𝑥 + sin 𝑥 sin 2𝑥

sin 𝑥 cos 𝑥

=
cos(2𝑥 − 𝑥) 

sin 𝑥 cos 𝑥

=
cos 𝑥

sin 𝑥 cos 𝑥
= cosec 𝑥 = RHS 

Example 5 

Prove that sin 3𝐴 = 3 sin 𝐴 − 4 sin3 𝐴

Solution 

sin 3𝐴 = sin(2𝐴 + 𝐴) 

      = sin 2𝐴 cos 𝐴 + cos 2𝐴 sin 𝐴 

= (2 sin 𝐴 cos 𝐴) cos 𝐴 + (1 − 2 sin2 𝐴) sin 𝐴

= 2 sin 𝐴 cos2 𝐴 + sin 𝐴 − 2 sin3 𝐴

= 2 sin 𝐴 (1 − sin2 𝐴) + sin 𝐴 − 2 sin3 𝐴

= 3 sin 𝐴 − 4 sin3 𝐴

Example 6 

Solve the equation cos 2𝜃 + 3 sin 𝜃 = 2 for 𝜃 in the range 

0° ≤ 𝜃 ≤ 360°. 

Solution 

Replacing the double angle term with the relationship 

cos 2𝜃 = 1 − 2 sin2 𝜃 gives:

1 − 2 sin2 𝜃 + 3 sin 𝜃 = 2

Rearranging gives:  

−2 sin2 𝜃 + 3 sin 𝜃 − 1 = 0
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Half angles 

These can be derived from the double angle formula. 

From the double angle formula 

cos 2𝐴 = 2 cos2 𝐴 − 1

Dividing the angles by 2 

cos 𝐴 = 2 cos2
𝐴

2
− 1

cos2
𝐴

2
=

1

2
(1 + cos 𝐴) 

Similarly, 

cos 𝐴 = 1 − 2 sin2
𝐴

2

2 sin2
𝐴

2
= 1 − cos 𝐴 

sin2
𝐴

2
=

1

2
(1 − cos 𝐴) 

The 𝒕-formulae 

If tan
𝑥

2
 , we can express sin 𝑥, cos 𝑥, tan 𝑥 in terms of 𝑡 

which helps to solve trigonometric equations. 

From cos 2𝑥 = cos2 𝑥 − sin2 𝑥

cos 𝑥 =
cos2 𝑥

2
− sin2 𝑥

2
1

 

But 

1 = cos2
𝑥

2
+ sin2

𝑥

2

cos 𝑥 =
cos2 𝑥

2
− sin2 𝑥

2

cos2 𝑥
2

+ sin2 𝑥
2

 

Dividing each term on RHS by cos2 𝑥

2

cos 𝑥 =
1 − tan2 𝑥

2

1 − tan2 𝑥
2

  but  𝑡 = tan
𝑥

2

cos 𝑥 =
1 − 𝑡2

1 + 𝑡2

sin 𝑥 = 2 sin
𝑥

2
cos

𝑥

2
= 2 sin

𝑥

2
cos

𝑥

2
×

cos
𝑥
2

cos
𝑥
2

 

sin 𝑥 = 2 tan
𝑥

2
cos2

𝑥

2

sin 𝑥 =
2 tan

𝑥
2

sec2 𝑥
2

=
2 tan

𝑥
2

1 + tan2 𝑥
2

 

sin 𝑥 =
2𝑡

1 + 𝑡2

tan 𝑥 =
tan

𝑥
2

+ tan
𝑥
2

1 − tan2 𝑥
2

 

tan 𝑥 =
2𝑡

1 − 𝑡2

The three formulae 

sin 𝑥 =
2𝑡

1 + 𝑡2
,   cos 𝑥 =

1 − 𝑡2

1 + 𝑡2
, tan 𝑥 =

2𝑡

1 − 𝑡2

where 𝑡 = tan
1

2
𝑥 are useful in the solution of a certain type 

of trigonometric equation. They also have other important 

applications.  

Example 7 

Use the 𝑡-formula to solve the following equations giving 

values of 𝜃 from 0° to 360° inclusive.  

(a) 2 cos 𝜃 + 3 sin 𝜃 − 2 = 0

(b) 7 cos 𝜃 + sin 𝜃 − 5 = 0

Solution 

(a) Let 𝑡 = tan
𝜃

2

cos 𝜃 =
1 − 𝑡2

1 + 𝑡2
 sin 𝜃 =

2𝑡

1 + 𝑡2

2 cos 𝜃 + 3 sin 𝜃 − 2 = 0 

2 (
1 − 𝑡2

1 + 𝑡2
) + 3 (

2𝑡

1 + 𝑡2
) − 2 = 0 

2 − 2𝑡2 + 6𝑡 − 2(1 + 𝑡2) = 0

2 − 2𝑡2 + 6𝑡 − 2 − 2𝑡2 = 0

−4𝑡2 + 6𝑡 = 0

−2𝑡(2𝑡 − 3) = 0

Either −2𝑡 = 0  or 2𝑡 − 3 = 0 

𝑡 = 0              𝑡 =
3

2

tan
𝜃

2
= 0 

𝜃

2
= tan−1 0

𝜃

2
= 0°, 180° 

𝜃 = 0°, 360° 

tan
𝜃

2
=

3

2
𝜃

2
= tan−1

3

2
𝜃

2
= 56.3° 

𝜃

2
= 56.3°, 236.3° 

𝜃 = 112.6°, 472.6° 

∴ 𝜃 = 0°, 112.6°, 360° 

(b) 

7 cos 𝜃 + sin 𝜃 − 5 = 0 

7 (
1 − 𝑡2

1 + 𝑡2
) +

2𝑡

1 + 𝑡2
− 5 = 0 

7(1 − 𝑡2) + 2𝑡 − 5(1 + 𝑡2) = 0

7 − 7𝑡2 + 2𝑡 − 5 − 5𝑡2 = 0

−12𝑡2 + 2𝑡 + 2 = 0

6𝑡2 − 𝑡 − 1 = 0

6𝑡2 − 3𝑡 + 2𝑡 − 1 = 0

3𝑡(2𝑡 − 1) + (2𝑡 − 1) = 0 

(2𝑡 − 1)(3𝑡 + 1) = 0 

Either  2𝑡 − 1 = 0    or     3𝑡 + 1 = 0 
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= 1 − 2 sin 𝐴 [sin 𝐴 + sin(𝐵 − 𝐶)] 

But 𝐴 = 180° − (𝐵 + 𝐶) 

sin 𝐴 = sin[180° − (𝐵 + 𝐶)] = sin(𝐵 + 𝐶) 

Thus 

L.H.S = 1 − 2 sin 𝐴 [sin(𝐵 + 𝐶) + sin(𝐵 − 𝐶)]

= 1 − 2 sin 𝐴 [2 sin 𝐵 cos 𝐶] 

= 1 − 4 sin 𝐴 sin 𝐵 cos 𝐶 = R.H.S 

Example 3 

If 𝐴 + 𝐵 + 𝐶 = 𝜋, prove that cos2 𝐴 + cos2 𝐵 − cos2 𝐶 =

1 − 2 sin 𝐴 sin 𝐵 cos 𝐶 

Solution 

L.H.S = cos2 𝐴 + cos2 𝐵 − cos2 𝐶 = (1 − sin2 𝐴) +

cos2 𝐵 − cos2 𝐶

= 1 + (cos2 𝐵 − sin2 𝐴) − cos2 𝐶

= 1 + cos(𝐴 + 𝐵) cos(𝐴 − 𝐵) − cos2 𝐶

= 1 + cos(𝜋 − 𝐶) cos(𝐴 − 𝐵) − cos2 𝐶

= 1 − cos 𝐶 cos(𝐴 − 𝐵) − cos2 𝐶

= 1 − cos 𝐶 [cos(𝐴 − 𝐵) + cos 𝐶] 

= 1 − cos 𝐶 [cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)] 

= 1 − cos 𝐶 [2 sin 𝐴 sin 𝐵] 

= 1 − 2 sin 𝐴 sin 𝐵 cos 𝐶 = R.H.S 

Example 4 

If 𝐴, 𝐵, 𝐶 are the angles of a triangle, prove that 

cos 𝐴 + cos 𝐵 + cos 𝐶 − 1 = 4 sin
𝐴

2
sin

𝐵

2
sin

𝐶

2
Solution 

Split the left-hand side into two pairs. 

cos 𝐴 + cos 𝐵 = 2 cos
𝐴 + 𝐵

2
cos

𝐴 − 𝐵

2
𝐴 + 𝐵 + 𝐶 = 180° ⇒ 𝐴 + 𝐵 = 180° − 𝐶 hence 

𝐴 + 𝐵

2
= 90° −

𝐶

2

∴ cos
𝐴 + 𝐵

2
= sin

𝐶

2

Seeing this factor sin
𝐶

2
 on the right-hand side, write 

cos 𝐶 − 1 = −2 sin2
𝐶

2
Therefore 

cos 𝐴 + cos 𝐵 + cos 𝐶 − 1 = 2 sin
𝐶

2
cos

𝐴 − 𝐵

2
− 2 sin2

𝐶

2

= 2 sin
𝐶

2
(cos

𝐴 − 𝐵

2
− sin

𝐶

2
)

= 2 sin
𝐶

2
(cos

𝐴 − 𝐵

2
− cos

𝐴 + 𝐵

2
) 

= −2 (cos
𝐴 + 𝐵

2
− cos

𝐴 − 𝐵

2
) sin

𝐶

2

= −2 (−2 sin
𝐴

2
sin

𝐵

2
) sin

𝐶

2

cos 𝐴 + cos 𝐵 + cos 𝐶 − 1 = 4 sin
𝐴

2
sin

𝐵

2
sin

𝐶

2

Example 5 

Prove that tan(𝐴 + 𝐵 + 𝐶) 

=
tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐶 tan 𝐴 − tan 𝐴 tan 𝐵
Hence prove that if 𝐴, 𝐵, 𝐶 are angles of a triangle, then 

tan 𝐴 + tan 𝐵 + tan 𝐶 = tan 𝐴 tan 𝐵 tan 𝐶 

Solution 

tan[𝐴 + (𝐵 + 𝐶)] =
tan 𝐴 + tan(𝐵 + 𝐶)

1 − tan 𝐴 tan(𝐵 + 𝐶)

But tan(𝐵 + 𝐶) =
tan 𝐵+tan 𝐶

1−tan 𝐵 tan 𝐶

tan(𝐴 + 𝐵 + 𝐶) =
tan 𝐴 +

tan 𝐵 + tan 𝐶
1 − tan 𝐵 tan 𝐶

1 − tan 𝐴 ×
tan 𝐵 + tan 𝐶

1 − tan 𝐵 tan 𝐶

=

tan 𝐴 − tan 𝐴 tan 𝐵 tan 𝐶 + tan 𝐵 + tan 𝐶
1 − tan 𝐴 tan 𝐵

1 − tan 𝐵 tan 𝐶 − tan 𝐴 tan 𝐵 − tan 𝐴 tan 𝐶
1 − tan 𝐵 tan 𝐶

=
tan 𝐴 − tan 𝐴 tan 𝐵 tan 𝐶 + tan 𝐵 + tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐴 tan 𝐵 − tan 𝐴 tan 𝐶

=
tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐶 tan 𝐴 − tan 𝐴 tan 𝐵
Hence tan(𝐴 + 𝐵 + 𝐶) 

=
tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐶 tan 𝐴 − tan 𝐴 tan 𝐵
If 𝐴, 𝐵 & 𝐶 are angles of a triangle 

𝐴 + 𝐵 + 𝐶 = 180° 

tan(𝐴 + 𝐵 + 𝐶) = tan 180° 

tan 180° =
tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐶 tan 𝐴 − tan 𝐴 tan 𝐵

0 =
tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶

1 − tan 𝐵 tan 𝐶 − tan 𝐶 tan 𝐴 − tan 𝐴 tan 𝐵
0 = tan 𝐴 + tan 𝐵 + tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶 

tan 𝐴 + tan 𝐵 + tan 𝐶 = tan 𝐴 tan 𝐵 tan 𝐶 
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The form 𝒂 𝐜𝐨𝐬 𝜽 ± 𝒃 𝐬𝐢𝐧 𝜽 

Using the compound angle formulas, the equation of the 

form 𝑎 cos 𝜃 ± 𝑏 sin 𝜃 + 𝑐 = 0 can be solved. Also the 

maximum and minimum values of functions involving 

functions 𝑎 cos 𝜃 ± 𝑏 sin 𝜃 + 𝑐 or 
1

𝑎 cos 𝜃±𝑏 sin 𝜃+𝑐 
can be 

obtained.  

Our problem is to express 𝑎 sin 𝜃 ± 𝑏 cos 𝜃 in the form 

𝑅 sin(𝜃 ± 𝛼) where 𝑎, 𝑏, 𝑅 and 𝛼 are positive constants.  

Let  

𝑎 sin 𝜃 + 𝑏 cos 𝜃 ≡ 𝑅 sin(𝜃 + 𝛼) 

Using the compound angle formula, we can expand 

𝑅 sin(𝜃 + 𝛼) as follows 

𝑅 sin(𝜃 + 𝛼) = 𝑅(sin 𝜃 cos 𝛼 + cos 𝜃 sin 𝛼) 

= 𝑅 sin 𝜃 cos 𝛼 + 𝑅 cos 𝜃 sin 𝛼 

So 

𝑎 sin 𝜃 + 𝑏 cos 𝜃 = 𝑅 cos 𝛼 sin 𝜃 + 𝑅 sin 𝛼 cos 𝜃 

Equating the coefficients of sin 𝜃 and cos 𝜃 in this identity, 

we have  

𝑎 = 𝑅 cos 𝛼   . . . (i) 

𝑏 = 𝑅 sin 𝛼 … (ii) 

Eqn (ii) ÷ (i); 

𝑏

𝑎
=

𝑅 sin 𝛼

𝑅 cos 𝛼
= tan 𝛼 

⇒ 𝛼 = tan−1
𝑏

𝑎
(𝛼 is a positive acute angle and 𝑎 and 𝑏 are positive) 

Now we square each of equations (i) and (ii) and add them 

to find an expression for 𝑅 

𝑎2 + 𝑏2 = 𝑅2 cos2 𝛼 + 𝑅2 sin2 𝛼

𝑎2 + 𝑏2 = 𝑅2(cos2 𝛼 + sin2 𝛼)

𝑎2 + 𝑏2 = 𝑅2

So 

𝑅 = √𝑎2 + 𝑏2 

(we only take the positive root) 

then we have expressed 𝑎 sin 𝜃 + 𝑏 cos 𝜃 in the form 

required.  

𝑎 sin 𝜃 + 𝑏 cos 𝜃 = 𝑅 sin(𝜃 + 𝛼) 

The minus case  

Similarly, for the minus case, we equate 𝑎 sin 𝜃 − 𝑏 cos 𝜃 

with the expansion 𝑅 sin(𝜃 − 𝛼) as follows. 

𝑎 sin 𝜃 − 𝑏 cos 𝜃 = 𝑅 cos 𝛼 sin 𝜃 − 𝑅 sin 𝛼 cos 𝜃 

Once again, we will obtain (try it yourself) 

𝛼 = tan−1
𝑏

𝑎
and 

𝑅 = √𝑎2 + 𝑏2 

Our equation for the minus case is: 

𝑎 sin 𝜃 − 𝑏 cos 𝜃 = 𝑅 sin(𝜃 − 𝛼) 

Equations of the type 𝒂 𝐬𝐢𝐧 𝜽 ± 𝒃 𝐜𝐨𝐬 𝜽 = 𝒄 

To solve an equation in the form 𝑎 sin 𝜃 ± 𝑏 cos 𝜃 = 𝑐, 

express the LHS in the form 𝑅 sin(𝜃 ± 𝛼) and then solve  

𝑅 sin(𝜃 ± 𝛼) = 𝑐 

Example 1 

(a) Express 4 sin 𝜃 + 3 cos 𝜃 in the form 𝑅 sin(𝜃 + 𝛼)

(b) Hence, solve the equation 4 sin 𝜃 + 3 cos 𝜃 = 2

Solution 

(a) Let 4 sin 𝜃 + 3 cos 𝜃 ≡ 𝑅 sin(𝜃 + 𝛼)

4 sin 𝜃 + 3 cos 𝜃 ≡ 𝑅 sin 𝜃 cos 𝛼 + 𝑅 sin 𝛼 cos 𝜃

Thus 

𝑅 cos 𝛼 = 4 

𝑅 sin 𝛼 = 3 

𝑅 = √42 + 32 = √25 = 5 

tan 𝛼 =
3

4

𝛼 = tan−1 (
3

4
) = 36.87°

∴ 4 sin 𝜃 + 3 cos 𝜃 ≡ 5 sin(𝜃 + 36.87°) 

(b) Now,

5 sin(𝜃 + 36.87°) = 2 

sin(𝜃 + 36.87°) = 0.4 

sin−1 0.4 = 23.58°

𝜃 + 36.87° = 23.58°, 156.42° 

𝜃 = 23.58° − 36.87° = −13.29° = 346.71° 

𝜃 = 156.42° − 36.87° = 119.55° 

∴ 𝜃 = 119.55°, 346.71° 

Example 2 

Solve the equation 

sin 𝜃 − √2 cos 𝜃 = 0.8 for 0 ≤ 𝜃 < 360° 

Solution 

Let    sin 𝜃 − √2 cos 𝜃 ≡ 𝑅 sin(𝜃 − 𝛼) 

sin 𝜃 − √2 cos 𝜃 ≡ 𝑅 sin 𝜃 cos 𝛼 − 𝑅 sin 𝛼 cos 𝜃 

𝑅 cos 𝛼 = 1 

𝑅 sin 𝛼 = √2 

𝑅 = √2 + 1 = √3 

tan 𝛼 = √2 ⇒ 𝛼 = tan−1 √2 = 54.74°

sin 𝜃 − √2 cos 𝜃 ≡ √3 sin(𝜃 − 54.74°) 

Now, 

√3 sin(𝜃 − 54.74°) = 0.8

sin(𝜃 − 54.74°) = 0.4619

sin−1 0.4619 = 27.51°

𝜃 − 54.74° = 27.51°, 152.49° 

𝜃 = (27.51° + 54.74°), (152.49° + 54.74°) 

∴ 𝜃 = 82.25°, 207.23° 

Example 3 

Solve 7 sin 3𝜃 − 6 cos 3𝜃 = 3.8 for 0 ≤ 𝜃 < 360° 

Solution 

Firstly, express the LHS in the form 𝑅 sin(3𝜃 − 𝛼). 
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(r) (cos 𝑥 + sin 𝑥)(cosec 𝑥 − sec 𝑥) ≡ 2 cot 2𝑥

(s) 
2 sec2 𝜃−cos 2𝜃−1

2 tan 𝜃+sin 2𝜃
≡ tan 𝜃 

(t) 4 cosec2 2𝜃 − sec2 𝜃 ≡ cosec2 𝜃

(u) 2 cos4 𝜃 +
1

2
sin2 2𝜃 − 1 ≡ cos 2𝜃

(v) 
cos 2𝑥

√1+sin 2𝑥
≡ cos 𝑥 − sin 𝑥 

(w) 
√2−2 cos 𝑥

sin 𝑥
≡ sec

𝑥

2

(x) 8 cos4 (
1

2
𝜃) ≡ cos 2𝜃 + 4 cos 𝜃 + 3 

(y) sin4 + cos4 𝜃 ≡
1

4
(3 + cos 4𝜃) 

(z) √1 + sin 2𝜃 ≡ sin 𝜃 + cos 𝜃

2. Solve each of the following trigonometric equations.

(a) 2 sin 2𝜃 = cot 𝜃,    0 ≤ 𝜃 ≤ 𝜋

[Ans: 𝜃 =
𝜋

6
,

𝜋

2
,

5𝜋

6
] 

(b) 3 sin 2𝑥 = 2 cos 𝑥,  0 ≤ 𝑥 ≤ 180°

[Ans: 19.5°, 90°, 160.5°] 

(c) sin 4𝑦 = sin 2𝑦,   0 ≤ 𝑦 ≤ 180°

[Ans: 0°, 30°, 90°, 150°] 

(d) sin 𝜑 +
1

4
sec 𝜑 = 0,   0 ≤ 𝜑 < 𝜋 

[Ans: 𝜑 =
7𝜋

12
,

11𝜋

12
] 

(e) cos 𝜃 − sin 2𝜃 = 0,  0 ≤ 𝜃 ≤ 360°

[Ans: 30°, 90°, 150°, 270°] 

(f) 
sin 𝑥

cos 𝑥
+

cos 𝑥

sin 𝑥
= 4,   0 ≤ 𝑥 < 360° 

[Ans: 15°, 75°, 195°, 255°] 

(g) 2 cos 𝑦 = 2 tan 𝑦 sin 𝑦 + sec 𝑦, 0 ≤ 𝑦 ≤ 2𝜋

[Ans: 𝑦 =
𝜋

6
,

5𝜋

6
,

7𝜋

6
,

11𝜋

6
] 

(h) 2 cos 𝜑 + cosec 𝜑 = 0,  0 ≤ 𝜑 < 2𝜋

[Ans: 𝜑 =
3𝜋

4
,

7𝜋

4
] 

(i) 2 cos 2𝜃 = 1 + cos 𝜃 , 0 ≤ 𝜃 < 360°

[Ans: 0°, 138.6°, 221.4°] 

(j) cos 2𝑥 + 3 sin 𝑥 = 2,   0 ≤ 𝑥 < 360°

[Ans: 30°, 90°, 150°] 

(k) 2(1 − cos 2𝜑) = tan 𝜑, 0 ≤ 𝜑 < 180°

[Ans: 0°, 15°, 75°] 

(l) 3 cos 2𝜃 − 5 sin 𝜃 = 4,  0 ≤ 𝜃 < 360°

[Ans: 199.5°, 210°, 330°, 340.5°] 

(m) 3 cos 2𝑥 = 1 − sin 𝑥,  0 ≤ 𝑥 < 360°

[Ans: 41.8°, 138.2°, 210°, 330°] 

(n) 2 cos 2𝜑 = 1 − 2 sin 𝜑,  0 ≤ 𝜑 < 360°

[Ans: 54°, 126°, 198°, 342°] 

3. Show that sin(𝛼 + 𝛽) sin(𝛼 − 𝛽) = sin2 𝛼 − sin2 𝛽

4. Express tan(𝐴 + 𝐵 + 𝐶) in terms of tan 𝐴, tan 𝐵 and

tan 𝐶.

5. Prove that

sin 𝛼 sin 𝛽

cos 𝛼 + cos 𝛽
=

2 tan
𝛼
2

tan
𝛽
2

1 − tan2 𝛼
2

tan2 𝛽
2

6. Prove the identity

(sin 2𝛼 − sin 2𝛽) tan(𝛼 + 𝛽) = 2(sin2 𝛼 − sin2 𝛽)

7. If tan
1

2
𝑥 = cosec 𝑥 − sin 𝑥, prove that tan2 1

2
𝑥 = −2 ±

√5.

8. If sin 𝜃 + sin 2𝜃 = 𝑎 and cos 𝜃 + cos 2𝜃 = 𝑏, prove

that

(𝑎2 + 𝑏2)(𝑎2 + 𝑏2 − 3) = 2𝑏

9. Show that cos(𝛼 + 𝛽) cos(𝛼 − 𝛽) = cos2 𝛼 − sin2 𝛽

10. Prove that cot(𝐴 + 𝐵) =
cot 𝐴 cot 𝐵−1

cot 𝐴+cot 𝐵

11. Show that

sin(𝐴 + 𝐵 + 𝐶) = cos 𝐴 cos 𝐵 cos 𝐶 (tan 𝐴 + tan 𝐵

+ tan 𝐶 − tan 𝐴 tan 𝐵 tan 𝐶)

and deduce that, if 𝐴, 𝐵, 𝐶 are the angles of a triangle, 

then  cot 𝐴 cot 𝐵 + cot 𝐵 cot 𝐶 + cot 𝐶 cot 𝐴 = 1 

12. Show that 𝑎 sin 𝑥 + 𝑏 cos 𝑥 = √(𝑎2 + 𝑏2) sin(𝑥 + 𝛼)

where tan 𝛼 =
𝑏

𝑎

13. If 𝑘 cos 𝜃 = cos(𝜃 − 𝛼), show that tan 𝜃 = 𝑘 cosec 𝛼 −

cot 𝛼.

14. Prove that

sin(𝐴 − 𝐵)

cos 𝐴 cos 𝐵
+

sin(𝐵 − 𝐶)

cos 𝐵 cos 𝐶
+

sin(𝐶 − 𝐴)

cos 𝐶 cos 𝐴
= 0 

15. If tan2 𝛼 − 2 tan2 𝛽 = 1, prove that cos 2𝛼 + sin2 𝛽 = 0.

16. If sin 3𝜃 = 𝑝 and sin2 𝜃 =
3

4
− 𝑞, prove that 𝑝2 +

16𝑞3 = 12𝑞2.

17. Prove that 2 cot
1

2
𝐴 + tan 𝐴 = tan 𝐴 cot2 1

2
𝐴 

18. If 2 cos 𝜃 = 𝑥 +
1

𝑥
, show that 2 cos 3𝜃 = 𝑥3 +

1

𝑥3. 

19. If sec 𝐴 − tan 𝐴 = 𝑥, prove that tan
1

2
𝐴 =

1−𝑥

1+𝑥

20. Prove that

4 tan−1 (
1

5
) − tan−1 (

1

239
) =

𝜋

4
21. Prove that

cot−1 (
1

3
) = cot−1 3 + cos−1 (

3

5
) 

22. Find 𝑥 from the equation tan−1 2𝑥 + tan−1 3𝑥 =
𝜋

4

[Ans: 1/6] 

23. Prove the following identities

(a)  
cos 𝐵 + cos 𝐶

sin 𝐵 − sin 𝐶
= cot

𝐵 − 𝐶

2

(b) 
cos 𝐵 − cos 𝐶

sin 𝐵 + sin 𝐶
= − tan

𝐵 − 𝐶

2

(c) 
sin 𝐵 + sin 𝐶

cos 𝐵 + cos 𝐶
= tan

𝐵 + 𝐶

2

(d) 
sin 𝐵 − sin 𝐶

sin 𝐵 + sin 𝐶
= cot

𝐵 + 𝐶

2
tan

𝐵 − 𝐶

2
24. Prove the following identities. 𝐴, 𝐵, 𝐶 are to be taken as

the angles of a triangle.

(a) sin 𝐴 + sin(𝐵 − 𝐶) = 2 sin 𝐵 cos 𝐶

(b) cos 𝐴 − cos(𝐵 − 𝐶) = −2 cos 𝐵 cos 𝐶

(c) sin 𝐴 + sin 𝐵 + sin 𝐶 = 4 cos
𝐴

2
cos

𝐵

2
cos

𝐶

2

(d) sin 2𝐴 + sin 2 + sin 2𝐶 = 4 sin 𝐴 sin 𝐵 sin 𝐶
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Introduction 

To ‘solve a triangle’ means ‘to find the values of unknown 

sides and angles’. If a triangle is right-angled, trigonometric 

ratios and the theorem of Pythagoras may be used for its 

solution. However, for a non-right-angled triangle, 

trigonometric ratios and Pythagoras’ theorem cannot be 

used. Instead, two rules, called the sine rule and cosine rule 

are used.  

Note:  

A triangle possesses six elements i.e. the three sides and the 

three angles. If any three elements (other than three angles.) 

are given, the remaining three elements can be found. This 

is called solving the triangle.  

In solving the triangle, two geometrical facts are useful i.e.  

1. In any triangle the sum of the angles is 180°
2. In any triangle, the largest side is opposite the greatest

angle and the shortest side is opposite the smallest angle

The sine rule 

With reference to triangle 𝐴𝐵𝐶 above, the sine rule states: 

𝒂

𝐬𝐢𝐧 𝑨
=

𝒃

𝐬𝐢𝐧 𝑩
=

𝒄

𝐬𝐢𝐧 𝑪
= 𝟐𝑹 

where 𝑅 is the radius of the circumcircle of the triangle. 

The rule may be used only when: 

(i) 1 side and any 2 angles are initially given, or

(ii) 2 sides and an angle (not the included angle) are

initially given

The cosine rule  

With reference to triangle 𝐴𝐵𝐶, the cosine rule states: 

𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 𝐜𝐨𝐬 𝑨 

or 𝒃𝟐 = 𝒂𝟐 + 𝒄𝟐 − 𝟐𝒂𝒄 𝐜𝐨𝐬 𝑩

or   𝒄𝟐 = 𝒃𝟐 + 𝒂𝟐 − 𝟐𝒂𝒃 𝐜𝐨𝐬 𝑪

The rule may be used only when: 

(i) 2 sides and the included angle are initially given, or

(ii) 3 sides are initially given

 

 

Area of any triangle  

The area of any triangle such as 𝐴𝐵𝐶 is given by: 

(i)  𝐴 =
1

2
×  base × perpendicular height, or 

(ii) 𝐴 =
1

2
𝑎𝑏 sin 𝐶 =

1

2
𝑎𝑐 sin 𝐵 =

1

2
𝑏𝑐 sin 𝐴 , or 

(iii) 𝐴 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)

where 𝑠 =
𝑎+𝑏+𝑐

2

The latter formula is called Hero’s formula 

Example 1  

Find the length of the side 𝐵𝐶 in the given triangle 

Solution 

Using the sine rule; 

𝐵𝐶

sin 55
=

8.3

sin 72

𝐵𝐶 =
8.3 sin 55

sin 72
= 7.15 𝑐𝑚 

Example 2 

Find the angle 𝑥 in the given triangle 

Solution 

  Using the sine rule; 

8

sin 70°
=

6

sin 𝑥

sin 𝑥 =
6 sin 70 °

8
= 0.7048 

𝑥 = sin−1(0.7048) = 44.81°

𝐴 

𝐵 𝐶 

𝑐 𝑏 

𝑎 

𝐴 𝐵 

𝐶 

72° 55° 

70° 𝑥 

Chapter 

22 
Solutions of triangles 
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SECTION A 

1. Show that

1 − cos 2𝑥 + 2 sin 𝑥 cos2 𝑥

1 + cos 2𝑥
= sin 𝑥 + tan2 𝑥

[2024, No. 6] 

2. Express 2 sin 𝜃 + 3 cos 𝜃 in the form 𝑅 sin(𝜃 + 𝛼)

[2023, No. 7] 

3. Solve 5 tan2 𝐴 − 5 tan 𝐴 = 2 sec2 𝐴 for 0° ≤ 𝐴 ≤

360°

[2022, No. 2] 

4. Solve the equation: sin 𝑥 + sin 2𝑥 + sin 3𝑥 = 0 for

0° ≤ 𝑥 ≤ 180°

[2020, No. 1] 

5. Solve 2 cos 2𝜃 − 5 cos 𝜃 = 4 for 0° ≤ 𝜃 ≤ 360°

[2019, No. 2] 

6. In triangle 𝐴𝐵𝐶, 𝑎 = 7 cm, 𝑏 = 4 cm and 𝑐 = 5 cm.

Find the value of:

(a) cos 𝐴

(b) sin 𝐴

[2018, No. 1: Ans: (a) −0.2 (b) 0.9798] 

7. Solve the equation 3 tan2 𝜃 + 2 sec2 𝜃 = 2(5 −

3 tan 𝜃) for 0° ≤ 𝜃 ≤ 180°.

[2017, No. 2: Ans: 38.66°, 116.57°] 

8. Solve the equation sin 2𝜃 + cos 2𝜃 cos 4𝜃 =

cos 4𝜃 cos 6𝜃 for 0 ≤ 𝜃 ≤
𝜋

4
. 

[2016, No. 6: Ans: 0, 
3𝜋

16
] 

9. In a triangle 𝐴𝐵𝐶, all the angles are acute. Angle

𝐴𝐵𝐶 = 50°, 𝑎 = 10 cm and 𝑏 = 9 cm. Solve the

triangle.

[2015, No. 5: Ans: 58.34°, 71.66°, 𝑐 = 11.15 cm] 

10. Given that cos 2𝐴 − cos 2𝐵 = −𝑝 and sin 2𝐴 −

sin 2𝐵 = 𝑞, prove that sec  (𝐴 + 𝐵) =
1

𝑞
√𝑝2 + 𝑞2

[2014, No. 3]

11. Solve 5 cos2 3𝜃 = 3(1 + sin 3𝜃) for 0° ≤ 𝜃 ≤ 90°

[2013, No. 5: Ans: 7.859°, 52.141°] 

12. (a) Prove that
2 tan 𝜃

1+tan2 𝜃
= sin 2𝜃 

(b) Solve sin 2𝜃 = cos 𝜃 for 0° ≤ 𝜃 ≤ 90°

[2012, No. 2: Ans: 30°, 90°] 

13. Show that: tan−1 (
1

2
) + tan−1 (

1

5
) = tan−1 (

7

9
)

[2011, No. 5] 

14. Express sin 𝑥 + cos 𝑥 in the form 𝑅 cos(𝑥 − 𝛼). Hence,

find the greatest value of sin 𝑥 + cos 𝑥 − 1

[2010, No. 7: Ans: √2 cos(𝑥 − 45°) ; 0.4142] 

15. Given that sin(𝜃 − 45°) = 3 cos(𝜃 + 45°), show that

tan 𝜃 = 1. Hence find 𝜃 for 0° ≤ 𝜃 ≤ 360°

 

 

[2009, No. 2: Ans: 45°, 225°] 

16. Without using tables or calculators, show that

tan 15° = 2 − √3 

[2008, No. 2] 

17. Show that 
sin 𝜃−2 sin 2𝜃+sin 3𝜃

sin 𝜃+2 sin 2𝜃+sin 3𝜃
= − tan2 𝜃

2

[2007, No. 4] 

18. Prove that tan (
𝜋

4
+ 𝜃) − tan (

𝜋

4
− 𝜃) = 2 tan 2𝜃

[2006, No. 1] 

19. Solve the equation 2 sin2 𝜃 + 3 cos 𝜃 = 0, 0° ≤ 𝜃 ≤

360°.

[2005, No. 6: Ans: 120°, 240°] 

20. Solve cos 𝜃 + sin 2𝜃 = 0 for 0° ≤ 𝜃 ≤ 360°

[2004, No. 3: Ans:  90°, 210°, 270°, 330°] 

21. Solve the equation cos 2𝜃 + cos 3𝜃 + cos 𝜃 = 0;

0° ≤ 𝜃 ≤ 180°.

[2003, No. 3: Ans: 45°, 120°, 135°] 

22. Solve the equation 2 cos 𝜃 − cosec 𝜃 = 0; 0° < 𝜃 <

270°

[2002, No. 1: Ans: 45°, 225°] 

23. Given that sin 2𝜃 = cos 3𝜃, find the value of sin 𝜃,

0 ≤ 𝜃 ≤ 𝜋.

[2001, No. 3: Ans: 0.309] 

24. Solve cos 𝜃 + √3 sin 𝜃 = 2

[2000, No. 2: Ans: 2𝜋𝑛 +
𝜋

3
] 

25. Solve cos(𝜃 + 35°) = sin(𝜃 + 25°) for 0° ≤ 𝜃 ≤

360°.

[1999, No. 3: Ans: 15°, 195°] 

26. Solve cos 𝜃 + √3 sin 𝜃 = 2 for 0° ≤ 𝜃 ≤ 360°

[Nov, 1998, No. 1: Ans: 60°] 

27. Show that cos 4𝜃 =
tan4 𝜃−6 tan2 𝜃+1

tan4 𝜃+2 tan2 𝜃+1

[Mar 1998, No. 3] 

28. Solve the equation 4 cos 𝑥 − 2 cos 2𝑥 = 3 for 0° ≤

𝑥 ≤ 𝜋

[1997, No. 1: Ans: 
𝜋

3
] 

Chapter 

23 
Examination Questions 
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   We now investigate for the nature of the turning point of 

the curve by using the values on the immediate left and right 

of the turning point. 

