

SUREKEY EXAMINATIONS BOARD PRIMARY SEVEN PLE PREPARATION SET ONE 2025

MATHEMATICS

OFFICIAL MARKING GUIDE

Read the following instructions carefully:

- 1. Do not forget to write your **school** and district name on this paper.
- 2. This paper has two sections: **A** and **B**. Section A has 20 questions and Section B has **12** questions. The paper has **15 printed** pages altogether
- 3. Answer **all** questions. **All** the working for both sections **A** and **B** must be shown in the spaces provided.
- 4. All working must be done using a blue or black ball point pen or ink. Any work done in pencil other than graphs and diagrams will **not** be marked.
- 5. **No calculators** are allowed in the examination room.
- 6. Unnecessary **changes** in your work and handwriting that cannot easily be read may lead to loss of marks.
- 7. Do not fill anything in the table indicated: "For Examiners' Use only" and boxes inside the question paper.

FOR EXAMINERS'		
USE ONLY		
Qn.No.	MARKS	EXR'S NO.
1 - 5		
6 - 10		
11 - 15		
16 - 20		
21 - 22		
23 - 24		
25 - 26		
27 - 28		
29 - 30		
31 - 32		
TOTAL		

SECTION A: 40 MARKS

Answer all questions in this Section

Questions **1** to **20** carry two marks each

$$4 \times 2 = 8$$
$$6 \times 4 = 24$$

$$1,000,000 \\ + 24 \\ \hline 1,000,024$$

3. Given that Set
$$Q = \{m, n\}$$
. Write all the subsets that can be formed from Set Q .

$$\{ \}, \{m\}, \{n\}, \{m, n\}$$

4. Simplify the algebraic expression
$$3p + k + 4k - k - 8p$$
 to its possible lowest terms.

$$3p - 8p + k + 4k - k$$

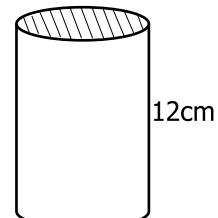
 $-5p + 5k - k$
 $-5p + 4k // 4k - 5p$

e:
$$\frac{2}{3} + m = 5$$
 (finite 7)
 $\frac{2}{3} \times 3 + (3 \times m) = 5 \times 3$ (finite 7)
 $3 \times 2 + 3m = 15$ (finite 7)
 $2 - 2 + 3m = 15 - 2$ (finite 7)
 $3m = 13$ (finite 7)
 $5m = 13$ (finite 7)
 $5m = 13$ (finite 7)
 $5m = 13$ (finite 7)

$$3m = 27$$
 (finite 7)

$$3m = 27 \text{ (finite 7)}$$

$$\frac{3m}{3} = \frac{27}{3}$$


$$m = 9 \text{ (finite 7)}$$

$$m = 9 \div 7 \text{ (finite 7)}$$

$$m = 1 \text{ rem 2 (finite 7)}$$

$$m = 2 \text{ (finite 7)}$$

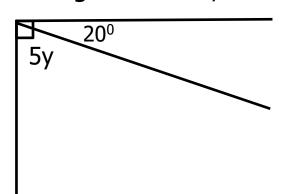
6. The area of the shaded part of the cylinder below is
$$58\text{cm}^2$$
. Calculate its volume. (Use $\pi = \frac{22}{7}$)

7. Workout:
$$42 \div (7 \times 3) + 6^{\circ}$$
.

$$42 \div 21 + 6^0$$

2 + 1

8. Find the largest factor which is common in 28 and 36.


GCF of 28 and 36

$$GCF = 2 \times 2$$

9. Osei read 60 pages of a novel book which was equivalent to $\frac{5}{8}$. Find the the total number of pages contained in the whole novel book.

Number of pages

10. In the diagram below, workout the value of y in degrees.

$$\begin{array}{rcl}
Number of y \\
20^{0} + 5y & = 90^{0} \\
20^{0} - 20^{0} + 5y & = 90^{0} - 20^{0} \\
5y & = 70^{0}_{14} \\
\frac{5y}{5} & = \frac{70^{0}}{5} \\
y & = 14^{0}
\end{array}$$

11. A stationary seller made a profit of Sh.6,000 on selling 12 boxes of dustless chalk at Sh.54,000. At how much money did he buy each box of dustless chalk?


