P425/2 APPLIED MATHEMATICS Paper 2 Nov./Dec. 2025 3 hours

UGANDA NATIONAL EXAMINATIONS BOARD Uganda Advanced Certificate of Education

APPLIED MATHEMATICS

Paper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

This paper consists of two Sections; A and B.

Section A is compulsory.

Answer any five questions from Section B.

Any additional questions answered will not be marked.

Begin each answer on a fresh page.

All necessary working must be shown clearly.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take acceleration due to gravity, g, to be 9.8 ms⁻².

SECTION A (40 MARKS)

Answer all the questions in this section.

- In a packet of pens, 30% are black. Ten (10) pens are picked at random from the packet. Find the probability that;
 - (a) three of the pens are black.

(02 marks)

(b) less than four are black.

(03 marks)

- 2. Three particles of mass 3 kg, 2 kg and m kg act at points whose position vectors are i + 2j, -i 3j and 2i j respectively. If the centre of gravity of the masses lies at a point (n, -0.5), find the values of m and n. (05 marks)
- 3. Use the trapezium rule with six ordinates to approximate the value of

$$\int_{2}^{3} \left(\frac{2}{x} + x^2\right) dx$$

correct to three significant figures.

(05 marks)

- 4. A continuous random variable, X, is uniformly distributed on the interval $a \le x \le b$. The mean of the distribution is 12 and the variance is 3. Find the values of a and b. (05 marks)
- 5. A particle projected vertically upwards with a speed of ν ms⁻¹ takes t seconds to travel the first 70 m. It then takes t seconds to travel the next 50 m. Determine the;
 - (a) value of ν .

(03 marks)

(b) maximum height attained by the particle.

(02 marks)

6. The table below shows the values of a function f(x).

x	5	12	19	26
f(x)	6.6	2.9	-0.1	-2.9

Use linear interpolation/extrapolation to estimate

(a) f(x) when x = 15.

(03 marks)

(b) x when f(x) = -3.9.

(02 marks)

 The table below shows the grades obtained by eight students in Mathematics and Physics examinations.

Student	Ben	Ali	Ann	Musa	John	Joy	Sarah	Betty
Grade in Mathematics	E /	Α,	С	B .3	0	В	В	D
Grade in Physics	. D	В	Α	Α	Е	0	С	F

Compute the rank correlation coefficient for the performance of the students.

(05 marks)

8. A particle moving with Simple Harmonic Motion (SHM) has speeds 3 ms⁻¹ and 5 ms⁻¹ at distances 7 m and 6 m respectively. Show that the period of the SHM is $\frac{1}{2}\pi\sqrt{3}$. (05 marks

SECTION B (60 MARKS)

Answer any five questions from this section.

9. The table below shows scores in an aptitude test by seventy workers.

Scores	2.5 – 2.6	2.7 – 3.2	3.3 – 3.5	3.6 – 3.7	3.8 – 4.1	4.2 – 4.5
Number of workers.	6	18	20	4	12	10

(a) Calculate the median score.

- (05 marks)
- (b) Draw a histogram for the data and use it to estimate the modal score.

 (07 marks)
- 10. (a) Show by graphical method that there are three roots to the equation: $2x^3 5x + 2 = 0$ in the range -2 < x < 2. (06 marks)
 - (b) Use the Newton Raphson's iterative formula to find, correct to **two** decimal places, the root of the equation: $2x^3 5x + 2 = 0$, which lies between 1 and 2. (06 marks)
- 11. A uniform ladder AB of mass 20 kg and length 5 metres rests in equilibrium against a rough vertical wall and a rough horizontal ground. The end B of the ladder rests against the wall while end A rests on the ground. The ladder makes an angle of 50° with the ground. The coefficients of friction at the wall and ground are 0.8 and 0.4 respectively. A man of mass 50 kg climbs the ladder.

Find;

(a) the reactions at A and B.

(08 marks)

(b) how far up the ladder the man climbs without the ladder slipping.

(04 marks)

- 12. (a) A random sample of size 25 is taken from a normal population with mean 28 and standard deviation 3. Find the probability that sample mean, \bar{x} , lies between 26.8 and 28.3. (06 marks)
 - (b) The heights of seedlings in a nursery bed are normally distributed with variance 0.24. A random sample of five seedlings has heights 25.4 cm, 26.6 cm, 25.8 cm, 26.0 cm and 26.2 cm. Determine the 98 % confidence interval for the mean height of all seedlings in the nursery bed.

 (06 marks)
- The numbers x = 6.81, y = 13.182 and z = 5.1 are all rounded off correct to the given number of decimal places.
 - (a) State the maximum possible errors in x, y and z. (02 marks)
 - (b) Find the relative error in xz correct to three decimal places. (03 marks)
 - (c) Determine the interval within which the exact value of (xy-z) can be expected to lie. Give the answer correct to **two** decimal places.

(07 marks)

14. At 12:00 noon, ship A has position vector of $(18\mathbf{i} + 6\mathbf{j})$ km and velocity $(\mathbf{i} + 4\mathbf{j})$ kmh⁻¹. At the same time, ship B has a position vector of $(4\mathbf{i} + 10\mathbf{j})$ km and velocity of $(3\mathbf{i} + 2\mathbf{j})$ kmh⁻¹.

Find the:

- (a) displacement of ship A relative to B at any time t, hours. (04 marks)
- (b) (i) time when the two ships are closest to each other. (06 marks)
 - (ii) distance when the two ships are closest to each other. (02 marks)
- 15. The number, X of traffic offences committed per day by drivers on a particular road is a random variable with probability distribution given by P(x) = c(5-x), x = 0, 1, 2, 3, 4 where c is a constant.

Determine the:

- (a) value of c. (02 marks)
- (b) probability that the number of offences committed per day is between 1 and 4. (03 marks)
- (c) mean number of offences committed per day. (04 marks)
- (d) variance for the distribution. (03 marks)

16. (a) A particle of mass 3 kg is moving with a speed of 8 ms⁻¹. Another particle of mass, m kg is moving in the opposite direction with a speed of 4 ms⁻¹. The two particles collide directly. After collusion, their initial directions of motion reverse, with the 3 kg mass moving at 5 ms⁻¹ and the m kg mass moving at 5.75 ms⁻¹.

Determine the:

- (i) value of m. (03 marks)
- (ii) loss in kinetic energy due to collision. (02 marks)
- (b) A carpenter strikes a nail of mass 0.025 kg with a hammer of mass 1 kg into a block of wood. The nail is driven a distance of 0.03 m into the block. If the speed of the hammer just before impact is 9 ms⁻¹, find the:

5

- (i) resistance of the wood to the motion of the nail. (04 marks)
- (ii) time taken by the nail to move the distance of 0.03 m into the wood. (03 marks)

END