 𝐿 1.5 𝑅 

Sign of  
𝑑𝑦

𝑑𝑥
 

 

 

− 0 + 

We now come to realize that (1.5, −0.5) is a minimum 

turning point 

Alternatively; using the second derivative method, 
𝑑2𝑦

𝑑𝑥2 =

4 which is greater than 0  

Implying that the curve has a maximum turning point.   

           
 

Example 21 

Sketch the curve 𝑦 = 4𝑥 − 𝑥2 

Solution 

Intercepts 

when 𝑦 = 0, 4𝑥 − 𝑥2 = 0 

  𝑥(4 − 𝑥) = 0 

Either 𝑥 = 0 or 𝑥 = 4 ,  

⇒ (0, 0) and (4, 0) are the 𝑥 −intercepts 

When 𝑥 = 0, 𝑦 = 0 

(0, 0) is the 𝑦-intercept 

Turning point 

             𝑦 = 4𝑥 − 𝑥2 

               
𝑑𝑦

𝑑𝑥
= 4 − 2𝑥 

          4 − 2𝑥 = 0 ⇒ 𝑥 = 2 

 when 𝑥 = 2, 𝑦 = 4(2) − 22 = 4 

        (2, 4) is a turning point 

We now investigate for the nature of the turning point of the 

curve 

 𝐿 2 𝑅 

Sign of  
𝑑𝑦

𝑑𝑥
 

 

 

+ 0 − 

 We observe that (2, 4) is a maximum turning point 

Alternatively; if we would wish to investigate the nature of 

the turning point using the second derivative, we find out 

that 
𝑑2𝑦

𝑑𝑥2 = −2   which is less than 0 (
𝑑2𝑦

𝑑𝑥2 < 0) 

Hence, the curve has a maximum turning point 

We can now sketch the curve 

 
 

Example 22 

Sketch the curve 𝑦 = 𝑥3 − 𝑥2 − 5𝑥 + 6 

Solution 

Intercepts  

when 𝑥 = 0, 𝑦 = 0 

(0, 6) is the 𝑦-intercept 

When 𝑦 = 0,  

𝑥3 − 𝑥2 − 5𝑥 + 6 = 0 

Inspection approach is used to find the first factor i.e. 

(𝑥 − 2), then the other factor is obtained by long division.  

                                              𝑥2 + 𝑥 − 3   

                               𝑥 − 2     𝑥3 − 𝑥2 − 5𝑥 + 6 

                                       −   𝑥3 − 2𝑥2 

                                                    −𝑥2 − 5𝑥 + 6 

                                                 − −𝑥2 − 2𝑥 

                                                                    3𝑥 + 6   

                                                            −    3𝑥 + 6   

                                                                     -     -   

𝑥3 − 𝑥2 − 5𝑥 + 6 = (𝑥 − 2)(𝑥2 + 𝑥2 − 3) = 0 

𝑥2 + 𝑥 − 3 = 0 

𝑥 =
−1 ± √1 + 12

2
=

−1 ± 3.6

2
 

𝑥 = 1.3 or − 2.3 

Hence the 𝑥-intercepts are (2, 0), (1.3, 0) and (−2.3, 0) 

Turning points  

𝑦 = 𝑥3 − 𝑥2 − 5𝑥 + 6 

𝑑𝑦

𝑑𝑥
= 3𝑥2 − 2𝑥 − 5 

At turning point, 
𝑑𝑦

𝑑𝑥
= 0 

3𝑥2 − 2𝑥 − 5 = 0 

(3𝑥 − 5)(𝑥 + 1) = 0 

𝑥 

𝑦 

(4, 0) 

(0,  4) 

(1,  0) 

(1.5,  -0.5) 

𝑦 = 2𝑥2 − 6𝑥 + 4 

𝑥 

𝑦 

(4, 0) 

(2,  4) 

(0, 0) 

𝑦 = 4𝑥 − 𝑥2 
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𝑑2𝐴

𝑑𝑥2
= 4 + 216𝑥−3 

⇒ 4 + 216 × 3−3 = +ve ∴ a min 

Minimum surface area is when the cuboid is a cube with all 

sides equal to 𝑥. 

 

Example 3 

A piece of wire, length 4 𝑚, is cut into 2 pieces (not 

necessarily equal), and each piece is bent into square. How 

should this be done to have:  

(a) the smallest total area from both squares? 

(b) the largest total area from both squares? 

Solution 

 
Total area is: 

𝐴 = (
1

4
𝑥)

2

+ (1 −
1

4
𝑥)

2

 

=
1

16
𝑥2 + 1 −

1

2
𝑥 +

1

16
𝑥2 

=
1

8
𝑥2 −

1

2
𝑥 + 1 

𝑑𝑦

𝑑𝑥
=

1

4
𝑥 −

1

2
 

For max/min, 
𝑑𝑦

𝑑𝑥
= 0 

1

4
𝑥 −

1

2
𝑥 = 0 

𝑥 = 2 

Now, 
𝑑2𝑦

𝑑𝑥2 =
1

4
> 0 ∴ a maximum 

(a) smallest area is therefore when 𝑥 = 2 (i.e. when wire is 

cut in half)  

𝐴 =
1

8
(22) −

1

2
(2) + 1 =

1

2
𝑚2 

(b) biggest area must be when 𝑥 = 0, 

⇒ 𝐴 = 1 𝑚2 

 

Example 4 

A rectangle has perimeter 28 m. What is this maximum 

area? 

Solution 

Let 𝑥 and 𝑦 metres be the sides of the rectangle  

Perimeter = 2𝑥 + 2𝑦 = 14 

𝑦 = 14 − 𝑥 

𝐴 = 𝑥𝑦 = 𝑥(14 − 𝑥) = 14𝑥 − 𝑥2 

𝑑𝐴

𝑑𝑥
= 14 − 2𝑥 

When 𝐴 is a maximum, 
𝑑𝐴

𝑑𝑥
= 0  

14 − 2𝑥 = 0 

𝑥 = 7 

𝑑2𝐴

𝑑𝑥2
= −2 < 0 ⇒ a max 

When 𝑥 = 7,  𝑦 = 14 − 7 = 7 

So the maximum area is 72 = 49 m 

 

Example 5 

A hollow cone of radius 5 cm and height 12 cm, is placed 

on a table. What is the largest cylinder that can be filled 

underneath it? 

Solution 

 

 Volume of cone =
1

3
𝜋𝑟2ℎ, volume of cylinder = 𝜋𝑟2ℎ 

Consider the cone split into two cones: 

Ratio of radius/height of large cone to small cone 

5 ∶ 12 = 𝑟 ∶ 𝑥 

𝑥 =
12

5
𝑟 

∴ Height of cylinder = 12 −
12

5
𝑟 

Volume of cylinder = 𝜋𝑟2 (12 −
12

5
𝑟) 

= 12𝜋𝑟2 −
12

5
𝜋𝑟3 

𝑑𝑉

𝑑𝑥
= 24𝜋𝑟 −

36

5
𝜋𝑟2 

Min or max:  24𝜋𝑟 −
36

5
𝜋𝑟2 = 0 

120𝜋𝑟 − 36𝜋𝑟2 = 0 

𝜋𝑟(10 − 3𝑟) = 0 

𝑟 = 0 or 𝑟 =
10

3
 

𝑟 = 0 means no cylinder – reject solution  

Maximum Volume = 𝜋 (
10

3
)

2

(12 −
12

5
×

10

3
) 

=
400

9
𝜋 

 

Example 6 

A cylinder has height ℎ and radius 𝑟. The volume of the 

cylinder is 250 𝑐𝑚3. Find the optimum value of 𝑟 to ensure 

the surface area is a minimum. 

Solution 

𝑥 

1 −
1

4
𝑥  

4 − 𝑥 

1

4
𝑥  

1

4
𝑥  

1 −
1

4
𝑥  

𝑟 

𝑥 

12 

5 
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We need to find a formula for the volume and surface area 

in terms of ℎ & 𝑟. Then eliminate one of the variables to give 

a function that can be differentiated. 

Surface area:  𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ    … (1)  

Volume of cylinder:   𝑉 = 𝜋𝑟2ℎ     … . (2) 

Eliminate ℎ to give 𝑉 in terms of 𝑟:  

 From (2), ℎ =
𝑉

𝜋𝑟2
 

Surface area: 𝐴 = 2𝜋𝑟2 + 2𝜋𝑟 ×
𝑉

𝜋𝑟2 

= 2𝜋𝑟2 + 2𝑉𝑟−1 

𝑑𝐴

𝑑𝑟
= 4𝜋𝑟 − 2𝑉𝑟−2 

For max/min:  
𝑑𝐴

𝑑𝑟
= 0 

4𝜋𝑟 − 2𝑉𝑟−2 = 0 

4𝜋𝑟3 − 2𝑉 = 0 

𝑟3 =
2𝑉

4𝜋
 

𝑟 = √
𝑉

2𝜋

3

= √
250

2𝜋

3

= 3.414 

To determine if this is max or min, find the second derivative 

𝑑2𝐴

𝑑𝑟2
= 4𝜋 + 4𝑉𝑟−3 > 0  since 𝑟 > 0 

 

Example 7 

A piece of cardboard 9𝑚 × 24𝑚 is cut out to make a box. 

What is the value of 𝑧 for the optimum volume? 

Solution 

 
Area of the box = (24 − 2𝑧)(9 − 2𝑧) 

= 𝑧(216 − 48𝑧 − 18𝑧 + 4𝑧2) 

= 𝑧(216 − 66𝑧 + 4𝑧2) 

= 4𝑧3 − 66𝑧2 + 216𝑧 

𝑑𝑉

𝑑𝑧
= 12𝑧2 − 132𝑧 + 216 

For max/min, 
𝑑𝑉

𝑑𝑧
= 0 

12𝑧2 − 132𝑧 + 216 = 0 

𝑧2 − 11𝑧 + 18 = 0 

𝑧2 − 2𝑧 − 9𝑧 + 18 = 0 

𝑧(𝑧 − 2) − 9(𝑧 − 2) = 0 

(𝑧 − 2)(𝑧 − 9) = 0 

𝑧 = 2 or 𝑧 = 9 

When 𝑧 = 9, 9 − 2𝑧 ⇒ (9 − 18) = −9 

Hence 𝑧 = 9 is invalid  

𝑑2𝑉

𝑑𝑧2
= 24𝑧 − 132 

If 𝑧 = 2, 
𝑑2𝑉

𝑑𝑧2 = 48 − 132 = −84, hence a maximum 

volume  

 

Example 8 

The lengths of the sides of a rectangular sheet of metal are 8 

cm and 3 cm. A square of side 𝑥 cm is cut from each corner 

of the sheet and the remaining piece is folded to make an 

open box.  

(a) Show that the volume 𝑉 of the box is given by  

𝑉 = 4𝑥3 − 2𝑥2 + 24𝑥 cm3 

(b) Find the value of 𝑥 for which the volume of the box is 

a maximum. Calculate the maximum volume.  

Solution 

 
(a) The volume of the box is given by  

𝑉 = (8 − 2𝑥)(3 − 2𝑥)𝑥 

= (24 − 16𝑥 − 6𝑥 + 4𝑥2)𝑥 

= 4𝑥3 − 22𝑥2 + 24𝑥 cm3 

(b) Differentiating with respect to 𝑥 

𝑑𝑉

𝑑𝑥
= 12𝑥2 − 44𝑥 + 24 

For a maximum (or minimum) value of 𝑉, 
𝑑𝑉

𝑑𝑥
= 0 

12𝑥2 − 44𝑥 + 24 = 0 

3𝑥2 − 11𝑥 + 6 = 0 

3𝑥2 − 9𝑥 − 2𝑥 + 6 = 0 

(3𝑥 − 2)(𝑥 − 3) = 0 

𝑥 =
2

3
 or 3 

Clearly, 𝑥 cannot be 3 cm since the width of the sheet 

initially is only 3 cm. So 𝑥 =
2

3
 

Differentiating again gives; 

𝑑2𝑉

𝑑𝑥2
= 24𝑥 − 44 

when 𝑥 =
2

3
, 

𝑑2𝑉

𝑑𝑥2 < 0 i.e. 𝑉 is a maximum 

The maximum volume is obtained from  

𝑉 = 4 (
2

3
)

3

− 22 (
2

3
)

2

+ 24 (
2

3
) =

200

27
= 7.41 cm3 

 

𝑟 

ℎ 

9𝑚 

24𝑚 

𝑧 

 

  

  

  

𝑥 
𝑥 

8 cm 

1 cm (3 − 2𝑥) 

(8 − 2𝑥) 
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Example 9 

A box is to be constructed in such a way that it must have a 

fixed volume of 800 cm3 and a square base. If the box is to 

be open ended at one end, find the dimensions of the box 

that will require the least amount of material. 

Solution 

Let the square base have side lengths 𝑥 cm and let the height 

be ℎ cm. 

 
Therefore the volume of the box is 𝑥2ℎ cm3 

As the volume is 800 cm3, we have  

𝑥2ℎ = 800 … . [1] 

Let the surface area of the box by 𝑆 cm2, 

𝑆 = 𝑥2 + 4𝑥ℎ   … . [2] 

We wish to minimise 𝑆, therefore we need to find the critical 

point(s) of 𝑆. However, we must first obtain an expression 

for 𝑆 in terms of 𝑥 (exclusively)  

  From [1],  ℎ =
800

𝑥2  

Substituting in [2];  

𝑆(𝑥) = 𝑥2 + 4𝑥 (
800

𝑥2
) = 𝑥2 +

3200

𝑥
 

𝑆′(𝑥) = 2𝑥 −
3200

𝑥2
 

For stationary points, we need to solve 𝑆′(𝑥) = 0 

2𝑥 −
3200

𝑥2
= 0 

𝑥3 = 1600 

𝑥 = √1600
3

= 11.70 

Next, we check the nature of the stationary point. 

𝑆′′(𝑥) = 2 + 6400𝑥−3 

𝑆′′(11.7) = 2 + 6400(11.7)−3 > 0 ∴ a minimum 

ℎ =
800

11.72
= 5.85 

Therefore there is a local minimum at 𝑥 = 11.70 and the 

dimensions of material required is least when 𝑥 = 11.70 cm 

and ℎ = 5.85 cm 

 

Example 10 

Determine the height and radius of a closed cylinder of 

volume 200 cm3 which has the least surface area.  

Solution 

Let the cylinder have radius 𝑟 and perpendicular height ℎ.  

Volume of cylinder, 

𝑉 = 𝜋𝑟2ℎ = 200 

Surface area of cylinder, 

𝐴 = 2𝜋𝑟ℎ + 2𝜋𝑟2 

Least surface area means minimum surface area and a 

formula for the surface area in terms of one variable is 

required.  

ℎ =
200

𝜋𝑟2
 

Hence surface area, 

𝐴 = 2𝜋𝑟 (
200

𝜋𝑟2
) + 2𝜋𝑟2 

=
400

𝑟
+ 2𝜋𝑟2 

= 400𝑟−1 + 2𝜋𝑟2 

𝑑𝐴

𝑑𝑟
= −

400

𝑟2
+ 4𝜋𝑟 

For minimum, 
𝑑𝐴

𝑑𝑟
= 0 

−
400

𝑟2
+ 4𝜋𝑟 = 0 

4𝜋𝑟 =
400

𝑟2
 

𝑟3 =
400

4𝜋
 

𝑟 = √
100

𝜋

3

= 3.169 cm 

𝑑2𝐴

𝑑𝑟2
=

800

𝑟3
+ 4𝜋 

When 𝑟 = 3.169 cm, 
𝑑2𝐴

𝑑𝑟2 is positive, giving a minimum 

value.  

When 𝑟 = 3.169,  

ℎ =
200

𝜋(3.169)2
= 6.339 cm 

Hence for the least surface area, a cylinder of volume 

200 cm3 has a radius of 3.169 cm and height of 6.339 cm.  

 

Example 11 

Find the diameter and height of a cylinder of maximum 

volume which can be cut from a sphere of radius 12 cm. 

Solution 

A cylinder of radius 𝑟 and height ℎ is shown enclosed in a 

sphere of radius 𝑅 = 12 cm below. 

Volume of cylinder, 𝑉 = 𝜋𝑟2ℎ  …… (1)  

 

𝑥 cm 

ℎ cm 

𝑥 cm 

ℎ 

ℎ

2
  

𝑂 

𝑃 𝑄 

𝑟 
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𝑑𝑉

𝑑𝑥
= 3𝑥2 

𝛿𝑉 ≈ 3𝑥2𝛿𝑥 

When 𝛿𝑥 = 0.01𝑥, 𝛿𝑉 = 3𝑥2 × 0.01𝑥 = 0.03𝑥3 

 Percentage change in volume =
𝛿𝑉

𝑉
× 100 

=
0.03𝑥3

𝑥3
× 100 = 3% 

 

IMPLICIT DIFFERENTIATION 

Most of the expressions we have dealt with so far have been 

expressed in the form 𝑦 = 𝑓(𝑥). For example, 𝑦 = 𝑥3 − 2𝑥, 

𝑦 = ln(𝑥 − 𝑒𝑥) i.e. 𝑦 has been expressed explicitly in terms 

of 𝑥 so that for any one given value of 𝑥 we obtain a unique 

value of 𝑦 by substituting the 𝑥-value into the given 

equation. 

Expressions such as 𝑥2𝑦 + 𝑦 − 2 = 0, sin(𝑥𝑦) = 1, 𝑒𝑥 =

𝑥 + 𝑦 are called implicit equations because these equations 

define 𝑦 implicitly as a function of 𝑥. 

To differentiate 𝑦3 with respect to 𝑥, with the assumption 

that 𝑦 is a function of 𝑥, we use the chain rule as follows:  

𝑑

𝑑𝑥
(𝑦3) =

𝑑

𝑑𝑦
(𝑦3) ∙

𝑑𝑦

𝑑𝑥
= 3𝑦2

𝑑𝑦

𝑑𝑥
 

To differentiate 𝑥𝑦2 with respect to 𝑥, with the assumption 

that 𝑦 is a function of 𝑥, we use the product rule as follows:  

𝑑

𝑑𝑥
(𝑥𝑦2) =

𝑑

𝑑𝑥
(𝑥) × 𝑦2 + 𝑥 ×

𝑑

𝑑𝑥
(𝑦2) 

= 1 × 𝑦2 + 𝑥 × [
𝑑

𝑑𝑥
(𝑦2) ∙

𝑑𝑦

𝑑𝑥
] 

= 𝑦2 + 𝑥 [2𝑦
𝑑𝑦

𝑑𝑥
] 

∴
𝑑𝑦

𝑑𝑥
= 𝑦2 + 2𝑥𝑦

𝑑𝑦

𝑑𝑥
 

In general, if we have a term of the form 𝑥𝑚𝑦𝑛, then we use 

the product rule and obtain 

𝑑

𝑑𝑥
(𝑥𝑚𝑦𝑛) = 𝑥𝑚

𝑑

𝑑𝑥
(𝑦𝑛) + 𝑦𝑛

𝑑

𝑑𝑥
(𝑥𝑚) 

= 𝑛𝑥𝑚 𝑦𝑛−1
𝑑𝑦

𝑑𝑥
+ 𝑚𝑥𝑚−1𝑦𝑛 

 

Example 1 

Find the gradient of the curve 2𝑥2 + 𝑦3 − 𝑦 = 2  at the 

point (1, 1). 

Solution 

We start by differentiating both sides of the equation w.r.t 𝑥 

𝑑

𝑑𝑥
(2𝑥2 + 𝑦3 − 𝑦) =

𝑑

𝑑𝑥
(2) 

Then, we differentiate each term in the expression w.r.t 𝑥 

𝑑

𝑑𝑥
(2𝑥2) +

𝑑

𝑑𝑥
(𝑦3) −

𝑑

𝑑𝑥
(𝑦) = 0 

Use the chain rule 

4𝑥 +
𝑑

𝑑𝑦
(𝑦3) ∙

𝑑𝑦

𝑑𝑥
−

𝑑

𝑑𝑦
(𝑦) ∙

𝑑𝑦

𝑑𝑥
= 0 

4𝑥 + 3𝑦2
𝑑𝑦

𝑑𝑥
−

𝑑𝑦

𝑑𝑥
= 0 

Then group the 
𝑑𝑦

𝑑𝑥
 terms and factorise: 

4𝑥 + (3𝑦2 − 1)
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
= −

4𝑥

3𝑦2 − 1
 

To find the gradient of the curve at the point (1, 1), we 

substitute the values 𝑥 = 1 and 𝑦 = 1 into the equation of 

the derivative 

𝑑𝑦

𝑑𝑥
= −

4

3 − 1
= −2 

 

Example 2 

Find 
𝑑𝑦

𝑑𝑥
 when 𝑥3 + 8𝑥𝑦 + 𝑦3 = 64 

Solution 

Differentiating on both sides with respect to 𝑥 

3𝑥2 + 8 [𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 (1)] + 3𝑦2

𝑑𝑦

𝑑𝑥
= 0 

3𝑥2 + 8𝑦 + 8𝑥
𝑑𝑦

𝑑𝑥
+ 3𝑦2

𝑑𝑦

𝑑𝑥
= 0 

(3𝑥2 + 8𝑦) + (8𝑥 + 3𝑦2)
𝑑𝑦

𝑑𝑥
= 0 

𝑑𝑦

𝑑𝑥
= −

(3𝑥2 + 8𝑦)

(8𝑥 + 3𝑦2)
 

 

Example 3 

Find the equation of the tangent to the curve defined by 

𝑥2𝑦 − 𝑦 = 𝑥2 − 4 at the point where it crosses the positive 

𝑥-axis. 

Solution 

We first determine the gradient function; 

𝑑

𝑑𝑥
(𝑥2𝑦 − 𝑦) =

𝑑

𝑑𝑥
(𝑥2 − 4) 

2𝑥𝑦 + 𝑥2
𝑑𝑦

𝑑𝑥
−

𝑑𝑦

𝑑𝑥
= 2𝑥 

(𝑥2 − 1)
𝑑𝑦

𝑑𝑥
= 2𝑥 − 2𝑥𝑦 

𝑑𝑦

𝑑𝑥
=

2𝑥(1 − 𝑦)

(𝑥2 − 1)
 

At the point where the curve crosses the 𝑥-axis, we have 𝑦 =

0, so substituting 𝑦 = 0 into the equation of the curve we 

have: 

𝑥2(0) − (0) = 𝑥2 − 4  

𝑥2 = 4 

𝑥 = ±2 

As we are only interested in the positive 𝑥-axis, we choose 

𝑥 = 2. 

So the gradient of the tangent at the point (2, 0) is given by  

𝑑𝑦

𝑑𝑥
=

2 × 2(1 − 0)

22 − 1
=

4

3
 

Now, the equation of the tangent is given by  
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RATES OF CHANGE  

We have seen that 
𝑑𝑦

𝑑𝑥
 measures the rate of change of a 

quantity 𝑦 with respect to another quantity 𝑥. In the same 

way, we have that  

𝑑𝐴

𝑑𝑟
 measures the rate of change of 𝐴 w.r.t  r 

𝑑𝑉

𝑑𝑡
 measures the rate of change of 𝑉 w.r.t  t 

𝑑𝑃

𝑑𝑉
 measures the rate of change of 𝑃 w.r.t  V 

For example, if 𝐴 𝑚2 measures the area of a circle of radius 

𝑟 𝑚, then 
𝑑𝐴

𝑑𝑟
 measures the rate of change of the area 𝐴 with 

respect to its radius 𝑟. Then as 𝐴 = 𝜋𝑟2 ⇒
𝑑𝐴

𝑑𝑟
= 2𝜋𝑟 

We note that a rate of change statement needs to have two 

quantities specified: 

1. what quantity is changing, and  

2. what it is changing with respect to 

 

Example 1 

Find the rate of change of the volume of a sphere with 

respect to its radius. 

Solution 

Volume 𝑉 of a sphere of radius 𝑟 is given by  

𝑉 =
4

3
𝜋𝑟3 

𝑑𝑉

𝑑𝑟
= 4𝜋𝑟2 

 

Example 2 

Let 𝐴 be the surface area of a spherical balloon. What is the 

rate of increase in the surface area of the balloon when the 

radius 𝑟 is 6 cm, and the radius is increasing at 0.08 cm/sec? 

Solution 

We want to find 
𝑑𝐴

𝑑𝑡
 and we know that 𝐴 = 4𝜋𝑟2 

𝑑𝐴

𝑑𝑟
= 8𝜋𝑟 

𝑑𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑟
×

𝑑𝑟

𝑑𝑡
 

𝑑𝐴

𝑑𝑡
= 8𝜋𝑟 ×

𝑑𝑟

𝑑𝑡
 

When 𝑟 = 6 and 
𝑑𝑟

𝑑𝑡
= 0.08 

𝑑𝐴

𝑑𝑡
= 8𝜋 × 6 × 0.08 = 3.84𝜋 cm2/sec 

 

Example 3 

The radius of a circular oil patch is increasing at a rate of 

1.2 cm per minute. Find the rate at which the surface area of 

the patch is increasing when the radius is 25 cm.  

Solution 

We need to find 
𝑑𝐴

𝑑𝑡
 when 𝑟 = 25 given 

𝑑𝑟

𝑑𝑡
= 1.2  

𝑑𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑟
×

𝑑𝑟

𝑑𝑡
 

Area of circular patch, 𝐴 = 𝜋𝑟2 

𝑑𝐴

𝑑𝑟
= 2𝜋𝑟 

⇒
𝑑𝐴

𝑑𝑡
= 2𝜋𝑟 ×

𝑑𝑟

𝑑𝑡
 

With 𝑟 = 25 and 
𝑑𝑟

𝑑𝑡
= 1.2 we have 

𝑑𝐴

𝑑𝑡
= 2𝜋(25) × 1.2 = 60𝜋 = 188.5 cm2min−1 

 

Example 4 

The volume of a cube is increasing at 24 cm3s−1. At what 

rate are the side lengths increasing when the volume is 

1000 cm3? 

Solution 

Let the 𝑉 cm3 denote the volume of the cube of side length 

𝑥 cm. 

We want 
𝑑𝑥

𝑑𝑡
  when 𝑉 = 1000, given 

𝑑𝑉

𝑑𝑡
= 24 

𝑉 = 𝑥3 

𝑑𝑉

𝑑𝑥
= 3𝑥2 

𝑑𝑥

𝑑𝑡
=

𝑑𝑥

𝑑𝑉
×

𝑑𝑉

𝑑𝑡
 

𝑑𝑥

𝑑𝑡
=

1

3𝑥2
×

𝑑𝑉

𝑑𝑡
 

When 𝑉 = 1000, 𝑥3 = 1000 ⇒ 𝑥 = 10 

∴
𝑑𝑥

𝑑𝑡
=

1

3(10)2
× 24 = 0.08 cms−1 

 

Example 5 

A container in the shape of an inverted right circular cone of 

base radius 10 cm and height 50 cm has water poured into it 

at a rate of 5 cm3min−1. Find the rate at which the level of 

the water is rising when it reaches a height of 10 cm. 

Solution 

Let the water level at time 𝑡 min have a height ℎ cm with a 

corresponding radius 𝑟 cm and volume 𝑉 cm3 

 

We want 
𝑑ℎ

𝑑𝑡
 when ℎ = 10 given 

𝑑𝑉

𝑑𝑡
= 5 

Before we can find 
𝑑𝑉

𝑑ℎ
 , we need an expression for V in terms 

of ℎ and make use of figure B (similar triangles) 

10 cm 
10 cm 

 
50 cm 

ℎ cm 

50 cm 

𝑟 cm 

water 

Figure A Figure B 
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Determine the maximum volume of the box if 6 m2 of

metal are used in its construction.  

[Ans: 0.8 m2]

23. Determine the coordinates of the maximum and

minimum values of the graph 𝑦 =
𝑥3

3
−

𝑥2

2
− 6𝑥 +

5

3

and distinguish between them. Sketch the graph. 

[Ans: (a) max (−2, 9) ;  min (3, −11
5

6
)] 

24. Show that the curve 𝑦 =
2

3
(𝑡 − 1)3 + 2𝑡(𝑡 − 2) has a

maximum value of 
2

3
 and a minimum value of −2. 

25. A closed cylindrical container has a surface area of

400 cm2. Determine the dimensions for the maximum

volume.

[Ans: 𝑟 = 4.607 cm; ℎ = 9.212 cm] 

26. Calculate the height of a cylinder of maximum volume

that can be cut from a cone of height 20 cm and base

radius 80 cm.

[Ans: 6.67 cm] 

27. Find the height and radius of a closed cylinder of

volume 125 cm3 which has the least surface area.

[Ans: 𝑟 = 2.71 cm; ℎ = 5.42 cm] 

28. The radius of a circular oil patch is increasing at a rate

of 1.2 cm per minute. Find the rate at which the surface

area of the patch is increasing when radius is 25 cm.

[Ans: 188.5 cm2min-1]

29. A right circular cylinder of radius 𝑟 cm and height ℎ

cm is to have a fixed volume of 30 cm3.

(a) Show that the surface area, 𝐴 𝑐𝑚2 of such a

cylinder is given by

𝐴 = 2𝜋𝑟 (𝑟 +
30

𝜋𝑟2
) 

(b) Determine the value of 𝑟 that will yield the

minimum surface area.

[Ans: √
15

𝜋

3
] 

30. A right-circular cone of radius 𝑟 cm contains a sphere

of radius 12 cm.

(a) If the height of the cone is ℎ cm, express ℎ in terms

of 𝑟.

(b) If 𝑉 cm3 denotes the volume of the cone, find an

expression for 𝑉 in terms of 𝑟.

(c) Find the dimensions of the cone with the smallest

volume.

[Ans: (a) ℎ =
24𝑟2

𝑟2−144
  (b) 

8𝜋𝑟4

𝑟2−144
(c) 𝑟 = 12√2, ℎ = 48]

31. A piece of wire 30 cm long is cut into 2 pieces. One of

the pieces is bent into a square while the other is bent

into a circle. Find the ratio of the side length of the

square to the radius of the circle which provides the

smallest area sum.

[Ans: 2 ∶ 1] 

32. A closed tin is to be constructed as shown in the

diagram. It is made up of a cylinder of height ℎ cm and

radius base 𝑟 cm which is surmounted by a

hemispherical cap.

(a) Find an expression in terms of 𝑟 and ℎ for

(i) its volume, 𝑉 cm3

(ii) its surface area, 𝐴 cm2

(b) Given that 𝑉 = 𝜋𝑘3, 𝑘 > 0, show that its surface

area is given by

𝐴 =
2𝜋𝑘3

𝑟
+

5𝜋𝑟2

3
(c) Find the ratio 𝑟 ∶ ℎ for 𝐴 to be minimum

[Ans: (a) (i) 𝜋𝑟2ℎ +
2

3
𝜋𝑟3 (ii) 3𝜋𝑟2 + 2𝜋𝑟ℎ (c) 1 ∶ 1]

33. A closed cylindrical tin can be designed. Its volume is

to be 1000 𝑐𝑚3. Its curved surface is to be shaped

from a rectangular piece of tin sheet. Each of its

circular ends (of radius 𝑟 cm) is to be cut from a square

of tin sheet, as shown, with the shaded sections being

wasted.

(a) If ℎ cm is the height of the can, express ℎ in terms

of 𝑟.

Hence show that the area, 𝐴 cm2, of tin sheet

needed for a can is given by

𝐴 =
2000

𝑟
+ 8𝑟2

(b) Find the radius and height of the can for which the

area of tin sheet needed is a minimum.

[Ans: (a) ℎ =
1000

𝜋𝑟2 (b) 𝑟 = 5 cm, height = 12.7 cm]

𝑟 cm 

ℎ cm 

𝑟 
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Differentiation of 𝒆𝒙

Recall from Exponential & Log functions that the value of 

𝑒 is chosen such that the gradient function of 𝑦 = 𝑒𝑥 is the

same as the original function and when 𝑥 = 0, the gradient 

of 𝑦 = 𝑒𝑥 is 1.

Hence:  

𝑦 = 𝑒𝑥  
𝑑𝑦

𝑑𝑥
= 𝑒𝑥

𝑦 = 𝑒𝑘𝑥  
𝑑𝑦

𝑑𝑥
= 𝑘𝑒𝑘𝑥

𝑦 = 𝑒𝑓(𝑥)  
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥)𝑒𝑓(𝑥)

Example 1 

Differentiate 𝑦 = 5𝑒3𝑥 + 2𝑒−4𝑥

Solution 

𝑑𝑦

𝑑𝑥
= 5 × 3𝑒5𝑥 + 2 × (−4)𝑒4𝑥

𝑑𝑦

𝑑𝑥
= 15𝑒3𝑥 − 8𝑒−4𝑥

Example 2 

Differentiate 𝑦 = 𝑒𝑥3

Solution 

𝑢 = 𝑥3  
𝑑𝑢

𝑑𝑥
= 3𝑥2

𝑦 = 𝑒𝑢  
𝑑𝑦

𝑑𝑢
= 𝑒𝑢

𝑑𝑦

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
×

𝑑𝑦

𝑑𝑢
𝑑𝑦

𝑑𝑥
= 3𝑥2 × 𝑒𝑢 = 3𝑥2𝑒𝑢

𝑑𝑦

𝑑𝑥
= 3𝑥2𝑒𝑥3

Example 3 

Differentiate 𝑦 = 𝑒(𝑥−1)2

Solution 

𝑢 = (𝑥 − 1 )2  
𝑑𝑢

𝑑𝑥
= 2(𝑥 − 1)1(1) = 2(𝑥 − 1)

𝑦 = 𝑒𝑢  
𝑑𝑦

𝑑𝑢
= 𝑒𝑢

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
𝑑𝑦

𝑑𝑥
= 𝑒𝑢 × 2(𝑥 − 1)

𝑑𝑦

𝑑𝑥
= 2(𝑥 − 1)𝑒(𝑥−1)2

 

Differentiation of 𝐥𝐧 𝒙 

Recall that ln 𝑥 is the reciprocal function of 𝑒𝑥 and that 𝑦 =

𝑒𝑥 is a reflection of 𝑦 = ln 𝑥 in the line 𝑦 = 𝑥

𝑦 = ln 𝑥 
𝑑𝑦

𝑑𝑥
=

1

𝑥

𝑦 = ln 𝑓(𝑥) 
𝑑𝑦

𝑑𝑥
=

𝑓′(𝑥)

𝑓(𝑥)

Note that if: 

𝑦 = ln 𝑘𝑥  ⇒ 𝑦 = ln 𝑘 + ln 𝑥
𝑑𝑦

𝑑𝑥
= 0 +

1

𝑥
=

1

𝑥
This can be shown thus:  

Recall that 
𝑑𝑦

𝑑𝑥
=

1
𝑑𝑥

𝑑𝑦

If     𝑦 = ln 𝑥     then  𝑥 = 𝑒𝑦

Differentiate w.r.t 𝑦 

𝑑𝑥

𝑑𝑦
= 𝑒𝑦

Hence 
𝑑𝑥

𝑑𝑦
= 𝑥 

𝑑𝑦

𝑑𝑥
=

1

𝑑𝑥
𝑑𝑦

=
1

𝑥

Example 4 

Differentiate 𝑦 = ln 𝑥2

Solution 

𝑢 = 𝑥2  
𝑑𝑢

𝑑𝑥
= 2𝑥 

𝑦 = ln 𝑢  
𝑑𝑦

𝑑𝑢
=

1

𝑢
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
= 2𝑥 ×

1

𝑢
=

2𝑥

𝑥2
=

2

𝑥

Example 5 

Differentiate 𝑦 = ln(𝑥2√2𝑥3 + 3)

Solution 

𝑦 = ln (𝑥2√2𝑥3 + 3)

𝑦 = ln 𝑥2 + ln √2𝑥3 + 3

𝑦 = 2 ln 𝑥 +
1

2
ln(2𝑥3 + 3)

𝑑𝑦

𝑑𝑥
=

2

𝑥
+

1

2
(

6𝑥2

2𝑥3 + 3
) 

𝑑𝑦

𝑑𝑥
=

2(2𝑥3 + 3) + 3𝑥3

𝑥(2𝑥3 + 3)
=

7𝑥3 + 3

𝑥(2𝑥3 + 3)

Example 6 

Differentiate 𝑦 = 𝑒𝑥 ln 2

Chapter 

25 

Differentiation of exponential and logarithmic 

functions 
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1

𝑦
 
𝑑𝑦

𝑑𝑥
=

𝑥

𝑥2 + 2
+

1

2(𝑥 − 1)
−

1

𝑥 + 3
 

𝑑𝑦

𝑑𝑥
= 𝑦 [

𝑥

𝑥2 + 2
+

1

2(𝑥 − 1)
−

1

𝑥 + 3
] 

𝑑𝑦

𝑑𝑥
= 𝑦 [

𝑥(𝑥−1)(𝑥+3)+(𝑥2+2)(𝑥+3)−2(𝑥2+2)(𝑥−1)

2(𝑥2+2)(𝑥−1)(𝑥+3)
]  

𝑑𝑦

𝑑𝑥
= 𝑦 [

7𝑥2 − 5𝑥 + 10

2(𝑥2 + 2)(𝑥 − 1)(𝑥 + 3)
] 

𝑑𝑦

𝑑𝑥
=

(1 − 𝑥)√𝑥2 + 2

(𝑥 + 3)√𝑥 − 1
[

7𝑥2 − 5𝑥 + 10

2(𝑥2 + 2)(𝑥 − 1)(𝑥 + 3)
] 

𝑑𝑦

𝑑𝑥
=

−(7𝑥2 − 5𝑥 + 10)

2(𝑥 + 3)2√(𝑥 − 1)(𝑥2 + 2)
 

 

Example 14 

Given that 𝑥 = ln(sec 3𝑦). Find an expression for 
𝑑𝑦

𝑑𝑥
 in 

terms of 𝑥. 