Sh.
$$\frac{^{414}}{54},000$$

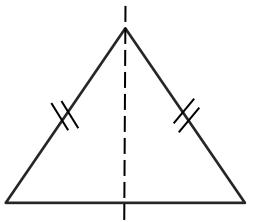
1 box costs sh.
$$\frac{48,000}{12}$$

He bought each box of dustless chalk at sh.4,000

12. What number is represented by the standard form 4.53×10^3 ?

13. The diagram below shows four circular plates of the same size along one of a metal plate of length 112 metres.

Find the radius of each circular plate.


Radius of each

Radius =
$$D \div 2$$

= $28m \div 2$

= $14m$

14. Draw an isosceles triangle in the space provided below and on it, show all the lines of folding symmetry.

15. Find the sum of 103_{four} and 122_{four}.

$$\begin{array}{ccc}
 & 103_{four} & 2+3=5 \\
 & 5 \div 4 = 1 \ rem \ 1 \\
 & 1+2=3 \\
 & 1+1=2
 \end{array}$$

16. At what speed can you drive a vehicle through a distance of 108km in 2 hours and 15 minutes?

Speed = Distance ÷ Time
=
$$108km$$
 ÷ $2\frac{15}{60}hr$
= $108km$ ÷ $2\frac{1}{4}hr$
= $108km$ ÷ $9hr$
 4

Speed =
$$\frac{12}{108}$$
km x $\frac{4}{9h}$
= 12 km x 4/h
= 48 km/h

17. A school hired 15 builders and they constructed the Main Hall block in 16 days. How many builders would the school have hired if they had to complete the hall in 6 days?

15 builders take 16 days

1 builder takes 16 x 15

1 builder takes 240 days

240 days are taken by 1 builder

6 days need 240 ÷ 6

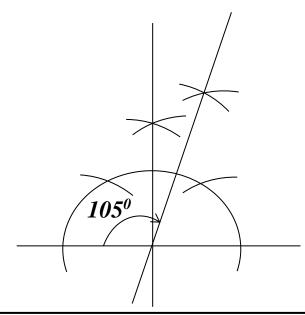
6 days need 40 builders

The school would have hired 40 builders to complete the hall in 6 days.

18. Workout: $\frac{6}{7} - \frac{2}{3}$.

$$LCM = 21$$

$$(\underline{6} \times 21) - (\underline{2} \times 21)$$


$$\underline{7} \quad \underline{3}$$

$$21$$

$$\frac{(6 \times 3) - (2 \times 7)}{21}$$

$$18 - 14$$

- <u>18 14</u> <u>21</u>
- 19. Using a sharp pencil a ruler and a pair of compasses only, construct an angle of 105° in the space below.

20. Mr. Kasirye rears two types of chicken, broilers and layers in the ratio 7:4 respectively. If the total number of chicken he rears is 440, how many are broilers?

40

SECTION B: 60 MARKS

Answer **all** questions in this section Marks for each question are indicated in brackets.

- 21. Given that n(B) = 10, $n(B \cap W) = x$, n(W B) = x + 6, n(E) = 28 and $n(B \cup W)'$ is twice $n(B \cap W)$.
 - (a) Use the information above to complete the Venn diagram below.

n(E) = 28 $n(B)=10 \qquad n(W)$ $10-x \qquad x + 6$ 2x

(03 Marks) (b) Find the value of x. (02 Marks)

$$10 - x + x + x + 6 + 2x = 28$$

$$10 + 6 + x + 2x = 28$$

$$16 + 3x = 28$$

$$16 - 16 + 3x = 28 - 16$$

$$\frac{3x}{3} = \frac{12}{3}$$

$$x = 4$$

22. (a) Solve: $3^{4t} = 3^{t+6}$. (02 Marks)

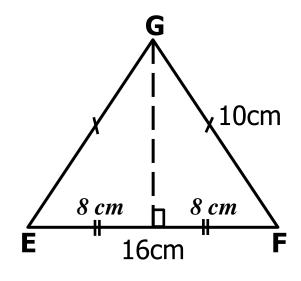
$$4t = t+6$$

$$4t-t = t-t+6$$

$$3t = 6$$

$$\frac{3t}{3} = \frac{6}{3}$$

$$t = 2$$


(b) Without actual division, show whether 4068 is a multiple of 9.

