1. Complete the following equations and write the accepted mechanism for the reaction in each case. b. $$(CH_3)_2CCH_2CH_3$$ NaOH Heat c. $$CH_3HC=CH_2$$ H^+/H_2O d. $$CH_3CH_2CH_2OH \xrightarrow{Conc.H_2SO_4} 180^{\circ}C$$ e. $$CH_3$$ $+ CH_3C=CH_2$ H^+ g. $$CH_2CH_2Br$$ $CH_3CH_2O^-Na^+/CH_3CH_2OH$ Heat h. $$EtO^{-}/EtOH$$ Heat j. $$H_2C=CH_2 + Cl_2 \xrightarrow{CCl_4} \longrightarrow$$ k. $$(CH_3)_3CBr$$ $OH^{-}_{(2\alpha)}$ Heat 1. $$CH_3HC=CHCH_3$$ H^+/H_2O m. $$(CH_3)_3CBr + CH_3O^-Na^+ \xrightarrow{CH_3OH}$$ 2. $$(CH_3)_3COH$$ Conc. $H_2SO_{4(1)}$ Heat 3. $$(CH_3)_3CBr = C_2H_5O^-K^+/C_2H_5OH$$ Heat 7. $$\int$$ + Br₂ $\frac{\text{Fe}_{(s)}/\text{Heat}}{}$ 8. $$CH_3HC=CH_2$$ H_2SO_4 9. $$(CH_3)_3C=O + H^+$$ 11. $$CH_2Br$$ $OH_{(ag)}$ Heat 12. $$CH_3CH_2CHO + NH_2NH_2 \xrightarrow{H^+}$$ 15. $$(CH_3)_2C=CH_2 + I_2 \xrightarrow{CCl_4}$$ 16. $$CH_2CH_2I$$ $OH^-_{(aq)}$ 19. $$OH$$ Conc.H₃PO₄ Heat 23. $$CH_3C=CHCH_3 + Conc.H_2SO_4 \xrightarrow{H_2O}$$ 24. $$\langle \overline{} \rangle$$ HC=CH₂ $| \overline{} | \overline{} | \overline{} | \overline{} |$ 25. $$CH_3BrCH_2Br \xrightarrow{Excess KOH_{(aq)}/EtOH}$$ Heat 26. $$CH_3HC=CH_2 + Cl_2 \xrightarrow{CCl_4} \longrightarrow$$ 27. $$CH_3HC=CH_2 + Br_2 \xrightarrow{H_2O}$$ 28. $$\bigcirc$$ + H₂C=CH₂ $\stackrel{\text{H}^+}{\longrightarrow}$ 30. $$(CH_3)_2C=CH_2 \xrightarrow{MnO_4^-/H_2O}$$ 32. $$(CH_3)_3CBr + CH_3OH \xrightarrow{KOH_{(aq)}}$$ 33. $$CH_3CH_2CH_2Br + NaOH_{(aq)} \xrightarrow{EtOH}$$ 35. $$CH_3COCH_3 + NH_2OH \xrightarrow{H^+}$$ 39. $$C_6H_5NH_2 + CH_3COC1$$ FeBr₃ 41. $$CH_3CH_2OH \xrightarrow{Conc.H_2SO_4} \bigcirc O^{\circ}C$$ 46. $$\bigcirc$$ + Conc.HNO₃ \bigcirc Conc.H₂SO₄ \bigcirc 55°C 48. $$CH_3COOCH_3 + H_2O OH_{(ao)}$$ 50. $$CH_3COCH_3 + HCN_{(aq)}$$ 57. $$\bigcirc$$ + CH₃CH₂COCl \bigcirc AlCl₃/CS₂ \bigcirc 40°C 63. $$CH_3HC=CH_2$$ MnO $^{-}_{(aq)}/OH_{(aq)}$ Cold 64. $$CH_2Cl$$ + $CH_3C = CH$ $Na_{(s)}/Liq.NH_3$ 65. $$CH_3CHO$$ CH₃CH₂MgCl/Ether H^+/H_2O 66. $$CH_3COCH_3$$ $CH_3CH_2MgCl/Ether$ H^+/H_2O 68. $$CH_3CH_2MgBr + CO_{2(s)}$$ H^+/H_2O 70. $$H_2C = CH_2 + H_2O \frac{H_2SO_4/HgSO_4}{60^{\circ}C}$$ - **2.** Show how the following conversion can be effected and in each case, indicate the reagents and conditions for the reactions. - 1. (CH₃)₃CHOH from ethene - 2. $(CH_3)_3CHOH$ from CH_3CH_2Br - 3. CH₃CH₂CH₂NH₂ from pentene - 4. Phenol from 2-phenylpropane - 5.Benzene from phenylmethanol - 6.CH₃CH₂CH₂COOH from propan-1-ol - 7.Ethanoylchloride from ethane - 8. Phenylbenzoate from phenylamine - 9.Phenol from nitrobenzene - $10.CH_3CH_2NH_2 \ \ from \ CH_3CH_2CH_2Cl$ - 11.CH₃CH₂OH from CH₃CH₂COCl - 12.CH₃CH₂COOH from CH₃CH₂OH - 13.CH₃COCH₃ from CH₃CH₂CH₂OH - 14.But-2-yne from propene - 15.Ethene from propan-2-ol - 16.CH₃CH₂OCH₂CH₃ from ethane - 17. Propene from acetic acid - 18.CH₃CONHCH₂CH₃ from CH₃Br - 19.Cyclohexene from aminobenzene - 20.CH₃CH₂NH₂ from CH₃CH₂COOH - 21.Phenylamine from benzoic acid - 22. Phenylmethanol from benzene - 23.