Solution 

𝑥 = ln(sec 3𝑦)  

𝑥 = log𝑒 sec 3𝑦 

sec 3𝑦 = 𝑒𝑥 

3 sec 3𝑦 tan 3𝑦  𝑑𝑦 = 𝑒𝑥 𝑑𝑥 

𝑑𝑦

𝑑𝑥
=

1

3 tan 3𝑦
 

𝑑𝑦

𝑑𝑥
=

1

3√sec2 3𝑦 − 1
 

𝑑𝑦

𝑑𝑥
=

1

3√𝑒2𝑥 − 1
 

 

Example 15 

A curve has equation 𝑦 = 𝑥−𝑥. Show that 

𝑦
𝑑2𝑦

𝑑𝑥2
= (

𝑑𝑦

𝑑𝑥
)

2

−
𝑦2

𝑥
 

Solution 

𝑦 = 𝑥−𝑥 

Taking logs on both sides  

ln 𝑦 = ln 𝑥−𝑥 

ln 𝑦 = −𝑥 ln 𝑥 

𝑑

𝑑𝑥
(ln 𝑦) =

𝑑

𝑑𝑥
(−𝑥 ln 𝑥) 

1

𝑦

𝑑𝑦

𝑑𝑥
= −1 × ln 𝑥 − 𝑥 ×

1

𝑥
 

1

𝑦

𝑑𝑦

𝑑𝑥
= − ln 𝑥 − 1 

𝑑𝑦

𝑑𝑥
= −𝑦(1 + ln 𝑥) 

Differentiate w.r.t 𝑥 again 

𝑑2𝑦

𝑑𝑥2
= −1

𝑑𝑦

𝑑𝑥
(1 + ln 𝑥) − 𝑦 (0 +

1

𝑥
) 

𝑑2𝑦

𝑑𝑥2
= −

𝑑𝑦

𝑑𝑥
(1 + ln 𝑥) −

𝑦

𝑥
 

From the expression of 
𝑑𝑦

𝑑𝑥
, 1 + ln 𝑥 = −

1

𝑦

𝑑𝑦

𝑑𝑥
  

Thus  

𝑑2𝑦

𝑑𝑥2
= −

𝑑𝑦

𝑑𝑥
(−

1

𝑦

𝑑𝑦

𝑑𝑥
) −

𝑦

𝑥
 

𝑑2𝑦

𝑑𝑥2
=

1

𝑦
(

𝑑𝑦

𝑑𝑥
)

2

−
𝑦

𝑥
 

𝑦
𝑑2𝑦

𝑑𝑥2
= (

𝑑𝑦

𝑑𝑥
)

2

−
𝑦2

𝑥
 

 

Example 16 

A curve has equation 𝑦 = 𝑥 − 2 ln(𝑥2 + 4). 

(a) Show clearly that  

𝑑2𝑦

𝑑𝑥2
=

4(𝑥2 − 4)

(𝑥2 + 4)2
 

The curve has a single stationary point.  

(b) Find its exact coordinates and determine its nature.  

Solution 

(a)     𝑦 = 𝑥 − 2 ln(𝑥2 + 4) 

𝑑𝑦

𝑑𝑥
= 1 −

2

𝑥2 + 4
× 2𝑥 

𝑑𝑦

𝑑𝑥
= 1 −

4𝑥

𝑥2 + 4
 

𝑑2𝑦

𝑑𝑥2
= −

(𝑥2 + 4) × 4 − 4𝑥(2𝑥)

(𝑥2 + 4)2
 

𝑑2𝑦

𝑑𝑥2
= −

4𝑥2 + 16 − 8𝑥2

(𝑥2 + 4)2
 

𝑑2𝑦

𝑑𝑥2
=

4𝑥2 − 16

(𝑥2 + 4)2
 

𝑑2𝑦

𝑑𝑥2
=

4(𝑥2 − 4)

(𝑥2 + 4)2
 

(b) 
𝑑𝑦

𝑑𝑥
= 0 

1 −
4𝑥

𝑥2 + 4
= 0 

𝑥2 + 4 − 4𝑥

𝑥2 + 4
= 0 

𝑥2 − 4𝑥 + 4 = 0 

(𝑥 − 2)2 = 0 

𝑥 = 2 

𝑦 = 2 − ln 8 

𝑑2𝑦

𝑑𝑥2
|

𝑥=2

=
4(22 − 4)

(22 + 4)2
= 0 

∴ (2, 2 − 6 ln 2) is a stationary point of inflection  

 

Example 17 

Given that 𝑦 = 3 cos(ln 𝑥) + 2 sin(ln 𝑥), show clearly that  

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
= −𝑦 

Solution 

𝑦 = 3 cos(ln 𝑥) + 2 sin(ln 𝑥) 

𝑑𝑦

𝑑𝑥
= −3 sin(ln 𝑥) ×

1

𝑥
+ 2 cos(ln 𝑥) ×

1

𝑥
 

𝑥
𝑑𝑦

𝑑𝑥
= −3 sin(ln 𝑥) + 2 cos(ln 𝑥) 
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cos 𝜃 = 1 − 2 sin2 (
𝜃

2
) 

sin
𝜃

2
≈

𝜃

2

cos 𝜃 ≈ 1 −
2𝜃2

4
= 1 −

𝜃2

2

Derivative of 𝐬𝐢𝐧 𝒙 and 𝐜𝐨𝐬 𝒙 

1. 𝐬𝐢𝐧 𝒙

Let 𝑦 = sin 𝑥

𝑦 + 𝛿𝑦 = sin(𝑥 + 𝛿𝑥) 

𝛿𝑦 = sin(𝑥 + 𝛿𝑥) − 𝑦 = sin(𝑥 + 𝛿𝑥) − sin 𝑥 

𝛿𝑦 = 2 cos (
𝑥 + 𝛿𝑥 + 𝑥

2
) sin (

𝑥 + 𝛿𝑥 − 𝑥

2
) 

= 2 cos (𝑥 +
𝛿𝑥

2
) sin (

𝛿𝑥

2
) 

Dividing by 𝛿𝑥; 

𝛿𝑦

𝛿𝑥
=

cos (𝑥 +
𝛿𝑥
2

) sin (
𝛿𝑥
2

)

1
2

𝛿𝑥

The limit as 𝛿𝑥 → 0, 
𝛿𝑦

𝛿𝑥
→

𝑑𝑦

𝑑𝑥
, sin (

𝛿𝑥

2
) ≈

𝛿𝑥

2

Therefore cos (𝑥 +
𝛿𝑥

2
) ≈ cos 𝑥 

𝑑𝑦

𝑑𝑥
= cos 𝑥 

∴
𝑑

𝑑𝑥
(sin 𝑥) = cos 𝑥 

2. 𝐜𝐨𝐬 𝒙

Let 𝑦 = cos 𝑥

𝑦 + 𝛿𝑦 = cos(𝑥 + 𝛿𝑥)

𝛿𝑦 = cos(𝑥 + 𝛿𝑥) − cos 𝑥

= −2 sin (
𝑥 + 𝛿𝑥 + 𝑥

2
) sin (

𝑥 + 𝛿𝑥 − 𝑥

2
) 

𝛿𝑦

𝛿𝑥
=

− sin (𝑥 +
𝛿𝑥
2

) sin (
𝛿𝑥
2

)

𝛿𝑥
2

The limit as 𝛿𝑥 → 0; 
𝛿𝑦

𝛿𝑥
→

𝑑𝑦

𝑑𝑥
, sin (

𝛿𝑥

2
) ≈

𝛿𝑥

2

∴
𝑑𝑦

𝑑𝑥
=

− sin 𝑥
𝛿𝑥
2

𝛿𝑥
2

= − sin 𝑥 

∴
𝑑

𝑑𝑥
(cos 𝑥) = − sin 𝑥 

Defining other Trigonometric functions 

This depends on 3 ideas:  

• Definitions of tan 𝑥, cot 𝑥, sec 𝑥 & cosec 𝑥 in terms

of sin 𝑥 and cos 𝑥

• The differential of sin 𝑥 and cos 𝑥

• Product and quotient rules of differentiation

3. 𝐭𝐚𝐧 𝒙

𝑦 = tan 𝑥 

𝑦 =
sin 𝑥

cos 𝑥
Using the quotient rule; 

𝑑𝑦

𝑑𝑥
=

cos 𝑥 × cos 𝑥 − sin 𝑥 × − sin 𝑥

cos2 𝑥

=
cos2 𝑥 + sin2 𝑥

cos2 𝑥
=

1

cos2 𝑥
= sec2 𝑥

4. 𝐜𝐨𝐭 𝒙

𝑦 = cot 𝑥 =
1

tan 𝑥
= (tan 𝑥)−1

Let 𝑢 = tan 𝑥, 
𝑑𝑢

𝑑𝑥
= sec2 𝑥

𝑦 = 𝑢−1, 
𝑑𝑦

𝑑𝑢
= −𝑢−2 = −

1

𝑢2 = −
1

tan2 𝑥 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
= −

1

tan2 𝑥
× sec2 𝑥

𝑑𝑦

𝑑𝑥
= −

cos2 𝑥

sin2 𝑥
×

1

cos2 𝑥
= −

1

sin2 𝑥
= − cosec2 𝑥

5. 𝐬𝐞𝐜 𝒙

𝑦 = sec 𝑥 =
1

cos 𝑥
= (cos 𝑥)−1

Let 𝑢 = cos 𝑥  , 
𝑑𝑢

𝑑𝑥
= − sin 𝑥 

𝑦 = 𝑢−1 ⇒
𝑑𝑦

𝑑𝑢
= −𝑢−2 = −

1

𝑢2
= −

1

cos2 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
= −

1

cos2 𝑥
× − sin 𝑥 

𝑑𝑦

𝑑𝑥
=

sin 𝑥

cos 𝑥
×

1

cos 𝑥
= tan 𝑥 sec 𝑥 

6. 𝐜𝐨𝐬𝐞𝐜 𝒙

𝑦 = cosec 𝑥 =
1

sin 𝑥
= (sin 𝑥)−1

Let 𝑢 = sin 𝑥 ⇒
𝑑𝑢

𝑑𝑥
= cos 𝑥 

𝑦 = 𝑢−1 ⇒
𝑑𝑦

𝑑𝑢
= −𝑢−2

Use the chain rule: 
𝑑𝑦

𝑑𝑥
=

𝑑𝑢

𝑑𝑥
×

𝑑𝑦

𝑑𝑢

𝑑𝑦

𝑑𝑥
= cos 𝑥 × (−𝑢−2)

𝑑𝑦

𝑑𝑥
= −

cos 𝑥

sin2 𝑥
= −

1

tan 𝑥 sin 𝑥
= − cot 𝑥 cosec 𝑥 

Or use the quotient rule: 

𝑢 = 1;  
𝑑𝑢

𝑑𝑥
= 0 

𝑣 = sin 𝑥;  
𝑑𝑣

𝑑𝑥
= cos 𝑥 

𝑑𝑦

𝑑𝑥
=

sin 𝑥 × 0 − 1 × cos 𝑥

sin2 𝑥
=

− cos 𝑥

sin2 𝑥
= − cot 𝑥 cosec 𝑥 

Example 4 

Prove by first principles, and using small angle 

approximations for sin 𝑥 and cos 𝑥, that  
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𝑑

𝑑𝑥
(tan 𝑥) = sec2 𝑥 

Solution 

𝑓′(𝑥) = lim
𝛿𝑥→0

[
𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)

𝛿𝑥
] 

𝑑

𝑑𝑥
(tan 𝑥) = lim

𝛿𝑥→0
[
tan(𝑥 + 𝛿𝑥) − tan 𝑥

𝛿𝑥
] 

= lim
𝛿𝑥→0

[

sin(𝑥 + 𝛿𝑥)
cos(𝑥 + 𝛿𝑥)

−
sin 𝑥
cos 𝑥

𝛿𝑥
] 

= lim
𝛿𝑥→0

[
sin(𝑥 + 𝛿𝑥) cos 𝑥 − cos(𝑥 + 𝛿𝑥) sin 𝑥

𝛿𝑥 cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

= lim
𝛿𝑥→0

[
sin[(𝑥 + 𝛿𝑥) − 𝑥]

𝛿𝑥 cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

= lim
𝛿𝑥→0

[
sin 𝛿𝑥

𝛿𝑥 cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

= lim
𝛿𝑥→0

[
1

cos 𝑥 cos(𝑥 + 𝛿𝑥)
×

sin 𝛿𝑥

𝛿𝑥
] 

As 𝛿𝑥 → 0, 
sin 𝛿𝑥

𝛿𝑥
→ 1 and cos(𝑥 + 𝛿𝑥) → cos 𝑥 

𝑓′(𝑥) =
1

cos2 𝑥
= sec2 𝑥 

 

Example 5 

Prove by first principles, and by using small angle 

approximations for sin 𝑥 and cos 𝑥, that  

𝑑

𝑑𝑥
(sec 𝑥) = sec 𝑥 tan 𝑥 

Solution 

𝑓′(𝑥) = lim
𝛿𝑥→0

[
𝑓(𝑥 + 𝛿𝑥) − 𝑓(𝑥)

𝛿𝑥
] 

𝑑

𝑑𝑥
(sec 𝑥) = lim

𝛿𝑥→0
[
sec(𝑥 + 𝛿𝑥) − sec 𝑥

𝛿𝑥
] 

= lim
𝛿𝑥→0

[

1
cos(𝑥 + 𝛿𝑥)

−
1

cos 𝑥

𝛿𝑥
] 

= lim
𝛿𝑥→0

[
cos 𝑥 − cos(𝑥 + 𝛿𝑥)

𝛿𝑥 cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

Using the trigonometric identity 

cos 𝐴 − cos 𝐵 ≡ −2 sin (
𝐴 + 𝐵

2
) sin (

𝐴 − 𝐵

2
) 

cos 𝑥 − cos(𝑥 + 𝛿𝑥) = −2 sin (
𝑥+𝑥+𝛿𝑥

2
) sin (

𝑥−𝑥−𝛿𝑥

2
)  

= −2 sin (𝑥 +
𝛿𝑥

2
) sin (

−𝛿𝑥

2
) 

𝑑

𝑑𝑥
(sec 𝑥) = lim

𝛿𝑥→0
[
−2 sin (𝑥 +

𝛿𝑥
2

) sin (
−𝛿𝑥

2
)

𝛿𝑥 cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

= lim
𝛿𝑥→0

[
sin (𝑥 +

𝛿𝑥
2

) sin (
𝛿𝑥
2

)

(
𝛿𝑥
2

) cos 𝑥 cos(𝑥 + 𝛿𝑥)
] 

As 𝛿𝑥 → 0, 
sin(

𝛿𝑥

2
)

𝛿𝑥

2

→ 1 

𝑑

𝑑𝑥
(sec 𝑥) =

sin 𝑥

cos2 𝑥
=

sin 𝑥

cos 𝑥
×

1

cos 𝑥
= tan 𝑥 sec 𝑥 

 

Summary 

Function 𝒇(𝒙) Differential  
𝒅𝒚

𝒅𝒙
= 𝒇′(𝒙) 

sin 𝑥 cos 𝑥 

cos 𝑥 − sin 𝑥 

tan 𝑥 sec2 𝑥 

cot 𝑥 − cosec 𝑥 

cosec 𝑥 − cosec 𝑥 cot 𝑥 

sec 𝑥 sec 𝑥 tan 𝑥 

 

Example 6 

Differentiate the following  

(a) 𝑦 = 𝑥3 sin 𝑥 

Let 𝑢 = 𝑥3 ⇒
𝑑𝑢

𝑑𝑥
= 3𝑥2 

𝑣 = sin 𝑥 ⇒
𝑑𝑣

𝑑𝑥
= cos 𝑥  

𝑑𝑦

𝑑𝑥
= 𝑥3 × cos 𝑥 + sin 𝑥 × 3𝑥2 

𝑑𝑦

𝑑𝑥
= 𝑥2(𝑥 cos 𝑥 + 3 sin 𝑥) 

(b) 𝑦 =
1

𝑥
cos 𝑥 

𝑦 =
cos 𝑥

𝑥
  

Let 𝑢 = cos 𝑥 ⇒
𝑑𝑢

𝑑𝑥
= − sin 𝑥 

      𝑣 = 𝑥 ⇒
𝑑𝑣

𝑑𝑥
= 1  

𝑑𝑦

𝑑𝑥
=

𝑥 × (− sin 𝑥) − cos 𝑥

𝑥2
 

𝑑𝑦

𝑑𝑥
=

−𝑥 sin 𝑥 − cos 𝑥

𝑥2
= −

𝑥 sin 𝑥 + cos 𝑥

𝑥2
 

(c) 𝑦 = cos4 𝑥 

𝑢 = cos 𝑥 ⇒
𝑑𝑢

𝑑𝑥
= − sin 𝑥 

𝑦 = 𝑢4 ⇒
𝑑𝑦

𝑑𝑢
= 4𝑢3 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
×

𝑑𝑢

𝑑𝑥
 

𝑑𝑦

𝑑𝑥
= 4𝑢3 × (− sin 𝑥) 

𝑑𝑦

𝑑𝑥
= 4 cos3 𝑥 (− sin 𝑥) = −4 cos3 𝑥 sin 𝑥 

(d) 𝑦 = ln sec 𝑥 

𝑢 = sec 𝑥 ,    𝑦 = ln 𝑢  
𝑑𝑢

𝑑𝑥
= sec 𝑥 tan 𝑥    

𝑑𝑢

𝑑𝑥
=

1

𝑢
 

𝑑𝑦

𝑑𝑥
= sec 𝑥 tan 𝑥 ×

1

sec 𝑥
= tan 𝑥 
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2. Given that 𝑦 =
sin 𝑥−cos 𝑥

sin 𝑥+cos 𝑥
; show that 

𝑑𝑦

𝑑𝑥
= 1 + 𝑦2.

Prove that 
𝑑2

𝑑𝑥2 is zero only when 𝑦 = 0. 

3. Given that 𝑓(𝑥) = sin4 𝑥 − cos4 𝑥, prove that 𝑓′(𝑥) =

2 sin 2𝑥.

4. Given that 𝑥 = 𝜃 − sin 𝜃, 𝑦 = 1 − cos 𝜃, show that

𝑑𝑦

𝑑𝑥
= cot

𝜃

2
 and that 

𝑑𝑦2

𝑑𝑥2 +
1

𝑦2 = 0.

5. If 𝑦 =
𝑥 cos 𝑥+sin 𝑥

𝑥2 , find 
𝑑𝑦

𝑑𝑥
 and simplify your answer as 

much as possible.

[Ans: 
(𝑥2+2) sin 𝑥

𝑥2 ] 

6. A curve has the equation 𝑦 = 𝑥 sin 2𝑥. Find the

gradient of the curve at 𝑥 =
𝜋

3
.

[Ans: 
√3

2
−

𝜋

2
] 

7. Differentiate the following functions w.r.t 𝑥

(a) sec 𝑥 + tan 𝑥

[Ans: sec 𝑥 (sec 𝑥 + tan 𝑥)] 

(b) sec 𝑥 tan 𝑥

[Ans: sec 𝑥 (sec2 𝑥 + tan2 𝑥)]

(c) cos 𝑥 tan 𝑥

[Ans: − cos 𝑥 − cot 𝑥 cosec 𝑥] 

(d) sec2 𝑥 + tan 𝑥

[Ans: sec2 𝑥 (1 + 2 tan 𝑥)]

(e) sec2 𝑥 + tan2 𝑥

[Ans: 4 sec2 𝑥 tan 𝑥]

(f) (cos 𝑥 + sin 𝑥)(sec 𝑥 + tan 𝑥)

[Ans: (sec 𝑥 + tan 𝑥)(1 − sin 𝑥 + cos 𝑥 + tan 𝑥)]

(g) 
sec 𝑥

sin 𝑥+cos 𝑥

[Ans: 
sec 𝑥(sin 𝑥 tan 𝑥+2 sin 𝑥−cos 𝑥)

(sin 𝑥+cos 𝑥)2 ] 

(h) 
sec 𝑥

1+sec 𝑥

[Ans: 
sec 𝑥 tan 𝑥

(1+sec 𝑥)2] 

(i) 
1−tan 𝑥

1+tan 𝑥

[Ans: −
2 sec2 𝑥

(1+tan 𝑥)2] 

(j) 
sin2 𝑥

cos 𝑥(cos 𝑥+sin 𝑥)

[Ans: 
2 sin 𝑥 cos 𝑥+sin2 𝑥

cos2 𝑥(cos 𝑥+sin 𝑥)2] 

(k) sin3 𝑥 tan 2𝑥

[Ans: 3 sin2 𝑥 cos 𝑥 tan 2𝑥 + 2 sin3 𝑥 sec2 2𝑥]

(l) (1 + sin2 𝑥)(1 − sin2 𝑥)

[Ans: −4 sin3 𝑥 cos 𝑥]

(m) (
cos 𝑥

1+sin 𝑥
)

3

[Ans: 
−3 cos2 𝑥

(1+sin 𝑥)3] 

(n) (1 − cos4 𝑥)(1 + cos4 𝑥)

[Ans: 8 cos7 𝑥 sin 𝑥]

(o) 
sin 𝑥

2+sin2 𝑥

[Ans: 
4 sin 𝑥 cos 𝑥

(2+sin2 𝑥)2] 

(p) sec3(tan2 3𝑥)

[Ans: 18 sec3(tan2 3𝑥) tan(tan2 3𝑥) tan 3𝑥 sec2 3𝑥]

(q) √
1+cos 𝑥

1−cos 𝑥

[Ans: −
1

1−cos 𝑥
] 

8. If 𝑦 = sin 𝑥, show that 
𝑑2𝑦

𝑑𝑥2 = −𝑦. 

9. If 𝑦 = tan 𝜃, show that 
𝑑2𝑦

𝑑𝑥2 = 2𝑦(1 + 𝑦2)

10. Show that 
𝑑

𝑑𝑥
(cot−1 𝑥) = −

1

1+𝑥2

11. Show that 
𝑑

𝑑𝑥
(cosec−1 𝑥) = −

1

𝑥√(𝑥2−1)

12. If 𝑦 = tan 𝑥 +
1

3
tan3 𝑥, prove that 

𝑑𝑦

𝑑𝑥
= (1 + tan2 𝑥)2

13. If 𝑦 =
cos 𝜃

𝜃
, find 

𝑑𝑦

𝑑𝜃
and 

𝑑2𝑦

𝑑𝜃
, prove that 

𝜃2
𝑑2𝑦

𝑑𝜃2
+ 4𝜃

𝑑𝑦

𝑑𝜃
+ (𝜃2 + 2)𝑦 = 0

14. If 𝑦 = √(4 + 3 sin 𝑥) prove that

2𝑦
𝑑2𝑦

𝑑𝑥2
+ 2 (

𝑑𝑦

𝑑𝑥
)

2

+ 𝑦2 = 4

15. Find 
𝑑𝜃

𝑑𝑡
 when 

(a) 𝜃 = sin 𝑡 sin 3𝑡

(b) 𝜃 = 𝑡2 sin−1 𝑡

[Ans: (a) 3 sin 𝑡 cos 3𝑡 + cos 𝑡 sin 3𝑡

 (b) 
2𝑡√1−𝑡2 sin−1 𝑡+𝑡2

√(1−𝑡2)
  ] 

16. Show that, if 𝑃 and 𝑄 are constants and 𝑦 =

𝑃 cos(ln 𝑡) + 𝑄 sin(ln 𝑡), then

𝑡2
𝑑2𝑦

𝑑𝑡2
+ 𝑡

𝑑𝑦

𝑑𝑡
+ 𝑦 = 0
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Example 2 

Sketch the graph of 𝑦 = 2 +
𝑥

𝑥2−1
 

Solution 

Intercepts:  

𝑦-intercept:  

When 𝑥 = 0, 𝑦 = 2 

⇒ (0, 2) is the 𝑦-intercept 

𝑥-intercepts: 

When 𝑦 = 0,  2 +
𝑥

𝑥2−1
= 0 

2𝑥2 − 2 + 𝑥 = 0 

2𝑥2 + 𝑥 − 2 = 0 

𝑥 =
−1 ± √17

4
 

𝑥 = 0.781  or  −1.281 

The curve cuts the 𝑥-axis at (0.781, 0) and (−1.281, 0) 

Asymptotes:  

Vertical asymptotes: 

These will correspond to values of 𝑥 for which the 

denominator is zero i.e.  

𝑥2 − 1 = 0 

(𝑥 − 1)(𝑥 + 1) = 0 

𝑥 = 1 or 𝑥 = −1 

The vertical asymptotes are 𝑥 = 1 and 𝑥 = −1 

Horizontal asymptote:  

We look at the behavior of 𝑦 as |𝑥| ⟶ ∞ or 𝑥 → ±∞ 

𝑦 = 2 +
𝑥

𝑥2 − 1
 

As 𝑥 → ±∞, 𝑦 → 2 + 0 

𝑦 = 2  is the horizontal asymptote 

Stationary points:  

We need to solve 
𝑑𝑦

𝑑𝑥
= 0 

𝑦 = 2 +
𝑥

𝑥2 − 1
 

𝑑𝑦

𝑑𝑥
=

(1)(𝑥2 − 1) − (𝑥)(2𝑥)

(𝑥2 − 1)2
=

−(𝑥2 + 1)

(𝑥2 − 1)
 

−(𝑥2 + 1)

(𝑥2 − 1)
= 0 

−(𝑥2 + 1) = 0 

for which there are no real solutions.  

Therefore, there are no stationary points on this curve 

After all this, we can now sketch the curve 𝑦 = 2 +
𝑥

𝑥2−1
 

 
 

Example 3 

Sketch the curve 𝑦 =
2𝑥 − 3

𝑥2 + 2𝑥 − 3
  

Solution 

Intercepts: 

When 𝑥 = 0, 𝑦 = 1 

The curve cuts the 𝑦-axis at (0, 1).  

When 𝑦 = 0, 2𝑥 − 3 = 0 

𝑥 =
3

2
 

The curve cuts the 𝑦-axis at (
3

2
, 0) 

Asymptotes:  

Vertical asymptotes, denominator = 0 

𝑥2 + 2𝑥 − 3 = 0 

𝑥2 + 3𝑥 − 𝑥 − 3 = 0 

𝑥(𝑥 + 3) − (𝑥 + 3) = 0 

(𝑥 + 3)(𝑥 − 1) = 0 

𝑥 = 1 and 𝑥 = −3 are vertical asymptotes 

Horizontal asymptote: 

𝑦 =
2𝑥 − 3

𝑥2 + 2𝑥 − 3
 

As 𝑥 → ±∞, 𝑦 → 0 

𝑦 = 0 (𝑥-axis) is the horizontal asymptote 

Critical values: 𝑥 = −3, 1, 
3

2
 

 𝑥 < −3 −3 < 𝑥 < 1 1 < 𝑥 <
3

2
  𝑥 >

3

2
  

𝑥 + 3 − + + + 

𝑥 − 1 − − + + 

2𝑥 − 3 − − − + 

𝑦 − + − + 

Rearranging the equation as a quadratic in 𝑥:  

𝑦(𝑥2 + 2𝑥 − 3) = 2𝑥 − 3 

𝑦𝑥2 + (2𝑦 − 2)𝑥 − 3𝑦 + 3 = 0 

For real values of 𝑥,  

(2𝑦 − 2)2 − 4𝑦(−3𝑦 + 3) ≥ 0 

4(𝑦 − 1)2 + 12𝑦(𝑦 − 1) ≥ 0 

4(𝑦 − 1){(𝑦 − 1) + 3𝑦} ≥ 0 

𝑦 

𝑥 
-2 

൬-
1

3
, 0൰ 

൬0,
1

4
൰ 

1.5 

𝑦 = 𝑓(𝑥) 𝑦 

𝑥 
-1 

(-1.281, 0) (0.781, 0) 

𝑥 = -1 𝑥 = 1 

𝑦 = 2 

1 

(0, 2) 
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Example 7 

A curve 𝐶 has equation  

𝑦 =
𝑥2 + 3

𝑥 − 1
 

Sketch the graph of 𝐶 

Solution 

This is an improper fraction which can be simplified by long 

division.  

                                              𝑥 + 1   

                              𝑥 − 1     𝑥2 + 3 

                                       −   𝑥2 − 𝑥 

                                                      𝑥 + 3 

                                                   −𝑥 − 1 

                                                             4                                              

𝑦 =
𝑥2 + 3

𝑥 − 1
= 𝑥 + 1 +

4

𝑥 − 1
 

Turning points: 

𝑑𝑦

𝑑𝑥
= 1 −

4

(𝑥 − 1)2
 

For turning points, 
𝑑𝑦

𝑑𝑥
= 0 

1 −
4

(𝑥 − 1)2
= 0 

(𝑥 − 1)2 = 4 

𝑥 − 1 = ±2 

𝑥 = 3 or 𝑥 = −1 

When 𝑥 = 3, 𝑦 = 3 + 1 +
4

3−1
= 6 ⇒ (3, 6) 

When 𝑥 = −1, 𝑦 = −1 + 2 +
4

−1−2
= −2 ⇒ (−1, −2) 

Determining the nature of the turning points; 

𝑥 𝐿 3 𝑅 𝐿 −1 𝑅 

𝑑𝑦

𝑑𝑥
 

− 0 + + 0 − 

  min   max  

(3, 6) is a minimum and (−1, −2) is a maximum  

Alternatively; determining the nature of the roots using the 

second derivative. 

𝑑2𝑦

𝑑𝑥2
=

8

(𝑥 − 1)3
 

𝑑2𝑦

𝑑𝑥2
|

𝑥=3

= 1 > 0 ⇒ minimum 

𝑑2𝑦

𝑑𝑥2
|

𝑥=−1

= −1 < 0 ⇒ maximum 

Asymptotes: 

𝑥 = 1 is a vertical asymptote (denominator = 0) 

As 𝑥 → ±∞, 𝑦 → 𝑥 + 1 

𝑦 = 𝑥 + 1 is the slanting asymptote 

Intercepts:  

When 𝑥 = 0, 𝑦 = −3 ⇒ (0, −3) 

When 𝑦 = 0, no solutions i.e. no 𝑥-intercepts  

 
 

Example 8 

A curve 𝐶 has equation  

𝑦 =
𝑥2 − 2𝑥 − 8

𝑥 − 6
 

Sketch the graph of 𝐶 

Solution 

                                              𝑥 + 4   

                              𝑥 − 6     𝑥2 − 2𝑥 − 8 

                                       −   𝑥2 − 6𝑥 

                                                      4𝑥 − 8 

                                                   − 4𝑥 − 24 

                                                                16                                              

Rewrite 𝑦 =
𝑥2 − 2𝑥 − 8

𝑥 − 6
      as       𝑥 + 4 +

16

𝑥 − 6
 

Intercepts:  

When 𝑥 = 0, 𝑦 =
4

3
     ⇒   (0,

4

3
) 

When 𝑦 = 0, 𝑥2 − 2𝑥 − 8 = 0 

(𝑥 − 4)(𝑥 + 2) = 0 

𝑥 = 4  or 𝑥 = −2 

⇒ (4, 0)  and (−2, 0) 

Asymptotes:  

Vertical asymptote, 𝑥 = 6 (denominator = 0)  

Oblique/slanting asymptote:  

As 𝑥 → ±∞, 𝑦 → 𝑥 + 4 

⇒ 𝑦 = 𝑥 + 4  is the slanting asymptote 

Turning points:  

𝑑𝑦

𝑑𝑥
= 1 −

16

(𝑥 − 6)2
 

1 −
16

(𝑥 − 6)2
= 0 

(𝑥 − 6)2 = 16 

𝑥 − 6 = ±4 

𝑥 = 10 or 𝑥 = 2 

𝑦 

𝑥 

𝑥 = 1 

𝑦 =
𝑥2+3

𝑥−1
  

  

(0, -3)  

𝑦 = 𝑥 + 1 

(-1, 2)  

(3, 6)  
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(a) For 𝑦 =
1

𝑓(𝑥)
 

𝑦 → ±∞, 𝑥 = 4, 𝑥 = −1 are vertical asymptotes  

(b) When 𝑓(𝑥) → ∞, 
1

𝑓(𝑥)
→ 0 

𝑦 = 0 is a horizontal asymptote 

(c) Turning point (
3

2
,

4

25
) is a minimum turning point  

 

Example 12 

Sketch on the same axes the graphs of  

(a) 𝑦 = 𝑥2 − 4𝑥 

(b) 𝑦 =
1

𝑥2−4𝑥
 

The sketch must include  

• the coordinates of any points where the graph of 𝐶 

meets the coordinate axes.  

• the coordinates of any stationary points.  

• the coordinates of any stationary points.  

• The equations of any asymptotes.  

Solution 

Intercepts:  

When 𝑥 = 0, 𝑦 = 0 

The curve cuts the 𝑦-axis at (0, 0) 

When 𝑦 = 0, 𝑥2 − 4𝑥 = 0 

𝑥(𝑥 − 4) = 0 

𝑥 = 0  or 𝑥 = 4 

The curve cuts the 𝑥-axis at (0, 0) and (4, 0) 

Turning points:  

𝑦 = 𝑥2 − 4𝑥 

𝑑𝑦

𝑑𝑥
= 2𝑥 − 4 

2𝑥 − 4 = 0 

𝑥 = 2 

When 𝑥 = 2, 𝑦 = 22 − 4(2) = −4 

⇒ (2, −4) is a turning point 

𝑑2𝑦

𝑑𝑥2
= 2 > 0 ⇒ minimum turning point  

Now  

For 𝑦 =
1

𝑥2−4𝑥
 

As 𝑦 → ±∞, 𝑥2 − 4𝑥 → 0, 

𝑥 = 0 and 𝑥 = 4 are vertical asymptotes.  

As 𝑦 → ∞, 
1

𝑥2−4𝑥
→ 0 

𝑦 = 0  is a horizontal asymptote  

Inversing the turning point; 

(2, −
1

4
) is a maximum turning point 

Critical values: 𝑥 = 0, 𝑥 = 4 

 𝑥 < 0  0 < 𝑥 < 4 𝑥 > 4 

𝑥(𝑥 − 4) + − + 

 

 

 

 
 

Self-Evaluative exercise  

1. Find the stationary points of the function given by  

𝑓(𝑥) =
(𝑥 + 1)(𝑥 + 4)

𝑥
 

Sketch the graph of 𝑓(𝑥) and find the range of 𝑓(𝑥). 