(02 Marks)

18 is multiple of 9, therefore, 4068 is divisible 9

23. Find the area of the triangle EFG below.

(04 Marks)

Height of triangle
$$a^{2} = c^{2} - b^{2}$$
 $a^{2} = 10^{2} - 8^{2}$
 $a^{2} = (10 \times 10) - (8 \times 8)$
 $a^{2} = 100 - 64$
 $\sqrt{a^{2}} = \sqrt{36}$
 $a = 6 \text{ cm}$
Height is 6 cm

$$Area of EFG$$

$$Area = b x h$$

$$2$$

$$= 16 cm x 6 cm$$

$$2$$

$$= 16 cm x 3 cm$$

$$= 48 cm^{2}$$

A taxi left Jinja at 11:45a.m. travelling at 80km for every hour to Mukono. 24. The distance the two towns is 160km. Express the time at which the taxi reached Mukono in the 12-hour clock system. (05 Marks)

Time taken

Time = distance
$$\div$$
 speed
= 160km \div 80km
H
= 160km \times h
80km
= $\frac{160km}{80km} \times h$
= $\frac{160km}{80km} \times h$
= 2h

E.T = D + S.T*= 11:45* + *2:00* 13:45hrs

Time it reached Mukono
 In 12 hour clock

$$E.T = D + S.T$$
 = 13:45

 = 11:45
 -12:00

 + 2:00
 01:45 p.m.

- 25. A Kenyan trader wanted to exchange Ksh.44,000 into Tanzania currency. Use the market rates of exchange below and calculate the amount of Tanzania shillings the trader got. (04 Marks)
 - 1 Kenya Shillings (Ksh) = Ugsh.36. 1 Tanzania Shillings (Tzsh) = Ugsh.24

$$Ksh. 1 = Ugsh.36$$

 $Ksh. 44,000 = Ugsh. 44,000 \times 36$
 $Ksh. 44,000 = Ugsh. 1,584,000$

$$Ugsh.24 = Tzsh.1$$
 $Ugsh.1,584,000 = 1,584,000$
 24
 $Ugsh.1,584,000 = Tzsh.66,000$

- Primary Seven pupils of Kasumba Primary School performed as follows in 26. the Pre-Registration Exams. $\frac{3}{5}$ passed in Division One, $\frac{1}{2}$ of the remainder in Division Two and 8 pupils passed in other grades.
 - Find the fraction of the pupils who passed in other grades. (a)

Div 1 =
$$\frac{3}{5}$$

Rem = $\frac{5}{5} - \frac{3}{5}$

= $\frac{2}{5}$

Div 2 = $\frac{1}{2}$ of $\frac{2}{5}$

Div
$$2 = \frac{1}{2} \times \frac{2}{5}$$

Div $2 = \frac{1}{5}$

Other games $= \frac{2-1}{5}$
 $= \frac{2-1}{5}$

(b) What is the total number of pupils who did the exam? (02 Marks)

27. (a) Solve the equation:
$$3k - 5 = 25$$
.

$$3k-5 = 25$$

$$3k-5+5 = 25+5$$

$$3k = 30$$

$$\frac{3k}{3} = \frac{30}{3}$$

$$k = 10$$

(b) If
$$a = b$$
, $b = 6$ and $c = -2$. Find the value of $b + ac$ (03 Marks)

$6 + a \times c$
3
$6 + 6 \times 2$
3
<u>6 + ⁻12</u>
3

$$\frac{6 + (-12)}{3}$$
 $\frac{6 - 12}{3}$
 $\frac{-6}{3}$

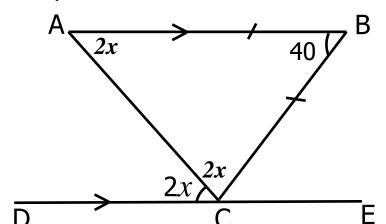
Two patients A and B whose body temperatures were 37.8°c and 38°c respectively were admitted at Koboko Health Centre III on a certain day. After two hours, patient A's temperature rose by 1.2°c while B's temperature dropped by 1.4°c. Workout the patients' temperature difference after the

<u>Temperature</u>	after 2 hours
Patient A	Patient B

two hours.

28.