(CH₃)₂C=NOH from ethanol - 25. ()=O from Cyclohexene - 26. COOH From COCH₃ - 27. $N=N-N-N+CH_3$ from Benzene - 28. \bigcirc COCH₃ from Benzene - 29. COCH₃ from CH₂CH₂Cl - 30. NH_2 from - 31. CHO from - 32. Br from Benzaldehyde - 33. NH_2 from Cyclohexene - 34. O to O 35. O to - 36. $(CH_3)_2CHBr$ to $(CH_3)_2C = N OH$ 37. $CH(CH_3)_2$ to 44. SO_3H OH $$CH(CH_3)_2$$ to $$SO_3H$$ OH OH 47. $$Br$$ CH_3 48. $$CaC_2$$ to CH_3CCH_3 - 49. CH₃HC=CH₂ to CHCl₃ - 50. Fuming sulphuric acid to cyclohexanol - 51. CH₃HC=CH₂ to CH₃CH₂COOH - 52. Propan-1-ol to Tri-iodomethane - 54. CH₃CH₂OH to Cyclohexanone - 55. Cyclohexene to Cyclohexanone - 56. CH₃CHO to C₂H₂ - 59. 2-methylpropene from 1, 2-dibromopropane - 60. Cyclohexene from 2-phenylpropane - 61. Ethyne to Benzaldehyde - 62. Bromobenzene to Benzoic acid 65. Nylon 6, 6 from phenol CH_3 $\dot{S}O_3H$ $$OH$$ CSO_3 -Na⁺ CH_3 from Ethanol 70. CH₃CH₂OCH₂CH₃ from Ca(CH₃COO)₂ 71. Nitrobenzene to Iodobenzene 3. Name the reagents used to distinguish between each of the followings and in each case, state what would be observed and write equations of reactions where possible. # Part A Inorganic branch of chemistry: 1) Br and I Reagent: Lead (II) nitrate solution Observation: - ✓ Pale yellow precipitate is formed with bromide, Br⁻ ion. - ✓ Bright yellow precipitate is formed with iodide, I- ion. - 2) Zn^{2+} and Al^{3+} Reagent: Aqueous Ammonia solution Observation: - ✓ White precipitate soluble in excess aqueous ammonia solution forming a colourless solution with zinc, Zn²+ ion. - ✓ White precipitate insoluble in excess aqueous ammonia solution is formed with Aluminium, Al^{3+} ion. - $_{3)}$ Fe³⁺ and Cr³⁺ Reagent: Aqueous sodium hydroxide solution. #### Observation: - \checkmark A brown precipitate insoluble in excess aqueous sodium hydroxide solution is formed with iron, Fe³⁺ ion. - \checkmark A green precipitate is soluble in excess aqueous sodium hydroxide solution is formed with chromium, Cr^{3+} ion. - $^{4)}$ Mg²⁺ and Ba²⁺ Reagent: Dilute sulphuric acid. #### Observation: - ✓ No observable change occurs with magnesium, Mg^{2+} ion. - \checkmark A white precipitate is formed with barium, Ba²⁺ ion. - 5 Fe³⁺ and Fe²⁺ Reagent: Potassium hexacyanoferrate (II) solution. ### Observation: - ✓ Deep blue precipitate is formed with iron, Fe^{3+} ion. - ✓ No observable change occurs with iron, Fe^{2+} ion. - 6) Pb^{2+} and Zn^{2+} Reagent: Potassium iodide solution. #### Observation: - ✓ Yellow precipitate is formed with lead (II), Pb²⁺ ion. - ✓ Yellow solution is formed with zinc (II), Zn^{2+} ion. - 7) FeO and NiO Reagent: Dilute nitric acid followed by potassium hexacyanoferrate (III) solution #### Observation: - ✓ Dark blue precipitate is formed with iron (II) oxide. - ✓ No observable change occurs with nickel (II) oxide. 1. Ni^{2+} and Cr^{3+} 8. SO_4^{2-} and SO_3^{2-} 2. Ca^{2+} and Ba^{2+} 9. CO_3^{2-} and Cl^{-} 3. Ca^{2+} and Mg^{2+} 10. HCO_3^{-} and CO_3^{2-} 4. Al³⁺ and Pb²⁺ 11. Cl⁻ and F⁻ 5. Sn^{4+} and Sn^{2+} 12. NO_3^- and NO_2^- 6. Pb^{2+} and Ag^{+} 13. SO_3^{2-} and $S_2O_3^{2-}$ 7. Mn^{2+} and Pb^{2+} 14. $C_2O_4^{2-}$ and HCO_3^{-} 15. Br and Cl ## Part B Organic branch of chemistry: 16.HCOO and CH₃COO 17.CH₃CH₂COCH₂CH₃ and CH₃CH₂CH₂COCH₃ 18.CH₃CHO and CH₃CH₂CHO 19.CH₃CH₂NH₂ and CH₃CH₂NHCH₃ 20.CH₃(CH₂)₃OH and (CH₃)₃COH 21.CH₃CH₂CH₂OH and CH₃CH(OH)CH₃ 22.CH₃CH₂CH₂I and CH₃CH₂CH₂Cl 23.C₆H₅CHO and C₆H₅CH₂CHO 24.CH₃CH₂COOH and CH₃COOCH₃ 25.CH₃CH₂COCH₂CH₃ and CH₃COCH₂CH₃ 26.C₆H₅CHO and C₆H₅CH₂COCH₃ 27.CH₃OH and CH₃CH₂OH 28.HCOOH and CH₃COOH 29.CH₃CHO and CH₃CH₂CHO 30.Ethene and Ethyne 31.Propan-1-ol and 2-Methylpropan-2-ol 32. $$H_3C$$ \longrightarrow Br and \longrightarrow CH_2Br 33. OH \longrightarrow OH \longrightarrow CH_2OH 34. OH \longrightarrow O 4. Write the half-cell equations for the followings conversions from 01 to 06 while 07 to 15 complete the half-cell equations. 5. Write the names of the following compounds and state their oxidation states and coordination numbers. O.S C.N Structures Names $[Cu(NH_3)_4]^{2+}$ $[Cr(H_2O)_4(NH_3)_2]^{3+}$ $[Pt(NH_3)_2NO_2Cl]^{2+}$ $[Co(NH_3)_5SO_4]Br$ $[Cu(NH_3)_4(H_2O)]SO_4$ $[Cr(H_2O)_6]Cl$ $[Co(NH_2CH_2CH_2NH_2)_3]Cl_3$ $[Cu(CN)_4]^{3-}$ $[\text{Cu}(\text{NH}_3)_2(\text{H}_2\text{O})_2]^{2+}$ $[Co(NH_3)_6]^{3+}$ $[SiF_6]^{2-}$ $[SnCl_6]^{2-}$ H_2SiF_6 [Fe(CN)₅NO] $[Pt(NH_3)(NO_2)Cl]^{2+}$ $[CrCl_2(H_2O)]^+$ $[Co(NH_3)_5Br]^{2+}SO_4^{2-}$ $[Co(NH_3)_5SO_4]^+Br^ [Ni(NH_3)_6]^{2+}$ $[Ag(NH_3)_2]^+$ $[Cu(H_2O)_4]^{2+}$ Al_4 $[Fe(CN)_{6}]^{2+}$ $[Fe(CN)_6]^{4-}$ $[Zn(NH_3)_4]^{2+}$ $[Zn(OH)_4]^{2-}$ $[Zn(CN)_4]^{2-}$ $[Zn(H_2O)_6]^{2+}$ $[Cu(H_2O)_6]^{2+}$ $[Cu(NH_3)_2]^+$ $[CuCl_4]^{2-}$ $[NiCl_4]^{2-}$ $[Ni(H_2O)_6]^{2+}$ $[Co(H_2O)_6]^{2+}$ $[Co(CN)_{6}]^{3}$ $Na_3[Co(NO_2)_6]$ $K_3[Co(NO_2)_6]$ $[CoCl_4]^{2-}$ $[Co(CN)_{6}]^{3}$ **END SUCCESS** $[Co(NH_3)_6]^{2+}$