[Ans: The range for 𝑓(𝑥) is 𝑓(𝑥) ≤ 1 or 𝑓(𝑥) ≥ 9] 

2. Find the stationary points of the function 

𝑓(𝑥) =
4𝑥 − 5

(𝑥 − 1)(𝑥 + 1)
 

and determine the nature of each point. 

Sketch the graph of 𝑓(𝑥) and give the equations of the 

asymptotes. 

Give the range of 𝑓(𝑥) 

[Ans: 𝑓(𝑥) ≤ 1 or 𝑓(𝑥) ≥ 4]  

3. Sketch on the same axes the graphs of  

(c) 𝑦 = (𝑥 + 1)(2𝑥 − 3) 

(d) 𝑦 =
1

(𝑥+1)(2𝑥−3)
 

4. Given that 𝑓(𝑥) ≡
3𝑥+2

(2𝑥−1)(𝑥+3)
, express 𝑓(𝑥) in partial 

fractions.  

Sketch the 𝑦 = 𝑓(𝑥), showing the asymptotes and the 

points of intersection of the curve with the axes.  

Evaluate ∫ 𝑓(𝑥)
5

1
𝑑𝑥 and shade on your sketch the 

region whose area is equal to this integral.  

[Ans: 1.792] 

5. Show that 𝑓(𝑥) =
𝑥(𝑥−5)

(𝑥−3)(𝑥+2)
 has no turning points.  

Sketch the curve 𝑦 = 𝑓(𝑥) 

If g(𝑥) =
1

𝑓(𝑥)
, sketch the graph of 𝑦 = g(𝑥) on the 

same axes. Show the asymptotes and where 𝑓(𝑥) and 

g(𝑥) intersect.  

 

 

 

 

𝑦 

𝑥 
4 

𝑥 = -1 

𝑥 = 4 

0 

(2,-4)  

𝑦 =
1

𝑥2−4𝑥
  

  

2 

(2,-
1

4
)  
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Introduction 

One of the simplest kinds of function to deal with, in either 

algebra or calculus, is a polynomial (i.e. an expression of the 

form 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 + ⋯. Polynomials are easy to

substitute numerical values into, and they are easy to 

differentiate. One useful application of Maclaurin’s series is 

to approximate, to a polynomial, functions which are not 

already in polynomial form.  

Some mathematical functions may be represented as power 

series, containing terms in ascending powers of the variable. 

For example,  

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯

sin 𝑥 = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯

Using a series, called Maclaurin’s series, mixed functions 

containing, say, algebraic, trigonometric and exponential 

functions, may be expressed solely as algebraic functions, 

and the differentiation and integration can often be more 

readily performed.  

To expand a function using Maclaurin’s theorem, some 

knowledge of differentiation is needed. Given a general 

function 𝑓(𝑥), then 𝑓′(𝑥) is the first derivative, 𝑓′′(𝑥) is the

second derivative, and so on. Also, 𝑓(0) means he value of 

the function when 𝑥 = 0, 𝑓′(0) means the value of the first

derivative when 𝑥 = 0 and so on.  

Derivation of Maclaurin’s theorem 

Let the power series for 𝑓(𝑥) be  

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + ⋯ (i)

where 𝑎0, 𝑎1, 𝑎2, … are constants.

When 𝑥 = 0, 𝑓(0) = 𝑎0

Differentiating (i) w.r.t 𝑥 gives; 

𝑓′(𝑥) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥2 + 4𝑎2𝑥3 + 5𝑎𝑥4 + ⋯  (ii)

When 𝑥 = 0, 𝑓′(0) = 𝑎1

Differentiating (ii) w.r.t 𝑥 gives; 

𝑓′′(𝑥) = 2𝑎2 + (3)(2)𝑎3𝑥 + (4)(3)𝑎4𝑥2 + (5)(4)𝑎5𝑥3+. ..   

 (iii) 

When 𝑥 = 0, 𝑓′′(0) = 2𝑎2 = 2! 𝑎2 i.e. 𝑎2 =
𝑓′′(0)

2!

Differentiating (iii) w.r.t. 𝑥 gives: 

𝑓′′′(𝑥) = (3)(2)𝑎3 + (4)(3)(2)𝑎4𝑥 + (5)(4)(3)𝑎5𝑥2+. ..

(iv) 

When 𝑥 = 0, 𝑓′′′(0) = (3)(2)𝑎3 = 3! 𝑎3 i.e. 𝑎3 =
𝑓′′′(0)

3!

 

 

Continuing the same procedure gives 𝑎4 =
𝑓𝑖𝑣(0)

4!
, 𝑎5 =

𝑓𝑣(0)

5!
, and so on. 

Substituting for 𝑎0, 𝑎1, 𝑎2, … (i) gives:

𝒇(𝟎) + 𝒇′(𝟎)𝒙 +
𝒇′′(𝟎)

𝟐!
𝒙𝟐 +

𝒇′′′(𝟎)

𝟑!
𝒙𝟑 + ⋯ +

𝒇𝒓(𝟎)

𝒓!
𝒙𝒓+. ..

 This result is called Maclaurin’s theorem and the series 

obtained is known as the Maclaurin’s series for 𝑓(𝑥). 

    It is possible to find a Maclaurin’s series for any function 

𝑓(𝑥) whose derivatives 𝑓′(0), 𝑓′′(0), 𝑓′′′(0), … can be

determined. The series obtained may converge to the sum 

𝑓(𝑥) for all values of 𝑥. However, for many functions, 

Maclaurin’s theorem holds only within a restricted range of 

values 𝑓(𝑥). 

Conditions of Maclaurin’s series 

Maclaurin’s series may be used to represent any function, 

say 𝑓(𝑥), as power series provided that at 𝑥 = 0 the 

following conditions are met.  

1. 𝑓(0) ≠ ∞

For example, for the function 𝑓(𝑥) = cos 𝑥, 𝑓(0) =

cos 0 = 1, thus cos 𝑥 meets the condition. However, if

𝑓(𝑥) = ln 𝑥, 𝑓(0) = ln 0 = −∞, thus ln 𝑥 does not meet

this condition.

2. 𝑓′(0), 𝑓′′(0), 𝑓′′′(0), … ≠ ∞

For example, for the function 𝑓(𝑥) = cos 𝑥, 𝑓′(0) =

− sin 0 = 0, 𝑓′′(0) = − cos 0 = −1, and so on; thus

cos 𝑥 meets this condition. However, if 𝑓(𝑥) = ln 𝑥,

𝑓′(0) =
1

0
= ∞, thus ln 𝑥 does not meet this condition.

3. The resultant Maclaurin’s series must be convergent.

In general, this means that the values of the terms, or

groups of terms, must get progressively smaller and the

sum of the terms must reach a limiting value.

Example 1 

Determine the first four terms of the power series for cos 𝑥. 

Hence or otherwise produce a power series for cos2 2𝑥 as

far as the term in 𝑥6.

Solution 

The values of 𝑓(0), 𝑓′(0), 𝑓′′(0), … in Maclaurin’s series

are obtained as follows: 

𝑓(𝑥) = cos 𝑥               𝑓(0) = cos 0 = 1 

𝑓′(𝑥) = − sin 𝑥 𝑓′(0) = − sin 0 = 0

𝑓′′(𝑥) = − cos 𝑥 𝑓′′(0) = − cos 0 = −1

𝑓′′′(𝑥) = sin 𝑥 𝑓′′′(0) = sin 0 = 0

𝑓𝑖𝑣(𝑥) = cos 𝑥 𝑓𝑖𝑣(0) = cos 0 = 1

𝑓𝑣(𝑥) = −sin 𝑥 𝑓𝑣(0) = −sin 0 = 0

Chapter 

28 
Maclaurin’s Expansion 
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The process of integration reverses the process of 

differentiation. In differentiation, if 𝑓(𝑥) = 2𝑥2, then 

𝑓′(𝑥) = 4𝑥. Thus the integral of 4𝑥 is 2𝑥2 i.e. integration is 

the process of moving from 𝑓′(𝑥) to 𝑓(𝑥). By similar 

reasoning, the integral of 2𝑡 is 𝑡2.  

Integration is a process of summation or adding parts 

together and an elongated 𝑆, shown as ∫  , is used to replace 

the words ‘the integral of’. Hence, from above, ∫ 4𝑥 = 2𝑥2

and ∫ 2𝑡 = 2𝑡2

In differentiation, the differential coefficient 
𝑑𝑦

𝑑𝑥
 indicates

that a function of 𝑥 is being differentiated with respect to 𝑥, 

the 𝑑𝑥 indicating that it is ‘with respect to 𝑥’. In integration 

the variable of integration is shown by adding 

𝑑(the variable) after the function the function to be 

integrated.  

Thus ∫ 4𝑥 𝑑𝑥 means ‘the integral of 4𝑥 with respect to 𝑥’ 

and ∫ 2𝑡 𝑑𝑡 means ‘the integral of 2𝑡 with respect to 𝑡’ 

As stated above, the differential coefficient of 2𝑥2 is 4𝑥, 

hence ∫ 4𝑥 𝑑𝑥 = 2𝑥2. However, the differential coefficient

of 2𝑥2 + 7 is also 4𝑥. Hence ∫ 4𝑥 𝑑𝑥 is also equal to 2𝑥2 +

7. To allow for possible presence of a constant, whenever

the process of integration is performed, a constant ‘𝑐’ is

added to the result.

Thus ∫ 4𝑥 𝑑𝑥 = 2𝑥2 + 𝑐   and ∫ 2𝑡 𝑑𝑡 = 𝑡2 + 𝑐 

‘𝑐’ is called the arbitrary constant of integration 

The general solution of integrals of the form 𝒂𝒙𝒏

The general solution of integrals of the form ∫ 𝑎𝑥𝑛 𝑑𝑥,

where 𝑎 and 𝑛 are constants is given by  

∫ 𝒂𝒙𝒏 𝒅𝒙 =
𝒂𝒙𝒏+𝟏

𝒏 + 𝟏
+ 𝒄

This is true when 𝑛 is fractional, zero, or a positive or 

negative integer, with the exception of 𝑛 = −1. 

Using this rule gives:  

(i) ∫ 3𝑥4 𝑑𝑥 =
3𝑥4+1

4 + 1
+ 𝑐 =

3

5
𝑥5 + 𝑐 

(ii) ∫
2

𝑥2
𝑑𝑥 = ∫ 2𝑥−2 𝑑𝑥 =

2𝑥−2+1

−2 + 1
+ 𝑐

=
2𝑥−1

−1
+ 𝑐 = −

2

𝑥
+ 𝑐

(iii) ∫ √𝑥 𝑑𝑥 = ∫ 𝑥
1
2 𝑑𝑥 =

𝑥
1
2

+1

1
2

+ 1
+ 𝑐

 

 

=
𝑥

3
2

3
2

+ 𝑐 =
2

3
√𝑥3 + 𝑐

Each of these results may be checked by differentiation 

Notes: 

(a) The integral of a constant 𝑘 is 𝑘𝑥 + 𝑐. For example

∫ 8 𝑑𝑥 = 8𝑥 + 𝑐 

(b) When a sum of several items is integrated, the result is

the sum of the separate terms. For example

∫(3𝑥 + 2𝑥2 − 5) 𝑑𝑥

= ∫ 3𝑥 𝑑𝑥 + ∫ 2𝑥2 𝑑𝑥 − ∫ 5 𝑑𝑥 

=
3𝑥2

2
+

2𝑥3

3
− 5𝑥 + 𝑐

Standard integrals 

Since integration is the reverse process of differentiation the 

standard integrals listed below may be deduced and readily 

checked by differentiation.  

(i) ∫ 𝑎𝑥𝑛 𝑑𝑥 =
𝑎𝑥𝑛+1

𝑛 + 1
+ 𝑐  𝑛 ≠ −1

(ii) ∫ cos 𝑎𝑥 𝑑𝑥 =
1

𝑎
sin 𝑎𝑥 + 𝑐 

(iii) ∫ sin 𝑎𝑥 𝑑𝑥 = −
1

𝑎
cos 𝑎𝑥 + 𝑐 

(iv) ∫ sec2 𝑎𝑥 𝑑𝑥 =
1

𝑎
tan 𝑎𝑥 + 𝑐 

(v) ∫ cosec2 𝑎𝑥 𝑑𝑥 = −
1

𝑎
cot 𝑎𝑥 + 𝑐 

(vi) ∫ cosec 𝑎𝑥 cot 𝑎𝑥 𝑑𝑥 = −
1

𝑎
cosec 𝑎𝑥 + 𝑐 

(vii) ∫ sec 𝑎𝑥 tan 𝑎𝑥 𝑑𝑥 =
1

𝑎
sec 𝑎𝑥 + 𝑐 

(viii) ∫ 𝑒𝑎𝑥 𝑑𝑥 =
1

𝑎
𝑒𝑎𝑥 + 𝑐 

(ix) ∫
1

𝑥
𝑑𝑥 = ln 𝑥 + 𝑐 

Example 1 

Determine  (a) ∫ 5𝑥2 𝑑𝑥    (b) ∫ 2𝑡3 𝑑𝑡 

Solution 

(a) ∫ 5𝑥2 𝑑𝑥 =
5𝑥2+1

2 + 1
+ 𝑐 =

5𝑥3

3
+ 𝑐

Chapter 

29 
Integration I 
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Area = ∫ [𝑓1(𝑥) − 𝑓2(𝑥)]𝑑𝑥
𝑏

𝑎

 

 

(v) Area between a curve and the 𝑦-axis  

If 𝑥 = g(𝑦) ≥ 0 for 𝑐 ≤ 𝑦 ≤ 𝑑, area of elemental strip ≈

𝑥 𝛿𝑦 = g(𝑦)𝛿𝑦 

 

Area = ∫ 𝑥 𝑑𝑦
𝑑

𝑐

𝑑𝑦 = ∫ g(𝑦)
𝑑

𝑐

𝑑𝑦 

 

Example 1 

Calculate the area of the finite region bounded by the curve 

𝑦 = 𝑥(6 − 𝑥) and the straight line 𝑦 = 2𝑥.  

Solution 

 
The two curves intersect when 2𝑥 = 𝑥(6 − 𝑥) 

𝑥 = 0 or 4 

Area of the shaded element ≈ (𝑦1 − 𝑦2)𝛿𝑥 

   where 𝑦1 = 𝑥(6 − 𝑥)    and 𝑦2 = 2𝑥 

Area of the finite region = ∫ {(6𝑥 − 𝑥2) − 2𝑥}
4

0

𝑑𝑥 

= ∫ (4𝑥 − 𝑥2)
4

0

𝑑𝑥 

= [2𝑥2 −
𝑥3

3
]

0

4

 

= 32 −
64

3
=

32

3
 square units  

 

Example 2 

Determine the area enclosed between the curves between the 

curves 𝑦 = 𝑥2 + 1 and the line 𝑦 = 7 − 𝑥.  

Solution 

At the points of intersection the curves are equal. Thus, 

equating the 𝑦 values of each curve gives:  

𝑥2 + 1 = 7 − 𝑥 

𝑥2 + 𝑥 − 6 = 0 

(𝑥 − 2)(𝑥 + 3) = 0 

𝑥 = 2 and 𝑥 = −3 

 

Shaded area = ∫ (7 − 𝑥)
2

−3

𝑑𝑥 − ∫ (𝑥2 + 1)
2

−3

𝑑𝑥 

= ∫ [(7 − 𝑥) − (𝑥2 + 1)]
2

−3

𝑑𝑥 

= ∫ (6 − 𝑥 − 𝑥2)
2

−3

𝑑𝑥 

= [6𝑥 −
𝑥2

2
−

𝑥3

3
]

−3

2

 

= (12 − 2 −
8

3
) − (−18 −

9

2
+ 9) 

= 20
5

6
 square units  

 

Example 3 

Find the area between the curves 𝑦 = 𝑥2 − 𝑥 − 2, 𝑥-axis 

and the lines 𝑥 = −2 and 𝑥 = 4.  

Solution 

𝑦 = 𝑥2 − 𝑥 − 2 = (𝑥 + 1)(𝑥 − 2) 

This curve intersects 𝑥-axis at 𝑥 = −1 and 𝑥 = 2. 

 
Required area = 𝐴1 + 𝐴2 + 𝐴3 

The part 𝐴2 lies below the 𝑥-axis 

⇒ 𝐴2 = ∫ 𝑦
2

−1

𝑑𝑥 

𝑐 

𝑑 

𝑥 

𝑥 = g(𝑦) 

𝑦 

𝛿𝑦 

4 0 𝑥 

𝑦 = 2𝑥 

𝑦1 − 𝑦2 
𝑦 = 𝑥(6 − 𝑥) 

𝑦 

-3 2 𝑥 

𝑦 = 7 − 𝑥 

𝑦 = 𝑥2 + 1 

0 

𝑦 

𝑥 = 4 

4 𝑥 

𝑦 = 𝑥2 − 𝑥 − 2 
𝑦 

𝑥 = -2 

2 -1 -2 

𝐴1 

𝐴2 

𝐴3 
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Example 1 

The curve 𝑦 = 𝑥2 + 4 is rotated one about the 𝑥-axis 

between the limits 𝑥 = 1 and 𝑥 = 4. Determine the volume 

of solid revolution produced.  

Solution 

 
Resolving the shaded area about the axis produces a solid of 

revolution given by: 

Volume =  ∫ 𝜋𝑦2
4

1

𝑑𝑥 = ∫ 𝜋(𝑥2 + 4)2
4

1

𝑑𝑥 

= ∫ 𝜋(𝑥4 + 8𝑥2 + 16)
4

1

𝑑𝑥 

= 𝜋 [
𝑥5

5
+

8𝑥3

3
+ 16𝑥]

1

4

 

= 𝜋 [(
45

5
+

8(4)3

3
+ 16(4)) − (0.2 + 2.67 + 16)] 

= 420.6𝜋  cubic units  

 

Volume between two solids 

The volume of the solid generated by the revolution about 

the 𝑥-axis of the area bounded by the curves 𝑥 = 𝑓(𝑥), 𝑦 =

g(𝑥) and the ordinates 𝑥 = 𝑎, 𝑥 = 𝑏 is  

𝑉 = ∫ 𝜋(𝑦1
2 − 𝑦2

2)
𝑏

𝑎

𝑑𝑥 

where 𝑦1 is the 𝑦 of the upper curve and 𝑦2 is the 𝑦 of the 

lower curve.  

 

Example 2 

Find the volume of the solid of revolution obtained by 

rotating the area included between the curves 𝑦2 = 𝑥3 and 

𝑥2 = 𝑦3 about the 𝑥-axis. 

Solution 

The curve 𝑦2 = 𝑥3 is symmetrical about 𝑥-axis and the 

curve 𝑥2 = 𝑦3 is symmetrical about 𝑦-axis.  

Eliminating 𝑦 from the given curves, we get 

𝑥2 = (𝑥
3
2)

3

 

𝑥2 − 𝑥
9
2 = 0 

𝑥2 (1 − 𝑥
5
2) = 0 

𝑥 = 0 and 𝑥 = 1 

Therefore, the points of intersection of the curves are (0, 0), 

(1,1).  

 

Required volume = 𝜋 ∫ (𝑦1
2 − 𝑦2

2)
1

0

𝑑𝑥 

(where 𝑦1 is the 𝑦 of upper curve 𝑥2 = 𝑦3 and 𝑦2 is the 𝑦 of 

the lower curve 𝑦2 = 𝑥3)  

𝑉 = 𝜋 ∫ (𝑥
4
3 − 𝑥3)

1

0

𝑑𝑥 

= 𝜋 [
3

7
𝑥

7
3 −

𝑥4

4
]

0

1

 

= 𝜋 [
3

7
−

1

4
] 

=
5

28
𝜋 

 

Example 3 

Determine the area enclosed by the two curves 𝑦 = 𝑥2 and 

𝑦2 = 8𝑥. If this area is rotated 360° about the 𝑥-axis, 

determine the volume of the solid of revolution produced.  

Solution 

At the points of intersection, the coordinates of the curves 

are equal. Since 𝑦 = 𝑥2, then 𝑦2 = 𝑥4. Hence equating the 

𝑦2 values at the pints of intersection.  

𝑥4 = 8𝑥 

𝑥4 − 8𝑥 = 0 

𝑥(𝑥3 − 8) = 0 

Hence, at the points of intersection, 𝑥 = 0 and 𝑥 = 2.  

When 𝑥 = 0, 𝑦 = 0 and when 𝑥 = 2, 𝑦 = 4. The points of 

intersection of the curves 𝑦 = 𝑥2 and 𝑦2 = 8𝑥 are therefore 

(0, 0) and (2, 4).  

 

𝑥 

𝑦 
𝑦 = 𝑥2 + 4 

4 1 

𝑥 

𝑦 

𝑂 

(1, 1) 

𝑦2 = 4𝑥3 

𝑥2 = 𝑦3 

𝑥 

𝑦 

𝑂 

(2, 4) 

𝑦2 = 8𝑥 

𝑦 = 𝑥2 

2 

4 
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The solid of revolution of similar shapes is the difference 

between the solids of rotation of the two separate curves or 

lines. The limits are found from the intersection of the 

straight line and the curve. The intersection points are easy 

found to be (0, 0) and (1, 1) 

𝑉 = ∫ 𝜋(𝑦1
2 − 𝑦2

2)𝑑𝑥
𝑏

𝑎

 

In this case: 𝑦1
2 = 𝑥 and 𝑦2 = 𝑥 

𝑉 = ∫ 𝜋(𝑥 − 𝑥2)
1

0

𝑑𝑥 

= 𝜋 [
𝑥2

2
−

𝑥3

3
]

0

1

 

= 𝜋 [
1

2
−

1

3
] 

=
𝜋

6
 cubic units  

 

Example 7 

The region bounded by the curve 𝑦2 = 𝑥 and the line 𝑥 = 4 

is revolved around the line indicated. 

(a) the 𝑥-axis     (b) the 𝑦-axis     (c) 𝑦 = 2 

Find the volume of revolution of the solid in each case 

Solution 

(a)  

 
Element volume ≈ 𝜋𝑦2𝛿𝑥 

Volume = ∫ 𝜋𝑦2𝑑𝑥
4

0

= ∫ 𝜋𝑥
4

0

𝑑𝑥 

= 𝜋 [
𝑥2

2
]

0

4

= 8𝜋 cubic units  

(b) Rotation about the 𝑦-axis 

 

 
Element of volume is the ring of radii 𝑃𝑀 = 𝑥 and 𝑄𝑀 =

4, thickness 𝛿𝑦 

Area of the cross-section at 𝑃(𝑥, 𝑦) 

= Area of the ring of internal radius 

𝑃𝑀 and the external radius 𝑄𝑀, 𝑥1 = 𝑄𝑀 = 4, 𝑥2 = 𝑃𝑀 =

𝑥 

Solve the equations 𝑦2 = 𝑥 and 𝑥 = 4 

∴ 𝑦 = ±2 

This gives 𝐴(4, 2) and 𝐵(4, −2) 

Then 

Area = 𝜋(𝑥1
2 − 𝑥2

2) = 𝜋(16 − 𝑥2) = 𝜋(16 − 𝑦4) 

𝑉 = ∫ 𝜋𝑥2
2

−2

𝑑𝑦 

Using the symmetry of the curve, 

𝑉 = 2 ∫ 𝜋(16 − 𝑦4)𝑑𝑦
2

0

 

= 2𝜋 [16𝑦 −
𝑦5

5
]

0

2

 

= 2𝜋 (32 −
32

5
) 

=
256𝜋

5
 cubic units  

 

(c) Rotation about the line 𝑦 = 2 

 
Element of volume is a ring of radii 𝑄𝑀 (external) and 𝑃𝑀 

(internal), thickness 𝛿𝑥 at 𝑃(𝑥, 𝑦) with 𝑄(𝑥, −𝑦). 

𝑄𝑀 = 2 − (−𝑦) = 2 + 𝑦,   𝑃𝑀 = 2 − 𝑦 

Area of cross-sectional = 𝜋(𝑄𝑀2 − 𝑃𝑀2) 

= 𝜋[(2 + 𝑦)2 − (2 − 𝑦)2] 

= 8𝜋𝑦 

𝛿𝑉 = 8𝜋𝑦𝛿𝑥 

𝑥 𝑥 

𝑦 𝑦 

𝑦2 = 𝑥 

𝑦 = 𝑥 

𝑥 

𝑦 

4 0 𝛿𝑥 

𝑦 

𝑥 

𝑦 

4 0 

𝛿𝑦 

2 

-2 
𝐵 

𝑄 

𝐴 
𝑃 𝑀 

𝑥 

𝑦 

4 0 

𝛿𝑥 

𝑀 

𝑃 

𝑅 

𝑄 
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This covers two forms of integration which involve a 

function combined with its differential, either as a product 

or a quotient. These include:  

Integrals of the form ∫
𝑘𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 

Integrals of the form ∫ 𝑘𝑓′(𝑥)[𝑓(𝑥)]𝑛 𝑑𝑥

Integrals f the form ∫ 𝑘𝑓′(𝑥)𝑒𝑓(𝑥) 𝑑𝑥

Integration of these types is often called ‘integration by 

inspection’ or ‘integration by recognition’, because once 

proficient in using this method, you should be able to just 

write down the answer by ‘inspecting’ the function.  

It is derived from reversing the ‘function of a function’ rule 

for differentiation i.e. the chain rule. 

The key to using this method is recognising that one part of 

the integral is the differential (or scalar multiple) of the other 

part.  

There are several methods of integrating fractions and 

products, depending on the form of the original function and 

recognition of this form will save a good deal of 

calculations. A common alternative to this method is 

“integration by substitution”. 

Quotients  

Integrals of the form ∫
𝑘𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 are basically fractions with 

a function in the denominator and a multiple of its 

differential in the numerator, assuming that the function is 

rational.  

E.g  ∫
4𝑥

𝑥2 + 1
𝑑𝑥 ⇒

2×differential of the denominator

a function with a differential of 2𝑥

∫
4 sin 𝑥

cos 𝑥 + 1
𝑑𝑥 ⇒

-4×differential of the denominator

a function with a differential of − sin 𝑥
Remember, using the chain rule that 

if 𝑦 = ln 𝑥    then 
𝑑𝑦

𝑑𝑥
=

1

𝑥

and if  𝑦 = ln 𝑓(𝑥)   then 
𝑑𝑦

𝑑𝑥
=

1

𝑓(𝑥)
× 𝑓′(𝑥)

Reversing the differential by integrating we get: 

∫
𝑘𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 = 𝑘 ln|𝑓(𝑥)| + 𝑐 

Note that he modulus sign indicates that you cannot take 

natural log of a negative number. 

Following our method, our first guess should therefore, be  

(guess) = ln|denominator| 

 

 

Example 1 

Find ∫
𝑥2

1 + 𝑥2
𝑑𝑥 

Solution 

Guess:   ln|1 + 𝑥3|

Test: 
𝑑

𝑑𝑥
ln|1 + 𝑥3| =

1

1 + 𝑥3
× 3𝑥2 =

3𝑥2

1 + 𝑥3

Reverse:     ∫
3𝑥2

1 + 𝑥3
𝑑𝑥 = ln|1 + 𝑥3| + 𝑐

Adapt:   ∫
𝑥2

1 + 𝑥3
𝑑𝑥 =

1

3
ln|1 + 𝑥3| + 𝑐

Note: Adjustment has to be a number only. 

Example 2 

Find ∫
cos 𝑥 − sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥 

Solution 

Guess:   ln|sin 𝑥 + cos 𝑥| 

Test: 
𝑑

𝑑𝑥
[ln|sin 𝑥 + cos 𝑥|] =

1

sin 𝑥 + cos 𝑥
× (cos 𝑥 − sin 𝑥) 

Reverse:    ∫
cos 𝑥 − sin 𝑥

sin 𝑥 + cos 𝑥
𝑑𝑥 = ln|sin 𝑥 + cos 𝑥| + 𝑐 

Adapt: Not required because the numerator is the exact of 

the denominator.  

Example 3 

Find ∫
2𝑥

𝑥2 + 9
𝑑𝑥 

Solution 

of the form ∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 

∴ ∫
2𝑥

𝑥2 + 9
𝑑𝑥 = ln|𝑥2 + 9| + 𝑐

= ln(𝑥2 + 9) + 𝑐

Note: for all real values of 𝑥, (𝑥2 + 9) > 0, hence modulus

sign not required.  

Products 

Integrals of the form ∫ 𝑘𝑓′(𝑥)[𝑓(𝑥)]𝑛 𝑑𝑥 and 

∫ 𝑘 𝑓′(𝑥)𝑒𝑓(𝑥) 𝑑𝑥 involves a function raised to a power or 𝑒

raised to the power of the function, multiplied by a multiple 

of the differential of 𝑓(𝑥). Note that many of these examples 

can also be solved by other methods like substitution.  

∫ 𝑥(𝑥2 + 1)2 𝑑𝑥  𝑓(𝑥) = 𝑥2 + 1  ⇒   𝑓′(𝑥) = 2𝑥

∫ 𝑥2(3𝑥3 + 1)4 𝑑𝑥  𝑓(𝑥) = 3𝑥3 + 1  ⇒   𝑓′(𝑥) = 9𝑥2

Chapter 
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Also known as integration by change of variable. This is the 

nearest to the chain rule that integration can get. It is used to 

perform integrations that cannot be done by other methods, 

and is also an alternative method to some other methods. It 

is worth checking if integration can be done by inspection, 

which may be simpler.  

Substitution is often used to define some standard integrals. 

The objective is to substitute some inner part of the function 

by a second variable 𝑢, and charge all the instances of 𝑥 to 

be in terms of 𝑢, including 𝑑𝑥.  

The basic argument for integration by substitution is: 

If    𝑦 = ∫ 𝑓(𝑥) 𝑑𝑥 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥) 

For the chain rule, if 𝑢 is a function of 𝑥 

𝑑𝑦

𝑑𝑢
=

𝑑𝑦

𝑑𝑥
×

𝑑𝑥

𝑑𝑢
𝑑𝑦

𝑑𝑢
= 𝑓(𝑥)

𝑑𝑥

𝑑𝑢

∫
𝑑𝑦

𝑑𝑢
𝑑𝑢 = ∫ 𝑓(𝑥)

𝑑𝑥

𝑑𝑢
𝑑𝑢 

𝑦 = ∫ 𝑓(𝑥)
𝑑𝑥

𝑑𝑢
𝑑𝑢 

∴ ∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥)
𝑑𝑥

𝑑𝑢
𝑑𝑢 

Required knowledge 

∫(𝑎𝑥 + 𝑏)2 =
1

𝑎(𝑛 + 1)
(𝑎𝑥 + 𝑏)𝑛+1 + 𝑐

∫
1

𝑎𝑥 + 𝑏
𝑑𝑥 =

1

𝑎
ln|𝑎𝑥 + 𝑏| + 𝑐 

∫ 𝑒(𝑎𝑥+𝑏) 𝑑𝑥 =
1

𝑎
𝑒(𝑎𝑥+𝑏) + 𝑐

Example 1 

Use substitution to find ∫(5𝑥 − 3)3 𝑑𝑥

Solution 

Let 𝑢 = 5𝑥 − 3 

𝑑𝑢

𝑑𝑥
= 5  ⇒

𝑑𝑥

𝑑𝑢
=

1

5

∫ 𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥)
𝑑𝑥

𝑑𝑢
𝑑𝑢 

Substituting; 

∫(5𝑥 − 3)3 𝑑𝑥 = ∫(𝑢)3
1

5
𝑑𝑢 =

1

5
∫ 𝑢3𝑑𝑢

=
1

5
×

1

4
𝑢4 + 𝑐 =

1

20
(5𝑥 − 3)4 + 𝑐

 

 

Example 2 

Use substitution to find:  ∫
1

4𝑥 + 2
𝑑𝑥 

Solution 

Let 𝑢 = 4𝑥 + 2 

𝑑𝑢

𝑑𝑥
= 4 ⇒

𝑑𝑥

𝑑𝑢
=

1

4
Substituting 

∫
1

4𝑥 + 2
𝑑𝑥 = ∫

1

𝑢
∙

1

4
𝑑𝑢 =

1

4
∫

1

𝑢
𝑑𝑢 

=
1

4
ln 𝑢 + 𝑐 

=
1

4
ln(4𝑥 + 2) + 𝑐 

This is a standard result: 

∫
1

𝑎𝑥 + 𝑏
𝑑𝑥 =

1

𝑎
ln|𝑎𝑥 + 𝑏| + 𝑐 

Example 3 

Use substitution to find: 

∫
1

𝑥 + √𝑥
𝑑𝑥 

Solution 

Let 𝑢 = √𝑥 ⇒  𝑢 = 𝑥
1

2

𝑑𝑢

𝑑𝑥
=

1

2
𝑥−

1

2  ⇒
𝑑𝑢

𝑑𝑥
=

1

2√𝑥

𝑑𝑢

𝑑𝑥
=

1

2√𝑥
⇒ 𝑑𝑥 = 2√𝑥 𝑑𝑢

but we still have 𝑥 involved, so substitute for 𝑥, thus 

𝑑𝑥 = 2𝑢 𝑑𝑢 

Substituting into the original:  

∫
1

𝑥 + √𝑥
𝑑𝑥 = ∫

1

𝑢2 + 𝑢
2𝑢 𝑑𝑢 = ∫

2

(𝑢 + 1)
𝑑𝑢 

= 2 ln|𝑢 + 1| + 𝑐 

= 2 ln|√𝑥 + 1| + 𝑐 

Example 4 

Use substitution to find: 

∫ 3𝑥√1 + 𝑥2 𝑑𝑥 

Solution 

Let 𝑢 = 𝑥2

𝑑𝑢

𝑑𝑥
= 2𝑥 ⇒ 𝑑𝑥 =

𝑑𝑢

2𝑥

Substituting: 

∫ 3𝑥√1 + 𝑥2 𝑑𝑥 = 3 ∫ 𝑥(1 + 𝑢)
1
2 𝑑𝑢 =

3

2
∫(1 + 𝑢)

1
2 𝑑𝑢 

Chapter 
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∫
1

1 + 𝑥2

1

0

𝑑𝑥 = ∫
1

1 + tan2 𝑢

𝜋
4

0

sec2 𝑢 𝑑𝑢

= ∫ 𝑑𝑢

𝜋
4

0

 

= [𝑢]
0

𝜋
4

=
𝜋

4

Example 13 

Find  ∫ 𝑥(2𝑥 − 1)6 𝑑𝑥
2

0

Solution 

Let  𝑢 = 2𝑥 − 1    ⇒ 𝑥 =
1

2
(𝑢 + 1) 

𝑑𝑢

𝑑𝑥
= 2 ⇒ 𝑑𝑥 =

1

2
𝑑𝑢 

Limits: 

𝑥 𝑢 

1 −1

2 3 

Substituting: 

∫ 𝑥(2𝑥 − 1)6 𝑑𝑥
2

0

= ∫
1

2
(𝑢 + 1)(𝑢6)

1

2
𝑑𝑢

3

−1

 

=
1

4
∫ 𝑢7 + 𝑢6

3

−1

𝑑𝑢 

=
1

4
[
1

8
𝑢8 +

1

7
𝑢7 ]

-1

3

=
1

4
[
1

8
(3)8 +

1

7
(3)7] −

1

4
[
1

8
(-1)8 +

1

7
(-1)7]

= 283.14 

Example 14 

Evaluate     ∫ 𝑥2√(𝑥3 + 1)𝑑𝑥
2

−1

Solution 

Let 𝑢 = 𝑥3 + 1 
𝑑𝑢

𝑑𝑥
= 3𝑥2  𝑑𝑥 =

1

3𝑥2 𝑑𝑢 

Limits: 

𝑥 𝑢 

−1 0 

2 9 

Substituting: 

∫ 𝑥2√(𝑥3 + 1)𝑑𝑥
2

−1

= ∫ 𝑥2𝑢
1
2

1

3𝑥2
𝑑𝑢

9

0

 

=
1

3
∫ 𝑢

1
2

9

0

𝑑𝑢 

=
1

3
[
2

3
𝑢

3
2]

0

9

=
1

3
[
2

3
(9)

3
2] − 0

= 6 

Reverse substitution  

This is where we have to recognize the substitution by 

ourselves, by recognizing the reverse chain rule.  