Patient A Fullent B
$$37.8^{0}c \\
+ 1.2^{0}c \\
\hline
39.0^{0}c \\
\hline
- 1.4^{0}c \\
\hline
36.6^{0}c$$


Patient B
$$39.0^{0}c$$

$$-36.6^{0}c$$

$$2.4^{0}c$$

(03 Marks)

29. In the diagram below, line AB is parallel to line DE. ABC is an isosceles triangle and angle ABC = 40° . Study the diagram and use it to answer the questions that follow.

$$_{\rm B}$$
 (a) Find the value of x in degrees. (02 Marks)

$$2x + 2x + 40^{0} = 180^{0}$$

$$4x + 40^{0} = 180^{0}$$

$$4x + 40^{0} - 40^{0} = 180^{0} - 40^{0}$$

$$4x = 140^{0}$$

$$4x = \frac{140^{0}}{4}$$

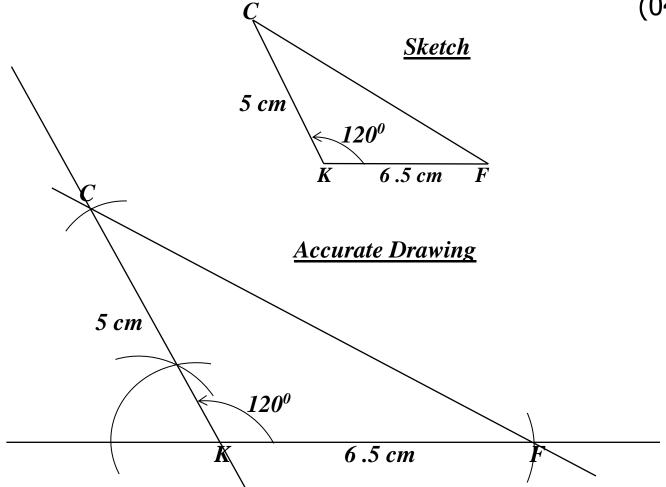
$$x = 35^{0}$$

Angle BAC =
$$2x$$

= $2 \times 35^{\circ}$
= 70°

30. The marks below were obtained by applicants during a job interview.

(a) Complete the frequency distribution table below with the above marks. (04 Marks)

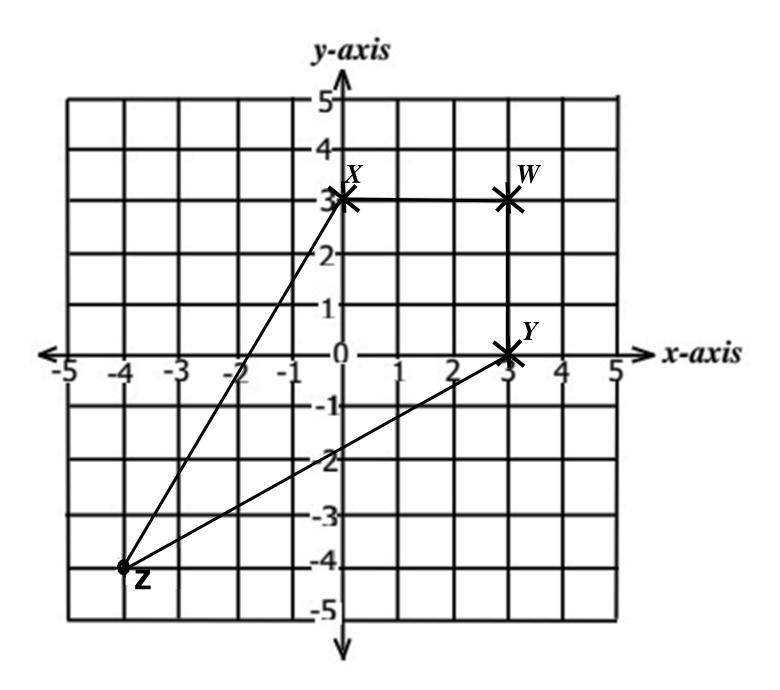

Marks	Frequency	Total marks
40	3	120
50	3	150
60	4	240

(b) Workout the applicants' average score.

(02 Marks)

31. (a) Using a ruler and a pair of compasses only, construct a triangle KFC where KF = 6.5cm, angle $FKC = 120^{\circ}$ and length KC = 5cm.

(04 Marks)


(b) Measure the length FC in centimetres.

