

Clapsin dy 141/12

· Juigonometric ratios.

> There are 6 (six) Trigonometric ration they are:

> In a right-angled triangle PQR, for any acute angle 0, the trigonometric ratios can be defined as follows.

I) Sin 0 = opposite side of
$$\angle 0 = PQ$$
Hypotonuse

PR

5] Sec
$$O = \frac{\text{Hypotenuse}}{\text{Adjacent side of } \angle O} = \frac{PR}{QR}$$

6] cosec
$$O = \frac{1 \text{ lypotenuse}}{Opposite side of LO} = \frac{PR}{PQ}$$

Hypotenuse opposite Adjacent Side of

Note: The measures of acute angles of a triangle can be written using befreek letters of (theta), & Calpha), B (beta) etc or letters A, B etc

The relation between the trigonometric ratios: [Imp]

•	$Sin \theta = 1 \implies Cosec \theta$	$\begin{array}{c} \operatorname{Cosec} O = \underline{1} & \Longrightarrow \\ \sin \Theta & \end{array}$	$Sin O \times Cosec O = 1$ Or $Cosec O \times Sin O = 1$
0	$\cos \theta = 1 \implies \Rightarrow$	$\sec \phi = \underline{1} \implies$	$cos O \times Sec O = 1$ $Sec O \times Cos O = 1$
0	$tan\theta = \frac{1}{\cot \theta} \implies$	$\cot 0 = 1 \implies$	tano x coto = 1 coto x tano = 1

Tan O = Cio O

tano = sino cos o

coto = coso Sino

• The table of the values of trigonometric ratios of angles 0°, 30°, 45°, 60° and 90°. [Imp]

Trigono-	Angle (0)							
metric Ratio	00	30°	45°	60°	900			
Sin O	0	1 2	1/2	\sqrt{3 }{2}	1			
. C&O	1	√3 2	1/2	1 2	0			
tano	0	13	1	√3	Not defined			
coto	Not defined	J3	1	1 13	0			
Seco	1	2 /3	V2	2	Not defined			
Cosec O	Not defined	2	12	2 √3	1			

Relation among Julgonometric Ratios. [Imp]

Some more formulae.

• Trigonometric Identities [VVIm]

	$\sin^2 \theta + \cos^2 \theta = 1$	=>	$\sin^2 \theta = 1 - \cos^2 \theta$	\Rightarrow	CO320 = 1- Sin20
2]	1 + tan20 = sec20	\Rightarrow	$\tan^2\theta = \sec^2\theta - 1$	=>	Sec²0 - tan²0=1
3]	$1 + \cot^2 0 = \csc^2 0$	⇒	cot²0 = cosec²0-1	=>	Cosec²0 –cot²0=1

* Remember this *

$$1] \sin^2 \Theta + \cos^2 \Theta = 1$$

2]
$$1 + \tan^2 0 = \sec^2 0$$

$$3J + \cot^2 \theta = \csc^2 \theta$$

$$0 \le \sin 0 \le 1$$
 when $0 \le 0 \le 90^{\circ}$ $0 \le \cos 0 \le 1$

MCQ(Imp) $0 \le Sin0 \le 1$ when $0 \le 0 \le 90^{\circ}$ \Rightarrow the minimum value of Sin0 and COSO is O

=> The maximum value of Sino and Coso is 1.

SHARE With your friends.