Example 15 

Use substitution to  find:   ∫
1

𝑥
ln 𝑥 𝑑𝑥 

Solution 

Let:  𝑥 = 𝑒𝑢 
𝑑𝑥

𝑑𝑢
= 𝑒𝑢   ∴    𝑑𝑥 = 𝑒𝑢 𝑑𝑢 

Substituting 

∫
1

𝑥
ln 𝑥 𝑑𝑥 = ∫

1

𝑒𝑢
ln 𝑒𝑢 × 𝑒𝑢 𝑑𝑢 = ∫ 𝑢 𝑑𝑢

∫ 𝑢 𝑑𝑢 =
𝑢2

2
+ 𝑐 

𝑥 = 𝑒𝑢     ∴   𝑢 = ln 𝑥

∫
1

𝑥
ln 𝑥 𝑑𝑥 =

(ln 𝑥)2

2
+ 𝑐

Example 16 

Find  ∫
6𝑥

√1 + 𝑥2
𝑑𝑥 

Solution 

Let   𝑢 = 1 + 𝑥2

𝑑𝑢

𝑑𝑥
= 2𝑥 ⇒ 𝑑𝑥 =

𝑑𝑢

2𝑥

   ∫
6𝑥

√1+𝑥2
𝑑𝑥 = ∫

6𝑥

√𝑢
×

𝑑𝑢

2𝑥

= ∫
3

√𝑢
𝑑𝑢 

= ∫ 3𝑢−
1
2 𝑑𝑢 

= 6𝑢
1
2 + 𝑐 

= 6(1 + 𝑥2)
1
2 + 𝑐 

= 6√1 + 𝑥2 + 𝑐 

Example 17 

Find:    ∫ 𝑥2√1 + 𝑥3 𝑑𝑥

Solution 

Let 𝑢 = 1 + 𝑥3

𝑑𝑢

𝑑𝑥
= 3𝑥2  ⇒ 𝑑𝑥 =

𝑑𝑢

3𝑥2

∫ 𝑥2√1 + 𝑥3 𝑑𝑥 = ∫ 𝑥2√𝑢 ×
𝑑𝑢

3𝑥2

=
1

3
∫ 𝑢

1
2 𝑑𝑢 

=
1

3
[
2

3
𝑢

3
2] + 𝑐

=
2

9
[(1 + 𝑥3)

3
2] + 𝑐
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Example 18 

Find    ∫
7𝑥

(1 + 2𝑥2)3
𝑑𝑥 

Solution 

Let      𝑢 = 1 + 2𝑥2 

           
𝑑𝑢

𝑑𝑥
= 4𝑥     ⇒      𝑑𝑥 =

𝑑𝑢

4𝑥
 

∫
7𝑥

(1 + 2𝑥2)3
𝑑𝑥 = ∫

7𝑥

𝑢3
∙

𝑑𝑢

4𝑥
 

= ∫
7

4𝑢3
𝑑𝑢 

= ∫
7

4
𝑢−3 𝑑𝑢 

=
7

4
∫ 𝑢−3 𝑑𝑢 

=
7

4
[
1

2
𝑢−2] + 𝑐 

= −
7

8
𝑢−2 + 𝑐 

= −
7

8𝑢2
+ 𝑐 

= −
7

8
(1 + 2𝑥2)−2 + 𝑐 

= −
7

8(1 + 2𝑥2)2
+ 𝑐 

 

Example 19 

Evaluate ∫
𝑥3

√4 − 𝑥2

2

1

𝑑𝑥 

Solution 

Let 𝑢2 = 4 − 𝑥2, then 2𝑢
𝑑𝑢

𝑑𝑥
= −2𝑥  

𝑥
𝑑𝑥

𝑑𝑢
= −𝑢 

When 𝑥 = 1, 𝑢 = √3; when 𝑥 = 2, 𝑢 = 0 

∫
𝑥3

√4 − 𝑥2
𝑑𝑥

2

1

= ∫
𝑥2

√4 − 𝑥2
(𝑥

𝑑𝑥

𝑑𝑢
) 𝑑𝑢

0

√3

 

= ∫
(4 − 𝑢2)

𝑢
(𝑢 𝑑𝑢)

0

√3

 

= [
𝑢3

3
− 4𝑢]

√3

0

 

= −
3√3

3
+ 4√3 

= 3√3 

 

Example 20 

Using the substitution 𝑢2 = 3 − 𝑥, or otherwise, find  

∫(𝑥 + 1)√3 − 𝑥 𝑑𝑥 

Solution 

Let 𝑢2 = 3 − 𝑥, then 2𝑢
𝑑𝑢

𝑑𝑥
= −1 

𝑑𝑥 = −2𝑢 𝑑𝑢 

∫(𝑥 + 1)√3 − 𝑥 𝑑𝑥 = ∫(4 − 𝑢2)(𝑢)(−2𝑢)𝑑𝑢  

= −2 ∫(4𝑢2 − 𝑢4) 𝑑𝑢 

= −2 (
4

3
𝑢3 −

1

5
𝑢5) 

= −
2

15
𝑢3(20 − 3𝑢2) 

= −
2

15
(3 − 𝑥)

3
2(20 − 9 + 3𝑥) 

= −
2

15
(3 − 𝑥)

3
2(11 + 3𝑥) + 𝑐 

 

Example 21 

Using the substitution 𝑡 = tan
𝜃

2
, or otherwise, evaluate  

∫
6

1 + sin 𝜃 + 3 cos 𝜃

𝜋
2

0

 

Solution 

Let = tan
𝜃

2
, then

𝑑𝑡

𝑑𝜃
=

1

2
sec2

𝜃

2
=

1

2
(1 + 𝑡2) 

𝑑𝜃

𝑑𝑡
=

2

(1 + 𝑡2)
 

When 𝜃 = 0, 𝑡 = 0; when 𝜃 =
𝜋

2
, 𝑡 = 1 

∫
6

1 + sin 𝜃 + 3 cos 𝜃

𝑑𝜃

𝑑𝑡
 𝑑𝑡

1

0

 

= ∫ (
6

1 +
2𝑡

1 + 𝑡2 + 3
(1 − 𝑡2)
1 + 𝑡2

)
2

1 + 𝑡2

1

0

𝑑𝑡 

= ∫
12

1 + 𝑡2 + 2𝑡 + 3 − 3𝑡2
𝑑𝑡

1

0

 

= ∫
6

2 + 𝑡 − 𝑡2

1

0

𝑑𝑡 

By partial fractions, 

6

2 + 𝑡 − 𝑡2
=

6

(2 − 𝑡)(1 + 𝑡)
=

2

2 − 𝑡
+

2

1 + 𝑡
 

∫
6

2 + 𝑡 − 𝑡2

1

0

𝑑𝑡 = 2 ∫ (
1

2 − 𝑡
+

1

1 + 𝑡
) 𝑑𝑡 

= 2[− ln|2 − 𝑡| + ln|1 + 𝑡|]0
1 

= 2(− ln 1 + ln 2) − 2(− ln 2 + ln 1) 

= 4 ln 2 = 2.77 

 

Example 22 

By using the substitution 𝑢 = 𝑒𝑥, or otherwise, evaluate  

∫
𝑒3𝑥

1 + 𝑒2𝑥
𝑑𝑥

1

0

 

Solution 

𝑢 = 𝑒𝑥    ⇒   
𝑑𝑢

𝑑𝑥
= 𝑒𝑥 = 𝑢 

∫
𝑒3𝑥

1 + 𝑒2𝑥
𝑑𝑥

1

0

= ∫
𝑢2

1 + 𝑢2

𝑒

1

𝑑𝑢 
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=
1 + 𝑡2

7(1 + 𝑡2) − 3(2𝑡) + 6(1 − 𝑡2)
 

=
1 + 𝑡2

7 + 7𝑡2 − 6𝑡 + 6 − 6𝑡2
 

=
1 + 𝑡2

𝑡2 − 6𝑡 + 13
 

∫
𝑑𝑥

7 − 3 sin 𝑥 + 6 cos 𝑥
= ∫

1 + 𝑡2

𝑡2 − 6𝑡 + 13
×

2𝑑𝑡

1 + 𝑡2
 

= ∫
2 𝑑𝑡

𝑡2 − 6𝑡 + 13
 

= ∫
2𝑑𝑡

(𝑡 − 3)2 + 22
 

= 2 [
1

2
tan−1 (

𝑡 − 3

2
)] + 𝑐 

∫
𝑑𝑥

7 − 3 sin 𝑥 + 6 cos 𝑥
= tan−1 (

tan
𝑥
2

− 3

2
) + 𝑐 

 

Example 29 

Evaluate ∫
4

3 + 5 cos 𝜃
𝑑𝜃

𝜋/2

0

 

Solution 

Let tan
𝜃

2
= 𝑡 

1

2
sec2

𝜃

2
𝑑𝜃 = 𝑑𝑡 

(1 + tan2
𝜃

2
) 𝑑𝜃 = 2𝑑𝑡 

𝑑𝜃 =
2

1 + 𝑡2
𝑑𝑡 

3 + 5 cos 𝜃 = 3 + 5 (
1 − 𝑡2

1 + 𝑡2
) =

3(1 + 𝑡2) + 5(1 − 𝑡2)

1 + 𝑡2
 

=
8 − 2𝑡2

1 + 𝑡2
 

Changing limits; 

𝜃 =
𝜋

2
, ⇒ 𝑡 = 1 

𝜃 = 0  ⇒ 𝑡 = 0 

∫
4

3 + 5 cos 𝜃
𝑑𝜃

𝜋/2

0

= ∫
4(1 + 𝑡2)

8 − 2𝑡2
×

2

1 + 𝑡2
𝑑𝑡

1

0

 

= ∫
4

4 − 𝑡2
𝑑𝑡

1

0

 

= ∫
4

(2 + 𝑡)(2 − 𝑡)

1

0

𝑑𝑡 

= ∫ {
1

2 + 𝑡
+

1

2 − 𝑡
} 𝑑𝑡

1

0

 

= [ln(2 + 𝑡) − ln(2 − 𝑡)]0
1  

= (ln 3 − ln 1) − (ln 2 − ln 2) 

= ln 3 

 

 

 

 

The change of variable 𝒕 = 𝐭𝐚𝐧 𝒙 

An integrand containing sin 𝑥 and cos 𝑥, particularly even 

powers of these, may often be expressed as a function of 

tan 𝑥 and sec 𝑥. In such a case, the change of variable 𝑡 =

tan 𝑥 is worth trying.  

 

Example 30 

Find  ∫
1

1 + sin2 𝑥
𝑑𝑥 

Solution 

Dividing both the numerator and denominator by cos2 𝑥 

∫
1

1 + sin2 𝑥
𝑑𝑥 = ∫

sec2 𝑥

sec2 𝑥 + tan2 𝑥
𝑑𝑥 

Let 𝑡 = tan 𝑥 ⇒
𝑑𝑡

𝑑𝑥
= sec2 𝑥 = 1 + tan2 𝑥 = 1 + 𝑡2 

𝑑𝑥 =
1

1 + 𝑡2
𝑑𝑡 

∫
1

1 + sin2 𝑥
𝑑𝑥 = ∫

sec2 𝑥

1 + 2 tan2 𝑥
×

1

1 + 𝑡2
𝑑𝑡 

= ∫
1 + 𝑡2

1 + 2𝑡2
×

1

1 + 𝑡2
𝑑𝑡 

= ∫
1

1 + 2𝑡2
𝑑𝑡 

=
1

√2
tan−1(√2) + 𝑐 

=
1

√2
tan−1(√2 tan 𝑥) + 𝑐 

 

Self-Evaluation exercise  

1. Carry out the following integrations by substitution  

(a) ∫ 4𝑥(2𝑥 − 1)4 𝑑𝑥  

[Ans: 
1

6
(2𝑥 − 1)6 +

1

5
(2𝑥 − 1)5 + 𝑐] 

(b) ∫
2𝑥

2𝑥+1
𝑑𝑥    

[Ans: 
1

2
(2𝑥 + 1) −

1

2
ln|2𝑥 + 1| + 𝑐] 

(c) ∫ 𝑥(4 − 𝑥)−
1

2 𝑑𝑥     

[Ans: −(4 − 𝑥2)
1

2 + 𝑐] 

(d) ∫
8𝑥

√4𝑥−1
𝑑𝑥       

[Ans: 
1

3
(4𝑥 − 1)

3

2 + (4𝑥 − 1)
1

2 + 𝑐] 

(e) ∫
2𝑥2

√2𝑥3+1
𝑑𝑥     

[Ans: 
2

3
(2𝑥3 + 1)

1

2 + 𝑐] 

(f) ∫
4−3𝑥

𝑥+2
𝑑𝑥            

[Ans: 10 ln|𝑥 + 2| − 3(𝑥 + 2) + 𝑐] 

(g) ∫
4𝑥2

2𝑥−1
𝑑𝑥    

[Ans: 
1

4
(2𝑥 − 1)2 + (2𝑥 − 1) +

1

2
ln|2𝑥 − 1| + 𝑐] 

(h) ∫ sec4 𝑥 𝑑𝑥 

[Ans: tan 𝑥 +
1

3
tan3 𝑥 + 𝑐] 
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Introduction 

Integrating trig functions is mainly a matter of recognizing 

the standard derivative and reversing it to find the standard 

integral. You need a very good working knowledge of the 

trig identities and be able to use the chain rule.  

Integrals of 𝐬𝐢𝐧 𝒙, 𝐜𝐨𝐬 𝒙 and 𝐬𝐞𝐜𝟐 𝒙

From the standard derivative of the basic trig functions, the 

integral can be found by reversing the process. Thus:  

𝑑

𝑑𝑥
(sin 𝑥) = cos 𝑥    ⇒    ∫ cos 𝑥 𝑑𝑥 = sin 𝑥 + 𝑐 

𝑑

𝑑𝑥
(cos 𝑥) = −sin 𝑥    ⇒    ∫ sin 𝑥 𝑑𝑥 = − cos 𝑥 + 𝑐 

𝑑

𝑑𝑥
(tan 𝑥) = sec2 𝑥    ⇒     ∫ sec2 𝑥 𝑑𝑥 = tan 𝑥 + 𝑐

Using reverse differentiation  

In a similar manner the following be found: 

𝑦 = 𝑓(𝑥) ∫ 𝑓(𝑥) 𝑑𝑥 

sin 𝑥 − cos 𝑥 + 𝑐

cos 𝑥 sin 𝑥 + 𝑐 

sin 𝑘𝑥 −
1

𝑘
cos 𝑘𝑥 + 𝑐 

cos 𝑘𝑥 1

𝑘
sin 𝑘𝑥 + 𝑐 

sec2 𝑘𝑥 1

𝑘
tan 𝑘𝑥 + 𝑐 

sec 𝑥 tan 𝑥 sec 𝑥 + 𝑐 

cosec 𝑥 cot 𝑥 − cosec 𝑥 + 𝑐

cosec2 𝑥 − cot 𝑥 + 𝑐

cot 𝑥 ln|sin 𝑥| 

Integrals of 𝐭𝐚𝐧 𝒙 and 𝐜𝐨𝐭 𝒙 

To find the integrals, recognize the standard integral type: 

∫
𝑓′(𝑥)

𝑓(𝑥)
𝑑𝑥 = ln|𝑓(𝑥)| + 𝑐 

Now 

tan 𝑥 =
sin 𝑥

cos 𝑥

∫ tan 𝑥 𝑑𝑥 = ∫
sin 𝑥

cos 𝑥
𝑑𝑥 

= − ∫
− sin 𝑥

cos 𝑥
𝑑𝑥 

= − ln|cos 𝑥| + 𝑐 

= ln|(cos 𝑥)−1| + 𝑐

= ln |
1

cos 𝑥
| + 𝑐 

= ln|sec 𝑥| + 𝑐 

∫ tan 𝑥 𝑑𝑥 = − ln|cos 𝑥| + 𝑐 = ln|sec 𝑥| + 𝑐 

 

For the general case; 

∫ tan 𝑎𝑥 𝑑𝑥 =
1

𝑎
ln|sec 𝑎𝑥| + 𝑐 

Similarly: 

∫ cot 𝑥 𝑑𝑥 = ∫
cos 𝑥

sin 𝑥
𝑑𝑥 

= ln|sin 𝑥| + 𝑐 

∫ cot 𝑎𝑥 𝑑𝑥 =
1

𝑎
ln|sin 𝑥| + 𝑐 

Recognising the opposite of the chain rule  

Reversing the derivatives (found using the chain rule), the 

following can be derived; 

𝑑

𝑑𝑥
sin(𝑎𝑥 + 𝑏) = 𝑎 cos(𝑎𝑥 + 𝑏) 

⇒ ∫ cos(𝑎𝑥 + 𝑏) 𝑑𝑥 =
1

𝑎
sin(𝑎𝑥 + 𝑏) + 𝑐 

𝑑

𝑑𝑥
cos(𝑎𝑥 + 𝑏) = −𝑎 sin(𝑎𝑥 + 𝑏) 

⇒ ∫ sin(𝑎𝑥 + 𝑏) 𝑑𝑥 = −
1

𝑎
cos(𝑎𝑥 + 𝑏) + 𝑐 

𝑑

𝑑𝑥
tan(𝑎𝑥 + 𝑏) = 𝑎 sec2(𝑎𝑥 + 𝑏)

⇒ ∫ sec2(𝑎𝑥 + 𝑏) 𝑑𝑥 =
1

𝑎
tan(𝑎𝑥 + 𝑏) + 𝑐 

Integrals of type: 𝐜𝐨𝐬 𝑨 𝐜𝐨𝐬 𝑩, 𝐬𝐢𝐧 𝑨 𝐜𝐨𝐬 𝑩 & 𝐬𝐢𝐧 𝑨 𝐬𝐢𝐧 𝑩 

This type of problem covers the most questions. Use the 

addition (compound angle) trig identities. 

Example 1 

Find ∫ sin 3𝑥 cos 4𝑥 𝑑𝑥 

Solution 

Use formula: 2 sin 𝐴 cos 𝐵 = sin(𝐴 − 𝐵) + sin(𝐴 + 𝐵) 

Let 𝐴 = 3𝑥,  𝐵 = 4𝑥 

2 sin 3𝑥 cos 4𝑥 = sin(3𝑥 − 4𝑥) + sin(3𝑥 + 4𝑥) 

= sin(−𝑥) + sin 7𝑥 

sin 3𝑥 cos 4𝑥 =
1

2
(− sin 𝑥 + sin 7𝑥) 

∫ sin 3𝑥 cos 4𝑥 𝑑𝑥 =
1

2
∫ − sin 𝑥 + sin 7𝑥 𝑑𝑥 

=
1

2
(cos 𝑥 −

1

7
cos 7𝑥) + 𝑐 

=
1

2
cos 𝑥 −

1

14
cos 7𝑥 + 𝑐 

Example 2 

Find ∫ sin 4𝑥 cos 4𝑥 𝑑𝑥 

Solution 

Chapter 

32 
Integration of Trigonometric Functions 
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Example 9 

Find:  ∫ sin2(2𝑥 + 3) 𝑑𝑥 

Solution 

sin2 𝐴 =
1

2
(1 − cos 2𝐴) 

∫ sin2(2𝑥 + 3) 𝑑𝑥 =
1

2
∫(1 − cos 2(2𝑥 + 3)) 𝑑𝑥 

=
1

2
∫(1 − cos(4𝑥 + 6))𝑑𝑥 

Recall: ∫ cos(𝑎𝑥 + 𝑏) 𝑑𝑥 =
1

𝑎
sin(𝑎𝑥 + 𝑏) + 𝑐 

∫ sin2(2𝑥 + 3) 𝑑𝑥 =
1

2
[𝑥 −

1

4
cos(4𝑥 + 6)] + 𝑐 

 

Integrals of the type: 𝐜𝐨𝐬𝒏 𝑨 𝐬𝐢𝐧 𝑨, 𝐬𝐢𝐧𝒏 𝑨 𝐜𝐨𝐬 𝑨 

This is another example of applying the reverse of the 

differentiation and the chain rule.  

From the chain rule, the derivative required is  

𝑑

𝑑𝑥
(sin𝑛 𝑥) = 𝑛 sin𝑛−1 𝑥 cos 𝑥 

In reverse  

∫ sin𝑛 𝑥 cos 𝑥 𝑑𝑥 =
1

𝑛 + 1
sin𝑛+1 𝑥 + 𝑐 

Similarly;  

∫ cos𝑛 𝑥 sin 𝑥 𝑑𝑥 = −
1

𝑛 + 1
cos𝑛+1 𝑥 + 𝑐 

For example;  

∫ sin4 𝑥 cos 𝑥 𝑑𝑥 =
1

5
sin5 𝑥 + 𝑐 

∫ cos7 𝑥 sin 𝑥 𝑑𝑥 =
1

8
cos8 𝑥 + 𝑐 

Three ways of integrating sin 𝑥 cos 𝑥:  

∫ sin 𝑥 cos 𝑥 =
1

2
sin2 𝑥 + 𝑐        (sin𝑛 𝑥 cos 𝑥) 

                           = −
1

2
cos2 𝑥 + 𝑐     (cos𝑛 𝑥 sin 𝑥) 

= ∫
1

2
sin 2𝑥 𝑑𝑥 

= −
1

4
cos 2𝑥 + 𝑐 

 

Example 10 

Evaluate ∫ sin2 𝑥 cos3 𝑥 𝑑𝑥

𝜋
2

0

 

Solution 

∫ sin2 𝑥 cos3 𝑥 𝑑𝑥

𝜋
2

0

= ∫ sin2 𝑥 cos2 𝑥 cos 𝑥 𝑑𝑥

𝜋
2

0

 

= ∫ (sin2 𝑥)(1 − sin2 𝑥)(cos 𝑥)𝑑𝑥

𝜋
2

0

 

= ∫ sin2 𝑥 cos 𝑥 − sin4 𝑥 cos 𝑥 𝑑𝑥

𝜋
2

0

 

= [
sin3 𝑥

3
−

sin5 𝑥

5
]

0

𝜋
2

 

= [
(sin

𝜋
2

)
3

3
−

(sin
𝜋
2

)
5

5
] − [0 − 0] 

=
1

3
−

1

5
=

2

15
 

 

Example 11 

Find ∫ sin2 𝑡 cos4 𝑡 𝑑𝑡 

Solution 

sin2 𝑡 cos4 𝑡 = sin2 𝑡 (cos2 𝑡)2 

= (
1 − cos 2𝑡

2
) (

1 + cos 2𝑡

2
)

2

 

=
1

8
(1 − cos 2𝑡)(1 + 2 cos 2𝑡 + cos2 2𝑡) 

=
1

8
(1 + 2 cos 2𝑡 + cos2 2𝑡 − cos 2𝑡 − 2 cos2 2𝑡

− cos3 2𝑡) 

=
1

8
(1 + cos 2𝑡 − cos2 2𝑡 − cos3 2𝑡) 

=
1

8
[1 + cos 2𝑡 − (

1 + cos 4𝑡

2
) − cos 2𝑡 (1 − sin2 2𝑡)] 

=
1

8
[
1

2
−

cos 4𝑡

2
+ cos 2𝑡 sin2 2𝑡] 

∫ sin2 𝑡 cos4 𝑡 𝑑𝑡 =
1

8
∫

1

2
−

cos 4𝑡

2
+ cos 2𝑡 sin2 2𝑡 𝑑𝑡 

=
1

8
(

𝑡

2
−

sin 4𝑡

8
+

sin3 2𝑡

6
) + 𝑐 

 

Integrating odd powers of 𝐬𝐢𝐧 𝒙 & 𝐜𝐨𝐬 𝒙 

This technique is entirely different – change all but one of 

the sin/cos functions to the opposite by using the Pythagoras 

identity.  

cos2 𝑥 + sin2 𝑥 = 1 

Hence:  

sin2 𝑥 = 1 − cos2 𝑥 

cos2 𝑥 = 1 − sin2 𝑥 

 

Example 12 

Find:  ∫ sin3 𝑥 𝑑𝑥 

Solution 

∫ sin3 𝑥 𝑑𝑥 = ∫ sin 𝑥 sin2 𝑥 𝑑𝑥 

= ∫ sin 𝑥 (1 − cos2 𝑥) 𝑑𝑥 

= ∫(sin 𝑥 − cos2 𝑥 sin 𝑥) 𝑑𝑥 

Recognise standard type ∫ cos𝑛 𝑥 sin 𝑥 𝑑𝑥 

∫ sin3 𝑥 𝑑𝑥 = − cos 𝑥 +
1

3
cos3 𝑥 + 𝑐 
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Introduction 

Sometimes expressions which at first sight look impossible 

to integrate using standard techniques may in fact be 

integrated by first expressing them as simpler partial 

fractions and then using earlier learned techniques. As 

explained in Chapter 5, the algebraic technique of resolving 

a complicated fraction into partial fractions is often useful in 

integration.   

Using partial fractions in integration 

The ideal format for integrating a fraction is: 

∫
1

𝑎𝑥 + 𝑏
𝑑𝑥 =

1

𝑎
ln|𝑎𝑥 + 𝑏| + 𝑐 

Partial fractions give us the tool to tackle fractions that are 

not ideal in this form. 

Example 1 

Find  ∫
1

𝑥2 − 1
𝑑𝑥 

Solution 

1

𝑥2 − 1
≡

𝐴

𝑥 + 1
+

𝐵

𝑥 − 1
≡

𝐴(𝑥 − 1) + 𝐵(𝑥 + 1)

(𝑥 + 1)(𝑥 − 1)

∴ 1 = 𝐴(𝑥 − 1) + 𝐵(𝑥 + 1) 

Let  𝑥 = 1 ⇒ 1 = 2𝐵 ∴   𝐵 =
1

2

Let  𝑥 = −1 ⇒    1 = −2𝐴 ∴   𝐴 = −
1

2

∫
1

𝑥2 − 1
𝑑𝑥 = ∫

1

2(𝑥 − 1)
−

1

2(𝑥 + 1)
𝑑𝑥 

=
1

2
∫

1

𝑥 − 1
𝑑𝑥 −

1

2
∫

1

𝑥 + 1
𝑑𝑥 

=
1

2
ln|𝑥 − 1| −

1

2
ln|𝑥 + 1| + 𝑐 

=
1

2
ln |

𝑥 − 1

𝑥 + 1
| + 𝑐 

Example 2 

Find   ∫
5(𝑥 + 1)

(𝑥 − 1)(𝑥 + 4)
𝑑𝑥 

Solution 

5(𝑥 + 1)

(𝑥 − 1)(𝑥 + 4)
≡

𝐴

𝑥 − 1
+

𝐵

𝑥 + 4
≡

𝐴(𝑥 + 4) + 𝐵(𝑥 − 1)

(𝑥 − 1)(𝑥 + 4)

5(𝑥 + 1) = 𝐴(𝑥 + 4) + 𝐵(𝑥 − 1) 

Let 𝑥 = −4 ⇒     −15 = −5𝐵     ∴ 𝐵 = 3 

Let 𝑥 = 1 ⇒     10 = 5𝐴          ∴ 𝐴 = 2 

∫
5(𝑥 + 1)

(𝑥 − 1)(𝑥 + 4)
𝑑𝑥 = ∫

2

𝑥 − 1
𝑑𝑥 + ∫

3

𝑥 + 4
𝑑𝑥 

= 2 ∫
1

𝑥 − 1
𝑑𝑥 + 3 ∫

1

𝑥 + 4
𝑑𝑥 

 

 

= 2 ln|𝑥 − 1| + 3 ln|𝑥 + 4| + 𝑐 

Example 3 

Calculate the value of ∫
1

𝑥(𝑥 − 5)

4

1

𝑑𝑥 

Solution 

Let 
1

𝑥(𝑥 − 5)
≡

𝐴

𝑥
+

𝐵

𝑥 − 5
≡

𝐴(𝑥 − 5) + 𝐵𝑥

𝑥(𝑥 − 5)

1 = 𝐴(𝑥 − 5) + 𝐵𝑥 

Let 𝑥 = 5,    5𝐵 = 1 ⇒ 𝐵 =
1

5

Let 𝑥 = 0,    −5𝐴 = 1 ⇒ 𝐴 = −
1

5

∴
1

𝑥(𝑥 − 5)
= −

1

5𝑥
+

1

5(𝑥 − 5)

∫
1

𝑥(𝑥 − 5)

4

1

𝑑𝑥 =
1

5
∫ (−

1

𝑥
)

4

1

+
1

(𝑥 − 5)
𝑑𝑥 

=
1

5
[− ln|𝑥| + ln|𝑥 − 5|]1

4

=
1

5
[(− ln 4 + ln|4 − 5|) − (− ln 1 + ln|1 − 5|)] 

=
1

5
[(− ln 4 + ln 1) − (ln 1 − ln 4)] 

=
1

5
(−2 ln 4) 

= −
2

5
ln 4 

=
1

5
ln (

1

16
) 

Example 4 

Find ∫
1

(𝑥 + 1)(2𝑥 + 3)
𝑑𝑥 

Solution 

1

(𝑥 + 1)(2𝑥 + 3)
≡

𝐴

(𝑥 + 1)
+

𝐵

(2𝑥 + 3)

=
𝐴(2𝑥 + 3) + 𝐵(𝑥 + 1)

(𝑥 + 1)(2𝑥 + 3)

1 = 𝐴(2𝑥 + 3) + 𝐵(𝑥 + 1) 

𝑥 = −
3

2
,      −

1

2
𝐵 = 1 ⇒    𝐵 = −2 

𝑥 = −1,       −2𝐴 + 3 = 1 ⇒ 𝐴 = 1
1

(𝑥 + 1)(2𝑥 + 3)
=

1

(𝑥 + 1)
−

2

(2𝑥 + 3)

∫
1

(𝑥 + 1)(2𝑥 + 3)
𝑑𝑥 = ∫

1

(𝑥 + 1)
−

2

(2𝑥 + 3)
𝑑𝑥 

= ln(𝑥 + 1) −
2

2
ln(2𝑥 + 3) + 𝑐 

= ln [
𝑥 + 1

2𝑥 + 3
] + 𝑐 

Chapter 

33 
Integration by Partial Fractions 
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= [3 ln(𝑥 + 3) +
2

(𝑥 + 3)
+

3

(𝑥 + 3)2
]

−2

1

 

= (3 ln 4 +
2

4
+

3

16
) − (3 ln 1 +

2

1
+

3

1
) 

= −0.1536 

 

Example 11 

Find ∫
3 + 6𝑥 + 4𝑥2 − 2𝑥3

𝑥2(𝑥2 + 3)
𝑑𝑥 

Solution 

3 + 6𝑥 + 4𝑥2 − 2𝑥3

𝑥2(𝑥2 + 3)
≡

2

𝑥
+

1

𝑥2
+

3 − 4𝑥

(𝑥2 + 3)
 

∫
3 + 6𝑥 + 4𝑥2 − 2𝑥3

𝑥2(𝑥2 + 3)
𝑑𝑥 = ∫ {

2

𝑥
+

1

𝑥2
+

3 − 4𝑥

(𝑥2 + 3)
} 𝑑𝑥 

= ∫ {
2

𝑥
+

1

𝑥2
+

3

(𝑥2 + 3)
−

4𝑥

(𝑥2 + 3)
} 𝑑𝑥 

∫
3

(𝑥2 + 3)
𝑑𝑥 = 3 ∫

1

𝑥2 + (√3)
2 𝑑𝑥 =

3

√3
tan−1

𝑥

√3
 

Hence  

∫ {
2

𝑥
+

1

𝑥2
+

3

(𝑥2 + 3)
−

4𝑥

(𝑥2 + 3)
} 𝑑𝑥 

= 2 ln 𝑥 −
1

𝑥
+

3

√3
tan−1

𝑥

√3
− 2 ln(𝑥2 + 3) + 𝑐 

= ln (
𝑥

𝑥2 + 3
)

2

−
1

𝑥
+ √3 tan−1

𝑥

√3
+ 𝑐 

 

Example 12 

Determine ∫
1

(𝑥2 − 𝑎2)
𝑑𝑥 

Solution 

Let 
1

(𝑥2 − 𝑎2)
≡

𝐴

(𝑥 − 𝑎)
+

𝐵

(𝑥 + 𝑎)
  

≡
𝐴(𝑥 + 𝑎) + 𝐵(𝑥 − 𝑎)

(𝑥 + 𝑎)(𝑥 − 𝑎)
 

Equating the numerators gives: 

1 = 𝐴(𝑥 + 𝑎) + 𝐵(𝑥 − 𝑎) 

Let 𝑥 = 𝑎, then 𝐴 =
1

2𝑎
 and let 𝑥 = −𝑎, then 𝐵 = −

1

2𝑎
 

∫
1

(𝑥2 − 𝑎2)
𝑑𝑥 = ∫

1

2𝑎
[

1

(𝑥 − 𝑎)
−

1

(𝑥 + 𝑎)
] 𝑑𝑥 

=
1

2𝑎
[ln(𝑥 − 𝑎) − ln(𝑥 + 𝑎)] + 𝑐 

=
1

2𝑎
ln (

𝑥 − 𝑎

𝑥 + 𝑎
) + 𝑐 

 

Example 13 

Find ∫
5𝑥 + 7

𝑥2 + 4𝑥 + 8
𝑑𝑥 

Solution 

𝑑

𝑑𝑥
(𝑥2 + 4𝑥 + 8) = 2𝑥 + 4 

Let 5𝑥 + 7 ≡ 𝐴(2𝑥 + 4) + 𝐵 

⇒ 𝐴 =
5

2
 , 𝐵 = −3 

5𝑥 + 7

𝑥2 + 4𝑥 + 8
=

5
2

(2𝑥 + 4) − 3

𝑥2 + 4𝑥 + 8
 

∫
5𝑥 + 7

𝑥2 + 4𝑥 + 8
𝑑𝑥 = ∫ {

5
2

(2𝑥 + 4)

𝑥2 + 4𝑥 + 8
−

3

𝑥2 + 4𝑥 + 8
} 𝑑𝑥 

=
5

2
ln(𝑥2 + 4𝑥 + 8) − 3 ∫

1

(𝑥 + 2)2 + 4
𝑑𝑥 

=
5

2
ln(𝑥2 + 4𝑥 + 8) −

3

2
tan−1 (

𝑥 + 2

2
) + 𝑐 

 

Example 14 

Evaluate ∫
𝑥 + 1

𝑥2 + 𝑥 + 1

1

0

𝑑𝑥 

Solution 

𝑑

𝑑𝑥
(𝑥2 + 𝑥 + 1) = 2𝑥 + 1 and 𝑥2 + 𝑥 + 1 = (𝑥 +

1

2
)

2

+
3

4
 

Now  

𝑥 + 1 =
1

2
(2𝑥 + 1) +

1

2
 

Hence  

∫
𝑥 + 1

𝑥2 + 𝑥 + 1

1

0

𝑑𝑥 = ∫ [

1
2

(2𝑥 + 1)

𝑥2 + 𝑥 + 1
+

1
2

𝑥2 + 𝑥 + 1
]

1

0

𝑑𝑥 

= [
1

2
ln(𝑥2 + 𝑥 + 1)]

0

1

+
1

2
∫

1

(𝑥 +
1
2

)
2

+
3
4

1

0

𝑑𝑥 

=
1

2
ln 3 +

1

2
[

2

√3
tan−1 (

2𝑥 + 1

√3
)]

0

1

 

=
1

2
ln 3 + (

1

√3
tan−1 √3 −

1

√3
tan−1

1

√3
) 

=
1

2
ln 3 +

𝜋

6√3
 

 

Example 15 

Find ∫
𝑥 − 1

𝑥 + 1
𝑑𝑥 

Solution 

𝑥 − 1

𝑥 + 1
= 1 −

2

𝑥 + 1
 

∫
𝑥 − 1

𝑥 + 1
𝑑𝑥 = ∫ 1 −

2

𝑥 + 1
𝑑𝑥 

= 𝑥 − 2 ln|𝑥 + 1| + 𝑐 

 