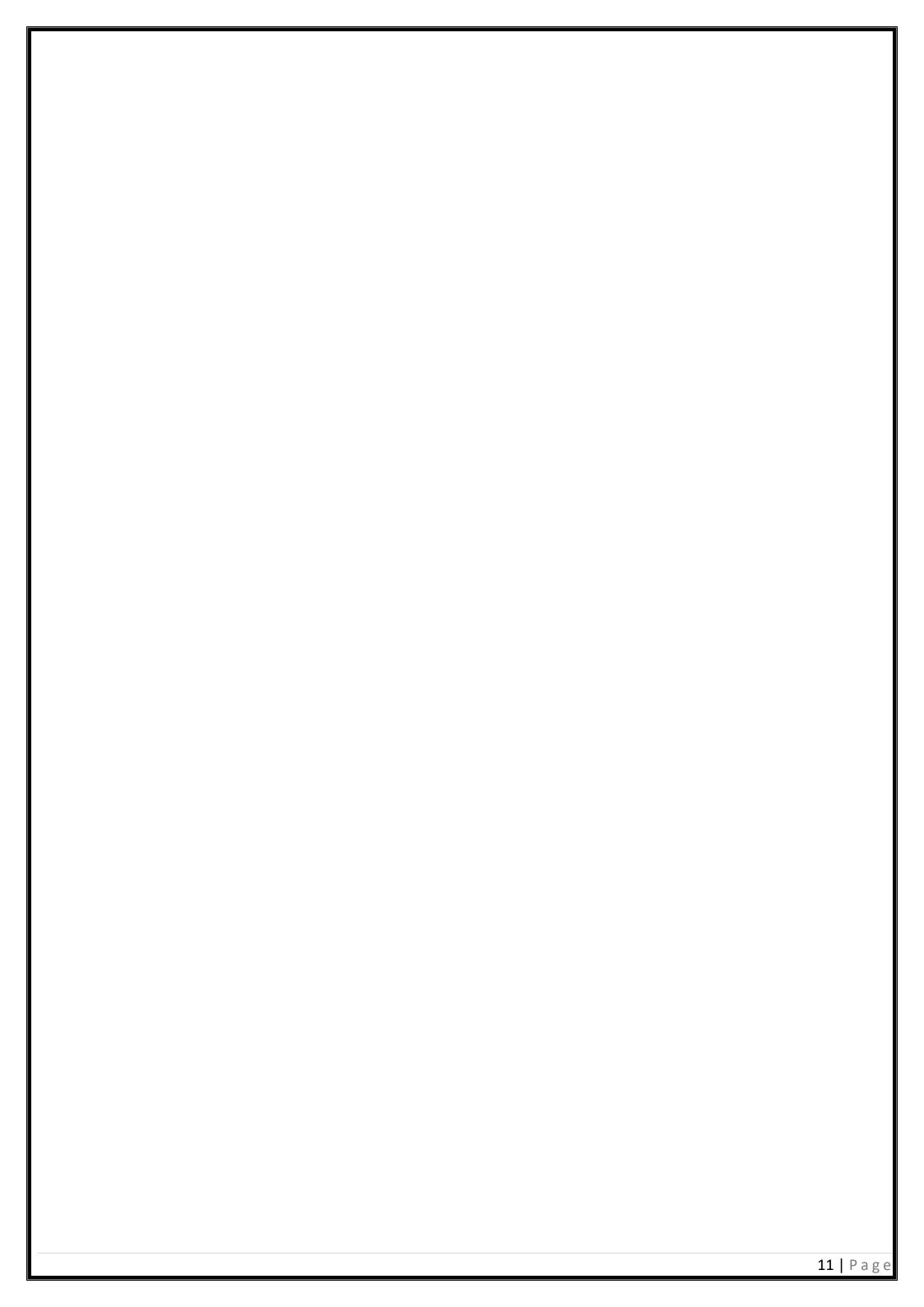
(01 Mark)