Example 16 

Find ∫
𝑥3 + 2

𝑥 − 1
𝑑𝑥 

Solution 

𝑥3 + 2

𝑥 − 1
≡

𝑥3 − 1 + 3

𝑥 − 1
=

𝑥3 − 1

𝑥 − 1
+

3

𝑥 − 1
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=
(𝑥 − 1)(𝑥2 + 𝑥 + 1)

(𝑥 − 1)
+

3

𝑥 − 1
 

= 𝑥2 + 𝑥 + 1 +
3

𝑥 − 1
 

∫
𝑥3 + 2

𝑥 − 1
𝑑𝑥 = ∫ 𝑥2 + 𝑥 + 1 +

3

𝑥 − 1
𝑑𝑥 

=
𝑥3

3
+

𝑥2

2
+ 𝑥 + 3 ln(𝑥 − 1) + 𝑐 

 

Self-Evaluative exercise  

1. Find the following integrals  

(a) ∫
17−4𝑥

(𝑥−2)(𝑥+1)
𝑑𝑥 

[Ans: 3 ln|𝑥 − 2| − 7 ln|𝑥 + 1| + 𝑐] 

(b) ∫
18𝑥−1

(2𝑥+1)(3𝑥−1)
𝑑𝑥 

[Ans: 2 ln|2𝑥 + 1| + ln|3𝑥 − 1| + 𝑐] 

(c) ∫
7𝑥−9

𝑥2−2𝑥−15
𝑑𝑥 

[Ans: 5 ln|𝑥 + 3| + 2 ln|𝑥 − 5| + 𝑐] 

(d) ∫
𝑥2+14𝑥+1

(𝑥+3)(𝑥−5)(𝑥+7)
𝑑𝑥 

[Ans: ln |
𝑥2−2𝑥−15

𝑥+7
| + 𝑐] 

(e) ∫
7𝑥+4

(𝑥−2)(𝑥+1)2 𝑑𝑥 

[Ans: 2 ln |
𝑥−2

𝑥+1
| −

1

𝑥+1
+ 𝑐] 

(f) ∫
2𝑥2+𝑥+8

(𝑥−2)(𝑥+1)2 𝑑𝑥 

[Ans: 2 ln|𝑥 − 2| +
3

𝑥+1
+ 𝑐] 

(g) ∫
𝑥+1

9𝑥2−1
𝑑𝑥 

[Ans: 
2

9
ln|3𝑥 − 1| −

1

9
ln|3𝑥 + 1| + 𝑐] 

(h) ∫
17−5𝑥

(2𝑥+3)(2−𝑥)2 𝑑𝑥 

[Ans: ln |
2𝑥+3

2−𝑥
| +

1

2−𝑥
+ 𝑐] 

(i) ∫
4𝑥2−6𝑥+5

(2−𝑥)(2𝑥−1)2 𝑑𝑥 

[Ans: −
1

2𝑥−1
− ln|2 − 𝑥| + 𝑐] 

(j) ∫
10𝑥2−23𝑥+11

(2−3𝑥)(2𝑥−1)2 𝑑𝑥 

[Ans: −
2

2𝑥−1
−

1

3
ln|2 − 3𝑥| −

1

2
ln|2𝑥 − 1| + 𝑐] 

(k) ∫
1

𝑥2(𝑥−1)
𝑑𝑥 

[Ans: 
1

𝑥
+ ln |

𝑥−1

𝑥
| + 𝑐] 

(l) ∫
8(𝑥2+1)

(𝑥−3)(𝑥+1)2 𝑑𝑥 

[Ans: 5 ln|𝑥 − 3| + 3 ln|𝑥 + 1| +
4

𝑥+1
+ 𝑐] 

(m) ∫
4𝑥2−𝑥+1

(𝑥−1)(2𝑥−1)
𝑑𝑥 

[Ans: 2𝑥 + 4 ln|𝑥 − 1| −
3

2
ln|2𝑥 − 1| + 𝑐] 

(n) ∫
2

𝑥(𝑥2−1)
𝑑𝑥 

[Ans: ln |
𝑥2−1

𝑥2 | + 𝑐] 

(o) ∫
2𝑥2+5𝑥−1

𝑥3+𝑥2−2𝑥
𝑑𝑥 

[Ans: 2 ln|𝑥 − 1| +
1

2
ln |

𝑥

𝑥+2
| + 𝑐] 

(p) ∫
2

2𝑥−𝑥2 𝑑𝑥 

[Ans: ln |
2𝑥

2−𝑥
| + 𝑐] 

2. Evaluate the following integrals  

(a) ∫
9+4𝑥2

9−4𝑥2 𝑑𝑥
1

−1
 

[Ans: −2 + 3 ln 5] 

(b) ∫
18−4𝑥−𝑥2

(4−3𝑥)(1+𝑥)2 𝑑𝑥
1

0
 

[Ans: 
7

3
ln 2 +

3

2
] 

(c) ∫
𝑥2+𝑥+2

𝑥2+2𝑥−3

3

2
𝑑𝑥 

[Ans: 1 + ln (
25

18
)] 

(d) ∫
4

(2𝑥+1)(1−2𝑥)
𝑑𝑥

1

4
0

 

[Ans: ln 3] 

(e) ∫
17−5𝑥

(3+2𝑥)(2−𝑥)2 𝑑𝑥
1

0
 

[Ans: 
1

2
+ ln (

10

3
)] 

(f) ∫
5𝑥2−8𝑥+1

2𝑥(𝑥−1)2

9

4
𝑑𝑥 

[Ans: ln (
32

3
) −

5

24
] 

(g) ∫
𝑥2

𝑥2−4

1

0
𝑑𝑥 

[Ans: 1 − ln 3] 

(h) ∫
10

(𝑥+1)(𝑥+3)(2𝑥+1)
𝑑𝑥

1

0
 

[Ans: 3 ln 3 − 3 ln 2] 

(i) ∫
13−2𝑥

(𝑥+4)(2𝑥+1)

4

0
𝑑𝑥 

[Ans: 4 ln 3 − 3 ln 2] 

(j) ∫
2𝑥2−𝑥+11

(𝑥+2)(2𝑥−3)

6

2
𝑑𝑥 

[Ans: 4 + 4 ln 3 − 3 ln 2] 

(k) ∫
25𝑥+1

(2𝑥−1)(𝑥+1)2 𝑑𝑥
2

0
 

[Ans: 
16

3
] 

(l) ∫
2𝑥2

𝑥2−16

8

5
𝑑𝑥 

[Ans: 6 + 4 ln 3] 

(m) ∫
𝑥2−3𝑥+5

(4−𝑥)(1−𝑥)2

3

2
𝑑𝑥 

[Ans: 
1

2
+ ln 2] 

(n) ∫
4𝑥3−12𝑥2−22𝑥−3

(4−𝑥)(2𝑥+1)
𝑑𝑥

2

0
 

[Ans: 
1

2
ln (

5

64
) − 6] 

(o) ∫
4𝑡2+9𝑡+8

(𝑡+2)(𝑡+1)2

1

0
𝑑𝑡 

[Ans: 2.546] 

(p) ∫
2+𝜃+6𝜃2−2𝜃3

𝜃(𝜃2+1)

2

1
𝑑𝜃 

[Ans: 1.606] 
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Introduction  

This is the equivalent of the product rule for integration. It 

is usually used when the product we want to integrate is not 

of the form 𝑓′(𝑥)(𝑓(𝑥))
𝑛

 and so cannot be integrated with

this standard method, or by recognition or by substitution.  

Integrating by parts is particularly useful for integrating the 

product of two types of function, such a polynomial with a 

trig, exponential or log function (e.g. 𝑥 sin 𝑥 , 𝑥2𝑒𝑥, ln 𝑥)

Rearranging the product rule 

 The rule for integrating by Parts comes from integrating the 

product rule.  

Product rule: 
𝑑

𝑑𝑥
(𝑢𝑣) = 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
Integrating w.r.t. 𝑥 to get: 

∫
𝑑

𝑑𝑥
(𝑢𝑣) 𝑑𝑥 = ∫ 𝑢

𝑑𝑣

𝑑𝑥
𝑑𝑥 + ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥 

𝑢𝑣 = ∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥 + ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥 

Rearranging: 

∫ 𝒖
𝒅𝒗

𝒅𝒙
𝒅𝒙 = 𝒖𝒗 − ∫ 𝒗

𝒅𝒖

𝒅𝒙
𝒅𝒙 

Choice of 𝒖 & 𝒅𝒗/𝒅𝒙 

Care must be taken over the choice of 𝑢 and 𝑑𝑣/𝑑𝑥. 

The aim is to ensure that it is simpler to integrate 𝑣
𝑑𝑢

𝑑𝑥
 than 

the original 𝑢
𝑑𝑣

𝑑𝑥
. So we choose 𝑢 to be easy to differentiate 

and when differentiated to become simpler. Choose 𝑑𝑣/𝑑𝑥 

to be easy to integrate.  

Normally, 𝑢 is assigned to any polynomial in 𝑥, and if any 

exponential function is involved, assign this to 
𝑑𝑣

𝑑𝑥
. However,

if ln 𝑥 is involved make this 𝑢, as it is easier to differentiate 

ln[𝑓(𝑥)] function than to integrate it. 

Evaluating the Definite integral by parts 

Use this for substituting the limits:  

∫ 𝑢
𝑑𝑣

𝑑𝑥
 𝑑𝑥

𝑏

𝑎

= [𝑢𝑣]𝑎
𝑏 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
 𝑑𝑥

𝑏

𝑎

 

 

 

Handling the constant of integration  

The method listed above suggests adding the constant of 

integration at the end of the calculation. Why is this?  

The best way to explain this is to show an example of adding 

a constant after each integration, and you can see that the 

first one cancels out during the calculation.  

Example 1 

Find: ∫ 𝑥 sin 𝑥 𝑑𝑥 

Solution 

Let 𝑢 = 𝑥      and 
𝑑𝑣

𝑑𝑥
= sin 𝑥 

𝑑𝑢

𝑑𝑥
= 1                  𝑣 = ∫

𝑑𝑣

𝑑𝑥
= − cos 𝑥 + 𝑘

where 𝑘 is the constant from the first integration and 𝑐 is the 

constant from the second integrations 

Recall: ∫ 𝑢
𝑑𝑣

𝑑𝑥
𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣

𝑑𝑢

𝑑𝑥
𝑑𝑥 

∫ 𝑥 sin 𝑥 𝑑𝑥 = 𝑥(− cos 𝑥 + 𝑘) − ∫(− cos 𝑥 + 𝑘) × 1𝑑𝑥 

= −𝑥 cos 𝑥 + 𝑘𝑥 + ∫ cos 𝑥 𝑑𝑥 − ∫ 𝑘 𝑑𝑥 

= −𝑥 cos 𝑥 + 𝑘𝑥 + sin 𝑥 − 𝑘𝑥 + 𝑐 

= −𝑥 cos 𝑥 + sin 𝑥 + 𝑐 

Example 2 

Find:  ∫ 𝑥 cos 𝑥 𝑑𝑥 

Solution 

Let 𝑢 = 𝑥    and 
𝑑𝑣

𝑑𝑥
= cos 𝑥 

𝑑𝑢

𝑑𝑥
= 1          𝑣 = ∫

𝑑𝑣

𝑑𝑥
= ∫ cos 𝑥 = sin 𝑥

∫ 𝑥 cos 𝑥 𝑑𝑥 = 𝑥 sin 𝑥 − ∫ sin 𝑥 × 1 𝑑𝑥 

= 𝑥 sin 𝑥 + cos 𝑥 + 𝑐 

Now look at this situation; 

Let 𝑢 = cos 𝑥      and 
𝑑𝑣

𝑑𝑥
= 𝑥 

𝑑𝑢

𝑑𝑥
= − sin 𝑥         𝑣 =

𝑥2

2

∫ 𝑥 cos 𝑥 𝑑𝑥 = sin 𝑥 ∙
𝑥2

2
− ∫

𝑥2

2
(− sin 𝑥)𝑑𝑥 

=
𝑥2

2
sin 𝑥 + ∫

𝑥2

2
sin 𝑥 𝑑𝑥 

As you can see, this gives a more involved solution, that has 

another round of integration by parts. This emphasizes the 

importance of choosing 𝑢 wisely. In this case it would be 

prudent to start again with 𝑢 = 𝑥. 

Chapter 

34 
Integration by Parts 
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Solution 

Following the guidelines on choice of 𝑢 & 
𝑑𝑣

𝑑𝑥
, then we would 

let 𝑢 = 𝑥 and 
𝑑𝑣

𝑑𝑥
= ln 𝑥. However, ln 𝑥 is difficult to 

integrate, so choose 𝑢 = ln 𝑥 

Let     𝑢 = ln 𝑥       and        
𝑑𝑣

𝑑𝑥
= 𝑥4 

          
𝑑𝑢

𝑑𝑥
=

1

𝑥
                        𝑣 =

1

5
𝑥5 

∫ 𝑥4 ln 𝑥 𝑑𝑥 = ln 𝑥 ∙
1

5
𝑥5 − ∫

1

5
𝑥5 ∙

1

𝑥
𝑑𝑥 

=
1

5
𝑥5 ln 𝑥 −

1

5
∫ 𝑥4 𝑑𝑥 

=
1

5
𝑥5 ln 𝑥 −

1

5
×

1

5
𝑥5 + 𝑐 

=
1

5
𝑥5 ln 𝑥 −

1

25
𝑥5 + 𝑐 

∫ 𝑥4 ln 𝑥 𝑑𝑥 =
1

25
𝑥5(5 ln 𝑥 − 1) + 𝑐 

 

Example 10 

Evaluate: ∫ 𝑥
8

2

ln 𝑥 𝑑𝑥 

Solution 

Let    𝑢 = ln 𝑥       and     
𝑑𝑣

𝑑𝑥
= 𝑥 

𝑑𝑢

𝑑𝑥
=

1

𝑥
                               𝑣 =

𝑥2

2
 

∫ 𝑥
8

2

ln 𝑥 𝑑𝑥 = [
𝑥2

2
ln 𝑥]

2

8

− ∫
𝑥2

2
∙

1

𝑥
𝑑𝑥

8

2

 

= [
𝑥2

2
ln 𝑥]

2

8

− ∫
𝑥

2
𝑑𝑥

8

2

 

= [
𝑥2

2
ln 𝑥]

2

8

− [
𝑥2

4
]

2

8

 

= [
𝑥2

2
ln 𝑥 −

𝑥2

4
]

2

8

 

= (32 ln 8 − 16)(2 ln 2 − 1) 

= 32 ln 8 − 2 ln 2 − 15 

= 32 ln 23 − 2 ln 2 − 15 

= 9 ln 2 − 2 ln 2 − 15 

∫ 𝑥
8

2

ln 𝑥 𝑑𝑥 = 94 ln 2 − 15 

 

Example 11 

Find: ∫ √𝑥 ln 𝑥 𝑑𝑥 

Solution 

Let      𝑢 = ln 𝑥         and        
𝑑𝑣

𝑑𝑥
= √𝑥 

          
𝑑𝑢

𝑑𝑥
=

1

𝑥
                          𝑣 = ∫ √𝑥 =

2

3
𝑥

3

2 

∫ √𝑥 ln 𝑥 𝑑𝑥 = ln 𝑥 ∙
2

3
𝑥

2
3 − ∫

2

3
𝑥

3
2 ∙

1

𝑥
𝑑𝑥 

=
2

3
𝑥

3
2 ln 𝑥 −

2

3
∫ 𝑥

1
2 𝑑𝑥 

=
2

3
𝑥

3
2 ln 𝑥 −

2

3
×

2

3
𝑥

3
2 + 𝑐 

=
2

9
√𝑥3(3 ln 𝑥 − 2) + 𝑐 

 

Example 12 

Evaluate ∫ 𝑥3 ln 𝑥
3

1

𝑑𝑥  

Solution 

Let      𝑢 = ln 𝑥              
𝑑𝑣

𝑑𝑥
= 𝑥3 

           
𝑑𝑢

𝑑𝑥
=

1

𝑥
                  𝑣 =

𝑥4

4
 

∫ 𝑥3 ln 𝑥
3

1

𝑑𝑥 = [(
𝑥4

4
) (ln 𝑥)]

1

3

− ∫ (
𝑥4

4
) (

1

𝑥
)

3

1

𝑑𝑥 

= [
𝑥4

4
ln 𝑥 −

𝑥4

16
]

1

3

 

=
81

4
ln 3 −

81

16
−

1

4
ln 1 +

1

16
 

=
81

4
ln 3 − 5 = 17.2 

 

Integration by Parts: Special cases  

These next examples use the integration by parts twice, 

which generates a term that is the same as the original 

integral. This term can then be moved to the L.H.S, to give 

the final result by division.  

Generally used for integrals of the form 𝑒𝑎𝑥 sin 𝑏𝑥 or 

𝑒𝑎𝑥 cos 𝑏𝑥. In this form, the choice of 𝑢 and 
𝑑𝑣

𝑑𝑥
 does not 

matter.  

 

Example 13 

Find: ∫
ln 𝑥

𝑥
𝑑𝑥 

Solution 

Let   𝑢 = ln 𝑥     and      
𝑑𝑣

𝑑𝑥
=

1

𝑥
 

         
𝑑𝑢

𝑑𝑥
=

1

𝑥
                     𝑣 = ln 𝑥 

∫
ln 𝑥

𝑥
𝑑𝑥 = ln 𝑥 ∙ ln 𝑥 − ∫ ln 𝑥 ∙

1

𝑥
𝑑𝑥 

∫
ln 𝑥

𝑥
𝑑𝑥 = (ln 𝑥)2 − ∫

ln 𝑥

𝑥
𝑑𝑥 

2 ∫
ln 𝑥

𝑥
𝑑𝑥 = (ln 𝑥)2 

∴ ∫
ln 𝑥

𝑥
𝑑𝑥 =

1

2
(ln 𝑥)2 + 𝑐 

Note: (ln 𝑥)2 is not the same as ln 𝑥2 

 

Example 14 

Find: ∫ 𝑥2 sin 𝑥 𝑑𝑥 
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𝑢 = sin 𝑥     and       
𝑑𝑣

𝑑𝑥
= 𝑒𝑥 

                         
𝑑𝑢

𝑑𝑥
= cos 𝑥            𝑣 = 𝑒𝑥 

∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥 cos 𝑥 + [sin 𝑥 . 𝑒𝑥 − ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥] 

∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥(cos 𝑥 + sin 𝑥) − ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 

2 ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 = 𝑒𝑥(cos 𝑥 + sin 𝑥) + 𝑐 

∴ ∫ 𝑒𝑥 cos 𝑥 𝑑𝑥 =
1

2
𝑒𝑥(cos 𝑥 + sin 𝑥) + 𝑐 

 

Example 18 

Find: ∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 

Solution 

Let:       𝑢 = sin 4𝑥       and        
𝑑𝑣

𝑑𝑥
= 𝑒2𝑥 

             
𝑑𝑢

𝑑𝑥
= 4 cos 4𝑥                𝑣 =

1

2
𝑒2𝑥 

∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 = sin 4𝑥 ∙
1

2
𝑒2𝑥 − ∫

1

2
𝑒2𝑥 ∙ 4 cos 4𝑥 𝑑𝑥 

∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 =
1

2
𝑒2𝑥 sin 4𝑥 − 2 ∫ 𝑒2𝑥 cos 4𝑥 𝑑𝑥 

Now integrate by parts again and then one final integration;  

                  𝑢 = cos 4𝑥                       
𝑑𝑣

𝑑𝑥
= 𝑒2𝑥 

                  
𝑑𝑢

𝑑𝑥
= −4 sin 4𝑥                  𝑣 =

1

2
𝑒2𝑥 

∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 

=
1

2
𝑒2𝑥 sin 4𝑥 − 2 [cos 4𝑥 ∙

1

2
𝑒2𝑥 − ∫

1

2
𝑒2𝑥 ∙ (−4 sin 4𝑥) 𝑑𝑥]  

=
1

2
𝑒2𝑥 sin 4𝑥 − 2 [

1

2
𝑒2𝑥 cos 4𝑥 + 2 ∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥] 

=
1

2
𝑒2𝑥 sin 4𝑥 − 𝑒2𝑥 cos 4𝑥 − 4 ∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 

5 ∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 =
1

2
𝑒2𝑥 sin 4𝑥 − 𝑒2𝑥 cos 4𝑥 + 𝑐 

5 ∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 =
1

2
𝑒2𝑥(sin 4𝑥 − 2 cos 4𝑥) + 𝑐 

∫ 𝑒2𝑥 sin 4𝑥 𝑑𝑥 =
1

10
𝑒2𝑥(sin 4𝑥 − 2 cos 4𝑥) + 𝑐 

 

Example 19 

Find: ∫ 𝑥2𝑒4𝑥 𝑑𝑥 

Solution 

Let  𝑢 = 𝑥2        and         
𝑑𝑣

𝑑𝑥
= 𝑒4𝑥 

       
𝑑𝑢

𝑑𝑥
= 2𝑥                      𝑣 =

1

4
𝑒4𝑥 

∫ 𝑥2𝑒4𝑥 𝑑𝑥 = 𝑥2 ∙
1

4
𝑒4𝑥 − ∫

1

4
𝑒4𝑥 ∙ 2𝑥 𝑑𝑥 

=
1

4
𝑥2𝑒4𝑥 −

1

2
∫ 𝑥𝑒4𝑥 𝑑𝑥 

=
1

4
𝑥2𝑒4𝑥 −

1

2
∫ 𝑢 

𝑑𝑣

𝑑𝑥
𝑑𝑥 

Now integrate by parts again and then one final integration; 

                 Let     𝑢 = 𝑥        and        
𝑑𝑣

𝑑𝑥
= 𝑒4𝑥 

                           
𝑑𝑢

𝑑𝑥
= 1                      𝑣 =

1

4
𝑒4𝑥 

∫ 𝑥𝑒4𝑥𝑑𝑥 = 𝑥 ∙
1

4
𝑒4𝑥 − ∫

1

4
𝑒4𝑥 𝑑𝑥 

=
1

4
𝑥𝑒4𝑥 −

1

16
𝑒4𝑥 

Substituting back into the original 

∫ 𝑥2𝑒4𝑥 𝑑𝑥 =
1

4
𝑥2𝑒4𝑥 −

1

2
(

1

4
𝑥𝑒4𝑥 −

1

16
𝑒4𝑥) + 𝑐 

=
1

4
𝑥2𝑒4𝑥 −

1

8
𝑥𝑒4𝑥 +

1

32
𝑒4𝑥 + 𝑐 

= 𝑒4𝑥 (
1

4
𝑥2 −

1

8
𝑥 +

1

32
) + 𝑐 

∫ 𝑥2𝑒4𝑥 𝑑𝑥 =
1

32
𝑒4𝑥(8𝑥2 − 4𝑥 + 1) + 𝑐 

 

Example 20 

Evaluate ∫ 𝑥 tan−1 𝑥 𝑑𝑥
1

0

, giving the answer to 2 s.f  

Solution 

Let 𝑢 = tan−1 𝑥    and    
𝑑𝑣

𝑑𝑥
= 𝑥2 

      
𝑑𝑢

𝑑𝑥
=

1

1+𝑥2                  𝑣 =
𝑥3

3
 

∫ 𝑥 tan−1 𝑥 𝑑𝑥
1

0

= [
𝑥3

3
tan−1 𝑥]

0

1

− ∫
𝑥3

3

1

1 + 𝑥2
𝑑𝑥 

= (
1

3
) (

𝜋

4
) −

1

3
∫ (𝑥 −

𝑥

1 + 𝑥2
)

1

0

𝑑𝑥 

=
𝜋

12
−

1

3
[
𝑥2

2
−

1

2
ln(1 + 𝑥2)]

0

1

 

=
𝜋

12
−

1

6
+

1

6
ln 2 = 0.2 

 

Example 21 

Find: ∫ 𝑥2 sin−1 𝑥 𝑑𝑥 

Solution 

By parts;  

      Let       𝑢 = sin−1 𝑥             
𝑑𝑣

𝑑𝑥
= 𝑥2 

                    
𝑑𝑢

𝑑𝑥
=

1

√1−𝑥2
             𝑣 =

𝑥3

3
 

∫ 𝑥2 sin−1 𝑥 𝑑𝑥 =
𝑥3

3
sin−1 𝑥 − ∫ (

𝑥3

3
)

1

√1 − 𝑥2
  𝑑𝑥 

Let  1 − 𝑥2 = 𝑤, then −2𝑥
𝑑𝑥

𝑑𝑤
= 2𝑤 ⇒ 𝑥

𝑑𝑥

𝑑𝑤
= −𝑤 

∫
𝑥3𝑑𝑥

3√1 − 𝑥2
=

1

3
∫

(1 − 𝑤2)

𝑤
(−𝑤)𝑑𝑤 = −

1

3
∫(1 − 𝑤2) 𝑑𝑤 

= −
𝑤

9
(3 − 𝑤2) = −

1

9
(2 + 𝑥2)√1 − 𝑥2 

∫ 𝑥2 sin−1 𝑥 𝑑𝑥 =
𝑥3

3
sin−1 𝑥 + (

2 + 𝑥2

9
) √1 − 𝑥2 + 𝑐 
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Example 22 

Find ∫ 𝑥 sin 3𝑥 cos 2𝑥 𝑑𝑥 

Solution 

From sin 𝐴 cos 𝐵 =
1

2
{sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)} 

  sin 3𝑥 cos 2𝑥 =
1

2
[sin(3𝑥 + 2𝑥) + sin(3𝑥 − 2𝑥)] 

=
1

2
[sin 5𝑥 + sin 𝑥] 

∫ 𝑥 sin 3𝑥 cos 2𝑥 𝑑𝑥 =
1

2
∫ 𝑥(sin 5𝑥 + sin 𝑥) 𝑑𝑥 

Applying integrating by parts; 

              𝑢 = 𝑥                 
𝑑𝑣

𝑑𝑥
= sin 5𝑥 + sin 𝑥 

               
𝑑𝑢

𝑑𝑥
= 1              𝑣 = −

cos 5𝑥

5
− cos 𝑥 

∫ 𝑥 sin 3𝑥 cos 2𝑥 𝑑𝑥 

=
1

2
[𝑥 (−

cos 5𝑥

5
− cos 𝑥) − ∫ (−

cos 5𝑥

5
− cos 𝑥) 𝑑𝑥]  

=
1

2
[𝑥 (−

cos 5𝑥

5
− cos 𝑥) + ∫ (

cos 5𝑥

5
+ cos 𝑥) 𝑑𝑥] 

=
1

2
[−𝑥 (

cos 5𝑥

5
+ cos 𝑥) + (

sin 5𝑥

5 × 5
+ sin 𝑥)] + 𝑐 

∫ 𝑥 sin 3𝑥 cos 2𝑥 𝑑𝑥 

=
1

2
[−𝑥 (

cos 5𝑥

5
+ cos 𝑥) +

sin 5𝑥

25
+ sin 𝑥] + 𝑐 

 

Example 23 

Find ∫ 𝑥 5𝑥 𝑑𝑥 

Solution 

Let    𝑢 = 𝑥         and      
𝑑𝑣

𝑑𝑥
= 5𝑥 

         
𝑑𝑢

𝑑𝑥
= 1                            𝑣 =

5𝑥

ln 5
 

∫ 𝑥 5𝑥 𝑑𝑥 =
𝑥 5𝑥

ln 5
− ∫

5𝑥

ln 5
𝑑𝑥 

=
𝑥 5𝑥

ln 5
−

1

ln 5
∙

5𝑥

ln 5
+ 𝑐 

∫ 𝑥 5𝑥 𝑑𝑥 =
𝑥 5𝑥

ln 5
−

5𝑥

(ln 5)2
+ 𝑐 

 

Example 24 

Find  ∫
𝑥 sin−1 𝑥

√1 − 𝑥2
𝑑𝑥 

Solution 

Let sin−1 𝑥 = 𝑡  ⇒ 𝑥 = sin 𝑡 

𝑑𝑥 = cos 𝑡 𝑑𝑡 

𝑑𝑥 = √1 − sin2 𝑡 𝑑𝑡 

𝑑𝑥 = √1 − 𝑥2𝑑𝑡 

Now 

∫
𝑥 sin−1 𝑥

√1 − 𝑥2
𝑑𝑥 = ∫ 𝑥

𝑡

√1 − 𝑥2
(√1 − 𝑥2𝑑𝑡) 

= ∫ 𝑥𝑡  𝑑𝑡 

= ∫ 𝑡 sin 𝑡 𝑑𝑡 

Applying integration by parts;  

        𝑢 = 𝑡      and    
𝑑𝑣

𝑑𝑡
= sin 𝑡 

       
𝑑𝑢

𝑑𝑡
= 1                     𝑣 = − cos 𝑡 

∫
𝑥 sin−1 𝑥

√1 − 𝑥2
𝑑𝑥 = ∫ 𝑡 sin 𝑡 𝑑𝑡 = 𝑡(− cos 𝑡) − ∫(− cos 𝑡) 𝑑𝑡 

= −𝑡 cos 𝑡 + ∫ cos 𝑡 𝑑𝑡 

= −𝑡 cos 𝑡 + sin 𝑡 + 𝑐 

= −(sin−1 𝑥) (√1 − 𝑥2) + 𝑥 + 𝑐 

∫
𝑥 sin−1 𝑥

√1 − 𝑥2
𝑑𝑥 = 𝑥 − √1 − 𝑥2 sin−1 𝑥 + 𝑐 

 

Example 25 

Find ∫ tan−1 (
2𝑥

1 − 𝑥2
) 𝑑𝑥 

Solution 

Let 𝑥 = tan 𝜃   ⇒ 𝑑𝑥 = sec2 𝜃 𝑑𝜃 

∫ tan−1 (
2𝑥

1 − 𝑥2
) 𝑑𝑥 = ∫ tan−1 (

2 tan 𝜃

1 − tan2 𝜃
) sec2 𝜃 𝑑𝜃 

= ∫ tan−1(tan 2𝜃) sec2 𝜃 𝑑𝜃 

= ∫ 2𝜃 sec2 𝜃 𝑑𝜃 

Applying integration by parts;  

Let     𝑢 = 2𝜃      and     
𝑑𝑣

𝑑𝜃
= sec2 𝜃 

          
𝑑𝑢

𝑑𝜃
= 2                   𝑣 = tan 𝜃 

∫ 2𝜃 sec2 𝜃 𝑑𝜃 = 2𝜃 tan 𝜃 − ∫ 2 tan 𝜃 𝑑𝜃 

= 2𝜃 tan 𝜃 − 2 ln sec 𝜃 + 𝑐 

∫ tan−1 (
2𝑥

1 − 𝑥2
) 𝑑𝑥 = 2𝑥 tan−1 𝑥 − 2 ln √1 + 𝑥2 + 𝑐 

 

Example 26 

Find ∫ sec3 𝑥 𝑑𝑥 

Solution 

∫ sec3 𝑥 𝑑𝑥 = ∫(sec 𝑥)(sec2 𝑥) 𝑑𝑥 

Applying integration by parts;  

Let       𝑢 = sec 𝑥     and      
𝑑𝑣

𝑑𝑥
= sec2 𝑥 

            
𝑑𝑢

𝑑𝑥
= sec 𝑥 tan 𝑥              𝑣 = tan 𝑥 

∫ sec3 𝑥 𝑑𝑥 = sec 𝑥 tan 𝑥 − ∫(sec 𝑥)(sec 𝑥 tan 𝑥) 𝑑𝑥 

= sec 𝑥 tan 𝑥 − ∫ tan2 𝑥 sec 𝑥 𝑑𝑥 

= sec 𝑥 tan 𝑥 − ∫(sec2 𝑥 − 1) sec 𝑥 𝑑𝑥 
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Introduction 

An equation involving derivatives of one or more dependent 

variables with respect to one or more independent variables 

is called a differential equation (often, simply referred to as 

a d.e.). If this differential equation involves ordinary 

derivatives of one or more dependent variables with respect 

to a single independent variable, then we have an ordinary 

differential equation. 

Two examples of differential equations are 
𝑑𝑦

𝑑𝑥
= 4𝑥, 

𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 1 = 0.

A solution to such equations is an equation relating 𝑥 and 𝑦 

and containing no differential coefficients)  

For example, if 
𝑑𝑦

𝑑𝑥
= 3, we obtain the general solution

𝑦 = 3𝑥 + 𝑐. From a graphical point of view, a differential 

equation describes a property of a family of curves. In our 

case, it describes a family of curves whose gradient is 

always 3. In turn, we obtain a general solution 𝑦 = 3𝑥 + 𝑐, 

which represents the family of straight line curves with 

gradient 3.  

A particular solution is the equation of one particular 

member of that family of curves. In our case, if we also 

know that 𝑥 = 1, 𝑦 = 5, we would then have the particular 

solution 𝑦 = 3𝑥 + 2 (i.e. solving for 𝑥 we have: 5 = 3(1) +

𝑐 ⇒ 𝑐 = 2) 

In general, 

1. A differential equation defines some property

common to a family of curves.

2. The general solution, involving one or more arbitrary

constants, is the equation of any member of the

family.

3. A particular solution is the equation to only one

member of the family.

 

 

Order and degree of a differential equation  

The order of a differential equation is determined by the 

highest differential coefficient.   The following serve as 

examples of differential equations of different order: 

1. 
𝑑𝑦

𝑑𝑥
= 4𝑥 is of order 1 

2. 
𝑑2𝑦

𝑑𝑥2 + 2
𝑑𝑦

𝑑𝑥
+ 1 = 0 is of order 2

3. (
𝑑𝑦

𝑑𝑥
)

2

+ (
𝑑𝑦

𝑑𝑥
) = 2 is of order 1

The degree of a differential equation is the degree of the 

highest order derivative which occurs in it, after the 

derivative has been made free from radicals and fractions as 

far as the derivatives are concerned.  

The degree of a differential equation does not require 

variables 𝑟, 𝑠, 𝑡, … to be free from radicals and fractions. 

Example 1 

Find the order and degree of the following differential 

equations.  

(a) 
𝑑3𝑦

𝑑𝑥3 + (
𝑑2𝑦

𝑑𝑥2)
3

+ (
𝑑𝑦

𝑑𝑥
)

5

+ 𝑦 = 7

(b) 𝑦 = 4
𝑑𝑦

𝑑𝑥
+ 3𝑥

𝑑𝑥

𝑑𝑦

(c) 
𝑑2𝑦

𝑑𝑥2 = [4 + (
𝑑𝑦

𝑑𝑥
)

2

]

3

4

(d) (1 + 𝑦′)2 = 𝑦′2

Solution 

(a) The order of the highest derivative in this equation is

3. The degree of the highest order is 1.

∴ (order, degree) = (3, 1) 

(b) 𝑦 = 4
𝑑𝑦

𝑑𝑥
+ 3𝑥

𝑑𝑥

𝑑𝑦

⇒ 𝑦 = 4 (
𝑑𝑦

𝑑𝑥
) + 3𝑥 

1

(
𝑑𝑦
𝑑𝑥

)

Making the above equation free from fractions 

involving 
𝑑𝑦

𝑑𝑥
, we get 

𝑦 ∙
𝑑𝑦

𝑑𝑥
= 4 (

𝑑𝑦

𝑑𝑥
)

2

+ 3𝑥

Highest order = 1  

Degree of highest order = 2 

(order, degree) = (1, 2)  

(c) 
𝑑2𝑦

𝑑𝑥2 = [4 + (
𝑑𝑦

𝑑𝑥
)

2

]

3

4

To eliminate the radical in the above equation, raising to the 

power 4 on both sides we get  

Chapter 

35 
Differential Equations 
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𝑅
𝑑𝑦

𝑑𝑥
+ 𝑅𝑃𝑦 = 𝑅𝑄    … (1) 

is an exact equation, and it is apparent from the first term 

that the L.H.S of (1) is  

𝑑

𝑑𝑥
(𝑅𝑦) = 𝑅

𝑑𝑦

𝑑𝑥
+ 𝑦

𝑑𝑅

𝑑𝑥
 

Thus (1) may also be written as  

𝑅
𝑑𝑦

𝑑𝑥
+ 𝑦

𝑑𝑅

𝑑𝑥
= 𝑅𝑄  … (2) 

Equating the second terms on the L.H.S of (1) and (2),  

𝑦
𝑑𝑅

𝑑𝑥
= 𝑅𝑃𝑦 

∴
𝑑𝑅

𝑑𝑥
= 𝑅𝑃 

Separating the variables,  

∫
1

𝑅
𝑑𝑅 = ∫ 𝑃 𝑑𝑥 

ln 𝑅 = ∫ 𝑃 𝑑𝑥 

𝑅 = 𝑒∫ 𝑃 𝑑𝑥 

Thus the required integrating factor is 𝑒∫ 𝑃 𝑑𝑥. The initial 

assumption that an integrating factor exists is therefore 

justified provided that it is possible to find ∫ 𝑃 𝑑𝑥 

 

 Example 8 

Solve the differential equation 
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 𝑒2𝑥, given that 

𝑦 =
6

5
 when 𝑥 = 0.  

Solution 

The integrating factor is 𝑒∫ 3𝑑𝑥 = 𝑒3𝑥. Multiplying each side 

of the equation by 𝑒3𝑥; 

𝑒3𝑥
𝑑𝑦

𝑑𝑥
+ 3𝑒3𝑥𝑦 = 𝑒5𝑥 

𝑑

𝑑𝑥
(𝑒3𝑥𝑦) = 𝑒5𝑥 

𝑒3𝑥𝑦 = ∫ 𝑒5𝑥 𝑑𝑥 

𝑒3𝑥𝑦 =
1

5
𝑒5𝑥 + 𝑐 

 

Example 9 

Solve 
𝑑𝑦

𝑑𝑥
+ 𝑦 cot 𝑥 = 2 cos 𝑥 

Solution 

The given equation is of the form 
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦 = 𝑄. This is 

linear in 𝑦 

Here 𝑃 = cot 𝑥 and 𝑄 = 2 cos 𝑥 

The integrating factor, 

𝑅 = 𝑒∫ 𝑃𝑑𝑥 = 𝑒∫ cot 𝑥𝑑𝑥 = 𝑒ln sin 𝑥 = sin 𝑥 

Multiplying both sides by sin 𝑥 makes the L.H.S exact  

sin 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 cos 𝑥 = 2 sin 𝑥 cos 𝑥 

𝑑

𝑑𝑥
(𝑦 sin 𝑥) = sin 2𝑥 

𝑦 sin 𝑥 = ∫ sin 2𝑥 𝑑𝑥 

𝑦 sin 𝑥 = −
cos 2𝑥

2
+ 𝑐 

2𝑦 sin 𝑥 + cos 2𝑥 = 𝑐 

 

Example 10 

Solve:(1 − 𝑥2)
𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 = 𝑥√(1 − 𝑥2) 

Solution 

𝑑𝑦

𝑑𝑥
+ (

2𝑥

1 − 𝑥2
) 𝑦 =

𝑥

√(1 − 𝑥2)
 

∫ 𝑃 𝑑𝑥 = ∫
2𝑥

1 − 𝑥2
𝑑𝑥 = − ln(1 − 𝑥2) 

Integrating factor = 𝑒∫ 𝑃𝑑𝑥 = 𝑒− ln(1−𝑥2) =
1

1−𝑥2 

𝑦 ∙
1

1 − 𝑥2
= ∫

𝑥

√1 − 𝑥2
×

1

1 − 𝑥2
𝑑𝑥 

Let 1 − 𝑥2 = 𝑡 ⇒  −2𝑥 𝑑𝑥 = 𝑑𝑡 

𝑦

1 − 𝑥2
= −

1

2
∫ 𝑡−

3
2 𝑑𝑡 

𝑦

1 − 𝑥2
= 𝑡−

1
2 + 𝑐 

𝑦

1 − 𝑥2
=

1

√1 − 𝑥2
+ 𝑐 

 

Example 11 

Solve:  (1 + 𝑦2)𝑑𝑥 = (tan−1 𝑦 − 𝑥)𝑑𝑦 

Solution 

The given equation can be written as  

𝑑𝑥

𝑑𝑦
+

𝑥

1 + 𝑦2
=

tan−1 𝑦

1 + 𝑦2
 

This is linear in 𝑥. Therefore, we have  

∫ 𝑃 𝑑𝑦 = ∫
1

1 + 𝑦2
𝑑𝑦 = tan−1 𝑦 

Integrating factor = 𝑒∫ 𝑃 𝑑𝑦 = 𝑒tan−1 𝑦 

The required solution s  

𝑥𝑒tan−1 𝑦 = ∫ 𝑒tan−1 𝑦 (
tan−1 1

1 + 𝑦2
) 𝑑𝑦 

tan−1 𝑦 = 𝑡 

𝑑𝑦

1 + 𝑦2
= 𝑑𝑡 

𝑥𝑒tan−1 𝑦 = ∫ 𝑒𝑡 . 𝑡 𝑑𝑡 

𝑥𝑒tan−1 𝑦 = 𝑡𝑒𝑡 − 𝑒𝑡 + 𝑐 

𝑥𝑒tan−1 𝑦 = 𝑒tan−1 𝑦(tan−1 𝑦 − 1) + 𝑐 

 

Example 12 

Solve:  (𝑥 + 1)
𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑒𝑥(𝑥 + 1)2 

Solution 

The given equation can be written as  
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𝑑𝑦

𝑑𝑥
−

𝑦

𝑥 + 1
= 𝑒𝑥(𝑥 + 1) 

This is linear in 𝑦 

Here∫ 𝑃 𝑑𝑥 = − ∫
1

𝑥+1
𝑑𝑥 = − ln(𝑥 + 1) 

Integrating factor is  

𝑒∫ 𝑃𝑑𝑥 = 𝑒− ln(𝑥+1) =
1

𝑥 + 1
 

The required solution is  

𝑦 ∙
1

𝑥 + 1
= ∫ 𝑒𝑥(𝑥 + 1)

1

𝑥 + 1
𝑑𝑥 

𝑦

𝑥 + 1
= ∫ 𝑒𝑥 𝑑𝑥 

𝑦

𝑥 + 1
= 𝑒𝑥 + 𝑐 

 

Example 13 

Solve:
𝑑𝑦

𝑑𝑥
+ 2𝑦 tan 𝑥 = sin 𝑥 

Solution 

This differential equation is linear in 𝑦 

∫ 𝑃 𝑑𝑥 = ∫ 2 tan 𝑥 𝑑𝑥 = 2 ln sec 𝑥 

Integrating factor, 𝑅 = 𝑒∫ 𝑃𝑑𝑥 = 𝑒ln sec2 𝑥 = sec2 𝑥 

The required solution is given by  

𝑦 sec2 𝑥 = ∫ sec2 𝑥 sin 𝑥 𝑑𝑥 

𝑦 sec2 𝑥 = ∫ tan 𝑥 sec 𝑥 𝑑𝑥 

𝑦 sec2 𝑥 = sec 𝑥 + 𝑐 

𝑦 = cos 𝑥 + 𝑐 cos2 𝑥 

 

Example 14 

Solve the differential equation  

𝑑𝑦

𝑑𝑥
sin 𝑥 + 2𝑦 cos 𝑥 = 4 sin2 𝑥 cos 𝑥 ,   𝑦 (

1

6
𝜋) =

17

4
 

Solution 

𝑑𝑦

𝑑𝑥
sin 𝑥 + 2𝑦 cos 𝑥 = 4 sin2 𝑥 cos 𝑥 

𝑑𝑦

𝑑𝑥
+ 2𝑦 cot 𝑥 = 4 sin 𝑥 cos 𝑥 

Integrating factor = 𝑒∫ 2 cot 𝑥𝑑𝑥 = 𝑒2 ln sin 𝑥 = sin2 𝑥 

𝑑

𝑑𝑥
[𝑦 sin2 𝑥] = (4 sin 𝑥 cos 𝑥) sin2 𝑥 

𝑦 sin2 𝑥 = ∫ 4 sin3 𝑥 cos 𝑥 𝑑𝑥 

𝑦 sin2 𝑥 = sin4 𝑥 + 𝑐 

Now 𝑦 (
𝜋

16
) =

17

4
 

17

4
×

1

4
=

1

16
+ 𝑐 

𝑐 = 4 

𝑦 sin2 𝑥 = sin4 𝑥 + 4 

𝑦 = sin2 𝑥 + 4 cosec2 𝑥 

 

First order homogeneous equations  

A differential equation of first order and first degree is said 

to be homogeneous if it can be put in the form 
𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
) or 

𝑑𝑦

𝑑𝑥
=

𝑓1(𝑥,𝑦)

𝑓2(𝑥,𝑦)
 

 

Working rule for solving homogeneous equations: 

By definition the given equation can be put in the form  

𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
)    … (1) 

To solve (1) put       𝑦 = 𝑣𝑥    … (2) 

Differentiating (2) with respect to 𝑥 gives 

𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
 … (3) 

Using (2) and (3) in (1), we have  

𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
= 𝑓(𝑣) 

or 𝑥
𝑑𝑣

𝑑𝑥
= 𝑓(𝑣) − 𝑣 

Separating the variables 𝑥 and 𝑣 we have  

𝑑𝑥

𝑥
=

𝑑𝑣

𝑓(𝑣) − 𝑣
 

ln 𝑥 + 𝑐 = ∫
𝑑𝑣

𝑓(𝑣) − 𝑣
 

where 𝑐 is an arbitrary constant. After integration, replace 𝑣 

by 
𝑦

𝑥
 

 

Example 15 

Solve   𝑥𝑦
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 

Solution 

Dividing each side by 𝑥2,  

𝑦

𝑥

𝑑𝑦

𝑑𝑥
= 1 + (

𝑦

𝑥
)

2

 

Let  𝑦 = 𝑢𝑥, then  

𝑑𝑦

𝑑𝑥
= 𝑢 + 𝑥

𝑑𝑢

𝑑𝑥
 

∴ 𝑢 (𝑢 + 𝑥
𝑑𝑢

𝑑𝑥
) = 1 + 𝑢2 

𝑢𝑥
𝑑𝑢

𝑑𝑥
= 1 

Separating the variables,  

∫ 𝑢 𝑑𝑢 = ∫
1

𝑥
𝑑𝑥 

1

2
𝑢2 = ln(𝐵𝑥) 

(
𝑦

𝑥
)

2

= 2 ln(𝐵𝑥) 

(
𝑦

𝑥
)

2

= ln(𝐴𝑥2)  where 𝐴 = 𝐵2 

Therefore the general solution is  

𝑦2 = 𝑥2 ln(𝐴𝑥2) 
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Applications of differential equations  

In this section, we solve problems on differential equations 

which have direct impact on real life situation. Solving these 

types of problems involve 

(i) Construction the mathematical model describing the 

given situation  

(ii) Seeking solution for the model formulated in (i) using 

the methods discussed earlier.  

Illustration:  

Let 𝐴 be any population at time 𝑡. The rate of change of 

population is directly proportional to initial population i.e.  

𝑑𝐴

𝑑𝑡
∝ 𝐴 i.e

𝑑𝐴

𝑑𝑡
= 𝑘𝐴 

where 𝑘 is called the constant of proportionality  

(1) If 𝑘 > 0, we say that 𝐴 grows exponentially with 

growth constant 𝑘 (growth problem). 

(2) If 𝑘 < 0 we say that 𝐴 decreases exponentially with 

decreasing 𝑘 (decay problem).  

This linear equation can be solved in three ways i.e. (i) 

variable separation (ii) linear (using integrating factor) (iii) 

by using characteristic equation with single root 𝑘. In all the 

ways we get the solution as 𝐴 = 𝑐𝑒𝑘𝑡 where 𝑐 s the arbitrary 

constant and 𝑘 is the constant of proportionality.  

 

Examples of applications leading to differential 

equations  

1. Population Growth and Decay 

Although the number of members of a population (people in 

a given country, bacteria in a laboratory culture, wildflowers 

in a forest, etc.) at any given time 𝑡 is necessarily an integer, 

models that use differential equations to describe the growth 

and decay of populations usually rest on the simplifying 

assumption that the rate of change of the number of 

members of the population is proportional to the number 

already present.  

 

2. Newton’s law of cooling  

According to Newton’s law of cooling, the temperature of a 

body changes at a rate proportional to the difference 

between the temperature of the body and the temperature of 

the surrounding medium. Thus, if 𝑇𝑚 is the temperature of 

the medium and 𝑇 = 𝑇(𝑡) is the temperature of the body at 

time 𝑡, then  

𝑇′ = −𝑘(𝑇 − 𝑇𝑚) 

where 𝑘 is a positive constant and the minus sign indicates 

that; the temperature of the body increases with time if it is 

less than the temperature of the medium, or decreases if it is 

greater. If 𝑇𝑚 is constant, then  

𝑇 = 𝑇𝑚 + (𝑇0 − 𝑇𝑚)𝑒−𝑘𝑡 

where 𝑇0 is the temperature of the body when 𝑡 = 0. 

 

3. Glucose absorption by the body  

Glucose is absorbed by the body at a rate proportional to the 

amount of glucose present in the blood stream. Let 𝜆 denote 

the (positive) constant of proportionality. Suppose there are 

𝐺0 units of glucose in the bloodstream when 𝑡 = 0, and let 

𝐺 = 𝐺(𝑡) be the number of units in the bloodstream a time 

𝑡 > 0. Then since the glucose being absorbed by the body is 

leaving the bloodstream, 𝐺 satisfies the equation  

𝐺′ = −𝜆𝐺 

If 𝑐 is an arbitrary constant, then  

𝐺 = 𝑐𝑒−𝜆𝑡 

Setting 𝑡 = 0 and requiring that 𝐺(0) = 𝐺0 yields 𝑐 = 𝐺0 

𝐺(𝑡) = 𝐺0𝑒−𝜆𝑡 

Now lets complicate matters by injecting glucose 

intravenously at a constant rate of 𝑟 units of glucose per unit 

of time. Then the rate of change of the amount of glucose in 

the bloodstream per unit time is  

𝐺′ = −𝜆𝐺 + 𝑟 

where the first term on the right is due to the absorption of 

the glucose by the body and the second term is due to the 

injection.  

The equation that satisfies 𝐺(0) = 𝐺0 will then be given by 

𝐺 =
𝑟

𝜆
+ (𝐺0 −

𝑟

𝜆
) 𝑒−𝜆𝑡 

 

4. Spread of epidemics  

One model for the spread of epidemics assumes that the 

number of people infected changes a rate proportional to the 

number of people already infected and the number of people 

who are susceptible, but not yet infected. Therefore, if 𝑆 

denotes the total population of susceptible people and 𝐼 =

𝐼(𝑡) denotes the number of infected people at time 𝑡, then 

𝑆 − 𝐼 is the number of people who are susceptible but not 

yet infected. Thus  

𝐼′ = 𝑟𝐼(𝑆 − 𝐼) 

where 𝑟 is a positive constant. Assuming that 𝐼(0) = 𝐼0, the 

solution of this equation is  

𝐼 =
𝑆𝐼0

𝐼0 + (𝑆 − 𝐼0)𝑒−𝑟𝑆𝑡
 

 

5. Exponential reduction or Radioactive decay  

In exponential decay, a quantity slowly decreases in the 

beginning and then decreases rapidly. We use the 

exponential decay formula to find population decay 

(depreciation) and we can also use the exponential decay 

formula to find half-life (the amount of time for the 

population to become half of its size). 

Assuming there are 𝑁 number of atoms, decreasing over 

time. Using a time constant 𝜆, the behavior of the decay is 

governed by the differential equation  

𝑑𝑁

𝑑𝑡
= −𝜆𝑁 

The solution of the equation above is given by  
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𝑑𝑃

𝑃2
= 𝑘 𝑑𝑡 

∫ 𝑃−2 𝑑𝑃 = ∫ 𝑘 𝑑𝑡 

−𝑃−1 = 𝑘𝑡 + 𝑐 

1

𝑃
= −(𝑘𝑡 + 𝑐) 

𝑃 = −
1

(𝑘𝑡 + 𝑐)
 

Find 𝑐:  

At time 𝑡 = 1, 𝑃 = 1000 

1000 = −
1

𝑘 + 𝑐
 

1000(𝑘 + 𝑐) = −1 

1000𝑘 + 1000𝑐 = −1 … (i) 

At time 𝑡 = 2, 𝑃 = 2000 

2000 = −
1

2𝑘 + 𝑐
 

2000(2𝑘 + 𝑐) = −1 

4000𝑘 + 2000𝑐 = −1 … (ii) 

(ii) – 2(i); 

2000𝑘 = 1 

𝑘 =
1

2000
 

Substituting 𝑘 into (i); 

1

2
+ 1000𝑐 = −1 

𝑐 = −
3

2000
 

When population 𝑃 = 10000, 

10000 = −
1

(
𝑡

2000
−

3
2000

)
 

10000 = −
2000

𝑡 − 3
 

𝑡 − 3 = −
2

10
 

𝑡 = 2.8 hrs 

 

Example 5 

The population of a small village is 1097 in the year 1566. 

Assuming the population, 𝑃, grows according to the 

differential equation below, and where 𝑡 is the number of 

years after 1566: 

𝑑𝑃

𝑑𝑡
= 0.3𝑃𝑒−0.3𝑡 

(a) Find the population of the village in 1576, correct to 3 

significant figures 

(b) Find the maximum population the village will grow to, 

in the long term.  

Solution 

𝑑𝑃

𝑑𝑡
= 0.03𝑃𝑒−0.03𝑡 

𝑑𝑃

𝑃
= 0.03𝑒−0.03𝑡𝑑𝑡 

∫
𝑑𝑃

𝑃
= ∫ 0.03𝑒−0.03𝑡𝑑𝑡 

ln 𝑃 = −𝑒−0.03𝑡 + 𝑐 

To find 𝑐:  𝑃 = 1097 & 𝑡 = 0 

ln 1097 = −𝑒0 + 𝑐 

7 = −1 + 𝑐 

𝑐 = 8 

ln 𝑃 = −𝑒−0.03𝑡 + 8 

ln 𝑃 = 8 − 𝑒−0.03𝑡 

To find the population in 10 years’ time:  

ln 𝑃 = 8 − 𝑒−0.03×10 = 8 − 𝑒−0.3 = 7.2592 

𝑃 = 1420 

To find the limiting population in the long term: 

ln 𝑃 = 8 − 𝑒−0.03𝑡 

ln 𝑃 = 8 −
1

𝑒0.03𝑡
 

As 𝑡 increases, 
1

𝑒0.03𝑡 → 0. Thus, in the long term 

ln 𝑃 = 8 − 0 

𝑃 = 2980 

 

Example 6 

It is thought that the rate at which a rumour spreads is jointly 

proportional to the number, 𝑥, of people who have heard the 

rumour and the number 𝑁 − 𝑥, those who are yet to hear it. 

This relationship is approximated by the differential 

equation 
𝑑𝑥

𝑑𝑡
= 𝑘𝑥(𝑁 − 𝑥).  

Assuming that when 𝑡 = 0, 𝑥 = 1, find an equation for 𝑥 as 

a function of time 𝑡. 

Solution 

𝑑𝑥

𝑑𝑡
= 𝑘𝑥(𝑁 − 𝑥) 

1

𝑘𝑥(𝑁 − 𝑥)
𝑑𝑥 = 𝑘𝑑𝑡  

∫
1

𝑘𝑥(𝑁 − 𝑥)
𝑑𝑥 = ∫ 𝑘 𝑑𝑡 

Expressing 
1

𝑥(𝑁−𝑥)
 as 

1

𝑁
(

1

𝑥
+

1

𝑁−𝑥
) 

1

𝑁
∫ (

1

𝑥
+

1

𝑁 − 𝑥
) 𝑑𝑥 = ∫ 𝑘 𝑑𝑡 

1

𝑁
(ln 𝑥 − ln(𝑁 − 𝑥)) = 𝑘𝑡 + 𝑐 

When 𝑡 = 0, 𝑥 = 1, which gives  

1

𝑁
(ln 1 − ln(𝑁 − 1)) = 0 + 𝑐 

𝑐 = −
1

𝑁
ln(𝑁 − 1) 

Thus; 

1

𝑁
(ln 𝑥 − ln(𝑁 − 𝑥)) = 𝑘𝑡 −

1

𝑁
ln(𝑁 − 1) 

1

𝑁
(ln 𝑥 − ln(𝑁 − 𝑥)) +

1

𝑁
ln(𝑁 − 1) = 𝑘𝑡 

1

𝑁
ln (

𝑥(𝑁 − 1)

𝑁 − 𝑥
) = 𝑘𝑡 
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𝑑𝐴 = −3𝑡
1
2𝑑𝑡 

∫ 𝑑𝐴 = ∫ −3𝑡
1
2 𝑑𝑡 

𝐴 = −2𝑡
3
2 + 𝑐 

When 𝑡 = 0, 𝐴 = 10 

⇒ 𝑐 = 10 

At any time 𝑡, 

𝐴 = 10 − 2𝑡
3
2 

(b) For drug free, 𝐴 = 0 

⇒ 0 = 10 − 2𝑡
3
2 

5 = 𝑡
3
2 

𝑡3 = 25 

𝑡 = 2.9 hours 

Hence, the patient will be drug free in 2.9 hours or 2 hours 

54 minutes. 

 

Example 10 

The number of bacteria in a yeast culture grows at a rate 

which is proportional to the number present. If the 

population of a colony of yeast bacteria triples in 1 hour. 

Show that the number of bacteria at the end of five hours 

will be 35 times of the population at initial time.  

Solution 

Let 𝐴 be the number of bacteria at any time 𝑡 

𝑑𝐴

𝑑𝑡
∝ 𝐴 

𝑑𝐴

𝑑𝑡
= 𝑘𝐴 

𝐴 = 𝑐𝑒𝑘𝑡 

Initially, i.e. when 𝑡 = 0, assume that 𝐴 = 𝐴0 

𝐴0 = 𝑐𝑒0 = 𝑐 

∴ 𝐴 = 𝐴0𝑒𝑘𝑡 

when 𝑡 = 1, 𝐴 = 3𝐴0 

⇒ 3𝐴0 = 𝐴0𝑒𝑘 

𝑒𝑘 = 3 

when 𝑡 = 5, 𝐴 = 𝐴0𝑒5𝑘 = 𝐴0(𝑒𝑘)5 = 35𝐴0 

∴ The number of bacteria at the end of 5 hours will be 35 

times of the number of bacteria at initial time.  

 

Example 11 

A beaker containing water at 100℃ is placed in a room 

which has a constant temperature of 20℃. The rate of 

cooling at any moment s proportional to the difference 

between the temperature of the room and the liquid. If after 

5 minutes the temperature of the water is 60℃, what will it 

be after 10 minutes?  

Solution 

Let the temperature of the water at any time 𝑡 min be 𝜃 ℃. 

Then the rate of change of temperature is 𝑑𝜃/𝑑𝑡, thus  

𝑑𝜃

𝑑𝑡
∝ (𝜃 − 20) 

𝑑𝜃

𝑑𝑡
= −𝑘(𝜃 − 20) 

𝑑𝜃

𝜃 − 20
= −𝑘𝑑𝑡 

∫
𝑑𝜃

𝜃 − 20
= ∫ −𝑘 𝑑𝑡 

ln(𝜃 − 20) = −𝑘𝑡 + 𝑐 

𝜃 − 20 = 𝑒−𝑘𝑡+𝑐 

𝜃 − 20 = 𝑒−𝑘𝑡 × 𝑒𝑐 

                               𝜃 − 20 = 𝐴𝑒−𝑘𝑡    where  𝐴 = 𝑒𝑐 

𝜃 = 20 + 𝐴𝑒−𝑘𝑡 

Now initially, 𝑡 = 0 and 𝜃 = 100, 

100 = 20 + 𝐴 

𝐴 = 80 

𝜃 = 20 + 80𝑒−𝑘𝑡 

Also when 𝑡 = 5, 𝜃 = 60 

60 = 20 + 80𝑒−5𝑘 

𝑒−5𝑘 = 0.5 

It is possible to find 𝑘 exactly from this equation but it is not 

necessary to find 𝜃 when 𝑡 = 10.  

When 𝑡 = 10,  

𝜃 = 20 + 80𝑒−10𝑘 = 20 + 80(𝑒−5𝑘)2 

𝜃 = 20 + 80(0.5)2 

𝜃 = 40 ℃ 

 

Example 12 

Water is leaking out of a tank from a tap which is located 5 

cm from the bottom of the tank. The height of the water, ℎ 

cm, is decreasing at a rate proportional to the square root of 

the difference of the height of the water and the height of the 

tap.  

(a) Model this problem with a differential equation 

involving ℎ, the time 𝑡 in minutes and a suitable 

proportionality constant.  

The initial height of the water in the tank is 230 cm and 5 

minutes later it has dropped to 105 cm.  

(b) Find a solution of the differential equation of part (a)  

(c) Calculate the time taken for the height of the water to 

fall to 30 cm.  

(d) State how many minutes it takes for the tank to stop 

leaking.  

Solution 

(a) ℎ = height of water (cm)  

𝑡 = time in minutes  

𝑑ℎ

𝑑𝑡
= −𝑘√ℎ − 5 

(b) 
𝑑ℎ

𝑑𝑡
= −𝑘(ℎ − 5)

1

2 

1

(ℎ − 5)
1
2

𝑑ℎ = −𝑘𝑑𝑡 
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𝑡 = 100 ln [
4𝑥

20 − 𝑥
] 

(c) Rearrange the answer in part (b) to show further that  

𝑥 =
20

1 + 4𝑒−0.01𝑡
 

(d) If a vet cannot attend the farm for 24 hours, since he 

infection was first discovered, find how many extra 

chickens will be infected by the time the vet arrives.  

Solution 

(a)  
𝑑𝑥

𝑑𝑡
= 𝑘𝑥(20 − 𝑥) 

(b) when 𝑡 = 0, 𝑥 = 4, 
𝑑𝑥

𝑑𝑡
= 0.032 

0.032 = 𝑘 × 4 × 16 

64𝑘 = 0.032 

𝑘 = 0.0005 

⇒
𝑑𝑥

𝑑𝑡
= 𝑘𝑥(20 − 𝑥) 

∫
1

𝑥(20 − 𝑥)
𝑑𝑥 = ∫ 𝑘 𝑑𝑡 

Partial fractions; 

1

𝑥(20 − 𝑥)
≡

𝐴

𝑥
+

𝐵

20 − 𝑥
 

1 ≡ 𝐴(20 − 𝑥) + 𝐵𝑥 

If 𝑥 = 0, 1 = 20𝐴 ⇒ 𝐴 =
1

20
 

If 𝑥 = 20, 1 = 20𝐵 ⇒ 𝐵 =
1

20
 

∫

1
20
𝑥

+

1
20

20 − 𝑥
𝑑𝑥 = ∫ 𝑘 𝑑𝑡 

∫
1

𝑥
+

1

20 − 𝑥
𝑑𝑥 = ∫ 20𝑘 𝑑𝑡 

ln 𝑥 − ln(20 − 𝑥) = 20𝑘𝑡 + 𝑐 

ln (
𝑥

20 − 𝑥
) =

1

100
𝑡 + 𝑐 

100 ln (
𝑥

20 − 𝑥
) = 𝑡 + 𝑐 

When 𝑡 = 0, 𝑥 = 4 

100 ln
1

4
= 𝑐 

𝑐 = −100 ln 4 

100 ln (
𝑥

20 − 𝑥
) = 𝑡 − 100 ln 4 

𝑡 = 100 ln (
𝑥

20 − 𝑥
) + 100 ln 4 

𝑡 = 100 [ln (
𝑥

20 − 𝑥
) + ln 4] 

𝑡 = 100 ln (
4𝑥

20 − 𝑥
) 

(c)  

𝑡

100
= ln (

4𝑥

20 − 𝑥
) 

𝑒
1

100
𝑡 =

4𝑥

20 − 𝑥
 

20𝑒
1

100
𝑡 − 𝑥𝑒

1
100

𝑡 = 4𝑥 

20𝑒
1

100
𝑡 = 4𝑥 + 𝑥𝑒

1
100

𝑡
 

20𝑒
1

100
𝑡 = 𝑥 (4 + 𝑒

1
100

𝑡) 

𝑥 =
20𝑒

1
100

𝑡

4 + 𝑒
1

100
𝑡
 

Multiply the top and bottom by 𝑒−
1

100
𝑡
 

𝑥 =
20

4𝑒−0.01𝑡 + 1
 

(d) When 𝑡 = 24 

𝑥 =
20

1 + 𝑒−
24

100

= 4.8233 

Thus 4823 chickens infected at that time  

∴ 4823 − 4000 = 823 extra 

 

Self-Evaluation exercise  

1. Find the general solutions of the following differential 

equations  

(a) 3𝑦2 𝑑𝑦

𝑑𝑥
+ 2𝑥 = 1   

[Ans: 𝑦3 = 𝑥 − 𝑥2 + 𝑐] 

(b) 
𝑑𝑦

𝑑𝑥
= 2𝑒𝑥−𝑦   

[Ans: 𝑦 = ln(2𝑒𝑥 + 𝐶) 

(c) 
𝑑𝑦

𝑑𝑥
=

𝑥𝑒𝑥

sin 𝑦 cos 𝑦
    

[Ans: cos2 𝑦 + 𝑒𝑥(𝑥 − 1) = 𝑐] 

(d) 
𝑑𝑦

𝑑𝑥
cos2 𝑥 = 𝑦2 sin2 𝑥   

[Ans: 𝑦 =
1

𝑐+𝑥−tan 𝑥
] 

(e) 𝑒𝑥+2𝑦 𝑑𝑦

𝑑𝑥
+ (1 − 𝑥)2 = 0     

[Ans: 𝑦 =
1

2
ln[2𝑒−𝑥(𝑥2 + 1) + 𝐾] 

2. Find the exact solutions of the following differential 

equations.  

(a) 
𝑑𝑦

𝑑𝑥
+

4𝑥

𝑦
= 0 when 𝑦 = 2 at 𝑥 = 0    

[Ans: 4𝑥2 + 𝑦2 = 4] 

(b) 
𝑑𝑦

𝑑𝑥
= 3𝑥2√𝑦 when 𝑦 = 0 at 𝑥 = 1  

[Ans: 𝑦 =
1

4
(𝑥3 − 1)2]  

(c) 
𝑑𝑦

𝑑𝑥
+ 𝑒𝑥−𝑦 = 0  when 𝑦 = 0 at 𝑥 = 0   

[Ans: 𝑒𝑥 + 𝑒𝑦 = 2] 

(d) 
𝑑𝑦

𝑑𝑥
=

2𝑥 ln 𝑥

𝑦
 when 𝑦 = 2𝑒 at 𝑥 = 𝑒  

[Ans: 𝑦2 = 𝑥2(2 ln 𝑥 − 1) + 3𝑒2] 

(e) 𝑒𝑦 𝑑𝑦

𝑑𝑥
+ 𝑥𝑒𝑥 = 0 when 𝑦 = 0 at 𝑥 = 0  

[Ans: 𝑦 = 𝑥 + ln(1 − 𝑥)] 

(f) 
𝑑𝑦

𝑑𝑥
=

𝑦

𝑥(𝑥+1)2;  𝑦(1) =
1

2
  

[Ans: ln 𝑦 = ln (
𝑥

𝑥+1
) +

1

𝑥+1
−

1

2
] 

(g) (1 + 𝑥)
𝑑𝑦

𝑑𝑥
= 𝑦(1 − 𝑥) when 𝑦 = 1 at 𝑥 = 0  

[Ans: 𝑦 = (𝑥 + 1)2𝑒−𝑥 

(h) 
𝑑𝑦

𝑑𝑥
= 24 cos2 𝑦 cos3 𝑥, when 𝑦 =

𝜋

4
 at 𝑥 =

𝜋

6
  

[Ans: tan 𝑦 = 24 sin 𝑥 − 8 sin3 𝑥 − 10] 

(i) 𝑥𝑦 + (1 + 𝑥)
𝑑𝑦

𝑑𝑥
= 𝑦 ; 𝑦(0) = 3  
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[Ans: 𝑦 = 3(1 + 𝑥)2𝑒−𝑥] 

(j) 
𝑑𝑦

𝑑𝑥
cot 𝑥 = 1 − 𝑦2 ; 𝑦 (

𝜋

4
) = 0  

[Ans: 𝑦 = (𝑥 + 2)𝑒−𝑥] 

3. Given that 
𝑑𝑦

𝑑𝑥
sin 𝑥 = sin 𝑥 sin 2𝑥 + 𝑦 cos 𝑥. If 𝑦 =

3

2
 

at 𝑥 =
𝜋

6
, find the exact value of 𝑦 at 𝑥 =

𝜋

4
 

[Ans: 1 + √2] 

4. Given 
𝑑𝑦

𝑑𝑥
= 𝑥 + 2𝑦, with 𝑦 = −

1

4
 at 𝑥 = 0. By using a 

suitable substitution or otherwise, show that the 

solution of the differential equation is                   

𝑦 = −
1

4
(2𝑥 + 1) 

5. Solve the differential equation  

𝑑𝑦

𝑑𝑥
=

𝑦

𝑥
− (

𝑦

𝑥
)

2

 

subject to the condition 𝑦 = 1 at 𝑥 = 1 

[Ans: 𝑦 =
𝑥

1+ln 𝑥
] 

6. By using a suitable substitution, solve the differential 

equation  

𝑥𝑦
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 

subject to the boundary condition 𝑦 = 1 at 𝑥 = 1 

[Ans: 𝑦 = 𝑥2(1 + 2 ln 𝑥)] 

7. By using a suitable substitution, or otherwise, solve the 

differential equation  

𝑑𝑦

𝑑𝑥
= 𝑥2 + 2𝑥𝑦 + 𝑦2 

subject to the condition 𝑦(0) = 0 

[Ans: 𝑦 = −𝑥 + tan 𝑥] 

8. By using a suitable substitution, solve the differential 

equation  

𝑑𝑦

𝑑𝑥
=

𝑥𝑦 + 𝑦2

𝑥2
 

subject to the condition 𝑦 = −1 at 𝑥 = 1 

[Ans: 𝑦 = −
1

1+ln 𝑥
] 

9. If 
𝑑𝑦

𝑑𝑥
=

𝑥2+3𝑦2

𝑥𝑦
; 𝑦(1) =

1

√2
, show that 𝑦2 = 𝑥6 −

1

2
𝑥2 

10. By using a suitable substitution, solve the differential 

equation  

2𝑥2
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 

subject to the condition 𝑦(1) = 0 

[Ans: 𝑦 = 𝑥 −
2𝑥

2+ln 𝑥
] 

11. Solve the differential equation  

𝑥2
𝑑𝑦

𝑑𝑥
+ 𝑥𝑦 = 𝑦2, 𝑦 (

1

2
) = 2 

[Ans: 𝑦 =
2𝑥

1−2𝑥2] 

12. Given the differential equation  

𝑥𝑦
𝑑𝑦

𝑑𝑥
= (𝑥 − 𝑦)2 + 𝑥𝑦,   𝑦(1) = 0 

Show that the solution of the above differential 

equation is  

(𝑥 − 𝑦)𝑒
𝑦
𝑥 = 1 

13. Solve the differential equation  

𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = 4𝑥2𝑦2, 𝑦 (

1

2
) = 2 

[Ans: 𝑦 =
1

3𝑥−4𝑥2] 

14. Given the differential equation  

𝑥
𝑑𝑦

𝑑𝑥
+ 3𝑦 = 𝑥𝑒−𝑥2

 

Show clearly that the general solution of the above 

differential equation can be written in the form  

2𝑦𝑥3 + (𝑥2 + 1)𝑒−𝑥2
= constant 

15. Use the substitution 𝑦 = 𝑥𝑣 to solve the following 

differential equation  

2
𝑑𝑦

𝑑𝑥
= 1 +

𝑦2

𝑥2
 ,   𝑦(𝑒) = −𝑒 

[Ans: 𝑦 = 𝑥 −
2𝑥

ln 𝑥
] 

16. It is given that a curve with a certain equation passes 

through the point (0, 1) and satisfies the differential 

equation  

𝑑𝑦

𝑑𝑥
=

𝑥𝑦

𝑥2 + 𝑦2
 

By solving the differential equation, show that an 

equation for the curve is  

𝑦 = 𝑒
𝑥2

2𝑦2
 

17. The number of bacterial cells 𝑁 on a laboratory dish is 

increasing, so that the hourly rate of increase is 5 times 

the number of the bacteria present at that time. Initially 

100 bacteria were laced on the dish.  