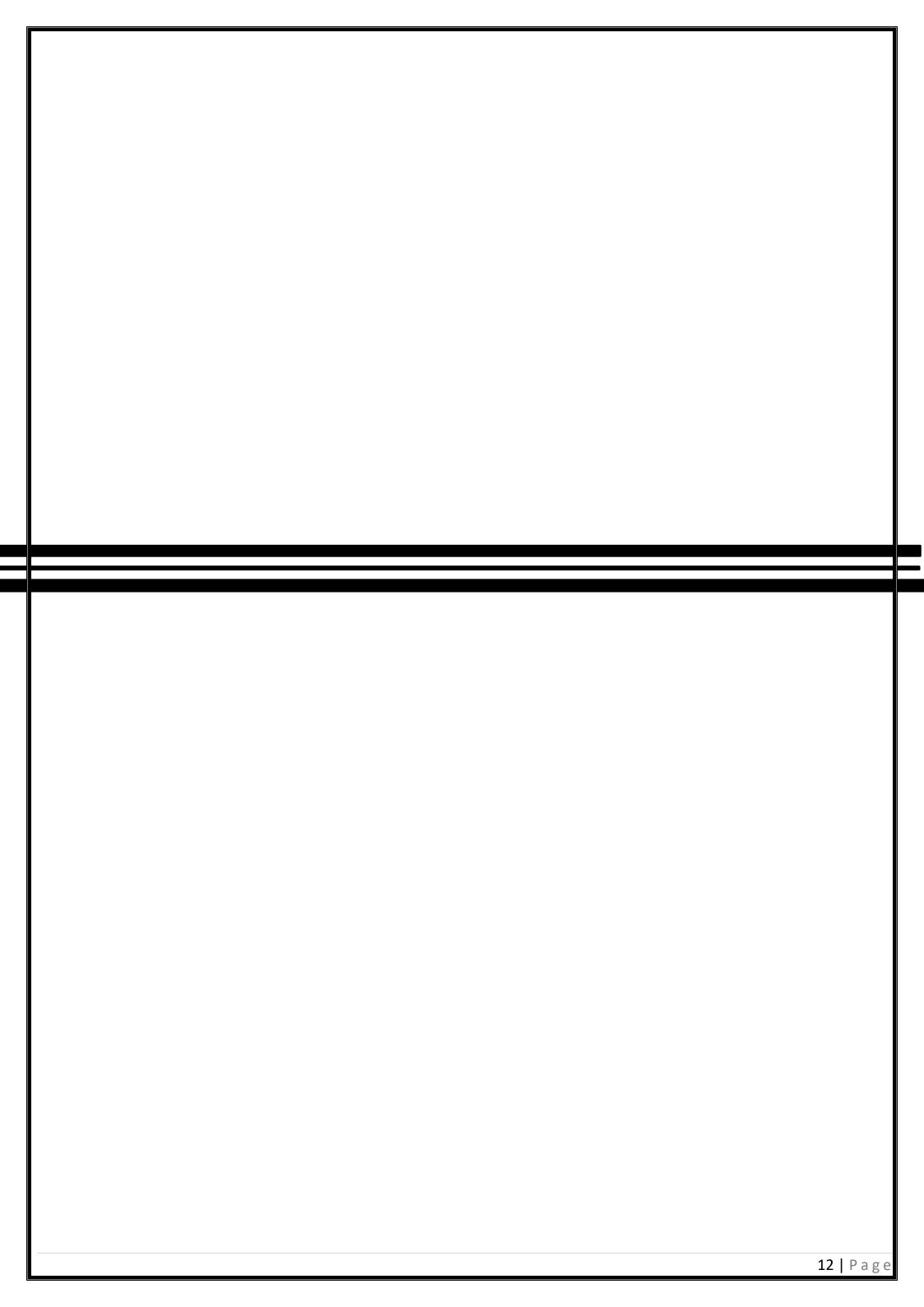
Length FC = $\frac{9.9cm}{10 cm} \frac{10.1cm}{10.1cm}$

32. (a) On the grid below, plot the points;

- (03 Marks)
- $\mathbf{W}(^{+}3, ^{+}3), \mathbf{X}(0, ^{+}3) \text{ and } \mathbf{Y}(^{+}3, 0)$

(b) Write down the coordinates for Point **Z**.


(01 Mark)


 $Z(^{-}4, ^{-}4)$

- (c) Join the points **Z** to **Y**, **X** to **W**, **Z** to **X** and **Y** to **W**.
- (01 Mark)
- (d) Name the geometric shape **WXYZ** formed on the graph above.

Kite

(01 Mark)