(a) Form a suitable differential equation to model this 

problem.  

(b) Find the solution of this differential equation  

(c) Find to the nearest minute, the time taken for the 

bacteria to reach 10000.  

[Ans: 
𝑑𝑁

𝑑𝑡
= 5𝑁; 𝑁 = 100𝑒5𝑡; 55 minutes] 

18. A certain brand of car is valued at £𝑉 at a time 𝑡 years 

from new. A model for the value of the car assumes 

that the rate of decrease of its value is proportional to 

its value at that time.  

(a) By forming and solving a suitable differential 

equation, show that  

𝑉 = 𝐴𝑒−𝑘𝑡 

where 𝐴 and 𝑘 are positive constants.  

The value of one such car when new is £30000 and this 

value halves after 3 years.  

(b) Find, to the nearest £100, the value of one such car 

after 10 years.  

One such car is to be scrapped when its value drops 

below £500.  
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(c) Find after how many years this car is to be 

scrapped.  

[Ans: £3000, 𝑡 = 17.7 ≈ 18] 

19. The number 𝑥 of bacterial cells in time 𝑡 hours, after 

they were placed on a laboratory dish, is increasing at 

the rate proportional to the number of the bacterial cells 

present at that time.  

(a) If 𝑥0 is the initial number of the bacterial cells and 

𝑘 is a positive constant, show that  

𝑥 = 𝑥0𝑒𝑘𝑡 

(b) If the number of bacteria triples in 2 hours, show 

that 𝑘 = ln √3 

20. During a car service, the motor oil is drained out of the 

engine. The rate in cm3s-1, at which the oil is drained 

out, is proportional to the volume 𝑉 𝑐𝑚3, of the oil still 

left inside the engine. 

(a) Form a differential equation involving 𝑉, the time 

𝑡 in seconds and a proportionality constant 𝑘 

Initially there were 4000 cm3 of oil in the engine.  

(b) Find a solution of the differential equation, giving 

the answer in terms of 𝑘 

It takes 𝑇 seconds to drain half the oil out of the engine 

(c) Show clearly that 𝑘𝑇 = ln 2 

[Ans: 
𝑑𝑉

𝑑𝑡
= −𝑘𝑉 ; 𝑉 = 4000𝑒−𝑘𝑡] 

21. The number, 𝑥 thousands, of reported cases of an 

infectious disease, 𝑡 months after it was reported, is 

now dropping. The rate at which it is dropping is 

proportional to the square of the reported cases.  

It is assumed that 𝑥 can be treated as a continuous 

variable.  

(a) Form a differential equation in terms of 𝑥, 𝑡 and a 

proportionality constant 𝑘 

Initially there were 2500 reported cases and one month 

later they had dropped to 1600 cases. 

(b) Solve the differential equation to show that  

𝑥 =
40

9𝑡 + 16
 

(c) Find after how many months there will be 250 

reported cases  

[Ans: 
𝑑𝑥

𝑑𝑡
= −𝑘𝑥2, 𝑡 = 16] 

22. Water is leaking out of a hole at the bottom of a tank. 

Let the height of the water in the tank be 𝑦 cm at time 

𝑡 minutes.  

At any given time after the leaking started, the height 

of the water in the tank is decreasing at a rate 

proportional to the cube root of the height of the water 

in the tank. When 𝑡 = 0, 𝑦 = 125 and when 𝑡 = 3, 

𝑦 = 64.  

By forming and solving a differential equation, find the 

value of 𝑦 when 𝑡 = 7
7

12
 

[Ans: 𝑦 = 3.375] 

23. A body is moving and its distance, 𝑥 metres, is 

measured from a fixed point 𝑂 at different times, 𝑡 

seconds.  

The body is moving in such a way, so that the rate of 

change of its distance 𝑥 is inversely proportional to its 

distance 𝑥 at that time.  

When 𝑡 = 0, 𝑥 = 50 and when 𝑡 = 4, 𝑥 = 30 

Determine the time it takes for the body to reach 𝑂.  

[Ans: 𝑡 = 6.25] 

24. The temperature in a bathroom is maintained at the 

constant value of 20℃ and the water in a hot bath is 

left to cool down. The rate, in ℃ per second, at which 

the temperature of the water in the bath, 𝑇℃, is cooling 

down, is proportional to the difference in the 

temperature between the bathwater and the room.  

Initially the bathwater had a temperature of 40℃, and 

at that instant was cooling down at a rate of 0.005℃ 

per second. Let 𝑡 be the time in seconds, since he bath 

water was left to cool down.  

(a) Show that  

𝑑𝑇

𝑑𝑡
= −

1

4000
(𝑇 − 20) 

(b) Solve the differential equation of part (a), to find, 

correct to the nearest minute, after how long the 

temperature of the bathwater will drop to 36℃.  

[Ans: 15 minutes] 

25. Hot tea in a cup has a temperature 𝑇 ℃ at time 𝑡 

minutes and it is left to cool n a room of constant 

temperature 𝑇0. Newton’s law of cooling asserts that 

the rate at which a body cools is directly proportional 

to the excess temperature of the body and the 

temperature of its immediate surroundings.  

(a) Assuming the tea cooling in the cup obeys this 

law, form a differential equation in terms of 𝑇, 𝑇0, 

𝑡 and a proportionality constant 𝑘. 

(b) Show clearly that  

𝑇 = 𝑇0 + 𝐴𝑒−𝑘𝑡 

where 𝐴 is a constant  

Initially the temperature of the tea is 80℃ and 10 

minutes later is 60℃. The room temperature remains 

constant at 20℃.  

(c) Find the value of 𝑡 when the tea reaches a 

temperature of 40℃ 

[Ans: 
𝑑𝑇

𝑑𝑡
= −𝑘(𝑇 − 𝑇0), 𝑡 = 27.1] 

26. At time 𝑡 hours, the rate of decay of the mass, 𝑥 kg, of 

a radioactive substance is directly proportional to the 

mass present at that time. Initially the mass is 𝑥0.  

(a) By forming and solving a suitable differential 

equation, show that  

𝑥 = 𝑥0𝑒−𝑘𝑡 

where 𝑘 is a positive constant  
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SECTION A 

1. A cylindrical can of capacity 1000 𝑐𝑚3 is made from a

thin sheet of metal. The can is open at the top and closed

at the bottom. The radius of the bottom is 𝑥 cm. Find

the value of 𝑥 that will minimize the area of the sheet to

be used. (Leave 𝜋 in your answer).

[2024, No. 2] 

2. Show that

∫ (
1

9 − 𝑥2
)

1

0

𝑑𝑥 =
1

6
ln 2 

[2024, No. 4] 

3. Find the area enclosed by the curve 𝑦 = 𝑥2 and the line

𝑦 = 𝑥 from 𝑥 = 0 to 𝑥 = 1.

[2024, No. 8] 

4. Evaluate ∫ (1 + cos 3𝑦)2𝜋/3

0
𝑑𝑦 

[2023, No. 5] 

5. Given that 𝑦 = 𝑒𝑥 cos 3𝑥, show that
𝑑2𝑦

𝑑𝑥2 − 2
𝑑𝑦

𝑑𝑥
+

10𝑦 = 0.

[2023, No. 3] 

6. Use Maclaurin’s theorem to expand ln(2 + 𝑥), in

ascending powers of 𝑥 as far as the term in 𝑥2

[2023, No. 8] 

7. Find the equation of the tangent to the curve 𝑥3 +

2𝑦3 + 3𝑥𝑦 = 0 at the point (2, −1).

[2022, No. 3] 

8. An inverted conical container has a hole at bottom. A

liquid is dripping through the hole at a rate of 2 cm3s-1.

When the depth of the liquid in the container is 𝑥 cm,

its volume is 
1

3
𝜋𝑥3 cm3. Find the rate at which the level

of the liquid is decreasing when 𝑥 is 5 cm.

[2022, No. 6] 

9. Using the substitution 𝑦 = 𝑉𝑥 or otherwise, solve the

differential equation

𝑥
𝑑𝑦

𝑑𝑥
= 2𝑦 + 𝑥 

[2022, No. 8] 

10. Given that 𝑦 = ln {𝑥√(𝑥 + 1)3}, find 
𝑑𝑦

𝑑𝑥

[2020, No. 3] 

11. Evaluate ∫ tan−1 1

2
𝑥 𝑑𝑥

𝜋

3
0

 

[2020, No. 5] 

12. Find the gradient of the curve 𝑥2 tan 𝑥 − 𝑥𝑦 − 2𝑦2 =

−2 at the point (0, 1)

[2020, No. 8] 

13. Using the substitution 𝑢 = tan−1 𝑥, show that

 

 

∫
tan−1 𝑥

1 + 𝑥2

1

0

𝑑𝑥 =
𝜋2

32

[2019, No. 3] 

14. Find the equation of the tangent to the curve 𝑦 =
𝑎3

𝑥2 at 

the point 𝑃 (
𝑎

𝑡
, 𝑎𝑡2).

[2019, No. 5] 

15. Find the area enclosed between the curve 𝑦 = 2𝑥2 − 4𝑥

and the 𝑥-axis.

[2019, No. 7] 

16. Given that 𝑄 = √80 − 0.1𝑃 and 𝐸 =
−𝑑𝑄

𝑑𝑃
∙

𝑃

𝑄
, find 𝐸 

when 𝑃 = 600

[2019, No. 8] 

17. Find ∫ 𝑥2𝑒𝑥 𝑑𝑥

[2018, No. 3: Ans: 𝑥2𝑒𝑥 − 2𝑥𝑒𝑥 + 2𝑒𝑥 + 𝑐]

18. Determine the equation of the tangent to the curve 𝑦3 +

𝑦2 − 𝑥4 = 1 at the point (1, 1).

[2018, No. 6: Ans: 5𝑦 = 4𝑥 + 1] 

19. The region bounded by the curve 𝑦2 = 𝑥2 − 2𝑥 and the

𝑥-axis from 𝑥 = 0 and 𝑥 = 2, is rotated about the 𝑥-

axis. Calculate the volume of the solid formed.

[2018, No. 8: Ans: 
16𝜋

15
] 

20. Differentiate (
1+2𝑥

1+𝑥
)

2

 with respect to 𝑥 

[2017, No. 3: Ans: 
2(1+2𝑥)

(1+𝑥)4 ] 

21. Show that ∫ 𝑥
4

2
ln 𝑥 𝑑𝑥 = 14 ln 2 − 3 

[2017, No. 6] 

22. A container is in the form of an inverted right circular

cone. Its height is 100 cm and base radius is 40 cm. The

container is full of water and has a small hole at its

vertex. Water is flowing through the hole at a rate of

10 𝑐𝑚3𝑠−1. Find the rate at which the water level in the

container is falling when the height of water in the

container is halved.           [2017, No. 8: Ans: 0.00796]

23. Evaluate ∫ 10𝑥√(1 − 𝑥2)𝑑𝑥
1

1

2

[2016, No. 3: Ans: 2.165] 

24. Solve the equation 
𝑑𝑦

𝑑𝑥
= 1 + 𝑦2 given that 𝑦 = 1 when

𝑥 = 0.

[2016, No. 4: Ans: 𝑦 = tan (𝑥 +
𝜋

4
)] 

25. Using small changes, show that (244)
1

5 = 3
1

405
. 

[2016, No. 7] 

26. Differentiate 𝑒−𝑥2
𝑥3 sin 𝑥 with respect to 𝑥

Chapter 
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79. The distance 𝑆 m of a particle from a fixed point is given 

by 𝑆 = 𝑡2(𝑡2 + 6) − 4𝑡(𝑡 − 1)(𝑡 + 1), where 𝑡 is the 

time. Find the velocity and acceleration of the particle 

when 𝑡 = 1 s. 

[Mar 1998, No. 4: Ans: 8 ms−1, 0 ms−2] 

80. Using the substitution 2𝑥 + 1 = 𝑝, find ∫
𝑥𝑑𝑥

(2𝑥+1)3

1

0
 

[Mar 1998, No. 5: Ans: 
1

18
] 

81. Use Maclaurin’s expansion to express ln(1 + 𝑥)2 in 

ascending powers of 𝑥 up to the term in 𝑥4. 

[Mar 1998, No. 8: Ans: 2𝑥 − 𝑥2 +
2𝑥3

3
−

𝑥4

2
] 

82. Given that 𝑥 = 𝜃 − sin 𝜃 and 𝑦 = 1 − cos 𝜃. Show that  
𝑑𝑦

𝑑𝑥
= cot 𝜃   

[1997, No. 4] 

83. Find (i) ∫ sin2 𝑥 𝑑𝑥 

        (ii) ∫ tan3 𝑥 𝑑𝑥 

[1997, No. 6: Ans: (i) 
1

2
[𝑥 −

1

2
sin 2𝑥] + 𝐶 (ii) 

1

2
tan2 𝑥 − ln cos 𝑥 + 𝐶] 

84. Determine the volume of the solid generated when the 

region bounded by the curve 𝑦 = cos 2𝑥 and the 𝑥-axis 

for values of 𝑥 between 0 and ¾ is rotated about the 𝑥-

axis. 

[1997, No. 8: Ans: 1.232 cubic units] 

85. Differentiate with respect to 𝑥, expressing your results 

as simply as possible. 

sin−1 (
3 + 5 cos 𝑥

5 + 3 cos 𝑥
) 

[1996, No. 7: Ans: 
−4

5+3 cos 𝑥
] 

86. Evaluate ∫ sin 2𝑥 cos 𝑥
1

2
𝜋

0
𝑑𝑥 

[1996, No. 8: Ans: 
2

3
] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION B 

1. (a) Use the substitution 𝑥 = sin 𝜃 to evaluate  

∫
1 + 𝑥

√1 − 𝑥2

1

0

𝑑𝑥 

(b) Given that 𝑦 = sin−1 (
𝑥

√1+𝑥2
), find 

𝑑𝑦

𝑑𝑥
 in terms of 

𝑥. 

[2024, No. 11] 

2. (a) Use Maclaurin’s theorem to expand ln(1 − 2𝑥) in 

ascending powers of 𝑥 as far as the term in 𝑥3. 

(b) Using small changes, find the approximate value of 

tan 46° correct to three decimal places.  

[2024, No. 13] 

3. The rate at which the quantity 𝑀 of a commodity is sold 

is proportional to the difference between the amount 

initially present and the quantity sold at any time 𝑡. 

Initially 10 tonnes of the commodity were present. After 

one day, 2 tonnes were sold.  

(a) Form a differential equation for the quantity of the 

commodity sold.  

(b) (i) Determine the expression for 𝑀 in terms of 𝑡 

(ii) Calculate the quantity sold at the end of 5 days.  

[2024, No. 16] 

4. Express 𝑓(𝑥) =
3𝑥3+2𝑥2−3𝑥+1

𝑥(1−𝑥)
 in partial fractions. 

Hence find ∫ 𝑓(𝑥) 𝑑𝑥 

[2023, No. 10] 

5. Given the curve 𝑦 =
1

4𝑥2−1
, determine the; 

(a) coordinates of the turning points of the curve  

(b) equation of the asymptotes 

Hence sketch the curve. 

[2023, No. 14] 

6. The rate at which a body cools is proportional to the 

amount by which its temperature exceeds that of its 

surroundings. The body is placed in a room of 

temperature 25℃. After 6 minutes the temperature of 

the body dropped from 90℃ to 60℃.  

(a) Form a differential equation for the rate of cooling 

of the body.  

(b) Find the time it takes for the body to cool from 

40℃ to 30℃. 

[2023, No. 16] 

7. Express 
11𝑥−1

(1−𝑥)2(2+3𝑥)
 in partial fractions.  

Hence evaluate ∫
11𝑥−1

(1−𝑥)2(2+3𝑥)
𝑑𝑥

1

2
0

 giving your answer in 

the form 𝑘 + ln 𝑏 where 𝑘 is an integer and 𝑏 is a 

fraction.  

[2022, No. 10] 

8. (a) Differentiate 
(𝑥2+1)

(𝑥+1)3 with respect to 𝑥 

(b) Given that 𝑥 =
3𝑡

𝑡+3
 and 𝑦 =

4𝑡+1

𝑡−2
, find 

𝑑2𝑦

𝑑𝑥2 in terms 

of 𝑡 in the simplest form.  
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[2008, No. 13: Ans: (a) 0.1905 (b) 
𝜋2

16
] 

48. On the same axes sketch the curves 𝑓(𝑥) = 𝑥2(𝑥 + 2) 

and g(𝑥) =
1

𝑓(𝑥)
. Show the asymptotes and turning 

points. 

[2008, No. 14] 

49. (a) Solve the differential equation:  

𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑥3𝑒𝑥2

 

(b) The number of car accidents 𝑥 in a year on a 

highway was found to approximate the differential 

equation 
𝑑𝑥

𝑑𝑡
= 𝐾𝑥, where 𝑡 is the time in years and 

𝐾 a constant. At the beginning of 2000 the number 

of recorded accidents was 50.  

If the number of accidents increased to 60 at the 

beginning of 2002, estimate the number that was 

expected at the beginning of 2005. 

[2008, No. 16: Ans: (a) 𝑦 =
𝑥

2
(𝑒𝑥2

+ 2𝐶) (b) 79] 

50. Sketch the curve 𝑦 =
4(𝑥−3)

𝑥(𝑥+2)
 

[2007, No. 10] 

51. (a) ∫
𝑥3

(1+𝑥2)
1
2

𝑑𝑥 

(b) Use the substitution 𝑡 = tan
𝑥

2
 to evaluate  

∫
𝑑𝑥

1 + sin 𝑥 + cos 𝑥

𝜋/2

0

 

[2007, No. 13: Ans: (a) 
1

3
(1 + 𝑥2)

1

2(𝑥2 − 2) + 𝑐 (b) 0.693] 

52. (a) Given 𝑥 = 𝑟 cos 𝜃 and  𝑦 = 𝑟 sin 𝜃, show that 
𝑑2𝑦

𝑑𝑥2 =

−
1

𝑟
𝑐𝑜𝑠𝑒𝑐3𝜃 

(b) Solve: 
𝑑𝑦

𝑑𝑥
+ 2𝑦 tan 𝑥 = cos2 𝑥 given that 𝑦 = 2, 

when 𝑥 = 0 

[2007, No. 16: Ans: (b) 𝑦 = cos2 𝑥 (2 + 𝑥)] 

53. (a) Differentiate from first principles 𝑦 =
𝑥

𝑥2+1
 with 

respect to 𝑥 

(b) (i) Determine the turning points of the curve 𝑦 =

𝑥2(𝑥 − 4) 

(ii) Sketch the curve in (i) above for −2 ≤ 𝑥 ≤ 5 

(iii) Find the area enclosed by the curve above and 

the 𝑥-axis  

[2006, No. 10: Ans: (a) 
1−𝑥2

(𝑥2+1)2 (b) (i) max (0, 0), 

min (
8

3
, −

256

27
) (iii) 

64

3
 sq. units] 

54. (a) Find the first three terms of the expansion of  

       
1

1+𝑥
, using Maclaurin’s theorem  

(b) Use Maclaurin’s theorem to expand tan 𝑥 in 

ascending powers of 𝑥 up to the term in 𝑥3 

[2006, No. 14: Ans: (a) 1 − 𝑥 + 𝑥2 (b) 𝑥 +
𝑥3

3
] 

55. Find: 

(a) ∫ ln 𝑥2 𝑑𝑥 

(b) ∫
𝑑𝑥

𝑒𝑥−1
 

[2006, No. 16: Ans: (a) 2𝑥 ln(𝑥 − 1) + 𝑐                            

(b) ln(1 − 𝑒−𝑥) + 𝑐] 

56. Given the curve 𝑦 = sin 3𝑥, find the  

(a) (i) value of 
𝑑𝑦

𝑑𝑥
 at the point (

𝜋

3
, 0) 

(ii) equation of the tangent to the curve at this point 

(b) (i) Sketch the curve 𝑦 = sin 3𝑥 

(ii) Calculate the area bounded by the tangent in 

(a) (i) above, the curve and the 𝑦-axis 

[2005, No. 13: Ans: (a) (i) −3 (ii) 𝑦 = −3𝑥 + 𝜋 (b) (ii) 

0.9783 sq.units] 

57. Express 
3𝑥2+𝑥+1

(𝑥−2)(𝑥+1)3 into partial fractions  

Hence evaluate ∫
3𝑥2 + 𝑥 + 1

(𝑥 − 2)(𝑥 + 1)3

4

3

𝑑𝑥 

Give your answer correct to 3 decimal places.  

[2005, No. 15: Ans: 0.317] 

58. (a) Solve the differential equation  

1

𝑥

𝑑𝑦

𝑑𝑥
= sin 𝑥 sec2 3𝑦 

(b) A hot body at a temperature of 100℃ is placed in a 

room of temperature of 20℃. Ten minutes later, its 

temperature is 60℃.  

(i) Write down a differential equation to represent 

the rate of change of temperature, 𝜃 of the body 

with time, 𝑡. 

(ii) Determine the temperature of the body after a 

further ten minutes  

[2005, No. 16: Ans: (a) 
𝑦

2
+

1

12
sin 6𝑦 = sin 𝑥 −

𝑥 cos 𝑥 + 𝑐 (b) (ii) 40℃] 

59. Express 𝑓(𝑥) =
𝑥2−4

(𝑥+1)2(𝑥−5)
 in partial fractions 

Hence evaluate ∫ 𝑓(𝑥)
7

6
𝑑𝑥 correct to 4 decimal places. 

[2004, No. 12: Ans: 
5

12(𝑥+1)
+

1

2(𝑥+1)2 +
7

12(𝑥−5)
 ; 0.4689] 

60. (a) Differentiate the following with respect to 𝑥:  

(i) (sin 𝑥)𝑥 

(ii) 
(𝑥+1)2

(𝑥+4)3 

     giving your answers to their simplest forms  

(b) The distance of a particle moving in a straight line 

from a fixed point after time 𝑡 is given by  

𝑥 = 𝑒−𝑡 sin 𝑡 

Show that the particle is instantaneously at rest at 

time 𝑡 =
𝜋

4
 seconds.  

Find its acceleration at 𝑡 =
𝜋

4
 seconds. 

[2004, No. 14: Ans: (a) (i) (sin 𝑥)𝑥[𝑥 cot 𝑥 + ln sin 𝑥] (ii) 
(5−𝑥)(𝑥+1)

(𝑥+4)4  (b) −0.6447] 

61. (a) Solve the differential equation  
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tan 𝑥
𝑑𝑦

𝑑𝑥
− 𝑦 = sin2 𝑥  

(b) An athlete runs at a speed proportional to the square 

root of the distance he still has to cover. If the athlete 

starts running at 10 ms−1 and has a distance of 

1600 m to cover, find how long he will take to cover 

this distance.  

[2004, No. 16: Ans: (a) 𝑦 = sin2 𝑥 + 𝑐 sin 𝑥 (b) 320 s] 

62. Determine the nature of the turning points of the curve  

𝑦 =
𝑥2 − 6𝑥 + 5

(2𝑥 − 1)
 

Sketch the graph of the curve for 𝑥 = −2 to 𝑥 = 7. 

State any asymptotes. 

[2003, No. 13: Ans: 𝑥 = 0, 𝑦 = −2] 

63. (a) Find ∫ 𝑥3𝑒𝑥4
𝑑𝑥 

(b) Use the substitution 𝑡 = tan 𝑥 to find ∫
1

1+sin2 𝑥
𝑑𝑥 

[2003, No. 15: Ans: (a) 
1

4
𝑒𝑥4

+ 𝑐 (b) 

1

√2
tan−1(√2 tan 𝑥) + 𝐶] 

64. (a) Solve the differential equation 
𝑑𝑅

𝑑𝑡
= 𝑒2𝑡 + 𝑡, given 

that 𝑅(0) = 3 

(b) The acceleration of a particle after time 𝑡 seconds is 

given by 𝑎 = 5 + cos
1

2
𝑡. If initially the particle is 

moving at 1 ms−1, find its velocity after 2𝜋 seconds 

and the distance it would have covered by then. 

[2003, No. 16: Ans: (a) 𝑅 =
1

2
𝑒2𝑡 +

1

2
𝑡2 +

5

2
 (b) 10𝜋 +

1 ms−1, 10𝜋2 + 2𝜋 + 4] 

65. (a) Use 𝑡 = tan
𝜃

2
 to evaluate ∫

𝑑𝜃

3−cos 𝜃

𝜋

2
0

 

(b) Integrate the following with respect to 𝑥:  

(i) ln 𝑥           (ii)    𝑥2 sin 2𝑥 

[2002, No. 14: Ans: (a) 0.6755 (b) (i) 𝑥(ln 𝑥 − 1) + 𝑐 (ii) 

−𝑥2

2
cos 2𝑥 +

𝑥

2
sin 2𝑥 +

1

4
cos 2𝑥 + 𝑐] 

66. Given the curve 𝑦 =
𝑥(𝑥−3)

(𝑥−1)(𝑥−4)
, 

(a) show that the curve does not have turning points 

(b) find the equations of the asymptotes. Hence sketch 

the curve. 

[2002, No. 15: Ans: (b) 𝑥 = 1, 𝑥 = 4, 𝑦 = 1] 

67. (i) The volume of a water reservoir is generated by 

rotating the curve 𝑦 = 𝑘𝑥2 about the 𝑦-axis. Show that 

when the central depth of the water in the reservoir is ℎ 

metres, the surface area 𝐴 is proportional to ℎ and the 

volume 𝑣 is proportional to ℎ2. 

(ii) If the rate of loss of water from the reservoir due 

to evaporation is 𝜆𝐴 m2 per day, obtain a 

differential equation for ℎ after 𝑡 days. Hence 

deduce that the depth of water decreases at a 

constant rate. 

(iii) Given that 𝜆 =
1

2
, determine how long it will take 

for the depth of water to decrease from 20 m to 

2 m 

[2002, No. 16: Ans: (i) 𝑣 =
𝜋

2𝑘
ℎ2 (ii) 

𝑑ℎ

𝑑𝑡
= −𝜆 (iii) 36 days] 

68. (a) Using calculus of small increments, or otherwise, 

find √98 correct to one decimal place. 

(b) Use Maclaurins’ theorem to expand ln(1 + 𝑎𝑥), 

where 𝑎 is a constant.  

Hence or otherwise expand ln (
(1+𝑥)

√1−2𝑥
) up to the term 

in 𝑥3 

For what values of 𝑥 is the expansion valid?  

[2001, No. 11: Ans: (a) 9.9 (b) 𝑎𝑥 −
𝑎2𝑥2

2
+

𝑎3𝑥3

3
+ ⋯ , 2𝑥 +

𝑥2

2
+

5𝑥3

3
+ ⋯, |𝑥| <

1

2
 ] 

69. (i) Find the Cartesian equation of the curve given 

parametrically by:  

𝑥 =
1 + 𝑡

1 − 𝑡
, 𝑦 =

2𝑡2

1 − 𝑡
 

(ii) Sketch the curve  

(iii) Find the area enclosed between the curve and the 

line 𝑦 = 1 

[2001, No. 15: Ans: (iii) 1.9548 sq. units] 

70. (a) Integrate 
2𝑥

√(𝑥2+4)
 with respect to 𝑥 

(b) Evaluate ∫ sin 𝑥 sin 3𝑥 𝑑𝑥 
𝜋/6

0
 

(c) Using the substitution 𝑥 = 3 sin 𝜃, evaluate  

∫ √
3 + 𝑥

3 − 𝑥
𝑑𝑥

3

0

 

[2001, No. 16: Ans: (a) 2(√𝑥2 + 4) + 𝑐 (b) 0.1083 (c) 

7.7124] 

71. Express 𝑓(𝑥) =
6𝑥

(𝑥−2)(𝑥+4)2 into partial fractions  

Hence evaluate ∫ 𝑓(𝑥) 𝑑𝑥 

[2000, No. 14: Ans: 
1

3(𝑥−2)
−

1

3(𝑥+4)
+

4

(𝑥+4)2; ln (
𝑥−2

𝑥+4
)

1

3
−

4

𝑥+4
+ 𝐶] 

72. Show that the tangent to the curve 4 − 2𝑥 − 2𝑥2 at 

points (−1, 4) and (
1

2
, 2

1

2
) respectively, pass through 

the point the point (−
1

4
, 5

1

2
). Calculate the area of the 

curve enclosed between the curve and the 𝑥-axis. 

[2000, No. 15: Ans: 9sq. units] 

73. (a) An inverted cone with a vertical angle of 60° is 

collecting leaking from a tap at a rate of 0.2 cm3s−1. If 

the height of water collected in the cone is 10 cm, find 

the rate at which the surface area of water is increasing. 

(b) Given that 𝑦 = 𝑒tan 𝑥 show that                                  

𝑑2𝑦

𝑑𝑥2 − (2 tan 𝑥 + sec2 𝑥)
𝑑𝑦

𝑑𝑥
= 0  

[2000, No. 16: Ans: (a) 0.12 cm2s−1] 
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[1996, No. 14: Ans: (i) max (−3, −4) min (3, −
1

4
) (ii) 

𝑥 = −9, 𝑥 = −1, 𝑦 = 1] 

87. (a) Find the general solution of the equation

𝑥
𝑑𝑦

𝑑𝑥
− 2𝑦 = (𝑥 − 2)𝑒𝑥

(b) The rate of cooling of a body is given by the

equation 
𝑑𝑇

𝑑𝑡
= −𝑘(𝑇 − 10) where 𝑇 is the

temperature in degrees Centigrate, 𝑘 is a constant,

and 𝑡 is the time in minutes.

When 𝑡 = 0, 𝑇 = 90 and when 𝑡 = 5, 𝑇 = 60. Find

𝑇 when 𝑡 = 10.

[1996, No. 15: Ans: (a) 𝑦 = 𝑒𝑥 + 𝑐𝑥2 (b) 41.25℃]

88. Show that 𝑓(𝑥) =
𝑥(𝑥−5)

(𝑥−3)(𝑥+2)
has no turning points

Sketch the curve 𝑦 = 𝑓(𝑥). If g(𝑥) =
1

𝑓(𝑥)
, sketch the

curve 𝑦 = g(𝑥) on the same axes.

Show the asymptotes and where 𝑓(𝑥) and g(𝑥) intersect

[1995, No. 6] 

89. (a) (i) Show that 
𝑑

𝑑𝑥
(𝑎𝑥) = 𝑎𝑥 ln 𝑎

(ii) Find ∫ 3√2𝑥−1 𝑑𝑥

(b) A shell is formed by rotating the portion of the

parabola 𝑦2 = 4𝑥 for which 0 ≤ 𝑥 ≤ 1 through two

right angles about its axis.

Find

(i) the volume of the solid formed

(ii) the area of the base of the solid formed

[1995, No. 9: Ans: (a) (ii) 
3√2𝑥−1

ln 3
(√2𝑥 − 1 −

1

ln 3
) + 𝑐 (b) (i) 

6.2832 cubic units (ii) 12.5664 sq. units] 

90. Express
𝑥3−3

(𝑥−2)(𝑥2+1)
 as partial fractions 

Hence or otherwise find ∫
𝑥3−3

(𝑥−2)(𝑥2+1)
𝑑𝑥 

[1995, No. 10: Ans: 𝑥 + ln(𝑥 − 2) +
1

2
ln(𝑥2 + 1) +

tan−1 𝑥 + 𝑐]

91. (a) (i) If 𝑥2 sec 𝑥 − 𝑥𝑦 + 2𝑦2 = 15, find 
𝑑𝑦

𝑑𝑥

(ii) Given that 𝑦 = 𝜃 − cos 𝜃; 𝑥 = sin 𝜃, show that

𝑑2𝑦

𝑑𝑥2 =
1+sin 𝜃

cos3 𝜃

(b) Determine the maximum and minimum values of

𝑥2𝑒−𝑥

[1995, No. 11: Ans: (a) (i) 
𝑦−𝑥2 sec 𝑥 tan 𝑥−2𝑥 sec 𝑥

4𝑦−𝑥
(b) 0,

0.5413] 

92. (a) Differentiate:

(i) 𝑒𝑎𝑥 sin 𝑏𝑥

(ii) 
(𝑥+1)2(𝑥+2)

(𝑥+3)3

giving your answers to the simplest form 

(b) Given that 𝑦 = 𝑒tan−1 𝑥, show that

(1 + 𝑥2)
𝑑2𝑦

𝑑𝑥2
+ (2𝑥 − 1)

𝑑𝑦

𝑑𝑥
= 0 

Hence or otherwise, determine the first four non-

zero terms of the Maclaurin’s expansion of 𝑦.  

[1994, No. 9: Ans: (a) (i) 𝑒𝑎𝑥 sin 𝑏𝑥 (𝑎 + 𝑏 cot 𝑏𝑥) (ii)
(𝑥+1)(5𝑥+9)

(𝑥+3)4 (b) 1 + 𝑥 +
𝑥2

2
+

𝑥3

6
+ ⋯]

93. (a) Determine the equation of the normal to the curve

𝑦 =
1

𝑥
 at the point 𝑥 = 2. Find the coordinates of the

other point where the normal meets the curve again

(b) Find the area of the region bounded by the curve 𝑦 =
1

𝑥(2𝑥+1)
, the 𝑥-axis and the lines 𝑥 = 1, 𝑥 = 2 

[1994, No. 11: Ans: (a) (−
1

8
, −8) (b) 0.1823 sq. units] 

94. Show that the curve 𝑦 =
𝑥+1

𝑥2+2𝑥
has no turning points.

Sketch the curve. Give the equations of the asymptotes.

[1994, No. 12] 

95. Use the Maclaurin’s theorem to show that the expansion

𝑒−𝑥 sin 𝑥 up to the term in 𝑥3 is 
𝑥

3
(𝑥2 − 3𝑥 + 3).

Hence evaluate 𝑒−
𝜋

3 sin
𝜋

3
 to 4 decimal places

[1993, No. 5: Ans: 0.334] 

96. (a) Differentiate with respect to 𝑥:

(i) tan−1 (
6𝑥

1−2𝑥2) 

(ii) (cos 𝑥)2𝑥

(b) Write down the expression for the volume 𝑣, and

surface area 𝑠 of a cylinder of radius 𝑟 and height ℎ.

If the surface area is kept constant, show that the

volume of the cylinder will be maximum when ℎ =

2𝑟

[1993, No. 6: Ans: (i) 
6+12𝑥2

1+32𝑥2+4𝑥4 (ii) 2(cos 𝑥)2𝑥(ln cos 𝑥 −

𝑥 tan 𝑥)] 

97. Find: (i) ∫ ln(𝑥2 − 4) 𝑑𝑥

(i) ∫
𝑑𝑥

3−2 cos 𝑥

(ii) Use the substitution 𝑥 =
1

𝑢
to evaluate 

∫
𝑑𝑥

𝑥√𝑥2−1

2

1

[1993, No. 7: Ans: (i) 𝑥 ln(𝑥2 − 4) − 2𝑥 + 2 [ln (
𝑥+2

𝑥−2
)] + 𝑐 

(ii) 
2

√5
tan−1 [√5 tan

𝑥

2
] + 𝑐 (iii) 

𝜋

3
] 

98. A curve is given by the parametric equations 𝑥 =

4 cos 2𝑡, 𝑦 = 2 sin 𝑡

(i) Find the equation of the normal to the curve at 𝑡 =
5

6
𝜋

(ii) Sketch the curve for −
𝜋

2
< 𝑡 <

𝜋

2

(iii) Find the area enclosed by the curve and the 𝑦-axis.

[1993, No. 8: Ans: (i) 𝑦 = 4𝑥 − 7 (iii) 7.6425 sq. units]
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